percpu.c 56.8 KB
Newer Older
1
/*
2
 * mm/percpu.c - percpu memory allocator
3 4 5 6 7 8 9
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
10 11 12
 * areas.  Percpu areas are allocated in chunks.  Each chunk is
 * consisted of boot-time determined number of units and the first
 * chunk is used for static percpu variables in the kernel image
13 14 15
 * (special boot time alloc/init handling necessary as these areas
 * need to be brought up before allocation services are running).
 * Unit grows as necessary and all units grow or shrink in unison.
16
 * When a chunk is filled up, another chunk is allocated.
17 18 19 20 21 22 23 24
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 26 27 28
 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
 * Percpu access can be done by configuring percpu base registers
 * according to cpu to unit mapping and pcpu_unit_size.
29
 *
30 31
 * There are usually many small percpu allocations many of them being
 * as small as 4 bytes.  The allocator organizes chunks into lists
32 33
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
34
 * guaranteed to be equal to or larger than the maximum contiguous
35 36 37 38 39 40 41 42
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
43 44
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
45 46 47 48
 *
 * To use this allocator, arch code should do the followings.
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 50
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
51
 *
52 53
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
54 55 56 57
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
58
#include <linux/err.h>
59
#include <linux/list.h>
60
#include <linux/log2.h>
61 62 63 64 65 66
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
67
#include <linux/spinlock.h>
68
#include <linux/vmalloc.h>
69
#include <linux/workqueue.h>
70
#include <linux/kmemleak.h>
71 72

#include <asm/cacheflush.h>
73
#include <asm/sections.h>
74
#include <asm/tlbflush.h>
75
#include <asm/io.h>
76 77 78 79

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */

80
#ifdef CONFIG_SMP
81 82 83
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
84 85 86
	(void __percpu *)((unsigned long)(addr) -			\
			  (unsigned long)pcpu_base_addr	+		\
			  (unsigned long)__per_cpu_start)
87 88 89
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
90 91 92
	(void __force *)((unsigned long)(ptr) +				\
			 (unsigned long)pcpu_base_addr -		\
			 (unsigned long)__per_cpu_start)
93
#endif
94 95 96 97 98
#else	/* CONFIG_SMP */
/* on UP, it's always identity mapped */
#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
#endif	/* CONFIG_SMP */
99

100 101 102 103
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
T
Tejun Heo 已提交
104
	void			*base_addr;	/* base address of this chunk */
105
	int			map_used;	/* # of map entries used before the sentry */
106 107
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
108
	void			*data;		/* chunk data */
A
Al Viro 已提交
109
	int			first_free;	/* no free below this */
110
	bool			immutable;	/* no [de]population allowed */
T
Tejun Heo 已提交
111
	unsigned long		populated[];	/* populated bitmap */
112 113
};

114 115
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
116
static int pcpu_nr_units __read_mostly;
117
static int pcpu_atom_size __read_mostly;
118 119
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
120

T
Tejun Heo 已提交
121 122 123
/* cpus with the lowest and highest unit addresses */
static unsigned int pcpu_low_unit_cpu __read_mostly;
static unsigned int pcpu_high_unit_cpu __read_mostly;
124

125
/* the address of the first chunk which starts with the kernel static area */
126
void *pcpu_base_addr __read_mostly;
127 128
EXPORT_SYMBOL_GPL(pcpu_base_addr);

T
Tejun Heo 已提交
129 130
static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
131

132 133 134 135 136
/* group information, used for vm allocation */
static int pcpu_nr_groups __read_mostly;
static const unsigned long *pcpu_group_offsets __read_mostly;
static const size_t *pcpu_group_sizes __read_mostly;

137 138 139 140 141 142 143 144 145 146 147 148 149 150
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
151 152 153
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

154
/*
T
Tejun Heo 已提交
155 156 157
 * Free path accesses and alters only the index data structures and can be
 * safely called from atomic context.  When memory needs to be returned to
 * the system, free path schedules reclaim_work.
158
 */
T
Tejun Heo 已提交
159 160
static DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop */
161

162
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
163

164 165 166 167
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);

168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
static bool pcpu_addr_in_first_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start && addr < first_start + pcpu_unit_size;
}

static bool pcpu_addr_in_reserved_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start &&
		addr < first_start + pcpu_reserved_chunk_limit;
}

183
static int __pcpu_size_to_slot(int size)
184
{
T
Tejun Heo 已提交
185
	int highbit = fls(size);	/* size is in bytes */
186 187 188
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

189 190 191 192 193 194 195
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

196 197 198 199 200 201 202 203
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

204 205 206 207 208 209 210 211 212 213 214 215 216
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
217
{
218
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
219 220
}

221 222
static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
223
{
T
Tejun Heo 已提交
224
	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
T
Tejun Heo 已提交
225
		(page_idx << PAGE_SHIFT);
226 227
}

228 229
static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
					   int *rs, int *re, int end)
T
Tejun Heo 已提交
230 231 232 233 234
{
	*rs = find_next_zero_bit(chunk->populated, end, *rs);
	*re = find_next_bit(chunk->populated, end, *rs + 1);
}

235 236
static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
					 int *rs, int *re, int end)
T
Tejun Heo 已提交
237 238 239 240 241 242 243
{
	*rs = find_next_bit(chunk->populated, end, *rs);
	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
}

