amba-pl08x.c 54.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * Copyright (c) 2006 ARM Ltd.
 * Copyright (c) 2010 ST-Ericsson SA
 *
 * Author: Peter Pearse <peter.pearse@arm.com>
 * Author: Linus Walleij <linus.walleij@stericsson.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59
 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
22
 * The full GNU General Public License is in this distribution in the
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 * file called COPYING.
 *
 * Documentation: ARM DDI 0196G == PL080
 * Documentation: ARM DDI 0218E	== PL081
 *
 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
 * any channel.
 *
 * The PL080 has 8 channels available for simultaneous use, and the PL081
 * has only two channels. So on these DMA controllers the number of channels
 * and the number of incoming DMA signals are two totally different things.
 * It is usually not possible to theoretically handle all physical signals,
 * so a multiplexing scheme with possible denial of use is necessary.
 *
 * The PL080 has a dual bus master, PL081 has a single master.
 *
 * Memory to peripheral transfer may be visualized as
 *	Get data from memory to DMAC
 *	Until no data left
 *		On burst request from peripheral
 *			Destination burst from DMAC to peripheral
 *			Clear burst request
 *	Raise terminal count interrupt
 *
 * For peripherals with a FIFO:
 * Source      burst size == half the depth of the peripheral FIFO
 * Destination burst size == the depth of the peripheral FIFO
 *
 * (Bursts are irrelevant for mem to mem transfers - there are no burst
 * signals, the DMA controller will simply facilitate its AHB master.)
 *
 * ASSUMES default (little) endianness for DMA transfers
 *
 * Only DMAC flow control is implemented
 *
 * Global TODO:
 * - Break out common code from arch/arm/mach-s3c64xx and share
 */
#include <linux/device.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/dmapool.h>
#include <linux/amba/bus.h>
#include <linux/dmaengine.h>
#include <linux/amba/pl08x.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>

#include <asm/hardware/pl080.h>
#include <asm/dma.h>
#include <asm/mach/dma.h>
#include <asm/atomic.h>
#include <asm/processor.h>
#include <asm/cacheflush.h>

#define DRIVER_NAME	"pl08xdmac"

/**
 * struct vendor_data - vendor-specific config parameters
85
 * for PL08x derivatives
86 87 88 89 90 91 92 93 94 95 96 97 98
 * @name: the name of this specific variant
 * @channels: the number of channels available in this variant
 * @dualmaster: whether this version supports dual AHB masters
 * or not.
 */
struct vendor_data {
	char *name;
	u8 channels;
	bool dualmaster;
};

/*
 * PL08X private data structures
99 100
 * An LLI struct - see PL08x TRM.  Note that next uses bit[0] as a bus bit,
 * start & end do not - their bus bit info is in cctl.
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
 */
struct lli {
	dma_addr_t src;
	dma_addr_t dst;
	dma_addr_t next;
	u32 cctl;
};

/**
 * struct pl08x_driver_data - the local state holder for the PL08x
 * @slave: slave engine for this instance
 * @memcpy: memcpy engine for this instance
 * @base: virtual memory base (remapped) for the PL08x
 * @adev: the corresponding AMBA (PrimeCell) bus entry
 * @vd: vendor data for this PL08x variant
 * @pd: platform data passed in from the platform/machine
 * @phy_chans: array of data for the physical channels
 * @pool: a pool for the LLI descriptors
 * @pool_ctr: counter of LLIs in the pool
 * @lock: a spinlock for this struct
 */
struct pl08x_driver_data {
	struct dma_device slave;
	struct dma_device memcpy;
	void __iomem *base;
	struct amba_device *adev;
	struct vendor_data *vd;
	struct pl08x_platform_data *pd;
	struct pl08x_phy_chan *phy_chans;
	struct dma_pool *pool;
	int pool_ctr;
	spinlock_t lock;
};

/*
 * PL08X specific defines
 */

/*
 * Memory boundaries: the manual for PL08x says that the controller
 * cannot read past a 1KiB boundary, so these defines are used to
 * create transfer LLIs that do not cross such boundaries.
 */
#define PL08X_BOUNDARY_SHIFT		(10)	/* 1KB 0x400 */
#define PL08X_BOUNDARY_SIZE		(1 << PL08X_BOUNDARY_SHIFT)

/* Minimum period between work queue runs */
#define PL08X_WQ_PERIODMIN	20

/* Size (bytes) of each LLI buffer allocated for one transfer */
# define PL08X_LLI_TSFR_SIZE	0x2000

153
/* Maximum times we call dma_pool_alloc on this pool without freeing */
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#define PL08X_MAX_ALLOCS	0x40
#define MAX_NUM_TSFR_LLIS	(PL08X_LLI_TSFR_SIZE/sizeof(struct lli))
#define PL08X_ALIGN		8

static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
{
	return container_of(chan, struct pl08x_dma_chan, chan);
}

/*
 * Physical channel handling
 */

/* Whether a certain channel is busy or not */
static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
{
	unsigned int val;

	val = readl(ch->base + PL080_CH_CONFIG);
	return val & PL080_CONFIG_ACTIVE;
}

/*
 * Set the initial DMA register values i.e. those for the first LLI
178
 * The next LLI pointer and the configuration interrupt bit have
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
 * been set when the LLIs were constructed
 */
static void pl08x_set_cregs(struct pl08x_driver_data *pl08x,
			    struct pl08x_phy_chan *ch)
{
	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(ch))
		;

	dev_vdbg(&pl08x->adev->dev,
		"WRITE channel %d: csrc=%08x, cdst=%08x, "
		 "cctl=%08x, clli=%08x, ccfg=%08x\n",
		ch->id,
		ch->csrc,
		ch->cdst,
		ch->cctl,
		ch->clli,
		ch->ccfg);

	writel(ch->csrc, ch->base + PL080_CH_SRC_ADDR);
	writel(ch->cdst, ch->base + PL080_CH_DST_ADDR);
	writel(ch->clli, ch->base + PL080_CH_LLI);
	writel(ch->cctl, ch->base + PL080_CH_CONTROL);
	writel(ch->ccfg, ch->base + PL080_CH_CONFIG);
}

static inline void pl08x_config_phychan_for_txd(struct pl08x_dma_chan *plchan)
{
	struct pl08x_channel_data *cd = plchan->cd;
	struct pl08x_phy_chan *phychan = plchan->phychan;
	struct pl08x_txd *txd = plchan->at;

	/* Copy the basic control register calculated at transfer config */
	phychan->csrc = txd->csrc;
	phychan->cdst = txd->cdst;
	phychan->clli = txd->clli;
	phychan->cctl = txd->cctl;

	/* Assign the signal to the proper control registers */
	phychan->ccfg = cd->ccfg;
	phychan->ccfg &= ~PL080_CONFIG_SRC_SEL_MASK;
	phychan->ccfg &= ~PL080_CONFIG_DST_SEL_MASK;
	/* If it wasn't set from AMBA, ignore it */
	if (txd->direction == DMA_TO_DEVICE)
		/* Select signal as destination */
		phychan->ccfg |=
			(phychan->signal << PL080_CONFIG_DST_SEL_SHIFT);
	else if (txd->direction == DMA_FROM_DEVICE)
		/* Select signal as source */
		phychan->ccfg |=
			(phychan->signal << PL080_CONFIG_SRC_SEL_SHIFT);
	/* Always enable error interrupts */
	phychan->ccfg |= PL080_CONFIG_ERR_IRQ_MASK;
	/* Always enable terminal interrupts */
	phychan->ccfg |= PL080_CONFIG_TC_IRQ_MASK;
}

