uprobes.c 40.6 KB
Newer Older
1
/*
2
 * User-space Probes (UProbes)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
I
Ingo Molnar 已提交
18
 * Copyright (C) IBM Corporation, 2008-2012
19 20 21
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
I
Ingo Molnar 已提交
22
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
23 24 25 26 27 28 29
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
J
Josh Stone 已提交
30
#include <linux/export.h>
31 32 33
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */
34 35
#include <linux/ptrace.h>	/* user_enable_single_step */
#include <linux/kdebug.h>	/* notifier mechanism */
36
#include "../../mm/internal.h"	/* munlock_vma_page */
37
#include <linux/percpu-rwsem.h>
38

39 40
#include <linux/uprobes.h>

41 42 43
#define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
#define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE

44
static struct rb_root uprobes_tree = RB_ROOT;
45 46 47 48 49
/*
 * allows us to skip the uprobe_mmap if there are no uprobe events active
 * at this time.  Probably a fine grained per inode count is better?
 */
#define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
50

51 52 53 54 55
static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13
/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
56
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
57

58 59
static struct percpu_rw_semaphore dup_mmap_sem;

60
/* Have a copy of original instruction */
61
#define UPROBE_COPY_INSN	0
62
/* Can skip singlestep */
63
#define UPROBE_SKIP_SSTEP	1
64

65 66 67
struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
68
	struct rw_semaphore	register_rwsem;
69 70 71 72 73
	struct rw_semaphore	consumer_rwsem;
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
74
	unsigned long		flags;
75 76 77
	struct arch_uprobe	arch;
};

78 79 80 81 82 83 84 85 86 87
/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
88
	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_SHARED;
89

90 91
	if (is_register)
		flags |= VM_WRITE;
92

93
	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
94 95
}

96
static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
97
{
98
	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
99 100
}

101 102 103 104 105
static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
{
	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
}

106 107 108 109 110
/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
111
 * @addr:     address the old @page is mapped at
112 113 114 115 116
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
117 118
static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
				struct page *page, struct page *kpage)
119 120
{
	struct mm_struct *mm = vma->vm_mm;
121 122
	spinlock_t *ptl;
	pte_t *ptep;
123
	int err;
124 125 126
	/* For mmu_notifiers */
	const unsigned long mmun_start = addr;
	const unsigned long mmun_end   = addr + PAGE_SIZE;
127

128
	/* For try_to_free_swap() and munlock_vma_page() below */
129 130
	lock_page(page);

131
	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
132
	err = -EAGAIN;
133
	ptep = page_check_address(page, mm, addr, &ptl, 0);
134
	if (!ptep)
135
		goto unlock;
136 137 138 139

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

140 141 142 143 144
	if (!PageAnon(page)) {
		dec_mm_counter(mm, MM_FILEPAGES);
		inc_mm_counter(mm, MM_ANONPAGES);
	}

145 146 147 148 149 150 151 152 153
	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	pte_unmap_unlock(ptep, ptl);

154 155 156 157
	if (vma->vm_flags & VM_LOCKED)
		munlock_vma_page(page);
	put_page(page);

158 159
	err = 0;
 unlock:
160
	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
161 162
	unlock_page(page);
	return err;
163 164 165
}

/**
166
 * is_swbp_insn - check if instruction is breakpoint instruction.
167
 * @insn: instruction to be checked.
168
 * Default implementation of is_swbp_insn
169 170
 * Returns true if @insn is a breakpoint instruction.
 */
171
bool __weak is_swbp_insn(uprobe_opcode_t *insn)
172
{
173
	return *insn == UPROBE_SWBP_INSN;
174 175
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189
/**
 * is_trap_insn - check if instruction is breakpoint instruction.
 * @insn: instruction to be checked.
 * Default implementation of is_trap_insn
 * Returns true if @insn is a breakpoint instruction.
 *
 * This function is needed for the case where an architecture has multiple
 * trap instructions (like powerpc).
 */
bool __weak is_trap_insn(uprobe_opcode_t *insn)
{
	return is_swbp_insn(insn);
}

190
static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
191 192
{
	void *kaddr = kmap_atomic(page);
193
	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
194 195 196
	kunmap_atomic(kaddr);
}

197 198 199 200 201 202 203
static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
{
	void *kaddr = kmap_atomic(page);
	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
	kunmap_atomic(kaddr);
}

204 205 206 207 208
static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
{
	uprobe_opcode_t old_opcode;
	bool is_swbp;

209 210 211 212 213 214 215 216 217
	/*
	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
	 * We do not check if it is any other 'trap variant' which could
	 * be conditional trap instruction such as the one powerpc supports.
	 *
	 * The logic is that we do not care if the underlying instruction
	 * is a trap variant; uprobes always wins over any other (gdb)
	 * breakpoint.
	 */
218
	copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
219 220 221 222 223 224 225
	is_swbp = is_swbp_insn(&old_opcode);

	if (is_swbp_insn(new_opcode)) {
		if (is_swbp)		/* register: already installed? */
			return 0;
	} else {
		if (!is_swbp)		/* unregister: was it changed by us? */
226
			return 0;
227 228 229 230 231
	}

	return 1;
}

232 233 234 235 236
/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
237
 * supported by that architecture then we need to modify is_trap_at_addr and
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
 * write_opcode accordingly. This would never be a problem for archs that
 * have fixed length instructions.
 */