/*
 * (Un)populated page region iterators.  Iterate over (un)populated
244
 * page regions between @start and @end in @chunk.  @rs and @re should
T
Tejun Heo 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257
 * be integer variables and will be set to start and end page index of
 * the current region.
 */
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))

258
/**
259
 * pcpu_mem_zalloc - allocate memory
260
 * @size: bytes to allocate
261
 *
262
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
263
 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
264
 * memory is always zeroed.
265
 *
266 267 268
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
269
 * RETURNS:
270
 * Pointer to the allocated area on success, NULL on failure.
271
 */
272
static void *pcpu_mem_zalloc(size_t size)
273
{
274 275 276
	if (WARN_ON_ONCE(!slab_is_available()))
		return NULL;

277 278
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
279 280
	else
		return vzalloc(size);
281
}
282

283 284 285 286 287
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 * @size: size of the area
 *
288
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
289 290 291
 */
static void pcpu_mem_free(void *ptr, size_t size)
{
292
	if (size <= PAGE_SIZE)
293
		kfree(ptr);
294
	else
295
		vfree(ptr);
296 297 298 299 300 301 302 303 304
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
305 306
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
307 308 309
 *
 * CONTEXT:
 * pcpu_lock.
310 311 312 313 314
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

315
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
316 317 318 319 320 321 322
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

323
/**
324 325
 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 * @chunk: chunk of interest
326
 *
327
 * Determine whether area map of @chunk needs to be extended to
L
Lucas De Marchi 已提交
328
 * accommodate a new allocation.
329
 *
330
 * CONTEXT:
331
 * pcpu_lock.
332
 *
333
 * RETURNS:
334 335
 * New target map allocation length if extension is necessary, 0
 * otherwise.
336
 */
337
static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
338 339 340
{
	int new_alloc;

341
	if (chunk->map_alloc >= chunk->map_used + 3)
342 343 344
		return 0;

	new_alloc = PCPU_DFL_MAP_ALLOC;
345
	while (new_alloc < chunk->map_used + 3)
346 347
		new_alloc *= 2;

348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
	return new_alloc;
}

/**
 * pcpu_extend_area_map - extend area map of a chunk
 * @chunk: chunk of interest
 * @new_alloc: new target allocation length of the area map
 *
 * Extend area map of @chunk to have @new_alloc entries.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
{
	int *old = NULL, *new = NULL;
	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
	unsigned long flags;

370
	new = pcpu_mem_zalloc(new_size);
371
	if (!new)
372
		return -ENOMEM;
373

374 375 376 377 378
	/* acquire pcpu_lock and switch to new area map */
	spin_lock_irqsave(&pcpu_lock, flags);

	if (new_alloc <= chunk->map_alloc)
		goto out_unlock;
379

380
	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
381 382 383
	old = chunk->map;

	memcpy(new, old, old_size);
384 385 386

	chunk->map_alloc = new_alloc;
	chunk->map = new;
387 388 389 390 391 392 393 394 395 396 397 398
	new = NULL;

out_unlock:
	spin_unlock_irqrestore(&pcpu_lock, flags);

	/*
	 * pcpu_mem_free() might end up calling vfree() which uses
	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
	 */
	pcpu_mem_free(old, old_size);
	pcpu_mem_free(new, new_size);

399 400 401
	return 0;
}

402 403 404
/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
405
 * @size: wanted size in bytes
406 407 408 409 410 411
 * @align: wanted align
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
412 413
 * @chunk->map must have at least two free slots.
 *
414 415 416
 * CONTEXT:
 * pcpu_lock.
 *
417
 * RETURNS:
418 419
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
420 421 422 423 424 425
 */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;
A
Al Viro 已提交
426
	bool seen_free = false;
427
	int *p;
428

A
Al Viro 已提交
429
	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
430
		int head, tail;
431 432 433 434 435
		int this_size;

		off = *p;
		if (off & 1)
			continue;
436 437 438 439

		/* extra for alignment requirement */
		head = ALIGN(off, align) - off;

440 441
		this_size = (p[1] & ~1) - off;
		if (this_size < head + size) {
A
Al Viro 已提交
442 443 444 445
			if (!seen_free) {
				chunk->first_free = i;
				seen_free = true;
			}
446
			max_contig = max(this_size, max_contig);
447 448 449 450 451 452 453 454 455
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
456
		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
457
			*p = off += head;
458
			if (p[-1] & 1)
459
				chunk->free_size -= head;
460 461
			else
				max_contig = max(*p - p[-1], max_contig);
462
			this_size -= head;
463 464 465 466
			head = 0;
		}

		/* if tail is small, just keep it around */
467 468
		tail = this_size - head - size;
		if (tail < sizeof(int)) {
469
			tail = 0;
470 471
			size = this_size - head;
		}
472 473 474

		/* split if warranted */
		if (head || tail) {
475 476 477
			int nr_extra = !!head + !!tail;

			/* insert new subblocks */
478
			memmove(p + nr_extra + 1, p + 1,
479 480 481
				sizeof(chunk->map[0]) * (chunk->map_used - i));
			chunk->map_used += nr_extra;

482
			if (head) {
A
Al Viro 已提交
483 484 485 486
				if (!seen_free) {
					chunk->first_free = i;
					seen_free = true;
				}
487 488
				*++p = off += head;
				++i;
489 490 491
				max_contig = max(head, max_contig);
			}
			if (tail) {
492
				p[1] = off + size;
493
				max_contig = max(tail, max_contig);
494 495 496
			}
		}

