slab.c 116.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * linux/mm/slab.c
 * Written by Mark Hemment, 1996/97.
 * (markhe@nextd.demon.co.uk)
 *
 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
 *
 * Major cleanup, different bufctl logic, per-cpu arrays
 *	(c) 2000 Manfred Spraul
 *
 * Cleanup, make the head arrays unconditional, preparation for NUMA
 * 	(c) 2002 Manfred Spraul
 *
 * An implementation of the Slab Allocator as described in outline in;
 *	UNIX Internals: The New Frontiers by Uresh Vahalia
 *	Pub: Prentice Hall	ISBN 0-13-101908-2
 * or with a little more detail in;
 *	The Slab Allocator: An Object-Caching Kernel Memory Allocator
 *	Jeff Bonwick (Sun Microsystems).
 *	Presented at: USENIX Summer 1994 Technical Conference
 *
 * The memory is organized in caches, one cache for each object type.
 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
 * Each cache consists out of many slabs (they are small (usually one
 * page long) and always contiguous), and each slab contains multiple
 * initialized objects.
 *
 * This means, that your constructor is used only for newly allocated
S
Simon Arlott 已提交
29
 * slabs and you must pass objects with the same initializations to
L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
 * kmem_cache_free.
 *
 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
 * normal). If you need a special memory type, then must create a new
 * cache for that memory type.
 *
 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
 *   full slabs with 0 free objects
 *   partial slabs
 *   empty slabs with no allocated objects
 *
 * If partial slabs exist, then new allocations come from these slabs,
 * otherwise from empty slabs or new slabs are allocated.
 *
 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
 *
 * Each cache has a short per-cpu head array, most allocs
 * and frees go into that array, and if that array overflows, then 1/2
 * of the entries in the array are given back into the global cache.
 * The head array is strictly LIFO and should improve the cache hit rates.
 * On SMP, it additionally reduces the spinlock operations.
 *
A
Andrew Morton 已提交
53
 * The c_cpuarray may not be read with enabled local interrupts -
L
Linus Torvalds 已提交
54 55 56 57
 * it's changed with a smp_call_function().
 *
 * SMP synchronization:
 *  constructors and destructors are called without any locking.
58
 *  Several members in struct kmem_cache and struct slab never change, they
L
Linus Torvalds 已提交
59 60 61 62 63 64 65 66 67 68 69 70
 *	are accessed without any locking.
 *  The per-cpu arrays are never accessed from the wrong cpu, no locking,
 *  	and local interrupts are disabled so slab code is preempt-safe.
 *  The non-constant members are protected with a per-cache irq spinlock.
 *
 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
 * in 2000 - many ideas in the current implementation are derived from
 * his patch.
 *
 * Further notes from the original documentation:
 *
 * 11 April '97.  Started multi-threading - markhe
I
Ingo Molnar 已提交
71
 *	The global cache-chain is protected by the mutex 'cache_chain_mutex'.
L
Linus Torvalds 已提交
72 73 74 75 76 77
 *	The sem is only needed when accessing/extending the cache-chain, which
 *	can never happen inside an interrupt (kmem_cache_create(),
 *	kmem_cache_shrink() and kmem_cache_reap()).
 *
 *	At present, each engine can be growing a cache.  This should be blocked.
 *
78 79 80 81 82 83 84 85 86
 * 15 March 2005. NUMA slab allocator.
 *	Shai Fultheim <shai@scalex86.org>.
 *	Shobhit Dayal <shobhit@calsoftinc.com>
 *	Alok N Kataria <alokk@calsoftinc.com>
 *	Christoph Lameter <christoph@lameter.com>
 *
 *	Modified the slab allocator to be node aware on NUMA systems.
 *	Each node has its own list of partial, free and full slabs.
 *	All object allocations for a node occur from node specific slab lists.
L
Linus Torvalds 已提交
87 88 89 90
 */

#include	<linux/slab.h>
#include	<linux/mm.h>
91
#include	<linux/poison.h>
L
Linus Torvalds 已提交
92 93 94 95 96
#include	<linux/swap.h>
#include	<linux/cache.h>
#include	<linux/interrupt.h>
#include	<linux/init.h>
#include	<linux/compiler.h>
97
#include	<linux/cpuset.h>
98
#include	<linux/proc_fs.h>
L
Linus Torvalds 已提交
99 100 101 102 103 104
#include	<linux/seq_file.h>
#include	<linux/notifier.h>
#include	<linux/kallsyms.h>
#include	<linux/cpu.h>
#include	<linux/sysctl.h>
#include	<linux/module.h>
105
#include	<linux/kmemtrace.h>
L
Linus Torvalds 已提交
106
#include	<linux/rcupdate.h>
107
#include	<linux/string.h>
108
#include	<linux/uaccess.h>
109
#include	<linux/nodemask.h>
110
#include	<linux/kmemleak.h>
111
#include	<linux/mempolicy.h>
I
Ingo Molnar 已提交
112
#include	<linux/mutex.h>
113
#include	<linux/fault-inject.h>
I
Ingo Molnar 已提交
114
#include	<linux/rtmutex.h>
115
#include	<linux/reciprocal_div.h>
116
#include	<linux/debugobjects.h>
P
Pekka Enberg 已提交
117
#include	<linux/kmemcheck.h>
L
Linus Torvalds 已提交
118 119 120 121 122 123

#include	<asm/cacheflush.h>
#include	<asm/tlbflush.h>
#include	<asm/page.h>

/*
124
 * DEBUG	- 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
L
Linus Torvalds 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * STATS	- 1 to collect stats for /proc/slabinfo.
 *		  0 for faster, smaller code (especially in the critical paths).
 *
 * FORCED_DEBUG	- 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
 */

#ifdef CONFIG_DEBUG_SLAB
#define	DEBUG		1
#define	STATS		1
#define	FORCED_DEBUG	1
#else
#define	DEBUG		0
#define	STATS		0
#define	FORCED_DEBUG	0
#endif

/* Shouldn't this be in a header file somewhere? */
#define	BYTES_PER_WORD		sizeof(void *)
D
David Woodhouse 已提交
145
#define	REDZONE_ALIGN		max(BYTES_PER_WORD, __alignof__(unsigned long long))
L
Linus Torvalds 已提交
146 147 148 149 150 151 152

#ifndef ARCH_KMALLOC_FLAGS
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

/* Legal flag mask for kmem_cache_create(). */
#if DEBUG
153
# define CREATE_MASK	(SLAB_RED_ZONE | \
L
Linus Torvalds 已提交
154
			 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
155
			 SLAB_CACHE_DMA | \
156
			 SLAB_STORE_USER | \
L
Linus Torvalds 已提交
157
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
158
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
159
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
160
#else
161
# define CREATE_MASK	(SLAB_HWCACHE_ALIGN | \
162
			 SLAB_CACHE_DMA | \
L
Linus Torvalds 已提交
163
			 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
164
			 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
P
Pekka Enberg 已提交
165
			 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
L
Linus Torvalds 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
#endif

/*
 * kmem_bufctl_t:
 *
 * Bufctl's are used for linking objs within a slab
 * linked offsets.
 *
 * This implementation relies on "struct page" for locating the cache &
 * slab an object belongs to.
 * This allows the bufctl structure to be small (one int), but limits
 * the number of objects a slab (not a cache) can contain when off-slab
 * bufctls are used. The limit is the size of the largest general cache
 * that does not use off-slab slabs.
 * For 32bit archs with 4 kB pages, is this 56.
 * This is not serious, as it is only for large objects, when it is unwise
 * to have too many per slab.
 * Note: This limit can be raised by introducing a general cache whose size
 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
 */

187
typedef unsigned int kmem_bufctl_t;
L
Linus Torvalds 已提交
188 189
#define BUFCTL_END	(((kmem_bufctl_t)(~0U))-0)
#define BUFCTL_FREE	(((kmem_bufctl_t)(~0U))-1)
190 191
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)
L
Linus Torvalds 已提交
192 193 194 195 196 197 198 199 200

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
P
Pekka Enberg 已提交
201 202 203 204 205 206
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
L
Linus Torvalds 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
};

/*
 * struct slab_rcu
 *
 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
 * arrange for kmem_freepages to be called via RCU.  This is useful if
 * we need to approach a kernel structure obliquely, from its address
 * obtained without the usual locking.  We can lock the structure to
 * stabilize it and check it's still at the given address, only if we
 * can be sure that the memory has not been meanwhile reused for some
 * other kind of object (which our subsystem's lock might corrupt).
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
P
Pekka Enberg 已提交
226
	struct rcu_head head;
227
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
228
	void *addr;
L
Linus Torvalds 已提交
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
};

/*
 * struct array_cache
 *
 * Purpose:
 * - LIFO ordering, to hand out cache-warm objects from _alloc
 * - reduce the number of linked list operations
 * - reduce spinlock operations
 *
 * The limit is stored in the per-cpu structure to reduce the data cache
 * footprint.
 *
 */
struct array_cache {
	unsigned int avail;
	unsigned int limit;
	unsigned int batchcount;
	unsigned int touched;
248
	spinlock_t lock;
249
	void *entry[];	/*
A
Andrew Morton 已提交
250 251 252 253
			 * Must have this definition in here for the proper
			 * alignment of array_cache. Also simplifies accessing
			 * the entries.
			 */
L
Linus Torvalds 已提交
254 255
};

A
Andrew Morton 已提交
256 257 258
/*
 * bootstrap: The caches do not work without cpuarrays anymore, but the
 * cpuarrays are allocated from the generic caches...
L
Linus Torvalds 已提交
259 260 261 262
 */
#define BOOT_CPUCACHE_ENTRIES	1
struct arraycache_init {
	struct array_cache cache;
P
Pekka Enberg 已提交
263
	void *entries[BOOT_CPUCACHE_ENTRIES];
L
Linus Torvalds 已提交
264 265 266
};

/*
267
 * The slab lists for all objects.
L
Linus Torvalds 已提交
268 269
 */
struct kmem_list3 {
P
Pekka Enberg 已提交
270 271 272 273 274
	struct list_head slabs_partial;	/* partial list first, better asm code */
	struct list_head slabs_full;
	struct list_head slabs_free;
	unsigned long free_objects;
	unsigned int free_limit;
275
	unsigned int colour_next;	/* Per-node cache coloring */
P
Pekka Enberg 已提交
276 277 278
	spinlock_t list_lock;
	struct array_cache *shared;	/* shared per node */
	struct array_cache **alien;	/* on other nodes */
279 280
	unsigned long next_reap;	/* updated without locking */
	int free_touched;		/* updated without locking */
L
Linus Torvalds 已提交
281 282
};

283 284 285
/*
 * Need this for bootstrapping a per node allocator.
 */
286
#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
287 288
struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
#define	CACHE_CACHE 0
289 290
#define	SIZE_AC MAX_NUMNODES
#define	SIZE_L3 (2 * MAX_NUMNODES)
291

292 293 294 295
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree);
static void free_block(struct kmem_cache *cachep, void **objpp, int len,
			int node);
296
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
297
static void cache_reap(struct work_struct *unused);
298

299
/*
A
Andrew Morton 已提交
300 301
 * This function must be completely optimized away if a constant is passed to
 * it.  Mostly the same as what is in linux/slab.h except it returns an index.
302
 */
303
static __always_inline int index_of(const size_t size)
304
{
305 306
	extern void __bad_size(void);

307 308 309 310 311 312 313 314
	if (__builtin_constant_p(size)) {
		int i = 0;

