percpu.c 55.5 KB
Newer Older
1
/*
2
 * mm/percpu.c - percpu memory allocator
3 4 5 6 7 8 9
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
10 11 12
 * areas.  Percpu areas are allocated in chunks.  Each chunk is
 * consisted of boot-time determined number of units and the first
 * chunk is used for static percpu variables in the kernel image
13 14 15
 * (special boot time alloc/init handling necessary as these areas
 * need to be brought up before allocation services are running).
 * Unit grows as necessary and all units grow or shrink in unison.
16
 * When a chunk is filled up, another chunk is allocated.
17 18 19 20 21 22 23 24
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 26 27 28
 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
 * Percpu access can be done by configuring percpu base registers
 * according to cpu to unit mapping and pcpu_unit_size.
29
 *
30 31
 * There are usually many small percpu allocations many of them being
 * as small as 4 bytes.  The allocator organizes chunks into lists
32 33
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
34
 * guaranteed to be equal to or larger than the maximum contiguous
35 36 37 38 39 40 41 42
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
43 44
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
45 46 47 48
 *
 * To use this allocator, arch code should do the followings.
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 50
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
51
 *
52 53
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
54 55 56 57
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
58
#include <linux/err.h>
59
#include <linux/list.h>
60
#include <linux/log2.h>
61 62 63 64 65 66
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
67
#include <linux/spinlock.h>
68
#include <linux/vmalloc.h>
69
#include <linux/workqueue.h>
70 71

#include <asm/cacheflush.h>
72
#include <asm/sections.h>
73
#include <asm/tlbflush.h>
74
#include <asm/io.h>
75 76 77 78

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */

79
#ifdef CONFIG_SMP
80 81 82
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
83 84 85
	(void __percpu *)((unsigned long)(addr) -			\
			  (unsigned long)pcpu_base_addr	+		\
			  (unsigned long)__per_cpu_start)
86 87 88
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
89 90 91
	(void __force *)((unsigned long)(ptr) +				\
			 (unsigned long)pcpu_base_addr -		\
			 (unsigned long)__per_cpu_start)
92
#endif
93 94 95 96 97
#else	/* CONFIG_SMP */
/* on UP, it's always identity mapped */
#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
#endif	/* CONFIG_SMP */
98

99 100 101 102
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
T
Tejun Heo 已提交
103
	void			*base_addr;	/* base address of this chunk */
104 105 106
	int			map_used;	/* # of map entries used */
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
107
	void			*data;		/* chunk data */
108
	bool			immutable;	/* no [de]population allowed */
T
Tejun Heo 已提交
109
	unsigned long		populated[];	/* populated bitmap */
110 111
};

112 113
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
114
static int pcpu_nr_units __read_mostly;
115
static int pcpu_atom_size __read_mostly;
116 117
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
118

119 120 121 122
/* cpus with the lowest and highest unit numbers */
static unsigned int pcpu_first_unit_cpu __read_mostly;
static unsigned int pcpu_last_unit_cpu __read_mostly;

123
/* the address of the first chunk which starts with the kernel static area */
124
void *pcpu_base_addr __read_mostly;
125 126
EXPORT_SYMBOL_GPL(pcpu_base_addr);

T
Tejun Heo 已提交
127 128
static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
129

130 131 132 133 134
/* group information, used for vm allocation */
static int pcpu_nr_groups __read_mostly;
static const unsigned long *pcpu_group_offsets __read_mostly;
static const size_t *pcpu_group_sizes __read_mostly;

135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
149 150 151
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

152
/*
153 154 155
 * Synchronization rules.
 *
 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
T
Tejun Heo 已提交
156 157 158
 * protects allocation/reclaim paths, chunks, populated bitmap and
 * vmalloc mapping.  The latter is a spinlock and protects the index
 * data structures - chunk slots, chunks and area maps in chunks.
159 160 161
 *
 * During allocation, pcpu_alloc_mutex is kept locked all the time and
 * pcpu_lock is grabbed and released as necessary.  All actual memory
162 163 164 165
 * allocations are done using GFP_KERNEL with pcpu_lock released.  In
 * general, percpu memory can't be allocated with irq off but
 * irqsave/restore are still used in alloc path so that it can be used
 * from early init path - sched_init() specifically.
166 167 168 169 170 171 172 173 174
 *
 * Free path accesses and alters only the index data structures, so it
 * can be safely called from atomic context.  When memory needs to be
 * returned to the system, free path schedules reclaim_work which
 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 * reclaimed, release both locks and frees the chunks.  Note that it's
 * necessary to grab both locks to remove a chunk from circulation as
 * allocation path might be referencing the chunk with only
 * pcpu_alloc_mutex locked.
175
 */
176 177
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
178

179
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
180

181 182 183 184
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);

185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
static bool pcpu_addr_in_first_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start && addr < first_start + pcpu_unit_size;
}

static bool pcpu_addr_in_reserved_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start &&
		addr < first_start + pcpu_reserved_chunk_limit;
}