A
Al Viro 已提交
497 498 499
		if (!seen_free)
			chunk->first_free = i + 1;

500
		/* update hint and mark allocated */
501
		if (i + 1 == chunk->map_used)
502 503 504 505 506
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

507 508
		chunk->free_size -= size;
		*p |= 1;
509 510 511 512 513 514 515 516

		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

517 518
	/* tell the upper layer that this chunk has no matching area */
	return -1;
519 520 521 522 523 524 525 526 527 528
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
529 530 531
 *
 * CONTEXT:
 * pcpu_lock.
532 533 534 535
 */
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
{
	int oslot = pcpu_chunk_slot(chunk);
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
	int off = 0;
	unsigned i, j;
	int to_free = 0;
	int *p;

	freeme |= 1;	/* we are searching for <given offset, in use> pair */

	i = 0;
	j = chunk->map_used;
	while (i != j) {
		unsigned k = (i + j) / 2;
		off = chunk->map[k];
		if (off < freeme)
			i = k + 1;
		else if (off > freeme)
			j = k;
		else
			i = j = k;
	}
555 556
	BUG_ON(off != freeme);

A
Al Viro 已提交
557 558 559
	if (i < chunk->first_free)
		chunk->first_free = i;

560 561 562
	p = chunk->map + i;
	*p = off &= ~1;
	chunk->free_size += (p[1] & ~1) - off;
563

564 565 566
	/* merge with next? */
	if (!(p[1] & 1))
		to_free++;
567
	/* merge with previous? */
568 569
	if (i > 0 && !(p[-1] & 1)) {
		to_free++;
570
		i--;
571
		p--;
572
	}
573 574 575 576
	if (to_free) {
		chunk->map_used -= to_free;
		memmove(p + 1, p + 1 + to_free,
			(chunk->map_used - i) * sizeof(chunk->map[0]));
577 578
	}

579
	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
580 581 582
	pcpu_chunk_relocate(chunk, oslot);
}

583 584 585 586
static struct pcpu_chunk *pcpu_alloc_chunk(void)
{
	struct pcpu_chunk *chunk;

587
	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
588 589 590
	if (!chunk)
		return NULL;

591 592
	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
						sizeof(chunk->map[0]));
593
	if (!chunk->map) {
594
		pcpu_mem_free(chunk, pcpu_chunk_struct_size);
595 596 597 598
		return NULL;
	}

	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
599 600 601
	chunk->map[0] = 0;
	chunk->map[1] = pcpu_unit_size | 1;
	chunk->map_used = 1;
602 603 604 605 606 607 608 609 610 611 612 613 614

	INIT_LIST_HEAD(&chunk->list);
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;

	return chunk;
}

static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
615
	pcpu_mem_free(chunk, pcpu_chunk_struct_size);
616 617
}

618 619 620 621 622 623 624 625 626 627 628 629 630 631
/*
 * Chunk management implementation.
 *
 * To allow different implementations, chunk alloc/free and
 * [de]population are implemented in a separate file which is pulled
 * into this file and compiled together.  The following functions
 * should be implemented.
 *
 * pcpu_populate_chunk		- populate the specified range of a chunk
 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 * pcpu_create_chunk		- create a new chunk
 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 * pcpu_addr_to_page		- translate address to physical address
 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
632
 */
633 634 635 636 637 638
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
static struct pcpu_chunk *pcpu_create_chunk(void);
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
static struct page *pcpu_addr_to_page(void *addr);
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
639

640 641 642
#ifdef CONFIG_NEED_PER_CPU_KM
#include "percpu-km.c"
#else
643
#include "percpu-vm.c"
644
#endif
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
/**
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
 *
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
	/* is it in the first chunk? */
	if (pcpu_addr_in_first_chunk(addr)) {
		/* is it in the reserved area? */
		if (pcpu_addr_in_reserved_chunk(addr))
			return pcpu_reserved_chunk;
		return pcpu_first_chunk;
	}

	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
671
	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
672 673
}

674
/**
675
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
676
 * @size: size of area to allocate in bytes
677
 * @align: alignment of area (max PAGE_SIZE)
678
 * @reserved: allocate from the reserved chunk if available
679
 *
680 681 682 683
 * Allocate percpu area of @size bytes aligned at @align.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.
684 685 686 687
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
688
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
689
{
690
	static int warn_limit = 10;
691
	struct pcpu_chunk *chunk;
692
	const char *err;
T
Tejun Heo 已提交
693
	int slot, off, new_alloc, cpu, ret;
694
	int page_start, page_end, rs, re;
695
	unsigned long flags;
696
	void __percpu *ptr;
697

698 699
	/*
	 * We want the lowest bit of offset available for in-use/free
V
Viro 已提交
700
	 * indicator, so force >= 16bit alignment and make size even.
701 702 703 704
	 */
	if (unlikely(align < 2))
		align = 2;

705
	size = ALIGN(size, 2);
V
Viro 已提交
706

707
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
708 709 710 711 712
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

713
	spin_lock_irqsave(&pcpu_lock, flags);
714

715 716 717
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
718 719 720

		if (size > chunk->contig_hint) {
			err = "alloc from reserved chunk failed";
721
			goto fail_unlock;
722
		}
723 724 725 726 727

		while ((new_alloc = pcpu_need_to_extend(chunk))) {
			spin_unlock_irqrestore(&pcpu_lock, flags);
			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
				err = "failed to extend area map of reserved chunk";
T
Tejun Heo 已提交
728
				goto fail;
729 730 731 732
			}
			spin_lock_irqsave(&pcpu_lock, flags);
		}