/*
 * Enable the DMA channel
 * Assumes all other configuration bits have been set
 * as desired before this code is called
 */
static void pl08x_enable_phy_chan(struct pl08x_driver_data *pl08x,
				  struct pl08x_phy_chan *ch)
{
	u32 val;

	/*
	 * Do not access config register until channel shows as disabled
	 */
	while (readl(pl08x->base + PL080_EN_CHAN) & (1 << ch->id))
		;

	/*
	 * Do not access config register until channel shows as inactive
	 */
	val = readl(ch->base + PL080_CH_CONFIG);
	while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
		val = readl(ch->base + PL080_CH_CONFIG);

	writel(val | PL080_CONFIG_ENABLE, ch->base + PL080_CH_CONFIG);
}

/*
 * Overall DMAC remains enabled always.
 *
 * Disabling individual channels could lose data.
 *
 * Disable the peripheral DMA after disabling the DMAC
 * in order to allow the DMAC FIFO to drain, and
 * hence allow the channel to show inactive
 *
 */
static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Set the HALT bit and wait for the FIFO to drain */
	val = readl(ch->base + PL080_CH_CONFIG);
	val |= PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);

	/* Wait for channel inactive */
	while (pl08x_phy_channel_busy(ch))
		;
}

static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	/* Clear the HALT bit */
	val = readl(ch->base + PL080_CH_CONFIG);
	val &= ~PL080_CONFIG_HALT;
	writel(val, ch->base + PL080_CH_CONFIG);
}


/* Stops the channel */
static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
{
	u32 val;

	pl08x_pause_phy_chan(ch);

	/* Disable channel */
	val = readl(ch->base + PL080_CH_CONFIG);
	val &= ~PL080_CONFIG_ENABLE;
	val &= ~PL080_CONFIG_ERR_IRQ_MASK;
	val &= ~PL080_CONFIG_TC_IRQ_MASK;
	writel(val, ch->base + PL080_CH_CONFIG);
}

static inline u32 get_bytes_in_cctl(u32 cctl)
{
	/* The source width defines the number of bytes */
	u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;

	switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
	case PL080_WIDTH_8BIT:
		break;
	case PL080_WIDTH_16BIT:
		bytes *= 2;
		break;
	case PL080_WIDTH_32BIT:
		bytes *= 4;
		break;
	}
	return bytes;
}

/* The channel should be paused when calling this */
static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
{
	struct pl08x_phy_chan *ch;
	struct pl08x_txd *txdi = NULL;
	struct pl08x_txd *txd;
	unsigned long flags;
	u32 bytes = 0;

	spin_lock_irqsave(&plchan->lock, flags);

	ch = plchan->phychan;
	txd = plchan->at;

	/*
	 * Next follow the LLIs to get the number of pending bytes in the
	 * currently active transaction.
	 */
	if (ch && txd) {
		struct lli *llis_va = txd->llis_va;
		struct lli *llis_bus = (struct lli *) txd->llis_bus;
		u32 clli = readl(ch->base + PL080_CH_LLI);

		/* First get the bytes in the current active LLI */
		bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));

		if (clli) {
			int i = 0;

			/* Forward to the LLI pointed to by clli */
			while ((clli != (u32) &(llis_bus[i])) &&
			       (i < MAX_NUM_TSFR_LLIS))
				i++;

			while (clli) {
				bytes += get_bytes_in_cctl(llis_va[i].cctl);
				/*
367
				 * A LLI pointer of 0 terminates the LLI list
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
				 */
				clli = llis_va[i].next;
				i++;
			}
		}
	}

	/* Sum up all queued transactions */
	if (!list_empty(&plchan->desc_list)) {
		list_for_each_entry(txdi, &plchan->desc_list, node) {
			bytes += txdi->len;
		}

	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return bytes;
}

/*
 * Allocate a physical channel for a virtual channel
 */
static struct pl08x_phy_chan *
pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
		      struct pl08x_dma_chan *virt_chan)
{
	struct pl08x_phy_chan *ch = NULL;
	unsigned long flags;
	int i;

	/*
	 * Try to locate a physical channel to be used for
	 * this transfer. If all are taken return NULL and
	 * the requester will have to cope by using some fallback
	 * PIO mode or retrying later.
	 */
	for (i = 0; i < pl08x->vd->channels; i++) {
		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);

		if (!ch->serving) {
			ch->serving = virt_chan;
			ch->signal = -1;
			spin_unlock_irqrestore(&ch->lock, flags);
			break;
		}

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	if (i == pl08x->vd->channels) {
		/* No physical channel available, cope with it */
		return NULL;
	}

	return ch;
}

static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
					 struct pl08x_phy_chan *ch)
{
	unsigned long flags;

	/* Stop the channel and clear its interrupts */
	pl08x_stop_phy_chan(ch);
	writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
	writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);

	/* Mark it as free */
	spin_lock_irqsave(&ch->lock, flags);
	ch->serving = NULL;
	spin_unlock_irqrestore(&ch->lock, flags);
}

/*
 * LLI handling
 */

static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
{
	switch (coded) {
	case PL080_WIDTH_8BIT:
		return 1;
	case PL080_WIDTH_16BIT:
		return 2;
	case PL080_WIDTH_32BIT:
		return 4;
	default:
		break;
	}
	BUG();
	return 0;
}

static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
				  u32 tsize)
{
	u32 retbits = cctl;

469
	/* Remove all src, dst and transfer size bits */
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700
	retbits &= ~PL080_CONTROL_DWIDTH_MASK;
	retbits &= ~PL080_CONTROL_SWIDTH_MASK;
	retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;

	/* Then set the bits according to the parameters */
	switch (srcwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	switch (dstwidth) {
	case 1:
		retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 2:
		retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	case 4:
		retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
		break;
	default:
		BUG();
		break;
	}

	retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
	return retbits;
}

/*
 * Autoselect a master bus to use for the transfer
 * this prefers the destination bus if both available
 * if fixed address on one bus the other will be chosen
 */
void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus,
	struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus,
	struct pl08x_bus_data **sbus, u32 cctl)
{
	if (!(cctl & PL080_CONTROL_DST_INCR)) {
		*mbus = src_bus;
		*sbus = dst_bus;
	} else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
		*mbus = dst_bus;
		*sbus = src_bus;
	} else {
		if (dst_bus->buswidth == 4) {
			*mbus = dst_bus;
			*sbus = src_bus;
		} else if (src_bus->buswidth == 4) {
			*mbus = src_bus;
			*sbus = dst_bus;
		} else if (dst_bus->buswidth == 2) {
			*mbus = dst_bus;
			*sbus = src_bus;
		} else if (src_bus->buswidth == 2) {
			*mbus = src_bus;
			*sbus = dst_bus;
		} else {
			/* src_bus->buswidth == 1 */
			*mbus = dst_bus;
			*sbus = src_bus;
		}
	}
}