#define CACHE(x) \
	if (size <=x) \
		return i; \
	else \
		i++;
315
#include <linux/kmalloc_sizes.h>
316
#undef CACHE
317
		__bad_size();
318
	} else
319
		__bad_size();
320 321 322
	return 0;
}

323 324
static int slab_early_init = 1;

325 326
#define INDEX_AC index_of(sizeof(struct arraycache_init))
#define INDEX_L3 index_of(sizeof(struct kmem_list3))
L
Linus Torvalds 已提交
327

P
Pekka Enberg 已提交
328
static void kmem_list3_init(struct kmem_list3 *parent)
329 330 331 332 333 334
{
	INIT_LIST_HEAD(&parent->slabs_full);
	INIT_LIST_HEAD(&parent->slabs_partial);
	INIT_LIST_HEAD(&parent->slabs_free);
	parent->shared = NULL;
	parent->alien = NULL;
335
	parent->colour_next = 0;
336 337 338 339 340
	spin_lock_init(&parent->list_lock);
	parent->free_objects = 0;
	parent->free_touched = 0;
}

A
Andrew Morton 已提交
341 342 343 344
#define MAKE_LIST(cachep, listp, slab, nodeid)				\
	do {								\
		INIT_LIST_HEAD(listp);					\
		list_splice(&(cachep->nodelists[nodeid]->slab), listp);	\
345 346
	} while (0)

A
Andrew Morton 已提交
347 348
#define	MAKE_ALL_LISTS(cachep, ptr, nodeid)				\
	do {								\
349 350 351 352
	MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid);	\
	MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
	MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid);	\
	} while (0)
L
Linus Torvalds 已提交
353 354 355 356 357

#define CFLGS_OFF_SLAB		(0x80000000UL)
#define	OFF_SLAB(x)	((x)->flags & CFLGS_OFF_SLAB)

#define BATCHREFILL_LIMIT	16
A
Andrew Morton 已提交
358 359 360
/*
 * Optimization question: fewer reaps means less probability for unnessary
 * cpucache drain/refill cycles.
L
Linus Torvalds 已提交
361
 *
A
Adrian Bunk 已提交
362
 * OTOH the cpuarrays can contain lots of objects,
L
Linus Torvalds 已提交
363 364 365 366 367 368 369 370 371 372
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
#define	STATS_DEC_ACTIVE(x)	((x)->num_active--)
#define	STATS_INC_ALLOCED(x)	((x)->num_allocations++)
#define	STATS_INC_GROWN(x)	((x)->grown++)
373
#define	STATS_ADD_REAPED(x,y)	((x)->reaped += (y))
A
Andrew Morton 已提交
374 375 376 377 378
#define	STATS_SET_HIGH(x)						\
	do {								\
		if ((x)->num_active > (x)->high_mark)			\
			(x)->high_mark = (x)->num_active;		\
	} while (0)
L
Linus Torvalds 已提交
379 380
#define	STATS_INC_ERR(x)	((x)->errors++)
#define	STATS_INC_NODEALLOCS(x)	((x)->node_allocs++)
381
#define	STATS_INC_NODEFREES(x)	((x)->node_frees++)
382
#define STATS_INC_ACOVERFLOW(x)   ((x)->node_overflow++)
A
Andrew Morton 已提交
383 384 385 386 387
#define	STATS_SET_FREEABLE(x, i)					\
	do {								\
		if ((x)->max_freeable < i)				\
			(x)->max_freeable = i;				\
	} while (0)
L
Linus Torvalds 已提交
388 389 390 391 392 393 394 395 396
#define STATS_INC_ALLOCHIT(x)	atomic_inc(&(x)->allochit)
#define STATS_INC_ALLOCMISS(x)	atomic_inc(&(x)->allocmiss)
#define STATS_INC_FREEHIT(x)	atomic_inc(&(x)->freehit)
#define STATS_INC_FREEMISS(x)	atomic_inc(&(x)->freemiss)
#else
#define	STATS_INC_ACTIVE(x)	do { } while (0)
#define	STATS_DEC_ACTIVE(x)	do { } while (0)
#define	STATS_INC_ALLOCED(x)	do { } while (0)
#define	STATS_INC_GROWN(x)	do { } while (0)
397
#define	STATS_ADD_REAPED(x,y)	do { } while (0)
L
Linus Torvalds 已提交
398 399 400
#define	STATS_SET_HIGH(x)	do { } while (0)
#define	STATS_INC_ERR(x)	do { } while (0)
#define	STATS_INC_NODEALLOCS(x)	do { } while (0)
401
#define	STATS_INC_NODEFREES(x)	do { } while (0)
402
#define STATS_INC_ACOVERFLOW(x)   do { } while (0)
A
Andrew Morton 已提交
403
#define	STATS_SET_FREEABLE(x, i) do { } while (0)
L
Linus Torvalds 已提交
404 405 406 407 408 409 410 411
#define STATS_INC_ALLOCHIT(x)	do { } while (0)
#define STATS_INC_ALLOCMISS(x)	do { } while (0)
#define STATS_INC_FREEHIT(x)	do { } while (0)
#define STATS_INC_FREEMISS(x)	do { } while (0)
#endif

#if DEBUG

A
Andrew Morton 已提交
412 413
/*
 * memory layout of objects:
L
Linus Torvalds 已提交
414
 * 0		: objp
415
 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
L
Linus Torvalds 已提交
416 417
 * 		the end of an object is aligned with the end of the real
 * 		allocation. Catches writes behind the end of the allocation.
418
 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
L
Linus Torvalds 已提交
419
 * 		redzone word.
420 421
 * cachep->obj_offset: The real object.
 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
A
Andrew Morton 已提交
422 423
 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
 *					[BYTES_PER_WORD long]
L
Linus Torvalds 已提交
424
 */
425
static int obj_offset(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
426
{
427
	return cachep->obj_offset;
L
Linus Torvalds 已提交
428 429
}

430
static int obj_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
431
{
432
	return cachep->obj_size;
L
Linus Torvalds 已提交
433 434
}

435
static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
436 437
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
438 439
	return (unsigned long long*) (objp + obj_offset(cachep) -
				      sizeof(unsigned long long));
L
Linus Torvalds 已提交
440 441
}

442
static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
443 444 445
{
	BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
	if (cachep->flags & SLAB_STORE_USER)
446 447
		return (unsigned long long *)(objp + cachep->buffer_size -
					      sizeof(unsigned long long) -
D
David Woodhouse 已提交
448
					      REDZONE_ALIGN);
449 450
	return (unsigned long long *) (objp + cachep->buffer_size -
				       sizeof(unsigned long long));
L
Linus Torvalds 已提交
451 452
}

453
static void **dbg_userword(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
454 455
{
	BUG_ON(!(cachep->flags & SLAB_STORE_USER));
456
	return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
L
Linus Torvalds 已提交
457 458 459 460
}

#else

461 462
#define obj_offset(x)			0
#define obj_size(cachep)		(cachep->buffer_size)
463 464
#define dbg_redzone1(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
#define dbg_redzone2(cachep, objp)	({BUG(); (unsigned long long *)NULL;})
L
Linus Torvalds 已提交
465 466 467 468
#define dbg_userword(cachep, objp)	({BUG(); (void **)NULL;})

#endif

469
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
470 471 472 473 474 475 476
size_t slab_buffer_size(struct kmem_cache *cachep)
{
	return cachep->buffer_size;
}
EXPORT_SYMBOL(slab_buffer_size);
#endif

L
Linus Torvalds 已提交
477 478 479 480 481 482 483
/*
 * Do not go above this order unless 0 objects fit into the slab.
 */
#define	BREAK_GFP_ORDER_HI	1
#define	BREAK_GFP_ORDER_LO	0
static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;

A
Andrew Morton 已提交
484 485 486 487
/*
 * Functions for storing/retrieving the cachep and or slab from the page
 * allocator.  These are used to find the slab an obj belongs to.  With kfree(),
 * these are used to find the cache which an obj belongs to.
L
Linus Torvalds 已提交
488
 */
489 490 491 492 493 494 495
static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
{
	page->lru.next = (struct list_head *)cache;
}

static inline struct kmem_cache *page_get_cache(struct page *page)
{
496
	page = compound_head(page);
497
	BUG_ON(!PageSlab(page));
498 499 500 501 502 503 504 505 506 507
	return (struct kmem_cache *)page->lru.next;
}

static inline void page_set_slab(struct page *page, struct slab *slab)
{
	page->lru.prev = (struct list_head *)slab;
}

static inline struct slab *page_get_slab(struct page *page)
{
508
	BUG_ON(!PageSlab(page));
509 510
	return (struct slab *)page->lru.prev;
}
L
Linus Torvalds 已提交
511

512 513
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
514
	struct page *page = virt_to_head_page(obj);
515 516 517 518 519
	return page_get_cache(page);
}

static inline struct slab *virt_to_slab(const void *obj)
{
520
	struct page *page = virt_to_head_page(obj);
521 522 523
	return page_get_slab(page);
}

524 525 526 527 528 529
static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
				 unsigned int idx)
{
	return slab->s_mem + cache->buffer_size * idx;
}

530 531 532 533 534 535 536 537
/*
 * We want to avoid an expensive divide : (offset / cache->buffer_size)
 *   Using the fact that buffer_size is a constant for a particular cache,
 *   we can replace (offset / cache->buffer_size) by
 *   reciprocal_divide(offset, cache->reciprocal_buffer_size)
 */
static inline unsigned int obj_to_index(const struct kmem_cache *cache,
					const struct slab *slab, void *obj)
538
{
539 540
	u32 offset = (obj - slab->s_mem);
	return reciprocal_divide(offset, cache->reciprocal_buffer_size);
541 542
}

A
Andrew Morton 已提交
543 544 545
/*
 * These are the default caches for kmalloc. Custom caches can have other sizes.
 */
L
Linus Torvalds 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
struct cache_sizes malloc_sizes[] = {
#define CACHE(x) { .cs_size = (x) },
#include <linux/kmalloc_sizes.h>
	CACHE(ULONG_MAX)
#undef CACHE
};
EXPORT_SYMBOL(malloc_sizes);

/* Must match cache_sizes above. Out of line to keep cache footprint low. */
struct cache_names {
	char *name;
	char *name_dma;
};

static struct cache_names __initdata cache_names[] = {
#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
#include <linux/kmalloc_sizes.h>
P
Pekka Enberg 已提交
563
	{NULL,}
L
Linus Torvalds 已提交
564 565 566 567
#undef CACHE
};

static struct arraycache_init initarray_cache __initdata =
P
Pekka Enberg 已提交
568
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
569
static struct arraycache_init initarray_generic =
P
Pekka Enberg 已提交
570
    { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
L
Linus Torvalds 已提交
571 572

/* internal cache of cache description objs */
573
static struct kmem_cache cache_cache = {
P
Pekka Enberg 已提交
574 575 576
	.batchcount = 1,
	.limit = BOOT_CPUCACHE_ENTRIES,
	.shared = 1,
577
	.buffer_size = sizeof(struct kmem_cache),
P
Pekka Enberg 已提交
578
	.name = "kmem_cache",
L
Linus Torvalds 已提交
579 580
};

581 582
#define BAD_ALIEN_MAGIC 0x01020304ul

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
/*
 * chicken and egg problem: delay the per-cpu array allocation
 * until the general caches are up.
 */
static enum {
	NONE,
	PARTIAL_AC,
	PARTIAL_L3,
	EARLY,
	FULL
} g_cpucache_up;

/*
 * used by boot code to determine if it can use slab based allocator
 */
int slab_is_available(void)
{
	return g_cpucache_up >= EARLY;
}

