amba-pl08x.c 54.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
22 23
 * The full GNU General Public License is in this distribution in the file
 * called COPYING.
24 25
 *
 * Documentation: ARM DDI 0196G == PL080
26
 * Documentation: ARM DDI 0218E == PL081
27
 *
28 29
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
 * channel.
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
56 57 58 59 60 61 62 63 64 65 66 67 68
 * The PL08x has two flow control settings:
 *  - DMAC flow control: the transfer size defines the number of transfers
 *    which occur for the current LLI entry, and the DMAC raises TC at the
 *    end of every LLI entry.  Observed behaviour shows the DMAC listening
 *    to both the BREQ and SREQ signals (contrary to documented),
 *    transferring data if either is active.  The LBREQ and LSREQ signals
 *    are ignored.
 *
 *  - Peripheral flow control: the transfer size is ignored (and should be
 *    zero).  The data is transferred from the current LLI entry, until
 *    after the final transfer signalled by LBREQ or LSREQ.  The DMAC
 *    will then move to the next LLI entry.
 *
69 70 71
 * Global TODO:
 * - Break out common code from arch/arm/mach-s3c64xx and share
 */
72
#include <linux/amba/bus.h>
73 74
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
75 76 77 78
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dmaengine.h>
#include <linux/dmapool.h>
V
Vinod Koul 已提交
79
#include <linux/dma-mapping.h>
80 81 82
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/module.h>
83
#include <linux/pm_runtime.h>
84
#include <linux/seq_file.h>
85
#include <linux/slab.h>
86 87 88 89
#include <asm/hardware/pl080.h>

#define DRIVER_NAME	"pl08xdmac"

90 91
static struct amba_driver pl08x_amba_driver;

92
/**
93
 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
94
 * @channels: the number of channels available in this variant
95
 * @dualmaster: whether this version supports dual AHB masters or not.
96 97 98 99 100 101 102 103
 */
struct vendor_data {
	u8 channels;
	bool dualmaster;
};

/*
 * PL08X private data structures
104
 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
105 106
 * start & end do not - their bus bit info is in cctl.  Also note that these
 * are fixed 32-bit quantities.
107
 */
108
struct pl08x_lli {
109 110
	u32 src;
	u32 dst;
111
	u32 lli;
112 113 114 115 116 117 118 119 120 121 122 123 124 125
	u32 cctl;
};

/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
 * @pool_ctr: counter of LLIs in the pool
126 127
 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
 * fetches
128
 * @mem_buses: set to indicate memory transfers on AHB2.
129 130 131 132 133 134 135
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
136
	const struct vendor_data *vd;
137 138 139 140
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
	int pool_ctr;
141 142
	u8 lli_buses;
	u8 mem_buses;
143 144 145 146 147 148 149 150 151 152
	spinlock_t lock;
};

/*
 * PL08X specific defines
 */

/* Size (bytes) of each LLI buffer allocated for one transfer */
# define PL08X_LLI_TSFR_SIZE	0x2000

153
/* Maximum times we call dma_pool_alloc on this pool without freeing */
154
#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
155 156 157 158 159 160 161
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
	return container_of(chan, struct pl08x_dma_chan, chan);
}

162 163 164 165 166
static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
{
	return container_of(tx, struct pl08x_txd, tx);
}

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

	val = readl(ch->base + PL080_CH_CONFIG);
	return val & PL080_CONFIG_ACTIVE;
}

/*
 * Set the initial DMA register values i.e. those for the first LLI
182
 * The next LLI pointer and the configuration interrupt bit have
183 184
 * been set when the LLIs were constructed.  Poke them into the hardware
 * and start the transfer.
185
 */
186 187
static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
	struct pl08x_txd *txd)
188
{
189
	struct pl08x_driver_data *pl08x = plchan->host;
190
	struct pl08x_phy_chan *phychan = plchan->phychan;
191
	struct pl08x_lli *lli = &txd->llis_va[0];
192
	u32 val;
193 194

	plchan->at = txd;
195

196 197 198
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(phychan))
		cpu_relax();
199

200 201
	dev_vdbg(&pl08x->adev->dev,
		"WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
202 203
		"clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
		phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
204
		txd->ccfg);
205 206 207 208 209

	writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
	writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
	writel(lli->lli, phychan->base + PL080_CH_LLI);
	writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
210
	writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
211 212 213 214

	/* Enable the DMA channel */
	/* Do not access config register until channel shows as disabled */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
215
		cpu_relax();
216

217 218
	/* Do not access config register until channel shows as inactive */
	val = readl(phychan->base + PL080_CH_CONFIG);
219
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
220
		val = readl(phychan->base + PL080_CH_CONFIG);
221

222
	writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
223 224 225
}

/*
226
 * Pause the channel by setting the HALT bit.
227
 *
228 229 230
 * For M->P transfers, pause the DMAC first and then stop the peripheral -
 * the FIFO can only drain if the peripheral is still requesting data.
 * (note: this can still timeout if the DMAC FIFO never drains of data.)
231
 *
232 233
 * For P->M transfers, disable the peripheral first to stop it filling
 * the DMAC FIFO, and then pause the DMAC.
234 235 236 237
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;
238
	int timeout;
239 240 241 242 243 244 245

	/* Set the HALT bit and wait for the FIFO to drain */
	val = readl(ch->base + PL080_CH_CONFIG);
	val |= PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);

	/* Wait for channel inactive */
246 247 248 249 250 251 252
	for (timeout = 1000; timeout; timeout--) {
		if (!pl08x_phy_channel_busy(ch))
			break;
		udelay(1);
	}
	if (pl08x_phy_channel_busy(ch))
		pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
253 254 255 256 257 258 259 260 261 262 263 264
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
	val = readl(ch->base + PL080_CH_CONFIG);
	val &= ~PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);
}