/*
 * write_opcode - write the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm).
 *
 * For mm @mm, write the opcode at @vaddr.
 * Return 0 (success) or a negative errno.
 */
254 255
static int write_opcode(struct mm_struct *mm, unsigned long vaddr,
			uprobe_opcode_t opcode)
256 257 258 259
{
	struct page *old_page, *new_page;
	struct vm_area_struct *vma;
	int ret;
260

261
retry:
262
	/* Read the page with vaddr into memory */
263
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &old_page, &vma);
264 265
	if (ret <= 0)
		return ret;
266

267 268 269 270
	ret = verify_opcode(old_page, vaddr, &opcode);
	if (ret <= 0)
		goto put_old;

271 272 273
	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
274
		goto put_old;
275 276 277

	__SetPageUptodate(new_page);

278 279
	copy_highpage(new_page, old_page);
	copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
280 281 282

	ret = anon_vma_prepare(vma);
	if (ret)
283
		goto put_new;
284

285
	ret = __replace_page(vma, vaddr, old_page, new_page);
286

287
put_new:
288
	page_cache_release(new_page);
289
put_old:
290 291
	put_page(old_page);

292 293
	if (unlikely(ret == -EAGAIN))
		goto retry;
294 295 296 297
	return ret;
}

/**
298
 * set_swbp - store breakpoint at a given address.
299
 * @auprobe: arch specific probepoint information.
300 301 302 303 304 305
 * @mm: the probed process address space.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
306
int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
307
{
308
	return write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
309 310 311 312 313
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
314
 * @auprobe: arch specific probepoint information.
315 316 317 318 319
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
320
int __weak
321
set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
322
{
323
	return write_opcode(mm, vaddr, *(uprobe_opcode_t *)auprobe->insn);
324 325 326 327 328 329
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;
330

331 332 333
	if (l->inode > r->inode)
		return 1;

334 335 336 337 338
	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}
357

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;

374
	spin_lock(&uprobes_treelock);
375
	uprobe = __find_uprobe(inode, offset);
376
	spin_unlock(&uprobes_treelock);
377

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}
403

404 405 406 407 408
	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);
409

410 411 412 413
	return u;
}

/*
414
 * Acquire uprobes_treelock.
415 416 417 418 419 420 421 422 423 424
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	struct uprobe *u;

425
	spin_lock(&uprobes_treelock);
426
	u = __insert_uprobe(uprobe);
427
	spin_unlock(&uprobes_treelock);
428

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
448
	init_rwsem(&uprobe->register_rwsem);
449
	init_rwsem(&uprobe->consumer_rwsem);
450 451
	/* For now assume that the instruction need not be single-stepped */
	__set_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
452 453 454 455 456 457 458 459 460

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);

	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
461 462
	}

463 464 465
	return uprobe;
}

466
static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
467 468
{
	down_write(&uprobe->consumer_rwsem);
469 470
	uc->next = uprobe->consumers;
	uprobe->consumers = uc;
471 472 473 474
	up_write(&uprobe->consumer_rwsem);
}

/*
475 476
 * For uprobe @uprobe, delete the consumer @uc.
 * Return true if the @uc is deleted successfully
477 478
 * or return false.
 */
479
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
480 481 482 483 484 485
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
486 487
		if (*con == uc) {
			*con = uc->next;
488 489 490 491 492
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);
493

494 495 496
	return ret;
}

497
static int
498
__copy_insn(struct address_space *mapping, struct file *filp, char *insn,
499
			unsigned long nbytes, loff_t offset)
500 501 502
{
	struct page *page;

503 504
	if (!mapping->a_ops->readpage)
		return -EIO;
505 506 507 508
	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
509
	page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
510 511 512
	if (IS_ERR(page))
		return PTR_ERR(page);

513
	copy_from_page(page, offset, insn, nbytes);
514
	page_cache_release(page);
515

516 517 518
	return 0;
}

519
static int copy_insn(struct uprobe *uprobe, struct file *filp)
520 521 522
{
	struct address_space *mapping;
	unsigned long nbytes;
523
	int bytes;
524

525
	nbytes = PAGE_SIZE - (uprobe->offset & ~PAGE_MASK);
526 527 528 529 530 531 532 533 534 535
	mapping = uprobe->inode->i_mapping;

	/* Instruction at end of binary; copy only available bytes */
	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
		bytes = uprobe->inode->i_size - uprobe->offset;
	else
		bytes = MAX_UINSN_BYTES;

	/* Instruction at the page-boundary; copy bytes in second page */
	if (nbytes < bytes) {
536 537 538 539
		int err = __copy_insn(mapping, filp, uprobe->arch.insn + nbytes,
				bytes - nbytes, uprobe->offset + nbytes);
		if (err)
			return err;
540 541
		bytes = nbytes;
	}
542
	return __copy_insn(mapping, filp, uprobe->arch.insn, bytes, uprobe->offset);
543 544
}

545 546 547 548 549
static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
				struct mm_struct *mm, unsigned long vaddr)
{
	int ret = 0;

550
	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
551 552
		return ret;

O
Oleg Nesterov 已提交
553 554
	/* TODO: move this into _register, until then we abuse this sem. */
	down_write(&uprobe->consumer_rwsem);
555
	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
556 557
		goto out;