603 604 605 606 607 608 609 610
#ifdef CONFIG_LOCKDEP

/*
 * Slab sometimes uses the kmalloc slabs to store the slab headers
 * for other slabs "off slab".
 * The locking for this is tricky in that it nests within the locks
 * of all other slabs in a few places; to deal with this special
 * locking we put on-slab caches into a separate lock-class.
611 612 613 614
 *
 * We set lock class for alien array caches which are up during init.
 * The lock annotation will be lost if all cpus of a node goes down and
 * then comes back up during hotplug
615
 */
616 617 618
static struct lock_class_key on_slab_l3_key;
static struct lock_class_key on_slab_alc_key;

619
static void init_node_lock_keys(int q)
620
{
621 622
	struct cache_sizes *s = malloc_sizes;

623 624 625 626 627 628 629 630 631 632
	if (g_cpucache_up != FULL)
		return;

	for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
		struct array_cache **alc;
		struct kmem_list3 *l3;
		int r;

		l3 = s->cs_cachep->nodelists[q];
		if (!l3 || OFF_SLAB(s->cs_cachep))
633
			continue;
634 635 636 637 638 639 640 641 642 643
		lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
		alc = l3->alien;
		/*
		 * FIXME: This check for BAD_ALIEN_MAGIC
		 * should go away when common slab code is taught to
		 * work even without alien caches.
		 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
		 * for alloc_alien_cache,
		 */
		if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
644
			continue;
645 646 647 648
		for_each_node(r) {
			if (alc[r])
				lockdep_set_class(&alc[r]->lock,
					&on_slab_alc_key);
649
		}
650 651
	}
}
652 653 654 655 656 657 658 659

static inline void init_lock_keys(void)
{
	int node;

	for_each_node(node)
		init_node_lock_keys(node);
}
660
#else
661 662 663 664
static void init_node_lock_keys(int q)
{
}

665
static inline void init_lock_keys(void)
666 667 668 669
{
}
#endif

670
/*
671
 * Guard access to the cache-chain.
672
 */
I
Ingo Molnar 已提交
673
static DEFINE_MUTEX(cache_chain_mutex);
L
Linus Torvalds 已提交
674 675
static struct list_head cache_chain;

676
static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
L
Linus Torvalds 已提交
677

678
static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
679 680 681 682
{
	return cachep->array[smp_processor_id()];
}

A
Andrew Morton 已提交
683 684
static inline struct kmem_cache *__find_general_cachep(size_t size,
							gfp_t gfpflags)
L
Linus Torvalds 已提交
685 686 687 688 689
{
	struct cache_sizes *csizep = malloc_sizes;

#if DEBUG
	/* This happens if someone tries to call
P
Pekka Enberg 已提交
690 691 692
	 * kmem_cache_create(), or __kmalloc(), before
	 * the generic caches are initialized.
	 */
693
	BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
L
Linus Torvalds 已提交
694
#endif
695 696 697
	if (!size)
		return ZERO_SIZE_PTR;

L
Linus Torvalds 已提交
698 699 700 701
	while (size > csizep->cs_size)
		csizep++;

	/*
702
	 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
L
Linus Torvalds 已提交
703 704 705
	 * has cs_{dma,}cachep==NULL. Thus no special case
	 * for large kmalloc calls required.
	 */
706
#ifdef CONFIG_ZONE_DMA
L
Linus Torvalds 已提交
707 708
	if (unlikely(gfpflags & GFP_DMA))
		return csizep->cs_dmacachep;
709
#endif
L
Linus Torvalds 已提交
710 711 712
	return csizep->cs_cachep;
}

A
Adrian Bunk 已提交
713
static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
714 715 716 717
{
	return __find_general_cachep(size, gfpflags);
}

718
static size_t slab_mgmt_size(size_t nr_objs, size_t align)
L
Linus Torvalds 已提交
719
{
720 721
	return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
}
L
Linus Torvalds 已提交
722

A
Andrew Morton 已提交
723 724 725
/*
 * Calculate the number of objects and left-over bytes for a given buffer size.
 */
726 727 728 729 730 731 732
static void cache_estimate(unsigned long gfporder, size_t buffer_size,
			   size_t align, int flags, size_t *left_over,
			   unsigned int *num)
{
	int nr_objs;
	size_t mgmt_size;
	size_t slab_size = PAGE_SIZE << gfporder;
L
Linus Torvalds 已提交
733

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
	/*
	 * The slab management structure can be either off the slab or
	 * on it. For the latter case, the memory allocated for a
	 * slab is used for:
	 *
	 * - The struct slab
	 * - One kmem_bufctl_t for each object
	 * - Padding to respect alignment of @align
	 * - @buffer_size bytes for each object
	 *
	 * If the slab management structure is off the slab, then the
	 * alignment will already be calculated into the size. Because
	 * the slabs are all pages aligned, the objects will be at the
	 * correct alignment when allocated.
	 */
	if (flags & CFLGS_OFF_SLAB) {
		mgmt_size = 0;
		nr_objs = slab_size / buffer_size;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;
	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size - sizeof(struct slab)) /
			  (buffer_size + sizeof(kmem_bufctl_t));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		if (nr_objs > SLAB_LIMIT)
			nr_objs = SLAB_LIMIT;

		mgmt_size = slab_mgmt_size(nr_objs, align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
L
Linus Torvalds 已提交
782 783
}

784
#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
L
Linus Torvalds 已提交
785

A
Andrew Morton 已提交
786 787
static void __slab_error(const char *function, struct kmem_cache *cachep,
			char *msg)
L
Linus Torvalds 已提交
788 789
{
	printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
P
Pekka Enberg 已提交
790
	       function, cachep->name, msg);
L
Linus Torvalds 已提交
791 792 793
	dump_stack();
}

794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
/*
 * By default on NUMA we use alien caches to stage the freeing of
 * objects allocated from other nodes. This causes massive memory
 * inefficiencies when using fake NUMA setup to split memory into a
 * large number of small nodes, so it can be disabled on the command
 * line
  */

static int use_alien_caches __read_mostly = 1;
static int __init noaliencache_setup(char *s)
{
	use_alien_caches = 0;
	return 1;
}
__setup("noaliencache", noaliencache_setup);

810 811 812 813 814 815 816
#ifdef CONFIG_NUMA
/*
 * Special reaping functions for NUMA systems called from cache_reap().
 * These take care of doing round robin flushing of alien caches (containing
 * objects freed on different nodes from which they were allocated) and the
 * flushing of remote pcps by calling drain_node_pages.
 */
817
static DEFINE_PER_CPU(unsigned long, slab_reap_node);
818 819 820 821 822 823 824

static void init_reap_node(int cpu)
{
	int node;

	node = next_node(cpu_to_node(cpu), node_online_map);
	if (node == MAX_NUMNODES)
825
		node = first_node(node_online_map);
826

827
	per_cpu(slab_reap_node, cpu) = node;
828 829 830 831
}

static void next_reap_node(void)
{
832
	int node = __get_cpu_var(slab_reap_node);
833 834 835 836

	node = next_node(node, node_online_map);
	if (unlikely(node >= MAX_NUMNODES))
		node = first_node(node_online_map);
837
	__get_cpu_var(slab_reap_node) = node;
838 839 840 841 842 843 844
}

#else
#define init_reap_node(cpu) do { } while (0)
#define next_reap_node(void) do { } while (0)
#endif

L
Linus Torvalds 已提交
845 846 847 848 849 850 851
/*
 * Initiate the reap timer running on the target CPU.  We run at around 1 to 2Hz
 * via the workqueue/eventd.
 * Add the CPU number into the expiration time to minimize the possibility of
 * the CPUs getting into lockstep and contending for the global cache chain
 * lock.
 */
852
static void __cpuinit start_cpu_timer(int cpu)
L
Linus Torvalds 已提交
853
{
854
	struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
L
Linus Torvalds 已提交
855 856 857 858 859 860

	/*
	 * When this gets called from do_initcalls via cpucache_init(),
	 * init_workqueues() has already run, so keventd will be setup
	 * at that time.
	 */
861
	if (keventd_up() && reap_work->work.func == NULL) {
862
		init_reap_node(cpu);
863
		INIT_DELAYED_WORK(reap_work, cache_reap);
864 865
		schedule_delayed_work_on(cpu, reap_work,
					__round_jiffies_relative(HZ, cpu));
L
Linus Torvalds 已提交
866 867 868
	}
}

869
static struct array_cache *alloc_arraycache(int node, int entries,
870
					    int batchcount, gfp_t gfp)
L
Linus Torvalds 已提交
871
{
P
Pekka Enberg 已提交
872
	int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
L
Linus Torvalds 已提交
873 874
	struct array_cache *nc = NULL;

875
	nc = kmalloc_node(memsize, gfp, node);
876 877 878 879 880 881 882 883
	/*
	 * The array_cache structures contain pointers to free object.
	 * However, when such objects are allocated or transfered to another
	 * cache the pointers are not cleared and they could be counted as
	 * valid references during a kmemleak scan. Therefore, kmemleak must
	 * not scan such objects.
	 */
	kmemleak_no_scan(nc);
L
Linus Torvalds 已提交
884 885 886 887 888
	if (nc) {
		nc->avail = 0;
		nc->limit = entries;
		nc->batchcount = batchcount;
		nc->touched = 0;
889
		spin_lock_init(&nc->lock);
L
Linus Torvalds 已提交
890 891 892 893
	}
	return nc;
}

894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
/*
 * Transfer objects in one arraycache to another.
 * Locking must be handled by the caller.
 *
 * Return the number of entries transferred.
 */
static int transfer_objects(struct array_cache *to,
		struct array_cache *from, unsigned int max)
{
	/* Figure out how many entries to transfer */
	int nr = min(min(from->avail, max), to->limit - to->avail);

	if (!nr)
		return 0;

	memcpy(to->entry + to->avail, from->entry + from->avail -nr,
			sizeof(void *) *nr);

	from->avail -= nr;
	to->avail += nr;
	return nr;
}

917 918 919 920 921
#ifndef CONFIG_NUMA

#define drain_alien_cache(cachep, alien) do { } while (0)
#define reap_alien(cachep, l3) do { } while (0)

922
static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941
{
	return (struct array_cache **)BAD_ALIEN_MAGIC;
}

static inline void free_alien_cache(struct array_cache **ac_ptr)
{
}

static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
{
	return 0;
}

static inline void *alternate_node_alloc(struct kmem_cache *cachep,
		gfp_t flags)
{
	return NULL;
}

942
static inline void *____cache_alloc_node(struct kmem_cache *cachep,
943 944 945 946 947 948 949
		 gfp_t flags, int nodeid)
{
	return NULL;
}

#else	/* CONFIG_NUMA */

950
static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
951
static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
952

953
static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
954 955
{
	struct array_cache **ac_ptr;
956
	int memsize = sizeof(void *) * nr_node_ids;
957 958 959 960
	int i;

	if (limit > 1)
		limit = 12;
961
	ac_ptr = kzalloc_node(memsize, gfp, node);
962 963
	if (ac_ptr) {
		for_each_node(i) {
964
			if (i == node || !node_online(i))
965
				continue;
966
			ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
967
			if (!ac_ptr[i]) {
968
				for (i--; i >= 0; i--)
969 970 971 972 973 974 975 976 977
					kfree(ac_ptr[i]);
				kfree(ac_ptr);
				return NULL;
			}
		}
	}
	return ac_ptr;
}

P
Pekka Enberg 已提交
978
static void free_alien_cache(struct array_cache **ac_ptr)
979 980 981 982 983 984
{
	int i;

	if (!ac_ptr)
		return;
	for_each_node(i)
P
Pekka Enberg 已提交
985
	    kfree(ac_ptr[i]);
986 987 988
	kfree(ac_ptr);
}