/*
 * Fills in one LLI for a certain transfer descriptor
 * and advance the counter
 */
int pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
			    struct pl08x_txd *txd, int num_llis, int len,
			    u32 cctl, u32 *remainder)
{
	struct lli *llis_va = txd->llis_va;
	struct lli *llis_bus = (struct lli *) txd->llis_bus;

	BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);

	llis_va[num_llis].cctl		= cctl;
	llis_va[num_llis].src		= txd->srcbus.addr;
	llis_va[num_llis].dst		= txd->dstbus.addr;

	/*
	 * On versions with dual masters, you can optionally AND on
	 * PL080_LLI_LM_AHB2 to the LLI to tell the hardware to read
	 * in new LLIs with that controller, but we always try to
	 * choose AHB1 to point into memory. The idea is to have AHB2
	 * fixed on the peripheral and AHB1 messing around in the
	 * memory. So we don't manipulate this bit currently.
	 */

	llis_va[num_llis].next =
		(dma_addr_t)((u32) &(llis_bus[num_llis + 1]));

	if (cctl & PL080_CONTROL_SRC_INCR)
		txd->srcbus.addr += len;
	if (cctl & PL080_CONTROL_DST_INCR)
		txd->dstbus.addr += len;

	*remainder -= len;

	return num_llis + 1;
}

/*
 * Return number of bytes to fill to boundary, or len
 */
static inline u32 pl08x_pre_boundary(u32 addr, u32 len)
{
	u32 boundary;

	boundary = ((addr >> PL08X_BOUNDARY_SHIFT) + 1)
		<< PL08X_BOUNDARY_SHIFT;

	if (boundary < addr + len)
		return boundary - addr;
	else
		return len;
}

/*
 * This fills in the table of LLIs for the transfer descriptor
 * Note that we assume we never have to change the burst sizes
 * Return 0 for error
 */
static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
			      struct pl08x_txd *txd)
{
	struct pl08x_channel_data *cd = txd->cd;
	struct pl08x_bus_data *mbus, *sbus;
	u32 remainder;
	int num_llis = 0;
	u32 cctl;
	int max_bytes_per_lli;
	int total_bytes = 0;
	struct lli *llis_va;
	struct lli *llis_bus;

	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no descriptor\n", __func__);
		return 0;
	}

	txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
				      &txd->llis_bus);
	if (!txd->llis_va) {
		dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
		return 0;
	}

	pl08x->pool_ctr++;

	/*
	 * Initialize bus values for this transfer
	 * from the passed optimal values
	 */
	if (!cd) {
		dev_err(&pl08x->adev->dev, "%s no channel data\n", __func__);
		return 0;
	}

	/* Get the default CCTL from the platform data */
	cctl = cd->cctl;

	/*
	 * On the PL080 we have two bus masters and we
	 * should select one for source and one for
	 * destination. We try to use AHB2 for the
	 * bus which does not increment (typically the
	 * peripheral) else we just choose something.
	 */
	cctl &= ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
	if (pl08x->vd->dualmaster) {
		if (cctl & PL080_CONTROL_SRC_INCR)
			/* Source increments, use AHB2 for destination */
			cctl |= PL080_CONTROL_DST_AHB2;
		else if (cctl & PL080_CONTROL_DST_INCR)
			/* Destination increments, use AHB2 for source */
			cctl |= PL080_CONTROL_SRC_AHB2;
		else
			/* Just pick something, source AHB1 dest AHB2 */
			cctl |= PL080_CONTROL_DST_AHB2;
	}

	/* Find maximum width of the source bus */
	txd->srcbus.maxwidth =
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
				       PL080_CONTROL_SWIDTH_SHIFT);

	/* Find maximum width of the destination bus */
	txd->dstbus.maxwidth =
		pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
				       PL080_CONTROL_DWIDTH_SHIFT);

	/* Set up the bus widths to the maximum */
	txd->srcbus.buswidth = txd->srcbus.maxwidth;
	txd->dstbus.buswidth = txd->dstbus.maxwidth;
	dev_vdbg(&pl08x->adev->dev,
		 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
		 __func__, txd->srcbus.buswidth, txd->dstbus.buswidth);


	/*
	 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
	 */
	max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) *
		PL080_CONTROL_TRANSFER_SIZE_MASK;
	dev_vdbg(&pl08x->adev->dev,
		 "%s max bytes per lli = %d\n",
		 __func__, max_bytes_per_lli);

	/* We need to count this down to zero */
	remainder = txd->len;
	dev_vdbg(&pl08x->adev->dev,
		 "%s remainder = %d\n",
		 __func__, remainder);

	/*
	 * Choose bus to align to
	 * - prefers destination bus if both available
	 * - if fixed address on one bus chooses other
701
	 * - modifies cctl to choose an appropriate master
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
	 */
	pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus,
				&mbus, &sbus, cctl);


	/*
	 * The lowest bit of the LLI register
	 * is also used to indicate which master to
	 * use for reading the LLIs.
	 */

	if (txd->len < mbus->buswidth) {
		/*
		 * Less than a bus width available
		 * - send as single bytes
		 */
		while (remainder) {
			dev_vdbg(&pl08x->adev->dev,
				 "%s single byte LLIs for a transfer of "
				 "less than a bus width (remain %08x)\n",
				 __func__, remainder);
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
			num_llis =
				pl08x_fill_lli_for_desc(pl08x, txd, num_llis, 1,
					cctl, &remainder);
			total_bytes++;
		}
	} else {
		/*
		 *  Make one byte LLIs until master bus is aligned
		 *  - slave will then be aligned also
		 */
		while ((mbus->addr) % (mbus->buswidth)) {
			dev_vdbg(&pl08x->adev->dev,
				"%s adjustment lli for less than bus width "
				 "(remain %08x)\n",
				 __func__, remainder);
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
			num_llis = pl08x_fill_lli_for_desc
				(pl08x, txd, num_llis, 1, cctl, &remainder);
			total_bytes++;
		}

		/*
		 *  Master now aligned
		 * - if slave is not then we must set its width down
		 */
		if (sbus->addr % sbus->buswidth) {
			dev_dbg(&pl08x->adev->dev,
				"%s set down bus width to one byte\n",
				 __func__);

			sbus->buswidth = 1;
		}

		/*
		 * Make largest possible LLIs until less than one bus
		 * width left
		 */
		while (remainder > (mbus->buswidth - 1)) {
			int lli_len, target_len;
			int tsize;
			int odd_bytes;

			/*
			 * If enough left try to send max possible,
			 * otherwise try to send the remainder
			 */
			target_len = remainder;
			if (remainder > max_bytes_per_lli)
				target_len = max_bytes_per_lli;

			/*
775
			 * Set bus lengths for incrementing buses
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
			 * to number of bytes which fill to next memory
			 * boundary
			 */
			if (cctl & PL080_CONTROL_SRC_INCR)
				txd->srcbus.fill_bytes =
					pl08x_pre_boundary(
						txd->srcbus.addr,
						remainder);
			else
				txd->srcbus.fill_bytes =
					max_bytes_per_lli;

			if (cctl & PL080_CONTROL_DST_INCR)
				txd->dstbus.fill_bytes =
					pl08x_pre_boundary(
						txd->dstbus.addr,
						remainder);
			else
				txd->dstbus.fill_bytes =
						max_bytes_per_lli;