558 559 560 561 562
	ret = copy_insn(uprobe, file);
	if (ret)
		goto out;

	ret = -ENOTSUPP;
563
	if (is_trap_insn((uprobe_opcode_t *)uprobe->arch.insn))
564 565 566 567 568 569 570 571 572 573 574
		goto out;

	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
	if (ret)
		goto out;

	/* write_opcode() assumes we don't cross page boundary */
	BUG_ON((uprobe->offset & ~PAGE_MASK) +
			UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);

	smp_wmb(); /* pairs with rmb() in find_active_uprobe() */
575
	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
576 577

 out:
O
Oleg Nesterov 已提交
578
	up_write(&uprobe->consumer_rwsem);
579

580 581 582
	return ret;
}

583 584
static inline bool consumer_filter(struct uprobe_consumer *uc,
				   enum uprobe_filter_ctx ctx, struct mm_struct *mm)
585
{
586
	return !uc->filter || uc->filter(uc, ctx, mm);
587 588
}

589 590
static bool filter_chain(struct uprobe *uprobe,
			 enum uprobe_filter_ctx ctx, struct mm_struct *mm)
591
{
592 593 594 595 596
	struct uprobe_consumer *uc;
	bool ret = false;

	down_read(&uprobe->consumer_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
597
		ret = consumer_filter(uc, ctx, mm);
598 599 600 601 602 603
		if (ret)
			break;
	}
	up_read(&uprobe->consumer_rwsem);

	return ret;
604 605
}

606 607
static int
install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
608
			struct vm_area_struct *vma, unsigned long vaddr)
609
{
610
	bool first_uprobe;
611 612
	int ret;

613 614 615
	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
	if (ret)
		return ret;
616

617 618 619 620 621 622 623 624
	/*
	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
	 * the task can hit this breakpoint right after __replace_page().
	 */
	first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
	if (first_uprobe)
		set_bit(MMF_HAS_UPROBES, &mm->flags);

625
	ret = set_swbp(&uprobe->arch, mm, vaddr);
626 627 628
	if (!ret)
		clear_bit(MMF_RECALC_UPROBES, &mm->flags);
	else if (first_uprobe)
629
		clear_bit(MMF_HAS_UPROBES, &mm->flags);
630 631 632 633

	return ret;
}

634
static int
635
remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
636
{
637
	set_bit(MMF_RECALC_UPROBES, &mm->flags);
638
	return set_orig_insn(&uprobe->arch, mm, vaddr);
639 640
}

641 642 643 644
static inline bool uprobe_is_active(struct uprobe *uprobe)
{
	return !RB_EMPTY_NODE(&uprobe->rb_node);
}
645
/*
646 647 648
 * There could be threads that have already hit the breakpoint. They
 * will recheck the current insn and restart if find_uprobe() fails.
 * See find_active_uprobe().
649
 */
650 651
static void delete_uprobe(struct uprobe *uprobe)
{
652 653 654
	if (WARN_ON(!uprobe_is_active(uprobe)))
		return;

655
	spin_lock(&uprobes_treelock);
656
	rb_erase(&uprobe->rb_node, &uprobes_tree);
657
	spin_unlock(&uprobes_treelock);
658
	RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
659 660 661 662
	iput(uprobe->inode);
	put_uprobe(uprobe);
}

663 664 665
struct map_info {
	struct map_info *next;
	struct mm_struct *mm;
666
	unsigned long vaddr;
667 668 669
};

static inline struct map_info *free_map_info(struct map_info *info)
670
{
671 672 673 674 675 676 677 678 679
	struct map_info *next = info->next;
	kfree(info);
	return next;
}

static struct map_info *
build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
{
	unsigned long pgoff = offset >> PAGE_SHIFT;
680
	struct vm_area_struct *vma;
681 682 683 684
	struct map_info *curr = NULL;
	struct map_info *prev = NULL;
	struct map_info *info;
	int more = 0;
685

686 687
 again:
	mutex_lock(&mapping->i_mmap_mutex);
688
	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
689 690 691
		if (!valid_vma(vma, is_register))
			continue;

692 693 694 695 696 697 698 699 700 701
		if (!prev && !more) {
			/*
			 * Needs GFP_NOWAIT to avoid i_mmap_mutex recursion through
			 * reclaim. This is optimistic, no harm done if it fails.
			 */
			prev = kmalloc(sizeof(struct map_info),
					GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
			if (prev)
				prev->next = NULL;
		}
702 703 704
		if (!prev) {
			more++;
			continue;
705 706
		}

707 708
		if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
			continue;
709

710 711 712 713
		info = prev;
		prev = prev->next;
		info->next = curr;
		curr = info;
714

715
		info->mm = vma->vm_mm;
716
		info->vaddr = offset_to_vaddr(vma, offset);
717
	}
718 719
	mutex_unlock(&mapping->i_mmap_mutex);

720 721 722 723 724 725 726 727
	if (!more)
		goto out;

	prev = curr;
	while (curr) {
		mmput(curr->mm);
		curr = curr->next;
	}
728

729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
	do {
		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
		if (!info) {
			curr = ERR_PTR(-ENOMEM);
			goto out;
		}
		info->next = prev;
		prev = info;
	} while (--more);

	goto again;
 out:
	while (prev)
		prev = free_map_info(prev);
	return curr;
744 745
}

746 747
static int
register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
748
{
749
	bool is_register = !!new;
750 751
	struct map_info *info;
	int err = 0;
752

753
	percpu_down_write(&dup_mmap_sem);
754 755
	info = build_map_info(uprobe->inode->i_mapping,
					uprobe->offset, is_register);
756 757 758 759
	if (IS_ERR(info)) {
		err = PTR_ERR(info);
		goto out;
	}
760

761 762 763
	while (info) {
		struct mm_struct *mm = info->mm;
		struct vm_area_struct *vma;
764

765
		if (err && is_register)
766
			goto free;
767

768
		down_write(&mm->mmap_sem);
769 770
		vma = find_vma(mm, info->vaddr);
		if (!vma || !valid_vma(vma, is_register) ||
O
Oleg Nesterov 已提交
771
		    file_inode(vma->vm_file) != uprobe->inode)
772 773
			goto unlock;

774 775
		if (vma->vm_start > info->vaddr ||
		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
776
			goto unlock;
777

778 779
		if (is_register) {
			/* consult only the "caller", new consumer. */
780
			if (consumer_filter(new,
781
					UPROBE_FILTER_REGISTER, mm))
782 783
				err = install_breakpoint(uprobe, mm, vma, info->vaddr);
		} else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
784 785
			if (!filter_chain(uprobe,
					UPROBE_FILTER_UNREGISTER, mm))
786 787
				err |= remove_breakpoint(uprobe, mm, info->vaddr);
		}
788

789 790 791 792 793
 unlock:
		up_write(&mm->mmap_sem);
 free:
		mmput(mm);
		info = free_map_info(info);
794
	}
795 796
 out:
	percpu_up_write(&dup_mmap_sem);
797
	return err;
798 799
}

800
static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
801
{
802
	consumer_add(uprobe, uc);
803
	return register_for_each_vma(uprobe, uc);
804 805
}

806
static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
807
{
808 809 810 811
	int err;

	if (!consumer_del(uprobe, uc))	/* WARN? */
		return;
812

813
	err = register_for_each_vma(uprobe, NULL);
814 815 816
	/* TODO : cant unregister? schedule a worker thread */
	if (!uprobe->consumers && !err)
		delete_uprobe(uprobe);
817 818 819
}

/*
820
 * uprobe_register - register a probe
821 822
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
823
 * @uc: information on howto handle the probe..
824
 *
825
 * Apart from the access refcount, uprobe_register() takes a creation
826 827
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
828
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
829
 * @uprobe even before the register operation is complete. Creation
830
 * refcount is released when the last @uc for the @uprobe
831 832 833 834 835
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
836
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
837 838
{
	struct uprobe *uprobe;
839
	int ret;
840

841
	/* Racy, just to catch the obvious mistakes */
842
	if (offset > i_size_read(inode))
843
		return -EINVAL;
844

845
 retry:
846
	uprobe = alloc_uprobe(inode, offset);
847 848 849 850 851 852 853 854 855
	if (!uprobe)
		return -ENOMEM;
	/*
	 * We can race with uprobe_unregister()->delete_uprobe().
	 * Check uprobe_is_active() and retry if it is false.
	 */
	down_write(&uprobe->register_rwsem);
	ret = -EAGAIN;
	if (likely(uprobe_is_active(uprobe))) {
856 857
		ret = __uprobe_register(uprobe, uc);
		if (ret)
858
			__uprobe_unregister(uprobe, uc);
859
	}
860 861
	up_write(&uprobe->register_rwsem);
	put_uprobe(uprobe);
862

863 864
	if (unlikely(ret == -EAGAIN))
		goto retry;
865 866
	return ret;
}
J
Josh Stone 已提交
867
EXPORT_SYMBOL_GPL(uprobe_register);
868

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897
/*
 * uprobe_apply - unregister a already registered probe.
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
 * @uc: consumer which wants to add more or remove some breakpoints
 * @add: add or remove the breakpoints
 */
int uprobe_apply(struct inode *inode, loff_t offset,
			struct uprobe_consumer *uc, bool add)
{
	struct uprobe *uprobe;
	struct uprobe_consumer *con;
	int ret = -ENOENT;

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return ret;

	down_write(&uprobe->register_rwsem);
	for (con = uprobe->consumers; con && con != uc ; con = con->next)
		;
	if (con)
		ret = register_for_each_vma(uprobe, add ? uc : NULL);
	up_write(&uprobe->register_rwsem);
	put_uprobe(uprobe);

	return ret;
}

898
/*
899
 * uprobe_unregister - unregister a already registered probe.
900 901
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
902
 * @uc: identify which probe if multiple probes are colocated.
903
 */
904
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
905
{
906
	struct uprobe *uprobe;
907 908 909 910 911

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

912
	down_write(&uprobe->register_rwsem);
913
	__uprobe_unregister(uprobe, uc);
914
	up_write(&uprobe->register_rwsem);
S
Sasha Levin 已提交
915
	put_uprobe(uprobe);
916
}
J
Josh Stone 已提交
917
EXPORT_SYMBOL_GPL(uprobe_unregister);
918

919 920 921 922 923 924 925 926 927 928 929
static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
{
	struct vm_area_struct *vma;
	int err = 0;

	down_read(&mm->mmap_sem);
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		unsigned long vaddr;
		loff_t offset;

		if (!valid_vma(vma, false) ||
O
Oleg Nesterov 已提交
930
		    file_inode(vma->vm_file) != uprobe->inode)
931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
			continue;

		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
		if (uprobe->offset <  offset ||
		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
			continue;

		vaddr = offset_to_vaddr(vma, uprobe->offset);
		err |= remove_breakpoint(uprobe, mm, vaddr);
	}
	up_read(&mm->mmap_sem);

	return err;
}

946 947
static struct rb_node *
find_node_in_range(struct inode *inode, loff_t min, loff_t max)
948 949 950 951
{
	struct rb_node *n = uprobes_tree.rb_node;

	while (n) {
952
		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
953

954
		if (inode < u->inode) {
955
			n = n->rb_left;
956
		} else if (inode > u->inode) {
957
			n = n->rb_right;
958 959 960 961 962 963 964 965
		} else {
			if (max < u->offset)
				n = n->rb_left;
			else if (min > u->offset)
				n = n->rb_right;
			else
				break;
		}
966
	}
967

968
	return n;
969 970 971
}

/*
972
 * For a given range in vma, build a list of probes that need to be inserted.
973
 */
974 975 976 977
static void build_probe_list(struct inode *inode,
				struct vm_area_struct *vma,
				unsigned long start, unsigned long end,
				struct list_head *head)
978
{
979 980 981
	loff_t min, max;
	struct rb_node *n, *t;
	struct uprobe *u;
982

983
	INIT_LIST_HEAD(head);
984
	min = vaddr_to_offset(vma, start);
985
	max = min + (end - start) - 1;
986

987
	spin_lock(&uprobes_treelock);
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003
	n = find_node_in_range(inode, min, max);
	if (n) {
		for (t = n; t; t = rb_prev(t)) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset < min)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
		for (t = n; (t = rb_next(t)); ) {
			u = rb_entry(t, struct uprobe, rb_node);
			if (u->inode != inode || u->offset > max)
				break;
			list_add(&u->pending_list, head);
			atomic_inc(&u->ref);
		}
1004
	}
1005
	spin_unlock(&uprobes_treelock);
1006 1007 1008
}

/*
1009
 * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1010
 *
1011 1012
 * Currently we ignore all errors and always return 0, the callers
 * can't handle the failure anyway.
1013
 */
1014
int uprobe_mmap(struct vm_area_struct *vma)
1015 1016
{
	struct list_head tmp_list;
1017
	struct uprobe *uprobe, *u;
1018 1019
	struct inode *inode;

1020
	if (no_uprobe_events() || !valid_vma(vma, true))
1021
		return 0;
1022

O
Oleg Nesterov 已提交
1023
	inode = file_inode(vma->vm_file);
1024
	if (!inode)
1025
		return 0;
1026 1027

	mutex_lock(uprobes_mmap_hash(inode));
1028
	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1029 1030 1031 1032 1033
	/*
	 * We can race with uprobe_unregister(), this uprobe can be already
	 * removed. But in this case filter_chain() must return false, all
	 * consumers have gone away.
	 */
1034
	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1035
		if (!fatal_signal_pending(current) &&
1036
		    filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1037
			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1038
			install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1039 1040 1041 1042 1043
		}
		put_uprobe(uprobe);
	}
	mutex_unlock(uprobes_mmap_hash(inode));

1044
	return 0;
1045 1046
}

1047 1048 1049 1050 1051 1052 1053
static bool
vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
	loff_t min, max;
	struct inode *inode;
	struct rb_node *n;

O
Oleg Nesterov 已提交
1054
	inode = file_inode(vma->vm_file);
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065

	min = vaddr_to_offset(vma, start);
	max = min + (end - start) - 1;

	spin_lock(&uprobes_treelock);
	n = find_node_in_range(inode, min, max);
	spin_unlock(&uprobes_treelock);

	return !!n;
}

1066 1067 1068
/*
 * Called in context of a munmap of a vma.
 */
1069
void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1070
{
1071
	if (no_uprobe_events() || !valid_vma(vma, false))
1072 1073
		return;

1074 1075 1076
	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
		return;

1077 1078
	if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
	     test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1079 1080
		return;

1081 1082
	if (vma_has_uprobes(vma, start, end))
		set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1083 1084
}

1085 1086 1087
/* Slot allocation for XOL */
static int xol_add_vma(struct xol_area *area)
{
1088 1089
	struct mm_struct *mm = current->mm;
	int ret = -EALREADY;
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110

	down_write(&mm->mmap_sem);
	if (mm->uprobes_state.xol_area)
		goto fail;

	ret = -ENOMEM;
	/* Try to map as high as possible, this is only a hint. */
	area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE, PAGE_SIZE, 0, 0);
	if (area->vaddr & ~PAGE_MASK) {
		ret = area->vaddr;
		goto fail;
	}

	ret = install_special_mapping(mm, area->vaddr, PAGE_SIZE,
				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO, &area->page);
	if (ret)
		goto fail;

	smp_wmb();	/* pairs with get_xol_area() */
	mm->uprobes_state.xol_area = area;
	ret = 0;
1111
 fail:
1112 1113 1114 1115 1116 1117
	up_write(&mm->mmap_sem);

	return ret;
}

/*
1118 1119
 * get_xol_area - Allocate process's xol_area if necessary.
 * This area will be used for storing instructions for execution out of line.
1120 1121 1122
 *
 * Returns the allocated area or NULL.
 */
1123
static struct xol_area *get_xol_area(void)
1124
{
1125
	struct mm_struct *mm = current->mm;
1126 1127
	struct xol_area *area;

1128 1129 1130 1131
	area = mm->uprobes_state.xol_area;
	if (area)
		goto ret;

1132 1133
	area = kzalloc(sizeof(*area), GFP_KERNEL);
	if (unlikely(!area))
1134
		goto out;
1135 1136 1137

	area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
	if (!area->bitmap)
1138 1139 1140 1141 1142
		goto free_area;

	area->page = alloc_page(GFP_HIGHUSER);
	if (!area->page)
		goto free_bitmap;
1143 1144 1145 1146 1147

	init_waitqueue_head(&area->wq);
	if (!xol_add_vma(area))
		return area;

1148 1149
	__free_page(area->page);
 free_bitmap:
1150
	kfree(area->bitmap);
1151
 free_area:
1152
	kfree(area);
1153
 out:
1154 1155 1156 1157
	area = mm->uprobes_state.xol_area;
 ret:
	smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
	return area;
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
}

/*
 * uprobe_clear_state - Free the area allocated for slots.
 */
void uprobe_clear_state(struct mm_struct *mm)
{
	struct xol_area *area = mm->uprobes_state.xol_area;

	if (!area)
		return;

	put_page(area->page);
	kfree(area->bitmap);
	kfree(area);
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
void uprobe_start_dup_mmap(void)
{
	percpu_down_read(&dup_mmap_sem);
}

void uprobe_end_dup_mmap(void)
{
	percpu_up_read(&dup_mmap_sem);
}

1185 1186
void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
{
1187 1188
	newmm->uprobes_state.xol_area = NULL;

1189
	if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1190
		set_bit(MMF_HAS_UPROBES, &newmm->flags);
1191 1192 1193
		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
		set_bit(MMF_RECALC_UPROBES, &newmm->flags);
	}
1194 1195
}

1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222
/*
 *  - search for a free slot.
 */
static unsigned long xol_take_insn_slot(struct xol_area *area)
{
	unsigned long slot_addr;
	int slot_nr;

	do {
		slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
		if (slot_nr < UINSNS_PER_PAGE) {
			if (!test_and_set_bit(slot_nr, area->bitmap))
				break;

			slot_nr = UINSNS_PER_PAGE;
			continue;
		}
		wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
	} while (slot_nr >= UINSNS_PER_PAGE);

	slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
	atomic_inc(&area->slot_count);

	return slot_addr;
}

/*
1223
 * xol_get_insn_slot - allocate a slot for xol.
1224 1225
 * Returns the allocated slot address or 0.
 */
1226
static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1227 1228
{
	struct xol_area *area;
1229
	unsigned long xol_vaddr;
1230

1231 1232 1233
	area = get_xol_area();
	if (!area)
		return 0;
1234

1235 1236
	xol_vaddr = xol_take_insn_slot(area);
	if (unlikely(!xol_vaddr))
1237 1238
		return 0;

1239
	/* Initialize the slot */
1240
	copy_to_page(area->page, xol_vaddr, uprobe->arch.insn, MAX_UINSN_BYTES);
1241 1242 1243 1244 1245
	/*
	 * We probably need flush_icache_user_range() but it needs vma.
	 * This should work on supported architectures too.
	 */
	flush_dcache_page(area->page);
1246

1247
	return xol_vaddr;
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264
}

/*
 * xol_free_insn_slot - If slot was earlier allocated by
 * @xol_get_insn_slot(), make the slot available for
 * subsequent requests.
 */
static void xol_free_insn_slot(struct task_struct *tsk)
{
	struct xol_area *area;
	unsigned long vma_end;
	unsigned long slot_addr;

	if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
		return;

	slot_addr = tsk->utask->xol_vaddr;
1265
	if (unlikely(!slot_addr))
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
		return;

	area = tsk->mm->uprobes_state.xol_area;
	vma_end = area->vaddr + PAGE_SIZE;
	if (area->vaddr <= slot_addr && slot_addr < vma_end) {
		unsigned long offset;
		int slot_nr;

		offset = slot_addr - area->vaddr;
		slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
		if (slot_nr >= UINSNS_PER_PAGE)
			return;

		clear_bit(slot_nr, area->bitmap);
		atomic_dec(&area->slot_count);
		if (waitqueue_active(&area->wq))
			wake_up(&area->wq);

		tsk->utask->xol_vaddr = 0;
	}
}

1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312
/**
 * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
 * @regs: Reflects the saved state of the task after it has hit a breakpoint
 * instruction.
 * Return the address of the breakpoint instruction.
 */
unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
{
	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
}

/*
 * Called with no locks held.
 * Called in context of a exiting or a exec-ing thread.
 */
void uprobe_free_utask(struct task_struct *t)
{
	struct uprobe_task *utask = t->utask;

	if (!utask)
		return;

	if (utask->active_uprobe)
		put_uprobe(utask->active_uprobe);

1313
	xol_free_insn_slot(t);
1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
	kfree(utask);
	t->utask = NULL;
}

/*
 * Called in context of a new clone/fork from copy_process.
 */
void uprobe_copy_process(struct task_struct *t)
{
	t->utask = NULL;
}

/*
1327 1328
 * Allocate a uprobe_task object for the task if if necessary.
 * Called when the thread hits a breakpoint.
1329 1330 1331 1332 1333
 *
 * Returns:
 * - pointer to new uprobe_task on success
 * - NULL otherwise
 */
1334
static struct uprobe_task *get_utask(void)
1335
{
1336 1337 1338
	if (!current->utask)
		current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
	return current->utask;
1339 1340 1341 1342
}

/* Prepare to single-step probed instruction out of line. */
static int
1343
pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1344
{
1345 1346
	struct uprobe_task *utask;
	unsigned long xol_vaddr;
1347
	int err;
1348

1349 1350 1351
	utask = get_utask();
	if (!utask)
		return -ENOMEM;
1352 1353 1354 1355 1356 1357 1358

	xol_vaddr = xol_get_insn_slot(uprobe);
	if (!xol_vaddr)
		return -ENOMEM;

	utask->xol_vaddr = xol_vaddr;
	utask->vaddr = bp_vaddr;
1359

1360 1361 1362 1363 1364 1365
	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
	if (unlikely(err)) {
		xol_free_insn_slot(current);
		return err;
	}

1366 1367
	utask->active_uprobe = uprobe;
	utask->state = UTASK_SSTEP;
1368
	return 0;
1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
}

/*
 * If we are singlestepping, then ensure this thread is not connected to
 * non-fatal signals until completion of singlestep.  When xol insn itself
 * triggers the signal,  restart the original insn even if the task is
 * already SIGKILL'ed (since coredump should report the correct ip).  This
 * is even more important if the task has a handler for SIGSEGV/etc, The
 * _same_ instruction should be repeated again after return from the signal
 * handler, and SSTEP can never finish in this case.
 */
bool uprobe_deny_signal(void)
{
	struct task_struct *t = current;
	struct uprobe_task *utask = t->utask;

	if (likely(!utask || !utask->active_uprobe))
		return false;

	WARN_ON_ONCE(utask->state != UTASK_SSTEP);

	if (signal_pending(t)) {
		spin_lock_irq(&t->sighand->siglock);
		clear_tsk_thread_flag(t, TIF_SIGPENDING);
		spin_unlock_irq(&t->sighand->siglock);

		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
			utask->state = UTASK_SSTEP_TRAPPED;
			set_tsk_thread_flag(t, TIF_UPROBE);
			set_tsk_thread_flag(t, TIF_NOTIFY_RESUME);
		}
	}

	return true;
}

/*
 * Avoid singlestepping the original instruction if the original instruction
 * is a NOP or can be emulated.
 */
static bool can_skip_sstep(struct uprobe *uprobe, struct pt_regs *regs)
{
1411
	if (test_bit(UPROBE_SKIP_SSTEP, &uprobe->flags)) {
1412 1413
		if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
			return true;
1414
		clear_bit(UPROBE_SKIP_SSTEP, &uprobe->flags);
1415
	}
1416 1417 1418
	return false;
}

1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
static void mmf_recalc_uprobes(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		if (!valid_vma(vma, false))
			continue;
		/*
		 * This is not strictly accurate, we can race with
		 * uprobe_unregister() and see the already removed
		 * uprobe if delete_uprobe() was not yet called.
1430
		 * Or this uprobe can be filtered out.
1431 1432 1433 1434 1435 1436 1437 1438
		 */
		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
			return;
	}

	clear_bit(MMF_HAS_UPROBES, &mm->flags);
}

1439
static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
{
	struct page *page;
	uprobe_opcode_t opcode;
	int result;

	pagefault_disable();
	result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
							sizeof(opcode));
	pagefault_enable();

	if (likely(result == 0))
		goto out;

	result = get_user_pages(NULL, mm, vaddr, 1, 0, 1, &page, NULL);
	if (result < 0)
		return result;

1457
	copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1458 1459
	put_page(page);
 out:
1460 1461
	/* This needs to return true for any variant of the trap insn */
	return is_trap_insn(&opcode);
1462 1463
}

1464
static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1465
{
1466 1467
	struct mm_struct *mm = current->mm;
	struct uprobe *uprobe = NULL;
1468 1469 1470 1471
	struct vm_area_struct *vma;

	down_read(&mm->mmap_sem);
	vma = find_vma(mm, bp_vaddr);
1472 1473
	if (vma && vma->vm_start <= bp_vaddr) {
		if (valid_vma(vma, false)) {
O
Oleg Nesterov 已提交
1474
			struct inode *inode = file_inode(vma->vm_file);
1475
			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1476

1477 1478
			uprobe = find_uprobe(inode, offset);
		}
1479 1480

		if (!uprobe)
1481
			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
1482 1483
	} else {
		*is_swbp = -EFAULT;
1484
	}
1485 1486 1487

	if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
		mmf_recalc_uprobes(mm);
1488 1489
	up_read(&mm->mmap_sem);

1490 1491 1492
	return uprobe;
}

1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
{
	struct uprobe_consumer *uc;
	int remove = UPROBE_HANDLER_REMOVE;

	down_read(&uprobe->register_rwsem);
	for (uc = uprobe->consumers; uc; uc = uc->next) {
		int rc = uc->handler(uc, regs);

		WARN(rc & ~UPROBE_HANDLER_MASK,
			"bad rc=0x%x from %pf()\n", rc, uc->handler);
		remove &= rc;
	}

	if (remove && uprobe->consumers) {
		WARN_ON(!uprobe_is_active(uprobe));
		unapply_uprobe(uprobe, current->mm);
	}
	up_read(&uprobe->register_rwsem);
}

1514 1515 1516 1517 1518 1519 1520 1521
/*
 * Run handler and ask thread to singlestep.
 * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
 */
static void handle_swbp(struct pt_regs *regs)
{
	struct uprobe *uprobe;
	unsigned long bp_vaddr;
1522
	int uninitialized_var(is_swbp);
1523 1524

	bp_vaddr = uprobe_get_swbp_addr(regs);
1525
	uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1526

1527
	if (!uprobe) {
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
		if (is_swbp > 0) {
			/* No matching uprobe; signal SIGTRAP. */
			send_sig(SIGTRAP, current, 0);
		} else {
			/*
			 * Either we raced with uprobe_unregister() or we can't
			 * access this memory. The latter is only possible if
			 * another thread plays with our ->mm. In both cases
			 * we can simply restart. If this vma was unmapped we
			 * can pretend this insn was not executed yet and get
			 * the (correct) SIGSEGV after restart.
			 */
			instruction_pointer_set(regs, bp_vaddr);
		}
1542 1543
		return;
	}
1544 1545 1546 1547

	/* change it in advance for ->handler() and restart */
	instruction_pointer_set(regs, bp_vaddr);

1548 1549 1550 1551 1552 1553
	/*
	 * TODO: move copy_insn/etc into _register and remove this hack.
	 * After we hit the bp, _unregister + _register can install the
	 * new and not-yet-analyzed uprobe at the same address, restart.
	 */
	smp_rmb(); /* pairs with wmb() in install_breakpoint() */
1554
	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1555
		goto out;
1556 1557

	handler_chain(uprobe, regs);
1558 1559
	if (can_skip_sstep(uprobe, regs))
		goto out;
1560

1561
	if (!pre_ssout(uprobe, regs, bp_vaddr))
1562 1563
		return;

1564
	/* can_skip_sstep() succeeded, or restart if can't singlestep */
1565
out:
1566
	put_uprobe(uprobe);
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
}

/*
 * Perform required fix-ups and disable singlestep.
 * Allow pending signals to take effect.
 */
static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
{
	struct uprobe *uprobe;

	uprobe = utask->active_uprobe;
	if (utask->state == UTASK_SSTEP_ACK)
		arch_uprobe_post_xol(&uprobe->arch, regs);
	else if (utask->state == UTASK_SSTEP_TRAPPED)
		arch_uprobe_abort_xol(&uprobe->arch, regs);
	else
		WARN_ON_ONCE(1);

	put_uprobe(uprobe);
	utask->active_uprobe = NULL;
	utask->state = UTASK_RUNNING;
1588
	xol_free_insn_slot(current);
1589 1590 1591 1592 1593 1594 1595

	spin_lock_irq(&current->sighand->siglock);
	recalc_sigpending(); /* see uprobe_deny_signal() */
	spin_unlock_irq(&current->sighand->siglock);
}

/*
O
Oleg Nesterov 已提交
1596 1597 1598
 * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
 * allows the thread to return from interrupt. After that handle_swbp()
 * sets utask->active_uprobe.
1599
 *
O
Oleg Nesterov 已提交
1600 1601
 * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
 * and allows the thread to return from interrupt.
1602 1603 1604 1605 1606 1607 1608 1609
 *
 * While returning to userspace, thread notices the TIF_UPROBE flag and calls
 * uprobe_notify_resume().
 */
void uprobe_notify_resume(struct pt_regs *regs)
{
	struct uprobe_task *utask;

1610 1611
	clear_thread_flag(TIF_UPROBE);

1612
	utask = current->utask;
O
Oleg Nesterov 已提交
1613
	if (utask && utask->active_uprobe)
1614
		handle_singlestep(utask, regs);
O
Oleg Nesterov 已提交
1615 1616
	else
		handle_swbp(regs);
1617 1618 1619 1620 1621 1622 1623 1624
}

/*
 * uprobe_pre_sstep_notifier gets called from interrupt context as part of
 * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
 */
int uprobe_pre_sstep_notifier(struct pt_regs *regs)
{
1625
	if (!current->mm || !test_bit(MMF_HAS_UPROBES, &current->mm->flags))
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
		return 0;

	set_thread_flag(TIF_UPROBE);
	return 1;
}

/*
 * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
 * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
 */
int uprobe_post_sstep_notifier(struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (!current->mm || !utask || !utask->active_uprobe)
		/* task is currently not uprobed */
		return 0;

	utask->state = UTASK_SSTEP_ACK;
	set_thread_flag(TIF_UPROBE);
	return 1;
}

static struct notifier_block uprobe_exception_nb = {
	.notifier_call		= arch_uprobe_exception_notify,
	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
};

1654 1655 1656 1657
static int __init init_uprobes(void)
{
	int i;

1658
	for (i = 0; i < UPROBES_HASH_SZ; i++)
1659
		mutex_init(&uprobes_mmap_mutex[i]);
1660

1661 1662 1663
	if (percpu_init_rwsem(&dup_mmap_sem))
		return -ENOMEM;

1664
	return register_die_notifier(&uprobe_exception_nb);
1665
}
1666
module_init(init_uprobes);
1667 1668 1669 1670 1671

static void __exit exit_uprobes(void)
{
}
module_exit(exit_uprobes);