989
static void __drain_alien_cache(struct kmem_cache *cachep,
P
Pekka Enberg 已提交
990
				struct array_cache *ac, int node)
991 992 993 994 995
{
	struct kmem_list3 *rl3 = cachep->nodelists[node];

	if (ac->avail) {
		spin_lock(&rl3->list_lock);
996 997 998 999 1000
		/*
		 * Stuff objects into the remote nodes shared array first.
		 * That way we could avoid the overhead of putting the objects
		 * into the free lists and getting them back later.
		 */
1001 1002
		if (rl3->shared)
			transfer_objects(rl3->shared, ac, ac->limit);
1003

1004
		free_block(cachep, ac->entry, ac->avail, node);
1005 1006 1007 1008 1009
		ac->avail = 0;
		spin_unlock(&rl3->list_lock);
	}
}

1010 1011 1012 1013 1014
/*
 * Called from cache_reap() to regularly drain alien caches round robin.
 */
static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
{
1015
	int node = __get_cpu_var(slab_reap_node);
1016 1017 1018

	if (l3->alien) {
		struct array_cache *ac = l3->alien[node];
1019 1020

		if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
1021 1022 1023 1024 1025 1026
			__drain_alien_cache(cachep, ac, node);
			spin_unlock_irq(&ac->lock);
		}
	}
}

A
Andrew Morton 已提交
1027 1028
static void drain_alien_cache(struct kmem_cache *cachep,
				struct array_cache **alien)
1029
{
P
Pekka Enberg 已提交
1030
	int i = 0;
1031 1032 1033 1034
	struct array_cache *ac;
	unsigned long flags;

	for_each_online_node(i) {
1035
		ac = alien[i];
1036 1037 1038 1039 1040 1041 1042
		if (ac) {
			spin_lock_irqsave(&ac->lock, flags);
			__drain_alien_cache(cachep, ac, i);
			spin_unlock_irqrestore(&ac->lock, flags);
		}
	}
}
1043

1044
static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1045 1046 1047 1048 1049
{
	struct slab *slabp = virt_to_slab(objp);
	int nodeid = slabp->nodeid;
	struct kmem_list3 *l3;
	struct array_cache *alien = NULL;
P
Pekka Enberg 已提交
1050 1051 1052
	int node;

	node = numa_node_id();
1053 1054 1055 1056 1057

	/*
	 * Make sure we are not freeing a object from another node to the array
	 * cache on this cpu.
	 */
1058
	if (likely(slabp->nodeid == node))
1059 1060
		return 0;

P
Pekka Enberg 已提交
1061
	l3 = cachep->nodelists[node];
1062 1063 1064
	STATS_INC_NODEFREES(cachep);
	if (l3->alien && l3->alien[nodeid]) {
		alien = l3->alien[nodeid];
1065
		spin_lock(&alien->lock);
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
		if (unlikely(alien->avail == alien->limit)) {
			STATS_INC_ACOVERFLOW(cachep);
			__drain_alien_cache(cachep, alien, nodeid);
		}
		alien->entry[alien->avail++] = objp;
		spin_unlock(&alien->lock);
	} else {
		spin_lock(&(cachep->nodelists[nodeid])->list_lock);
		free_block(cachep, &objp, 1, nodeid);
		spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
	}
	return 1;
}
1079 1080
#endif

1081 1082 1083 1084 1085
static void __cpuinit cpuup_canceled(long cpu)
{
	struct kmem_cache *cachep;
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1086
	const struct cpumask *mask = cpumask_of_node(node);
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared;
		struct array_cache **alien;

		/* cpu is dead; no one can alloc from it. */
		nc = cachep->array[cpu];
		cachep->array[cpu] = NULL;
		l3 = cachep->nodelists[node];

		if (!l3)
			goto free_array_cache;

		spin_lock_irq(&l3->list_lock);

		/* Free limit for this kmem_list3 */
		l3->free_limit -= cachep->batchcount;
		if (nc)
			free_block(cachep, nc->entry, nc->avail, node);

1108
		if (!cpumask_empty(mask)) {
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
			spin_unlock_irq(&l3->list_lock);
			goto free_array_cache;
		}

		shared = l3->shared;
		if (shared) {
			free_block(cachep, shared->entry,
				   shared->avail, node);
			l3->shared = NULL;
		}

		alien = l3->alien;
		l3->alien = NULL;

		spin_unlock_irq(&l3->list_lock);

		kfree(shared);
		if (alien) {
			drain_alien_cache(cachep, alien);
			free_alien_cache(alien);
		}
free_array_cache:
		kfree(nc);
	}
	/*
	 * In the previous loop, all the objects were freed to
	 * the respective cache's slabs,  now we can go ahead and
	 * shrink each nodelist to its limit.
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;
		drain_freelist(cachep, l3, l3->free_objects);
	}
}

static int __cpuinit cpuup_prepare(long cpu)
L
Linus Torvalds 已提交
1147
{
1148
	struct kmem_cache *cachep;
1149 1150
	struct kmem_list3 *l3 = NULL;
	int node = cpu_to_node(cpu);
1151
	const int memsize = sizeof(struct kmem_list3);
L
Linus Torvalds 已提交
1152

1153 1154 1155 1156 1157 1158 1159 1160
	/*
	 * We need to do this right in the beginning since
	 * alloc_arraycache's are going to use this list.
	 * kmalloc_node allows us to add the slab to the right
	 * kmem_list3 and not this cpu's kmem_list3
	 */

	list_for_each_entry(cachep, &cache_chain, next) {
A
Andrew Morton 已提交
1161
		/*
1162 1163 1164
		 * Set up the size64 kmemlist for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
1165
		 */
1166 1167 1168 1169 1170 1171 1172
		if (!cachep->nodelists[node]) {
			l3 = kmalloc_node(memsize, GFP_KERNEL, node);
			if (!l3)
				goto bad;
			kmem_list3_init(l3);
			l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1173

A
Andrew Morton 已提交
1174
			/*
1175 1176 1177
			 * The l3s don't come and go as CPUs come and
			 * go.  cache_chain_mutex is sufficient
			 * protection here.
1178
			 */
1179
			cachep->nodelists[node] = l3;
1180 1181
		}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
		spin_lock_irq(&cachep->nodelists[node]->list_lock);
		cachep->nodelists[node]->free_limit =
			(1 + nr_cpus_node(node)) *
			cachep->batchcount + cachep->num;
		spin_unlock_irq(&cachep->nodelists[node]->list_lock);
	}

	/*
	 * Now we can go ahead with allocating the shared arrays and
	 * array caches
	 */
	list_for_each_entry(cachep, &cache_chain, next) {
		struct array_cache *nc;
		struct array_cache *shared = NULL;
		struct array_cache **alien = NULL;

		nc = alloc_arraycache(node, cachep->limit,
1199
					cachep->batchcount, GFP_KERNEL);
1200 1201 1202 1203 1204
		if (!nc)
			goto bad;
		if (cachep->shared) {
			shared = alloc_arraycache(node,
				cachep->shared * cachep->batchcount,
1205
				0xbaadf00d, GFP_KERNEL);
1206 1207
			if (!shared) {
				kfree(nc);
L
Linus Torvalds 已提交
1208
				goto bad;
1209
			}
1210 1211
		}
		if (use_alien_caches) {
1212
			alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
1213 1214 1215
			if (!alien) {
				kfree(shared);
				kfree(nc);
1216
				goto bad;
1217
			}
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
		}
		cachep->array[cpu] = nc;
		l3 = cachep->nodelists[node];
		BUG_ON(!l3);

		spin_lock_irq(&l3->list_lock);
		if (!l3->shared) {
			/*
			 * We are serialised from CPU_DEAD or
			 * CPU_UP_CANCELLED by the cpucontrol lock
			 */
			l3->shared = shared;
			shared = NULL;
		}
1232
#ifdef CONFIG_NUMA
1233 1234 1235
		if (!l3->alien) {
			l3->alien = alien;
			alien = NULL;
L
Linus Torvalds 已提交
1236
		}
1237 1238 1239 1240 1241
#endif
		spin_unlock_irq(&l3->list_lock);
		kfree(shared);
		free_alien_cache(alien);
	}
1242 1243
	init_node_lock_keys(node);

1244 1245
	return 0;
bad:
1246
	cpuup_canceled(cpu);
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
	return -ENOMEM;
}

static int __cpuinit cpuup_callback(struct notifier_block *nfb,
				    unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
	int err = 0;

	switch (action) {
	case CPU_UP_PREPARE:
	case CPU_UP_PREPARE_FROZEN:
1259
		mutex_lock(&cache_chain_mutex);
1260
		err = cpuup_prepare(cpu);
1261
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1262 1263
		break;
	case CPU_ONLINE:
1264
	case CPU_ONLINE_FROZEN:
L
Linus Torvalds 已提交
1265 1266 1267
		start_cpu_timer(cpu);
		break;
#ifdef CONFIG_HOTPLUG_CPU
1268
  	case CPU_DOWN_PREPARE:
1269
  	case CPU_DOWN_PREPARE_FROZEN:
1270 1271 1272 1273 1274 1275
		/*
		 * Shutdown cache reaper. Note that the cache_chain_mutex is
		 * held so that if cache_reap() is invoked it cannot do
		 * anything expensive but will only modify reap_work
		 * and reschedule the timer.
		*/
1276
		cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
1277
		/* Now the cache_reaper is guaranteed to be not running. */
1278
		per_cpu(slab_reap_work, cpu).work.func = NULL;
1279 1280
  		break;
  	case CPU_DOWN_FAILED:
1281
  	case CPU_DOWN_FAILED_FROZEN:
1282 1283
		start_cpu_timer(cpu);
  		break;
L
Linus Torvalds 已提交
1284
	case CPU_DEAD:
1285
	case CPU_DEAD_FROZEN:
1286 1287 1288 1289 1290 1291 1292 1293
		/*
		 * Even if all the cpus of a node are down, we don't free the
		 * kmem_list3 of any cache. This to avoid a race between
		 * cpu_down, and a kmalloc allocation from another cpu for
		 * memory from the node of the cpu going down.  The list3
		 * structure is usually allocated from kmem_cache_create() and
		 * gets destroyed at kmem_cache_destroy().
		 */
S
Simon Arlott 已提交
1294
		/* fall through */
1295
#endif
L
Linus Torvalds 已提交
1296
	case CPU_UP_CANCELED:
1297
	case CPU_UP_CANCELED_FROZEN:
1298
		mutex_lock(&cache_chain_mutex);
1299
		cpuup_canceled(cpu);
I
Ingo Molnar 已提交
1300
		mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
1301 1302
		break;
	}
1303
	return err ? NOTIFY_BAD : NOTIFY_OK;
L
Linus Torvalds 已提交
1304 1305
}

1306 1307 1308
static struct notifier_block __cpuinitdata cpucache_notifier = {
	&cpuup_callback, NULL, 0
};
L
Linus Torvalds 已提交
1309

1310 1311 1312
/*
 * swap the static kmem_list3 with kmalloced memory
 */
A
Andrew Morton 已提交
1313 1314
static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
			int nodeid)
1315 1316 1317
{
	struct kmem_list3 *ptr;

1318
	ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
1319 1320 1321
	BUG_ON(!ptr);

	memcpy(ptr, list, sizeof(struct kmem_list3));
1322 1323 1324 1325 1326
	/*
	 * Do not assume that spinlocks can be initialized via memcpy:
	 */
	spin_lock_init(&ptr->list_lock);

