percpu.c 63.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * linux/mm/percpu.c - percpu memory allocator
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
 * This file is released under the GPLv2.
 *
 * This is percpu allocator which can handle both static and dynamic
 * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
11 12 13 14 15 16 17
 * chunk is consisted of boot-time determined number of units and the
 * first chunk is used for static percpu variables in the kernel image
 * (special boot time alloc/init handling necessary as these areas
 * need to be brought up before allocation services are running).
 * Unit grows as necessary and all units grow or shrink in unison.
 * When a chunk is filled up, another chunk is allocated.  ie. in
 * vmalloc area
18 19 20 21 22 23 24 25
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
 * Allocation is done in offset-size areas of single unit space.  Ie,
 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
26 27 28 29
 * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
 * cpus.  On NUMA, the mapping can be non-linear and even sparse.
 * Percpu access can be done by configuring percpu base registers
 * according to cpu to unit mapping and pcpu_unit_size.
30
 *
31 32
 * There are usually many small percpu allocations many of them being
 * as small as 4 bytes.  The allocator organizes chunks into lists
33 34 35 36 37 38 39 40 41 42 43
 * according to free size and tries to allocate from the fullest one.
 * Each chunk keeps the maximum contiguous area size hint which is
 * guaranteed to be eqaul to or larger than the maximum contiguous
 * area in the chunk.  This helps the allocator not to iterate the
 * chunk maps unnecessarily.
 *
 * Allocation state in each chunk is kept using an array of integers
 * on chunk->map.  A positive value in the map represents a free
 * region and negative allocated.  Allocation inside a chunk is done
 * by scanning this map sequentially and serving the first matching
 * entry.  This is mostly copied from the percpu_modalloc() allocator.
44 45
 * Chunks can be determined from the address using the index field
 * in the page struct. The index field contains a pointer to the chunk.
46 47 48 49
 *
 * To use this allocator, arch code should do the followings.
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
50 51
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
52
 *
53 54
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
55 56 57 58
 */

#include <linux/bitmap.h>
#include <linux/bootmem.h>
59
#include <linux/err.h>
60
#include <linux/list.h>
61
#include <linux/log2.h>
62 63 64 65 66 67
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
68
#include <linux/spinlock.h>
69
#include <linux/vmalloc.h>
70
#include <linux/workqueue.h>
71 72

#include <asm/cacheflush.h>
73
#include <asm/sections.h>
74
#include <asm/tlbflush.h>
75
#include <asm/io.h>
76 77 78 79

#define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
#define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */

80 81 82
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
83 84 85
	(void __percpu *)((unsigned long)(addr) -			\
			  (unsigned long)pcpu_base_addr	+		\
			  (unsigned long)__per_cpu_start)
86 87 88
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
89 90 91
	(void __force *)((unsigned long)(ptr) +				\
			 (unsigned long)pcpu_base_addr -		\
			 (unsigned long)__per_cpu_start)
92 93
#endif

94 95 96 97
struct pcpu_chunk {
	struct list_head	list;		/* linked to pcpu_slot lists */
	int			free_size;	/* free bytes in the chunk */
	int			contig_hint;	/* max contiguous size hint */
T
Tejun Heo 已提交
98
	void			*base_addr;	/* base address of this chunk */
99 100 101
	int			map_used;	/* # of map entries used */
	int			map_alloc;	/* # of map entries allocated */
	int			*map;		/* allocation map */
102
	struct vm_struct	**vms;		/* mapped vmalloc regions */
103
	bool			immutable;	/* no [de]population allowed */
T
Tejun Heo 已提交
104
	unsigned long		populated[];	/* populated bitmap */
105 106
};

107 108
static int pcpu_unit_pages __read_mostly;
static int pcpu_unit_size __read_mostly;
109
static int pcpu_nr_units __read_mostly;
110
static int pcpu_atom_size __read_mostly;
111 112
static int pcpu_nr_slots __read_mostly;
static size_t pcpu_chunk_struct_size __read_mostly;
113

114 115 116 117
/* cpus with the lowest and highest unit numbers */
static unsigned int pcpu_first_unit_cpu __read_mostly;
static unsigned int pcpu_last_unit_cpu __read_mostly;

118
/* the address of the first chunk which starts with the kernel static area */
119
void *pcpu_base_addr __read_mostly;
120 121
EXPORT_SYMBOL_GPL(pcpu_base_addr);

T
Tejun Heo 已提交
122 123
static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
124

125 126 127 128 129
/* group information, used for vm allocation */
static int pcpu_nr_groups __read_mostly;
static const unsigned long *pcpu_group_offsets __read_mostly;
static const size_t *pcpu_group_sizes __read_mostly;

130 131 132 133 134 135 136 137 138 139 140 141 142 143
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
static struct pcpu_chunk *pcpu_first_chunk;

/*
 * Optional reserved chunk.  This chunk reserves part of the first
 * chunk and serves it for reserved allocations.  The amount of
 * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
 * area doesn't exist, the following variables contain NULL and 0
 * respectively.
 */
144 145 146
static struct pcpu_chunk *pcpu_reserved_chunk;
static int pcpu_reserved_chunk_limit;

147
/*
148 149 150
 * Synchronization rules.
 *
 * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
T
Tejun Heo 已提交
151 152 153
 * protects allocation/reclaim paths, chunks, populated bitmap and
 * vmalloc mapping.  The latter is a spinlock and protects the index
 * data structures - chunk slots, chunks and area maps in chunks.
154 155 156
 *
 * During allocation, pcpu_alloc_mutex is kept locked all the time and
 * pcpu_lock is grabbed and released as necessary.  All actual memory
157 158 159 160
 * allocations are done using GFP_KERNEL with pcpu_lock released.  In
 * general, percpu memory can't be allocated with irq off but
 * irqsave/restore are still used in alloc path so that it can be used
 * from early init path - sched_init() specifically.
161 162 163 164 165 166 167 168 169
 *
 * Free path accesses and alters only the index data structures, so it
 * can be safely called from atomic context.  When memory needs to be
 * returned to the system, free path schedules reclaim_work which
 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
 * reclaimed, release both locks and frees the chunks.  Note that it's
 * necessary to grab both locks to remove a chunk from circulation as
 * allocation path might be referencing the chunk with only
 * pcpu_alloc_mutex locked.
170
 */
171 172
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
173

174
static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
175

176 177 178 179
/* reclaim work to release fully free chunks, scheduled from free path */
static void pcpu_reclaim(struct work_struct *work);
static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
static bool pcpu_addr_in_first_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start && addr < first_start + pcpu_unit_size;
}

static bool pcpu_addr_in_reserved_chunk(void *addr)
{
	void *first_start = pcpu_first_chunk->base_addr;

	return addr >= first_start &&
		addr < first_start + pcpu_reserved_chunk_limit;
}