265 266 267 268 269 270 271 272
/*
 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
 * clears any pending interrupt status.  This should not be used for
 * an on-going transfer, but as a method of shutting down a channel
 * (eg, when it's no longer used) or terminating a transfer.
 */
static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
	struct pl08x_phy_chan *ch)
273
{
274
	u32 val = readl(ch->base + PL080_CH_CONFIG);
275

276 277
	val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
	         PL080_CONFIG_TC_IRQ_MASK);
278 279

	writel(val, ch->base + PL080_CH_CONFIG);
280 281 282

	writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
	writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
	struct pl08x_phy_chan *ch;
	struct pl08x_txd *txd;
	unsigned long flags;
309
	size_t bytes = 0;
310 311 312 313 314 315

	spin_lock_irqsave(&plchan->lock, flags);
	ch = plchan->phychan;
	txd = plchan->at;

	/*
316 317
	 * Follow the LLIs to get the number of remaining
	 * bytes in the currently active transaction.
318 319
	 */
	if (ch && txd) {
320
		u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
321

322
		/* First get the remaining bytes in the active transfer */
323 324 325
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));

		if (clli) {
326 327 328 329 330 331
			struct pl08x_lli *llis_va = txd->llis_va;
			dma_addr_t llis_bus = txd->llis_bus;
			int index;

			BUG_ON(clli < llis_bus || clli >= llis_bus +
				sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
332

333 334 335 336 337 338 339 340
			/*
			 * Locate the next LLI - as this is an array,
			 * it's simple maths to find.
			 */
			index = (clli - llis_bus) / sizeof(struct pl08x_lli);

			for (; index < MAX_NUM_TSFR_LLIS; index++) {
				bytes += get_bytes_in_cctl(llis_va[index].cctl);
341 342

				/*
343
				 * A LLI pointer of 0 terminates the LLI list
344
				 */
345 346
				if (!llis_va[index].lli)
					break;
347 348 349 350 351
			}
		}
	}

	/* Sum up all queued transactions */
352
	if (!list_empty(&plchan->pend_list)) {
353
		struct pl08x_txd *txdi;
354
		list_for_each_entry(txdi, &plchan->pend_list, node) {
355 356 357
			struct pl08x_sg *dsg;
			list_for_each_entry(dsg, &txd->dsg_list, node)
				bytes += dsg->len;
358 359 360 361 362 363 364 365 366 367
		}
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
368 369 370 371
 *
 * Try to locate a physical channel to be used for this transfer. If all
 * are taken return NULL and the requester will have to cope by using
 * some fallback PIO mode or retrying later.
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

		if (!ch->serving) {
			ch->serving = virt_chan;
			ch->signal = -1;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

401
	pm_runtime_get_sync(&pl08x->adev->dev);
402 403 404 405 406 407 408 409
	return ch;
}

static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
	unsigned long flags;

410 411
	spin_lock_irqsave(&ch->lock, flags);

412
	/* Stop the channel and clear its interrupts */
413
	pl08x_terminate_phy_chan(pl08x, ch);
414

415 416
	pm_runtime_put(&pl08x->adev->dev);

417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
	/* Mark it as free */
	ch->serving = NULL;
	spin_unlock_irqrestore(&ch->lock, flags);
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
443
				  size_t tsize)
444 445 446
{
	u32 retbits = cctl;

447
	/* Remove all src, dst and transfer size bits */
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

487 488 489 490 491
struct pl08x_lli_build_data {
	struct pl08x_txd *txd;
	struct pl08x_bus_data srcbus;
	struct pl08x_bus_data dstbus;
	size_t remainder;
492
	u32 lli_bus;
493 494
};

495
/*
496 497 498 499 500 501
 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
 * victim in case src & dest are not similarly aligned. i.e. If after aligning
 * masters address with width requirements of transfer (by sending few byte by
 * byte data), slave is still not aligned, then its width will be reduced to
 * BYTE.
 * - prefers the destination bus if both available
502
 * - prefers bus with fixed address (i.e. peripheral)
503
 */
504 505
static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
	struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
506 507
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
508 509
		*mbus = &bd->dstbus;
		*sbus = &bd->srcbus;
510 511 512
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
		*mbus = &bd->srcbus;
		*sbus = &bd->dstbus;
513
	} else {
514
		if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
515 516
			*mbus = &bd->dstbus;
			*sbus = &bd->srcbus;
517
		} else {
518 519
			*mbus = &bd->srcbus;
			*sbus = &bd->dstbus;
520 521 522 523 524
		}
	}
}

/*
525
 * Fills in one LLI for a certain transfer descriptor and advance the counter
526
 */
527 528
static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
	int num_llis, int len, u32 cctl)
529
{
530 531
	struct pl08x_lli *llis_va = bd->txd->llis_va;
	dma_addr_t llis_bus = bd->txd->llis_bus;
532 533 534

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

535
	llis_va[num_llis].cctl = cctl;
536 537
	llis_va[num_llis].src = bd->srcbus.addr;
	llis_va[num_llis].dst = bd->dstbus.addr;
538 539
	llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
		sizeof(struct pl08x_lli);
540
	llis_va[num_llis].lli |= bd->lli_bus;
541 542

	if (cctl & PL080_CONTROL_SRC_INCR)
543
		bd->srcbus.addr += len;
544
	if (cctl & PL080_CONTROL_DST_INCR)
545
		bd->dstbus.addr += len;
546

547
	BUG_ON(bd->remainder < len);
548

549
	bd->remainder -= len;
550 551
}

552 553
static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
		u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
554
{
555 556 557
	*cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
	pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
	(*total_bytes) += len;
558 559 560 561 562 563 564 565 566 567 568
}

/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_bus_data *mbus, *sbus;
569
	struct pl08x_lli_build_data bd;
570
	int num_llis = 0;
571
	u32 cctl, early_bytes = 0;
572
	size_t max_bytes_per_lli, total_bytes;
573
	struct pl08x_lli *llis_va;
574
	struct pl08x_sg *dsg;
575