1327 1328 1329 1330
	MAKE_ALL_LISTS(cachep, ptr, nodeid);
	cachep->nodelists[nodeid] = ptr;
}

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
/*
 * For setting up all the kmem_list3s for cache whose buffer_size is same as
 * size of kmem_list3.
 */
static void __init set_up_list3s(struct kmem_cache *cachep, int index)
{
	int node;

	for_each_online_node(node) {
		cachep->nodelists[node] = &initkmem_list3[index + node];
		cachep->nodelists[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
	}
}

A
Andrew Morton 已提交
1347 1348 1349
/*
 * Initialisation.  Called after the page allocator have been initialised and
 * before smp_init().
L
Linus Torvalds 已提交
1350 1351 1352 1353 1354 1355
 */
void __init kmem_cache_init(void)
{
	size_t left_over;
	struct cache_sizes *sizes;
	struct cache_names *names;
1356
	int i;
1357
	int order;
P
Pekka Enberg 已提交
1358
	int node;
1359

1360
	if (num_possible_nodes() == 1)
1361 1362
		use_alien_caches = 0;

1363 1364 1365 1366 1367
	for (i = 0; i < NUM_INIT_LISTS; i++) {
		kmem_list3_init(&initkmem_list3[i]);
		if (i < MAX_NUMNODES)
			cache_cache.nodelists[i] = NULL;
	}
1368
	set_up_list3s(&cache_cache, CACHE_CACHE);
L
Linus Torvalds 已提交
1369 1370 1371 1372 1373

	/*
	 * Fragmentation resistance on low memory - only use bigger
	 * page orders on machines with more than 32MB of memory.
	 */
1374
	if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
L
Linus Torvalds 已提交
1375 1376 1377 1378
		slab_break_gfp_order = BREAK_GFP_ORDER_HI;

	/* Bootstrap is tricky, because several objects are allocated
	 * from caches that do not exist yet:
A
Andrew Morton 已提交
1379 1380 1381
	 * 1) initialize the cache_cache cache: it contains the struct
	 *    kmem_cache structures of all caches, except cache_cache itself:
	 *    cache_cache is statically allocated.
1382 1383 1384
	 *    Initially an __init data area is used for the head array and the
	 *    kmem_list3 structures, it's replaced with a kmalloc allocated
	 *    array at the end of the bootstrap.
L
Linus Torvalds 已提交
1385
	 * 2) Create the first kmalloc cache.
1386
	 *    The struct kmem_cache for the new cache is allocated normally.
1387 1388 1389
	 *    An __init data area is used for the head array.
	 * 3) Create the remaining kmalloc caches, with minimally sized
	 *    head arrays.
L
Linus Torvalds 已提交
1390 1391
	 * 4) Replace the __init data head arrays for cache_cache and the first
	 *    kmalloc cache with kmalloc allocated arrays.
1392 1393 1394
	 * 5) Replace the __init data for kmem_list3 for cache_cache and
	 *    the other cache's with kmalloc allocated memory.
	 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
L
Linus Torvalds 已提交
1395 1396
	 */

P
Pekka Enberg 已提交
1397 1398
	node = numa_node_id();

L
Linus Torvalds 已提交
1399 1400 1401 1402 1403
	/* 1) create the cache_cache */
	INIT_LIST_HEAD(&cache_chain);
	list_add(&cache_cache.next, &cache_chain);
	cache_cache.colour_off = cache_line_size();
	cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1404
	cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
L
Linus Torvalds 已提交
1405

E
Eric Dumazet 已提交
1406 1407 1408 1409 1410 1411 1412 1413 1414
	/*
	 * struct kmem_cache size depends on nr_node_ids, which
	 * can be less than MAX_NUMNODES.
	 */
	cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
				 nr_node_ids * sizeof(struct kmem_list3 *);
#if DEBUG
	cache_cache.obj_size = cache_cache.buffer_size;
#endif
A
Andrew Morton 已提交
1415 1416
	cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
					cache_line_size());
1417 1418
	cache_cache.reciprocal_buffer_size =
		reciprocal_value(cache_cache.buffer_size);
L
Linus Torvalds 已提交
1419

1420 1421 1422 1423 1424 1425
	for (order = 0; order < MAX_ORDER; order++) {
		cache_estimate(order, cache_cache.buffer_size,
			cache_line_size(), 0, &left_over, &cache_cache.num);
		if (cache_cache.num)
			break;
	}
1426
	BUG_ON(!cache_cache.num);
1427
	cache_cache.gfporder = order;
P
Pekka Enberg 已提交
1428 1429 1430
	cache_cache.colour = left_over / cache_cache.colour_off;
	cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
				      sizeof(struct slab), cache_line_size());
L
Linus Torvalds 已提交
1431 1432 1433 1434 1435

	/* 2+3) create the kmalloc caches */
	sizes = malloc_sizes;
	names = cache_names;

A
Andrew Morton 已提交
1436 1437 1438 1439
	/*
	 * Initialize the caches that provide memory for the array cache and the
	 * kmem_list3 structures first.  Without this, further allocations will
	 * bug.
1440 1441 1442
	 */

	sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
A
Andrew Morton 已提交
1443 1444 1445
					sizes[INDEX_AC].cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1446
					NULL);
1447

A
Andrew Morton 已提交
1448
	if (INDEX_AC != INDEX_L3) {
1449
		sizes[INDEX_L3].cs_cachep =
A
Andrew Morton 已提交
1450 1451 1452 1453
			kmem_cache_create(names[INDEX_L3].name,
				sizes[INDEX_L3].cs_size,
				ARCH_KMALLOC_MINALIGN,
				ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1454
				NULL);
A
Andrew Morton 已提交
1455
	}
1456

1457 1458
	slab_early_init = 0;

L
Linus Torvalds 已提交
1459
	while (sizes->cs_size != ULONG_MAX) {
1460 1461
		/*
		 * For performance, all the general caches are L1 aligned.
L
Linus Torvalds 已提交
1462 1463 1464
		 * This should be particularly beneficial on SMP boxes, as it
		 * eliminates "false sharing".
		 * Note for systems short on memory removing the alignment will
1465 1466
		 * allow tighter packing of the smaller caches.
		 */
A
Andrew Morton 已提交
1467
		if (!sizes->cs_cachep) {
1468
			sizes->cs_cachep = kmem_cache_create(names->name,
A
Andrew Morton 已提交
1469 1470 1471
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1472
					NULL);
A
Andrew Morton 已提交
1473
		}
1474 1475 1476
#ifdef CONFIG_ZONE_DMA
		sizes->cs_dmacachep = kmem_cache_create(
					names->name_dma,
A
Andrew Morton 已提交
1477 1478 1479 1480
					sizes->cs_size,
					ARCH_KMALLOC_MINALIGN,
					ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
						SLAB_PANIC,
1481
					NULL);
1482
#endif
L
Linus Torvalds 已提交
1483 1484 1485 1486 1487
		sizes++;
		names++;
	}
	/* 4) Replace the bootstrap head arrays */
	{
1488
		struct array_cache *ptr;
1489

1490
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1491

1492 1493
		BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
		memcpy(ptr, cpu_cache_get(&cache_cache),
P
Pekka Enberg 已提交
1494
		       sizeof(struct arraycache_init));
1495 1496 1497 1498 1499
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

L
Linus Torvalds 已提交
1500
		cache_cache.array[smp_processor_id()] = ptr;
1501

1502
		ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
1503

1504
		BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
P
Pekka Enberg 已提交
1505
		       != &initarray_generic.cache);
1506
		memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
P
Pekka Enberg 已提交
1507
		       sizeof(struct arraycache_init));
1508 1509 1510 1511 1512
		/*
		 * Do not assume that spinlocks can be initialized via memcpy:
		 */
		spin_lock_init(&ptr->lock);

1513
		malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
P
Pekka Enberg 已提交
1514
		    ptr;
L
Linus Torvalds 已提交
1515
	}
1516 1517
	/* 5) Replace the bootstrap kmem_list3's */
	{
P
Pekka Enberg 已提交
1518 1519
		int nid;

1520
		for_each_online_node(nid) {
1521
			init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
1522

1523
			init_list(malloc_sizes[INDEX_AC].cs_cachep,
P
Pekka Enberg 已提交
1524
				  &initkmem_list3[SIZE_AC + nid], nid);
1525 1526 1527

			if (INDEX_AC != INDEX_L3) {
				init_list(malloc_sizes[INDEX_L3].cs_cachep,
P
Pekka Enberg 已提交
1528
					  &initkmem_list3[SIZE_L3 + nid], nid);
1529 1530 1531
			}
		}
	}
L
Linus Torvalds 已提交
1532

1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545
	g_cpucache_up = EARLY;
}

void __init kmem_cache_init_late(void)
{
	struct kmem_cache *cachep;

	/* 6) resize the head arrays to their final sizes */
	mutex_lock(&cache_chain_mutex);
	list_for_each_entry(cachep, &cache_chain, next)
		if (enable_cpucache(cachep, GFP_NOWAIT))
			BUG();
	mutex_unlock(&cache_chain_mutex);
1546

L
Linus Torvalds 已提交
1547 1548 1549
	/* Done! */
	g_cpucache_up = FULL;

P
Pekka Enberg 已提交
1550 1551 1552
	/* Annotate slab for lockdep -- annotate the malloc caches */
	init_lock_keys();

A
Andrew Morton 已提交
1553 1554 1555
	/*
	 * Register a cpu startup notifier callback that initializes
	 * cpu_cache_get for all new cpus
L
Linus Torvalds 已提交
1556 1557 1558
	 */
	register_cpu_notifier(&cpucache_notifier);

A
Andrew Morton 已提交
1559 1560 1561
	/*
	 * The reap timers are started later, with a module init call: That part
	 * of the kernel is not yet operational.
L
Linus Torvalds 已提交
1562 1563 1564 1565 1566 1567 1568
	 */
}

static int __init cpucache_init(void)
{
	int cpu;

A
Andrew Morton 已提交
1569 1570
	/*
	 * Register the timers that return unneeded pages to the page allocator
L
Linus Torvalds 已提交
1571
	 */
1572
	for_each_online_cpu(cpu)
A
Andrew Morton 已提交
1573
		start_cpu_timer(cpu);
L
Linus Torvalds 已提交
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
	return 0;
}
__initcall(cpucache_init);

/*
 * Interface to system's page allocator. No need to hold the cache-lock.
 *
 * If we requested dmaable memory, we will get it. Even if we
 * did not request dmaable memory, we might get it, but that
 * would be relatively rare and ignorable.
 */
1585
static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
L
Linus Torvalds 已提交
1586 1587
{
	struct page *page;
1588
	int nr_pages;
L
Linus Torvalds 已提交
1589 1590
	int i;

1591
#ifndef CONFIG_MMU
1592 1593 1594
	/*
	 * Nommu uses slab's for process anonymous memory allocations, and thus
	 * requires __GFP_COMP to properly refcount higher order allocations
1595
	 */
1596
	flags |= __GFP_COMP;
1597
#endif
1598

1599
	flags |= cachep->gfpflags;
1600 1601
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		flags |= __GFP_RECLAIMABLE;
1602

L
Linus Torvalds 已提交
1603
	page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
L
Linus Torvalds 已提交
1604 1605 1606
	if (!page)
		return NULL;

1607
	nr_pages = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1608
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1609 1610 1611 1612 1613
		add_zone_page_state(page_zone(page),
			NR_SLAB_RECLAIMABLE, nr_pages);
	else
		add_zone_page_state(page_zone(page),
			NR_SLAB_UNRECLAIMABLE, nr_pages);
1614 1615
	for (i = 0; i < nr_pages; i++)
		__SetPageSlab(page + i);
P
Pekka Enberg 已提交
1616

1617 1618 1619 1620 1621 1622 1623 1624
	if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
		kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);

		if (cachep->ctor)
			kmemcheck_mark_uninitialized_pages(page, nr_pages);
		else
			kmemcheck_mark_unallocated_pages(page, nr_pages);
	}
P
Pekka Enberg 已提交
1625

1626
	return page_address(page);
L
Linus Torvalds 已提交
1627 1628 1629 1630 1631
}

/*
 * Interface to system's page release.
 */
1632
static void kmem_freepages(struct kmem_cache *cachep, void *addr)
L
Linus Torvalds 已提交
1633
{
P
Pekka Enberg 已提交
1634
	unsigned long i = (1 << cachep->gfporder);
L
Linus Torvalds 已提交
1635 1636 1637
	struct page *page = virt_to_page(addr);
	const unsigned long nr_freed = i;

1638
	kmemcheck_free_shadow(page, cachep->gfporder);
P
Pekka Enberg 已提交
1639

1640 1641 1642 1643 1644 1645
	if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
		sub_zone_page_state(page_zone(page),
				NR_SLAB_RECLAIMABLE, nr_freed);
	else
		sub_zone_page_state(page_zone(page),
				NR_SLAB_UNRECLAIMABLE, nr_freed);
L
Linus Torvalds 已提交
1646
	while (i--) {
N
Nick Piggin 已提交
1647 1648
		BUG_ON(!PageSlab(page));
		__ClearPageSlab(page);
L
Linus Torvalds 已提交
1649 1650 1651 1652 1653 1654 1655 1656 1657
		page++;
	}
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += nr_freed;
	free_pages((unsigned long)addr, cachep->gfporder);
}

static void kmem_rcu_free(struct rcu_head *head)
{
P
Pekka Enberg 已提交
1658
	struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
1659
	struct kmem_cache *cachep = slab_rcu->cachep;
L
Linus Torvalds 已提交
1660 1661 1662 1663 1664 1665 1666 1667 1668

	kmem_freepages(cachep, slab_rcu->addr);
	if (OFF_SLAB(cachep))
		kmem_cache_free(cachep->slabp_cache, slab_rcu);
}

#if DEBUG

#ifdef CONFIG_DEBUG_PAGEALLOC
1669
static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
P
Pekka Enberg 已提交
1670
			    unsigned long caller)
L
Linus Torvalds 已提交
1671
{
1672
	int size = obj_size(cachep);
L
Linus Torvalds 已提交
1673

1674
	addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1675

P
Pekka Enberg 已提交
1676
	if (size < 5 * sizeof(unsigned long))
L
Linus Torvalds 已提交
1677 1678
		return;

P
Pekka Enberg 已提交
1679 1680 1681 1682
	*addr++ = 0x12345678;
	*addr++ = caller;
	*addr++ = smp_processor_id();
	size -= 3 * sizeof(unsigned long);
L
Linus Torvalds 已提交
1683 1684 1685 1686 1687 1688 1689
	{
		unsigned long *sptr = &caller;
		unsigned long svalue;

		while (!kstack_end(sptr)) {
			svalue = *sptr++;
			if (kernel_text_address(svalue)) {
P
Pekka Enberg 已提交
1690
				*addr++ = svalue;
L
Linus Torvalds 已提交
1691 1692 1693 1694 1695 1696 1697
				size -= sizeof(unsigned long);
				if (size <= sizeof(unsigned long))
					break;
			}
		}

	}
P
Pekka Enberg 已提交
1698
	*addr++ = 0x87654321;
L
Linus Torvalds 已提交
1699 1700 1701
}
#endif

1702
static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
L
Linus Torvalds 已提交
1703
{
1704 1705
	int size = obj_size(cachep);
	addr = &((char *)addr)[obj_offset(cachep)];
L
Linus Torvalds 已提交
1706 1707

	memset(addr, val, size);
P
Pekka Enberg 已提交
1708
	*(unsigned char *)(addr + size - 1) = POISON_END;
L
Linus Torvalds 已提交
1709 1710 1711 1712 1713
}

static void dump_line(char *data, int offset, int limit)
{
	int i;
D
Dave Jones 已提交
1714 1715 1716
	unsigned char error = 0;
	int bad_count = 0;

L
Linus Torvalds 已提交
1717
	printk(KERN_ERR "%03x:", offset);
D
Dave Jones 已提交
1718 1719 1720 1721 1722
	for (i = 0; i < limit; i++) {
		if (data[offset + i] != POISON_FREE) {
			error = data[offset + i];
			bad_count++;
		}
P
Pekka Enberg 已提交
1723
		printk(" %02x", (unsigned char)data[offset + i]);
D
Dave Jones 已提交
1724
	}
L
Linus Torvalds 已提交
1725
	printk("\n");
D
Dave Jones 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739

	if (bad_count == 1) {
		error ^= POISON_FREE;
		if (!(error & (error - 1))) {
			printk(KERN_ERR "Single bit error detected. Probably "
					"bad RAM.\n");
#ifdef CONFIG_X86
			printk(KERN_ERR "Run memtest86+ or a similar memory "
					"test tool.\n");
#else
			printk(KERN_ERR "Run a memory test tool.\n");
#endif
		}
	}
L
Linus Torvalds 已提交
1740 1741 1742 1743 1744
}
#endif

#if DEBUG

1745
static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
L
Linus Torvalds 已提交
1746 1747 1748 1749 1750
{
	int i, size;
	char *realobj;

	if (cachep->flags & SLAB_RED_ZONE) {
1751
		printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
A
Andrew Morton 已提交
1752 1753
			*dbg_redzone1(cachep, objp),
			*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
1754 1755 1756 1757
	}

	if (cachep->flags & SLAB_STORE_USER) {
		printk(KERN_ERR "Last user: [<%p>]",
A
Andrew Morton 已提交
1758
			*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1759
		print_symbol("(%s)",
A
Andrew Morton 已提交
1760
				(unsigned long)*dbg_userword(cachep, objp));
L
Linus Torvalds 已提交
1761 1762
		printk("\n");
	}
1763 1764
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
P
Pekka Enberg 已提交
1765
	for (i = 0; i < size && lines; i += 16, lines--) {
L
Linus Torvalds 已提交
1766 1767
		int limit;
		limit = 16;
P
Pekka Enberg 已提交
1768 1769
		if (i + limit > size)
			limit = size - i;
L
Linus Torvalds 已提交
1770 1771 1772 1773
		dump_line(realobj, i, limit);
	}
}

1774
static void check_poison_obj(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
1775 1776 1777 1778 1779
{
	char *realobj;
	int size, i;
	int lines = 0;

1780 1781
	realobj = (char *)objp + obj_offset(cachep);
	size = obj_size(cachep);
L
Linus Torvalds 已提交
1782

P
Pekka Enberg 已提交
1783
	for (i = 0; i < size; i++) {
L
Linus Torvalds 已提交
1784
		char exp = POISON_FREE;
P
Pekka Enberg 已提交
1785
		if (i == size - 1)
L
Linus Torvalds 已提交
1786 1787 1788 1789 1790 1791
			exp = POISON_END;
		if (realobj[i] != exp) {
			int limit;
			/* Mismatch ! */
			/* Print header */
			if (lines == 0) {
P
Pekka Enberg 已提交
1792
				printk(KERN_ERR
1793 1794
					"Slab corruption: %s start=%p, len=%d\n",
					cachep->name, realobj, size);
L
Linus Torvalds 已提交
1795 1796 1797
				print_objinfo(cachep, objp, 0);
			}
			/* Hexdump the affected line */
P
Pekka Enberg 已提交
1798
			i = (i / 16) * 16;
L
Linus Torvalds 已提交
1799
			limit = 16;
P
Pekka Enberg 已提交
1800 1801
			if (i + limit > size)
				limit = size - i;
L
Linus Torvalds 已提交
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
			dump_line(realobj, i, limit);
			i += 16;
			lines++;
			/* Limit to 5 lines */
			if (lines > 5)
				break;
		}
	}
	if (lines != 0) {
		/* Print some data about the neighboring objects, if they
		 * exist:
		 */
1814
		struct slab *slabp = virt_to_slab(objp);
1815
		unsigned int objnr;
L
Linus Torvalds 已提交
1816

1817
		objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
1818
		if (objnr) {
1819
			objp = index_to_obj(cachep, slabp, objnr - 1);
1820
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1821
			printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1822
			       realobj, size);
L
Linus Torvalds 已提交
1823 1824
			print_objinfo(cachep, objp, 2);
		}
P
Pekka Enberg 已提交
1825
		if (objnr + 1 < cachep->num) {
1826
			objp = index_to_obj(cachep, slabp, objnr + 1);
1827
			realobj = (char *)objp + obj_offset(cachep);
L
Linus Torvalds 已提交
1828
			printk(KERN_ERR "Next obj: start=%p, len=%d\n",
P
Pekka Enberg 已提交
1829
			       realobj, size);
L
Linus Torvalds 已提交
1830 1831 1832 1833 1834 1835
			print_objinfo(cachep, objp, 2);
		}
	}
}
#endif

1836
#if DEBUG
R
Rabin Vincent 已提交
1837
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
1838 1839 1840
{
	int i;
	for (i = 0; i < cachep->num; i++) {
1841
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
1842 1843 1844

		if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
1845 1846
			if (cachep->buffer_size % PAGE_SIZE == 0 &&
					OFF_SLAB(cachep))
P
Pekka Enberg 已提交
1847
				kernel_map_pages(virt_to_page(objp),
A
Andrew Morton 已提交
1848
					cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
1849 1850 1851 1852 1853 1854 1855 1856 1857
			else
				check_poison_obj(cachep, objp);
#else
			check_poison_obj(cachep, objp);
#endif
		}
		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "start of a freed object "
P
Pekka Enberg 已提交
1858
					   "was overwritten");
L
Linus Torvalds 已提交
1859 1860
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "end of a freed object "
P
Pekka Enberg 已提交
1861
					   "was overwritten");
L
Linus Torvalds 已提交
1862 1863
		}
	}
1864
}
L
Linus Torvalds 已提交
1865
#else
R
Rabin Vincent 已提交
1866
static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1867 1868
{
}
L
Linus Torvalds 已提交
1869 1870
#endif

1871 1872 1873 1874 1875
/**
 * slab_destroy - destroy and release all objects in a slab
 * @cachep: cache pointer being destroyed
 * @slabp: slab pointer being destroyed
 *
1876
 * Destroy all the objs in a slab, and release the mem back to the system.
A
Andrew Morton 已提交
1877 1878
 * Before calling the slab must have been unlinked from the cache.  The
 * cache-lock is not held/needed.
1879
 */
1880
static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
1881 1882 1883
{
	void *addr = slabp->s_mem - slabp->colouroff;

R
Rabin Vincent 已提交
1884
	slab_destroy_debugcheck(cachep, slabp);
L
Linus Torvalds 已提交
1885 1886 1887
	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
		struct slab_rcu *slab_rcu;

P
Pekka Enberg 已提交
1888
		slab_rcu = (struct slab_rcu *)slabp;
L
Linus Torvalds 已提交
1889 1890 1891 1892 1893
		slab_rcu->cachep = cachep;
		slab_rcu->addr = addr;
		call_rcu(&slab_rcu->head, kmem_rcu_free);
	} else {
		kmem_freepages(cachep, addr);
1894 1895
		if (OFF_SLAB(cachep))
			kmem_cache_free(cachep->slabp_cache, slabp);
L
Linus Torvalds 已提交
1896 1897 1898
	}
}