733 734 735
		off = pcpu_alloc_area(chunk, size, align);
		if (off >= 0)
			goto area_found;
736

737
		err = "alloc from reserved chunk failed";
738
		goto fail_unlock;
739 740
	}

741
restart:
742
	/* search through normal chunks */
743 744 745 746
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
747

748 749 750 751 752 753
			new_alloc = pcpu_need_to_extend(chunk);
			if (new_alloc) {
				spin_unlock_irqrestore(&pcpu_lock, flags);
				if (pcpu_extend_area_map(chunk,
							 new_alloc) < 0) {
					err = "failed to extend area map";
T
Tejun Heo 已提交
754
					goto fail;
755 756 757 758 759 760 761
				}
				spin_lock_irqsave(&pcpu_lock, flags);
				/*
				 * pcpu_lock has been dropped, need to
				 * restart cpu_slot list walking.
				 */
				goto restart;
762 763
			}

764 765 766 767 768 769
			off = pcpu_alloc_area(chunk, size, align);
			if (off >= 0)
				goto area_found;
		}
	}

770
	spin_unlock_irqrestore(&pcpu_lock, flags);
771

T
Tejun Heo 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
	/*
	 * No space left.  Create a new chunk.  We don't want multiple
	 * tasks to create chunks simultaneously.  Serialize and create iff
	 * there's still no empty chunk after grabbing the mutex.
	 */
	mutex_lock(&pcpu_alloc_mutex);

	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
		chunk = pcpu_create_chunk();
		if (!chunk) {
			err = "failed to allocate new chunk";
			goto fail;
		}

		spin_lock_irqsave(&pcpu_lock, flags);
		pcpu_chunk_relocate(chunk, -1);
	} else {
		spin_lock_irqsave(&pcpu_lock, flags);
790
	}
791

T
Tejun Heo 已提交
792
	mutex_unlock(&pcpu_alloc_mutex);
793
	goto restart;
794 795

area_found:
796
	spin_unlock_irqrestore(&pcpu_lock, flags);
797

798
	/* populate if not all pages are already there */
T
Tejun Heo 已提交
799
	mutex_lock(&pcpu_alloc_mutex);
800 801 802
	page_start = PFN_DOWN(off);
	page_end = PFN_UP(off + size);

803
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
804 805
		WARN_ON(chunk->immutable);

T
Tejun Heo 已提交
806 807 808 809 810
		ret = pcpu_populate_chunk(chunk, rs, re);

		spin_lock_irqsave(&pcpu_lock, flags);
		if (ret) {
			mutex_unlock(&pcpu_alloc_mutex);
811 812 813 814
			pcpu_free_area(chunk, off);
			err = "failed to populate";
			goto fail_unlock;
		}
815
		bitmap_set(chunk->populated, rs, re - rs);
T
Tejun Heo 已提交
816
		spin_unlock_irqrestore(&pcpu_lock, flags);
817 818
	}

819 820
	mutex_unlock(&pcpu_alloc_mutex);

821 822 823 824
	/* clear the areas and return address relative to base address */
	for_each_possible_cpu(cpu)
		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);

825 826 827
	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
	kmemleak_alloc_percpu(ptr, size);
	return ptr;
828 829

fail_unlock:
830
	spin_unlock_irqrestore(&pcpu_lock, flags);
T
Tejun Heo 已提交
831
fail:
832 833 834 835 836 837 838
	if (warn_limit) {
		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
			   "%s\n", size, align, err);
		dump_stack();
		if (!--warn_limit)
			pr_info("PERCPU: limit reached, disable warning\n");
	}
839
	return NULL;
840
}
841 842 843 844 845 846

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
847 848
 * Allocate zero-filled percpu area of @size bytes aligned at @align.
 * Might sleep.  Might trigger writeouts.
849
 *
850 851 852
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
853 854 855
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
856
void __percpu *__alloc_percpu(size_t size, size_t align)
857 858 859
{
	return pcpu_alloc(size, align, false);
}
860 861
EXPORT_SYMBOL_GPL(__alloc_percpu);

862 863 864 865 866
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
867 868 869 870
 * Allocate zero-filled percpu area of @size bytes aligned at @align
 * from reserved percpu area if arch has set it up; otherwise,
 * allocation is served from the same dynamic area.  Might sleep.
 * Might trigger writeouts.
871
 *
872 873 874
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
875 876 877
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
878
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
879 880 881 882
{
	return pcpu_alloc(size, align, true);
}

883 884 885 886 887
/**
 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
888 889 890
 *
 * CONTEXT:
 * workqueue context.
891 892
 */
static void pcpu_reclaim(struct work_struct *work)
893
{
894 895 896 897
	LIST_HEAD(todo);
	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
	struct pcpu_chunk *chunk, *next;

898 899
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
900 901 902 903 904 905 906 907 908 909 910

	list_for_each_entry_safe(chunk, next, head, list) {
		WARN_ON(chunk->immutable);