195
static int __pcpu_size_to_slot(int size)
196
{
T
Tejun Heo 已提交
197
	int highbit = fls(size);	/* size is in bytes */
198 199 200
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

201 202 203 204 205 206 207
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

208 209 210 211 212 213 214 215 216 217
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
		return 0;

	return pcpu_size_to_slot(chunk->free_size);
}

static int pcpu_page_idx(unsigned int cpu, int page_idx)
{
218
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
219 220 221 222 223
}

static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
{
T
Tejun Heo 已提交
224
	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
T
Tejun Heo 已提交
225
		(page_idx << PAGE_SHIFT);
226 227
}

T
Tejun Heo 已提交
228 229
static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
				    unsigned int cpu, int page_idx)
230
{
T
Tejun Heo 已提交
231 232
	/* must not be used on pre-mapped chunk */
	WARN_ON(chunk->immutable);
233

T
Tejun Heo 已提交
234
	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
235 236
}

237 238 239 240 241 242 243 244 245 246 247 248
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

T
Tejun Heo 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
{
	*rs = find_next_zero_bit(chunk->populated, end, *rs);
	*re = find_next_bit(chunk->populated, end, *rs + 1);
}

static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
{
	*rs = find_next_bit(chunk->populated, end, *rs);
	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
}

/*
 * (Un)populated page region iterators.  Iterate over (un)populated
 * page regions betwen @start and @end in @chunk.  @rs and @re should
 * be integer variables and will be set to start and end page index of
 * the current region.
 */
#define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))

#define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
	     (rs) < (re);						    \
	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))

277
/**
278 279
 * pcpu_mem_alloc - allocate memory
 * @size: bytes to allocate
280
 *
281 282 283
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
 * kzalloc() is used; otherwise, vmalloc() is used.  The returned
 * memory is always zeroed.
284
 *
285 286 287
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
288
 * RETURNS:
289
 * Pointer to the allocated area on success, NULL on failure.
290
 */
291
static void *pcpu_mem_alloc(size_t size)
292
{
293 294 295 296 297 298 299 300 301
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
	else {
		void *ptr = vmalloc(size);
		if (ptr)
			memset(ptr, 0, size);
		return ptr;
	}
}
302

303 304 305 306 307 308 309 310 311
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 * @size: size of the area
 *
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
 */
static void pcpu_mem_free(void *ptr, size_t size)
{
312
	if (size <= PAGE_SIZE)
313
		kfree(ptr);
314
	else
315
		vfree(ptr);
316 317 318 319 320 321 322 323 324
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
325 326
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
327 328 329
 *
 * CONTEXT:
 * pcpu_lock.
330 331 332 333 334
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

335
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
336 337 338 339 340 341 342 343
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

/**
344 345
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
346
 *
347 348 349 350 351
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
352
	/* is it in the first chunk? */
353
	if (pcpu_addr_in_first_chunk(addr)) {
354
		/* is it in the reserved area? */
355
		if (pcpu_addr_in_reserved_chunk(addr))
356
			return pcpu_reserved_chunk;
357
		return pcpu_first_chunk;
358 359
	}

360 361 362 363 364 365 366
	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
367
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
368
	return pcpu_get_page_chunk(vmalloc_to_page(addr));
369 370
}

371
/**
372 373
 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
 * @chunk: chunk of interest
374
 *
375 376
 * Determine whether area map of @chunk needs to be extended to
 * accomodate a new allocation.
377
 *
378
 * CONTEXT:
379
 * pcpu_lock.
380
 *
381
 * RETURNS:
382 383
 * New target map allocation length if extension is necessary, 0
 * otherwise.
384
 */
385
static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
386 387 388 389 390 391 392 393 394 395
{
	int new_alloc;

	if (chunk->map_alloc >= chunk->map_used + 2)
		return 0;

	new_alloc = PCPU_DFL_MAP_ALLOC;
	while (new_alloc < chunk->map_used + 2)
		new_alloc *= 2;

396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
	return new_alloc;
}

/**
 * pcpu_extend_area_map - extend area map of a chunk
 * @chunk: chunk of interest
 * @new_alloc: new target allocation length of the area map
 *
 * Extend area map of @chunk to have @new_alloc entries.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
 *
 * RETURNS:
 * 0 on success, -errno on failure.
 */
static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
{
	int *old = NULL, *new = NULL;
	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
	unsigned long flags;

	new = pcpu_mem_alloc(new_size);
	if (!new)
420
		return -ENOMEM;
421

422 423 424 425 426
	/* acquire pcpu_lock and switch to new area map */
	spin_lock_irqsave(&pcpu_lock, flags);

	if (new_alloc <= chunk->map_alloc)
		goto out_unlock;
427

428 429
	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
	memcpy(new, chunk->map, old_size);
430 431 432 433 434 435

	/*
	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
	 * one of the first chunks and still using static map.
	 */
	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
436
		old = chunk->map;
437 438 439

	chunk->map_alloc = new_alloc;
	chunk->map = new;
440 441 442 443 444 445 446 447 448 449 450 451
	new = NULL;

out_unlock:
	spin_unlock_irqrestore(&pcpu_lock, flags);

	/*
	 * pcpu_mem_free() might end up calling vfree() which uses
	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
	 */
	pcpu_mem_free(old, old_size);
	pcpu_mem_free(new, new_size);

452 453 454
	return 0;
}

455 456 457 458
/**
 * pcpu_split_block - split a map block
 * @chunk: chunk of interest
 * @i: index of map block to split
T
Tejun Heo 已提交
459 460
 * @head: head size in bytes (can be 0)
 * @tail: tail size in bytes (can be 0)
461 462 463 464 465 466 467 468 469
 *
 * Split the @i'th map block into two or three blocks.  If @head is
 * non-zero, @head bytes block is inserted before block @i moving it
 * to @i+1 and reducing its size by @head bytes.
 *
 * If @tail is non-zero, the target block, which can be @i or @i+1
 * depending on @head, is reduced by @tail bytes and @tail byte block
 * is inserted after the target block.
 *
470
 * @chunk->map must have enough free slots to accomodate the split.
471 472 473
 *
 * CONTEXT:
 * pcpu_lock.
474
 */
475 476
static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
			     int head, int tail)
477 478
{
	int nr_extra = !!head + !!tail;
479

480
	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
481

482
	/* insert new subblocks */
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
		sizeof(chunk->map[0]) * (chunk->map_used - i));
	chunk->map_used += nr_extra;

	if (head) {
		chunk->map[i + 1] = chunk->map[i] - head;
		chunk->map[i++] = head;
	}
	if (tail) {
		chunk->map[i++] -= tail;
		chunk->map[i] = tail;
	}
}