576
	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
577 578 579 580 581 582 583
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

	pl08x->pool_ctr++;

584
	bd.txd = txd;
585
	bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
586
	cctl = txd->cctl;
587

588
	/* Find maximum width of the source bus */
589
	bd.srcbus.maxwidth =
590 591 592 593
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
594
	bd.dstbus.maxwidth =
595 596 597
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

598 599 600
	list_for_each_entry(dsg, &txd->dsg_list, node) {
		total_bytes = 0;
		cctl = txd->cctl;
601

602 603 604 605 606
		bd.srcbus.addr = dsg->src_addr;
		bd.dstbus.addr = dsg->dst_addr;
		bd.remainder = dsg->len;
		bd.srcbus.buswidth = bd.srcbus.maxwidth;
		bd.dstbus.buswidth = bd.dstbus.maxwidth;
607

608
		pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
609

610 611 612 613 614 615 616 617 618
		dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
			bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
			bd.srcbus.buswidth,
			bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
			bd.dstbus.buswidth,
			bd.remainder);
		dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
			mbus == &bd.srcbus ? "src" : "dst",
			sbus == &bd.srcbus ? "src" : "dst");
619

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
		/*
		 * Zero length is only allowed if all these requirements are
		 * met:
		 * - flow controller is peripheral.
		 * - src.addr is aligned to src.width
		 * - dst.addr is aligned to dst.width
		 *
		 * sg_len == 1 should be true, as there can be two cases here:
		 *
		 * - Memory addresses are contiguous and are not scattered.
		 *   Here, Only one sg will be passed by user driver, with
		 *   memory address and zero length. We pass this to controller
		 *   and after the transfer it will receive the last burst
		 *   request from peripheral and so transfer finishes.
		 *
		 * - Memory addresses are scattered and are not contiguous.
		 *   Here, Obviously as DMA controller doesn't know when a lli's
		 *   transfer gets over, it can't load next lli. So in this
		 *   case, there has to be an assumption that only one lli is
		 *   supported. Thus, we can't have scattered addresses.
		 */
		if (!bd.remainder) {
			u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
				PL080_CONFIG_FLOW_CONTROL_SHIFT;
			if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
645
					(fc <= PL080_FLOW_SRC2DST_SRC))) {
646 647 648 649
				dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
					__func__);
				return 0;
			}
650

651
			if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
652
					(bd.dstbus.addr % bd.dstbus.buswidth)) {
653 654 655 656 657 658
				dev_err(&pl08x->adev->dev,
					"%s src & dst address must be aligned to src"
					" & dst width if peripheral is flow controller",
					__func__);
				return 0;
			}
659

660 661 662 663 664
			cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
					bd.dstbus.buswidth, 0);
			pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
			break;
		}
665 666

		/*
667 668 669
		 * Send byte by byte for following cases
		 * - Less than a bus width available
		 * - until master bus is aligned
670
		 */
671 672 673 674 675 676 677 678
		if (bd.remainder < mbus->buswidth)
			early_bytes = bd.remainder;
		else if ((mbus->addr) % (mbus->buswidth)) {
			early_bytes = mbus->buswidth - (mbus->addr) %
				(mbus->buswidth);
			if ((bd.remainder - early_bytes) < mbus->buswidth)
				early_bytes = bd.remainder;
		}
679

680 681 682 683 684 685
		if (early_bytes) {
			dev_vdbg(&pl08x->adev->dev,
				"%s byte width LLIs (remain 0x%08x)\n",
				__func__, bd.remainder);
			prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
				&total_bytes);
686 687
		}

688 689 690 691 692 693 694 695 696
		if (bd.remainder) {
			/*
			 * Master now aligned
			 * - if slave is not then we must set its width down
			 */
			if (sbus->addr % sbus->buswidth) {
				dev_dbg(&pl08x->adev->dev,
					"%s set down bus width to one byte\n",
					__func__);
697

698 699
				sbus->buswidth = 1;
			}
700 701

			/*
702 703
			 * Bytes transferred = tsize * src width, not
			 * MIN(buswidths)
704
			 */
705 706 707 708 709
			max_bytes_per_lli = bd.srcbus.buswidth *
				PL080_CONTROL_TRANSFER_SIZE_MASK;
			dev_vdbg(&pl08x->adev->dev,
				"%s max bytes per lli = %zu\n",
				__func__, max_bytes_per_lli);
710 711

			/*
712 713
			 * Make largest possible LLIs until less than one bus
			 * width left
714
			 */
715 716
			while (bd.remainder > (mbus->buswidth - 1)) {
				size_t lli_len, tsize, width;
717

718 719 720 721 722
				/*
				 * If enough left try to send max possible,
				 * otherwise try to send the remainder
				 */
				lli_len = min(bd.remainder, max_bytes_per_lli);
723

724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
				/*
				 * Check against maximum bus alignment:
				 * Calculate actual transfer size in relation to
				 * bus width an get a maximum remainder of the
				 * highest bus width - 1
				 */
				width = max(mbus->buswidth, sbus->buswidth);
				lli_len = (lli_len / width) * width;
				tsize = lli_len / bd.srcbus.buswidth;

				dev_vdbg(&pl08x->adev->dev,
					"%s fill lli with single lli chunk of "
					"size 0x%08zx (remainder 0x%08zx)\n",
					__func__, lli_len, bd.remainder);

				cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
740
					bd.dstbus.buswidth, tsize);
741 742 743 744
				pl08x_fill_lli_for_desc(&bd, num_llis++,
						lli_len, cctl);
				total_bytes += lli_len;
			}
745