			/*
			 *  Find the nearest
			 */
			lli_len	= min(txd->srcbus.fill_bytes,
				txd->dstbus.fill_bytes);

			BUG_ON(lli_len > remainder);

			if (lli_len <= 0) {
				dev_err(&pl08x->adev->dev,
					"%s lli_len is %d, <= 0\n",
						__func__, lli_len);
				return 0;
			}

			if (lli_len == target_len) {
				/*
				 * Can send what we wanted
				 */
				/*
				 *  Maintain alignment
				 */
				lli_len	= (lli_len/mbus->buswidth) *
							mbus->buswidth;
				odd_bytes = 0;
			} else {
				/*
				 * So now we know how many bytes to transfer
				 * to get to the nearest boundary
826
				 * The next LLI will past the boundary
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
				 * - however we may be working to a boundary
				 *   on the slave bus
				 *   We need to ensure the master stays aligned
				 */
				odd_bytes = lli_len % mbus->buswidth;
				/*
				 * - and that we are working in multiples
				 *   of the bus widths
				 */
				lli_len -= odd_bytes;

			}

			if (lli_len) {
				/*
				 * Check against minimum bus alignment:
				 * Calculate actual transfer size in relation
				 * to bus width an get a maximum remainder of
				 * the smallest bus width - 1
				 */
				/* FIXME: use round_down()? */
				tsize = lli_len / min(mbus->buswidth,
						      sbus->buswidth);
				lli_len	= tsize * min(mbus->buswidth,
						      sbus->buswidth);

				if (target_len != lli_len) {
					dev_vdbg(&pl08x->adev->dev,
					"%s can't send what we want. Desired %08x, lli of %08x bytes in txd of %08x\n",
					__func__, target_len, lli_len, txd->len);
				}

				cctl = pl08x_cctl_bits(cctl,
						       txd->srcbus.buswidth,
						       txd->dstbus.buswidth,
						       tsize);

				dev_vdbg(&pl08x->adev->dev,
					"%s fill lli with single lli chunk of size %08x (remainder %08x)\n",
					__func__, lli_len, remainder);
				num_llis = pl08x_fill_lli_for_desc(pl08x, txd,
						num_llis, lli_len, cctl,
						&remainder);
				total_bytes += lli_len;
			}


			if (odd_bytes) {
				/*
				 * Creep past the boundary,
				 * maintaining master alignment
				 */
				int j;
				for (j = 0; (j < mbus->buswidth)
						&& (remainder); j++) {
					cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
					dev_vdbg(&pl08x->adev->dev,
884
						"%s align with boundary, single byte (remain %08x)\n",
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
						__func__, remainder);
					num_llis =
						pl08x_fill_lli_for_desc(pl08x,
							txd, num_llis, 1,
							cctl, &remainder);
					total_bytes++;
				}
			}
		}

		/*
		 * Send any odd bytes
		 */
		if (remainder < 0) {
			dev_err(&pl08x->adev->dev, "%s remainder not fitted 0x%08x bytes\n",
					__func__, remainder);
			return 0;
		}

		while (remainder) {
			cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
			dev_vdbg(&pl08x->adev->dev,
907
				"%s align with boundary, single odd byte (remain %d)\n",
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
				__func__, remainder);
			num_llis = pl08x_fill_lli_for_desc(pl08x, txd, num_llis,
					1, cctl, &remainder);
			total_bytes++;
		}
	}
	if (total_bytes != txd->len) {
		dev_err(&pl08x->adev->dev,
			"%s size of encoded lli:s don't match total txd, transferred 0x%08x from size 0x%08x\n",
			__func__, total_bytes, txd->len);
		return 0;
	}

	if (num_llis >= MAX_NUM_TSFR_LLIS) {
		dev_err(&pl08x->adev->dev,
			"%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
			__func__, (u32) MAX_NUM_TSFR_LLIS);
		return 0;
	}
	/*
	 * Decide whether this is a loop or a terminated transfer
	 */
	llis_va = txd->llis_va;
	llis_bus = (struct lli *) txd->llis_bus;

	if (cd->circular_buffer) {
		/*
		 * Loop the circular buffer so that the next element
		 * points back to the beginning of the LLI.
		 */
		llis_va[num_llis - 1].next =
			(dma_addr_t)((unsigned int)&(llis_bus[0]));
	} else {
		/*
		 * On non-circular buffers, the final LLI terminates
		 * the LLI.
		 */
		llis_va[num_llis - 1].next = 0;
		/*
		 * The final LLI element shall also fire an interrupt
		 */
		llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
	}

	/* Now store the channel register values */
	txd->csrc = llis_va[0].src;
	txd->cdst = llis_va[0].dst;
	if (num_llis > 1)
		txd->clli = llis_va[0].next;
	else
		txd->clli = 0;

	txd->cctl = llis_va[0].cctl;
	/* ccfg will be set at physical channel allocation time */

#ifdef VERBOSE_DEBUG
	{
		int i;

		for (i = 0; i < num_llis; i++) {
			dev_vdbg(&pl08x->adev->dev,
				 "lli %d @%p: csrc=%08x, cdst=%08x, cctl=%08x, clli=%08x\n",
				 i,
				 &llis_va[i],
				 llis_va[i].src,
				 llis_va[i].dst,
				 llis_va[i].cctl,
				 llis_va[i].next
				);
		}
	}
#endif

	return num_llis;
}

/* You should call this with the struct pl08x lock held */
static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
			   struct pl08x_txd *txd)
{
	if (!txd)
		dev_err(&pl08x->adev->dev,
			"%s no descriptor to free\n",
			__func__);

	/* Free the LLI */
	dma_pool_free(pl08x->pool, txd->llis_va,
		      txd->llis_bus);

	pl08x->pool_ctr--;

	kfree(txd);
}

static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
				struct pl08x_dma_chan *plchan)
{
	struct pl08x_txd *txdi = NULL;
	struct pl08x_txd *next;

	if (!list_empty(&plchan->desc_list)) {
		list_for_each_entry_safe(txdi,
					 next, &plchan->desc_list, node) {
			list_del(&txdi->node);
			pl08x_free_txd(pl08x, txdi);
		}

	}
}

/*
 * The DMA ENGINE API
 */
static int pl08x_alloc_chan_resources(struct dma_chan *chan)
{
	return 0;
}

static void pl08x_free_chan_resources(struct dma_chan *chan)
{
}

/*
 * This should be called with the channel plchan->lock held
 */
static int prep_phy_channel(struct pl08x_dma_chan *plchan,
			    struct pl08x_txd *txd)
{
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_phy_chan *ch;
	int ret;

	/* Check if we already have a channel */
	if (plchan->phychan)
		return 0;

	ch = pl08x_get_phy_channel(pl08x, plchan);
	if (!ch) {
		/* No physical channel available, cope with it */
		dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
		return -EBUSY;
	}