/**
 * pcpu_alloc_area - allocate area from a pcpu_chunk
 * @chunk: chunk of interest
T
Tejun Heo 已提交
500
 * @size: wanted size in bytes
501 502 503 504 505 506
 * @align: wanted align
 *
 * Try to allocate @size bytes area aligned at @align from @chunk.
 * Note that this function only allocates the offset.  It doesn't
 * populate or map the area.
 *
507 508
 * @chunk->map must have at least two free slots.
 *
509 510 511
 * CONTEXT:
 * pcpu_lock.
 *
512
 * RETURNS:
513 514
 * Allocated offset in @chunk on success, -1 if no matching area is
 * found.
515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
 */
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
{
	int oslot = pcpu_chunk_slot(chunk);
	int max_contig = 0;
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
		bool is_last = i + 1 == chunk->map_used;
		int head, tail;

		/* extra for alignment requirement */
		head = ALIGN(off, align) - off;
		BUG_ON(i == 0 && head != 0);

		if (chunk->map[i] < 0)
			continue;
		if (chunk->map[i] < head + size) {
			max_contig = max(chunk->map[i], max_contig);
			continue;
		}

		/*
		 * If head is small or the previous block is free,
		 * merge'em.  Note that 'small' is defined as smaller
		 * than sizeof(int), which is very small but isn't too
		 * uncommon for percpu allocations.
		 */
		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
			if (chunk->map[i - 1] > 0)
				chunk->map[i - 1] += head;
			else {
				chunk->map[i - 1] -= head;
				chunk->free_size -= head;
			}
			chunk->map[i] -= head;
			off += head;
			head = 0;
		}

		/* if tail is small, just keep it around */
		tail = chunk->map[i] - head - size;
		if (tail < sizeof(int))
			tail = 0;

		/* split if warranted */
		if (head || tail) {
562
			pcpu_split_block(chunk, i, head, tail);
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
			if (head) {
				i++;
				off += head;
				max_contig = max(chunk->map[i - 1], max_contig);
			}
			if (tail)
				max_contig = max(chunk->map[i + 1], max_contig);
		}

		/* update hint and mark allocated */
		if (is_last)
			chunk->contig_hint = max_contig; /* fully scanned */
		else
			chunk->contig_hint = max(chunk->contig_hint,
						 max_contig);

		chunk->free_size -= chunk->map[i];
		chunk->map[i] = -chunk->map[i];

		pcpu_chunk_relocate(chunk, oslot);
		return off;
	}

	chunk->contig_hint = max_contig;	/* fully scanned */
	pcpu_chunk_relocate(chunk, oslot);

589 590
	/* tell the upper layer that this chunk has no matching area */
	return -1;
591 592 593 594 595 596 597 598 599 600
}

/**
 * pcpu_free_area - free area to a pcpu_chunk
 * @chunk: chunk of interest
 * @freeme: offset of area to free
 *
 * Free area starting from @freeme to @chunk.  Note that this function
 * only modifies the allocation map.  It doesn't depopulate or unmap
 * the area.
601 602 603
 *
 * CONTEXT:
 * pcpu_lock.
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
 */
static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
{
	int oslot = pcpu_chunk_slot(chunk);
	int i, off;

	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
		if (off == freeme)
			break;
	BUG_ON(off != freeme);
	BUG_ON(chunk->map[i] > 0);

	chunk->map[i] = -chunk->map[i];
	chunk->free_size += chunk->map[i];

	/* merge with previous? */
	if (i > 0 && chunk->map[i - 1] >= 0) {
		chunk->map[i - 1] += chunk->map[i];
		chunk->map_used--;
		memmove(&chunk->map[i], &chunk->map[i + 1],
			(chunk->map_used - i) * sizeof(chunk->map[0]));
		i--;
	}
	/* merge with next? */
	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
		chunk->map[i] += chunk->map[i + 1];
		chunk->map_used--;
		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
	}

	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
	pcpu_chunk_relocate(chunk, oslot);
}

/**
T
Tejun Heo 已提交
640
 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
641
 * @chunk: chunk of interest
T
Tejun Heo 已提交
642 643
 * @bitmapp: output parameter for bitmap
 * @may_alloc: may allocate the array
644
 *
T
Tejun Heo 已提交
645 646 647 648 649 650 651 652 653 654 655 656
 * Returns pointer to array of pointers to struct page and bitmap,
 * both of which can be indexed with pcpu_page_idx().  The returned
 * array is cleared to zero and *@bitmapp is copied from
 * @chunk->populated.  Note that there is only one array and bitmap
 * and access exclusion is the caller's responsibility.
 *
 * CONTEXT:
 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
 * Otherwise, don't care.
 *
 * RETURNS:
 * Pointer to temp pages array on success, NULL on failure.
657
 */
T
Tejun Heo 已提交
658 659 660
static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
					       unsigned long **bitmapp,
					       bool may_alloc)
661
{
T
Tejun Heo 已提交
662 663
	static struct page **pages;
	static unsigned long *bitmap;
664
	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
T
Tejun Heo 已提交
665 666 667 668 669 670 671 672 673 674 675
	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
			     sizeof(unsigned long);

	if (!pages || !bitmap) {
		if (may_alloc && !pages)
			pages = pcpu_mem_alloc(pages_size);
		if (may_alloc && !bitmap)
			bitmap = pcpu_mem_alloc(bitmap_size);
		if (!pages || !bitmap)
			return NULL;
	}
676

T
Tejun Heo 已提交
677 678
	memset(pages, 0, pages_size);
	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
679

T
Tejun Heo 已提交
680 681 682
	*bitmapp = bitmap;
	return pages;
}
683

T
Tejun Heo 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
/**
 * pcpu_free_pages - free pages which were allocated for @chunk
 * @chunk: chunk pages were allocated for
 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
 * @populated: populated bitmap
 * @page_start: page index of the first page to be freed
 * @page_end: page index of the last page to be freed + 1
 *
 * Free pages [@page_start and @page_end) in @pages for all units.
 * The pages were allocated for @chunk.
 */
static void pcpu_free_pages(struct pcpu_chunk *chunk,
			    struct page **pages, unsigned long *populated,
			    int page_start, int page_end)
{
	unsigned int cpu;
	int i;

	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page *page = pages[pcpu_page_idx(cpu, i)];

			if (page)
				__free_page(page);
		}
	}
710 711 712
}

/**
T
Tejun Heo 已提交
713 714 715 716 717 718 719 720 721 722
 * pcpu_alloc_pages - allocates pages for @chunk
 * @chunk: target chunk
 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
 * @populated: populated bitmap
 * @page_start: page index of the first page to be allocated
 * @page_end: page index of the last page to be allocated + 1
 *
 * Allocate pages [@page_start,@page_end) into @pages for all units.
 * The allocation is for @chunk.  Percpu core doesn't care about the
 * content of @pages and will pass it verbatim to pcpu_map_pages().
723
 */
T
Tejun Heo 已提交
724 725 726
static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
			    struct page **pages, unsigned long *populated,
			    int page_start, int page_end)
727
{
T
Tejun Heo 已提交
728
	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
729 730 731
	unsigned int cpu;
	int i;

