slab.c 117.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104 105
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
#include	<linux/rcupdate.h>
106
#include	<linux/string.h>
107
#include	<linux/uaccess.h>
108
#include	<linux/nodemask.h>
109
#include	<linux/kmemleak.h>
110
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
111
#include	<linux/mutex.h>
112
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
113
#include	<linux/rtmutex.h>
114
#include	<linux/reciprocal_div.h>
115
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
116
#include	<linux/kmemcheck.h>
117
#include	<linux/memory.h>
L
Linus Torvalds 已提交
118 119 120 121 122 123

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
124
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
145
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
146 147 148 149 150 151 152

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
153
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
154
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
155
			 SLAB_CACHE_DMA | \
156
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
157
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
158
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
159
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
160
#else
161
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
162
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
163
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
164
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
165
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

187
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
188 189
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
190 191
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
208
	struct rcu_head head;
209
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
210
	void *addr;
L
Linus Torvalds 已提交
211 212
};

213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

L
Linus Torvalds 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
251
	spinlock_t lock;
252
	void *entry[];	/*
A
Andrew Morton 已提交
253 254 255 256
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
257 258
};

A
Andrew Morton 已提交
259 260 261
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
262 263 264 265
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
266
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
267 268 269
};

/*
270
 * The slab lists for all objects.
L
Linus Torvalds 已提交
271 272
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
273 274 275 276 277
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
278
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
279 280 281
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
282 283
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
284 285
};

286 287 288
/*
 * Need this for bootstrapping a per node allocator.
 */
289
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
290
static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
291
#define	CACHE_CACHE 0
292 293
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
294

295 296 297 298
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
299
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
300
static void cache_reap(struct work_struct *unused);
301

302
/*
A
Andrew Morton 已提交
303 304
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
305
 */
306
static __always_inline int index_of(const size_t size)
307
{
308 309
	extern void __bad_size(void);

310 311 312 313 314 315 316 317
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
318
#include <linux/kmalloc_sizes.h>
319
#undef CACHE
320
		__bad_size();
321
	} else
322
		__bad_size();
323 324 325
	return 0;
}

326 327
static int slab_early_init = 1;

328 329
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
330

P
Pekka Enberg 已提交
331
static void kmem_list3_init(struct kmem_list3 *parent)
332 333 334 335 336 337
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
338
	parent->colour_next = 0;
339 340 341 342 343
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
344 345 346 347
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
348 349
	} while (0)

A
Andrew Morton 已提交
350 351
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
352 353 354 355
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
356 357 358 359 360

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
361 362 363
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
364
 *
A
Adrian Bunk 已提交
365
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
366 367 368 369 370 371 372 373 374 375
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
376
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
377 378 379 380 381
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
382 383
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
384
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
385
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
386 387 388 389 390
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
391 392 393 394 395 396 397 398 399
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
400
#define	STATS_ADD_REAPED(x,y)	do { (void)(y); } while (0)
L
Linus Torvalds 已提交
401 402 403
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
404
#define	STATS_INC_NODEFREES(x)	do { } while (0)
405
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
406
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
407 408 409 410 411 412 413 414
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
415 416
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
417
 * 0		: objp
418
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
419 420
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
421
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
422
 * 		redzone word.
423 424
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
425 426
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
427
 */
428
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
429
{
430
	return cachep->obj_offset;
L
Linus Torvalds 已提交
431 432
}

433
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
434
{
435
	return cachep->obj_size;
L
Linus Torvalds 已提交
436 437
}

438
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
439 440
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
441 442
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
443 444
}

445
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
446 447 448
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
449 450
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
451
					      REDZONE_ALIGN);
452 453
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
454 455
}

456
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
457 458
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
459
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
460 461 462 463
}

#else

464 465
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
466 467
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
468 469 470 471
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

472
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
473 474 475 476 477 478 479
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
480 481 482 483 484 485 486
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
487 488 489 490
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
491
 */
492 493 494 495 496 497 498
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
499
	page = compound_head(page);
500
	BUG_ON(!PageSlab(page));
501 502 503 504 505 506 507 508 509 510
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
511
	BUG_ON(!PageSlab(page));
512 513
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
514

515 516
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
517
	struct page *page = virt_to_head_page(obj);
518 519 520 521 522
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
523
	struct page *page = virt_to_head_page(obj);
524 525 526
	return page_get_slab(page);
}

527 528 529 530 531 532
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

533 534 535 536 537 538 539 540
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
541
{
542 543
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
544 545
}

A
Andrew Morton 已提交
546 547 548
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
566
	{NULL,}
L
Linus Torvalds 已提交
567 568 569 570
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
571
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
572
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
573
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
574 575

/* internal cache of cache description objs */
576
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
577 578 579
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
580
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
581
	.name = "kmem_cache",
L
Linus Torvalds 已提交
582 583
};

584 585
#define BAD_ALIEN_MAGIC 0x01020304ul

586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
	PARTIAL_AC,
	PARTIAL_L3,
	EARLY,
	FULL
} g_cpucache_up;

/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up >= EARLY;
}

606 607 608 609 610 611 612 613
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
614 615 616 617
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
618
 */
619 620 621
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

622
static void init_node_lock_keys(int q)
623
{
624 625
	struct cache_sizes *s = malloc_sizes;

626 627 628 629 630 631 632 633 634 635
	if (g_cpucache_up != FULL)
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct array_cache **alc;
		struct kmem_list3 *l3;
		int r;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
636
			continue;
637 638 639 640 641 642 643 644 645 646
		lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
		alc = l3->alien;
		/*
		 * FIXME: This check for BAD_ALIEN_MAGIC
		 * should go away when common slab code is taught to
		 * work even without alien caches.
		 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
		 * for alloc_alien_cache,
		 */
		if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
647
			continue;
648 649 650 651
		for_each_node(r) {
			if (alc[r])
				lockdep_set_class(&alc[r]->lock,
					&on_slab_alc_key);
652
		}
653 654
	}
}
655 656 657 658 659 660 661 662

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
663
#else
664 665 666 667
static void init_node_lock_keys(int q)
{
}

668
static inline void init_lock_keys(void)
669 670 671 672
{
}
#endif

673
/*
674
 * Guard access to the cache-chain.
675
 */
I
Ingo Molnar 已提交
676
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
677 678
static struct list_head cache_chain;

679
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
680

681
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
682 683 684 685
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
686 687
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
688 689 690 691 692
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
693 694 695
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
696
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
697
#endif
698 699 700
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
701 702 703 704
	while (size > csizep->cs_size)
		csizep++;

	/*
705
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
706 707 708
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
709
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
710 711
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
712
#endif
L
Linus Torvalds 已提交
713 714 715
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
716
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
717 718 719 720
{
	return __find_general_cachep(size, gfpflags);
}

721
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
722
{
723 724
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
725

A
Andrew Morton 已提交
726 727 728
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
729 730 731 732 733 734 735
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
736

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
785 786
}

787
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
788

A
Andrew Morton 已提交
789 790
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
791 792
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
793
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
794 795 796
	dump_stack();
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

813 814 815 816 817 818 819
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
820
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
821 822 823 824 825

static void init_reap_node(int cpu)
{
	int node;

826
	node = next_node(cpu_to_mem(cpu), node_online_map);
827
	if (node == MAX_NUMNODES)
828
		node = first_node(node_online_map);
829

830
	per_cpu(slab_reap_node, cpu) = node;
831 832 833 834
}

static void next_reap_node(void)
{
835
	int node = __this_cpu_read(slab_reap_node);
836 837 838 839