	/*
	 * OK we have a physical channel: for memcpy() this is all we
	 * need, but for slaves the physical signals may be muxed!
	 * Can the platform allow us to use this channel?
	 */
	if (plchan->slave &&
	    ch->signal < 0 &&
	    pl08x->pd->get_signal) {
		ret = pl08x->pd->get_signal(plchan);
		if (ret < 0) {
			dev_dbg(&pl08x->adev->dev,
				"unable to use physical channel %d for transfer on %s due to platform restrictions\n",
				ch->id, plchan->name);
			/* Release physical channel & return */
			pl08x_put_phy_channel(pl08x, ch);
			return -EBUSY;
		}
		ch->signal = ret;
	}

	dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
		 ch->id,
		 ch->signal,
		 plchan->name);

	plchan->phychan = ch;

	return 0;
}

static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);

	atomic_inc(&plchan->last_issued);
	tx->cookie = atomic_read(&plchan->last_issued);
	/* This unlock follows the lock in the prep() function */
	spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);

	return tx->cookie;
}

static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
		struct dma_chan *chan, unsigned long flags)
{
	struct dma_async_tx_descriptor *retval = NULL;

	return retval;
}

/*
 * Code accessing dma_async_is_complete() in a tight loop
 * may give problems - could schedule where indicated.
 * If slaves are relying on interrupts to signal completion this
 * function must not be called with interrupts disabled
 */
static enum dma_status
pl08x_dma_tx_status(struct dma_chan *chan,
		    dma_cookie_t cookie,
		    struct dma_tx_state *txstate)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;
	enum dma_status ret;
	u32 bytesleft = 0;

	last_used = atomic_read(&plchan->last_issued);
	last_complete = plchan->lc;

	ret = dma_async_is_complete(cookie, last_complete, last_used);
	if (ret == DMA_SUCCESS) {
		dma_set_tx_state(txstate, last_complete, last_used, 0);
		return ret;
	}

	/*
	 * schedule(); could be inserted here
	 */

	/*
	 * This cookie not complete yet
	 */
	last_used = atomic_read(&plchan->last_issued);
	last_complete = plchan->lc;

	/* Get number of bytes left in the active transactions and queue */
	bytesleft = pl08x_getbytes_chan(plchan);

	dma_set_tx_state(txstate, last_complete, last_used,
			 bytesleft);

	if (plchan->state == PL08X_CHAN_PAUSED)
		return DMA_PAUSED;

	/* Whether waiting or running, we're in progress */
	return DMA_IN_PROGRESS;
}

/* PrimeCell DMA extension */
struct burst_table {
	int burstwords;
	u32 reg;
};

static const struct burst_table burst_sizes[] = {
	{
		.burstwords = 256,
		.reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 128,
		.reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 64,
		.reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 32,
		.reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 16,
		.reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 8,
		.reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 4,
		.reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
	{
		.burstwords = 1,
		.reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
	},
};

static void dma_set_runtime_config(struct dma_chan *chan,
			       struct dma_slave_config *config)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_channel_data *cd = plchan->cd;
	enum dma_slave_buswidth addr_width;
	u32 maxburst;
	u32 cctl = 0;
	/* Mask out all except src and dst channel */
	u32 ccfg = cd->ccfg & 0x000003DEU;
1210
	int i;
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252

	/* Transfer direction */
	plchan->runtime_direction = config->direction;
	if (config->direction == DMA_TO_DEVICE) {
		plchan->runtime_addr = config->dst_addr;
		cctl |= PL080_CONTROL_SRC_INCR;
		ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
		addr_width = config->dst_addr_width;
		maxburst = config->dst_maxburst;
	} else if (config->direction == DMA_FROM_DEVICE) {
		plchan->runtime_addr = config->src_addr;
		cctl |= PL080_CONTROL_DST_INCR;
		ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
		addr_width = config->src_addr_width;
		maxburst = config->src_maxburst;
	} else {
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien transfer direction\n");
		return;
	}

	switch (addr_width) {
	case DMA_SLAVE_BUSWIDTH_1_BYTE:
		cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
			(PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
		break;
	case DMA_SLAVE_BUSWIDTH_2_BYTES:
		cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
			(PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
		break;
	case DMA_SLAVE_BUSWIDTH_4_BYTES:
		cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
			(PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
		break;
	default:
		dev_err(&pl08x->adev->dev,
			"bad runtime_config: alien address width\n");
		return;
	}

	/*
	 * Now decide on a maxburst:
1253 1254 1255
	 * If this channel will only request single transfers, set this
	 * down to ONE element.  Also select one element if no maxburst
	 * is specified.
1256
	 */
1257
	if (plchan->cd->single || maxburst == 0) {
1258 1259 1260
		cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
			(PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
	} else {
1261
		for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
			if (burst_sizes[i].burstwords <= maxburst)
				break;
		cctl |= burst_sizes[i].reg;
	}

	/* Access the cell in privileged mode, non-bufferable, non-cacheable */
	cctl &= ~PL080_CONTROL_PROT_MASK;
	cctl |= PL080_CONTROL_PROT_SYS;

	/* Modify the default channel data to fit PrimeCell request */
	cd->cctl = cctl;
	cd->ccfg = ccfg;

	dev_dbg(&pl08x->adev->dev,
		"configured channel %s (%s) for %s, data width %d, "
		"maxburst %d words, LE, CCTL=%08x, CCFG=%08x\n",
		dma_chan_name(chan), plchan->name,
		(config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
		addr_width,
		maxburst,
		cctl, ccfg);
}

/*
 * Slave transactions callback to the slave device to allow
 * synchronization of slave DMA signals with the DMAC enable
 */
static void pl08x_issue_pending(struct dma_chan *chan)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;

	spin_lock_irqsave(&plchan->lock, flags);
	/* Something is already active */
	if (plchan->at) {
			spin_unlock_irqrestore(&plchan->lock, flags);
			return;
	}

	/* Didn't get a physical channel so waiting for it ... */
	if (plchan->state == PL08X_CHAN_WAITING)
		return;

	/* Take the first element in the queue and execute it */
	if (!list_empty(&plchan->desc_list)) {
		struct pl08x_txd *next;

		next = list_first_entry(&plchan->desc_list,
					struct pl08x_txd,
					node);
		list_del(&next->node);
		plchan->at = next;
		plchan->state = PL08X_CHAN_RUNNING;

		/* Configure the physical channel for the active txd */
		pl08x_config_phychan_for_txd(plchan);
		pl08x_set_cregs(pl08x, plchan->phychan);
		pl08x_enable_phy_chan(pl08x, plchan->phychan);
	}

	spin_unlock_irqrestore(&plchan->lock, flags);
}

static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
					struct pl08x_txd *txd)
{
	int num_llis;
	struct pl08x_driver_data *pl08x = plchan->host;
	int ret;

	num_llis = pl08x_fill_llis_for_desc(pl08x, txd);

	if (!num_llis)
		return -EINVAL;

	spin_lock_irqsave(&plchan->lock, plchan->lockflags);

	/*
	 * If this device is not using a circular buffer then
	 * queue this new descriptor for transfer.
	 * The descriptor for a circular buffer continues
	 * to be used until the channel is freed.
	 */
	if (txd->cd->circular_buffer)
		dev_err(&pl08x->adev->dev,
			"%s attempting to queue a circular buffer\n",
			__func__);
	else
		list_add_tail(&txd->node,
			      &plchan->desc_list);