746 747 748 749 750 751 752 753 754 755
			/*
			 * Send any odd bytes
			 */
			if (bd.remainder) {
				dev_vdbg(&pl08x->adev->dev,
					"%s align with boundary, send odd bytes (remain %zu)\n",
					__func__, bd.remainder);
				prep_byte_width_lli(&bd, &cctl, bd.remainder,
						num_llis++, &total_bytes);
			}
756
		}
757

758 759 760 761 762 763
		if (total_bytes != dsg->len) {
			dev_err(&pl08x->adev->dev,
				"%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
				__func__, total_bytes, dsg->len);
			return 0;
		}
764

765 766 767 768 769 770
		if (num_llis >= MAX_NUM_TSFR_LLIS) {
			dev_err(&pl08x->adev->dev,
				"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
				__func__, (u32) MAX_NUM_TSFR_LLIS);
			return 0;
		}
771
	}
772 773

	llis_va = txd->llis_va;
774
	/* The final LLI terminates the LLI. */
775
	llis_va[num_llis - 1].lli = 0;
776
	/* The final LLI element shall also fire an interrupt. */
777
	llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
778 779 780 781 782

#ifdef VERBOSE_DEBUG
	{
		int i;

783 784 785
		dev_vdbg(&pl08x->adev->dev,
			 "%-3s %-9s  %-10s %-10s %-10s %s\n",
			 "lli", "", "csrc", "cdst", "clli", "cctl");
786 787
		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
788 789 790
				 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
				 i, &llis_va[i], llis_va[i].src,
				 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
791 792 793 794 795 796 797 798 799 800 801 802
				);
		}
	}
#endif

	return num_llis;
}

/* You should call this with the struct pl08x lock held */
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
803 804
	struct pl08x_sg *dsg, *_dsg;

805
	/* Free the LLI */
806 807
	if (txd->llis_va)
		dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
808 809 810

	pl08x->pool_ctr--;

811 812 813 814 815
	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
		list_del(&dsg->node);
		kfree(dsg);
	}

816 817 818 819 820 821 822 823 824
	kfree(txd);
}

static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
	struct pl08x_txd *txdi = NULL;
	struct pl08x_txd *next;

825
	if (!list_empty(&plchan->pend_list)) {
826
		list_for_each_entry_safe(txdi,
827
					 next, &plchan->pend_list, node) {
828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
			list_del(&txdi->node);
			pl08x_free_txd(pl08x, txdi);
		}
	}
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
}

/*
 * This should be called with the channel plchan->lock held
 */
static int prep_phy_channel(struct pl08x_dma_chan *plchan,
			    struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;
	int ret;

	/* Check if we already have a channel */
857 858 859 860
	if (plchan->phychan) {
		ch = plchan->phychan;
		goto got_channel;
	}
861 862 863 864 865 866 867 868 869 870 871 872 873

	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		/* No physical channel available, cope with it */
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		return -EBUSY;
	}

	/*
	 * OK we have a physical channel: for memcpy() this is all we
	 * need, but for slaves the physical signals may be muxed!
	 * Can the platform allow us to use this channel?
	 */
874
	if (plchan->slave && pl08x->pd->get_signal) {
875 876 877 878 879 880 881 882 883 884 885 886
		ret = pl08x->pd->get_signal(plchan);
		if (ret < 0) {
			dev_dbg(&pl08x->adev->dev,
				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
				ch->id, plchan->name);
			/* Release physical channel & return */
			pl08x_put_phy_channel(pl08x, ch);
			return -EBUSY;
		}
		ch->signal = ret;
	}

887
	plchan->phychan = ch;
888 889 890 891 892
	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
		 ch->id,
		 ch->signal,
		 plchan->name);

893 894 895 896 897 898 899
got_channel:
	/* Assign the flow control signal to this channel */
	if (txd->direction == DMA_MEM_TO_DEV)
		txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
	else if (txd->direction == DMA_DEV_TO_MEM)
		txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;

900
	plchan->phychan_hold++;
901 902 903 904

	return 0;
}

905 906 907 908 909 910 911 912 913 914 915 916
static void release_phy_channel(struct pl08x_dma_chan *plchan)
{
	struct pl08x_driver_data *pl08x = plchan->host;

	if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
		pl08x->pd->put_signal(plchan);
		plchan->phychan->signal = -1;
	}
	pl08x_put_phy_channel(pl08x, plchan->phychan);
	plchan->phychan = NULL;
}

917 918 919
static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
920
	struct pl08x_txd *txd = to_pl08x_txd(tx);
921 922 923
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
924

925 926 927 928
	plchan->chan.cookie += 1;
	if (plchan->chan.cookie < 0)
		plchan->chan.cookie = 1;
	tx->cookie = plchan->chan.cookie;
929 930 931 932 933 934 935 936 937 938 939 940 941

	/* Put this onto the pending list */
	list_add_tail(&txd->node, &plchan->pend_list);

	/*
	 * If there was no physical channel available for this memcpy,
	 * stack the request up and indicate that the channel is waiting
	 * for a free physical channel.
	 */
	if (!plchan->slave && !plchan->phychan) {
		/* Do this memcpy whenever there is a channel ready */
		plchan->state = PL08X_CHAN_WAITING;
		plchan->waiting = txd;
942 943
	} else {
		plchan->phychan_hold--;
944 945
	}

946
	spin_unlock_irqrestore(&plchan->lock, flags);
947 948 949 950 951 952 953 954 955 956 957 958 959

	return tx->cookie;
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
960 961 962
 * Code accessing dma_async_is_complete() in a tight loop may give problems.
 * If slaves are relying on interrupts to signal completion this function
 * must not be called with interrupts disabled.
963
 */
964 965
static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
		dma_cookie_t cookie, struct dma_tx_state *txstate)
966 967 968 969 970 971 972
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	enum dma_status ret;
	u32 bytesleft = 0;