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
840
	__this_cpu_write(slab_reap_node, node);
841 842 843 844 845 846 847
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
848 849 850 851 852 853 854
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
855
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
856
{
857
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
858 859 860 861 862 863

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
864
	if (keventd_up() && reap_work->work.func == NULL) {
865
		init_reap_node(cpu);
866
		INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
867 868
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
869 870 871
	}
}

872
static struct array_cache *alloc_arraycache(int node, int entries,
873
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
874
{
P
Pekka Enberg 已提交
875
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
876 877
	struct array_cache *nc = NULL;

878
	nc = kmalloc_node(memsize, gfp, node);
879 880
	/*
	 * The array_cache structures contain pointers to free object.
L
Lucas De Marchi 已提交
881
	 * However, when such objects are allocated or transferred to another
882 883 884 885 886
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
887 888 889 890 891
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
892
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
893 894 895 896
	}
	return nc;
}

897 898 899 900 901 902 903 904 905 906
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
907
	int nr = min3(from->avail, max, to->limit - to->avail);
908 909 910 911 912 913 914 915 916 917 918 919

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

920 921 922 923 924
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

925
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

945
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
946 947 948 949 950 951 952
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

953
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
954
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
955

956
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
957 958
{
	struct array_cache **ac_ptr;
959
	int memsize = sizeof(void *) * nr_node_ids;
960 961 962 963
	int i;

	if (limit > 1)
		limit = 12;
964
	ac_ptr = kzalloc_node(memsize, gfp, node);
965 966
	if (ac_ptr) {
		for_each_node(i) {
967
			if (i == node || !node_online(i))
968
				continue;
969
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
970
			if (!ac_ptr[i]) {
971
				for (i--; i >= 0; i--)
972 973 974 975 976 977 978 979 980
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
981
static void free_alien_cache(struct array_cache **ac_ptr)
982 983 984 985 986 987
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
988
	    kfree(ac_ptr[i]);
989 990 991
	kfree(ac_ptr);
}

992
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
993
				struct array_cache *ac, int node)
994 995 996 997 998
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
999 1000 1001 1002 1003
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1004 1005
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1006

1007
		free_block(cachep, ac->entry, ac->avail, node);
1008 1009 1010 1011 1012
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1013 1014 1015 1016 1017
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1018
	int node = __this_cpu_read(slab_reap_node);
1019 1020 1021

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1022 1023

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1024 1025 1026 1027 1028 1029
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1030 1031
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1032
{
P
Pekka Enberg 已提交
1033
	int i = 0;
1034 1035 1036 1037
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1038
		ac = alien[i];
1039 1040 1041 1042 1043 1044 1045
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1046

1047
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1048 1049 1050 1051 1052
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1053 1054
	int node;

1055
	node = numa_mem_id();
1056 1057 1058 1059 1060

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1061
	if (likely(slabp->nodeid == node))
1062 1063
		return 0;

P
Pekka Enberg 已提交
1064
	l3 = cachep->nodelists[node];
1065 1066 1067
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1068
		spin_lock(&alien->lock);
1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1082 1083
#endif

1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
/*
 * Allocates and initializes nodelists for a node on each slab cache, used for
 * either memory or cpu hotplug.  If memory is being hot-added, the kmem_list3
 * will be allocated off-node since memory is not yet online for the new node.
 * When hotplugging memory or a cpu, existing nodelists are not replaced if
 * already in use.
 *
 * Must hold cache_chain_mutex.
 */
static int init_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3;
	const int memsize = sizeof(struct kmem_list3);

	list_for_each_entry(cachep, &cache_chain, next) {
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				return -ENOMEM;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;

			/*
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
			 */
			cachep->nodelists[node] = l3;
		}

		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}
	return 0;
}

1130 1131 1132 1133
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
1134
	int node = cpu_to_mem(cpu);
1135
	const struct cpumask *mask = cpumask_of_node(node);
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1157
		if (!cpumask_empty(mask)) {
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1196
{
1197
	struct kmem_cache *cachep;
1198
	struct kmem_list3 *l3 = NULL;
1199
	int node = cpu_to_mem(cpu);
1200
	int err;
L
Linus Torvalds 已提交
1201

1202 1203 1204 1205 1206 1207
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */
1208 1209 1210
	err = init_cache_nodelists_node(node);
	if (err < 0)
		goto bad;
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1222
					cachep->batchcount, GFP_KERNEL);
1223 1224 1225 1226 1227
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1228
				0xbaadf00d, GFP_KERNEL);
1229 1230
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1231
				goto bad;
1232
			}
1233 1234
		}
		if (use_alien_caches) {
1235
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1236 1237 1238
			if (!alien) {
				kfree(shared);
				kfree(nc);
1239
				goto bad;
1240
			}
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1255
#ifdef CONFIG_NUMA
1256 1257 1258
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1259
		}
1260 1261 1262 1263 1264
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
1265 1266
	init_node_lock_keys(node);

1267 1268
	return 0;
bad:
1269
	cpuup_canceled(cpu);
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1282
		mutex_lock(&cache_chain_mutex);
1283
		err = cpuup_prepare(cpu);
1284
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1285 1286
		break;
	case CPU_ONLINE:
1287
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1288 1289 1290
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1291
  	case CPU_DOWN_PREPARE:
1292
  	case CPU_DOWN_PREPARE_FROZEN:
1293 1294 1295 1296 1297 1298
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1299
		cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1300
		/* Now the cache_reaper is guaranteed to be not running. */
1301
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1302 1303
  		break;
  	case CPU_DOWN_FAILED:
1304
  	case CPU_DOWN_FAILED_FROZEN:
1305 1306
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1307
	case CPU_DEAD:
1308
	case CPU_DEAD_FROZEN:
1309 1310 1311 1312 1313 1314 1315 1316
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1317
		/* fall through */
1318
#endif
L
Linus Torvalds 已提交
1319
	case CPU_UP_CANCELED:
1320
	case CPU_UP_CANCELED_FROZEN:
1321
		mutex_lock(&cache_chain_mutex);
1322
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1323
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1324 1325
		break;
	}
1326
	return notifier_from_errno(err);
L
Linus Torvalds 已提交
1327 1328
}

1329 1330 1331
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1332

1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
/*
 * Drains freelist for a node on each slab cache, used for memory hot-remove.
 * Returns -EBUSY if all objects cannot be drained so that the node is not
 * removed.
 *
 * Must hold cache_chain_mutex.
 */
static int __meminit drain_cache_nodelists_node(int node)
{
	struct kmem_cache *cachep;
	int ret = 0;

	list_for_each_entry(cachep, &cache_chain, next) {
		struct kmem_list3 *l3;

		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		if (!list_empty(&l3->slabs_full) ||
		    !list_empty(&l3->slabs_partial)) {
			ret = -EBUSY;
			break;
		}
	}
	return ret;
}

static int __meminit slab_memory_callback(struct notifier_block *self,
					unsigned long action, void *arg)
{
	struct memory_notify *mnb = arg;
	int ret = 0;
	int nid;

	nid = mnb->status_change_nid;
	if (nid < 0)
		goto out;

	switch (action) {
	case MEM_GOING_ONLINE:
		mutex_lock(&cache_chain_mutex);
		ret = init_cache_nodelists_node(nid);
		mutex_unlock(&cache_chain_mutex);
		break;
	case MEM_GOING_OFFLINE:
		mutex_lock(&cache_chain_mutex);
		ret = drain_cache_nodelists_node(nid);
		mutex_unlock(&cache_chain_mutex);
		break;
	case MEM_ONLINE:
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
out:
1393
	return notifier_from_errno(ret);
1394 1395 1396
}
#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */

1397 1398 1399
/*
 * swap the static kmem_list3 with kmalloced memory
 */
1400 1401
static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
				int nodeid)
1402 1403 1404
{
	struct kmem_list3 *ptr;

1405
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1406 1407 1408
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1409 1410 1411 1412 1413
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1414 1415 1416 1417
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1434 1435 1436
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1437 1438 1439 1440 1441 1442
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1443
	int i;
1444
	int order;
P
Pekka Enberg 已提交
1445
	int node;
1446

1447
	if (num_possible_nodes() == 1)
1448 1449
		use_alien_caches = 0;

1450 1451 1452 1453 1454
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1455
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1456 1457 1458 1459 1460

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
1461
	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
1462 1463 1464 1465
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1466 1467 1468
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1469 1470 1471
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1472
	 * 2) Create the first kmalloc cache.
1473
	 *    The struct kmem_cache for the new cache is allocated normally.
1474 1475 1476
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1477 1478
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1479 1480 1481
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1482 1483
	 */

1484
	node = numa_mem_id();
P
Pekka Enberg 已提交
1485

L
Linus Torvalds 已提交
1486 1487 1488 1489 1490
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1491
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1492

E
Eric Dumazet 已提交
1493 1494 1495 1496 1497 1498 1499 1500 1501
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1502 1503
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1504 1505
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1506

1507 1508 1509 1510 1511 1512
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1513
	BUG_ON(!cache_cache.num);
1514
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1515 1516 1517
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1518 1519 1520 1521 1522

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1523 1524 1525 1526
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1527 1528 1529
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1530 1531 1532
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1533
					NULL);
1534

A
Andrew Morton 已提交
1535
	if (INDEX_AC != INDEX_L3) {
1536
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1537 1538 1539 1540
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1541
				NULL);
A
Andrew Morton 已提交
1542
	}
1543

1544 1545
	slab_early_init = 0;

L
Linus Torvalds 已提交
1546
	while (sizes->cs_size != ULONG_MAX) {
1547 1548
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1549 1550 1551
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1552 1553
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1554
		if (!sizes->cs_cachep) {
1555
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1556 1557 1558
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1559
					NULL);
A
Andrew Morton 已提交
1560
		}
1561 1562 1563
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1564 1565 1566 1567
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1568
					NULL);
1569
#endif
L
Linus Torvalds 已提交
1570 1571 1572 1573 1574
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1575
		struct array_cache *ptr;
1576

1577
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1578

1579 1580
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1581
		       sizeof(struct arraycache_init));
1582 1583 1584 1585 1586
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1587
		cache_cache.array[smp_processor_id()] = ptr;
1588

1589
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1590

1591
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1592
		       != &initarray_generic.cache);
1593
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1594
		       sizeof(struct arraycache_init));
1595 1596 1597 1598 1599
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1600
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1601
		    ptr;
L
Linus Torvalds 已提交
1602
	}
1603 1604
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1605 1606
		int nid;

1607
		for_each_online_node(nid) {
1608
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1609

1610
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1611
				  &initkmem_list3[SIZE_AC + nid], nid);
1612 1613 1614

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1615
					  &initkmem_list3[SIZE_L3 + nid], nid);
1616 1617 1618
			}
		}
	}
L
Linus Torvalds 已提交
1619

1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
	g_cpucache_up = EARLY;
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&cache_chain_mutex);
	list_for_each_entry(cachep, &cache_chain, next)
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&cache_chain_mutex);
1633

L
Linus Torvalds 已提交
1634 1635 1636
	/* Done! */
	g_cpucache_up = FULL;

P
Pekka Enberg 已提交
1637 1638 1639
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

A
Andrew Morton 已提交
1640 1641 1642
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1643 1644 1645
	 */
	register_cpu_notifier(&cpucache_notifier);

1646 1647 1648 1649 1650 1651 1652 1653
#ifdef CONFIG_NUMA
	/*
	 * Register a memory hotplug callback that initializes and frees
	 * nodelists.
	 */
	hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
#endif

A
Andrew Morton 已提交
1654 1655 1656
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1657 1658 1659 1660 1661 1662 1663
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1664 1665
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1666
	 */
1667
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1668
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1680
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1681 1682
{
	struct page *page;
1683
	int nr_pages;
L
Linus Torvalds 已提交
1684 1685
	int i;

1686
#ifndef CONFIG_MMU
1687 1688 1689
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1690
	 */
1691
	flags |= __GFP_COMP;
1692
#endif
1693

1694
	flags |= cachep->gfpflags;
1695 1696
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1697

L
Linus Torvalds 已提交
1698
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
L
Linus Torvalds 已提交
1699 1700 1701
	if (!page)
		return NULL;

1702
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1703
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1704 1705 1706 1707 1708
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1709 1710
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1711

1712 1713 1714 1715 1716 1717 1718 1719
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1720

1721
	return page_address(page);
L
Linus Torvalds 已提交
1722 1723 1724 1725 1726
}

/*
 * Interface to system's page release.
 */
1727
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1728
{
P
Pekka Enberg 已提交
1729
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1730 1731 1732
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1733
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1734

1735 1736 1737 1738 1739 1740
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1741
	while (i--) {
N
Nick Piggin 已提交
1742 1743
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1744 1745 1746 1747 1748 1749 1750 1751 1752
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1753
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1754
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1755 1756 1757 1758 1759 1760 1761 1762 1763

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1764
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1765
			    unsigned long caller)
L
Linus Torvalds 已提交
1766
{
1767
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1768

1769
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1770

P
Pekka Enberg 已提交
1771
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1772 1773
		return;

P
Pekka Enberg 已提交
1774 1775 1776 1777
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1778 1779 1780 1781 1782 1783 1784
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1785
				*addr++ = svalue;
L
Linus Torvalds 已提交
1786 1787 1788 1789 1790 1791 1792
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1793
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1794 1795 1796
}
#endif

1797
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1798
{
1799 1800
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1801 1802

	memset(addr, val, size);
P
Pekka Enberg 已提交
1803
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1804 1805 1806 1807 1808
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1809 1810 1811
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1812
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1813 1814 1815 1816 1817
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1818
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1819
	}
L
Linus Torvalds 已提交
1820
	printk("\n");
D
Dave Jones 已提交
1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1835 1836 1837 1838 1839
}
#endif

#if DEBUG

1840
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1841 1842 1843 1844 1845
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1846
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1847 1848
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1849 1850 1851 1852
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1853
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1854
		print_symbol("(%s)",
A
Andrew Morton 已提交
1855
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1856 1857
		printk("\n");
	}
1858 1859
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1860
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1861 1862
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1863 1864
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1865 1866 1867 1868
		dump_line(realobj, i, limit);
	}
}

1869
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1870 1871 1872 1873 1874
{
	char *realobj;
	int size, i;
	int lines = 0;

1875 1876
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1877

P
Pekka Enberg 已提交
1878
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1879
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1880
		if (i == size - 1)
L
Linus Torvalds 已提交
1881 1882 1883 1884 1885 1886
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1887
				printk(KERN_ERR
1888 1889
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1890 1891 1892
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1893
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1894
			limit = 16;
P
Pekka Enberg 已提交
1895 1896
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1909
		struct slab *slabp = virt_to_slab(objp);
1910
		unsigned int objnr;
L
Linus Torvalds 已提交
1911