		/* spare the first one */
		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
			continue;

		list_move(&chunk->list, &todo);
	}

911
	spin_unlock_irq(&pcpu_lock);
912 913

	list_for_each_entry_safe(chunk, next, &todo, list) {
914
		int rs, re;
915

916 917 918 919
		pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
			pcpu_depopulate_chunk(chunk, rs, re);
			bitmap_clear(chunk->populated, rs, re - rs);
		}
920
		pcpu_destroy_chunk(chunk);
921
	}
T
Tejun Heo 已提交
922 923

	mutex_unlock(&pcpu_alloc_mutex);
924 925 926 927 928 929
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
930 931 932 933
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
934
 */
935
void free_percpu(void __percpu *ptr)
936
{
937
	void *addr;
938
	struct pcpu_chunk *chunk;
939
	unsigned long flags;
940 941 942 943 944
	int off;

	if (!ptr)
		return;

945 946
	kmemleak_free_percpu(ptr);

947 948
	addr = __pcpu_ptr_to_addr(ptr);

949
	spin_lock_irqsave(&pcpu_lock, flags);
950 951

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
952
	off = addr - chunk->base_addr;
953 954 955

	pcpu_free_area(chunk, off);

956
	/* if there are more than one fully free chunks, wake up grim reaper */
957 958 959
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

960
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
961
			if (pos != chunk) {
962
				schedule_work(&pcpu_reclaim_work);
963 964 965 966
				break;
			}
	}

967
	spin_unlock_irqrestore(&pcpu_lock, flags);
968 969 970
}
EXPORT_SYMBOL_GPL(free_percpu);

971 972 973 974 975 976 977 978 979 980 981 982 983
/**
 * is_kernel_percpu_address - test whether address is from static percpu area
 * @addr: address to test
 *
 * Test whether @addr belongs to in-kernel static percpu area.  Module
 * static percpu areas are not considered.  For those, use
 * is_module_percpu_address().
 *
 * RETURNS:
 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 */
bool is_kernel_percpu_address(unsigned long addr)
{
984
#ifdef CONFIG_SMP
985 986 987 988 989 990 991 992 993 994
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		void *start = per_cpu_ptr(base, cpu);

		if ((void *)addr >= start && (void *)addr < start + static_size)
			return true;
        }
995 996
#endif
	/* on UP, can't distinguish from other static vars, always false */
997 998 999
	return false;
}

1000 1001 1002 1003 1004 1005 1006 1007 1008
/**
 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 * @addr: the address to be converted to physical address
 *
 * Given @addr which is dereferenceable address obtained via one of
 * percpu access macros, this function translates it into its physical
 * address.  The caller is responsible for ensuring @addr stays valid
 * until this function finishes.
 *
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
 * percpu allocator has special setup for the first chunk, which currently
 * supports either embedding in linear address space or vmalloc mapping,
 * and, from the second one, the backing allocator (currently either vm or
 * km) provides translation.
 *
 * The addr can be tranlated simply without checking if it falls into the
 * first chunk. But the current code reflects better how percpu allocator
 * actually works, and the verification can discover both bugs in percpu
 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
 * code.
 *
1020 1021 1022 1023 1024
 * RETURNS:
 * The physical address for @addr.
 */
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
1025 1026
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	bool in_first_chunk = false;
T
Tejun Heo 已提交
1027
	unsigned long first_low, first_high;
1028 1029 1030
	unsigned int cpu;

	/*
T
Tejun Heo 已提交
1031
	 * The following test on unit_low/high isn't strictly
1032 1033 1034
	 * necessary but will speed up lookups of addresses which
	 * aren't in the first chunk.
	 */
T
Tejun Heo 已提交
1035 1036 1037 1038 1039
	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
				     pcpu_unit_pages);
	if ((unsigned long)addr >= first_low &&
	    (unsigned long)addr < first_high) {
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
		for_each_possible_cpu(cpu) {
			void *start = per_cpu_ptr(base, cpu);

			if (addr >= start && addr < start + pcpu_unit_size) {
				in_first_chunk = true;
				break;
			}
		}
	}

	if (in_first_chunk) {
1051
		if (!is_vmalloc_addr(addr))
1052 1053
			return __pa(addr);
		else
1054 1055
			return page_to_phys(vmalloc_to_page(addr)) +
			       offset_in_page(addr);
1056
	} else
1057 1058
		return page_to_phys(pcpu_addr_to_page(addr)) +
		       offset_in_page(addr);
1059 1060
}

1061
/**
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

1088
	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
1113
	memblock_free_early(__pa(ai), ai->__ai_size);
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
}

/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1125
{
1126
	int group_width = 1, cpu_width = 1, width;
1127
	char empty_str[] = "--------";
1128 1129 1130 1131 1132 1133 1134
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1135

1136
	v = num_possible_cpus();
1137
	while (v /= 10)
1138 1139
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1140

1141 1142 1143
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1144

1145 1146 1147
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1148

1149 1150 1151 1152 1153 1154 1155 1156
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1157
				printk(KERN_CONT "\n");
1158 1159
				printk("%spcpu-alloc: ", lvl);
			}
1160
			printk(KERN_CONT "[%0*d] ", group_width, group);
1161 1162 1163

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
1164
					printk(KERN_CONT "%0*d ", cpu_width,
1165 1166
					       gi->cpu_map[unit]);
				else
1167
					printk(KERN_CONT "%s ", empty_str);
1168 1169
		}
	}
1170
	printk(KERN_CONT "\n");
1171 1172
}