1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
static void __kmem_cache_destroy(struct kmem_cache *cachep)
{
	int i;
	struct kmem_list3 *l3;

	for_each_online_cpu(i)
	    kfree(cachep->array[i]);

	/* NUMA: free the list3 structures */
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
		if (l3) {
			kfree(l3->shared);
			free_alien_cache(l3->alien);
			kfree(l3);
		}
	}
	kmem_cache_free(&cache_cache, cachep);
}


1920
/**
1921 1922 1923 1924 1925 1926 1927
 * calculate_slab_order - calculate size (page order) of slabs
 * @cachep: pointer to the cache that is being created
 * @size: size of objects to be created in this cache.
 * @align: required alignment for the objects.
 * @flags: slab allocation flags
 *
 * Also calculates the number of objects per slab.
1928 1929 1930 1931 1932
 *
 * This could be made much more intelligent.  For now, try to avoid using
 * high order pages for slabs.  When the gfp() functions are more friendly
 * towards high-order requests, this should be changed.
 */
A
Andrew Morton 已提交
1933
static size_t calculate_slab_order(struct kmem_cache *cachep,
R
Randy Dunlap 已提交
1934
			size_t size, size_t align, unsigned long flags)
1935
{
1936
	unsigned long offslab_limit;
1937
	size_t left_over = 0;
1938
	int gfporder;
1939

1940
	for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1941 1942 1943
		unsigned int num;
		size_t remainder;

1944
		cache_estimate(gfporder, size, align, flags, &remainder, &num);
1945 1946
		if (!num)
			continue;
1947

1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
			 * use off-slab slabs. Needed to avoid a possible
			 * looping condition in cache_grow().
			 */
			offslab_limit = size - sizeof(struct slab);
			offslab_limit /= sizeof(kmem_bufctl_t);

 			if (num > offslab_limit)
				break;
		}
1960

1961
		/* Found something acceptable - save it away */
1962
		cachep->num = num;
1963
		cachep->gfporder = gfporder;
1964 1965
		left_over = remainder;

1966 1967 1968 1969 1970 1971 1972 1973
		/*
		 * A VFS-reclaimable slab tends to have most allocations
		 * as GFP_NOFS and we really don't want to have to be allocating
		 * higher-order pages when we are unable to shrink dcache.
		 */
		if (flags & SLAB_RECLAIM_ACCOUNT)
			break;

1974 1975 1976 1977
		/*
		 * Large number of objects is good, but very large slabs are
		 * currently bad for the gfp()s.
		 */
1978
		if (gfporder >= slab_break_gfp_order)
1979 1980
			break;

1981 1982 1983
		/*
		 * Acceptable internal fragmentation?
		 */
A
Andrew Morton 已提交
1984
		if (left_over * 8 <= (PAGE_SIZE << gfporder))
1985 1986 1987 1988 1989
			break;
	}
	return left_over;
}

1990
static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1991
{
1992
	if (g_cpucache_up == FULL)
1993
		return enable_cpucache(cachep, gfp);
1994

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
	if (g_cpucache_up == NONE) {
		/*
		 * Note: the first kmem_cache_create must create the cache
		 * that's used by kmalloc(24), otherwise the creation of
		 * further caches will BUG().
		 */
		cachep->array[smp_processor_id()] = &initarray_generic.cache;

		/*
		 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
		 * the first cache, then we need to set up all its list3s,
		 * otherwise the creation of further caches will BUG().
		 */
		set_up_list3s(cachep, SIZE_AC);
		if (INDEX_AC == INDEX_L3)
			g_cpucache_up = PARTIAL_L3;
		else
			g_cpucache_up = PARTIAL_AC;
	} else {
		cachep->array[smp_processor_id()] =
2015
			kmalloc(sizeof(struct arraycache_init), gfp);
2016 2017 2018 2019 2020 2021

		if (g_cpucache_up == PARTIAL_AC) {
			set_up_list3s(cachep, SIZE_L3);
			g_cpucache_up = PARTIAL_L3;
		} else {
			int node;
2022
			for_each_online_node(node) {
2023 2024
				cachep->nodelists[node] =
				    kmalloc_node(sizeof(struct kmem_list3),
2025
						gfp, node);
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
				BUG_ON(!cachep->nodelists[node]);
				kmem_list3_init(cachep->nodelists[node]);
			}
		}
	}
	cachep->nodelists[numa_node_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
	cpu_cache_get(cachep)->batchcount = 1;
	cpu_cache_get(cachep)->touched = 0;
	cachep->batchcount = 1;
	cachep->limit = BOOT_CPUCACHE_ENTRIES;
2041
	return 0;
2042 2043
}

L
Linus Torvalds 已提交
2044 2045 2046 2047 2048 2049 2050 2051 2052 2053
/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 *
 * Returns a ptr to the cache on success, NULL on failure.
 * Cannot be called within a int, but can be interrupted.
2054
 * The @ctor is run when new pages are allocated by the cache.
L
Linus Torvalds 已提交
2055 2056
 *
 * @name must be valid until the cache is destroyed. This implies that
A
Andrew Morton 已提交
2057
 * the module calling this has to destroy the cache before getting unloaded.
2058 2059
 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
 * therefore applications must manage it themselves.
A
Andrew Morton 已提交
2060
 *
L
Linus Torvalds 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
 * The flags are
 *
 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
 * to catch references to uninitialised memory.
 *
 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
 * for buffer overruns.
 *
 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
 * cacheline.  This can be beneficial if you're counting cycles as closely
 * as davem.
 */
2073
struct kmem_cache *
L
Linus Torvalds 已提交
2074
kmem_cache_create (const char *name, size_t size, size_t align,
2075
	unsigned long flags, void (*ctor)(void *))
L
Linus Torvalds 已提交
2076 2077
{
	size_t left_over, slab_size, ralign;
2078
	struct kmem_cache *cachep = NULL, *pc;
2079
	gfp_t gfp;
L
Linus Torvalds 已提交
2080 2081 2082 2083

	/*
	 * Sanity checks... these are all serious usage bugs.
	 */
A
Andrew Morton 已提交
2084
	if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
2085
	    size > KMALLOC_MAX_SIZE) {
2086
		printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
A
Andrew Morton 已提交
2087
				name);
P
Pekka Enberg 已提交
2088 2089
		BUG();
	}
L
Linus Torvalds 已提交
2090

2091
	/*
2092
	 * We use cache_chain_mutex to ensure a consistent view of
R
Rusty Russell 已提交
2093
	 * cpu_online_mask as well.  Please see cpuup_callback
2094
	 */
2095 2096 2097 2098
	if (slab_is_available()) {
		get_online_cpus();
		mutex_lock(&cache_chain_mutex);
	}
2099

2100
	list_for_each_entry(pc, &cache_chain, next) {
2101 2102 2103 2104 2105 2106 2107 2108
		char tmp;
		int res;

		/*
		 * This happens when the module gets unloaded and doesn't
		 * destroy its slab cache and no-one else reuses the vmalloc
		 * area of the module.  Print a warning.
		 */
2109
		res = probe_kernel_address(pc->name, tmp);
2110
		if (res) {
2111 2112
			printk(KERN_ERR
			       "SLAB: cache with size %d has lost its name\n",
2113
			       pc->buffer_size);
2114 2115 2116
			continue;
		}

P
Pekka Enberg 已提交
2117
		if (!strcmp(pc->name, name)) {
2118 2119
			printk(KERN_ERR
			       "kmem_cache_create: duplicate cache %s\n", name);
2120 2121 2122 2123 2124
			dump_stack();
			goto oops;
		}
	}

L
Linus Torvalds 已提交
2125 2126 2127 2128 2129 2130 2131 2132 2133
#if DEBUG
	WARN_ON(strchr(name, ' '));	/* It confuses parsers */
#if FORCED_DEBUG
	/*
	 * Enable redzoning and last user accounting, except for caches with
	 * large objects, if the increased size would increase the object size
	 * above the next power of two: caches with object sizes just above a
	 * power of two have a significant amount of internal fragmentation.
	 */
D
David Woodhouse 已提交
2134 2135
	if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
						2 * sizeof(unsigned long long)))
P
Pekka Enberg 已提交
2136
		flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
L
Linus Torvalds 已提交
2137 2138 2139 2140 2141 2142 2143
	if (!(flags & SLAB_DESTROY_BY_RCU))
		flags |= SLAB_POISON;
#endif
	if (flags & SLAB_DESTROY_BY_RCU)
		BUG_ON(flags & SLAB_POISON);
#endif
	/*
A
Andrew Morton 已提交
2144 2145
	 * Always checks flags, a caller might be expecting debug support which
	 * isn't available.
L
Linus Torvalds 已提交
2146
	 */
2147
	BUG_ON(flags & ~CREATE_MASK);
L
Linus Torvalds 已提交
2148

A
Andrew Morton 已提交
2149 2150
	/*
	 * Check that size is in terms of words.  This is needed to avoid
L
Linus Torvalds 已提交
2151 2152 2153
	 * unaligned accesses for some archs when redzoning is used, and makes
	 * sure any on-slab bufctl's are also correctly aligned.
	 */
P
Pekka Enberg 已提交
2154 2155 2156
	if (size & (BYTES_PER_WORD - 1)) {
		size += (BYTES_PER_WORD - 1);
		size &= ~(BYTES_PER_WORD - 1);
L
Linus Torvalds 已提交
2157 2158
	}

A
Andrew Morton 已提交
2159 2160
	/* calculate the final buffer alignment: */

L
Linus Torvalds 已提交
2161 2162
	/* 1) arch recommendation: can be overridden for debug */
	if (flags & SLAB_HWCACHE_ALIGN) {
A
Andrew Morton 已提交
2163 2164 2165 2166
		/*
		 * Default alignment: as specified by the arch code.  Except if
		 * an object is really small, then squeeze multiple objects into
		 * one cacheline.
L
Linus Torvalds 已提交
2167 2168
		 */
		ralign = cache_line_size();
P
Pekka Enberg 已提交
2169
		while (size <= ralign / 2)
L
Linus Torvalds 已提交
2170 2171 2172 2173
			ralign /= 2;
	} else {
		ralign = BYTES_PER_WORD;
	}
2174 2175

	/*
D
David Woodhouse 已提交
2176 2177 2178
	 * Redzoning and user store require word alignment or possibly larger.
	 * Note this will be overridden by architecture or caller mandated
	 * alignment if either is greater than BYTES_PER_WORD.
2179
	 */
D
David Woodhouse 已提交
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	if (flags & SLAB_STORE_USER)
		ralign = BYTES_PER_WORD;

	if (flags & SLAB_RED_ZONE) {
		ralign = REDZONE_ALIGN;
		/* If redzoning, ensure that the second redzone is suitably
		 * aligned, by adjusting the object size accordingly. */
		size += REDZONE_ALIGN - 1;
		size &= ~(REDZONE_ALIGN - 1);
	}
2190

2191
	/* 2) arch mandated alignment */
L
Linus Torvalds 已提交
2192 2193 2194
	if (ralign < ARCH_SLAB_MINALIGN) {
		ralign = ARCH_SLAB_MINALIGN;
	}
2195
	/* 3) caller mandated alignment */
L
Linus Torvalds 已提交
2196 2197 2198
	if (ralign < align) {
		ralign = align;
	}
2199
	/* disable debug if necessary */
2200
	if (ralign > __alignof__(unsigned long long))
2201
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
A
Andrew Morton 已提交
2202
	/*
2203
	 * 4) Store it.
L
Linus Torvalds 已提交
2204 2205 2206
	 */
	align = ralign;