T
Tejun Heo 已提交
732 733 734 735 736 737 738 739 740 741 742 743 744 745
	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];

			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
			if (!*pagep) {
				pcpu_free_pages(chunk, pages, populated,
						page_start, page_end);
				return -ENOMEM;
			}
		}
	}
	return 0;
}
746

T
Tejun Heo 已提交
747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
/**
 * pcpu_pre_unmap_flush - flush cache prior to unmapping
 * @chunk: chunk the regions to be flushed belongs to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages in [@page_start,@page_end) of @chunk are about to be
 * unmapped.  Flush cache.  As each flushing trial can be very
 * expensive, issue flush on the whole region at once rather than
 * doing it for each cpu.  This could be an overkill but is more
 * scalable.
 */
static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
				 int page_start, int page_end)
{
762 763 764
	flush_cache_vunmap(
		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
T
Tejun Heo 已提交
765 766 767 768 769 770
}

static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
{
	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
}
771

T
Tejun Heo 已提交
772 773
/**
 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
774
 * @chunk: chunk of interest
T
Tejun Heo 已提交
775 776
 * @pages: pages array which can be used to pass information to free
 * @populated: populated bitmap
777 778 779 780
 * @page_start: page index of the first page to unmap
 * @page_end: page index of the last page to unmap + 1
 *
 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
T
Tejun Heo 已提交
781 782 783 784
 * Corresponding elements in @pages were cleared by the caller and can
 * be used to carry information to pcpu_free_pages() which will be
 * called after all unmaps are finished.  The caller should call
 * proper pre/post flush functions.
785
 */
T
Tejun Heo 已提交
786 787 788
static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
			     struct page **pages, unsigned long *populated,
			     int page_start, int page_end)
789 790
{
	unsigned int cpu;
T
Tejun Heo 已提交
791
	int i;
792

T
Tejun Heo 已提交
793 794 795
	for_each_possible_cpu(cpu) {
		for (i = page_start; i < page_end; i++) {
			struct page *page;
796

T
Tejun Heo 已提交
797 798 799
			page = pcpu_chunk_page(chunk, cpu, i);
			WARN_ON(!page);
			pages[pcpu_page_idx(cpu, i)] = page;
800
		}
T
Tejun Heo 已提交
801 802
		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
				   page_end - page_start);
803 804
	}

T
Tejun Heo 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
	for (i = page_start; i < page_end; i++)
		__clear_bit(i, populated);
}

/**
 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
 * @chunk: pcpu_chunk the regions to be flushed belong to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
 * TLB for the regions.  This can be skipped if the area is to be
 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
 *
 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 * for the whole region.
 */
static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
				      int page_start, int page_end)
{
825 826 827
	flush_tlb_kernel_range(
		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
828 829
}

830 831 832 833 834
static int __pcpu_map_pages(unsigned long addr, struct page **pages,
			    int nr_pages)
{
	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
					PAGE_KERNEL, pages);
835 836 837
}

/**
T
Tejun Heo 已提交
838
 * pcpu_map_pages - map pages into a pcpu_chunk
839
 * @chunk: chunk of interest
T
Tejun Heo 已提交
840 841
 * @pages: pages array containing pages to be mapped
 * @populated: populated bitmap
842 843 844
 * @page_start: page index of the first page to map
 * @page_end: page index of the last page to map + 1
 *
T
Tejun Heo 已提交
845 846 847 848 849 850 851
 * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
 * caller is responsible for calling pcpu_post_map_flush() after all
 * mappings are complete.
 *
 * This function is responsible for setting corresponding bits in
 * @chunk->populated bitmap and whatever is necessary for reverse
 * lookup (addr -> chunk).
852
 */
T
Tejun Heo 已提交
853 854 855
static int pcpu_map_pages(struct pcpu_chunk *chunk,
			  struct page **pages, unsigned long *populated,
			  int page_start, int page_end)
856
{
T
Tejun Heo 已提交
857 858
	unsigned int cpu, tcpu;
	int i, err;
859

860
	for_each_possible_cpu(cpu) {
861
		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
T
Tejun Heo 已提交
862
				       &pages[pcpu_page_idx(cpu, page_start)],
863
				       page_end - page_start);
864
		if (err < 0)
T
Tejun Heo 已提交
865
			goto err;
866 867
	}

T
Tejun Heo 已提交
868 869 870 871 872 873
	/* mapping successful, link chunk and mark populated */
	for (i = page_start; i < page_end; i++) {
		for_each_possible_cpu(cpu)
			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
					    chunk);
		__set_bit(i, populated);
874 875 876
	}

	return 0;
T
Tejun Heo 已提交
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902

err:
	for_each_possible_cpu(tcpu) {
		if (tcpu == cpu)
			break;
		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
				   page_end - page_start);
	}
	return err;
}

/**
 * pcpu_post_map_flush - flush cache after mapping
 * @chunk: pcpu_chunk the regions to be flushed belong to
 * @page_start: page index of the first page to be flushed
 * @page_end: page index of the last page to be flushed + 1
 *
 * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
 * cache.
 *
 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
 * for the whole region.
 */
static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
				int page_start, int page_end)
{
903 904 905
	flush_cache_vmap(
		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
906 907
}

908 909 910 911
/**
 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
 * @chunk: chunk to depopulate
 * @off: offset to the area to depopulate
T
Tejun Heo 已提交
912
 * @size: size of the area to depopulate in bytes
913 914 915 916 917
 * @flush: whether to flush cache and tlb or not
 *
 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
 * from @chunk.  If @flush is true, vcache is flushed before unmapping
 * and tlb after.
918 919 920
 *
 * CONTEXT:
 * pcpu_alloc_mutex.
921
 */
T
Tejun Heo 已提交
922
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
923 924 925
{
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
926 927 928 929 930
	struct page **pages;
	unsigned long *populated;
	int rs, re;

	/* quick path, check whether it's empty already */
931 932 933 934
	rs = page_start;
	pcpu_next_unpop(chunk, &rs, &re, page_end);
	if (rs == page_start && re == page_end)
		return;
935

T
Tejun Heo 已提交
936 937
	/* immutable chunks can't be depopulated */
	WARN_ON(chunk->immutable);
938

T
Tejun Heo 已提交
939 940 941 942 943 944 945
	/*
	 * If control reaches here, there must have been at least one
	 * successful population attempt so the temp pages array must
	 * be available now.
	 */
	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
	BUG_ON(!pages);
946