1173
/**
1174
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1175
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1176
 * @base_addr: mapped address
1177 1178 1179
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1180
 * setup path.
1181
 *
1182 1183 1184 1185 1186 1187
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1188 1189 1190 1191 1192 1193 1194
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1195 1196 1197
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1198
 *
1199 1200 1201
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
1202
 *
1203 1204
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
1205
 *
1206 1207 1208 1209 1210 1211 1212 1213 1214
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
1215
 *
1216 1217
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1218
 *
1219 1220 1221 1222 1223 1224 1225
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1226
 * RETURNS:
T
Tejun Heo 已提交
1227
 * 0 on success, -errno on failure.
1228
 */
T
Tejun Heo 已提交
1229 1230
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
1231
{
1232
	static char cpus_buf[4096] __initdata;
1233 1234
	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1235 1236
	size_t dyn_size = ai->dyn_size;
	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1237
	struct pcpu_chunk *schunk, *dchunk = NULL;
1238 1239
	unsigned long *group_offsets;
	size_t *group_sizes;
T
Tejun Heo 已提交
1240
	unsigned long *unit_off;
1241
	unsigned int cpu;
1242 1243
	int *unit_map;
	int group, unit, i;
1244

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);

#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

1256
	/* sanity checks */
1257
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1258
#ifdef CONFIG_SMP
1259
	PCPU_SETUP_BUG_ON(!ai->static_size);
1260
	PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1261
#endif
1262
	PCPU_SETUP_BUG_ON(!base_addr);
1263
	PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1264 1265 1266
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1267
	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1268
	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1269

1270
	/* process group information and build config tables accordingly */
1271 1272 1273 1274 1275 1276
	group_offsets = memblock_virt_alloc(ai->nr_groups *
					     sizeof(group_offsets[0]), 0);
	group_sizes = memblock_virt_alloc(ai->nr_groups *
					   sizeof(group_sizes[0]), 0);
	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1277

1278
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1279
		unit_map[cpu] = UINT_MAX;
T
Tejun Heo 已提交
1280 1281 1282

	pcpu_low_unit_cpu = NR_CPUS;
	pcpu_high_unit_cpu = NR_CPUS;
1283

1284 1285
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
1286

1287 1288 1289
		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

1290 1291 1292 1293
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
1294

1295 1296 1297
			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1298

1299
			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
1300 1301
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

T
Tejun Heo 已提交
1302 1303 1304 1305 1306 1307 1308
			/* determine low/high unit_cpu */
			if (pcpu_low_unit_cpu == NR_CPUS ||
			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
				pcpu_low_unit_cpu = cpu;
			if (pcpu_high_unit_cpu == NR_CPUS ||
			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
				pcpu_high_unit_cpu = cpu;
1309
		}
1310
	}
1311 1312 1313
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
1314 1315 1316 1317
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
1318
	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1319

1320 1321 1322
	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
1323
	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
1324
	pcpu_unit_offsets = unit_off;
1325 1326

	/* determine basic parameters */
1327
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1328
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1329
	pcpu_atom_size = ai->atom_size;
T
Tejun Heo 已提交
1330 1331
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1332

1333 1334 1335 1336 1337
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1338 1339
	pcpu_slot = memblock_virt_alloc(
			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1340 1341 1342
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1343 1344 1345 1346 1347 1348 1349
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1350
	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1351
	INIT_LIST_HEAD(&schunk->list);
T
Tejun Heo 已提交
1352
	schunk->base_addr = base_addr;
1353 1354
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1355
	schunk->immutable = true;
T
Tejun Heo 已提交
1356
	bitmap_fill(schunk->populated, pcpu_unit_pages);
1357

1358 1359
	if (ai->reserved_size) {
		schunk->free_size = ai->reserved_size;
1360
		pcpu_reserved_chunk = schunk;
1361
		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1362 1363 1364 1365
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1366
	schunk->contig_hint = schunk->free_size;
1367

1368 1369 1370
	schunk->map[0] = 1;
	schunk->map[1] = ai->static_size;
	schunk->map_used = 1;
1371
	if (schunk->free_size)
1372 1373 1374
		schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
	else
		schunk->map[1] |= 1;
1375

1376 1377
	/* init dynamic chunk if necessary */
	if (dyn_size) {
1378
		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1379
		INIT_LIST_HEAD(&dchunk->list);
T
Tejun Heo 已提交
1380
		dchunk->base_addr = base_addr;
1381 1382
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
1383
		dchunk->immutable = true;
T
Tejun Heo 已提交
1384
		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1385 1386

		dchunk->contig_hint = dchunk->free_size = dyn_size;
1387 1388 1389 1390
		dchunk->map[0] = 1;
		dchunk->map[1] = pcpu_reserved_chunk_limit;
		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
		dchunk->map_used = 2;
1391 1392
	}

1393
	/* link the first chunk in */
1394 1395
	pcpu_first_chunk = dchunk ?: schunk;
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1396 1397

	/* we're done */
T
Tejun Heo 已提交
1398
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
1399
	return 0;
1400
}
1401

1402 1403
#ifdef CONFIG_SMP

1404
const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1405 1406 1407 1408
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};
1409

1410
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1411

1412 1413
static int __init percpu_alloc_setup(char *str)
{
1414 1415 1416
	if (!str)
		return -EINVAL;

1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1429

1430
	return 0;
1431
}
1432
early_param("percpu_alloc", percpu_alloc_setup);
1433

1434 1435 1436 1437 1438
/*
 * pcpu_embed_first_chunk() is used by the generic percpu setup.
 * Build it if needed by the arch config or the generic setup is going
 * to be used.
 */
1439 1440
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
#define BUILD_EMBED_FIRST_CHUNK
#endif