200
static int __pcpu_size_to_slot(int size)
201
{
T
Tejun Heo 已提交
202
	int highbit = fls(size);	/* size is in bytes */
203 204 205
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

206 207 208 209 210 211 212
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

213 214 215 216 217 218 219 220
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

221 222 223 224 225 226 227 228 229 230 231 232 233
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
234
{
235
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
236 237
}

238 239
static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
240
{
T
Tejun Heo 已提交
241
	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
T
Tejun Heo 已提交
242
		(page_idx << PAGE_SHIFT);
243 244
}

245 246
static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk,
					   int *rs, int *re, int end)
T
Tejun Heo 已提交
247 248 249 250 251
{
	*rs = find_next_zero_bit(chunk->populated, end, *rs);
	*re = find_next_bit(chunk->populated, end, *rs + 1);
}

252 253
static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk,
					 int *rs, int *re, int end)
T
Tejun Heo 已提交
254 255 256 257 258 259 260
{
	*rs = find_next_bit(chunk->populated, end, *rs);
	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
}

/*
 * (Un)populated page region iterators.  Iterate over (un)populated
261
 * page regions between @start and @end in @chunk.  @rs and @re should
T
Tejun Heo 已提交
262 263 264 265 266 267 268 269 270 271 272 273 274
 * be integer variables and will be set to start and end page index of
 * the current region.
 */
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))

275
/**
276
 * pcpu_mem_zalloc - allocate memory
277
 * @size: bytes to allocate
278
 *
279
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
280
 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
281
 * memory is always zeroed.
282
 *
283 284 285
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
286
 * RETURNS:
287
 * Pointer to the allocated area on success, NULL on failure.
288
 */
289
static void *pcpu_mem_zalloc(size_t size)
290
{
291 292 293
	if (WARN_ON_ONCE(!slab_is_available()))
		return NULL;

294 295
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
296 297
	else
		return vzalloc(size);
298
}
299

300 301 302 303 304
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 * @size: size of the area
 *
305
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
306 307 308
 */
static void pcpu_mem_free(void *ptr, size_t size)
{
309
	if (size <= PAGE_SIZE)
310
		kfree(ptr);
311
	else
312
		vfree(ptr);
313 314 315 316 317 318 319 320 321
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
322 323
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
324 325 326
 *
 * CONTEXT:
 * pcpu_lock.
327 328 329 330 331
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

332
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
333 334 335 336 337 338 339
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

340
/**
341 342
 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 * @chunk: chunk of interest
343
 *
344
 * Determine whether area map of @chunk needs to be extended to
L
Lucas De Marchi 已提交
345
 * accommodate a new allocation.
346
 *
347
 * CONTEXT:
348
 * pcpu_lock.
349
 *
350
 * RETURNS:
351 352
 * New target map allocation length if extension is necessary, 0
 * otherwise.
353
 */
354
static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
355 356 357 358 359 360 361 362 363 364
{
	int new_alloc;

	if (chunk->map_alloc >= chunk->map_used + 2)
		return 0;

	new_alloc = PCPU_DFL_MAP_ALLOC;
	while (new_alloc < chunk->map_used + 2)
		new_alloc *= 2;

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	return new_alloc;
}

/**
 * pcpu_extend_area_map - extend area map of a chunk
 * @chunk: chunk of interest
 * @new_alloc: new target allocation length of the area map
 *
 * Extend area map of @chunk to have @new_alloc entries.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
{
	int *old = NULL, *new = NULL;
	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
	unsigned long flags;

387
	new = pcpu_mem_zalloc(new_size);
388
	if (!new)
389
		return -ENOMEM;
390

391 392 393 394 395
	/* acquire pcpu_lock and switch to new area map */
	spin_lock_irqsave(&pcpu_lock, flags);

	if (new_alloc <= chunk->map_alloc)
		goto out_unlock;
396

397
	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
398 399 400
	old = chunk->map;

	memcpy(new, old, old_size);
401 402 403

	chunk->map_alloc = new_alloc;
	chunk->map = new;
404 405 406 407 408 409 410 411 412 413 414 415
	new = NULL;

out_unlock:
	spin_unlock_irqrestore(&pcpu_lock, flags);

	/*
	 * pcpu_mem_free() might end up calling vfree() which uses
	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
	 */
	pcpu_mem_free(old, old_size);
	pcpu_mem_free(new, new_size);

416 417 418
	return 0;
}

419 420 421 422
/**
 * pcpu_split_block - split a map block
 * @chunk: chunk of interest
 * @i: index of map block to split
T
Tejun Heo 已提交
423 424
 * @head: head size in bytes (can be 0)
 * @tail: tail size in bytes (can be 0)
425 426 427 428 429 430 431 432 433
 *
 * Split the @i'th map block into two or three blocks.  If @head is
 * non-zero, @head bytes block is inserted before block @i moving it
 * to @i+1 and reducing its size by @head bytes.
 *
 * If @tail is non-zero, the target block, which can be @i or @i+1
 * depending on @head, is reduced by @tail bytes and @tail byte block
 * is inserted after the target block.
 *
L
Lucas De Marchi 已提交
434
 * @chunk->map must have enough free slots to accommodate the split.
435 436 437
 *
 * CONTEXT:
 * pcpu_lock.
438
 */
439 440
static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
			     int head, int tail)
441 442
{
	int nr_extra = !!head + !!tail;
443

444
	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
445

446
	/* insert new subblocks */
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
		sizeof(chunk->map[0]) * (chunk->map_used - i));
	chunk->map_used += nr_extra;

	if (head) {
		chunk->map[i + 1] = chunk->map[i] - head;
		chunk->map[i++] = head;
	}
	if (tail) {
		chunk->map[i++] -= tail;
		chunk->map[i] = tail;
	}
}

/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
464
 * @size: wanted size in bytes
465 466 467 468 469 470
 * @align: wanted align
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
471 472
 * @chunk->map must have at least two free slots.
 *
473 474 475
 * CONTEXT:
 * pcpu_lock.
 *
476
 * RETURNS:
477 478
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
 */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
		bool is_last = i + 1 == chunk->map_used;
		int head, tail;

		/* extra for alignment requirement */
		head = ALIGN(off, align) - off;
		BUG_ON(i == 0 && head != 0);

		if (chunk->map[i] < 0)
			continue;
		if (chunk->map[i] < head + size) {
			max_contig = max(chunk->map[i], max_contig);
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
			if (chunk->map[i - 1] > 0)
				chunk->map[i - 1] += head;
			else {
				chunk->map[i - 1] -= head;
				chunk->free_size -= head;
			}
			chunk->map[i] -= head;
			off += head;
			head = 0;
		}

		/* if tail is small, just keep it around */
		tail = chunk->map[i] - head - size;
		if (tail < sizeof(int))
			tail = 0;

		/* split if warranted */
		if (head || tail) {
526
			pcpu_split_block(chunk, i, head, tail);
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
			if (head) {
				i++;
				off += head;
				max_contig = max(chunk->map[i - 1], max_contig);
			}
			if (tail)
				max_contig = max(chunk->map[i + 1], max_contig);
		}

		/* update hint and mark allocated */
		if (is_last)
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

		chunk->free_size -= chunk->map[i];
		chunk->map[i] = -chunk->map[i];

		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

553 554
	/* tell the upper layer that this chunk has no matching area */
	return -1;
555 556 557 558 559 560 561 562 563 564
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
565 566 567
 *
 * CONTEXT:
 * pcpu_lock.
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
 */
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
{
	int oslot = pcpu_chunk_slot(chunk);
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
		if (off == freeme)
			break;
	BUG_ON(off != freeme);
	BUG_ON(chunk->map[i] > 0);

	chunk->map[i] = -chunk->map[i];
	chunk->free_size += chunk->map[i];

	/* merge with previous? */
	if (i > 0 && chunk->map[i - 1] >= 0) {
		chunk->map[i - 1] += chunk->map[i];
		chunk->map_used--;
		memmove(&chunk->map[i], &chunk->map[i + 1],
			(chunk->map_used - i) * sizeof(chunk->map[0]));
		i--;
	}
	/* merge with next? */
	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
		chunk->map[i] += chunk->map[i + 1];
		chunk->map_used--;
		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
	}

	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
	pcpu_chunk_relocate(chunk, oslot);
}

603 604 605 606
static struct pcpu_chunk *pcpu_alloc_chunk(void)
{
	struct pcpu_chunk *chunk;

607
	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
608 609 610
	if (!chunk)
		return NULL;

611 612
	chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC *
						sizeof(chunk->map[0]));
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
	if (!chunk->map) {
		kfree(chunk);
		return NULL;
	}

	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
	chunk->map[chunk->map_used++] = pcpu_unit_size;

	INIT_LIST_HEAD(&chunk->list);
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;

	return chunk;
}

static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
	kfree(chunk);
}

636 637 638 639 640 641 642 643 644 645 646 647 648 649
/*
 * Chunk management implementation.
 *
 * To allow different implementations, chunk alloc/free and
 * [de]population are implemented in a separate file which is pulled
 * into this file and compiled together.  The following functions
 * should be implemented.
 *
 * pcpu_populate_chunk		- populate the specified range of a chunk
 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 * pcpu_create_chunk		- create a new chunk
 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 * pcpu_addr_to_page		- translate address to physical address
 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
650
 */
651 652 653 654 655 656
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size);
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size);
static struct pcpu_chunk *pcpu_create_chunk(void);
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
static struct page *pcpu_addr_to_page(void *addr);
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
657

658 659 660
#ifdef CONFIG_NEED_PER_CPU_KM
#include "percpu-km.c"
#else
661
#include "percpu-vm.c"
662
#endif
663

664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688
/**
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
 *
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
	/* is it in the first chunk? */
	if (pcpu_addr_in_first_chunk(addr)) {
		/* is it in the reserved area? */
		if (pcpu_addr_in_reserved_chunk(addr))
			return pcpu_reserved_chunk;
		return pcpu_first_chunk;
	}

	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
689
	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
690 691
}

692
/**
693
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
694
 * @size: size of area to allocate in bytes
695
 * @align: alignment of area (max PAGE_SIZE)
696
 * @reserved: allocate from the reserved chunk if available
697
 *
698 699 700 701
 * Allocate percpu area of @size bytes aligned at @align.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.
702 703 704 705
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
706
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
707
{
708
	static int warn_limit = 10;
709
	struct pcpu_chunk *chunk;
710
	const char *err;
711
	int slot, off, new_alloc;
712
	unsigned long flags;
713

714
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
715 716 717 718 719
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

720
	mutex_lock(&pcpu_alloc_mutex);
721
	spin_lock_irqsave(&pcpu_lock, flags);
722

723 724 725
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
726 727 728

		if (size > chunk->contig_hint) {
			err = "alloc from reserved chunk failed";
729
			goto fail_unlock;
730
		}
731 732 733 734 735 736 737 738 739 740

		while ((new_alloc = pcpu_need_to_extend(chunk))) {
			spin_unlock_irqrestore(&pcpu_lock, flags);
			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
				err = "failed to extend area map of reserved chunk";
				goto fail_unlock_mutex;
			}
			spin_lock_irqsave(&pcpu_lock, flags);
		}

741 742 743
		off = pcpu_alloc_area(chunk, size, align);
		if (off >= 0)
			goto area_found;
744

745
		err = "alloc from reserved chunk failed";
746
		goto fail_unlock;
747 748
	}

749
restart:
750
	/* search through normal chunks */
751 752 753 754
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
755

756 757 758 759 760 761 762 763 764 765 766 767 768 769
			new_alloc = pcpu_need_to_extend(chunk);
			if (new_alloc) {
				spin_unlock_irqrestore(&pcpu_lock, flags);
				if (pcpu_extend_area_map(chunk,
							 new_alloc) < 0) {
					err = "failed to extend area map";
					goto fail_unlock_mutex;
				}
				spin_lock_irqsave(&pcpu_lock, flags);
				/*
				 * pcpu_lock has been dropped, need to
				 * restart cpu_slot list walking.
				 */
				goto restart;
770 771
			}

772 773 774 775 776 777 778
			off = pcpu_alloc_area(chunk, size, align);
			if (off >= 0)
				goto area_found;
		}
	}

	/* hmmm... no space left, create a new chunk */
779
	spin_unlock_irqrestore(&pcpu_lock, flags);
780

781
	chunk = pcpu_create_chunk();
782 783
	if (!chunk) {
		err = "failed to allocate new chunk";
784
		goto fail_unlock_mutex;
785
	}
786

787
	spin_lock_irqsave(&pcpu_lock, flags);
788
	pcpu_chunk_relocate(chunk, -1);
789
	goto restart;
790 791

area_found:
792
	spin_unlock_irqrestore(&pcpu_lock, flags);
793

794 795
	/* populate, map and clear the area */
	if (pcpu_populate_chunk(chunk, off, size)) {
796
		spin_lock_irqsave(&pcpu_lock, flags);
797
		pcpu_free_area(chunk, off);
798
		err = "failed to populate";
799
		goto fail_unlock;
800 801
	}

802 803
	mutex_unlock(&pcpu_alloc_mutex);

T
Tejun Heo 已提交
804 805
	/* return address relative to base address */
	return __addr_to_pcpu_ptr(chunk->base_addr + off);
806 807

fail_unlock:
808
	spin_unlock_irqrestore(&pcpu_lock, flags);
809 810
fail_unlock_mutex:
	mutex_unlock(&pcpu_alloc_mutex);
811 812 813 814 815 816 817
	if (warn_limit) {
		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
			   "%s\n", size, align, err);
		dump_stack();
		if (!--warn_limit)
			pr_info("PERCPU: limit reached, disable warning\n");
	}
818
	return NULL;
819
}
820 821 822 823 824 825

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
826 827
 * Allocate zero-filled percpu area of @size bytes aligned at @align.
 * Might sleep.  Might trigger writeouts.
828
 *
829 830 831
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
832 833 834
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
835
void __percpu *__alloc_percpu(size_t size, size_t align)
836 837 838
{
	return pcpu_alloc(size, align, false);
}
839 840
EXPORT_SYMBOL_GPL(__alloc_percpu);

841 842 843 844 845
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
846 847 848 849
 * Allocate zero-filled percpu area of @size bytes aligned at @align
 * from reserved percpu area if arch has set it up; otherwise,
 * allocation is served from the same dynamic area.  Might sleep.
 * Might trigger writeouts.
850
 *
851 852 853
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
854 855 856
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
857
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
858 859 860 861
{
	return pcpu_alloc(size, align, true);
}

862 863 864 865 866
/**
 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
867 868 869
 *
 * CONTEXT:
 * workqueue context.
870 871
 */
static void pcpu_reclaim(struct work_struct *work)
872
{
873 874 875 876
	LIST_HEAD(todo);
	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
	struct pcpu_chunk *chunk, *next;