T
Tejun Heo 已提交
947 948
	/* unmap and free */
	pcpu_pre_unmap_flush(chunk, page_start, page_end);
949

T
Tejun Heo 已提交
950 951
	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
		pcpu_unmap_pages(chunk, pages, populated, rs, re);
952

T
Tejun Heo 已提交
953 954 955 956
	/* no need to flush tlb, vmalloc will handle it lazily */

	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
		pcpu_free_pages(chunk, pages, populated, rs, re);
957

T
Tejun Heo 已提交
958 959
	/* commit new bitmap */
	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
960 961 962 963 964 965
}

/**
 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
 * @chunk: chunk of interest
 * @off: offset to the area to populate
T
Tejun Heo 已提交
966
 * @size: size of the area to populate in bytes
967 968 969
 *
 * For each cpu, populate and map pages [@page_start,@page_end) into
 * @chunk.  The area is cleared on return.
970 971 972
 *
 * CONTEXT:
 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
973 974 975 976 977
 */
static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
{
	int page_start = PFN_DOWN(off);
	int page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
978 979 980
	int free_end = page_start, unmap_end = page_start;
	struct page **pages;
	unsigned long *populated;
981
	unsigned int cpu;
T
Tejun Heo 已提交
982
	int rs, re, rc;
983

T
Tejun Heo 已提交
984
	/* quick path, check whether all pages are already there */
985 986 987 988
	rs = page_start;
	pcpu_next_pop(chunk, &rs, &re, page_end);
	if (rs == page_start && re == page_end)
		goto clear;
989

T
Tejun Heo 已提交
990 991
	/* need to allocate and map pages, this chunk can't be immutable */
	WARN_ON(chunk->immutable);
992

T
Tejun Heo 已提交
993 994 995
	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
	if (!pages)
		return -ENOMEM;
996

T
Tejun Heo 已提交
997 998 999 1000 1001 1002
	/* alloc and map */
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
		if (rc)
			goto err_free;
		free_end = re;
1003 1004
	}

T
Tejun Heo 已提交
1005 1006 1007 1008 1009 1010 1011
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
		if (rc)
			goto err_unmap;
		unmap_end = re;
	}
	pcpu_post_map_flush(chunk, page_start, page_end);
1012

T
Tejun Heo 已提交
1013 1014 1015
	/* commit new bitmap */
	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
clear:
1016
	for_each_possible_cpu(cpu)
1017
		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1018
	return 0;
T
Tejun Heo 已提交
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

err_unmap:
	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
		pcpu_unmap_pages(chunk, pages, populated, rs, re);
	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
err_free:
	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
		pcpu_free_pages(chunk, pages, populated, rs, re);
	return rc;
1029 1030 1031 1032 1033 1034
}

static void free_pcpu_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
1035 1036
	if (chunk->vms)
		pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
1037
	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	kfree(chunk);
}

static struct pcpu_chunk *alloc_pcpu_chunk(void)
{
	struct pcpu_chunk *chunk;

	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
	if (!chunk)
		return NULL;

1049
	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1050 1051 1052
	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
	chunk->map[chunk->map_used++] = pcpu_unit_size;

1053 1054 1055 1056
	chunk->vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
				       pcpu_nr_groups, pcpu_atom_size,
				       GFP_KERNEL);
	if (!chunk->vms) {
1057 1058 1059 1060 1061 1062 1063
		free_pcpu_chunk(chunk);
		return NULL;
	}

	INIT_LIST_HEAD(&chunk->list);
	chunk->free_size = pcpu_unit_size;
	chunk->contig_hint = pcpu_unit_size;
1064
	chunk->base_addr = chunk->vms[0]->addr - pcpu_group_offsets[0];
1065 1066 1067 1068 1069

	return chunk;
}

/**
1070
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
1071
 * @size: size of area to allocate in bytes
1072
 * @align: alignment of area (max PAGE_SIZE)
1073
 * @reserved: allocate from the reserved chunk if available
1074
 *
1075 1076 1077 1078
 * Allocate percpu area of @size bytes aligned at @align.
 *
 * CONTEXT:
 * Does GFP_KERNEL allocation.
1079 1080 1081 1082
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1083
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
1084
{
1085
	static int warn_limit = 10;
1086
	struct pcpu_chunk *chunk;
1087
	const char *err;
1088
	int slot, off, new_alloc;
1089
	unsigned long flags;
1090

1091
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1092 1093 1094 1095 1096
		WARN(true, "illegal size (%zu) or align (%zu) for "
		     "percpu allocation\n", size, align);
		return NULL;
	}

1097
	mutex_lock(&pcpu_alloc_mutex);
1098
	spin_lock_irqsave(&pcpu_lock, flags);
1099

1100 1101 1102
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
1103 1104 1105

		if (size > chunk->contig_hint) {
			err = "alloc from reserved chunk failed";
1106
			goto fail_unlock;
1107
		}
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

		while ((new_alloc = pcpu_need_to_extend(chunk))) {
			spin_unlock_irqrestore(&pcpu_lock, flags);
			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
				err = "failed to extend area map of reserved chunk";
				goto fail_unlock_mutex;
			}
			spin_lock_irqsave(&pcpu_lock, flags);
		}

1118 1119 1120
		off = pcpu_alloc_area(chunk, size, align);
		if (off >= 0)
			goto area_found;
1121

1122
		err = "alloc from reserved chunk failed";
1123
		goto fail_unlock;
1124 1125
	}

1126
restart:
1127
	/* search through normal chunks */
1128 1129 1130 1131
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
			if (size > chunk->contig_hint)
				continue;
1132

1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
			new_alloc = pcpu_need_to_extend(chunk);
			if (new_alloc) {
				spin_unlock_irqrestore(&pcpu_lock, flags);
				if (pcpu_extend_area_map(chunk,
							 new_alloc) < 0) {
					err = "failed to extend area map";
					goto fail_unlock_mutex;
				}
				spin_lock_irqsave(&pcpu_lock, flags);
				/*
				 * pcpu_lock has been dropped, need to
				 * restart cpu_slot list walking.
				 */
				goto restart;
1147 1148
			}

1149 1150 1151 1152 1153 1154 1155
			off = pcpu_alloc_area(chunk, size, align);
			if (off >= 0)
				goto area_found;
		}
	}

	/* hmmm... no space left, create a new chunk */
1156
	spin_unlock_irqrestore(&pcpu_lock, flags);
1157

1158
	chunk = alloc_pcpu_chunk();
1159 1160
	if (!chunk) {
		err = "failed to allocate new chunk";
1161
		goto fail_unlock_mutex;
1162
	}
1163