1912
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1913
		if (objnr) {
1914
			objp = index_to_obj(cachep, slabp, objnr - 1);
1915
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1916
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1917
			       realobj, size);
L
Linus Torvalds 已提交
1918 1919
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1920
		if (objnr + 1 < cachep->num) {
1921
			objp = index_to_obj(cachep, slabp, objnr + 1);
1922
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1923
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1924
			       realobj, size);
L
Linus Torvalds 已提交
1925 1926 1927 1928 1929 1930
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1931
#if DEBUG
R
Rabin Vincent 已提交
1932
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1933 1934 1935
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1936
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1937 1938 1939

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1940 1941
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1942
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1943
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1953
					   "was overwritten");
L
Linus Torvalds 已提交
1954 1955
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1956
					   "was overwritten");
L
Linus Torvalds 已提交
1957 1958
		}
	}
1959
}
L
Linus Torvalds 已提交
1960
#else
R
Rabin Vincent 已提交
1961
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1962 1963
{
}
L
Linus Torvalds 已提交
1964 1965
#endif

1966 1967 1968 1969 1970
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1971
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1972 1973
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1974
 */
1975
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1976 1977 1978
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
1979
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
1980 1981 1982
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1983
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1984 1985 1986 1987 1988
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1989 1990
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1991 1992 1993
	}
}

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


2015
/**
2016 2017 2018 2019 2020 2021 2022
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
2023 2024 2025 2026 2027
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
2028
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
2029
			size_t size, size_t align, unsigned long flags)
2030
{
2031
	unsigned long offslab_limit;
2032
	size_t left_over = 0;
2033
	int gfporder;
2034

2035
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
2036 2037 2038
		unsigned int num;
		size_t remainder;

2039
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
2040 2041
		if (!num)
			continue;
2042

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
2055

2056
		/* Found something acceptable - save it away */
2057
		cachep->num = num;
2058
		cachep->gfporder = gfporder;
2059 2060
		left_over = remainder;

2061 2062 2063 2064 2065 2066 2067 2068
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

2069 2070 2071 2072
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
2073
		if (gfporder >= slab_break_gfp_order)
2074 2075
			break;

2076 2077 2078
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
2079
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
2080 2081 2082 2083 2084
			break;
	}
	return left_over;
}

2085
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
2086
{
2087
	if (g_cpucache_up == FULL)
2088
		return enable_cpucache(cachep, gfp);
2089

2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
2110
			kmalloc(sizeof(struct arraycache_init), gfp);
2111 2112 2113 2114 2115 2116

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2117
			for_each_online_node(node) {
2118 2119
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2120
						gfp, node);
2121 2122 2123 2124 2125
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
2126
	cachep->nodelists[numa_mem_id()]->next_reap =
2127 2128 2129 2130 2131 2132 2133 2134 2135
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2136
	return 0;
2137 2138
}

L
Linus Torvalds 已提交
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2149
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2150 2151
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2152 2153
 * the module calling this has to destroy the cache before getting unloaded.
 *
L
Linus Torvalds 已提交
2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2166
struct kmem_cache *
L
Linus Torvalds 已提交
2167
kmem_cache_create (const char *name, size_t size, size_t align,
2168
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2169 2170
{
	size_t left_over, slab_size, ralign;
2171
	struct kmem_cache *cachep = NULL, *pc;
2172
	gfp_t gfp;
L
Linus Torvalds 已提交
2173 2174 2175 2176

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2177
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2178
	    size > KMALLOC_MAX_SIZE) {
2179
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
A
Andrew Morton 已提交
2180
				name);
P
Pekka Enberg 已提交
2181 2182
		BUG();
	}
L
Linus Torvalds 已提交
2183

2184
	/*
2185
	 * We use cache_chain_mutex to ensure a consistent view of
R
Rusty Russell 已提交
2186
	 * cpu_online_mask as well.  Please see cpuup_callback
2187
	 */
2188 2189 2190 2191
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
2192

2193
	list_for_each_entry(pc, &cache_chain, next) {
2194 2195 2196 2197 2198 2199 2200 2201
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2202
		res = probe_kernel_address(pc->name, tmp);
2203
		if (res) {
2204 2205
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2206
			       pc->buffer_size);
2207 2208 2209
			continue;
		}

P
Pekka Enberg 已提交
2210
		if (!strcmp(pc->name, name)) {
2211 2212
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2213 2214 2215 2216 2217
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2218 2219 2220 2221 2222 2223 2224 2225 2226
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2227 2228
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2229
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2230 2231 2232 2233 2234 2235 2236
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2237 2238
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2239
	 */
2240
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2241

A
Andrew Morton 已提交
2242 2243
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2244 2245 2246
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2247 2248 2249
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2250 2251
	}

A
Andrew Morton 已提交
2252 2253
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2254 2255
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2256 2257 2258 2259
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2260 2261
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2262
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2263 2264 2265 2266
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2267 2268

	/*
D
David Woodhouse 已提交
2269 2270 2271
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2272
	 */
D
David Woodhouse 已提交
2273 2274 2275 2276 2277 2278 2279 2280 2281 2282
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2283

2284
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2285 2286 2287
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2288
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2289 2290 2291
	if (ralign < align) {
		ralign = align;
	}
2292 2293
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
2294
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2295
	/*
2296
	 * 4) Store it.
L
Linus Torvalds 已提交
2297 2298 2299
	 */
	align = ralign;

2300 2301 2302 2303 2304
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2305
	/* Get cache's description obj. */
2306
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2307
	if (!cachep)
2308
		goto oops;
L
Linus Torvalds 已提交
2309 2310

#if DEBUG
2311
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2312

2313 2314 2315 2316
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2317 2318
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2319 2320
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2321 2322
	}
	if (flags & SLAB_STORE_USER) {
2323
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2324 2325
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2326
		 */
D
David Woodhouse 已提交
2327 2328 2329 2330
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2331 2332
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2333
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
C
Carsten Otte 已提交
2334 2335
	    && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
L
Linus Torvalds 已提交
2336 2337 2338 2339 2340
		size = PAGE_SIZE;
	}
#endif
#endif

2341 2342 2343
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2344 2345
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2346
	 */
2347 2348
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2349 2350 2351 2352 2353 2354 2355 2356
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2357
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2358 2359

	if (!cachep->num) {
2360 2361
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2362 2363
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2364
		goto oops;
L
Linus Torvalds 已提交
2365
	}
P
Pekka Enberg 已提交
2366 2367
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2380 2381
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2382 2383 2384 2385 2386 2387 2388 2389 2390

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2391 2392 2393 2394 2395 2396
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2397
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2398 2399 2400
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2401
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2402
		cachep->gfpflags |= GFP_DMA;
2403
	cachep->buffer_size = size;
2404
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2405

2406
	if (flags & CFLGS_OFF_SLAB) {
2407
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2408 2409 2410 2411 2412 2413 2414
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2415
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2416
	}
L
Linus Torvalds 已提交
2417 2418 2419
	cachep->ctor = ctor;
	cachep->name = name;

2420
	if (setup_cpu_cache(cachep, gfp)) {
2421 2422 2423 2424
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2425 2426 2427

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2428
oops:
L
Linus Torvalds 已提交
2429 2430
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2431
		      name);
2432 2433 2434 2435
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
L
Linus Torvalds 已提交
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2451
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2452 2453 2454
{
#ifdef CONFIG_SMP
	check_irq_off();
2455
	assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
L
Linus Torvalds 已提交
2456 2457
#endif
}
2458

2459
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2460 2461 2462 2463 2464 2465 2466
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2467 2468 2469 2470
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2471
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2472 2473
#endif