973
	last_used = plchan->chan.cookie;
974 975 976 977 978 979 980 981 982 983 984
	last_complete = plchan->lc;

	ret = dma_async_is_complete(cookie, last_complete, last_used);
	if (ret == DMA_SUCCESS) {
		dma_set_tx_state(txstate, last_complete, last_used, 0);
		return ret;
	}

	/*
	 * This cookie not complete yet
	 */
985
	last_used = plchan->chan.cookie;
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002
	last_complete = plchan->lc;

	/* Get number of bytes left in the active transactions and queue */
	bytesleft = pl08x_getbytes_chan(plchan);

	dma_set_tx_state(txstate, last_complete, last_used,
			 bytesleft);

	if (plchan->state == PL08X_CHAN_PAUSED)
		return DMA_PAUSED;

	/* Whether waiting or running, we're in progress */
	return DMA_IN_PROGRESS;
}

/* PrimeCell DMA extension */
struct burst_table {
1003
	u32 burstwords;
1004 1005 1006 1007 1008 1009
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
1010
		.reg = PL080_BSIZE_256,
1011 1012 1013
	},
	{
		.burstwords = 128,
1014
		.reg = PL080_BSIZE_128,
1015 1016 1017
	},
	{
		.burstwords = 64,
1018
		.reg = PL080_BSIZE_64,
1019 1020 1021
	},
	{
		.burstwords = 32,
1022
		.reg = PL080_BSIZE_32,
1023 1024 1025
	},
	{
		.burstwords = 16,
1026
		.reg = PL080_BSIZE_16,
1027 1028 1029
	},
	{
		.burstwords = 8,
1030
		.reg = PL080_BSIZE_8,
1031 1032 1033
	},
	{
		.burstwords = 4,
1034
		.reg = PL080_BSIZE_4,
1035 1036
	},
	{
1037 1038
		.burstwords = 0,
		.reg = PL080_BSIZE_1,
1039 1040 1041
	},
};

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
/*
 * Given the source and destination available bus masks, select which
 * will be routed to each port.  We try to have source and destination
 * on separate ports, but always respect the allowable settings.
 */
static u32 pl08x_select_bus(u8 src, u8 dst)
{
	u32 cctl = 0;

	if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
		cctl |= PL080_CONTROL_DST_AHB2;
	if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
		cctl |= PL080_CONTROL_SRC_AHB2;

	return cctl;
}

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
static u32 pl08x_cctl(u32 cctl)
{
	cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
		  PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
		  PL080_CONTROL_PROT_MASK);

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	return cctl | PL080_CONTROL_PROT_SYS;
}

1069 1070 1071 1072 1073 1074 1075 1076 1077
static u32 pl08x_width(enum dma_slave_buswidth width)
{
	switch (width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		return PL080_WIDTH_8BIT;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		return PL080_WIDTH_16BIT;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		return PL080_WIDTH_32BIT;
1078 1079
	default:
		return ~0;
1080 1081 1082
	}
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
static u32 pl08x_burst(u32 maxburst)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
		if (burst_sizes[i].burstwords <= maxburst)
			break;

	return burst_sizes[i].reg;
}

1094 1095
static int dma_set_runtime_config(struct dma_chan *chan,
				  struct dma_slave_config *config)
1096 1097 1098 1099
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	enum dma_slave_buswidth addr_width;
1100
	u32 width, burst, maxburst;
1101
	u32 cctl = 0;
1102 1103 1104

	if (!plchan->slave)
		return -EINVAL;
1105 1106 1107

	/* Transfer direction */
	plchan->runtime_direction = config->direction;
1108
	if (config->direction == DMA_MEM_TO_DEV) {
1109 1110
		addr_width = config->dst_addr_width;
		maxburst = config->dst_maxburst;
1111
	} else if (config->direction == DMA_DEV_TO_MEM) {
1112 1113 1114 1115 1116
		addr_width = config->src_addr_width;
		maxburst = config->src_maxburst;
	} else {
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien transfer direction\n");
1117
		return -EINVAL;
1118 1119
	}

1120 1121
	width = pl08x_width(addr_width);
	if (width == ~0) {
1122 1123
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien address width\n");
1124
		return -EINVAL;
1125 1126
	}

1127 1128 1129
	cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
	cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;

1130
	/*
1131 1132 1133
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
1134
	 */
1135 1136 1137 1138 1139 1140
	if (plchan->cd->single)
		maxburst = 1;

	burst = pl08x_burst(maxburst);
	cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
	cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1141

1142
	if (plchan->runtime_direction == DMA_DEV_TO_MEM) {
1143
		plchan->src_addr = config->src_addr;
1144 1145 1146
		plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
			pl08x_select_bus(plchan->cd->periph_buses,
					 pl08x->mem_buses);
1147 1148
	} else {
		plchan->dst_addr = config->dst_addr;
1149 1150 1151
		plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
			pl08x_select_bus(pl08x->mem_buses,
					 plchan->cd->periph_buses);
1152
	}
1153

1154 1155
	dev_dbg(&pl08x->adev->dev,
		"configured channel %s (%s) for %s, data width %d, "
1156
		"maxburst %d words, LE, CCTL=0x%08x\n",
1157
		dma_chan_name(chan), plchan->name,
1158
		(config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
1159 1160
		addr_width,
		maxburst,
1161
		cctl);
1162 1163

	return 0;
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
}

/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
1176 1177 1178
	/* Something is already active, or we're waiting for a channel... */
	if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
		spin_unlock_irqrestore(&plchan->lock, flags);
1179
		return;
1180
	}
1181 1182

	/* Take the first element in the queue and execute it */
1183
	if (!list_empty(&plchan->pend_list)) {
1184 1185
		struct pl08x_txd *next;

1186
		next = list_first_entry(&plchan->pend_list,
1187 1188 1189 1190 1191
					struct pl08x_txd,
					node);
		list_del(&next->node);
		plchan->state = PL08X_CHAN_RUNNING;