1164
	spin_lock_irqsave(&pcpu_lock, flags);
1165
	pcpu_chunk_relocate(chunk, -1);
1166
	goto restart;
1167 1168

area_found:
1169
	spin_unlock_irqrestore(&pcpu_lock, flags);
1170

1171 1172
	/* populate, map and clear the area */
	if (pcpu_populate_chunk(chunk, off, size)) {
1173
		spin_lock_irqsave(&pcpu_lock, flags);
1174
		pcpu_free_area(chunk, off);
1175
		err = "failed to populate";
1176
		goto fail_unlock;
1177 1178
	}

1179 1180
	mutex_unlock(&pcpu_alloc_mutex);

T
Tejun Heo 已提交
1181 1182
	/* return address relative to base address */
	return __addr_to_pcpu_ptr(chunk->base_addr + off);
1183 1184

fail_unlock:
1185
	spin_unlock_irqrestore(&pcpu_lock, flags);
1186 1187
fail_unlock_mutex:
	mutex_unlock(&pcpu_alloc_mutex);
1188 1189 1190 1191 1192 1193 1194
	if (warn_limit) {
		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
			   "%s\n", size, align, err);
		dump_stack();
		if (!--warn_limit)
			pr_info("PERCPU: limit reached, disable warning\n");
	}
1195
	return NULL;
1196
}
1197 1198 1199 1200 1201 1202 1203 1204 1205

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align.  Might
 * sleep.  Might trigger writeouts.
 *
1206 1207 1208
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1209 1210 1211
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1212
void __percpu *__alloc_percpu(size_t size, size_t align)
1213 1214 1215
{
	return pcpu_alloc(size, align, false);
}
1216 1217
EXPORT_SYMBOL_GPL(__alloc_percpu);

1218 1219 1220 1221 1222 1223 1224 1225 1226
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Allocate percpu area of @size bytes aligned at @align from reserved
 * percpu area if arch has set it up; otherwise, allocation is served
 * from the same dynamic area.  Might sleep.  Might trigger writeouts.
 *
1227 1228 1229
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1230 1231 1232
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1233
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1234 1235 1236 1237
{
	return pcpu_alloc(size, align, true);
}

1238 1239 1240 1241 1242
/**
 * pcpu_reclaim - reclaim fully free chunks, workqueue function
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
1243 1244 1245
 *
 * CONTEXT:
 * workqueue context.
1246 1247
 */
static void pcpu_reclaim(struct work_struct *work)
1248
{
1249 1250 1251 1252
	LIST_HEAD(todo);
	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
	struct pcpu_chunk *chunk, *next;

1253 1254
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265

	list_for_each_entry_safe(chunk, next, head, list) {
		WARN_ON(chunk->immutable);

		/* spare the first one */
		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
			continue;

		list_move(&chunk->list, &todo);
	}

1266
	spin_unlock_irq(&pcpu_lock);
1267 1268

	list_for_each_entry_safe(chunk, next, &todo, list) {
T
Tejun Heo 已提交
1269
		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1270 1271
		free_pcpu_chunk(chunk);
	}
T
Tejun Heo 已提交
1272 1273

	mutex_unlock(&pcpu_alloc_mutex);
1274 1275 1276 1277 1278 1279
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
1280 1281 1282 1283
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
1284
 */
1285
void free_percpu(void __percpu *ptr)
1286
{
1287
	void *addr;
1288
	struct pcpu_chunk *chunk;
1289
	unsigned long flags;
1290 1291 1292 1293 1294
	int off;

	if (!ptr)
		return;

1295 1296
	addr = __pcpu_ptr_to_addr(ptr);

1297
	spin_lock_irqsave(&pcpu_lock, flags);
1298 1299

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
1300
	off = addr - chunk->base_addr;
1301 1302 1303

	pcpu_free_area(chunk, off);

1304
	/* if there are more than one fully free chunks, wake up grim reaper */
1305 1306 1307
	if (chunk->free_size == pcpu_unit_size) {
		struct pcpu_chunk *pos;

1308
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1309
			if (pos != chunk) {
1310
				schedule_work(&pcpu_reclaim_work);
1311 1312 1313 1314
				break;
			}
	}

1315
	spin_unlock_irqrestore(&pcpu_lock, flags);
1316 1317 1318
}
EXPORT_SYMBOL_GPL(free_percpu);

1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
/**
 * is_kernel_percpu_address - test whether address is from static percpu area
 * @addr: address to test
 *
 * Test whether @addr belongs to in-kernel static percpu area.  Module
 * static percpu areas are not considered.  For those, use
 * is_module_percpu_address().
 *
 * RETURNS:
 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 */
bool is_kernel_percpu_address(unsigned long addr)
{
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		void *start = per_cpu_ptr(base, cpu);

		if ((void *)addr >= start && (void *)addr < start + static_size)
			return true;
        }
	return false;
}

1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
/**
 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 * @addr: the address to be converted to physical address
 *
 * Given @addr which is dereferenceable address obtained via one of
 * percpu access macros, this function translates it into its physical
 * address.  The caller is responsible for ensuring @addr stays valid
 * until this function finishes.
 *
 * RETURNS:
 * The physical address for @addr.
 */
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
1359 1360 1361 1362 1363 1364 1365
	if (pcpu_addr_in_first_chunk(addr)) {
		if ((unsigned long)addr < VMALLOC_START ||
		    (unsigned long)addr >= VMALLOC_END)
			return __pa(addr);
		else
			return page_to_phys(vmalloc_to_page(addr));
	} else
1366 1367 1368
		return page_to_phys(vmalloc_to_page(addr));
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
static inline size_t pcpu_calc_fc_sizes(size_t static_size,
					size_t reserved_size,
					ssize_t *dyn_sizep)
{
	size_t size_sum;

	size_sum = PFN_ALIGN(static_size + reserved_size +
			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
	if (*dyn_sizep != 0)
		*dyn_sizep = size_sum - static_size - reserved_size;

	return size_sum;
}

1383
/**
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
	free_bootmem(__pa(ai), ai->__ai_size);
}

/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1440
 * @reserved_size: the size of reserved percpu area in bytes
1441
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1442 1443
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
1444
 *
1445 1446 1447
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
1448
 *
1449 1450 1451 1452 1453
 * Groups are always mutliples of atom size and CPUs which are of
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
1454 1455
 *
 * RETURNS:
1456 1457
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
1458
 */
1459 1460 1461 1462
struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, ssize_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1463 1464 1465 1466
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
1467
	int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1468 1469
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1470
	int last_allocs, group, unit;
1471
	unsigned int cpu, tcpu;
1472 1473
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;
1474

1475 1476 1477 1478
	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
	memset(group_cnt, 0, sizeof(group_map));

