percpu.c 65.9 KB
Newer Older
1
/*
2
 * mm/percpu.c - percpu memory allocator
3 4 5 6 7 8 9
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
10 11 12
 * areas.  Percpu areas are allocated in chunks.  Each chunk is
 * consisted of boot-time determined number of units and the first
 * chunk is used for static percpu variables in the kernel image
13 14 15
 * (special boot time alloc/init handling necessary as these areas
 * need to be brought up before allocation services are running).
 * Unit grows as necessary and all units grow or shrink in unison.
16
 * When a chunk is filled up, another chunk is allocated.
17 18 19 20 21 22 23 24
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 26 27 28
 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
 * Percpu access can be done by configuring percpu base registers
 * according to cpu to unit mapping and pcpu_unit_size.
29
 *
30 31
 * There are usually many small percpu allocations many of them being
 * as small as 4 bytes.  The allocator organizes chunks into lists
32 33
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
34
 * guaranteed to be equal to or larger than the maximum contiguous
35 36 37 38 39 40 41 42
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
43 44
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
45 46 47 48
 *
 * To use this allocator, arch code should do the followings.
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 50
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
51
 *
52 53
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
54 55 56 57
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
58
#include <linux/err.h>
59
#include <linux/list.h>
60
#include <linux/log2.h>
61 62 63 64 65 66
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
67
#include <linux/spinlock.h>
68
#include <linux/vmalloc.h>
69
#include <linux/workqueue.h>
70
#include <linux/kmemleak.h>
71 72

#include <asm/cacheflush.h>
73
#include <asm/sections.h>
74
#include <asm/tlbflush.h>
75
#include <asm/io.h>
76 77 78

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
79 80
#define PCPU_ATOMIC_MAP_MARGIN_LOW	32
#define PCPU_ATOMIC_MAP_MARGIN_HIGH	64
81 82
#define PCPU_EMPTY_POP_PAGES_LOW	2
#define PCPU_EMPTY_POP_PAGES_HIGH	4
83

84
#ifdef CONFIG_SMP
85 86 87
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
88 89 90
	(void __percpu *)((unsigned long)(addr) -			\
			  (unsigned long)pcpu_base_addr	+		\
			  (unsigned long)__per_cpu_start)
91 92 93
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
94 95 96
	(void __force *)((unsigned long)(ptr) +				\
			 (unsigned long)pcpu_base_addr -		\
			 (unsigned long)__per_cpu_start)
97
#endif
98 99 100 101 102
#else	/* CONFIG_SMP */
/* on UP, it's always identity mapped */
#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
#endif	/* CONFIG_SMP */
103

104 105 106 107
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
T
Tejun Heo 已提交
108
	void			*base_addr;	/* base address of this chunk */
109

110
	int			map_used;	/* # of map entries used before the sentry */
111 112
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
113 114
	struct work_struct	map_extend_work;/* async ->map[] extension */

115
	void			*data;		/* chunk data */
A
Al Viro 已提交
116
	int			first_free;	/* no free below this */
117
	bool			immutable;	/* no [de]population allowed */
118
	int			nr_populated;	/* # of populated pages */
T
Tejun Heo 已提交
119
	unsigned long		populated[];	/* populated bitmap */
120 121
};

122 123
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
124
static int pcpu_nr_units __read_mostly;
125
static int pcpu_atom_size __read_mostly;
126 127
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
128

T
Tejun Heo 已提交
129 130 131
/* cpus with the lowest and highest unit addresses */
static unsigned int pcpu_low_unit_cpu __read_mostly;
static unsigned int pcpu_high_unit_cpu __read_mostly;
132

133
/* the address of the first chunk which starts with the kernel static area */
134
void *pcpu_base_addr __read_mostly;
135 136
EXPORT_SYMBOL_GPL(pcpu_base_addr);

T
Tejun Heo 已提交
137 138
static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
139

140 141 142 143 144
/* group information, used for vm allocation */
static int pcpu_nr_groups __read_mostly;
static const unsigned long *pcpu_group_offsets __read_mostly;
static const size_t *pcpu_group_sizes __read_mostly;

145 146 147 148 149 150 151 152 153 154 155 156 157 158
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
159 160 161
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

T
Tejun Heo 已提交
162 163
static DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop */
164

165
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
166

167 168 169 170 171 172
/*
 * The number of empty populated pages, protected by pcpu_lock.  The
 * reserved chunk doesn't contribute to the count.
 */
static int pcpu_nr_empty_pop_pages;

173 174 175 176 177 178
/*
 * Balance work is used to populate or destroy chunks asynchronously.  We
 * try to keep the number of populated free pages between
 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 * empty chunk.
 */
179 180
static void pcpu_balance_workfn(struct work_struct *work);
static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
181 182 183 184 185 186 187 188
static bool pcpu_async_enabled __read_mostly;
static bool pcpu_atomic_alloc_failed;

static void pcpu_schedule_balance_work(void)
{
	if (pcpu_async_enabled)
		schedule_work(&pcpu_balance_work);
}
189

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
static bool pcpu_addr_in_first_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start && addr < first_start + pcpu_unit_size;
}

static bool pcpu_addr_in_reserved_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start &&
		addr < first_start + pcpu_reserved_chunk_limit;
}

205
static int __pcpu_size_to_slot(int size)
206
{
T
Tejun Heo 已提交
207
	int highbit = fls(size);	/* size is in bytes */
208 209 210
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

211 212 213 214 215 216 217
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

218 219 220 221 222 223 224 225
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

226 227 228 229 230 231 232 233 234 235 236 237 238
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
239
{
240
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
241 242
}

243 244
static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
245
{
T
Tejun Heo 已提交
246
	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
T
Tejun Heo 已提交
247
		(page_idx << PAGE_SHIFT);
248 249
}

250 251
static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
					   int *rs, int *re, int end)
T
Tejun Heo 已提交
252 253 254 255 256
{
	*rs = find_next_zero_bit(chunk->populated, end, *rs);
	*re = find_next_bit(chunk->populated, end, *rs + 1);
}

257 258
static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
					 int *rs, int *re, int end)
T
Tejun Heo 已提交
259 260 261 262 263 264 265
{
	*rs = find_next_bit(chunk->populated, end, *rs);
	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
}

/*
 * (Un)populated page region iterators.  Iterate over (un)populated
266
 * page regions between @start and @end in @chunk.  @rs and @re should
T
Tejun Heo 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279
 * be integer variables and will be set to start and end page index of
 * the current region.
 */
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))

280
/**
281
 * pcpu_mem_zalloc - allocate memory
282
 * @size: bytes to allocate
283
 *
284
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
285
 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
286
 * memory is always zeroed.
287
 *
288 289 290
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
291
 * RETURNS:
292
 * Pointer to the allocated area on success, NULL on failure.
293
 */
294
static void *pcpu_mem_zalloc(size_t size)
295
{
296 297 298
	if (WARN_ON_ONCE(!slab_is_available()))
		return NULL;