1192
		pl08x_start_txd(plchan, next);
1193 1194 1195 1196 1197 1198 1199 1200 1201
	}

	spin_unlock_irqrestore(&plchan->lock, flags);
}

static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
					struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
1202 1203
	unsigned long flags;
	int num_llis, ret;
1204 1205

	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1206
	if (!num_llis) {
1207 1208 1209
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);
1210
		return -EINVAL;
1211
	}
1212

1213
	spin_lock_irqsave(&plchan->lock, flags);
1214 1215 1216 1217 1218 1219 1220 1221

	/*
	 * See if we already have a physical channel allocated,
	 * else this is the time to try to get one.
	 */
	ret = prep_phy_channel(plchan, txd);
	if (ret) {
		/*
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
		 * No physical channel was available.
		 *
		 * memcpy transfers can be sorted out at submission time.
		 *
		 * Slave transfers may have been denied due to platform
		 * channel muxing restrictions.  Since there is no guarantee
		 * that this will ever be resolved, and the signal must be
		 * acquired AFTER acquiring the physical channel, we will let
		 * them be NACK:ed with -EBUSY here. The drivers can retry
		 * the prep() call if they are eager on doing this using DMA.
1232 1233 1234
		 */
		if (plchan->slave) {
			pl08x_free_txd_list(pl08x, plchan);
1235
			pl08x_free_txd(pl08x, txd);
1236
			spin_unlock_irqrestore(&plchan->lock, flags);
1237 1238 1239 1240
			return -EBUSY;
		}
	} else
		/*
1241 1242 1243 1244
		 * Else we're all set, paused and ready to roll, status
		 * will switch to PL08X_CHAN_RUNNING when we call
		 * issue_pending(). If there is something running on the
		 * channel already we don't change its state.
1245 1246 1247 1248
		 */
		if (plchan->state == PL08X_CHAN_IDLE)
			plchan->state = PL08X_CHAN_PAUSED;

1249
	spin_unlock_irqrestore(&plchan->lock, flags);
1250 1251 1252 1253

	return 0;
}

1254 1255
static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
	unsigned long flags)
1256
{
1257
	struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1258 1259 1260

	if (txd) {
		dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1261
		txd->tx.flags = flags;
1262 1263
		txd->tx.tx_submit = pl08x_tx_submit;
		INIT_LIST_HEAD(&txd->node);
1264
		INIT_LIST_HEAD(&txd->dsg_list);
1265 1266 1267 1268

		/* Always enable error and terminal interrupts */
		txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
			    PL080_CONFIG_TC_IRQ_MASK;
1269 1270 1271 1272
	}
	return txd;
}

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1283
	struct pl08x_sg *dsg;
1284 1285
	int ret;

1286
	txd = pl08x_get_txd(plchan, flags);
1287 1288 1289 1290 1291 1292
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

1293 1294 1295 1296 1297 1298 1299 1300 1301
	dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
	if (!dsg) {
		pl08x_free_txd(pl08x, txd);
		dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
				__func__);
		return NULL;
	}
	list_add_tail(&dsg->node, &txd->dsg_list);

1302
	txd->direction = DMA_NONE;
1303 1304 1305
	dsg->src_addr = src;
	dsg->dst_addr = dest;
	dsg->len = len;
1306 1307

	/* Set platform data for m2m */
1308
	txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1309 1310
	txd->cctl = pl08x->pd->memcpy_channel.cctl &
			~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1311

1312
	/* Both to be incremented or the code will break */
1313
	txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1314 1315

	if (pl08x->vd->dualmaster)
1316 1317
		txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
					      pl08x->mem_buses);
1318 1319 1320 1321 1322 1323 1324 1325

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

1326
static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1327
		struct dma_chan *chan, struct scatterlist *sgl,
1328
		unsigned int sg_len, enum dma_transfer_direction direction,
1329 1330 1331 1332 1333
		unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
1334 1335 1336
	struct pl08x_sg *dsg;
	struct scatterlist *sg;
	dma_addr_t slave_addr;
1337
	int ret, tmp;
1338 1339

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1340
			__func__, sgl->length, plchan->name);
1341

1342
	txd = pl08x_get_txd(plchan, flags);
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	if (direction != plchan->runtime_direction)
		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
			"the direction configured for the PrimeCell\n",
			__func__);

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
	txd->direction = direction;
1359

1360
	if (direction == DMA_MEM_TO_DEV) {
1361
		txd->cctl = plchan->dst_cctl;
1362
		slave_addr = plchan->dst_addr;
1363
	} else if (direction == DMA_DEV_TO_MEM) {
1364
		txd->cctl = plchan->src_cctl;
1365
		slave_addr = plchan->src_addr;
1366
	} else {
1367
		pl08x_free_txd(pl08x, txd);
1368 1369 1370 1371 1372
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}

1373
	if (plchan->cd->device_fc)
1374
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1375 1376
			PL080_FLOW_PER2MEM_PER;
	else
1377
		tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1378 1379 1380 1381
			PL080_FLOW_PER2MEM;

	txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;

1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
	for_each_sg(sgl, sg, sg_len, tmp) {
		dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
		if (!dsg) {
			pl08x_free_txd(pl08x, txd);
			dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
					__func__);
			return NULL;
		}
		list_add_tail(&dsg->node, &txd->dsg_list);

		dsg->len = sg_dma_len(sg);
1393
		if (direction == DMA_MEM_TO_DEV) {
1394 1395 1396 1397 1398 1399 1400 1401
			dsg->src_addr = sg_phys(sg);
			dsg->dst_addr = slave_addr;
		} else {
			dsg->src_addr = slave_addr;
			dsg->dst_addr = sg_phys(sg);
		}
	}

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;

	return &txd->tx;
}

static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			 unsigned long arg)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;
	int ret = 0;

	/* Controls applicable to inactive channels */
	if (cmd == DMA_SLAVE_CONFIG) {
1419 1420
		return dma_set_runtime_config(chan,
					      (struct dma_slave_config *)arg);
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
	}

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
	spin_lock_irqsave(&plchan->lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->lock, flags);
		return 0;
	}

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		plchan->state = PL08X_CHAN_IDLE;

		if (plchan->phychan) {
1438
			pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1439 1440 1441 1442 1443

			/*
			 * Mark physical channel as free and free any slave
			 * signal
			 */
1444
			release_phy_channel(plchan);
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
		}
		/* Dequeue jobs and free LLIs */
		if (plchan->at) {
			pl08x_free_txd(pl08x, plchan->at);
			plchan->at = NULL;
		}
		/* Dequeue jobs not yet fired as well */
		pl08x_free_txd_list(pl08x, plchan);
		break;
	case DMA_PAUSE:
		pl08x_pause_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_PAUSED;
		break;
	case DMA_RESUME:
		pl08x_resume_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_RUNNING;
		break;
	default:
		/* Unknown command */
		ret = -ENXIO;
		break;
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return ret;
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
1475
	struct pl08x_dma_chan *plchan;
1476 1477
	char *name = chan_id;

1478 1479 1480 1481 1482 1483
	/* Reject channels for devices not bound to this driver */
	if (chan->device->dev->driver != &pl08x_amba_driver.drv)
		return false;

	plchan = to_pl08x_chan(chan);

1484 1485 1486 1487 1488 1489 1490 1491 1492
	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}

/*
 * Just check that the device is there and active
1493 1494 1495
 * TODO: turn this bit on/off depending on the number of physical channels
 * actually used, if it is zero... well shut it off. That will save some
 * power. Cut the clock at the same time.
1496 1497 1498
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
1499
	writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1500 1501
}

1502 1503 1504
static void pl08x_unmap_buffers(struct pl08x_txd *txd)
{
	struct device *dev = txd->tx.chan->device->dev;
1505
	struct pl08x_sg *dsg;
1506 1507 1508

	if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1509 1510 1511 1512 1513 1514 1515 1516
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		else {
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->src_addr, dsg->len,
						DMA_TO_DEVICE);
		}
1517 1518 1519
	}
	if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
		if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1520 1521 1522
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_single(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
1523
		else
1524 1525 1526
			list_for_each_entry(dsg, &txd->dsg_list, node)
				dma_unmap_page(dev, dsg->dst_addr, dsg->len,
						DMA_FROM_DEVICE);
1527 1528 1529
	}
}

1530 1531 1532 1533
static void pl08x_tasklet(unsigned long data)
{
	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
	struct pl08x_driver_data *pl08x = plchan->host;
1534
	struct pl08x_txd *txd;
1535
	unsigned long flags;
1536

1537
	spin_lock_irqsave(&plchan->lock, flags);
1538

1539 1540
	txd = plchan->at;
	plchan->at = NULL;
1541

1542
	if (txd) {
1543
		/* Update last completed */
1544
		plchan->lc = txd->tx.cookie;
1545
	}
1546

1547
	/* If a new descriptor is queued, set it up plchan->at is NULL here */
1548
	if (!list_empty(&plchan->pend_list)) {
1549 1550
		struct pl08x_txd *next;

1551
		next = list_first_entry(&plchan->pend_list,
1552 1553 1554
					struct pl08x_txd,
					node);
		list_del(&next->node);
1555 1556

		pl08x_start_txd(plchan, next);
1557 1558 1559 1560 1561 1562
	} else if (plchan->phychan_hold) {
		/*
		 * This channel is still in use - we have a new txd being
		 * prepared and will soon be queued.  Don't give up the
		 * physical channel.
		 */
1563 1564 1565 1566 1567 1568 1569
	} else {
		struct pl08x_dma_chan *waiting = NULL;

		/*
		 * No more jobs, so free up the physical channel
		 * Free any allocated signal on slave transfers too
		 */
1570
		release_phy_channel(plchan);
1571 1572 1573
		plchan->state = PL08X_CHAN_IDLE;

		/*
1574 1575 1576 1577
		 * And NOW before anyone else can grab that free:d up
		 * physical channel, see if there is some memcpy pending
		 * that seriously needs to start because of being stacked
		 * up while we were choking the physical channels with data.
1578 1579 1580
		 */
		list_for_each_entry(waiting, &pl08x->memcpy.channels,
				    chan.device_node) {
1581 1582
			if (waiting->state == PL08X_CHAN_WAITING &&
				waiting->waiting != NULL) {
1583 1584 1585 1586 1587 1588
				int ret;

				/* This should REALLY not fail now */
				ret = prep_phy_channel(waiting,
						       waiting->waiting);
				BUG_ON(ret);
1589
				waiting->phychan_hold--;
1590 1591 1592 1593 1594 1595 1596 1597
				waiting->state = PL08X_CHAN_RUNNING;
				waiting->waiting = NULL;
				pl08x_issue_pending(&waiting->chan);
				break;
			}
		}
	}

1598
	spin_unlock_irqrestore(&plchan->lock, flags);
1599

1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
	if (txd) {
		dma_async_tx_callback callback = txd->tx.callback;
		void *callback_param = txd->tx.callback_param;

		/* Don't try to unmap buffers on slave channels */
		if (!plchan->slave)
			pl08x_unmap_buffers(txd);

		/* Free the descriptor */
		spin_lock_irqsave(&plchan->lock, flags);
		pl08x_free_txd(pl08x, txd);
		spin_unlock_irqrestore(&plchan->lock, flags);

		/* Callback to signal completion */
		if (callback)
			callback(callback_param);
	}
1617 1618 1619 1620 1621
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
1622 1623 1624 1625 1626 1627 1628 1629
	u32 mask = 0, err, tc, i;