1479 1480
	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
1481
	 * alloc_size is multiple of atom_size and is the smallest
1482 1483 1484
	 * which can accomodate 4k aligned segments which are equal to
	 * or larger than min_unit_size.
	 */
1485
	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1486 1487
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

1488
	alloc_size = roundup(min_unit_size, atom_size);
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
	upa = alloc_size / min_unit_size;
	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
1501
			if (group_map[tcpu] == group && cpu_distance_fn &&
1502 1503 1504
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
1505
				nr_groups = max(nr_groups, group + 1);
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
		group_cnt_max = max(group_cnt_max, group_cnt[group]);
	}

	/*
	 * Expand unit size until address space usage goes over 75%
	 * and then as much as possible without using more address
	 * space.
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
			continue;

1526
		for (group = 0; group < nr_groups; group++) {
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 25%.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;
1578 1579 1580

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
1581 1582 1583
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
1584
	}
1585
	BUG_ON(unit != nr_units);
1586

1587
	return ai;
1588 1589
}

1590 1591 1592 1593 1594 1595 1596 1597 1598
/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1599
{
1600
	int group_width = 1, cpu_width = 1, width;
1601
	char empty_str[] = "--------";
1602 1603 1604 1605 1606 1607 1608
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1609

1610
	v = num_possible_cpus();
1611
	while (v /= 10)
1612 1613
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1614

1615 1616 1617
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1618

1619 1620 1621
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1622

1623 1624 1625 1626 1627 1628 1629 1630
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1631
				printk("\n");
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
				printk("%spcpu-alloc: ", lvl);
			}
			printk("[%0*d] ", group_width, group);

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
					printk("%0*d ", cpu_width,
					       gi->cpu_map[unit]);
				else
					printk("%s ", empty_str);
1642 1643 1644 1645 1646
		}
	}
	printk("\n");
}

1647
/**
1648
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1649
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1650
 * @base_addr: mapped address
1651 1652 1653
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1654
 * setup path.
1655
 *
1656 1657 1658 1659 1660 1661
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1662 1663 1664 1665 1666 1667 1668
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1669 1670 1671
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1672
 *
1673 1674 1675
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
1676
 *
1677 1678
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
1679
 *
1680 1681 1682 1683 1684 1685 1686 1687 1688
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
1689
 *
1690 1691
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1692
 *
1693 1694 1695 1696 1697 1698 1699
 * If the first chunk ends up with both reserved and dynamic areas, it
 * is served by two chunks - one to serve the core static and reserved
 * areas and the other for the dynamic area.  They share the same vm
 * and page map but uses different area allocation map to stay away
 * from each other.  The latter chunk is circulated in the chunk slots
 * and available for dynamic allocation like any other chunks.
 *
1700
 * RETURNS:
T
Tejun Heo 已提交
1701
 * 0 on success, -errno on failure.
1702
 */
T
Tejun Heo 已提交
1703 1704
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
1705
{
1706
	static char cpus_buf[4096] __initdata;
1707
	static int smap[2], dmap[2];
1708 1709
	size_t dyn_size = ai->dyn_size;
	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1710
	struct pcpu_chunk *schunk, *dchunk = NULL;
1711 1712
	unsigned long *group_offsets;
	size_t *group_sizes;
T
Tejun Heo 已提交
1713
	unsigned long *unit_off;
1714
	unsigned int cpu;
1715 1716
	int *unit_map;
	int group, unit, i;
1717

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);

#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

1729
	/* sanity checks */
1730 1731
	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1732 1733 1734 1735 1736 1737
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
	PCPU_SETUP_BUG_ON(!ai->static_size);
	PCPU_SETUP_BUG_ON(!base_addr);
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1738

1739 1740 1741
	/* process group information and build config tables accordingly */
	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1742
	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
T
Tejun Heo 已提交
1743
	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
1744

1745
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1746
		unit_map[cpu] = UINT_MAX;
1747
	pcpu_first_unit_cpu = NR_CPUS;
1748

1749 1750
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
1751

1752 1753 1754
		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

1755 1756 1757 1758
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
1759

1760 1761 1762
			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1763

1764
			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
1765 1766
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

1767 1768 1769
			if (pcpu_first_unit_cpu == NR_CPUS)
				pcpu_first_unit_cpu = cpu;
		}
1770
	}
1771 1772 1773 1774
	pcpu_last_unit_cpu = cpu;
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
1775 1776 1777 1778 1779
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
	pcpu_dump_alloc_info(KERN_INFO, ai);
1780

1781 1782 1783
	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
1784
	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
1785
	pcpu_unit_offsets = unit_off;
1786 1787

	/* determine basic parameters */
1788
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1789
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
1790
	pcpu_atom_size = ai->atom_size;
T
Tejun Heo 已提交
1791 1792
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1793

1794 1795 1796 1797 1798
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1799 1800 1801 1802
	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

1803 1804 1805 1806 1807 1808 1809
	/*
	 * Initialize static chunk.  If reserved_size is zero, the
	 * static chunk covers static area + dynamic allocation area
	 * in the first chunk.  If reserved_size is not zero, it
	 * covers static area + reserved area (mostly used for module
	 * static percpu allocation).
	 */
1810 1811
	schunk = alloc_bootmem(pcpu_chunk_struct_size);
	INIT_LIST_HEAD(&schunk->list);
T
Tejun Heo 已提交
1812
	schunk->base_addr = base_addr;
1813 1814
	schunk->map = smap;
	schunk->map_alloc = ARRAY_SIZE(smap);
1815
	schunk->immutable = true;
T
Tejun Heo 已提交
1816
	bitmap_fill(schunk->populated, pcpu_unit_pages);
1817

1818 1819
	if (ai->reserved_size) {
		schunk->free_size = ai->reserved_size;
1820
		pcpu_reserved_chunk = schunk;
1821
		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1822 1823 1824 1825
	} else {
		schunk->free_size = dyn_size;
		dyn_size = 0;			/* dynamic area covered */
	}
1826
	schunk->contig_hint = schunk->free_size;
1827

1828
	schunk->map[schunk->map_used++] = -ai->static_size;
1829 1830 1831
	if (schunk->free_size)
		schunk->map[schunk->map_used++] = schunk->free_size;

1832 1833
	/* init dynamic chunk if necessary */
	if (dyn_size) {
T
Tejun Heo 已提交
1834
		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1835
		INIT_LIST_HEAD(&dchunk->list);
T
Tejun Heo 已提交
1836
		dchunk->base_addr = base_addr;
1837 1838
		dchunk->map = dmap;
		dchunk->map_alloc = ARRAY_SIZE(dmap);
1839
		dchunk->immutable = true;
T
Tejun Heo 已提交
1840
		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1841 1842 1843 1844 1845 1846

		dchunk->contig_hint = dchunk->free_size = dyn_size;
		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
		dchunk->map[dchunk->map_used++] = dchunk->free_size;
	}