299 300
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
301 302
	else
		return vzalloc(size);
303
}
304

305 306 307 308
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 *
309
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
310
 */
311
static void pcpu_mem_free(void *ptr)
312
{
313
	kvfree(ptr);
314 315
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
/**
 * pcpu_count_occupied_pages - count the number of pages an area occupies
 * @chunk: chunk of interest
 * @i: index of the area in question
 *
 * Count the number of pages chunk's @i'th area occupies.  When the area's
 * start and/or end address isn't aligned to page boundary, the straddled
 * page is included in the count iff the rest of the page is free.
 */
static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i)
{
	int off = chunk->map[i] & ~1;
	int end = chunk->map[i + 1] & ~1;

	if (!PAGE_ALIGNED(off) && i > 0) {
		int prev = chunk->map[i - 1];

		if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE))
			off = round_down(off, PAGE_SIZE);
	}

	if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) {
		int next = chunk->map[i + 1];
		int nend = chunk->map[i + 2] & ~1;

		if (!(next & 1) && nend >= round_up(end, PAGE_SIZE))
			end = round_up(end, PAGE_SIZE);
	}

	return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0);
}

348 349 350 351 352 353 354
/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
355 356
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
357 358 359
 *
 * CONTEXT:
 * pcpu_lock.
360 361 362 363 364
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

365
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
366 367 368 369 370 371 372
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

373
/**
374 375
 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 * @chunk: chunk of interest
376
 * @is_atomic: the allocation context
377
 *
378 379 380 381 382 383
 * Determine whether area map of @chunk needs to be extended.  If
 * @is_atomic, only the amount necessary for a new allocation is
 * considered; however, async extension is scheduled if the left amount is
 * low.  If !@is_atomic, it aims for more empty space.  Combined, this
 * ensures that the map is likely to have enough available space to
 * accomodate atomic allocations which can't extend maps directly.
384
 *
385
 * CONTEXT:
386
 * pcpu_lock.
387
 *
388
 * RETURNS:
389 390
 * New target map allocation length if extension is necessary, 0
 * otherwise.
391
 */
392
static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic)
393
{
394 395 396 397
	int margin, new_alloc;

	if (is_atomic) {
		margin = 3;
398

399
		if (chunk->map_alloc <
400 401
		    chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW &&
		    pcpu_async_enabled)
402 403 404 405 406 407
			schedule_work(&chunk->map_extend_work);
	} else {
		margin = PCPU_ATOMIC_MAP_MARGIN_HIGH;
	}

	if (chunk->map_alloc >= chunk->map_used + margin)
408 409 410
		return 0;

	new_alloc = PCPU_DFL_MAP_ALLOC;
411
	while (new_alloc < chunk->map_used + margin)
412 413
		new_alloc *= 2;

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
	return new_alloc;
}

/**
 * pcpu_extend_area_map - extend area map of a chunk
 * @chunk: chunk of interest
 * @new_alloc: new target allocation length of the area map
 *
 * Extend area map of @chunk to have @new_alloc entries.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
{
	int *old = NULL, *new = NULL;
	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
	unsigned long flags;

436
	new = pcpu_mem_zalloc(new_size);
437
	if (!new)
438
		return -ENOMEM;
439

440 441 442 443 444
	/* acquire pcpu_lock and switch to new area map */
	spin_lock_irqsave(&pcpu_lock, flags);

	if (new_alloc <= chunk->map_alloc)
		goto out_unlock;
445

446
	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
447 448 449
	old = chunk->map;

	memcpy(new, old, old_size);
450 451 452

	chunk->map_alloc = new_alloc;
	chunk->map = new;
453 454 455 456 457 458 459 460 461
	new = NULL;

out_unlock:
	spin_unlock_irqrestore(&pcpu_lock, flags);

	/*
	 * pcpu_mem_free() might end up calling vfree() which uses
	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
	 */
462 463
	pcpu_mem_free(old);
	pcpu_mem_free(new);
464

465 466 467
	return 0;
}

468 469 470 471 472 473 474 475 476 477 478 479 480 481
static void pcpu_map_extend_workfn(struct work_struct *work)
{
	struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk,
						map_extend_work);
	int new_alloc;

	spin_lock_irq(&pcpu_lock);
	new_alloc = pcpu_need_to_extend(chunk, false);
	spin_unlock_irq(&pcpu_lock);

	if (new_alloc)
		pcpu_extend_area_map(chunk, new_alloc);
}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
/**
 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
 * @chunk: chunk the candidate area belongs to
 * @off: the offset to the start of the candidate area
 * @this_size: the size of the candidate area
 * @size: the size of the target allocation
 * @align: the alignment of the target allocation
 * @pop_only: only allocate from already populated region
 *
 * We're trying to allocate @size bytes aligned at @align.  @chunk's area
 * at @off sized @this_size is a candidate.  This function determines
 * whether the target allocation fits in the candidate area and returns the
 * number of bytes to pad after @off.  If the target area doesn't fit, -1
 * is returned.
 *
 * If @pop_only is %true, this function only considers the already
 * populated part of the candidate area.
 */
static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size,
			    int size, int align, bool pop_only)
{
	int cand_off = off;

	while (true) {
		int head = ALIGN(cand_off, align) - off;
		int page_start, page_end, rs, re;

		if (this_size < head + size)
			return -1;

		if (!pop_only)
			return head;

		/*
		 * If the first unpopulated page is beyond the end of the
		 * allocation, the whole allocation is populated;
		 * otherwise, retry from the end of the unpopulated area.
		 */
		page_start = PFN_DOWN(head + off);
		page_end = PFN_UP(head + off + size);

		rs = page_start;
		pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size));
		if (rs >= page_end)
			return head;
		cand_off = re * PAGE_SIZE;
	}
}

531 532 533
/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
534
 * @size: wanted size in bytes
535
 * @align: wanted align
536
 * @pop_only: allocate only from the populated area
537
 * @occ_pages_p: out param for the number of pages the area occupies
538 539 540 541 542
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
543 544
 * @chunk->map must have at least two free slots.
 *
545 546 547
 * CONTEXT:
 * pcpu_lock.
 *
548
 * RETURNS:
549 550
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
551
 */
552
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align,
553
			   bool pop_only, int *occ_pages_p)
554 555 556 557
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;
A
Al Viro 已提交
558
	bool seen_free = false;
559
	int *p;
560

A
Al Viro 已提交
561
	for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) {
562
		int head, tail;
563 564 565 566 567
		int this_size;

		off = *p;
		if (off & 1)
			continue;
568

569
		this_size = (p[1] & ~1) - off;
570 571 572 573

		head = pcpu_fit_in_area(chunk, off, this_size, size, align,
					pop_only);
		if (head < 0) {
A
Al Viro 已提交
574 575 576 577
			if (!seen_free) {
				chunk->first_free = i;
				seen_free = true;
			}
578
			max_contig = max(this_size, max_contig);
579 580 581 582 583 584 585 586 587
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
588
		if (head && (head < sizeof(int) || !(p[-1] & 1))) {
589
			*p = off += head;
590
			if (p[-1] & 1)
591
				chunk->free_size -= head;
592 593
			else
				max_contig = max(*p - p[-1], max_contig);
594
			this_size -= head;
595 596 597 598
			head = 0;
		}

		/* if tail is small, just keep it around */
599 600
		tail = this_size - head - size;
		if (tail < sizeof(int)) {
601
			tail = 0;
602 603
			size = this_size - head;
		}
604 605 606

		/* split if warranted */
		if (head || tail) {
607 608 609
			int nr_extra = !!head + !!tail;

			/* insert new subblocks */
610
			memmove(p + nr_extra + 1, p + 1,
611 612 613
				sizeof(chunk->map[0]) * (chunk->map_used - i));
			chunk->map_used += nr_extra;

614
			if (head) {
A
Al Viro 已提交
615 616 617 618
				if (!seen_free) {
					chunk->first_free = i;
					seen_free = true;
				}
619 620
				*++p = off += head;
				++i;
621 622 623
				max_contig = max(head, max_contig);
			}
			if (tail) {
624
				p[1] = off + size;
625
				max_contig = max(tail, max_contig);
626 627 628
			}
		}

A
Al Viro 已提交
629 630 631
		if (!seen_free)
			chunk->first_free = i + 1;

632
		/* update hint and mark allocated */
633
		if (i + 1 == chunk->map_used)
634 635 636 637 638
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

639 640
		chunk->free_size -= size;
		*p |= 1;
641

642
		*occ_pages_p = pcpu_count_occupied_pages(chunk, i);
643 644 645 646 647 648 649
		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

650 651
	/* tell the upper layer that this chunk has no matching area */
	return -1;
652 653 654 655 656 657
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
658
 * @occ_pages_p: out param for the number of pages the area occupies
659 660 661 662
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
663 664 665
 *
 * CONTEXT:
 * pcpu_lock.
666
 */
667 668
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme,
			   int *occ_pages_p)
669 670
{
	int oslot = pcpu_chunk_slot(chunk);
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	int off = 0;
	unsigned i, j;
	int to_free = 0;
	int *p;

	freeme |= 1;	/* we are searching for <given offset, in use> pair */

	i = 0;
	j = chunk->map_used;
	while (i != j) {
		unsigned k = (i + j) / 2;
		off = chunk->map[k];
		if (off < freeme)
			i = k + 1;
		else if (off > freeme)
			j = k;
		else
			i = j = k;
	}
690 691
	BUG_ON(off != freeme);

A
Al Viro 已提交
692 693 694
	if (i < chunk->first_free)
		chunk->first_free = i;

695 696 697
	p = chunk->map + i;
	*p = off &= ~1;
	chunk->free_size += (p[1] & ~1) - off;
698

699 700
	*occ_pages_p = pcpu_count_occupied_pages(chunk, i);

701 702 703
	/* merge with next? */
	if (!(p[1] & 1))
		to_free++;
704
	/* merge with previous? */
705 706
	if (i > 0 && !(p[-1] & 1)) {
		to_free++;
707
		i--;
708
		p--;
709
	}
710 711 712 713
	if (to_free) {
		chunk->map_used -= to_free;
		memmove(p + 1, p + 1 + to_free,
			(chunk->map_used - i) * sizeof(chunk->map[0]));
714 715
	}

716
	chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint);
717 718 719
	pcpu_chunk_relocate(chunk, oslot);
}

720 721 722 723
static struct pcpu_chunk *pcpu_alloc_chunk(void)
{
	struct pcpu_chunk *chunk;

724
	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
725 726 727
	if (!chunk)
		return NULL;

728 729
	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
						sizeof(chunk->map[0]));
730
	if (!chunk->map) {
731
		pcpu_mem_free(chunk);
732 733 734 735
		return NULL;
	}

	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
736 737 738
	chunk->map[0] = 0;
	chunk->map[1] = pcpu_unit_size | 1;
	chunk->map_used = 1;
739 740

	INIT_LIST_HEAD(&chunk->list);
741
	INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn);
742 743 744 745 746 747 748 749 750 751
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;

	return chunk;
}

static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
752 753
	pcpu_mem_free(chunk->map);
	pcpu_mem_free(chunk);
754 755
}

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
/**
 * pcpu_chunk_populated - post-population bookkeeping
 * @chunk: pcpu_chunk which got populated
 * @page_start: the start page
 * @page_end: the end page
 *
 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
 * the bookkeeping information accordingly.  Must be called after each
 * successful population.
 */
static void pcpu_chunk_populated(struct pcpu_chunk *chunk,
				 int page_start, int page_end)
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_set(chunk->populated, page_start, nr);
	chunk->nr_populated += nr;
	pcpu_nr_empty_pop_pages += nr;
}

/**
 * pcpu_chunk_depopulated - post-depopulation bookkeeping
 * @chunk: pcpu_chunk which got depopulated
 * @page_start: the start page
 * @page_end: the end page
 *
 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
 * Update the bookkeeping information accordingly.  Must be called after
 * each successful depopulation.
 */
static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
				   int page_start, int page_end)
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_clear(chunk->populated, page_start, nr);
	chunk->nr_populated -= nr;
	pcpu_nr_empty_pop_pages -= nr;
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813
/*
 * Chunk management implementation.
 *
 * To allow different implementations, chunk alloc/free and
 * [de]population are implemented in a separate file which is pulled
 * into this file and compiled together.  The following functions
 * should be implemented.
 *
 * pcpu_populate_chunk		- populate the specified range of a chunk
 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 * pcpu_create_chunk		- create a new chunk
 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 * pcpu_addr_to_page		- translate address to physical address
 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
814
 */
815 816 817 818 819 820
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
static struct pcpu_chunk *pcpu_create_chunk(void);
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
static struct page *pcpu_addr_to_page(void *addr);
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
821

822 823 824
#ifdef CONFIG_NEED_PER_CPU_KM
#include "percpu-km.c"
#else
825
#include "percpu-vm.c"
826
#endif
827

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
/**
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
 *
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
	/* is it in the first chunk? */
	if (pcpu_addr_in_first_chunk(addr)) {
		/* is it in the reserved area? */
		if (pcpu_addr_in_reserved_chunk(addr))
			return pcpu_reserved_chunk;
		return pcpu_first_chunk;
	}

	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
853
	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
854 855
}

856
/**
857
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
858
 * @size: size of area to allocate in bytes
859
 * @align: alignment of area (max PAGE_SIZE)
860
 * @reserved: allocate from the reserved chunk if available
861
 * @gfp: allocation flags
862
 *
863 864
 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
 * contain %GFP_KERNEL, the allocation is atomic.
865 866 867 868
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
869 870
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
				 gfp_t gfp)
871
{
872
	static int warn_limit = 10;
873
	struct pcpu_chunk *chunk;
874
	const char *err;
875
	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
876
	int occ_pages = 0;
T
Tejun Heo 已提交
877
	int slot, off, new_alloc, cpu, ret;
878
	unsigned long flags;
879
	void __percpu *ptr;
880

881 882
	/*
	 * We want the lowest bit of offset available for in-use/free
V
Viro 已提交
883
	 * indicator, so force >= 16bit alignment and make size even.
884 885 886 887
	 */
	if (unlikely(align < 2))
		align = 2;

888
	size = ALIGN(size, 2);
V
Viro 已提交
889

890
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
J
Joe Perches 已提交
891 892
		WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
		     size, align);
893 894 895
		return NULL;
	}

896
	spin_lock_irqsave(&pcpu_lock, flags);
897

898 899 900
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
901 902 903

		if (size > chunk->contig_hint) {
			err = "alloc from reserved chunk failed";
904
			goto fail_unlock;
905
		}
906

907
		while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) {
908
			spin_unlock_irqrestore(&pcpu_lock, flags);
909 910
			if (is_atomic ||
			    pcpu_extend_area_map(chunk, new_alloc) < 0) {
911
				err = "failed to extend area map of reserved chunk";
T
Tejun Heo 已提交
912
				goto fail;
913 914 915 916
			}
			spin_lock_irqsave(&pcpu_lock, flags);
		}

917 918
		off = pcpu_alloc_area(chunk, size, align, is_atomic,
				      &occ_pages);
919 920
		if (off >= 0)
			goto area_found;
921

922
		err = "alloc from reserved chunk failed";
923
		goto fail_unlock;
924 925
	}

926
restart:
927
	/* search through normal chunks */
928 929 930 931
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
932

933
			new_alloc = pcpu_need_to_extend(chunk, is_atomic);
934
			if (new_alloc) {
935 936
				if (is_atomic)
					continue;
937 938 939 940
				spin_unlock_irqrestore(&pcpu_lock, flags);
				if (pcpu_extend_area_map(chunk,
							 new_alloc) < 0) {
					err = "failed to extend area map";
T
Tejun Heo 已提交
941
					goto fail;
942 943 944 945 946 947 948
				}
				spin_lock_irqsave(&pcpu_lock, flags);
				/*
				 * pcpu_lock has been dropped, need to
				 * restart cpu_slot list walking.
				 */
				goto restart;
949 950
			}

951 952
			off = pcpu_alloc_area(chunk, size, align, is_atomic,
					      &occ_pages);
953 954 955 956 957
			if (off >= 0)
				goto area_found;
		}
	}

958
	spin_unlock_irqrestore(&pcpu_lock, flags);
959

T
Tejun Heo 已提交
960 961 962 963 964
	/*
	 * No space left.  Create a new chunk.  We don't want multiple
	 * tasks to create chunks simultaneously.  Serialize and create iff
	 * there's still no empty chunk after grabbing the mutex.
	 */
965 966 967
	if (is_atomic)
		goto fail;

T
Tejun Heo 已提交
968 969 970 971 972
	mutex_lock(&pcpu_alloc_mutex);

	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
		chunk = pcpu_create_chunk();
		if (!chunk) {
973
			mutex_unlock(&pcpu_alloc_mutex);
T
Tejun Heo 已提交
974 975 976 977 978 979 980 981
			err = "failed to allocate new chunk";
			goto fail;
		}

		spin_lock_irqsave(&pcpu_lock, flags);
		pcpu_chunk_relocate(chunk, -1);
	} else {
		spin_lock_irqsave(&pcpu_lock, flags);
982
	}
983

T
Tejun Heo 已提交
984
	mutex_unlock(&pcpu_alloc_mutex);
985
	goto restart;
986 987

area_found:
988
	spin_unlock_irqrestore(&pcpu_lock, flags);
989

990
	/* populate if not all pages are already there */
991
	if (!is_atomic) {
992
		int page_start, page_end, rs, re;
993

994
		mutex_lock(&pcpu_alloc_mutex);
995

996 997
		page_start = PFN_DOWN(off);
		page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
998

999 1000 1001 1002 1003 1004 1005 1006
		pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
			WARN_ON(chunk->immutable);

			ret = pcpu_populate_chunk(chunk, rs, re);

			spin_lock_irqsave(&pcpu_lock, flags);
			if (ret) {
				mutex_unlock(&pcpu_alloc_mutex);
1007
				pcpu_free_area(chunk, off, &occ_pages);
1008 1009 1010
				err = "failed to populate";
				goto fail_unlock;
			}
1011
			pcpu_chunk_populated(chunk, rs, re);
1012
			spin_unlock_irqrestore(&pcpu_lock, flags);
1013
		}
1014

1015 1016
		mutex_unlock(&pcpu_alloc_mutex);
	}
1017

1018 1019 1020
	if (chunk != pcpu_reserved_chunk)
		pcpu_nr_empty_pop_pages -= occ_pages;

1021 1022 1023
	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
		pcpu_schedule_balance_work();

1024 1025 1026 1027
	/* clear the areas and return address relative to base address */
	for_each_possible_cpu(cpu)
		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);

1028
	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1029
	kmemleak_alloc_percpu(ptr, size, gfp);
1030
	return ptr;
1031 1032

fail_unlock:
1033
	spin_unlock_irqrestore(&pcpu_lock, flags);
T
Tejun Heo 已提交
1034
fail:
1035
	if (!is_atomic && warn_limit) {
J
Joe Perches 已提交
1036 1037
		pr_warn("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n",
			size, align, is_atomic, err);
1038 1039 1040 1041
		dump_stack();
		if (!--warn_limit)
			pr_info("PERCPU: limit reached, disable warning\n");
	}
1042 1043 1044 1045 1046
	if (is_atomic) {
		/* see the flag handling in pcpu_blance_workfn() */
		pcpu_atomic_alloc_failed = true;
		pcpu_schedule_balance_work();
	}
1047
	return NULL;
1048
}
1049 1050

/**
1051
 * __alloc_percpu_gfp - allocate dynamic percpu area
1052 1053
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
1054
 * @gfp: allocation flags
1055
 *
1056 1057 1058
 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
 * be called from any context but is a lot more likely to fail.
1059
 *
1060 1061 1062
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
{
	return pcpu_alloc(size, align, false, gfp);
}
EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
 */
1076
void __percpu *__alloc_percpu(size_t size, size_t align)
1077
{
1078
	return pcpu_alloc(size, align, false, GFP_KERNEL);
1079
}
1080 1081
EXPORT_SYMBOL_GPL(__alloc_percpu);

1082 1083 1084 1085 1086
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
1087 1088 1089 1090
 * Allocate zero-filled percpu area of @size bytes aligned at @align
 * from reserved percpu area if arch has set it up; otherwise,
 * allocation is served from the same dynamic area.  Might sleep.
 * Might trigger writeouts.
1091
 *
1092 1093 1094
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1095 1096 1097
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1098
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1099
{
1100
	return pcpu_alloc(size, align, true, GFP_KERNEL);
1101 1102
}

1103
/**
1104
 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1105 1106 1107 1108
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
 */
1109
static void pcpu_balance_workfn(struct work_struct *work)
1110
{
1111 1112
	LIST_HEAD(to_free);
	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1113
	struct pcpu_chunk *chunk, *next;
1114
	int slot, nr_to_pop, ret;
1115

1116 1117 1118 1119
	/*
	 * There's no reason to keep around multiple unused chunks and VM
	 * areas can be scarce.  Destroy all free chunks except for one.
	 */
1120 1121
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1122

1123
	list_for_each_entry_safe(chunk, next, free_head, list) {
1124 1125 1126
		WARN_ON(chunk->immutable);

		/* spare the first one */
1127
		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1128 1129
			continue;

1130
		list_move(&chunk->list, &to_free);
1131 1132
	}

1133
	spin_unlock_irq(&pcpu_lock);
1134

1135
	list_for_each_entry_safe(chunk, next, &to_free, list) {
1136
		int rs, re;
1137

1138 1139
		pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) {
			pcpu_depopulate_chunk(chunk, rs, re);
1140 1141 1142
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_depopulated(chunk, rs, re);
			spin_unlock_irq(&pcpu_lock);
1143
		}
1144
		pcpu_destroy_chunk(chunk);
1145
	}
T
Tejun Heo 已提交
1146

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	/*
	 * Ensure there are certain number of free populated pages for
	 * atomic allocs.  Fill up from the most packed so that atomic
	 * allocs don't increase fragmentation.  If atomic allocation
	 * failed previously, always populate the maximum amount.  This
	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
	 * failing indefinitely; however, large atomic allocs are not
	 * something we support properly and can be highly unreliable and
	 * inefficient.
	 */
retry_pop:
	if (pcpu_atomic_alloc_failed) {
		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
		/* best effort anyway, don't worry about synchronization */
		pcpu_atomic_alloc_failed = false;
	} else {
		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
				  pcpu_nr_empty_pop_pages,
				  0, PCPU_EMPTY_POP_PAGES_HIGH);
	}

	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
		int nr_unpop = 0, rs, re;

		if (!nr_to_pop)
			break;

		spin_lock_irq(&pcpu_lock);
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			nr_unpop = pcpu_unit_pages - chunk->nr_populated;
			if (nr_unpop)
				break;
		}
		spin_unlock_irq(&pcpu_lock);

		if (!nr_unpop)
			continue;

		/* @chunk can't go away while pcpu_alloc_mutex is held */
		pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) {
			int nr = min(re - rs, nr_to_pop);

			ret = pcpu_populate_chunk(chunk, rs, rs + nr);
			if (!ret) {
				nr_to_pop -= nr;
				spin_lock_irq(&pcpu_lock);
				pcpu_chunk_populated(chunk, rs, rs + nr);
				spin_unlock_irq(&pcpu_lock);
			} else {
				nr_to_pop = 0;
			}

			if (!nr_to_pop)
				break;
		}
	}

	if (nr_to_pop) {
		/* ran out of chunks to populate, create a new one and retry */
		chunk = pcpu_create_chunk();
		if (chunk) {
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_relocate(chunk, -1);
			spin_unlock_irq(&pcpu_lock);
			goto retry_pop;
		}
	}

T
Tejun Heo 已提交
1215
	mutex_unlock(&pcpu_alloc_mutex);
1216 1217 1218 1219 1220 1221
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
1222 1223 1224 1225
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
1226
 */
1227
void free_percpu(void __percpu *ptr)
1228
{
1229
	void *addr;
1230
	struct pcpu_chunk *chunk;
1231
	unsigned long flags;
1232
	int off, occ_pages;
1233 1234 1235 1236

	if (!ptr)
		return;

1237 1238
	kmemleak_free_percpu(ptr);

1239 1240
	addr = __pcpu_ptr_to_addr(ptr);

1241
	spin_lock_irqsave(&pcpu_lock, flags);
1242 1243

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
1244
	off = addr - chunk->base_addr;
1245

1246 1247 1248 1249
	pcpu_free_area(chunk, off, &occ_pages);

	if (chunk != pcpu_reserved_chunk)
		pcpu_nr_empty_pop_pages += occ_pages;
1250

1251
	/* if there are more than one fully free chunks, wake up grim reaper */
1252 1253 1254
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

1255
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1256
			if (pos != chunk) {
1257
				pcpu_schedule_balance_work();
1258 1259 1260 1261
				break;
			}
	}

1262
	spin_unlock_irqrestore(&pcpu_lock, flags);
1263 1264 1265
}
EXPORT_SYMBOL_GPL(free_percpu);

1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/**
 * is_kernel_percpu_address - test whether address is from static percpu area
 * @addr: address to test
 *
 * Test whether @addr belongs to in-kernel static percpu area.  Module
 * static percpu areas are not considered.  For those, use
 * is_module_percpu_address().
 *
 * RETURNS:
 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 */
bool is_kernel_percpu_address(unsigned long addr)
{
1279
#ifdef CONFIG_SMP
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		void *start = per_cpu_ptr(base, cpu);

		if ((void *)addr >= start && (void *)addr < start + static_size)
			return true;
        }
1290 1291
#endif
	/* on UP, can't distinguish from other static vars, always false */
1292 1293 1294
	return false;
}

1295 1296 1297 1298 1299 1300 1301 1302 1303
/**
 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 * @addr: the address to be converted to physical address
 *
 * Given @addr which is dereferenceable address obtained via one of
 * percpu access macros, this function translates it into its physical
 * address.  The caller is responsible for ensuring @addr stays valid
 * until this function finishes.
 *
1304 1305 1306 1307 1308
 * percpu allocator has special setup for the first chunk, which currently
 * supports either embedding in linear address space or vmalloc mapping,
 * and, from the second one, the backing allocator (currently either vm or
 * km) provides translation.
 *
1309
 * The addr can be translated simply without checking if it falls into the
1310 1311 1312 1313 1314
 * first chunk. But the current code reflects better how percpu allocator
 * actually works, and the verification can discover both bugs in percpu
 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
 * code.
 *
1315 1316 1317 1318 1319
 * RETURNS:
 * The physical address for @addr.
 */
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
1320 1321
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	bool in_first_chunk = false;
T
Tejun Heo 已提交
1322
	unsigned long first_low, first_high;
1323 1324 1325
	unsigned int cpu;

	/*
T
Tejun Heo 已提交
1326
	 * The following test on unit_low/high isn't strictly
1327 1328 1329
	 * necessary but will speed up lookups of addresses which
	 * aren't in the first chunk.
	 */
T
Tejun Heo 已提交
1330 1331 1332 1333 1334
	first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0);
	first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu,
				     pcpu_unit_pages);
	if ((unsigned long)addr >= first_low &&
	    (unsigned long)addr < first_high) {
1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
		for_each_possible_cpu(cpu) {
			void *start = per_cpu_ptr(base, cpu);

			if (addr >= start && addr < start + pcpu_unit_size) {
				in_first_chunk = true;
				break;
			}
		}
	}

	if (in_first_chunk) {
1346
		if (!is_vmalloc_addr(addr))
1347 1348
			return __pa(addr);
		else
1349 1350
			return page_to_phys(vmalloc_to_page(addr)) +
			       offset_in_page(addr);
1351
	} else
1352 1353
		return page_to_phys(pcpu_addr_to_page(addr)) +
		       offset_in_page(addr);
1354 1355
}

1356
/**
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

1383
	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0);
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
1408
	memblock_free_early(__pa(ai), ai->__ai_size);
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419
}

/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1420
{
1421
	int group_width = 1, cpu_width = 1, width;
1422
	char empty_str[] = "--------";
1423 1424 1425 1426 1427 1428 1429
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1430

1431
	v = num_possible_cpus();
1432
	while (v /= 10)
1433 1434
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1435

1436 1437 1438
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1439

1440 1441 1442
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1443

1444 1445 1446 1447 1448 1449 1450 1451
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1452
				printk(KERN_CONT "\n");
1453 1454
				printk("%spcpu-alloc: ", lvl);
			}
1455
			printk(KERN_CONT "[%0*d] ", group_width, group);
1456 1457 1458

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
1459
					printk(KERN_CONT "%0*d ", cpu_width,
1460 1461
					       gi->cpu_map[unit]);
				else
1462
					printk(KERN_CONT "%s ", empty_str);
1463 1464
		}
	}
1465
	printk(KERN_CONT "\n");
1466 1467
}

1468
/**
1469
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1470
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1471
 * @base_addr: mapped address
1472 1473 1474
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1475
 * setup path.
1476
 *
1477 1478 1479 1480 1481 1482
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1483 1484 1485 1486 1487 1488 1489
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1490 1491 1492
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1493
 *
1494 1495 1496
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
1497
 *
1498 1499
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
1500
 *
1501 1502 1503 1504 1505 1506 1507 1508 1509
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
1510
 *
1511 1512
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1513
 *
1514 1515 1516 1517 1518 1519 1520
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1521
 * RETURNS:
T
Tejun Heo 已提交
1522
 * 0 on success, -errno on failure.
1523
 */
T
Tejun Heo 已提交
1524 1525
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
1526
{
1527 1528
	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1529 1530
	size_t dyn_size = ai->dyn_size;
	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1531
	struct pcpu_chunk *schunk, *dchunk = NULL;
1532 1533
	unsigned long *group_offsets;
	size_t *group_sizes;
T
Tejun Heo 已提交
1534
	unsigned long *unit_off;
1535
	unsigned int cpu;
1536 1537
	int *unit_map;
	int group, unit, i;
1538

1539 1540 1541
#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1542 1543
		pr_emerg("PERCPU: cpu_possible_mask=%*pb\n",		\
			 cpumask_pr_args(cpu_possible_mask));		\
1544 1545 1546 1547 1548
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

1549
	/* sanity checks */
1550
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1551
#ifdef CONFIG_SMP
1552
	PCPU_SETUP_BUG_ON(!ai->static_size);
1553
	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
1554
#endif
1555
	PCPU_SETUP_BUG_ON(!base_addr);
1556
	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
1557
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1558
	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
1559
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1560
	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1561
	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1562

1563
	/* process group information and build config tables accordingly */
1564 1565 1566 1567 1568 1569
	group_offsets = memblock_virt_alloc(ai->nr_groups *
					     sizeof(group_offsets[0]), 0);
	group_sizes = memblock_virt_alloc(ai->nr_groups *
					   sizeof(group_sizes[0]), 0);
	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
1570

1571
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1572
		unit_map[cpu] = UINT_MAX;
T
Tejun Heo 已提交
1573 1574 1575

	pcpu_low_unit_cpu = NR_CPUS;
	pcpu_high_unit_cpu = NR_CPUS;
1576

1577 1578
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
1579

1580 1581 1582
		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

1583 1584 1585 1586
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
1587

D
Dan Carpenter 已提交
1588
			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
1589 1590
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1591

1592
			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
1593 1594
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

T
Tejun Heo 已提交
1595 1596 1597 1598 1599 1600 1601
			/* determine low/high unit_cpu */
			if (pcpu_low_unit_cpu == NR_CPUS ||
			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
				pcpu_low_unit_cpu = cpu;
			if (pcpu_high_unit_cpu == NR_CPUS ||
			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
				pcpu_high_unit_cpu = cpu;
1602
		}
1603
	}
1604 1605 1606
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
1607 1608 1609 1610
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
1611
	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1612

1613 1614 1615
	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
1616
	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
1617
	pcpu_unit_offsets = unit_off;
1618 1619

	/* determine basic parameters */
1620
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1621
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1622
	pcpu_atom_size = ai->atom_size;
T
Tejun Heo 已提交
1623 1624
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1625

1626 1627 1628 1629 1630
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1631 1632
	pcpu_slot = memblock_virt_alloc(
			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
1633 1634 1635
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1636 1637 1638 1639 1640 1641 1642
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1643
	schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1644
	INIT_LIST_HEAD(&schunk->list);
1645
	INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn);
T
Tejun Heo 已提交
1646
	schunk->base_addr = base_addr;
1647 1648
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1649
	schunk->immutable = true;
T
Tejun Heo 已提交
1650
	bitmap_fill(schunk->populated, pcpu_unit_pages);
1651
	schunk->nr_populated = pcpu_unit_pages;
1652

1653 1654
	if (ai->reserved_size) {
		schunk->free_size = ai->reserved_size;
1655
		pcpu_reserved_chunk = schunk;
1656
		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1657 1658 1659 1660
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1661
	schunk->contig_hint = schunk->free_size;
1662

1663 1664 1665
	schunk->map[0] = 1;
	schunk->map[1] = ai->static_size;
	schunk->map_used = 1;
1666
	if (schunk->free_size)
1667 1668
		schunk->map[++schunk->map_used] = ai->static_size + schunk->free_size;
	schunk->map[schunk->map_used] |= 1;
1669

1670 1671
	/* init dynamic chunk if necessary */
	if (dyn_size) {
1672
		dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0);
1673
		INIT_LIST_HEAD(&dchunk->list);
1674
		INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn);
T
Tejun Heo 已提交
1675
		dchunk->base_addr = base_addr;
1676 1677
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
1678
		dchunk->immutable = true;
T
Tejun Heo 已提交
1679
		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1680
		dchunk->nr_populated = pcpu_unit_pages;
1681 1682

		dchunk->contig_hint = dchunk->free_size = dyn_size;
1683 1684 1685 1686
		dchunk->map[0] = 1;
		dchunk->map[1] = pcpu_reserved_chunk_limit;
		dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1;
		dchunk->map_used = 2;
1687 1688
	}

1689
	/* link the first chunk in */
1690
	pcpu_first_chunk = dchunk ?: schunk;
1691 1692
	pcpu_nr_empty_pop_pages +=
		pcpu_count_occupied_pages(pcpu_first_chunk, 1);
1693
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1694 1695

	/* we're done */
T
Tejun Heo 已提交
1696
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
1697
	return 0;
1698
}
1699

1700 1701
#ifdef CONFIG_SMP

1702
const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
1703 1704 1705 1706
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};
1707

1708
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1709

1710 1711
static int __init percpu_alloc_setup(char *str)
{
1712 1713 1714
	if (!str)
		return -EINVAL;

1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
J
Joe Perches 已提交
1726
		pr_warn("PERCPU: unknown allocator %s specified\n", str);
1727

1728
	return 0;
1729
}
1730
early_param("percpu_alloc", percpu_alloc_setup);
1731

1732 1733 1734 1735 1736
/*
 * pcpu_embed_first_chunk() is used by the generic percpu setup.
 * Build it if needed by the arch config or the generic setup is going
 * to be used.
 */
1737 1738
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
#define BUILD_EMBED_FIRST_CHUNK
#endif

/* build pcpu_page_first_chunk() iff needed by the arch config */
#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
#define BUILD_PAGE_FIRST_CHUNK
#endif

/* pcpu_build_alloc_info() is used by both embed and page first chunk */
#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: minimum free size for dynamic allocation in bytes
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 *
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
 *
1760
 * Groups are always multiples of atom size and CPUs which are of
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
 *
 * RETURNS:
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
 */
static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, size_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	int nr_groups = 1, nr_units = 0;
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
	int last_allocs, group, unit;
	unsigned int cpu, tcpu;
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;

	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
	memset(group_cnt, 0, sizeof(group_cnt));

	/* calculate size_sum and ensure dyn_size is enough for early alloc */
	size_sum = PFN_ALIGN(static_size + reserved_size +
			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
	dyn_size = size_sum - static_size - reserved_size;

	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
	 * alloc_size is multiple of atom_size and is the smallest
L
Lucas De Marchi 已提交
1798
	 * which can accommodate 4k aligned segments which are equal to
1799 1800 1801 1802 1803 1804
	 * or larger than min_unit_size.
	 */
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

	alloc_size = roundup(min_unit_size, atom_size);
	upa = alloc_size / min_unit_size;
1805
	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
			if (group_map[tcpu] == group && cpu_distance_fn &&
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
				nr_groups = max(nr_groups, group + 1);
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
	}

	/*
	 * Expand unit size until address space usage goes over 75%
	 * and then as much as possible without using more address
	 * space.
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

1837
		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
			continue;

		for (group = 0; group < nr_groups; group++) {
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 1/3.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
	}
	BUG_ON(unit != nr_units);

	return ai;
}
#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */

#if defined(BUILD_EMBED_FIRST_CHUNK)
1906 1907 1908
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
1909
 * @dyn_size: minimum free size for dynamic allocation in bytes
1910 1911 1912
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
L
Lucas De Marchi 已提交
1913
 * @free_fn: function to free percpu page
1914 1915 1916 1917 1918
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
1929
 *
1930
 * @dyn_size specifies the minimum dynamic area size.
1931 1932
 *
 * If the needed size is smaller than the minimum or specified unit
1933
 * size, the leftover is returned using @free_fn.
1934 1935
 *
 * RETURNS:
T
Tejun Heo 已提交
1936
 * 0 on success, -errno on failure.
1937
 */
1938
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1939 1940 1941 1942
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
1943
{
1944 1945
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
1946
	struct pcpu_alloc_info *ai;
1947
	size_t size_sum, areas_size, max_distance;
1948
	int group, i, rc;
1949

1950 1951
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
1952 1953
	if (IS_ERR(ai))
		return PTR_ERR(ai);
1954

1955
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1956
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1957

1958
	areas = memblock_virt_alloc_nopanic(areas_size, 0);
1959
	if (!areas) {
T
Tejun Heo 已提交
1960
		rc = -ENOMEM;
1961
		goto out_free;
1962
	}
1963

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
	/* allocate, copy and determine base address */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
1980 1981
		/* kmemleak tracks the percpu allocations separately */
		kmemleak_free(ptr);
1982
		areas[group] = ptr;
1983

1984
		base = min(ptr, base);
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	}

	/*
	 * Copy data and free unused parts.  This should happen after all
	 * allocations are complete; otherwise, we may end up with
	 * overlapping groups.
	 */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		void *ptr = areas[group];
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
2006
	}
2007

2008
	/* base address is now known, determine group base offsets */
2009 2010
	max_distance = 0;
	for (group = 0; group < ai->nr_groups; group++) {
2011
		ai->groups[group].base_offset = areas[group] - base;
T
Tejun Heo 已提交
2012 2013
		max_distance = max_t(size_t, max_distance,
				     ai->groups[group].base_offset);
2014 2015 2016 2017
	}
	max_distance += ai->unit_size;

	/* warn if maximum distance is further than 75% of vmalloc space */
2018
	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
J
Joe Perches 已提交
2019 2020
		pr_warn("PERCPU: max_distance=0x%zx too large for vmalloc space 0x%lx\n",
			max_distance, VMALLOC_TOTAL);
2021 2022 2023 2024 2025 2026
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free;
#endif
	}
2027

T
Tejun Heo 已提交
2028
	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2029 2030
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
2031

T
Tejun Heo 已提交
2032
	rc = pcpu_setup_first_chunk(ai, base);
2033 2034 2035 2036
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
2037 2038 2039
		if (areas[group])
			free_fn(areas[group],
				ai->groups[group].nr_units * ai->unit_size);
2040
out_free:
2041
	pcpu_free_alloc_info(ai);
2042
	if (areas)
2043
		memblock_free_early(__pa(areas), areas_size);
T
Tejun Heo 已提交
2044
	return rc;
2045
}
2046
#endif /* BUILD_EMBED_FIRST_CHUNK */
2047

2048
#ifdef BUILD_PAGE_FIRST_CHUNK
2049
/**
2050
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2051 2052
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
L
Lucas De Marchi 已提交
2053
 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2054 2055
 * @populate_pte_fn: function to populate pte
 *
2056 2057
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2058 2059 2060 2061 2062
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
2063
 * 0 on success, -errno on failure.
2064
 */
T
Tejun Heo 已提交
2065 2066 2067 2068
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2069
{
2070
	static struct vm_struct vm;
2071
	struct pcpu_alloc_info *ai;
2072
	char psize_str[16];
T
Tejun Heo 已提交
2073
	int unit_pages;
2074
	size_t pages_size;
T
Tejun Heo 已提交
2075
	struct page **pages;
T
Tejun Heo 已提交
2076
	int unit, i, j, rc;
2077

2078 2079
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

2080
	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2081 2082 2083 2084 2085 2086
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());

	unit_pages = ai->unit_size >> PAGE_SHIFT;
2087 2088

	/* unaligned allocations can't be freed, round up to page size */
2089 2090
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
2091
	pages = memblock_virt_alloc(pages_size, 0);
2092

2093
	/* allocate pages */
2094
	j = 0;
2095
	for (unit = 0; unit < num_possible_cpus(); unit++)
T
Tejun Heo 已提交
2096
		for (i = 0; i < unit_pages; i++) {
2097
			unsigned int cpu = ai->groups[0].cpu_map[unit];
2098 2099
			void *ptr;

2100
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2101
			if (!ptr) {
J
Joe Perches 已提交
2102 2103
				pr_warn("PERCPU: failed to allocate %s page for cpu%u\n",
					psize_str, cpu);
2104 2105
				goto enomem;
			}
2106 2107
			/* kmemleak tracks the percpu allocations separately */
			kmemleak_free(ptr);
T
Tejun Heo 已提交
2108
			pages[j++] = virt_to_page(ptr);
2109 2110
		}

2111 2112
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
2113
	vm.size = num_possible_cpus() * ai->unit_size;
2114 2115
	vm_area_register_early(&vm, PAGE_SIZE);

2116
	for (unit = 0; unit < num_possible_cpus(); unit++) {
2117
		unsigned long unit_addr =
2118
			(unsigned long)vm.addr + unit * ai->unit_size;
2119

T
Tejun Heo 已提交
2120
		for (i = 0; i < unit_pages; i++)
2121 2122 2123
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
2124 2125 2126 2127
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
2128

2129 2130 2131 2132 2133 2134 2135 2136 2137
		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
2138
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2139 2140 2141
	}

	/* we're ready, commit */
2142
	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2143 2144
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
2145

T
Tejun Heo 已提交
2146
	rc = pcpu_setup_first_chunk(ai, vm.addr);
2147 2148 2149 2150
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
2151
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
2152
	rc = -ENOMEM;
2153
out_free_ar:
2154
	memblock_free_early(__pa(pages), pages_size);
2155
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
2156
	return rc;
2157
}
2158
#endif /* BUILD_PAGE_FIRST_CHUNK */
2159

2160
#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2161
/*
2162
 * Generic SMP percpu area setup.
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

2176 2177 2178
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
2179 2180
	return  memblock_virt_alloc_from_nopanic(
			size, align, __pa(MAX_DMA_ADDRESS));
2181
}
2182

2183 2184
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
2185
	memblock_free_early(__pa(ptr), size);
2186 2187
}

2188 2189 2190 2191
void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
2192
	int rc;
2193 2194 2195 2196 2197

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
2198
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2199 2200
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
T
Tejun Heo 已提交
2201
	if (rc < 0)
2202
		panic("Failed to initialize percpu areas.");
2203 2204 2205

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
2206
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2207
}
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */

#else	/* CONFIG_SMP */

/*
 * UP percpu area setup.
 *
 * UP always uses km-based percpu allocator with identity mapping.
 * Static percpu variables are indistinguishable from the usual static
 * variables and don't require any special preparation.
 */
void __init setup_per_cpu_areas(void)
{
	const size_t unit_size =
		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
					 PERCPU_DYNAMIC_RESERVE));
	struct pcpu_alloc_info *ai;
	void *fc;

	ai = pcpu_alloc_alloc_info(1, 1);
2228 2229 2230
	fc = memblock_virt_alloc_from_nopanic(unit_size,
					      PAGE_SIZE,
					      __pa(MAX_DMA_ADDRESS));
2231 2232
	if (!ai || !fc)
		panic("Failed to allocate memory for percpu areas.");
2233 2234
	/* kmemleak tracks the percpu allocations separately */
	kmemleak_free(fc);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

	ai->dyn_size = unit_size;
	ai->unit_size = unit_size;
	ai->atom_size = unit_size;
	ai->alloc_size = unit_size;
	ai->groups[0].nr_units = 1;
	ai->groups[0].cpu_map[0] = 0;

	if (pcpu_setup_first_chunk(ai, fc) < 0)
		panic("Failed to initialize percpu areas.");
}

#endif	/* CONFIG_SMP */
2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268

/*
 * First and reserved chunks are initialized with temporary allocation
 * map in initdata so that they can be used before slab is online.
 * This function is called after slab is brought up and replaces those
 * with properly allocated maps.
 */
void __init percpu_init_late(void)
{
	struct pcpu_chunk *target_chunks[] =
		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
	struct pcpu_chunk *chunk;
	unsigned long flags;
	int i;

	for (i = 0; (chunk = target_chunks[i]); i++) {
		int *map;
		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);

		BUILD_BUG_ON(size > PAGE_SIZE);

2269
		map = pcpu_mem_zalloc(size);
2270 2271 2272 2273 2274 2275 2276 2277
		BUG_ON(!map);

		spin_lock_irqsave(&pcpu_lock, flags);
		memcpy(map, chunk->map, size);
		chunk->map = map;
		spin_unlock_irqrestore(&pcpu_lock, flags);
	}
}
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289

/*
 * Percpu allocator is initialized early during boot when neither slab or
 * workqueue is available.  Plug async management until everything is up
 * and running.
 */
static int __init percpu_enable_async(void)
{
	pcpu_async_enabled = true;
	return 0;
}
subsys_initcall(percpu_enable_async);