2474 2475 2476 2477
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2478 2479
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2480
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2481
	struct array_cache *ac;
2482
	int node = numa_mem_id();
L
Linus Torvalds 已提交
2483 2484

	check_irq_off();
2485
	ac = cpu_cache_get(cachep);
2486 2487 2488
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2489 2490 2491
	ac->avail = 0;
}

2492
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2493
{
2494 2495 2496
	struct kmem_list3 *l3;
	int node;

2497
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2498
	check_irq_on();
P
Pekka Enberg 已提交
2499
	for_each_online_node(node) {
2500
		l3 = cachep->nodelists[node];
2501 2502 2503 2504 2505 2506 2507
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2508
			drain_array(cachep, l3, l3->shared, 1, node);
2509
	}
L
Linus Torvalds 已提交
2510 2511
}

2512 2513 2514 2515 2516 2517 2518 2519
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2520
{
2521 2522
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2523 2524
	struct slab *slabp;

2525 2526
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2527

2528
		spin_lock_irq(&l3->list_lock);
2529
		p = l3->slabs_free.prev;
2530 2531 2532 2533
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2534

2535
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2536
#if DEBUG
2537
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2538 2539
#endif
		list_del(&slabp->list);
2540 2541 2542 2543 2544
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2545
		spin_unlock_irq(&l3->list_lock);
2546 2547
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2548
	}
2549 2550
out:
	return nr_freed;
L
Linus Torvalds 已提交
2551 2552
}

2553
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2554
static int __cache_shrink(struct kmem_cache *cachep)
2555 2556 2557 2558 2559 2560 2561 2562 2563
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2564 2565 2566 2567 2568 2569 2570
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2571 2572 2573 2574
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2575 2576 2577 2578 2579 2580 2581
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2582
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2583
{
2584
	int ret;
2585
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2586

2587
	get_online_cpus();
2588 2589 2590
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2591
	put_online_cpus();
2592
	return ret;
L
Linus Torvalds 已提交
2593 2594 2595 2596 2597 2598 2599
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2600
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2601 2602 2603 2604 2605 2606 2607 2608
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
L
Lucas De Marchi 已提交
2609
 * The caller must guarantee that no one will allocate memory from the cache
L
Linus Torvalds 已提交
2610 2611
 * during the kmem_cache_destroy().
 */
2612
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2613
{
2614
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2615 2616

	/* Find the cache in the chain of caches. */
2617
	get_online_cpus();
I
Ingo Molnar 已提交
2618
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2619 2620 2621 2622 2623 2624
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2625
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2626
		mutex_unlock(&cache_chain_mutex);
2627
		put_online_cpus();
2628
		return;
L
Linus Torvalds 已提交
2629 2630 2631
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2632
		rcu_barrier();
L
Linus Torvalds 已提交
2633

2634
	__kmem_cache_destroy(cachep);
2635
	mutex_unlock(&cache_chain_mutex);
2636
	put_online_cpus();
L
Linus Torvalds 已提交
2637 2638 2639
}
EXPORT_SYMBOL(kmem_cache_destroy);

2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2651
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2652 2653
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2654 2655
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2656

L
Linus Torvalds 已提交
2657 2658
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2659
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2660
					      local_flags, nodeid);
2661 2662 2663 2664 2665 2666
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2667 2668
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2669 2670 2671
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2672
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2673 2674 2675 2676
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2677
	slabp->s_mem = objp + colour_off;
2678
	slabp->nodeid = nodeid;
2679
	slabp->free = 0;
L
Linus Torvalds 已提交
2680 2681 2682 2683 2684
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2685
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2686 2687
}

2688
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2689
			    struct slab *slabp)
L
Linus Torvalds 已提交
2690 2691 2692 2693
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2694
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2707 2708 2709
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2710 2711
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2712
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2713 2714 2715 2716

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2717
					   " end of an object");
L
Linus Torvalds 已提交
2718 2719
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2720
					   " start of an object");
L
Linus Torvalds 已提交
2721
		}
A
Andrew Morton 已提交
2722 2723
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2724
			kernel_map_pages(virt_to_page(objp),
2725
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2726 2727
#else
		if (cachep->ctor)
2728
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2729
#endif
P
Pekka Enberg 已提交
2730
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2731
	}
P
Pekka Enberg 已提交
2732
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2733 2734
}

2735
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2736
{
2737 2738 2739 2740 2741 2742
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2743 2744
}

A
Andrew Morton 已提交
2745 2746
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2747
{
2748
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2762 2763
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2764
{
2765
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2766 2767 2768 2769 2770

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2771
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2772
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2773
				"'%s', objp %p\n", cachep->name, objp);
2774 2775 2776 2777 2778 2779 2780 2781
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2782 2783 2784
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
2785
 * virtual address for kfree, ksize, and slab debugging.
2786 2787 2788
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2789
{
2790
	int nr_pages;
L
Linus Torvalds 已提交
2791 2792
	struct page *page;

2793
	page = virt_to_page(addr);
2794

2795
	nr_pages = 1;
2796
	if (likely(!PageCompound(page)))
2797 2798
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2799
	do {
2800 2801
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2802
		page++;
2803
	} while (--nr_pages);
L
Linus Torvalds 已提交
2804 2805 2806 2807 2808 2809
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2810 2811
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2812
{
P
Pekka Enberg 已提交
2813 2814 2815
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2816
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2817

A
Andrew Morton 已提交
2818 2819 2820
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2821
	 */
C
Christoph Lameter 已提交
2822 2823
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2824

2825
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2826
	check_irq_off();
2827 2828
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2829 2830

	/* Get colour for the slab, and cal the next value. */
2831 2832 2833 2834 2835
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2836

2837
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2850 2851 2852
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2853
	 */
2854
	if (!objp)
2855
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2856
	if (!objp)
L
Linus Torvalds 已提交
2857 2858 2859
		goto failed;

	/* Get slab management. */
2860
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2861
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2862
	if (!slabp)
L
Linus Torvalds 已提交
2863 2864
		goto opps1;

2865
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2866

C
Christoph Lameter 已提交
2867
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2868 2869 2870 2871

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2872
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2873 2874

	/* Make slab active. */
2875
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2876
	STATS_INC_GROWN(cachep);
2877 2878
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2879
	return 1;
A
Andrew Morton 已提交
2880
opps1:
L
Linus Torvalds 已提交
2881
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2882
failed:
L
Linus Torvalds 已提交
2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2899 2900
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2901 2902 2903
	}
}

2904 2905
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2906
	unsigned long long redzone1, redzone2;
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2922
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2923 2924 2925
			obj, redzone1, redzone2);
}

2926
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2927
				   void *caller)
L
Linus Torvalds 已提交
2928 2929 2930 2931 2932
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2933 2934
	BUG_ON(virt_to_cache(objp) != cachep);

2935
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2936
	kfree_debugcheck(objp);
2937
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2938

2939
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2940 2941

	if (cachep->flags & SLAB_RED_ZONE) {
2942
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2943 2944 2945 2946 2947 2948
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2949
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2950 2951

	BUG_ON(objnr >= cachep->num);
2952
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2953

2954 2955 2956
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2957 2958
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2959
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2960
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2961
			kernel_map_pages(virt_to_page(objp),
2962
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2963 2964 2965 2966 2967 2968 2969 2970 2971 2972
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2973
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2974 2975 2976
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2977

L
Linus Torvalds 已提交
2978 2979 2980 2981 2982 2983 2984
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2985 2986 2987 2988
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2989
		for (i = 0;
2990
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2991
		     i++) {
A
Andrew Morton 已提交
2992
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2993
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2994
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

3006
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3007 3008 3009 3010
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
3011 3012
	int node;

3013
retry:
L
Linus Torvalds 已提交
3014
	check_irq_off();
3015
	node = numa_mem_id();
3016
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3017 3018
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
3019 3020 3021 3022
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
3023 3024 3025
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
3026
	l3 = cachep->nodelists[node];
3027 3028 3029

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
3030

3031
	/* See if we can refill from the shared array */
3032 3033
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
3034
		goto alloc_done;
3035
	}
3036

L
Linus Torvalds 已提交
3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
3052 3053 3054 3055 3056 3057

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
3058
		BUG_ON(slabp->inuse >= cachep->num);
3059

L
Linus Torvalds 已提交
3060 3061 3062 3063 3064
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

3065
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
3066
							    node);
L
Linus Torvalds 已提交
3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
3078
must_grow:
L
Linus Torvalds 已提交
3079
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
3080
alloc_done:
3081
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3082 3083 3084

	if (unlikely(!ac->avail)) {
		int x;
3085
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
3086

A
Andrew Morton 已提交
3087
		/* cache_grow can reenable interrupts, then ac could change. */
3088
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
3089
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
3090 3091
			return NULL;

A
Andrew Morton 已提交
3092
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3093 3094 3095
			goto retry;
	}
	ac->touched = 1;
3096
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3097 3098
}

A
Andrew Morton 已提交
3099 3100
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3101 3102 3103 3104 3105 3106 3107 3108
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3109 3110
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3111
{
P
Pekka Enberg 已提交
3112
	if (!objp)
L
Linus Torvalds 已提交
3113
		return objp;
P
Pekka Enberg 已提交
3114
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3115
#ifdef CONFIG_DEBUG_PAGEALLOC
3116
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3117
			kernel_map_pages(virt_to_page(objp),
3118
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3130 3131 3132 3133
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3134
			printk(KERN_ERR
3135
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3136 3137
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3138 3139 3140 3141
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3142 3143 3144 3145 3146
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3147
		slabp = page_get_slab(virt_to_head_page(objp));
3148 3149 3150 3151
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3152
	objp += obj_offset(cachep);
3153
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3154
		cachep->ctor(objp);
3155 3156 3157 3158 3159 3160
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3161 3162 3163 3164 3165 3166
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3167
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3168 3169
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3170
		return false;
3171

3172
	return should_failslab(obj_size(cachep), flags, cachep->flags);
3173 3174
}

3175
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3176
{
P
Pekka Enberg 已提交
3177
	void *objp;
L
Linus Torvalds 已提交
3178 3179
	struct array_cache *ac;

3180
	check_irq_off();
3181

3182
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3183 3184 3185
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3186
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3187 3188 3189
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
3190 3191 3192 3193 3194
		/*
		 * the 'ac' may be updated by cache_alloc_refill(),
		 * and kmemleak_erase() requires its correct value.
		 */
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3195
	}
3196 3197 3198 3199 3200
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3201 3202
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3203 3204 3205
	return objp;
}

3206
#ifdef CONFIG_NUMA
3207
/*
3208
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3209 3210 3211 3212 3213 3214 3215 3216
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3217
	if (in_interrupt() || (flags & __GFP_THISNODE))
3218
		return NULL;
3219
	nid_alloc = nid_here = numa_mem_id();
3220
	get_mems_allowed();
3221
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3222
		nid_alloc = cpuset_slab_spread_node();
3223 3224
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
3225
	put_mems_allowed();
3226
	if (nid_alloc != nid_here)
3227
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3228 3229 3230
	return NULL;
}

3231 3232
/*
 * Fallback function if there was no memory available and no objects on a
3233 3234 3235 3236 3237
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3238
 */
3239
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3240
{
3241 3242
	struct zonelist *zonelist;
	gfp_t local_flags;
3243
	struct zoneref *z;
3244 3245
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3246
	void *obj = NULL;
3247
	int nid;
3248 3249 3250 3251

	if (flags & __GFP_THISNODE)
		return NULL;

3252
	get_mems_allowed();
3253
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3254
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3255

3256 3257 3258 3259 3260
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3261 3262
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3263

3264
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3265
			cache->nodelists[nid] &&
3266
			cache->nodelists[nid]->free_objects) {
3267 3268
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3269 3270 3271
				if (obj)
					break;
		}
3272 3273
	}

3274
	if (!obj) {
3275 3276 3277 3278 3279 3280
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3281 3282 3283
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3284
		obj = kmem_getpages(cache, local_flags, numa_mem_id());
3285 3286
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3303
				/* cache_grow already freed obj */
3304 3305 3306
				obj = NULL;
			}
		}
3307
	}
3308
	put_mems_allowed();
3309 3310 3311
	return obj;
}

3312 3313
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3314
 */
3315
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3316
				int nodeid)
3317 3318
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3319 3320 3321 3322 3323 3324 3325 3326
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3327
retry:
3328
	check_irq_off();
P
Pekka Enberg 已提交
3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3348
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3349 3350 3351 3352 3353
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3354
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3355
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3356
	else
P
Pekka Enberg 已提交
3357
		list_add(&slabp->list, &l3->slabs_partial);
3358

P
Pekka Enberg 已提交
3359 3360
	spin_unlock(&l3->list_lock);
	goto done;
3361

A
Andrew Morton 已提交
3362
must_grow:
P
Pekka Enberg 已提交
3363
	spin_unlock(&l3->list_lock);
3364
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3365 3366
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3367

3368
	return fallback_alloc(cachep, flags);
3369

A
Andrew Morton 已提交
3370
done:
P
Pekka Enberg 已提交
3371
	return obj;
3372
}
3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;
3392
	int slab_node = numa_mem_id();
3393

3394
	flags &= gfp_allowed_mask;
3395

3396 3397
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3398
	if (slab_should_failslab(cachep, flags))
3399 3400
		return NULL;

3401 3402 3403
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

3404
	if (nodeid == -1)
3405
		nodeid = slab_node;
3406 3407 3408 3409 3410 3411 3412

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

3413
	if (nodeid == slab_node) {
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3429 3430
	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
				 flags);
3431

P
Pekka Enberg 已提交
3432 3433 3434
	if (likely(ptr))
		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));

3435 3436 3437
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
3457 3458
	if (!objp)
		objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3479
	flags &= gfp_allowed_mask;
3480

3481 3482
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3483
	if (slab_should_failslab(cachep, flags))
3484 3485
		return NULL;

3486 3487 3488 3489 3490
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3491 3492
	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
				 flags);
3493 3494
	prefetchw(objp);

P
Pekka Enberg 已提交
3495 3496 3497
	if (likely(objp))
		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));

3498 3499 3500
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3501 3502
	return objp;
}
3503 3504 3505 3506

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3507
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3508
		       int node)
L
Linus Torvalds 已提交
3509 3510
{
	int i;
3511
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3512 3513 3514 3515 3516

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3517
		slabp = virt_to_slab(objp);
3518
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3519
		list_del(&slabp->list);
3520
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3521
		check_slabp(cachep, slabp);
3522
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3523
		STATS_DEC_ACTIVE(cachep);
3524
		l3->free_objects++;
L
Linus Torvalds 已提交
3525 3526 3527 3528
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3529 3530
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3531 3532 3533 3534 3535 3536
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3537 3538
				slab_destroy(cachep, slabp);
			} else {
3539
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3540 3541 3542 3543 3544 3545
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3546
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3547 3548 3549 3550
		}
	}
}