1847
	/* link the first chunk in */
1848 1849
	pcpu_first_chunk = dchunk ?: schunk;
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1850 1851

	/* we're done */
T
Tejun Heo 已提交
1852
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
1853
	return 0;
1854
}
1855

1856 1857 1858 1859 1860
const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};
1861

1862
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1863

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877
static int __init percpu_alloc_setup(char *str)
{
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
		pr_warning("PERCPU: unknown allocator %s specified\n", str);
1878

1879
	return 0;
1880
}
1881
early_param("percpu_alloc", percpu_alloc_setup);
1882

1883 1884
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1885 1886 1887 1888
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1889 1890 1891 1892
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
 * @free_fn: funtion to free percpu page
1893 1894 1895 1896 1897
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
1908 1909
 *
 * When @dyn_size is positive, dynamic area might be larger than
1910 1911 1912
 * specified to fill page alignment.  When @dyn_size is auto,
 * @dyn_size is just big enough to fill page alignment after static
 * and reserved areas.
1913 1914
 *
 * If the needed size is smaller than the minimum or specified unit
1915
 * size, the leftover is returned using @free_fn.
1916 1917
 *
 * RETURNS:
T
Tejun Heo 已提交
1918
 * 0 on success, -errno on failure.
1919
 */
1920 1921 1922 1923 1924
int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
1925
{
1926 1927
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
1928
	struct pcpu_alloc_info *ai;
1929
	size_t size_sum, areas_size, max_distance;
1930
	int group, i, rc;
1931

1932 1933
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
1934 1935
	if (IS_ERR(ai))
		return PTR_ERR(ai);
1936

1937
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1938
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
1939

1940 1941
	areas = alloc_bootmem_nopanic(areas_size);
	if (!areas) {
T
Tejun Heo 已提交
1942
		rc = -ENOMEM;
1943
		goto out_free;
1944
	}
1945

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
	/* allocate, copy and determine base address */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
		areas[group] = ptr;
1963

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975
		base = min(ptr, base);

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
1976
	}
1977

1978
	/* base address is now known, determine group base offsets */
1979 1980
	max_distance = 0;
	for (group = 0; group < ai->nr_groups; group++) {
1981
		ai->groups[group].base_offset = areas[group] - base;
T
Tejun Heo 已提交
1982 1983
		max_distance = max_t(size_t, max_distance,
				     ai->groups[group].base_offset);
1984 1985 1986 1987 1988
	}
	max_distance += ai->unit_size;

	/* warn if maximum distance is further than 75% of vmalloc space */
	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
T
Tejun Heo 已提交
1989
		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
1990 1991 1992 1993 1994 1995 1996 1997
			   "space 0x%lx\n",
			   max_distance, VMALLOC_END - VMALLOC_START);
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free;
#endif
	}
1998

T
Tejun Heo 已提交
1999
	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2000 2001
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
2002

T
Tejun Heo 已提交
2003
	rc = pcpu_setup_first_chunk(ai, base);
2004 2005 2006 2007 2008 2009 2010
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
		free_fn(areas[group],
			ai->groups[group].nr_units * ai->unit_size);
out_free:
2011
	pcpu_free_alloc_info(ai);
2012 2013
	if (areas)
		free_bootmem(__pa(areas), areas_size);
T
Tejun Heo 已提交
2014
	return rc;
2015
}
2016 2017
#endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
2018

2019
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2020
/**
2021
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2022 2023 2024 2025 2026
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
 * @populate_pte_fn: function to populate pte
 *
2027 2028
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2029 2030 2031 2032 2033
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
2034
 * 0 on success, -errno on failure.
2035
 */
T
Tejun Heo 已提交
2036 2037 2038 2039
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2040
{
2041
	static struct vm_struct vm;
2042
	struct pcpu_alloc_info *ai;
2043
	char psize_str[16];
T
Tejun Heo 已提交
2044
	int unit_pages;
2045
	size_t pages_size;
T
Tejun Heo 已提交
2046
	struct page **pages;
T
Tejun Heo 已提交
2047
	int unit, i, j, rc;
2048

2049 2050
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

2051 2052 2053 2054 2055 2056 2057
	ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());

	unit_pages = ai->unit_size >> PAGE_SHIFT;
2058 2059

	/* unaligned allocations can't be freed, round up to page size */
2060 2061
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
T
Tejun Heo 已提交
2062
	pages = alloc_bootmem(pages_size);
2063

2064
	/* allocate pages */
2065
	j = 0;
2066
	for (unit = 0; unit < num_possible_cpus(); unit++)
T
Tejun Heo 已提交
2067
		for (i = 0; i < unit_pages; i++) {
2068
			unsigned int cpu = ai->groups[0].cpu_map[unit];
2069 2070
			void *ptr;

2071
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2072
			if (!ptr) {
2073 2074
				pr_warning("PERCPU: failed to allocate %s page "
					   "for cpu%u\n", psize_str, cpu);
2075 2076
				goto enomem;
			}
T
Tejun Heo 已提交
2077
			pages[j++] = virt_to_page(ptr);
2078 2079
		}

2080 2081
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
2082
	vm.size = num_possible_cpus() * ai->unit_size;
2083 2084
	vm_area_register_early(&vm, PAGE_SIZE);

2085
	for (unit = 0; unit < num_possible_cpus(); unit++) {
2086
		unsigned long unit_addr =
2087
			(unsigned long)vm.addr + unit * ai->unit_size;
2088

T
Tejun Heo 已提交
2089
		for (i = 0; i < unit_pages; i++)
2090 2091 2092
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
2093 2094 2095 2096
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
2097

2098 2099 2100 2101 2102 2103 2104 2105 2106
		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
2107
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2108 2109 2110
	}

	/* we're ready, commit */
2111
	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2112 2113
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
2114

T
Tejun Heo 已提交
2115
	rc = pcpu_setup_first_chunk(ai, vm.addr);
2116 2117 2118 2119
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
2120
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
2121
	rc = -ENOMEM;
2122
out_free_ar:
T
Tejun Heo 已提交
2123
	free_bootmem(__pa(pages), pages_size);
2124
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
2125
	return rc;
2126
}
2127
#endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2128

2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144
/*
 * Generic percpu area setup.
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

2145 2146 2147 2148 2149
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
}
2150

2151 2152 2153 2154 2155
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
	free_bootmem(__pa(ptr), size);
}

2156 2157 2158 2159
void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
2160
	int rc;
2161 2162 2163 2164 2165

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
2166
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2167 2168
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
T
Tejun Heo 已提交
2169
	if (rc < 0)
2170 2171 2172 2173
		panic("Failed to initialized percpu areas.");

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
2174
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2175
}
2176
#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */