percpu.c 63.2 KB
Newer Older
1
/*
2
 * mm/percpu.c - percpu memory allocator
3 4 5 6 7 8 9
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
10 11 12
 * areas.  Percpu areas are allocated in chunks.  Each chunk is
 * consisted of boot-time determined number of units and the first
 * chunk is used for static percpu variables in the kernel image
13 14 15
 * (special boot time alloc/init handling necessary as these areas
 * need to be brought up before allocation services are running).
 * Unit grows as necessary and all units grow or shrink in unison.
16
 * When a chunk is filled up, another chunk is allocated.
17 18 19 20 21 22 23 24
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 26 27 28
 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
 * Percpu access can be done by configuring percpu base registers
 * according to cpu to unit mapping and pcpu_unit_size.
29
 *
30 31
 * There are usually many small percpu allocations many of them being
 * as small as 4 bytes.  The allocator organizes chunks into lists
32 33
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
34
 * guaranteed to be equal to or larger than the maximum contiguous
35 36 37 38 39 40 41 42
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
43 44
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
45 46 47 48
 *
 * To use this allocator, arch code should do the followings.
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 50
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
51
 *
52 53
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
54 55 56 57
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
58
#include <linux/err.h>
59
#include <linux/list.h>
60
#include <linux/log2.h>
61 62 63 64 65 66
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
67
#include <linux/spinlock.h>
68
#include <linux/vmalloc.h>
69
#include <linux/workqueue.h>
70
#include <linux/kmemleak.h>
71 72

#include <asm/cacheflush.h>
73
#include <asm/sections.h>
74
#include <asm/tlbflush.h>
75
#include <asm/io.h>
76 77 78

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
79 80
#define PCPU_ATOMIC_MAP_MARGIN_LOW	32
#define PCPU_ATOMIC_MAP_MARGIN_HIGH	64
81

82
#ifdef CONFIG_SMP
83 84 85
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
86 87 88
	(void __percpu *)((unsigned long)(addr) -			\
			  (unsigned long)pcpu_base_addr	+		\
			  (unsigned long)__per_cpu_start)
89 90 91
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
92 93 94
	(void __force *)((unsigned long)(ptr) +				\
			 (unsigned long)pcpu_base_addr -		\
			 (unsigned long)__per_cpu_start)
95
#endif
96 97 98 99 100
#else	/* CONFIG_SMP */
/* on UP, it's always identity mapped */
#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
#endif	/* CONFIG_SMP */
101

102 103 104 105
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
T
Tejun Heo 已提交
106
	void			*base_addr;	/* base address of this chunk */
107

108
	int			map_used;	/* # of map entries used before the sentry */
109 110
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
111 112
	struct work_struct	map_extend_work;/* async ->map[] extension */

113
	void			*data;		/* chunk data */
A
Al Viro 已提交
114
	int			first_free;	/* no free below this */
115
	bool			immutable;	/* no [de]population allowed */
116
	int			nr_populated;	/* # of populated pages */
T
Tejun Heo 已提交
117
	unsigned long		populated[];	/* populated bitmap */
118 119
};

120 121
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
122
static int pcpu_nr_units __read_mostly;
123
static int pcpu_atom_size __read_mostly;
124 125
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
126

T
Tejun Heo 已提交
127 128 129
/* cpus with the lowest and highest unit addresses */
static unsigned int pcpu_low_unit_cpu __read_mostly;
static unsigned int pcpu_high_unit_cpu __read_mostly;
130

131
/* the address of the first chunk which starts with the kernel static area */
132
void *pcpu_base_addr __read_mostly;
133 134
EXPORT_SYMBOL_GPL(pcpu_base_addr);

T
Tejun Heo 已提交
135 136
static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
137

138 139 140 141 142
/* group information, used for vm allocation */
static int pcpu_nr_groups __read_mostly;
static const unsigned long *pcpu_group_offsets __read_mostly;
static const size_t *pcpu_group_sizes __read_mostly;

143 144 145 146 147 148 149 150 151 152 153 154 155 156
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
157 158 159
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

T
Tejun Heo 已提交
160 161
static DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop */
162

163
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
164

165 166 167 168 169 170
/*
 * The number of empty populated pages, protected by pcpu_lock.  The
 * reserved chunk doesn't contribute to the count.
 */
static int pcpu_nr_empty_pop_pages;

171 172 173
/* balance work is used to populate or destroy chunks asynchronously */
static void pcpu_balance_workfn(struct work_struct *work);
static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
static bool pcpu_addr_in_first_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start && addr < first_start + pcpu_unit_size;
}

static bool pcpu_addr_in_reserved_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start &&
		addr < first_start + pcpu_reserved_chunk_limit;
}

190
static int __pcpu_size_to_slot(int size)
191
{
T
Tejun Heo 已提交
192
	int highbit = fls(size);	/* size is in bytes */
193 194 195
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

196 197 198 199 200 201 202
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

203 204 205 206 207 208 209 210
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

211 212 213 214 215 216 217 218 219 220 221 222 223
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
224
{
225
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
226 227
}

228 229
static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
230
{
T
Tejun Heo 已提交
231
	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
T
Tejun Heo 已提交
232
		(page_idx << PAGE_SHIFT);
233 234
}

235 236
static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
					   int *rs, int *re, int end)
T
Tejun Heo 已提交
237 238 239 240 241
{
	*rs = find_next_zero_bit(chunk->populated, end, *rs);
	*re = find_next_bit(chunk->populated, end, *rs + 1);
}

242 243
static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
					 int *rs, int *re, int end)
T
Tejun Heo 已提交
244 245 246 247 248 249 250
{
	*rs = find_next_bit(chunk->populated, end, *rs);
	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
}

/*
 * (Un)populated page region iterators.  Iterate over (un)populated
251
 * page regions between @start and @end in @chunk.  @rs and @re should
T
Tejun Heo 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264
 * be integer variables and will be set to start and end page index of
 * the current region.
 */
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))

265
/**
266
 * pcpu_mem_zalloc - allocate memory
267
 * @size: bytes to allocate
268
 *
269
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
270
 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
271
 * memory is always zeroed.
272
 *
273 274 275
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
276
 * RETURNS:
277
 * Pointer to the allocated area on success, NULL on failure.
278
 */
279
static void *pcpu_mem_zalloc(size_t size)
280
{
281 282 283
	if (WARN_ON_ONCE(!slab_is_available()))
		return NULL;

284 285
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
286 287
	else
		return vzalloc(size);
288
}
289

290 291 292 293 294
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 * @size: size of the area
 *
295
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
296 297 298
 */
static void pcpu_mem_free(void *ptr, size_t size)
{
299
	if (size <= PAGE_SIZE)
300
		kfree(ptr);
301
	else
302
		vfree(ptr);
303 304
}

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
/**
 * pcpu_count_occupied_pages - count the number of pages an area occupies
 * @chunk: chunk of interest
 * @i: index of the area in question
 *
 * Count the number of pages chunk's @i'th area occupies.  When the area's
 * start and/or end address isn't aligned to page boundary, the straddled
 * page is included in the count iff the rest of the page is free.
 */
static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
{
	int off = chunk->map[i] & ~1;
	int end = chunk->map[i + 1] & ~1;

	if (!PAGE_ALIGNED(off) && i > 0) {
		int prev = chunk->map[i - 1];

		if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
			off = round_down(off, PAGE_SIZE);
	}

	if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
		int next = chunk->map[i + 1];
		int nend = chunk->map[i + 2] & ~1;

		if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
			end = round_up(end, PAGE_SIZE);
	}

	return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
}

337 338 339 340 341 342 343
/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
344 345
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
346 347 348
 *
 * CONTEXT:
 * pcpu_lock.
349 350 351 352 353
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

354
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
355 356 357 358 359 360 361
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

362
/**
363 364
 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 * @chunk: chunk of interest
365
 * @is_atomic: the allocation context
366
 *
367 368 369 370 371 372
 * Determine whether area map of @chunk needs to be extended.  If
 * @is_atomic, only the amount necessary for a new allocation is
 * considered; however, async extension is scheduled if the left amount is
 * low.  If !@is_atomic, it aims for more empty space.  Combined, this
 * ensures that the map is likely to have enough available space to
 * accomodate atomic allocations which can't extend maps directly.
373
 *
374
 * CONTEXT:
375
 * pcpu_lock.
376
 *
377
 * RETURNS:
378 379
 * New target map allocation length if extension is necessary, 0
 * otherwise.
380
 */
381
static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
382
{
383 384 385 386
	int margin, new_alloc;

	if (is_atomic) {
		margin = 3;
387

388 389 390 391 392 393 394 395
		if (chunk->map_alloc <
		    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW)
			schedule_work(&chunk->map_extend_work);
	} else {
		margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
	}

	if (chunk->map_alloc >= chunk->map_used + margin)
396 397 398
		return 0;

	new_alloc = PCPU_DFL_MAP_ALLOC;
399
	while (new_alloc < chunk->map_used + margin)
400 401
		new_alloc *= 2;

402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	return new_alloc;
}

/**
 * pcpu_extend_area_map - extend area map of a chunk
 * @chunk: chunk of interest
 * @new_alloc: new target allocation length of the area map
 *
 * Extend area map of @chunk to have @new_alloc entries.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
{
	int *old = NULL, *new = NULL;
	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
	unsigned long flags;

424
	new = pcpu_mem_zalloc(new_size);
425
	if (!new)
426
		return -ENOMEM;
427

428 429 430 431 432
	/* acquire pcpu_lock and switch to new area map */
	spin_lock_irqsave(&pcpu_lock, flags);

	if (new_alloc <= chunk->map_alloc)
		goto out_unlock;
433

434
	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
435 436 437
	old = chunk->map;

	memcpy(new, old, old_size);
438 439 440

	chunk->map_alloc = new_alloc;
	chunk->map = new;
441 442 443 444 445 446 447 448 449 450 451 452
	new = NULL;

out_unlock:
	spin_unlock_irqrestore(&pcpu_lock, flags);

	/*
	 * pcpu_mem_free() might end up calling vfree() which uses
	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
	 */
	pcpu_mem_free(old, old_size);
	pcpu_mem_free(new, new_size);

453 454 455
	return 0;
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469
static void pcpu_map_extend_workfn(struct work_struct *work)
{
	struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
						map_extend_work);
	int new_alloc;

	spin_lock_irq(&pcpu_lock);
	new_alloc = pcpu_need_to_extend(chunk, false);
	spin_unlock_irq(&pcpu_lock);

	if (new_alloc)
		pcpu_extend_area_map(chunk, new_alloc);
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
/**
 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
 * @chunk: chunk the candidate area belongs to
 * @off: the offset to the start of the candidate area
 * @this_size: the size of the candidate area
 * @size: the size of the target allocation
 * @align: the alignment of the target allocation
 * @pop_only: only allocate from already populated region
 *
 * We're trying to allocate @size bytes aligned at @align.  @chunk's area
 * at @off sized @this_size is a candidate.  This function determines
 * whether the target allocation fits in the candidate area and returns the
 * number of bytes to pad after @off.  If the target area doesn't fit, -1
 * is returned.
 *
 * If @pop_only is %true, this function only considers the already
 * populated part of the candidate area.
 */
static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
			    int size, int align, bool pop_only)
{
	int cand_off = off;

	while (true) {
		int head = ALIGN(cand_off, align) - off;
		int page_start, page_end, rs, re;

		if (this_size < head + size)
			return -1;

		if (!pop_only)
			return head;

		/*
		 * If the first unpopulated page is beyond the end of the
		 * allocation, the whole allocation is populated;
		 * otherwise, retry from the end of the unpopulated area.
		 */
		page_start = PFN_DOWN(head + off);
		page_end = PFN_UP(head + off + size);

		rs = page_start;
		pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
		if (rs >= page_end)
			return head;
		cand_off = re * PAGE_SIZE;
	}
}

519 520 521
/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
522
 * @size: wanted size in bytes
523
 * @align: wanted align
524
 * @pop_only: allocate only from the populated area
525
 * @occ_pages_p: out param for the number of pages the area occupies
526 527 528 529 530
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
531 532
 * @chunk->map must have at least two free slots.
 *
533 534 535
 * CONTEXT:
 * pcpu_lock.
 *
536
 * RETURNS:
537 538
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
539
 */
540
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
541
			   bool pop_only, int *occ_pages_p)
542 543 544 545
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;
A
Al Viro 已提交
546
	bool seen_free = false;
547
	int *p;
548

A
Al Viro 已提交
549
	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
550
		int head, tail;
551 552 553 554 555
		int this_size;

		off = *p;
		if (off & 1)
			continue;
556

557
		this_size = (p[1] & ~1) - off;
558 559 560 561

		head = pcpu_fit_in_area(chunk, off, this_size, size, align,
					pop_only);
		if (head < 0) {
A
Al Viro 已提交
562 563 564 565
			if (!seen_free) {
				chunk->first_free = i;
				seen_free = true;
			}
566
			max_contig = max(this_size, max_contig);
567 568 569 570 571 572 573 574 575
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
576
		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
577
			*p = off += head;
578
			if (p[-1] & 1)
579
				chunk->free_size -= head;
580 581
			else
				max_contig = max(*p - p[-1], max_contig);
582
			this_size -= head;
583 584 585 586
			head = 0;
		}

		/* if tail is small, just keep it around */
587 588
		tail = this_size - head - size;
		if (tail < sizeof(int)) {
589
			tail = 0;
590 591
			size = this_size - head;
		}
592 593 594

		/* split if warranted */
		if (head || tail) {
595 596 597
			int nr_extra = !!head + !!tail;

			/* insert new subblocks */
598
			memmove(p + nr_extra + 1, p + 1,
599 600 601
				sizeof(chunk->map[0]) * (chunk->map_used - i));
			chunk->map_used += nr_extra;

602
			if (head) {
A
Al Viro 已提交
603 604 605 606
				if (!seen_free) {
					chunk->first_free = i;
					seen_free = true;
				}
607 608
				*++p = off += head;
				++i;
609 610 611
				max_contig = max(head, max_contig);
			}
			if (tail) {
612
				p[1] = off + size;
613
				max_contig = max(tail, max_contig);
614 615 616
			}
		}

A
Al Viro 已提交
617 618 619
		if (!seen_free)
			chunk->first_free = i + 1;

620
		/* update hint and mark allocated */
621
		if (i + 1 == chunk->map_used)
622 623 624 625 626
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

627 628
		chunk->free_size -= size;
		*p |= 1;
629

630
		*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
631 632 633 634 635 636 637
		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

638 639
	/* tell the upper layer that this chunk has no matching area */
	return -1;
640 641 642 643 644 645
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
646
 * @occ_pages_p: out param for the number of pages the area occupies
647 648 649 650
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
651 652 653
 *
 * CONTEXT:
 * pcpu_lock.
654
 */
655 656
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
			   int *occ_pages_p)
657 658
{
	int oslot = pcpu_chunk_slot(chunk);
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
	int off = 0;
	unsigned i, j;
	int to_free = 0;
	int *p;

	freeme |= 1;	/* we are searching for <given offset, in use> pair */

	i = 0;
	j = chunk->map_used;
	while (i != j) {
		unsigned k = (i + j) / 2;
		off = chunk->map[k];
		if (off < freeme)
			i = k + 1;
		else if (off > freeme)
			j = k;
		else
			i = j = k;
	}
678 679
	BUG_ON(off != freeme);

A
Al Viro 已提交
680 681 682
	if (i < chunk->first_free)
		chunk->first_free = i;

683 684 685
	p = chunk->map + i;
	*p = off &= ~1;
	chunk->free_size += (p[1] & ~1) - off;
686

687 688
	*occ_pages_p = pcpu_count_occupied_pages(chunk, i);

689 690 691
	/* merge with next? */
	if (!(p[1] & 1))
		to_free++;
692
	/* merge with previous? */
693 694
	if (i > 0 && !(p[-1] & 1)) {
		to_free++;
695
		i--;
696
		p--;
697
	}
698 699 700 701
	if (to_free) {
		chunk->map_used -= to_free;
		memmove(p + 1, p + 1 + to_free,
			(chunk->map_used - i) * sizeof(chunk->map[0]));
702 703
	}

704
	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
705 706 707
	pcpu_chunk_relocate(chunk, oslot);
}

708 709 710 711
static struct pcpu_chunk *pcpu_alloc_chunk(void)
{
	struct pcpu_chunk *chunk;

712
	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
713 714 715
	if (!chunk)
		return NULL;

716 717
	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
						sizeof(chunk->map[0]));
718
	if (!chunk->map) {
719
		pcpu_mem_free(chunk, pcpu_chunk_struct_size);
720 721 722 723
		return NULL;
	}

	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
724 725 726
	chunk->map[0] = 0;
	chunk->map[1] = pcpu_unit_size | 1;
	chunk->map_used = 1;
727 728

	INIT_LIST_HEAD(&chunk->list);
729
	INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
730 731 732 733 734 735 736 737 738 739 740
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;

	return chunk;
}

static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
741
	pcpu_mem_free(chunk, pcpu_chunk_struct_size);
742 743
}

744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
/**
 * pcpu_chunk_populated - post-population bookkeeping
 * @chunk: pcpu_chunk which got populated
 * @page_start: the start page
 * @page_end: the end page
 *
 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
 * the bookkeeping information accordingly.  Must be called after each
 * successful population.
 */
static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
				 int page_start, int page_end)
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_set(chunk->populated, page_start, nr);
	chunk->nr_populated += nr;
	pcpu_nr_empty_pop_pages += nr;
}

/**
 * pcpu_chunk_depopulated - post-depopulation bookkeeping
 * @chunk: pcpu_chunk which got depopulated
 * @page_start: the start page
 * @page_end: the end page
 *
 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
 * Update the bookkeeping information accordingly.  Must be called after
 * each successful depopulation.
 */
static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
				   int page_start, int page_end)
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_clear(chunk->populated, page_start, nr);
	chunk->nr_populated -= nr;
	pcpu_nr_empty_pop_pages -= nr;
}

788 789 790 791 792 793 794 795 796 797 798 799 800 801
/*
 * Chunk management implementation.
 *
 * To allow different implementations, chunk alloc/free and
 * [de]population are implemented in a separate file which is pulled
 * into this file and compiled together.  The following functions
 * should be implemented.
 *
 * pcpu_populate_chunk		- populate the specified range of a chunk
 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 * pcpu_create_chunk		- create a new chunk
 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 * pcpu_addr_to_page		- translate address to physical address
 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
802
 */
803 804 805 806 807 808
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
static struct pcpu_chunk *pcpu_create_chunk(void);
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
static struct page *pcpu_addr_to_page(void *addr);
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
809

810 811 812
#ifdef CONFIG_NEED_PER_CPU_KM
#include "percpu-km.c"
#else
813
#include "percpu-vm.c"
814
#endif
815

816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840
/**
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
 *
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
	/* is it in the first chunk? */
	if (pcpu_addr_in_first_chunk(addr)) {
		/* is it in the reserved area? */
		if (pcpu_addr_in_reserved_chunk(addr))
			return pcpu_reserved_chunk;
		return pcpu_first_chunk;
	}

	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
841
	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
842 843
}

844
/**
845
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
846
 * @size: size of area to allocate in bytes
847
 * @align: alignment of area (max PAGE_SIZE)
848
 * @reserved: allocate from the reserved chunk if available
849
 * @gfp: allocation flags
850
 *
851 852
 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
 * contain %GFP_KERNEL, the allocation is atomic.
853 854 855 856
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
857 858
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
				 gfp_t gfp)
859
{
860
	static int warn_limit = 10;
861
	struct pcpu_chunk *chunk;
862
	const char *err;
863
	bool is_atomic = !(gfp & GFP_KERNEL);
864
	int occ_pages = 0;
T
Tejun Heo 已提交
865
	int slot, off, new_alloc, cpu, ret;
866
	unsigned long flags;
867
	void __percpu *ptr;
868

869 870
	/*
	 * We want the lowest bit of offset available for in-use/free
V
Viro 已提交
871
	 * indicator, so force >= 16bit alignment and make size even.
872 873 874 875
	 */
	if (unlikely(align < 2))
		align = 2;

876
	size = ALIGN(size, 2);
V
Viro 已提交
877

878
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
879 880 881 882 883
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

884
	spin_lock_irqsave(&pcpu_lock, flags);
885

886 887 888
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
889 890 891

		if (size > chunk->contig_hint) {
			err = "alloc from reserved chunk failed";
892
			goto fail_unlock;
893
		}
894

895
		while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
896
			spin_unlock_irqrestore(&pcpu_lock, flags);
897 898
			if (is_atomic ||
			    pcpu_extend_area_map(chunk, new_alloc) < 0) {
899
				err = "failed to extend area map of reserved chunk";
T
Tejun Heo 已提交
900
				goto fail;
901 902 903 904
			}
			spin_lock_irqsave(&pcpu_lock, flags);
		}

905 906
		off = pcpu_alloc_area(chunk, size, align, is_atomic,
				      &occ_pages);
907 908
		if (off >= 0)
			goto area_found;
909

910
		err = "alloc from reserved chunk failed";
911
		goto fail_unlock;
912 913
	}

914
restart:
915
	/* search through normal chunks */
916 917 918 919
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
920

921
			new_alloc = pcpu_need_to_extend(chunk, is_atomic);
922
			if (new_alloc) {
923 924
				if (is_atomic)
					continue;
925 926 927 928
				spin_unlock_irqrestore(&pcpu_lock, flags);
				if (pcpu_extend_area_map(chunk,
							 new_alloc) < 0) {
					err = "failed to extend area map";
T
Tejun Heo 已提交
929
					goto fail;
930 931 932 933 934 935 936
				}
				spin_lock_irqsave(&pcpu_lock, flags);
				/*
				 * pcpu_lock has been dropped, need to
				 * restart cpu_slot list walking.
				 */
				goto restart;
937 938
			}

939 940
			off = pcpu_alloc_area(chunk, size, align, is_atomic,
					      &occ_pages);
941 942 943 944 945
			if (off >= 0)
				goto area_found;
		}
	}

946
	spin_unlock_irqrestore(&pcpu_lock, flags);
947

T
Tejun Heo 已提交
948 949 950 951 952
	/*
	 * No space left.  Create a new chunk.  We don't want multiple
	 * tasks to create chunks simultaneously.  Serialize and create iff
	 * there's still no empty chunk after grabbing the mutex.
	 */
953 954 955
	if (is_atomic)
		goto fail;

T
Tejun Heo 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968
	mutex_lock(&pcpu_alloc_mutex);

	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
		chunk = pcpu_create_chunk();
		if (!chunk) {
			err = "failed to allocate new chunk";
			goto fail;
		}

		spin_lock_irqsave(&pcpu_lock, flags);
		pcpu_chunk_relocate(chunk, -1);
	} else {
		spin_lock_irqsave(&pcpu_lock, flags);
969
	}
970

T
Tejun Heo 已提交
971
	mutex_unlock(&pcpu_alloc_mutex);
972
	goto restart;
973 974

area_found:
975
	spin_unlock_irqrestore(&pcpu_lock, flags);
976

977
	/* populate if not all pages are already there */
978
	if (!is_atomic) {
979
		int page_start, page_end, rs, re;
980

981
		mutex_lock(&pcpu_alloc_mutex);
982

983 984
		page_start = PFN_DOWN(off);
		page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
985

986 987 988 989 990 991 992 993
		pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
			WARN_ON(chunk->immutable);

			ret = pcpu_populate_chunk(chunk, rs, re);

			spin_lock_irqsave(&pcpu_lock, flags);
			if (ret) {
				mutex_unlock(&pcpu_alloc_mutex);
994
				pcpu_free_area(chunk, off, &occ_pages);
995 996 997
				err = "failed to populate";
				goto fail_unlock;
			}
998
			pcpu_chunk_populated(chunk, rs, re);
999
			spin_unlock_irqrestore(&pcpu_lock, flags);
1000
		}
1001

1002 1003
		mutex_unlock(&pcpu_alloc_mutex);
	}
1004

1005 1006 1007
	if (chunk != pcpu_reserved_chunk)
		pcpu_nr_empty_pop_pages -= occ_pages;

1008 1009 1010 1011
	/* clear the areas and return address relative to base address */
	for_each_possible_cpu(cpu)
		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);

1012 1013 1014
	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
	kmemleak_alloc_percpu(ptr, size);
	return ptr;
1015 1016

fail_unlock:
1017
	spin_unlock_irqrestore(&pcpu_lock, flags);
T
Tejun Heo 已提交
1018
fail:
1019 1020 1021
	if (!is_atomic && warn_limit) {
		pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
			   size, align, is_atomic, err);
1022 1023 1024 1025
		dump_stack();
		if (!--warn_limit)
			pr_info("PERCPU: limit reached, disable warning\n");
	}
1026
	return NULL;
1027
}
1028 1029

/**
1030
 * __alloc_percpu_gfp - allocate dynamic percpu area
1031 1032
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
1033
 * @gfp: allocation flags
1034
 *
1035 1036 1037
 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
 * be called from any context but is a lot more likely to fail.
1038
 *
1039 1040 1041
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
{
	return pcpu_alloc(size, align, false, gfp);
}
EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
 */
1055
void __percpu *__alloc_percpu(size_t size, size_t align)
1056
{
1057
	return pcpu_alloc(size, align, false, GFP_KERNEL);
1058
}
1059 1060
EXPORT_SYMBOL_GPL(__alloc_percpu);

1061 1062 1063 1064 1065
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
1066 1067 1068 1069
 * Allocate zero-filled percpu area of @size bytes aligned at @align
 * from reserved percpu area if arch has set it up; otherwise,
 * allocation is served from the same dynamic area.  Might sleep.
 * Might trigger writeouts.
1070
 *
1071 1072 1073
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1074 1075 1076
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1077
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1078
{
1079
	return pcpu_alloc(size, align, true, GFP_KERNEL);
1080 1081
}

1082
/**
1083
 * pcpu_balance_workfn - reclaim fully free chunks, workqueue function
1084 1085 1086 1087
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
 */
1088
static void pcpu_balance_workfn(struct work_struct *work)
1089
{
1090 1091
	LIST_HEAD(to_free);
	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1092 1093
	struct pcpu_chunk *chunk, *next;

1094 1095
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1096

1097
	list_for_each_entry_safe(chunk, next, free_head, list) {
1098 1099 1100
		WARN_ON(chunk->immutable);

		/* spare the first one */
1101
		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1102 1103
			continue;

1104
		list_move(&chunk->list, &to_free);
1105 1106
	}

1107
	spin_unlock_irq(&pcpu_lock);
1108

1109
	list_for_each_entry_safe(chunk, next, &to_free, list) {
1110
		int rs, re;
1111

1112 1113
		pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
			pcpu_depopulate_chunk(chunk, rs, re);
1114 1115 1116
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_depopulated(chunk, rs, re);
			spin_unlock_irq(&pcpu_lock);
1117
		}
1118
		pcpu_destroy_chunk(chunk);
1119
	}
T
Tejun Heo 已提交
1120 1121

	mutex_unlock(&pcpu_alloc_mutex);
1122 1123 1124 1125 1126 1127
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
1128 1129 1130 1131
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
1132
 */
1133
void free_percpu(void __percpu *ptr)
1134
{
1135
	void *addr;
1136
	struct pcpu_chunk *chunk;
1137
	unsigned long flags;
1138
	int off, occ_pages;
1139 1140 1141 1142

	if (!ptr)
		return;

1143 1144
	kmemleak_free_percpu(ptr);

1145 1146
	addr = __pcpu_ptr_to_addr(ptr);

1147
	spin_lock_irqsave(&pcpu_lock, flags);
1148 1149

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
1150
	off = addr - chunk->base_addr;
1151

1152 1153 1154 1155
	pcpu_free_area(chunk, off, &occ_pages);

	if (chunk != pcpu_reserved_chunk)
		pcpu_nr_empty_pop_pages += occ_pages;
1156

1157
	/* if there are more than one fully free chunks, wake up grim reaper */
1158 1159 1160
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

1161
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1162
			if (pos != chunk) {
1163
				schedule_work(&pcpu_balance_work);
1164 1165 1166 1167
				break;
			}
	}

1168
	spin_unlock_irqrestore(&pcpu_lock, flags);
1169 1170 1171
}
EXPORT_SYMBOL_GPL(free_percpu);

1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
/**
 * is_kernel_percpu_address - test whether address is from static percpu area
 * @addr: address to test
 *
 * Test whether @addr belongs to in-kernel static percpu area.  Module
 * static percpu areas are not considered.  For those, use
 * is_module_percpu_address().
 *
 * RETURNS:
 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 */
bool is_kernel_percpu_address(unsigned long addr)
{
1185
#ifdef CONFIG_SMP
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		void *start = per_cpu_ptr(base, cpu);

		if ((void *)addr >= start && (void *)addr < start + static_size)
			return true;
        }
1196 1197
#endif
	/* on UP, can't distinguish from other static vars, always false */
1198 1199 1200
	return false;
}

1201 1202 1203 1204 1205 1206 1207 1208 1209
/**
 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 * @addr: the address to be converted to physical address
 *
 * Given @addr which is dereferenceable address obtained via one of
 * percpu access macros, this function translates it into its physical
 * address.  The caller is responsible for ensuring @addr stays valid
 * until this function finishes.
 *
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
 * percpu allocator has special setup for the first chunk, which currently
 * supports either embedding in linear address space or vmalloc mapping,
 * and, from the second one, the backing allocator (currently either vm or
 * km) provides translation.
 *
 * The addr can be tranlated simply without checking if it falls into the
 * first chunk. But the current code reflects better how percpu allocator
 * actually works, and the verification can discover both bugs in percpu
 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
 * code.
 *
1221 1222 1223 1224 1225
 * RETURNS:
 * The physical address for @addr.
 */
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
1226 1227
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	bool in_first_chunk = false;
T
Tejun Heo 已提交
1228
	unsigned long first_low, first_high;
1229 1230 1231
	unsigned int cpu;

	/*
T
Tejun Heo 已提交
1232
	 * The following test on unit_low/high isn't strictly
1233 1234 1235
	 * necessary but will speed up lookups of addresses which
	 * aren't in the first chunk.
	 */
T
Tejun Heo 已提交
1236 1237 1238 1239 1240
	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
				     pcpu_unit_pages);
	if ((unsigned long)addr >= first_low &&
	    (unsigned long)addr < first_high) {
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
		for_each_possible_cpu(cpu) {
			void *start = per_cpu_ptr(base, cpu);

			if (addr >= start && addr < start + pcpu_unit_size) {
				in_first_chunk = true;
				break;
			}
		}
	}

	if (in_first_chunk) {
1252
		if (!is_vmalloc_addr(addr))
1253 1254
			return __pa(addr);
		else
1255 1256
			return page_to_phys(vmalloc_to_page(addr)) +
			       offset_in_page(addr);
1257
	} else
1258 1259
		return page_to_phys(pcpu_addr_to_page(addr)) +
		       offset_in_page(addr);
1260 1261
}

1262
/**
1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

1289
	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
1314
	memblock_free_early(__pa(ai), ai->__ai_size);
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
}

/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1326
{
1327
	int group_width = 1, cpu_width = 1, width;
1328
	char empty_str[] = "--------";
1329 1330 1331 1332 1333 1334 1335
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1336

1337
	v = num_possible_cpus();
1338
	while (v /= 10)
1339 1340
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1341

1342 1343 1344
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1345

1346 1347 1348
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1349

1350 1351 1352 1353 1354 1355 1356 1357
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1358
				printk(KERN_CONT "\n");
1359 1360
				printk("%spcpu-alloc: ", lvl);
			}
1361
			printk(KERN_CONT "[%0*d] ", group_width, group);
1362 1363 1364

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
1365
					printk(KERN_CONT "%0*d ", cpu_width,
1366 1367
					       gi->cpu_map[unit]);
				else
1368
					printk(KERN_CONT "%s ", empty_str);
1369 1370
		}
	}
1371
	printk(KERN_CONT "\n");
1372 1373
}

1374
/**
1375
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1376
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1377
 * @base_addr: mapped address
1378 1379 1380
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1381
 * setup path.
1382
 *
1383 1384 1385 1386 1387 1388
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1389 1390 1391 1392 1393 1394 1395
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1396 1397 1398
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1399
 *
1400 1401 1402
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
1403
 *
1404 1405
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
1406
 *
1407 1408 1409 1410 1411 1412 1413 1414 1415
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
1416
 *
1417 1418
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1419
 *
1420 1421 1422 1423 1424 1425 1426
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1427
 * RETURNS:
T
Tejun Heo 已提交
1428
 * 0 on success, -errno on failure.
1429
 */
T
Tejun Heo 已提交
1430 1431
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
1432
{
1433
	static char cpus_buf[4096] __initdata;
1434 1435
	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1436 1437
	size_t dyn_size = ai->dyn_size;
	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1438
	struct pcpu_chunk *schunk, *dchunk = NULL;
1439 1440
	unsigned long *group_offsets;
	size_t *group_sizes;
T
Tejun Heo 已提交
1441
	unsigned long *unit_off;
1442
	unsigned int cpu;
1443 1444
	int *unit_map;
	int group, unit, i;
1445

1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);

#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

1457
	/* sanity checks */
1458
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1459
#ifdef CONFIG_SMP
1460
	PCPU_SETUP_BUG_ON(!ai->static_size);
1461
	PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1462
#endif
1463
	PCPU_SETUP_BUG_ON(!base_addr);
1464
	PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1465 1466 1467
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1468
	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1469
	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1470

1471
	/* process group information and build config tables accordingly */
1472 1473 1474 1475 1476 1477
	group_offsets = memblock_virt_alloc(ai->nr_groups *
					     sizeof(group_offsets[0]), 0);
	group_sizes = memblock_virt_alloc(ai->nr_groups *
					   sizeof(group_sizes[0]), 0);
	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1478

1479
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1480
		unit_map[cpu] = UINT_MAX;
T
Tejun Heo 已提交
1481 1482 1483

	pcpu_low_unit_cpu = NR_CPUS;
	pcpu_high_unit_cpu = NR_CPUS;
1484

1485 1486
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
1487

1488 1489 1490
		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

1491 1492 1493 1494
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
1495

1496 1497 1498
			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1499

1500
			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
1501 1502
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

T
Tejun Heo 已提交
1503 1504 1505 1506 1507 1508 1509
			/* determine low/high unit_cpu */
			if (pcpu_low_unit_cpu == NR_CPUS ||
			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
				pcpu_low_unit_cpu = cpu;
			if (pcpu_high_unit_cpu == NR_CPUS ||
			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
				pcpu_high_unit_cpu = cpu;
1510
		}
1511
	}
1512 1513 1514
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
1515 1516 1517 1518
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
1519
	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1520

1521 1522 1523
	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
1524
	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
1525
	pcpu_unit_offsets = unit_off;
1526 1527

	/* determine basic parameters */
1528
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1529
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1530
	pcpu_atom_size = ai->atom_size;
T
Tejun Heo 已提交
1531 1532
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1533

1534 1535 1536 1537 1538
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1539 1540
	pcpu_slot = memblock_virt_alloc(
			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1541 1542 1543
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1544 1545 1546 1547 1548 1549 1550
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1551
	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1552
	INIT_LIST_HEAD(&schunk->list);
1553
	INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
T
Tejun Heo 已提交
1554
	schunk->base_addr = base_addr;
1555 1556
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1557
	schunk->immutable = true;
T
Tejun Heo 已提交
1558
	bitmap_fill(schunk->populated, pcpu_unit_pages);
1559
	schunk->nr_populated = pcpu_unit_pages;
1560

1561 1562
	if (ai->reserved_size) {
		schunk->free_size = ai->reserved_size;
1563
		pcpu_reserved_chunk = schunk;
1564
		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1565 1566 1567 1568
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1569
	schunk->contig_hint = schunk->free_size;
1570

1571 1572 1573
	schunk->map[0] = 1;
	schunk->map[1] = ai->static_size;
	schunk->map_used = 1;
1574
	if (schunk->free_size)
1575 1576 1577
		schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size);
	else
		schunk->map[1] |= 1;
1578

1579 1580
	/* init dynamic chunk if necessary */
	if (dyn_size) {
1581
		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1582
		INIT_LIST_HEAD(&dchunk->list);
1583
		INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
T
Tejun Heo 已提交
1584
		dchunk->base_addr = base_addr;
1585 1586
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
1587
		dchunk->immutable = true;
T
Tejun Heo 已提交
1588
		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1589
		dchunk->nr_populated = pcpu_unit_pages;
1590 1591

		dchunk->contig_hint = dchunk->free_size = dyn_size;
1592 1593 1594 1595
		dchunk->map[0] = 1;
		dchunk->map[1] = pcpu_reserved_chunk_limit;
		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
		dchunk->map_used = 2;
1596 1597
	}

1598
	/* link the first chunk in */
1599
	pcpu_first_chunk = dchunk ?: schunk;
1600 1601
	pcpu_nr_empty_pop_pages +=
		pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1602
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1603 1604

	/* we're done */
T
Tejun Heo 已提交
1605
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
1606
	return 0;
1607
}
1608

1609 1610
#ifdef CONFIG_SMP

1611
const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1612 1613 1614 1615
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};
1616

1617
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1618

1619 1620
static int __init percpu_alloc_setup(char *str)
{
1621 1622 1623
	if (!str)
		return -EINVAL;

1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1636

1637
	return 0;
1638
}
1639
early_param("percpu_alloc", percpu_alloc_setup);
1640

1641 1642 1643 1644 1645
/*
 * pcpu_embed_first_chunk() is used by the generic percpu setup.
 * Build it if needed by the arch config or the generic setup is going
 * to be used.
 */
1646 1647
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
#define BUILD_EMBED_FIRST_CHUNK
#endif

/* build pcpu_page_first_chunk() iff needed by the arch config */
#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
#define BUILD_PAGE_FIRST_CHUNK
#endif

/* pcpu_build_alloc_info() is used by both embed and page first chunk */
#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: minimum free size for dynamic allocation in bytes
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 *
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
 *
 * Groups are always mutliples of atom size and CPUs which are of
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
 *
 * RETURNS:
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
 */
static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, size_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	int nr_groups = 1, nr_units = 0;
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
	int last_allocs, group, unit;
	unsigned int cpu, tcpu;
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;

	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
	memset(group_cnt, 0, sizeof(group_cnt));

	/* calculate size_sum and ensure dyn_size is enough for early alloc */
	size_sum = PFN_ALIGN(static_size + reserved_size +
			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
	dyn_size = size_sum - static_size - reserved_size;

	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
	 * alloc_size is multiple of atom_size and is the smallest
L
Lucas De Marchi 已提交
1707
	 * which can accommodate 4k aligned segments which are equal to
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
	 * or larger than min_unit_size.
	 */
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

	alloc_size = roundup(min_unit_size, atom_size);
	upa = alloc_size / min_unit_size;
	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
			if (group_map[tcpu] == group && cpu_distance_fn &&
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
				nr_groups = max(nr_groups, group + 1);
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
	}

	/*
	 * Expand unit size until address space usage goes over 75%
	 * and then as much as possible without using more address
	 * space.
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
			continue;

		for (group = 0; group < nr_groups; group++) {
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 1/3.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
	}
	BUG_ON(unit != nr_units);

	return ai;
}
#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */

#if defined(BUILD_EMBED_FIRST_CHUNK)
1815 1816 1817
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
1818
 * @dyn_size: minimum free size for dynamic allocation in bytes
1819 1820 1821
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
L
Lucas De Marchi 已提交
1822
 * @free_fn: function to free percpu page
1823 1824 1825 1826 1827
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
1838
 *
1839
 * @dyn_size specifies the minimum dynamic area size.
1840 1841
 *
 * If the needed size is smaller than the minimum or specified unit
1842
 * size, the leftover is returned using @free_fn.
1843 1844
 *
 * RETURNS:
T
Tejun Heo 已提交
1845
 * 0 on success, -errno on failure.
1846
 */
1847
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1848 1849 1850 1851
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
1852
{
1853 1854
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
1855
	struct pcpu_alloc_info *ai;
1856
	size_t size_sum, areas_size, max_distance;
1857
	int group, i, rc;
1858

1859 1860
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
1861 1862
	if (IS_ERR(ai))
		return PTR_ERR(ai);
1863

1864
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1865
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1866

1867
	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1868
	if (!areas) {
T
Tejun Heo 已提交
1869
		rc = -ENOMEM;
1870
		goto out_free;
1871
	}
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888
	/* allocate, copy and determine base address */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
1889 1890
		/* kmemleak tracks the percpu allocations separately */
		kmemleak_free(ptr);
1891
		areas[group] = ptr;
1892

1893
		base = min(ptr, base);
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
	}

	/*
	 * Copy data and free unused parts.  This should happen after all
	 * allocations are complete; otherwise, we may end up with
	 * overlapping groups.
	 */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		void *ptr = areas[group];
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
1915
	}
1916

1917
	/* base address is now known, determine group base offsets */
1918 1919
	max_distance = 0;
	for (group = 0; group < ai->nr_groups; group++) {
1920
		ai->groups[group].base_offset = areas[group] - base;
T
Tejun Heo 已提交
1921 1922
		max_distance = max_t(size_t, max_distance,
				     ai->groups[group].base_offset);
1923 1924 1925 1926
	}
	max_distance += ai->unit_size;

	/* warn if maximum distance is further than 75% of vmalloc space */
1927
	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
T
Tejun Heo 已提交
1928
		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1929
			   "space 0x%lx\n", max_distance,
1930
			   VMALLOC_TOTAL);
1931 1932 1933 1934 1935 1936
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free;
#endif
	}
1937

T
Tejun Heo 已提交
1938
	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1939 1940
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
1941

T
Tejun Heo 已提交
1942
	rc = pcpu_setup_first_chunk(ai, base);
1943 1944 1945 1946
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
1947 1948 1949
		if (areas[group])
			free_fn(areas[group],
				ai->groups[group].nr_units * ai->unit_size);
1950
out_free:
1951
	pcpu_free_alloc_info(ai);
1952
	if (areas)
1953
		memblock_free_early(__pa(areas), areas_size);
T
Tejun Heo 已提交
1954
	return rc;
1955
}
1956
#endif /* BUILD_EMBED_FIRST_CHUNK */
1957

1958
#ifdef BUILD_PAGE_FIRST_CHUNK
1959
/**
1960
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1961 1962
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
L
Lucas De Marchi 已提交
1963
 * @free_fn: function to free percpu page, always called with PAGE_SIZE
1964 1965
 * @populate_pte_fn: function to populate pte
 *
1966 1967
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1968 1969 1970 1971 1972
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
1973
 * 0 on success, -errno on failure.
1974
 */
T
Tejun Heo 已提交
1975 1976 1977 1978
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1979
{
1980
	static struct vm_struct vm;
1981
	struct pcpu_alloc_info *ai;
1982
	char psize_str[16];
T
Tejun Heo 已提交
1983
	int unit_pages;
1984
	size_t pages_size;
T
Tejun Heo 已提交
1985
	struct page **pages;
T
Tejun Heo 已提交
1986
	int unit, i, j, rc;
1987

1988 1989
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

1990
	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1991 1992 1993 1994 1995 1996
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());

	unit_pages = ai->unit_size >> PAGE_SHIFT;
1997 1998

	/* unaligned allocations can't be freed, round up to page size */
1999 2000
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
2001
	pages = memblock_virt_alloc(pages_size, 0);
2002

2003
	/* allocate pages */
2004
	j = 0;
2005
	for (unit = 0; unit < num_possible_cpus(); unit++)
T
Tejun Heo 已提交
2006
		for (i = 0; i < unit_pages; i++) {
2007
			unsigned int cpu = ai->groups[0].cpu_map[unit];
2008 2009
			void *ptr;

2010
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2011
			if (!ptr) {
2012 2013
				pr_warning("PERCPU: failed to allocate %s page "
					   "for cpu%u\n", psize_str, cpu);
2014 2015
				goto enomem;
			}
2016 2017
			/* kmemleak tracks the percpu allocations separately */
			kmemleak_free(ptr);
T
Tejun Heo 已提交
2018
			pages[j++] = virt_to_page(ptr);
2019 2020
		}

2021 2022
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
2023
	vm.size = num_possible_cpus() * ai->unit_size;
2024 2025
	vm_area_register_early(&vm, PAGE_SIZE);

2026
	for (unit = 0; unit < num_possible_cpus(); unit++) {
2027
		unsigned long unit_addr =
2028
			(unsigned long)vm.addr + unit * ai->unit_size;
2029

T
Tejun Heo 已提交
2030
		for (i = 0; i < unit_pages; i++)
2031 2032 2033
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
2034 2035 2036 2037
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
2038

2039 2040 2041 2042 2043 2044 2045 2046 2047
		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
2048
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2049 2050 2051
	}

	/* we're ready, commit */
2052
	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2053 2054
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
2055

T
Tejun Heo 已提交
2056
	rc = pcpu_setup_first_chunk(ai, vm.addr);
2057 2058 2059 2060
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
2061
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
2062
	rc = -ENOMEM;
2063
out_free_ar:
2064
	memblock_free_early(__pa(pages), pages_size);
2065
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
2066
	return rc;
2067
}
2068
#endif /* BUILD_PAGE_FIRST_CHUNK */
2069

2070
#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2071
/*
2072
 * Generic SMP percpu area setup.
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

2086 2087 2088
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
2089 2090
	return  memblock_virt_alloc_from_nopanic(
			size, align, __pa(MAX_DMA_ADDRESS));
2091
}
2092

2093 2094
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
2095
	memblock_free_early(__pa(ptr), size);
2096 2097
}

2098 2099 2100 2101
void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
2102
	int rc;
2103 2104 2105 2106 2107

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
2108
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2109 2110
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
T
Tejun Heo 已提交
2111
	if (rc < 0)
2112
		panic("Failed to initialize percpu areas.");
2113 2114 2115

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
2116
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2117
}
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */

#else	/* CONFIG_SMP */

/*
 * UP percpu area setup.
 *
 * UP always uses km-based percpu allocator with identity mapping.
 * Static percpu variables are indistinguishable from the usual static
 * variables and don't require any special preparation.
 */
void __init setup_per_cpu_areas(void)
{
	const size_t unit_size =
		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
					 PERCPU_DYNAMIC_RESERVE));
	struct pcpu_alloc_info *ai;
	void *fc;

	ai = pcpu_alloc_alloc_info(1, 1);
2138 2139 2140
	fc = memblock_virt_alloc_from_nopanic(unit_size,
					      PAGE_SIZE,
					      __pa(MAX_DMA_ADDRESS));
2141 2142
	if (!ai || !fc)
		panic("Failed to allocate memory for percpu areas.");
2143 2144
	/* kmemleak tracks the percpu allocations separately */
	kmemleak_free(fc);
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154

	ai->dyn_size = unit_size;
	ai->unit_size = unit_size;
	ai->atom_size = unit_size;
	ai->alloc_size = unit_size;
	ai->groups[0].nr_units = 1;
	ai->groups[0].cpu_map[0] = 0;

	if (pcpu_setup_first_chunk(ai, fc) < 0)
		panic("Failed to initialize percpu areas.");
2155 2156

	pcpu_free_alloc_info(ai);
2157 2158 2159
}

#endif	/* CONFIG_SMP */
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180

/*
 * First and reserved chunks are initialized with temporary allocation
 * map in initdata so that they can be used before slab is online.
 * This function is called after slab is brought up and replaces those
 * with properly allocated maps.
 */
void __init percpu_init_late(void)
{
	struct pcpu_chunk *target_chunks[] =
		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
	struct pcpu_chunk *chunk;
	unsigned long flags;
	int i;

	for (i = 0; (chunk = target_chunks[i]); i++) {
		int *map;
		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);

		BUILD_BUG_ON(size > PAGE_SIZE);

2181
		map = pcpu_mem_zalloc(size);
2182 2183 2184 2185 2186 2187 2188 2189
		BUG_ON(!map);

		spin_lock_irqsave(&pcpu_lock, flags);
		memcpy(map, chunk->map, size);
		chunk->map = map;
		spin_unlock_irqrestore(&pcpu_lock, flags);
	}
}