3551
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3552 3553
{
	int batchcount;
3554
	struct kmem_list3 *l3;
3555
	int node = numa_mem_id();
L
Linus Torvalds 已提交
3556 3557 3558 3559 3560 3561

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3562
	l3 = cachep->nodelists[node];
3563
	spin_lock(&l3->list_lock);
3564 3565
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3566
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3567 3568 3569
		if (max) {
			if (batchcount > max)
				batchcount = max;
3570
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3571
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3572 3573 3574 3575 3576
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3577
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3578
free_done:
L
Linus Torvalds 已提交
3579 3580 3581 3582 3583
#if STATS
	{
		int i = 0;
		struct list_head *p;

3584 3585
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3597
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3598
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3599
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3600 3601 3602
}

/*
A
Andrew Morton 已提交
3603 3604
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3605
 */
3606
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3607
{
3608
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3609 3610

	check_irq_off();
3611
	kmemleak_free_recursive(objp, cachep->flags);
L
Linus Torvalds 已提交
3612 3613
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

P
Pekka Enberg 已提交
3614 3615
	kmemcheck_slab_free(cachep, objp, obj_size(cachep));

3616 3617 3618 3619 3620 3621 3622
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3623
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3624 3625
		return;

L
Linus Torvalds 已提交
3626 3627
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3628
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3629 3630 3631 3632
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3633
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3645
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3646
{
E
Eduard - Gabriel Munteanu 已提交
3647 3648
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3649 3650
	trace_kmem_cache_alloc(_RET_IP_, ret,
			       obj_size(cachep), cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3651 3652

	return ret;
L
Linus Torvalds 已提交
3653 3654 3655
}
EXPORT_SYMBOL(kmem_cache_alloc);

3656
#ifdef CONFIG_TRACING
3657 3658
void *
kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
E
Eduard - Gabriel Munteanu 已提交
3659
{
3660 3661 3662 3663 3664 3665 3666
	void *ret;

	ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

	trace_kmalloc(_RET_IP_, ret,
		      size, slab_buffer_size(cachep), flags);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3667
}
3668
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
3669 3670
#endif

L
Linus Torvalds 已提交
3671
#ifdef CONFIG_NUMA
3672 3673
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3674 3675 3676
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3677 3678 3679
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    obj_size(cachep), cachep->buffer_size,
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3680 3681

	return ret;
3682
}
L
Linus Torvalds 已提交
3683 3684
EXPORT_SYMBOL(kmem_cache_alloc_node);

3685
#ifdef CONFIG_TRACING
3686 3687 3688 3689
void *kmem_cache_alloc_node_trace(size_t size,
				  struct kmem_cache *cachep,
				  gfp_t flags,
				  int nodeid)
E
Eduard - Gabriel Munteanu 已提交
3690
{
3691 3692 3693
	void *ret;

	ret = __cache_alloc_node(cachep, flags, nodeid,
E
Eduard - Gabriel Munteanu 已提交
3694
				  __builtin_return_address(0));
3695 3696 3697 3698
	trace_kmalloc_node(_RET_IP_, ret,
			   size, slab_buffer_size(cachep),
			   flags, nodeid);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
3699
}
3700
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
3701 3702
#endif

3703 3704
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3705
{
3706
	struct kmem_cache *cachep;
3707 3708

	cachep = kmem_find_general_cachep(size, flags);
3709 3710
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
3711
	return kmem_cache_alloc_node_trace(size, cachep, flags, node);
3712
}
3713

3714
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3715 3716 3717 3718 3719
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3720
EXPORT_SYMBOL(__kmalloc_node);
3721 3722

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3723
		int node, unsigned long caller)
3724
{
3725
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3726 3727 3728 3729 3730 3731 3732 3733
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3734
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3735
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3736 3737

/**
3738
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3739
 * @size: how many bytes of memory are required.
3740
 * @flags: the type of memory to allocate (see kmalloc).
3741
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3742
 */
3743 3744
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3745
{
3746
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3747
	void *ret;
L
Linus Torvalds 已提交
3748

3749 3750 3751 3752 3753 3754
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3755 3756
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3757 3758
	ret = __cache_alloc(cachep, flags, caller);

3759 3760
	trace_kmalloc((unsigned long) caller, ret,
		      size, cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3761 3762

	return ret;
3763 3764 3765
}


3766
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3767 3768
void *__kmalloc(size_t size, gfp_t flags)
{
3769
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3770 3771 3772
}
EXPORT_SYMBOL(__kmalloc);

3773
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3774
{
3775
	return __do_kmalloc(size, flags, (void *)caller);
3776 3777
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3778 3779 3780 3781 3782 3783 3784

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3785 3786
#endif

L
Linus Torvalds 已提交
3787 3788 3789 3790 3791 3792 3793 3794
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3795
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3796 3797 3798 3799
{
	unsigned long flags;

	local_irq_save(flags);
3800
	debug_check_no_locks_freed(objp, obj_size(cachep));
3801 3802
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3803
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3804
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3805

3806
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3807 3808 3809 3810 3811 3812 3813
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3814 3815
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3816 3817 3818 3819 3820
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3821
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3822 3823
	unsigned long flags;

3824 3825
	trace_kfree(_RET_IP_, objp);

3826
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3827 3828 3829
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3830
	c = virt_to_cache(objp);
3831
	debug_check_no_locks_freed(objp, obj_size(c));
3832
	debug_check_no_obj_freed(objp, obj_size(c));
3833
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3834 3835 3836 3837
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3838
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3839
{
3840
	return obj_size(cachep);
L
Linus Torvalds 已提交
3841 3842 3843
}
EXPORT_SYMBOL(kmem_cache_size);

3844
/*
S
Simon Arlott 已提交
3845
 * This initializes kmem_list3 or resizes various caches for all nodes.
3846
 */
3847
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3848 3849 3850
{
	int node;
	struct kmem_list3 *l3;
3851
	struct array_cache *new_shared;
3852
	struct array_cache **new_alien = NULL;
3853

3854
	for_each_online_node(node) {
3855

3856
                if (use_alien_caches) {
3857
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3858 3859 3860
                        if (!new_alien)
                                goto fail;
                }
3861

3862 3863 3864
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3865
				cachep->shared*cachep->batchcount,
3866
					0xbaadf00d, gfp);
3867 3868 3869 3870
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3871
		}
3872

A
Andrew Morton 已提交
3873 3874
		l3 = cachep->nodelists[node];
		if (l3) {
3875 3876
			struct array_cache *shared = l3->shared;

3877 3878
			spin_lock_irq(&l3->list_lock);

3879
			if (shared)
3880 3881
				free_block(cachep, shared->entry,
						shared->avail, node);
3882

3883 3884
			l3->shared = new_shared;
			if (!l3->alien) {
3885 3886 3887
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3888
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3889
					cachep->batchcount + cachep->num;
3890
			spin_unlock_irq(&l3->list_lock);
3891
			kfree(shared);
3892 3893 3894
			free_alien_cache(new_alien);
			continue;
		}
3895
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3896 3897 3898
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3899
			goto fail;
3900
		}
3901 3902 3903

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3904
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3905
		l3->shared = new_shared;
3906
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3907
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3908
					cachep->batchcount + cachep->num;
3909 3910
		cachep->nodelists[node] = l3;
	}
3911
	return 0;
3912

A
Andrew Morton 已提交
3913
fail:
3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3929
	return -ENOMEM;
3930 3931
}

L
Linus Torvalds 已提交
3932
struct ccupdate_struct {
3933
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3934 3935 3936 3937 3938
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3939
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3940 3941 3942
	struct array_cache *old;

	check_irq_off();
3943
	old = cpu_cache_get(new->cachep);
3944

L
Linus Torvalds 已提交
3945 3946 3947 3948
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3949
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3950
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3951
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3952
{
3953
	struct ccupdate_struct *new;
3954
	int i;
L
Linus Torvalds 已提交
3955

3956
	new = kzalloc(sizeof(*new), gfp);
3957 3958 3959
	if (!new)
		return -ENOMEM;

3960
	for_each_online_cpu(i) {
3961
		new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
3962
						batchcount, gfp);
3963
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3964
			for (i--; i >= 0; i--)
3965 3966
				kfree(new->new[i]);
			kfree(new);
3967
			return -ENOMEM;
L
Linus Torvalds 已提交
3968 3969
		}
	}
3970
	new->cachep = cachep;
L
Linus Torvalds 已提交
3971

3972
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3973

L
Linus Torvalds 已提交
3974 3975 3976
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3977
	cachep->shared = shared;
L
Linus Torvalds 已提交
3978

3979
	for_each_online_cpu(i) {
3980
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3981 3982
		if (!ccold)
			continue;
3983 3984 3985
		spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
		spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
L
Linus Torvalds 已提交
3986 3987
		kfree(ccold);
	}
3988
	kfree(new);
3989
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3990 3991
}

3992
/* Called with cache_chain_mutex held always */
3993
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3994 3995 3996 3997
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3998 3999
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
4000 4001
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
4002
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
4003 4004 4005 4006
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
4007
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
4008
		limit = 1;
4009
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
4010
		limit = 8;
4011
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
4012
		limit = 24;
4013
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
4014 4015 4016 4017
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
4018 4019
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
4020 4021 4022 4023 4024 4025 4026 4027
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
4028
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
4029 4030 4031
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
4032 4033 4034
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
4035 4036 4037 4038
	 */
	if (limit > 32)
		limit = 32;
#endif
4039
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
4040 4041
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
4042
		       cachep->name, -err);
4043
	return err;
L
Linus Torvalds 已提交
4044 4045
}

4046 4047
/*
 * Drain an array if it contains any elements taking the l3 lock only if
4048 4049
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
4050
 */
4051
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4052
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
4053 4054 4055
{
	int tofree;

4056 4057
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
4058 4059
	if (ac->touched && !force) {
		ac->touched = 0;
4060
	} else {
4061
		spin_lock_irq(&l3->list_lock);
4062 4063 4064 4065 4066 4067 4068 4069 4070
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4071
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4072 4073 4074 4075 4076
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4077
 * @w: work descriptor
L
Linus Torvalds 已提交
4078 4079 4080 4081 4082 4083
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4084 4085
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4086
 */
4087
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4088
{
4089
	struct kmem_cache *searchp;
4090
	struct kmem_list3 *l3;
4091
	int node = numa_mem_id();
4092
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4093

4094
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4095
		/* Give up. Setup the next iteration. */
4096
		goto out;
L
Linus Torvalds 已提交
4097

4098
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4099 4100
		check_irq_on();

4101 4102 4103 4104 4105
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4106
		l3 = searchp->nodelists[node];
4107

4108
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4109

4110
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4111

4112 4113 4114 4115
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4116
		if (time_after(l3->next_reap, jiffies))
4117
			goto next;
L
Linus Torvalds 已提交
4118

4119
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4120

4121
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4122

4123
		if (l3->free_touched)
4124
			l3->free_touched = 0;
4125 4126
		else {
			int freed;
L
Linus Torvalds 已提交
4127

4128 4129 4130 4131
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4132
next:
L
Linus Torvalds 已提交
4133 4134 4135
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4136
	mutex_unlock(&cache_chain_mutex);
4137
	next_reap_node();
4138
out:
A
Andrew Morton 已提交
4139
	/* Set up the next iteration */
4140
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4141 4142
}

4143
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4144

4145
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4146
{
4147 4148 4149 4150
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4151
#if STATS
4152
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4153
#else
4154
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4155
#endif
4156 4157 4158 4159
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4160
#if STATS
4161
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4162
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4163
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4164
#endif
4165 4166 4167 4168 4169 4170 4171
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4172
	mutex_lock(&cache_chain_mutex);
4173 4174
	if (!n)
		print_slabinfo_header(m);
4175 4176

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4177 4178 4179 4180
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4181
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4182 4183 4184 4185
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4186
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4187 4188 4189 4190
}

static int s_show(struct seq_file *m, void *p)
{
4191
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4192 4193 4194 4195 4196
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4197
	const char *name;
L
Linus Torvalds 已提交
4198
	char *error = NULL;
4199 4200
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4201 4202 4203

	active_objs = 0;
	num_slabs = 0;
4204 4205 4206 4207 4208
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4209 4210
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4211

4212
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4213 4214 4215 4216 4217
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4218
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4219 4220 4221 4222 4223 4224 4225
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4226
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4227 4228 4229 4230 4231
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4232 4233
		if (l3->shared)
			shared_avail += l3->shared->avail;
4234

4235
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4236
	}
P
Pekka Enberg 已提交
4237 4238
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4239
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4240 4241
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4242
	name = cachep->name;
L
Linus Torvalds 已提交
4243 4244 4245 4246
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4247
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4248
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4249
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4250
		   cachep->limit, cachep->batchcount, cachep->shared);
4251
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4252
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4253
#if STATS
P
Pekka Enberg 已提交
4254
	{			/* list3 stats */
L
Linus Torvalds 已提交
4255 4256 4257 4258 4259 4260 4261
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4262
		unsigned long node_frees = cachep->node_frees;
4263
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4264

J
Joe Perches 已提交
4265 4266 4267 4268 4269
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
			   "%4lu %4lu %4lu %4lu %4lu",
			   allocs, high, grown,
			   reaped, errors, max_freeable, node_allocs,
			   node_frees, overflows);
L
Linus Torvalds 已提交
4270 4271 4272 4273 4274 4275 4276 4277 4278
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4279
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4300
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4301 4302 4303 4304
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
4315
static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
P
Pekka Enberg 已提交
4316
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4317
{
P
Pekka Enberg 已提交
4318
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4319
	int limit, batchcount, shared, res;
4320
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4321

L
Linus Torvalds 已提交
4322 4323 4324 4325
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4326
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4327 4328 4329 4330 4331 4332 4333 4334 4335 4336

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4337
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4338
	res = -EINVAL;
4339
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4340
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4341 4342
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4343
				res = 0;
L
Linus Torvalds 已提交
4344
			} else {
4345
				res = do_tune_cpucache(cachep, limit,
4346 4347
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4348 4349 4350 4351
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4352
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4353 4354 4355 4356
	if (res >= 0)
		res = count;
	return res;
}
4357

4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4371 4372 4373 4374 4375
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4376
	return seq_list_start(&cache_chain, *pos);
4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4427
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4428

4429
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4430
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4431
		if (modname[0])
4432 4433 4434 4435 4436 4437 4438 4439 4440
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4441
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4466
		list_for_each_entry(slabp, &l3->slabs_full, list)
4467
			handle_slab(n, cachep, slabp);
4468
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4495

4496 4497 4498
	return 0;
}

4499
static const struct seq_operations slabstats_op = {
4500 4501 4502 4503 4504
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4533
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4534 4535
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4536
#endif
4537 4538 4539
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4540 4541
#endif

4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4554
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4555
{
4556 4557
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4558
		return 0;
L
Linus Torvalds 已提交
4559

4560
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4561
}
K
Kirill A. Shutemov 已提交
4562
EXPORT_SYMBOL(ksize);