	/* check & clear - ERR & TC interrupts */
	err = readl(pl08x->base + PL080_ERR_STATUS);
	if (err) {
		dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
			__func__, err);
		writel(err, pl08x->base + PL080_ERR_CLEAR);
1630
	}
1631 1632 1633 1634 1635 1636 1637
	tc = readl(pl08x->base + PL080_INT_STATUS);
	if (tc)
		writel(tc, pl08x->base + PL080_TC_CLEAR);

	if (!err && !tc)
		return IRQ_NONE;

1638
	for (i = 0; i < pl08x->vd->channels; i++) {
1639
		if (((1 << i) & err) || ((1 << i) & tc)) {
1640 1641 1642 1643
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;

1644 1645 1646 1647 1648 1649 1650
			if (!plchan) {
				dev_err(&pl08x->adev->dev,
					"%s Error TC interrupt on unused channel: 0x%08x\n",
					__func__, i);
				continue;
			}

1651 1652 1653 1654 1655 1656 1657 1658 1659
			/* Schedule tasklet on this channel */
			tasklet_schedule(&plchan->tasklet);
			mask |= (1 << i);
		}
	}

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
{
	u32 cctl = pl08x_cctl(chan->cd->cctl);

	chan->slave = true;
	chan->name = chan->cd->bus_id;
	chan->src_addr = chan->cd->addr;
	chan->dst_addr = chan->cd->addr;
	chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
		pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
	chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
		pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
}

1674 1675 1676 1677 1678
/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1679
		struct dma_device *dmadev, unsigned int channels, bool slave)
1680 1681 1682 1683 1684
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
1685

1686 1687 1688 1689 1690 1691
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
1692
		chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;

		if (slave) {
			chan->cd = &pl08x->pd->slave_channels[i];
1704
			pl08x_dma_slave_init(chan);
1705 1706 1707 1708 1709 1710 1711 1712
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
1713 1714 1715 1716 1717 1718 1719
		if (chan->cd->circular_buffer) {
			dev_err(&pl08x->adev->dev,
				"channel %s: circular buffers not supported\n",
				chan->name);
			kfree(chan);
			continue;
		}
1720
		dev_dbg(&pl08x->adev->dev,
1721 1722 1723 1724
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

		chan->chan.device = dmadev;
1725 1726
		chan->chan.cookie = 0;
		chan->lc = 0;
1727 1728

		spin_lock_init(&chan->lock);
1729
		INIT_LIST_HEAD(&chan->pend_list);
1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
		tasklet_init(&chan->tasklet, pl08x_tasklet,
			     (unsigned long) chan);

		list_add_tail(&chan->chan.device_node, &dmadev->channels);
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
				 next, &dmadev->channels, chan.device_node) {
		list_del(&chan->chan.device_node);
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

		seq_printf(s, "%d\t\t%s\n",
			   ch->id, virt_chan ? virt_chan->name : "(none)");

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1799
		seq_printf(s, "%s\t\t%s\n", chan->name,
1800 1801 1802 1803 1804 1805 1806
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1807
		seq_printf(s, "%s\t\t%s\n", chan->name,
1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
1829 1830 1831
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev),
			S_IFREG | S_IRUGO, NULL, pl08x,
			&pl08x_debugfs_operations);
1832 1833 1834 1835 1836 1837 1838 1839
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

1840
static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1841 1842
{
	struct pl08x_driver_data *pl08x;
1843
	const struct vendor_data *vd = id->data;
1844 1845 1846 1847 1848 1849 1850 1851
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

	/* Create the driver state holder */
1852
	pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1853 1854 1855 1856 1857
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

1858 1859 1860
	pm_runtime_set_active(&adev->dev);
	pm_runtime_enable(&adev->dev);

1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
	pl08x->memcpy.device_control = pl08x_control;

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
	pl08x->slave.device_control = pl08x_control;

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

1894 1895 1896 1897 1898 1899 1900 1901
	/* By default, AHB1 only.  If dualmaster, from platform */
	pl08x->lli_buses = PL08X_AHB1;
	pl08x->mem_buses = PL08X_AHB1;
	if (pl08x->vd->dualmaster) {
		pl08x->lli_buses = pl08x->pd->lli_buses;
		pl08x->mem_buses = pl08x->pd->mem_buses;
	}

1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	spin_lock_init(&pl08x->lock);

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

1921
	/* Attach the interrupt handler */
1922 1923 1924 1925
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1926
			  DRIVER_NAME, pl08x);
1927 1928 1929 1930 1931 1932 1933
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
1934
	pl08x->phy_chans = kmalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
		spin_lock_init(&ch->lock);
		ch->serving = NULL;
		ch->signal = -1;
1951 1952
		dev_dbg(&adev->dev, "physical channel %d is %s\n",
			i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}
	pl08x->memcpy.chancnt = ret;

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1968
			pl08x->pd->num_slave_channels, true);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}
	pl08x->slave.chancnt = ret;

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
1995 1996 1997
	dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
		 amba_part(adev), amba_rev(adev),
		 (unsigned long long)adev->res.start, adev->irq[0]);
1998 1999

	pm_runtime_put(&adev->dev);
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
2018 2019 2020
	pm_runtime_put(&adev->dev);
	pm_runtime_disable(&adev->dev);

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
	.channels = 8,
	.dualmaster = true,
};

static struct vendor_data vendor_pl081 = {
	.channels = 2,
	.dualmaster = false,
};

static struct amba_id pl08x_ids[] = {
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
		.id	= 0x00280880,
		.mask	= 0x00ffffff,
		.data	= &vendor_pl080,
	},
	{ 0, 0 },
};

2060 2061
MODULE_DEVICE_TABLE(amba, pl08x_ids);

2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
2074
		       "failed to register as an AMBA device (%d)\n",
2075 2076 2077 2078
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);