877 878
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
879 880 881 882 883 884 885 886 887 888 889

	list_for_each_entry_safe(chunk, next, head, list) {
		WARN_ON(chunk->immutable);

		/* spare the first one */
		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
			continue;

		list_move(&chunk->list, &todo);
	}

890
	spin_unlock_irq(&pcpu_lock);
891 892

	list_for_each_entry_safe(chunk, next, &todo, list) {
T
Tejun Heo 已提交
893
		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
894
		pcpu_destroy_chunk(chunk);
895
	}
T
Tejun Heo 已提交
896 897

	mutex_unlock(&pcpu_alloc_mutex);
898 899 900 901 902 903
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
904 905 906 907
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
908
 */
909
void free_percpu(void __percpu *ptr)
910
{
911
	void *addr;
912
	struct pcpu_chunk *chunk;
913
	unsigned long flags;
914 915 916 917 918
	int off;

	if (!ptr)
		return;

919 920
	addr = __pcpu_ptr_to_addr(ptr);

921
	spin_lock_irqsave(&pcpu_lock, flags);
922 923

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
924
	off = addr - chunk->base_addr;
925 926 927

	pcpu_free_area(chunk, off);

928
	/* if there are more than one fully free chunks, wake up grim reaper */
929 930 931
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

932
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
933
			if (pos != chunk) {
934
				schedule_work(&pcpu_reclaim_work);
935 936 937 938
				break;
			}
	}

939
	spin_unlock_irqrestore(&pcpu_lock, flags);
940 941 942
}
EXPORT_SYMBOL_GPL(free_percpu);

943 944 945 946 947 948 949 950 951 952 953 954 955
/**
 * is_kernel_percpu_address - test whether address is from static percpu area
 * @addr: address to test
 *
 * Test whether @addr belongs to in-kernel static percpu area.  Module
 * static percpu areas are not considered.  For those, use
 * is_module_percpu_address().
 *
 * RETURNS:
 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 */
bool is_kernel_percpu_address(unsigned long addr)
{
956
#ifdef CONFIG_SMP
957 958 959 960 961 962 963 964 965 966
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		void *start = per_cpu_ptr(base, cpu);

		if ((void *)addr >= start && (void *)addr < start + static_size)
			return true;
        }
967 968
#endif
	/* on UP, can't distinguish from other static vars, always false */
969 970 971
	return false;
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985
/**
 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 * @addr: the address to be converted to physical address
 *
 * Given @addr which is dereferenceable address obtained via one of
 * percpu access macros, this function translates it into its physical
 * address.  The caller is responsible for ensuring @addr stays valid
 * until this function finishes.
 *
 * RETURNS:
 * The physical address for @addr.
 */
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	bool in_first_chunk = false;
	unsigned long first_start, first_end;
	unsigned int cpu;

	/*
	 * The following test on first_start/end isn't strictly
	 * necessary but will speed up lookups of addresses which
	 * aren't in the first chunk.
	 */
	first_start = pcpu_chunk_addr(pcpu_first_chunk, pcpu_first_unit_cpu, 0);
	first_end = pcpu_chunk_addr(pcpu_first_chunk, pcpu_last_unit_cpu,
				    pcpu_unit_pages);
	if ((unsigned long)addr >= first_start &&
	    (unsigned long)addr < first_end) {
		for_each_possible_cpu(cpu) {
			void *start = per_cpu_ptr(base, cpu);

			if (addr >= start && addr < start + pcpu_unit_size) {
				in_first_chunk = true;
				break;
			}
		}
	}

	if (in_first_chunk) {
1012
		if (!is_vmalloc_addr(addr))
1013 1014 1015 1016
			return __pa(addr);
		else
			return page_to_phys(vmalloc_to_page(addr));
	} else
1017
		return page_to_phys(pcpu_addr_to_page(addr));
1018 1019
}

1020
/**
1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
	free_bootmem(__pa(ai), ai->__ai_size);
}

/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1084
{
1085
	int group_width = 1, cpu_width = 1, width;
1086
	char empty_str[] = "--------";
1087 1088 1089 1090 1091 1092 1093
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1094

1095
	v = num_possible_cpus();
1096
	while (v /= 10)
1097 1098
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1099

1100 1101 1102
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1103

1104 1105 1106
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1107

1108 1109 1110 1111 1112 1113 1114 1115
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1116
				printk("\n");
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
				printk("%spcpu-alloc: ", lvl);
			}
			printk("[%0*d] ", group_width, group);

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
					printk("%0*d ", cpu_width,
					       gi->cpu_map[unit]);
				else
					printk("%s ", empty_str);
1127 1128 1129 1130 1131
		}
	}
	printk("\n");
}

1132
/**
1133
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1134
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1135
 * @base_addr: mapped address
1136 1137 1138
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1139
 * setup path.
1140
 *
1141 1142 1143 1144 1145 1146
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1147 1148 1149 1150 1151 1152 1153
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1154 1155 1156
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1157
 *
1158 1159 1160
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
1161
 *
1162 1163
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
1164
 *
1165 1166 1167 1168 1169 1170 1171 1172 1173
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
1174
 *
1175 1176
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1177
 *
1178 1179 1180 1181 1182 1183 1184
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1185
 * RETURNS:
T
Tejun Heo 已提交
1186
 * 0 on success, -errno on failure.
1187
 */
T
Tejun Heo 已提交
1188 1189
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
1190
{
1191
	static char cpus_buf[4096] __initdata;
1192 1193
	static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
	static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata;
1194 1195
	size_t dyn_size = ai->dyn_size;
	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1196
	struct pcpu_chunk *schunk, *dchunk = NULL;
1197 1198
	unsigned long *group_offsets;
	size_t *group_sizes;
T
Tejun Heo 已提交
1199
	unsigned long *unit_off;
1200
	unsigned int cpu;
1201 1202
	int *unit_map;
	int group, unit, i;
1203

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);

#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

1215
	/* sanity checks */
1216
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1217
#ifdef CONFIG_SMP
1218
	PCPU_SETUP_BUG_ON(!ai->static_size);
1219
	PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK);
1220
#endif
1221
	PCPU_SETUP_BUG_ON(!base_addr);
1222
	PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK);
1223 1224 1225
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1226
	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
1227
	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
1228

1229 1230 1231
	/* process group information and build config tables accordingly */
	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1232
	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
T
Tejun Heo 已提交
1233
	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1234

1235
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1236
		unit_map[cpu] = UINT_MAX;
1237
	pcpu_first_unit_cpu = NR_CPUS;
1238

1239 1240
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
1241

1242 1243 1244
		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

1245 1246 1247 1248
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
1249

1250 1251 1252
			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1253

1254
			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
1255 1256
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

1257 1258
			if (pcpu_first_unit_cpu == NR_CPUS)
				pcpu_first_unit_cpu = cpu;
T
Tejun Heo 已提交
1259
			pcpu_last_unit_cpu = cpu;
1260
		}
1261
	}
1262 1263 1264
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
1265 1266 1267 1268
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
1269
	pcpu_dump_alloc_info(KERN_DEBUG, ai);
1270

1271 1272 1273
	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
1274
	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
1275
	pcpu_unit_offsets = unit_off;
1276 1277

	/* determine basic parameters */
1278
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1279
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1280
	pcpu_atom_size = ai->atom_size;
T
Tejun Heo 已提交
1281 1282
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1283

1284 1285 1286 1287 1288
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1289 1290 1291 1292
	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1293 1294 1295 1296 1297 1298 1299
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1300 1301
	schunk = alloc_bootmem(pcpu_chunk_struct_size);
	INIT_LIST_HEAD(&schunk->list);
T
Tejun Heo 已提交
1302
	schunk->base_addr = base_addr;
1303 1304
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1305
	schunk->immutable = true;
T
Tejun Heo 已提交
1306
	bitmap_fill(schunk->populated, pcpu_unit_pages);
1307

1308 1309
	if (ai->reserved_size) {
		schunk->free_size = ai->reserved_size;
1310
		pcpu_reserved_chunk = schunk;
1311
		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1312 1313 1314 1315
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1316
	schunk->contig_hint = schunk->free_size;
1317

1318
	schunk->map[schunk->map_used++] = -ai->static_size;
1319 1320 1321
	if (schunk->free_size)
		schunk->map[schunk->map_used++] = schunk->free_size;

1322 1323
	/* init dynamic chunk if necessary */
	if (dyn_size) {
T
Tejun Heo 已提交
1324
		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1325
		INIT_LIST_HEAD(&dchunk->list);
T
Tejun Heo 已提交
1326
		dchunk->base_addr = base_addr;
1327 1328
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
1329
		dchunk->immutable = true;
T
Tejun Heo 已提交
1330
		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1331 1332 1333 1334 1335 1336

		dchunk->contig_hint = dchunk->free_size = dyn_size;
		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
		dchunk->map[dchunk->map_used++] = dchunk->free_size;
	}

1337
	/* link the first chunk in */
1338 1339
	pcpu_first_chunk = dchunk ?: schunk;
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1340 1341

	/* we're done */
T
Tejun Heo 已提交
1342
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
1343
	return 0;
1344
}
1345

1346 1347
#ifdef CONFIG_SMP

1348 1349 1350 1351 1352
const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};
1353

1354
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1355

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
static int __init percpu_alloc_setup(char *str)
{
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1370

1371
	return 0;
1372
}
1373
early_param("percpu_alloc", percpu_alloc_setup);
1374

1375 1376 1377 1378 1379
/*
 * pcpu_embed_first_chunk() is used by the generic percpu setup.
 * Build it if needed by the arch config or the generic setup is going
 * to be used.
 */
1380 1381
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440
#define BUILD_EMBED_FIRST_CHUNK
#endif

/* build pcpu_page_first_chunk() iff needed by the arch config */
#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
#define BUILD_PAGE_FIRST_CHUNK
#endif

/* pcpu_build_alloc_info() is used by both embed and page first chunk */
#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: minimum free size for dynamic allocation in bytes
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 *
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
 *
 * Groups are always mutliples of atom size and CPUs which are of
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
 *
 * RETURNS:
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
 */
static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, size_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	int nr_groups = 1, nr_units = 0;
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
	int last_allocs, group, unit;
	unsigned int cpu, tcpu;
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;

	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
	memset(group_cnt, 0, sizeof(group_cnt));

	/* calculate size_sum and ensure dyn_size is enough for early alloc */
	size_sum = PFN_ALIGN(static_size + reserved_size +
			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
	dyn_size = size_sum - static_size - reserved_size;

	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
	 * alloc_size is multiple of atom_size and is the smallest
L
Lucas De Marchi 已提交
1441
	 * which can accommodate 4k aligned segments which are equal to
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548
	 * or larger than min_unit_size.
	 */
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

	alloc_size = roundup(min_unit_size, atom_size);
	upa = alloc_size / min_unit_size;
	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
			if (group_map[tcpu] == group && cpu_distance_fn &&
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
				nr_groups = max(nr_groups, group + 1);
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
	}

	/*
	 * Expand unit size until address space usage goes over 75%
	 * and then as much as possible without using more address
	 * space.
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
			continue;

		for (group = 0; group < nr_groups; group++) {
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 1/3.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
	}
	BUG_ON(unit != nr_units);

	return ai;
}
#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */

#if defined(BUILD_EMBED_FIRST_CHUNK)
1549 1550 1551
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
1552
 * @dyn_size: minimum free size for dynamic allocation in bytes
1553 1554 1555
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
L
Lucas De Marchi 已提交
1556
 * @free_fn: function to free percpu page
1557 1558 1559 1560 1561
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
1572
 *
1573
 * @dyn_size specifies the minimum dynamic area size.
1574 1575
 *
 * If the needed size is smaller than the minimum or specified unit
1576
 * size, the leftover is returned using @free_fn.
1577 1578
 *
 * RETURNS:
T
Tejun Heo 已提交
1579
 * 0 on success, -errno on failure.
1580
 */
1581
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
1582 1583 1584 1585
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
1586
{
1587 1588
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
1589
	struct pcpu_alloc_info *ai;
1590
	size_t size_sum, areas_size, max_distance;
1591
	int group, i, rc;
1592

1593 1594
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
1595 1596
	if (IS_ERR(ai))
		return PTR_ERR(ai);
1597

1598
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1599
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1600

1601 1602
	areas = alloc_bootmem_nopanic(areas_size);
	if (!areas) {
T
Tejun Heo 已提交
1603
		rc = -ENOMEM;
1604
		goto out_free;
1605
	}
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	/* allocate, copy and determine base address */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
		areas[group] = ptr;
1624

1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636
		base = min(ptr, base);

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
1637
	}
1638

1639
	/* base address is now known, determine group base offsets */
1640 1641
	max_distance = 0;
	for (group = 0; group < ai->nr_groups; group++) {
1642
		ai->groups[group].base_offset = areas[group] - base;
T
Tejun Heo 已提交
1643 1644
		max_distance = max_t(size_t, max_distance,
				     ai->groups[group].base_offset);
1645 1646 1647 1648 1649
	}
	max_distance += ai->unit_size;

	/* warn if maximum distance is further than 75% of vmalloc space */
	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
T
Tejun Heo 已提交
1650
		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1651 1652
			   "space 0x%lx\n", max_distance,
			   (unsigned long)(VMALLOC_END - VMALLOC_START));
1653 1654 1655 1656 1657 1658
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free;
#endif
	}
1659

T
Tejun Heo 已提交
1660
	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
1661 1662
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
1663

T
Tejun Heo 已提交
1664
	rc = pcpu_setup_first_chunk(ai, base);
1665 1666 1667 1668 1669 1670 1671
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
		free_fn(areas[group],
			ai->groups[group].nr_units * ai->unit_size);
out_free:
1672
	pcpu_free_alloc_info(ai);
1673 1674
	if (areas)
		free_bootmem(__pa(areas), areas_size);
T
Tejun Heo 已提交
1675
	return rc;
1676
}
1677
#endif /* BUILD_EMBED_FIRST_CHUNK */
1678

1679
#ifdef BUILD_PAGE_FIRST_CHUNK
1680
/**
1681
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
1682 1683
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
L
Lucas De Marchi 已提交
1684
 * @free_fn: function to free percpu page, always called with PAGE_SIZE
1685 1686
 * @populate_pte_fn: function to populate pte
 *
1687 1688
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
1689 1690 1691 1692 1693
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
1694
 * 0 on success, -errno on failure.
1695
 */
T
Tejun Heo 已提交
1696 1697 1698 1699
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
1700
{
1701
	static struct vm_struct vm;
1702
	struct pcpu_alloc_info *ai;
1703
	char psize_str[16];
T
Tejun Heo 已提交
1704
	int unit_pages;
1705
	size_t pages_size;
T
Tejun Heo 已提交
1706
	struct page **pages;
T
Tejun Heo 已提交
1707
	int unit, i, j, rc;
1708

1709 1710
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

1711
	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
1712 1713 1714 1715 1716 1717
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());

	unit_pages = ai->unit_size >> PAGE_SHIFT;
1718 1719

	/* unaligned allocations can't be freed, round up to page size */
1720 1721
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
T
Tejun Heo 已提交
1722
	pages = alloc_bootmem(pages_size);
1723

1724
	/* allocate pages */
1725
	j = 0;
1726
	for (unit = 0; unit < num_possible_cpus(); unit++)
T
Tejun Heo 已提交
1727
		for (i = 0; i < unit_pages; i++) {
1728
			unsigned int cpu = ai->groups[0].cpu_map[unit];
1729 1730
			void *ptr;

1731
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
1732
			if (!ptr) {
1733 1734
				pr_warning("PERCPU: failed to allocate %s page "
					   "for cpu%u\n", psize_str, cpu);
1735 1736
				goto enomem;
			}
T
Tejun Heo 已提交
1737
			pages[j++] = virt_to_page(ptr);
1738 1739
		}

1740 1741
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
1742
	vm.size = num_possible_cpus() * ai->unit_size;
1743 1744
	vm_area_register_early(&vm, PAGE_SIZE);

1745
	for (unit = 0; unit < num_possible_cpus(); unit++) {
1746
		unsigned long unit_addr =
1747
			(unsigned long)vm.addr + unit * ai->unit_size;
1748

T
Tejun Heo 已提交
1749
		for (i = 0; i < unit_pages; i++)
1750 1751 1752
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
1753 1754 1755 1756
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
1757

1758 1759 1760 1761 1762 1763 1764 1765 1766
		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
1767
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
1768 1769 1770
	}

	/* we're ready, commit */
1771
	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
1772 1773
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
1774

T
Tejun Heo 已提交
1775
	rc = pcpu_setup_first_chunk(ai, vm.addr);
1776 1777 1778 1779
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
1780
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
1781
	rc = -ENOMEM;
1782
out_free_ar:
T
Tejun Heo 已提交
1783
	free_bootmem(__pa(pages), pages_size);
1784
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
1785
	return rc;
1786
}
1787
#endif /* BUILD_PAGE_FIRST_CHUNK */
1788

1789
#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
1790
/*
1791
 * Generic SMP percpu area setup.
1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

1805 1806 1807 1808 1809
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
}
1810

1811 1812 1813 1814 1815
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
	free_bootmem(__pa(ptr), size);
}

1816 1817 1818 1819
void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
1820
	int rc;
1821 1822 1823 1824 1825

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
1826
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1827 1828
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
T
Tejun Heo 已提交
1829
	if (rc < 0)
1830
		panic("Failed to initialize percpu areas.");
1831 1832 1833

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
1834
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
1835
}
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */

#else	/* CONFIG_SMP */

/*
 * UP percpu area setup.
 *
 * UP always uses km-based percpu allocator with identity mapping.
 * Static percpu variables are indistinguishable from the usual static
 * variables and don't require any special preparation.
 */
void __init setup_per_cpu_areas(void)
{
	const size_t unit_size =
		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
					 PERCPU_DYNAMIC_RESERVE));
	struct pcpu_alloc_info *ai;
	void *fc;

	ai = pcpu_alloc_alloc_info(1, 1);
	fc = __alloc_bootmem(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
	if (!ai || !fc)
		panic("Failed to allocate memory for percpu areas.");

	ai->dyn_size = unit_size;
	ai->unit_size = unit_size;
	ai->atom_size = unit_size;
	ai->alloc_size = unit_size;
	ai->groups[0].nr_units = 1;
	ai->groups[0].cpu_map[0] = 0;

	if (pcpu_setup_first_chunk(ai, fc) < 0)
		panic("Failed to initialize percpu areas.");
}

#endif	/* CONFIG_SMP */
1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892

/*
 * First and reserved chunks are initialized with temporary allocation
 * map in initdata so that they can be used before slab is online.
 * This function is called after slab is brought up and replaces those
 * with properly allocated maps.
 */
void __init percpu_init_late(void)
{
	struct pcpu_chunk *target_chunks[] =
		{ pcpu_first_chunk, pcpu_reserved_chunk, NULL };
	struct pcpu_chunk *chunk;
	unsigned long flags;
	int i;

	for (i = 0; (chunk = target_chunks[i]); i++) {
		int *map;
		const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]);

		BUILD_BUG_ON(size > PAGE_SIZE);

1893
		map = pcpu_mem_zalloc(size);
1894 1895 1896 1897 1898 1899 1900 1901
		BUG_ON(!map);

		spin_lock_irqsave(&pcpu_lock, flags);
		memcpy(map, chunk->map, size);
		chunk->map = map;
		spin_unlock_irqrestore(&pcpu_lock, flags);
	}
}