/* build pcpu_page_first_chunk() iff needed by the arch config */
#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
#define BUILD_PAGE_FIRST_CHUNK
#endif

/* pcpu_build_alloc_info() is used by both embed and page first chunk */
#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: minimum free size for dynamic allocation in bytes
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 *
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
 *
 * Groups are always mutliples of atom size and CPUs which are of
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
 *
 * RETURNS:
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
 */
static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, size_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	int nr_groups = 1, nr_units = 0;
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
	int last_allocs, group, unit;
	unsigned int cpu, tcpu;
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;

	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
	memset(group_cnt, 0, sizeof(group_cnt));

	/* calculate size_sum and ensure dyn_size is enough for early alloc */
	size_sum = PFN_ALIGN(static_size + reserved_size +
			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
	dyn_size = size_sum - static_size - reserved_size;

	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
	 * alloc_size is multiple of atom_size and is the smallest
L
Lucas De Marchi 已提交
1500
	 * which can accommodate 4k aligned segments which are equal to
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
	 * or larger than min_unit_size.
	 */
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

	alloc_size = roundup(min_unit_size, atom_size);
	upa = alloc_size / min_unit_size;
	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
			if (group_map[tcpu] == group && cpu_distance_fn &&
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
				nr_groups = max(nr_groups, group + 1);
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
	}

	/*
	 * Expand unit size until address space usage goes over 75%
	 * and then as much as possible without using more address
	 * space.
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
			continue;

		for (group = 0; group < nr_groups; group++) {
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 1/3.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
	}
	BUG_ON(unit != nr_units);

	return ai;
}
#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */

#if defined(BUILD_EMBED_FIRST_CHUNK)
1608 1609 1610
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
1611
 * @dyn_size: minimum free size for dynamic allocation in bytes
1612 1613 1614
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
L
Lucas De Marchi 已提交
1615
 * @free_fn: function to free percpu page
1616 1617 1618 1619 1620
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
1631
 *
1632
 * @dyn_size specifies the minimum dynamic area size.
1633 1634
 *
 * If the needed size is smaller than the minimum or specified unit
1635
 * size, the leftover is returned using @free_fn.
1636 1637
 *
 * RETURNS:
T
Tejun Heo 已提交
1638
 * 0 on success, -errno on failure.
1639
 */
1640
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1641 1642 1643 1644
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
1645
{
1646 1647
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
1648
	struct pcpu_alloc_info *ai;
1649
	size_t size_sum, areas_size, max_distance;
1650
	int group, i, rc;
1651

1652 1653
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
1654 1655
	if (IS_ERR(ai))
		return PTR_ERR(ai);
1656

1657
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1658
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1659

1660
	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1661
	if (!areas) {
T
Tejun Heo 已提交
1662
		rc = -ENOMEM;
1663
		goto out_free;
1664
	}
1665

1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
	/* allocate, copy and determine base address */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
1682 1683
		/* kmemleak tracks the percpu allocations separately */
		kmemleak_free(ptr);
1684
		areas[group] = ptr;
1685

1686
		base = min(ptr, base);
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696
	}

	/*
	 * Copy data and free unused parts.  This should happen after all
	 * allocations are complete; otherwise, we may end up with
	 * overlapping groups.
	 */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		void *ptr = areas[group];
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
1708
	}
1709

1710
	/* base address is now known, determine group base offsets */
1711 1712
	max_distance = 0;
	for (group = 0; group < ai->nr_groups; group++) {
1713
		ai->groups[group].base_offset = areas[group] - base;
T
Tejun Heo 已提交
1714 1715
		max_distance = max_t(size_t, max_distance,
				     ai->groups[group].base_offset);
1716 1717 1718 1719
	}
	max_distance += ai->unit_size;

	/* warn if maximum distance is further than 75% of vmalloc space */
1720
	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
T
Tejun Heo 已提交
1721
		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1722
			   "space 0x%lx\n", max_distance,
1723
			   VMALLOC_TOTAL);
1724 1725 1726 1727 1728 1729
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free;
#endif
	}
1730

T
Tejun Heo 已提交
1731
	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1732 1733
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
1734

T
Tejun Heo 已提交
1735
	rc = pcpu_setup_first_chunk(ai, base);
1736 1737 1738 1739
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
1740 1741 1742
		if (areas[group])
			free_fn(areas[group],
				ai->groups[group].nr_units * ai->unit_size);
1743
out_free:
1744
	pcpu_free_alloc_info(ai);
1745
	if (areas)
1746
		memblock_free_early(__pa(areas), areas_size);
T
Tejun Heo 已提交
1747
	return rc;
1748
}
1749
#endif /* BUILD_EMBED_FIRST_CHUNK */
1750

1751
#ifdef BUILD_PAGE_FIRST_CHUNK
1752
/**
1753
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1754 1755
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
L
Lucas De Marchi 已提交
1756
 * @free_fn: function to free percpu page, always called with PAGE_SIZE
1757 1758
 * @populate_pte_fn: function to populate pte
 *
1759 1760
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1761 1762 1763 1764 1765
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
1766
 * 0 on success, -errno on failure.
1767
 */
T
Tejun Heo 已提交
1768 1769 1770 1771
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1772
{
1773
	static struct vm_struct vm;
1774
	struct pcpu_alloc_info *ai;
1775
	char psize_str[16];
T
Tejun Heo 已提交
1776
	int unit_pages;
1777
	size_t pages_size;
T
Tejun Heo 已提交
1778
	struct page **pages;
T
Tejun Heo 已提交
1779
	int unit, i, j, rc;
1780