	/*
	 * See if we already have a physical channel allocated,
	 * else this is the time to try to get one.
	 */
	ret = prep_phy_channel(plchan, txd);
	if (ret) {
		/*
		 * No physical channel available, we will
		 * stack up the memcpy channels until there is a channel
		 * available to handle it whereas slave transfers may
		 * have been denied due to platform channel muxing restrictions
		 * and since there is no guarantee that this will ever be
1366 1367
		 * resolved, and since the signal must be acquired AFTER
		 * acquiring the physical channel, we will let them be NACK:ed
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
		 * with -EBUSY here. The drivers can alway retry the prep()
		 * call if they are eager on doing this using DMA.
		 */
		if (plchan->slave) {
			pl08x_free_txd_list(pl08x, plchan);
			spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
			return -EBUSY;
		}
		/* Do this memcpy whenever there is a channel ready */
		plchan->state = PL08X_CHAN_WAITING;
		plchan->waiting = txd;
	} else
		/*
		 * Else we're all set, paused and ready to roll,
		 * status will switch to PL08X_CHAN_RUNNING when
		 * we call issue_pending(). If there is something
		 * running on the channel already we don't change
		 * its state.
		 */
		if (plchan->state == PL08X_CHAN_IDLE)
			plchan->state = PL08X_CHAN_PAUSED;

	/*
	 * Notice that we leave plchan->lock locked on purpose:
	 * it will be unlocked in the subsequent tx_submit()
	 * call. This is a consequence of the current API.
	 */

	return 0;
}

/*
 * Initialize a descriptor to be used by memcpy submit
 */
static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
		size_t len, unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
	int ret;

	txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
	if (!txd) {
		dev_err(&pl08x->adev->dev,
			"%s no memory for descriptor\n", __func__);
		return NULL;
	}

	dma_async_tx_descriptor_init(&txd->tx, chan);
	txd->direction = DMA_NONE;
	txd->srcbus.addr = src;
	txd->dstbus.addr = dest;

	/* Set platform data for m2m */
	txd->cd = &pl08x->pd->memcpy_channel;
	/* Both to be incremented or the code will break */
	txd->cd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
	txd->tx.tx_submit = pl08x_tx_submit;
	txd->tx.callback = NULL;
	txd->tx.callback_param = NULL;
	txd->len = len;

	INIT_LIST_HEAD(&txd->node);
	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;
	/*
	 * NB: the channel lock is held at this point so tx_submit()
	 * must be called in direct succession.
	 */

	return &txd->tx;
}

struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
		unsigned int sg_len, enum dma_data_direction direction,
		unsigned long flags)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	struct pl08x_txd *txd;
	int ret;

	/*
	 * Current implementation ASSUMES only one sg
	 */
	if (sg_len != 1) {
		dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
			__func__);
		BUG();
	}

	dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
		__func__, sgl->length, plchan->name);

	txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
	if (!txd) {
		dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
		return NULL;
	}

	dma_async_tx_descriptor_init(&txd->tx, chan);

	if (direction != plchan->runtime_direction)
		dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
			"the direction configured for the PrimeCell\n",
			__func__);

	/*
	 * Set up addresses, the PrimeCell configured address
	 * will take precedence since this may configure the
	 * channel target address dynamically at runtime.
	 */
	txd->direction = direction;
	if (direction == DMA_TO_DEVICE) {
		txd->srcbus.addr = sgl->dma_address;
		if (plchan->runtime_addr)
			txd->dstbus.addr = plchan->runtime_addr;
		else
			txd->dstbus.addr = plchan->cd->addr;
	} else if (direction == DMA_FROM_DEVICE) {
		if (plchan->runtime_addr)
			txd->srcbus.addr = plchan->runtime_addr;
		else
			txd->srcbus.addr = plchan->cd->addr;
		txd->dstbus.addr = sgl->dma_address;
	} else {
		dev_err(&pl08x->adev->dev,
			"%s direction unsupported\n", __func__);
		return NULL;
	}
	txd->cd = plchan->cd;
	txd->tx.tx_submit = pl08x_tx_submit;
	txd->tx.callback = NULL;
	txd->tx.callback_param = NULL;
	txd->len = sgl->length;
	INIT_LIST_HEAD(&txd->node);

	ret = pl08x_prep_channel_resources(plchan, txd);
	if (ret)
		return NULL;
	/*
	 * NB: the channel lock is held at this point so tx_submit()
	 * must be called in direct succession.
	 */

	return &txd->tx;
}

static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
			 unsigned long arg)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	struct pl08x_driver_data *pl08x = plchan->host;
	unsigned long flags;
	int ret = 0;

	/* Controls applicable to inactive channels */
	if (cmd == DMA_SLAVE_CONFIG) {
		dma_set_runtime_config(chan,
				       (struct dma_slave_config *)
				       arg);
		return 0;
	}

	/*
	 * Anything succeeds on channels with no physical allocation and
	 * no queued transfers.
	 */
	spin_lock_irqsave(&plchan->lock, flags);
	if (!plchan->phychan && !plchan->at) {
		spin_unlock_irqrestore(&plchan->lock, flags);
		return 0;
	}

	switch (cmd) {
	case DMA_TERMINATE_ALL:
		plchan->state = PL08X_CHAN_IDLE;

		if (plchan->phychan) {
			pl08x_stop_phy_chan(plchan->phychan);

			/*
			 * Mark physical channel as free and free any slave
			 * signal
			 */
			if ((plchan->phychan->signal >= 0) &&
			    pl08x->pd->put_signal) {
				pl08x->pd->put_signal(plchan);
				plchan->phychan->signal = -1;
			}
			pl08x_put_phy_channel(pl08x, plchan->phychan);
			plchan->phychan = NULL;
		}
		/* Stop any pending tasklet */
		tasklet_disable(&plchan->tasklet);
		/* Dequeue jobs and free LLIs */
		if (plchan->at) {
			pl08x_free_txd(pl08x, plchan->at);
			plchan->at = NULL;
		}
		/* Dequeue jobs not yet fired as well */
		pl08x_free_txd_list(pl08x, plchan);
		break;
	case DMA_PAUSE:
		pl08x_pause_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_PAUSED;
		break;
	case DMA_RESUME:
		pl08x_resume_phy_chan(plchan->phychan);
		plchan->state = PL08X_CHAN_RUNNING;
		break;
	default:
		/* Unknown command */
		ret = -ENXIO;
		break;
	}

	spin_unlock_irqrestore(&plchan->lock, flags);

	return ret;
}

bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
{
	struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
	char *name = chan_id;

	/* Check that the channel is not taken! */
	if (!strcmp(plchan->name, name))
		return true;

	return false;
}

/*
 * Just check that the device is there and active
 * TODO: turn this bit on/off depending on the number of
 * physical channels actually used, if it is zero... well
 * shut it off. That will save some power. Cut the clock
 * at the same time.
 */
static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
{
	u32 val;

	val = readl(pl08x->base + PL080_CONFIG);
	val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1619
	/* We implicitly clear bit 1 and that means little-endian mode */
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
	val |= PL080_CONFIG_ENABLE;
	writel(val, pl08x->base + PL080_CONFIG);
}

static void pl08x_tasklet(unsigned long data)
{
	struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
	struct pl08x_phy_chan *phychan = plchan->phychan;
	struct pl08x_driver_data *pl08x = plchan->host;

	if (!plchan)
		BUG();

	spin_lock(&plchan->lock);

	if (plchan->at) {
		dma_async_tx_callback callback =
			plchan->at->tx.callback;
		void *callback_param =
			plchan->at->tx.callback_param;

		/*
		 * Update last completed
		 */
		plchan->lc =
			(plchan->at->tx.cookie);

		/*
		 * Callback to signal completion
		 */
		if (callback)
			callback(callback_param);

		/*
		 * Device callbacks should NOT clear
		 * the current transaction on the channel
		 * Linus: sometimes they should?
		 */
		if (!plchan->at)
			BUG();

		/*
		 * Free the descriptor if it's not for a device
		 * using a circular buffer
		 */
		if (!plchan->at->cd->circular_buffer) {
			pl08x_free_txd(pl08x, plchan->at);
			plchan->at = NULL;
		}
		/*
		 * else descriptor for circular
		 * buffers only freed when
		 * client has disabled dma
		 */
	}
	/*
	 * If a new descriptor is queued, set it up
	 * plchan->at is NULL here
	 */
	if (!list_empty(&plchan->desc_list)) {
		struct pl08x_txd *next;

		next = list_first_entry(&plchan->desc_list,
					struct pl08x_txd,
					node);
		list_del(&next->node);
		plchan->at = next;
		/* Configure the physical channel for the next txd */
		pl08x_config_phychan_for_txd(plchan);
		pl08x_set_cregs(pl08x, plchan->phychan);
		pl08x_enable_phy_chan(pl08x, plchan->phychan);
	} else {
		struct pl08x_dma_chan *waiting = NULL;

		/*
		 * No more jobs, so free up the physical channel
		 * Free any allocated signal on slave transfers too
		 */
		if ((phychan->signal >= 0) && pl08x->pd->put_signal) {
			pl08x->pd->put_signal(plchan);
			phychan->signal = -1;
		}
		pl08x_put_phy_channel(pl08x, phychan);
		plchan->phychan = NULL;
		plchan->state = PL08X_CHAN_IDLE;

		/*
		 * And NOW before anyone else can grab that free:d
		 * up physical channel, see if there is some memcpy
		 * pending that seriously needs to start because of
		 * being stacked up while we were choking the
		 * physical channels with data.
		 */
		list_for_each_entry(waiting, &pl08x->memcpy.channels,
				    chan.device_node) {
		  if (waiting->state == PL08X_CHAN_WAITING &&
			    waiting->waiting != NULL) {
				int ret;

				/* This should REALLY not fail now */
				ret = prep_phy_channel(waiting,
						       waiting->waiting);
				BUG_ON(ret);
				waiting->state = PL08X_CHAN_RUNNING;
				waiting->waiting = NULL;
				pl08x_issue_pending(&waiting->chan);
				break;
			}
		}
	}

	spin_unlock(&plchan->lock);
}

static irqreturn_t pl08x_irq(int irq, void *dev)
{
	struct pl08x_driver_data *pl08x = dev;
	u32 mask = 0;
	u32 val;
	int i;

	val = readl(pl08x->base + PL080_ERR_STATUS);
	if (val) {
		/*
		 * An error interrupt (on one or more channels)
		 */
		dev_err(&pl08x->adev->dev,
			"%s error interrupt, register value 0x%08x\n",
				__func__, val);
		/*
		 * Simply clear ALL PL08X error interrupts,
		 * regardless of channel and cause
		 * FIXME: should be 0x00000003 on PL081 really.
		 */
		writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	}
	val = readl(pl08x->base + PL080_INT_STATUS);
	for (i = 0; i < pl08x->vd->channels; i++) {
		if ((1 << i) & val) {
			/* Locate physical channel */
			struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
			struct pl08x_dma_chan *plchan = phychan->serving;

			/* Schedule tasklet on this channel */
			tasklet_schedule(&plchan->tasklet);

			mask |= (1 << i);
		}
	}
	/*
	 * Clear only the terminal interrupts on channels we processed
	 */
	writel(mask, pl08x->base + PL080_TC_CLEAR);

	return mask ? IRQ_HANDLED : IRQ_NONE;
}

/*
 * Initialise the DMAC memcpy/slave channels.
 * Make a local wrapper to hold required data
 */
static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
					   struct dma_device *dmadev,
					   unsigned int channels,
					   bool slave)
{
	struct pl08x_dma_chan *chan;
	int i;

	INIT_LIST_HEAD(&dmadev->channels);
	/*
	 * Register as many many memcpy as we have physical channels,
	 * we won't always be able to use all but the code will have
	 * to cope with that situation.
	 */
	for (i = 0; i < channels; i++) {
		chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
		if (!chan) {
			dev_err(&pl08x->adev->dev,
				"%s no memory for channel\n", __func__);
			return -ENOMEM;
		}

		chan->host = pl08x;
		chan->state = PL08X_CHAN_IDLE;

		if (slave) {
			chan->slave = true;
			chan->name = pl08x->pd->slave_channels[i].bus_id;
			chan->cd = &pl08x->pd->slave_channels[i];
		} else {
			chan->cd = &pl08x->pd->memcpy_channel;
			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
			if (!chan->name) {
				kfree(chan);
				return -ENOMEM;
			}
		}
		dev_info(&pl08x->adev->dev,
			 "initialize virtual channel \"%s\"\n",
			 chan->name);

		chan->chan.device = dmadev;
		atomic_set(&chan->last_issued, 0);
		chan->lc = atomic_read(&chan->last_issued);

		spin_lock_init(&chan->lock);
		INIT_LIST_HEAD(&chan->desc_list);
		tasklet_init(&chan->tasklet, pl08x_tasklet,
			     (unsigned long) chan);

		list_add_tail(&chan->chan.device_node, &dmadev->channels);
	}
	dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
		 i, slave ? "slave" : "memcpy");
	return i;
}

static void pl08x_free_virtual_channels(struct dma_device *dmadev)
{
	struct pl08x_dma_chan *chan = NULL;
	struct pl08x_dma_chan *next;

	list_for_each_entry_safe(chan,
				 next, &dmadev->channels, chan.device_node) {
		list_del(&chan->chan.device_node);
		kfree(chan);
	}
}