1781 1782
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

1783
	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1784 1785 1786 1787 1788 1789
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());

	unit_pages = ai->unit_size >> PAGE_SHIFT;
1790 1791

	/* unaligned allocations can't be freed, round up to page size */
1792 1793
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
1794
	pages = memblock_virt_alloc(pages_size, 0);
1795

1796
	/* allocate pages */
1797
	j = 0;
1798
	for (unit = 0; unit < num_possible_cpus(); unit++)
T
Tejun Heo 已提交
1799
		for (i = 0; i < unit_pages; i++) {
1800
			unsigned int cpu = ai->groups[0].cpu_map[unit];
1801 1802
			void *ptr;

1803
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1804
			if (!ptr) {
1805 1806
				pr_warning("PERCPU: failed to allocate %s page "
					   "for cpu%u\n", psize_str, cpu);
1807 1808
				goto enomem;
			}
1809 1810
			/* kmemleak tracks the percpu allocations separately */
			kmemleak_free(ptr);
T
Tejun Heo 已提交
1811
			pages[j++] = virt_to_page(ptr);
1812 1813
		}

1814 1815
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
1816
	vm.size = num_possible_cpus() * ai->unit_size;
1817 1818
	vm_area_register_early(&vm, PAGE_SIZE);

1819
	for (unit = 0; unit < num_possible_cpus(); unit++) {
1820
		unsigned long unit_addr =
1821
			(unsigned long)vm.addr + unit * ai->unit_size;
1822

T
Tejun Heo 已提交
1823
		for (i = 0; i < unit_pages; i++)
1824 1825 1826
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
1827 1828 1829 1830
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
1831

1832 1833 1834 1835 1836 1837 1838 1839 1840
		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
1841
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1842 1843 1844
	}

	/* we're ready, commit */
1845
	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1846 1847
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
1848

T
Tejun Heo 已提交
1849
	rc = pcpu_setup_first_chunk(ai, vm.addr);
1850 1851 1852 1853
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
1854
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
1855
	rc = -ENOMEM;
1856
out_free_ar:
1857
	memblock_free_early(__pa(pages), pages_size);
1858
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
1859
	return rc;
1860
}
1861
#endif /* BUILD_PAGE_FIRST_CHUNK */
1862

1863
#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
1864
/*
1865
 * Generic SMP percpu area setup.
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

1879 1880 1881
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
1882 1883
	return  memblock_virt_alloc_from_nopanic(
			size, align, __pa(MAX_DMA_ADDRESS));
1884
}
1885

1886 1887
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
1888
	memblock_free_early(__pa(ptr), size);
1889 1890
}

1891 1892 1893 1894
void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
1895
	int rc;
1896 1897 1898 1899 1900

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
1901
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1902 1903
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
T
Tejun Heo 已提交
1904
	if (rc < 0)
1905
		panic("Failed to initialize percpu areas.");
1906 1907 1908

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
1909
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1910
}
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */

#else	/* CONFIG_SMP */

/*
 * UP percpu area setup.
 *
 * UP always uses km-based percpu allocator with identity mapping.
 * Static percpu variables are indistinguishable from the usual static
 * variables and don't require any special preparation.
 */
void __init setup_per_cpu_areas(void)
{
	const size_t unit_size =
		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
					 PERCPU_DYNAMIC_RESERVE));
	struct pcpu_alloc_info *ai;
	void *fc;

	ai = pcpu_alloc_alloc_info(1, 1);
1931 1932 1933
	fc = memblock_virt_alloc_from_nopanic(unit_size,
					      PAGE_SIZE,
					      __pa(MAX_DMA_ADDRESS));
1934 1935
	if (!ai || !fc)
		panic("Failed to allocate memory for percpu areas.");
1936 1937
	/* kmemleak tracks the percpu allocations separately */
	kmemleak_free(fc);
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947

	ai->dyn_size = unit_size;
	ai->unit_size = unit_size;
	ai->atom_size = unit_size;
	ai->alloc_size = unit_size;
	ai->groups[0].nr_units = 1;
	ai->groups[0].cpu_map[0] = 0;

	if (pcpu_setup_first_chunk(ai, fc) < 0)
		panic("Failed to initialize percpu areas.");
1948 1949

	pcpu_free_alloc_info(ai);
1950 1951 1952
}

#endif	/* CONFIG_SMP */
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973

/*
 * First and reserved chunks are initialized with temporary allocation
 * map in initdata so that they can be used before slab is online.
 * This function is called after slab is brought up and replaces those
 * with properly allocated maps.
 */
void __init percpu_init_late(void)
{
	struct pcpu_chunk *target_chunks[] =
		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
	struct pcpu_chunk *chunk;
	unsigned long flags;
	int i;

	for (i = 0; (chunk = target_chunks[i]); i++) {
		int *map;
		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);

		BUILD_BUG_ON(size > PAGE_SIZE);

1974
		map = pcpu_mem_zalloc(size);
1975 1976 1977 1978 1979 1980 1981 1982
		BUG_ON(!map);

		spin_lock_irqsave(&pcpu_lock, flags);
		memcpy(map, chunk->map, size);
		chunk->map = map;
		spin_unlock_irqrestore(&pcpu_lock, flags);
	}
}