#ifdef CONFIG_DEBUG_FS
static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
{
	switch (state) {
	case PL08X_CHAN_IDLE:
		return "idle";
	case PL08X_CHAN_RUNNING:
		return "running";
	case PL08X_CHAN_PAUSED:
		return "paused";
	case PL08X_CHAN_WAITING:
		return "waiting";
	default:
		break;
	}
	return "UNKNOWN STATE";
}

static int pl08x_debugfs_show(struct seq_file *s, void *data)
{
	struct pl08x_driver_data *pl08x = s->private;
	struct pl08x_dma_chan *chan;
	struct pl08x_phy_chan *ch;
	unsigned long flags;
	int i;

	seq_printf(s, "PL08x physical channels:\n");
	seq_printf(s, "CHANNEL:\tUSER:\n");
	seq_printf(s, "--------\t-----\n");
	for (i = 0; i < pl08x->vd->channels; i++) {
		struct pl08x_dma_chan *virt_chan;

		ch = &pl08x->phy_chans[i];

		spin_lock_irqsave(&ch->lock, flags);
		virt_chan = ch->serving;

		seq_printf(s, "%d\t\t%s\n",
			   ch->id, virt_chan ? virt_chan->name : "(none)");

		spin_unlock_irqrestore(&ch->lock, flags);
	}

	seq_printf(s, "\nPL08x virtual memcpy channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
		seq_printf(s, "%s\t\t\%s\n", chan->name,
			   pl08x_state_str(chan->state));
	}

	seq_printf(s, "\nPL08x virtual slave channels:\n");
	seq_printf(s, "CHANNEL:\tSTATE:\n");
	seq_printf(s, "--------\t------\n");
	list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
		seq_printf(s, "%s\t\t\%s\n", chan->name,
			   pl08x_state_str(chan->state));
	}

	return 0;
}

static int pl08x_debugfs_open(struct inode *inode, struct file *file)
{
	return single_open(file, pl08x_debugfs_show, inode->i_private);
}

static const struct file_operations pl08x_debugfs_operations = {
	.open		= pl08x_debugfs_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
	/* Expose a simple debugfs interface to view all clocks */
	(void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
				   NULL, pl08x,
				   &pl08x_debugfs_operations);
}

#else
static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
{
}
#endif

static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
{
	struct pl08x_driver_data *pl08x;
	struct vendor_data *vd = id->data;
	int ret = 0;
	int i;

	ret = amba_request_regions(adev, NULL);
	if (ret)
		return ret;

	/* Create the driver state holder */
	pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
	if (!pl08x) {
		ret = -ENOMEM;
		goto out_no_pl08x;
	}

	/* Initialize memcpy engine */
	dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
	pl08x->memcpy.dev = &adev->dev;
	pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
	pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
	pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
	pl08x->memcpy.device_control = pl08x_control;

	/* Initialize slave engine */
	dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
	pl08x->slave.dev = &adev->dev;
	pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
	pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
	pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
	pl08x->slave.device_tx_status = pl08x_dma_tx_status;
	pl08x->slave.device_issue_pending = pl08x_issue_pending;
	pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
	pl08x->slave.device_control = pl08x_control;

	/* Get the platform data */
	pl08x->pd = dev_get_platdata(&adev->dev);
	if (!pl08x->pd) {
		dev_err(&adev->dev, "no platform data supplied\n");
		goto out_no_platdata;
	}

	/* Assign useful pointers to the driver state */
	pl08x->adev = adev;
	pl08x->vd = vd;

	/* A DMA memory pool for LLIs, align on 1-byte boundary */
	pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
			PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
	if (!pl08x->pool) {
		ret = -ENOMEM;
		goto out_no_lli_pool;
	}

	spin_lock_init(&pl08x->lock);

	pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
	if (!pl08x->base) {
		ret = -ENOMEM;
		goto out_no_ioremap;
	}

	/* Turn on the PL08x */
	pl08x_ensure_on(pl08x);

	/*
	 * Attach the interrupt handler
	 */
	writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
	writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);

	ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
			  vd->name, pl08x);
	if (ret) {
		dev_err(&adev->dev, "%s failed to request interrupt %d\n",
			__func__, adev->irq[0]);
		goto out_no_irq;
	}

	/* Initialize physical channels */
	pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
			GFP_KERNEL);
	if (!pl08x->phy_chans) {
		dev_err(&adev->dev, "%s failed to allocate "
			"physical channel holders\n",
			__func__);
		goto out_no_phychans;
	}

	for (i = 0; i < vd->channels; i++) {
		struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];

		ch->id = i;
		ch->base = pl08x->base + PL080_Cx_BASE(i);
		spin_lock_init(&ch->lock);
		ch->serving = NULL;
		ch->signal = -1;
		dev_info(&adev->dev,
			 "physical channel %d is %s\n", i,
			 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
	}

	/* Register as many memcpy channels as there are physical channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
					      pl08x->vd->channels, false);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			 "%s failed to enumerate memcpy channels - %d\n",
			 __func__, ret);
		goto out_no_memcpy;
	}
	pl08x->memcpy.chancnt = ret;

	/* Register slave channels */
	ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
					      pl08x->pd->num_slave_channels,
					      true);
	if (ret <= 0) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to enumerate slave channels - %d\n",
				__func__, ret);
		goto out_no_slave;
	}
	pl08x->slave.chancnt = ret;

	ret = dma_async_device_register(&pl08x->memcpy);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register memcpy as an async device - %d\n",
			__func__, ret);
		goto out_no_memcpy_reg;
	}

	ret = dma_async_device_register(&pl08x->slave);
	if (ret) {
		dev_warn(&pl08x->adev->dev,
			"%s failed to register slave as an async device - %d\n",
			__func__, ret);
		goto out_no_slave_reg;
	}

	amba_set_drvdata(adev, pl08x);
	init_pl08x_debugfs(pl08x);
	dev_info(&pl08x->adev->dev, "ARM(R) %s DMA block initialized @%08x\n",
		vd->name, adev->res.start);
	return 0;

out_no_slave_reg:
	dma_async_device_unregister(&pl08x->memcpy);
out_no_memcpy_reg:
	pl08x_free_virtual_channels(&pl08x->slave);
out_no_slave:
	pl08x_free_virtual_channels(&pl08x->memcpy);
out_no_memcpy:
	kfree(pl08x->phy_chans);
out_no_phychans:
	free_irq(adev->irq[0], pl08x);
out_no_irq:
	iounmap(pl08x->base);
out_no_ioremap:
	dma_pool_destroy(pl08x->pool);
out_no_lli_pool:
out_no_platdata:
	kfree(pl08x);
out_no_pl08x:
	amba_release_regions(adev);
	return ret;
}

/* PL080 has 8 channels and the PL080 have just 2 */
static struct vendor_data vendor_pl080 = {
	.name = "PL080",
	.channels = 8,
	.dualmaster = true,
};

static struct vendor_data vendor_pl081 = {
	.name = "PL081",
	.channels = 2,
	.dualmaster = false,
};

static struct amba_id pl08x_ids[] = {
	/* PL080 */
	{
		.id	= 0x00041080,
		.mask	= 0x000fffff,
		.data	= &vendor_pl080,
	},
	/* PL081 */
	{
		.id	= 0x00041081,
		.mask	= 0x000fffff,
		.data	= &vendor_pl081,
	},
	/* Nomadik 8815 PL080 variant */
	{
		.id	= 0x00280880,
		.mask	= 0x00ffffff,
		.data	= &vendor_pl080,
	},
	{ 0, 0 },
};

static struct amba_driver pl08x_amba_driver = {
	.drv.name	= DRIVER_NAME,
	.id_table	= pl08x_ids,
	.probe		= pl08x_probe,
};

static int __init pl08x_init(void)
{
	int retval;
	retval = amba_driver_register(&pl08x_amba_driver);
	if (retval)
		printk(KERN_WARNING DRIVER_NAME
2159
		       "failed to register as an AMBA device (%d)\n",
2160 2161 2162 2163
		       retval);
	return retval;
}
subsys_initcall(pl08x_init);