2207 2208 2209 2210 2211
	if (slab_is_available())
		gfp = GFP_KERNEL;
	else
		gfp = GFP_NOWAIT;

L
Linus Torvalds 已提交
2212
	/* Get cache's description obj. */
2213
	cachep = kmem_cache_zalloc(&cache_cache, gfp);
L
Linus Torvalds 已提交
2214
	if (!cachep)
2215
		goto oops;
L
Linus Torvalds 已提交
2216 2217

#if DEBUG
2218
	cachep->obj_size = size;
L
Linus Torvalds 已提交
2219

2220 2221 2222 2223
	/*
	 * Both debugging options require word-alignment which is calculated
	 * into align above.
	 */
L
Linus Torvalds 已提交
2224 2225
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
2226 2227
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
L
Linus Torvalds 已提交
2228 2229
	}
	if (flags & SLAB_STORE_USER) {
2230
		/* user store requires one word storage behind the end of
D
David Woodhouse 已提交
2231 2232
		 * the real object. But if the second red zone needs to be
		 * aligned to 64 bits, we must allow that much space.
L
Linus Torvalds 已提交
2233
		 */
D
David Woodhouse 已提交
2234 2235 2236 2237
		if (flags & SLAB_RED_ZONE)
			size += REDZONE_ALIGN;
		else
			size += BYTES_PER_WORD;
L
Linus Torvalds 已提交
2238 2239
	}
#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
P
Pekka Enberg 已提交
2240
	if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
2241 2242
	    && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
		cachep->obj_offset += PAGE_SIZE - size;
L
Linus Torvalds 已提交
2243 2244 2245 2246 2247
		size = PAGE_SIZE;
	}
#endif
#endif

2248 2249 2250
	/*
	 * Determine if the slab management is 'on' or 'off' slab.
	 * (bootstrapping cannot cope with offslab caches so don't do
2251 2252
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
2253
	 */
2254 2255
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
L
Linus Torvalds 已提交
2256 2257 2258 2259 2260 2261 2262 2263
		/*
		 * Size is large, assume best to place the slab management obj
		 * off-slab (should allow better packing of objs).
		 */
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, align);

2264
	left_over = calculate_slab_order(cachep, size, align, flags);
L
Linus Torvalds 已提交
2265 2266

	if (!cachep->num) {
2267 2268
		printk(KERN_ERR
		       "kmem_cache_create: couldn't create cache %s.\n", name);
L
Linus Torvalds 已提交
2269 2270
		kmem_cache_free(&cache_cache, cachep);
		cachep = NULL;
2271
		goto oops;
L
Linus Torvalds 已提交
2272
	}
P
Pekka Enberg 已提交
2273 2274
	slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
			  + sizeof(struct slab), align);
L
Linus Torvalds 已提交
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

	/*
	 * If the slab has been placed off-slab, and we have enough space then
	 * move it on-slab. This is at the expense of any extra colouring.
	 */
	if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
		flags &= ~CFLGS_OFF_SLAB;
		left_over -= slab_size;
	}

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
P
Pekka Enberg 已提交
2287 2288
		slab_size =
		    cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
2289 2290 2291 2292 2293 2294 2295 2296 2297

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
		 * poisoning, then it's going to smash the contents of
		 * the redzone and userword anyhow, so switch them off.
		 */
		if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
			flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
#endif
L
Linus Torvalds 已提交
2298 2299 2300 2301 2302 2303
	}

	cachep->colour_off = cache_line_size();
	/* Offset must be a multiple of the alignment. */
	if (cachep->colour_off < align)
		cachep->colour_off = align;
P
Pekka Enberg 已提交
2304
	cachep->colour = left_over / cachep->colour_off;
L
Linus Torvalds 已提交
2305 2306 2307
	cachep->slab_size = slab_size;
	cachep->flags = flags;
	cachep->gfpflags = 0;
2308
	if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
L
Linus Torvalds 已提交
2309
		cachep->gfpflags |= GFP_DMA;
2310
	cachep->buffer_size = size;
2311
	cachep->reciprocal_buffer_size = reciprocal_value(size);
L
Linus Torvalds 已提交
2312

2313
	if (flags & CFLGS_OFF_SLAB) {
2314
		cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
2315 2316 2317 2318 2319 2320 2321
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
2322
		BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
2323
	}
L
Linus Torvalds 已提交
2324 2325 2326
	cachep->ctor = ctor;
	cachep->name = name;

2327
	if (setup_cpu_cache(cachep, gfp)) {
2328 2329 2330 2331
		__kmem_cache_destroy(cachep);
		cachep = NULL;
		goto oops;
	}
L
Linus Torvalds 已提交
2332 2333 2334

	/* cache setup completed, link it into the list */
	list_add(&cachep->next, &cache_chain);
A
Andrew Morton 已提交
2335
oops:
L
Linus Torvalds 已提交
2336 2337
	if (!cachep && (flags & SLAB_PANIC))
		panic("kmem_cache_create(): failed to create slab `%s'\n",
P
Pekka Enberg 已提交
2338
		      name);
2339 2340 2341 2342
	if (slab_is_available()) {
		mutex_unlock(&cache_chain_mutex);
		put_online_cpus();
	}
L
Linus Torvalds 已提交
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
	return cachep;
}
EXPORT_SYMBOL(kmem_cache_create);

#if DEBUG
static void check_irq_off(void)
{
	BUG_ON(!irqs_disabled());
}

static void check_irq_on(void)
{
	BUG_ON(irqs_disabled());
}

2358
static void check_spinlock_acquired(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2359 2360 2361
{
#ifdef CONFIG_SMP
	check_irq_off();
2362
	assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
L
Linus Torvalds 已提交
2363 2364
#endif
}
2365

2366
static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2367 2368 2369 2370 2371 2372 2373
{
#ifdef CONFIG_SMP
	check_irq_off();
	assert_spin_locked(&cachep->nodelists[node]->list_lock);
#endif
}

L
Linus Torvalds 已提交
2374 2375 2376 2377
#else
#define check_irq_off()	do { } while(0)
#define check_irq_on()	do { } while(0)
#define check_spinlock_acquired(x) do { } while(0)
2378
#define check_spinlock_acquired_node(x, y) do { } while(0)
L
Linus Torvalds 已提交
2379 2380
#endif

2381 2382 2383 2384
static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			struct array_cache *ac,
			int force, int node);

L
Linus Torvalds 已提交
2385 2386
static void do_drain(void *arg)
{
A
Andrew Morton 已提交
2387
	struct kmem_cache *cachep = arg;
L
Linus Torvalds 已提交
2388
	struct array_cache *ac;
2389
	int node = numa_node_id();
L
Linus Torvalds 已提交
2390 2391

	check_irq_off();
2392
	ac = cpu_cache_get(cachep);
2393 2394 2395
	spin_lock(&cachep->nodelists[node]->list_lock);
	free_block(cachep, ac->entry, ac->avail, node);
	spin_unlock(&cachep->nodelists[node]->list_lock);
L
Linus Torvalds 已提交
2396 2397 2398
	ac->avail = 0;
}

2399
static void drain_cpu_caches(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2400
{
2401 2402 2403
	struct kmem_list3 *l3;
	int node;

2404
	on_each_cpu(do_drain, cachep, 1);
L
Linus Torvalds 已提交
2405
	check_irq_on();
P
Pekka Enberg 已提交
2406
	for_each_online_node(node) {
2407
		l3 = cachep->nodelists[node];
2408 2409 2410 2411 2412 2413 2414
		if (l3 && l3->alien)
			drain_alien_cache(cachep, l3->alien);
	}

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (l3)
2415
			drain_array(cachep, l3, l3->shared, 1, node);
2416
	}
L
Linus Torvalds 已提交
2417 2418
}

2419 2420 2421 2422 2423 2424 2425 2426
/*
 * Remove slabs from the list of free slabs.
 * Specify the number of slabs to drain in tofree.
 *
 * Returns the actual number of slabs released.
 */
static int drain_freelist(struct kmem_cache *cache,
			struct kmem_list3 *l3, int tofree)
L
Linus Torvalds 已提交
2427
{
2428 2429
	struct list_head *p;
	int nr_freed;
L
Linus Torvalds 已提交
2430 2431
	struct slab *slabp;

2432 2433
	nr_freed = 0;
	while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
L
Linus Torvalds 已提交
2434

2435
		spin_lock_irq(&l3->list_lock);
2436
		p = l3->slabs_free.prev;
2437 2438 2439 2440
		if (p == &l3->slabs_free) {
			spin_unlock_irq(&l3->list_lock);
			goto out;
		}
L
Linus Torvalds 已提交
2441

2442
		slabp = list_entry(p, struct slab, list);
L
Linus Torvalds 已提交
2443
#if DEBUG
2444
		BUG_ON(slabp->inuse);
L
Linus Torvalds 已提交
2445 2446
#endif
		list_del(&slabp->list);
2447 2448 2449 2450 2451
		/*
		 * Safe to drop the lock. The slab is no longer linked
		 * to the cache.
		 */
		l3->free_objects -= cache->num;
2452
		spin_unlock_irq(&l3->list_lock);
2453 2454
		slab_destroy(cache, slabp);
		nr_freed++;
L
Linus Torvalds 已提交
2455
	}
2456 2457
out:
	return nr_freed;
L
Linus Torvalds 已提交
2458 2459
}

2460
/* Called with cache_chain_mutex held to protect against cpu hotplug */
2461
static int __cache_shrink(struct kmem_cache *cachep)
2462 2463 2464 2465 2466 2467 2468 2469 2470
{
	int ret = 0, i = 0;
	struct kmem_list3 *l3;

	drain_cpu_caches(cachep);

	check_irq_on();
	for_each_online_node(i) {
		l3 = cachep->nodelists[i];
2471 2472 2473 2474 2475 2476 2477
		if (!l3)
			continue;

		drain_freelist(cachep, l3, l3->free_objects);

		ret += !list_empty(&l3->slabs_full) ||
			!list_empty(&l3->slabs_partial);
2478 2479 2480 2481
	}
	return (ret ? 1 : 0);
}

L
Linus Torvalds 已提交
2482 2483 2484 2485 2486 2487 2488
/**
 * kmem_cache_shrink - Shrink a cache.
 * @cachep: The cache to shrink.
 *
 * Releases as many slabs as possible for a cache.
 * To help debugging, a zero exit status indicates all slabs were released.
 */
2489
int kmem_cache_shrink(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2490
{
2491
	int ret;
2492
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2493

2494
	get_online_cpus();
2495 2496 2497
	mutex_lock(&cache_chain_mutex);
	ret = __cache_shrink(cachep);
	mutex_unlock(&cache_chain_mutex);
2498
	put_online_cpus();
2499
	return ret;
L
Linus Torvalds 已提交
2500 2501 2502 2503 2504 2505 2506
}
EXPORT_SYMBOL(kmem_cache_shrink);

/**
 * kmem_cache_destroy - delete a cache
 * @cachep: the cache to destroy
 *
2507
 * Remove a &struct kmem_cache object from the slab cache.
L
Linus Torvalds 已提交
2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518
 *
 * It is expected this function will be called by a module when it is
 * unloaded.  This will remove the cache completely, and avoid a duplicate
 * cache being allocated each time a module is loaded and unloaded, if the
 * module doesn't have persistent in-kernel storage across loads and unloads.
 *
 * The cache must be empty before calling this function.
 *
 * The caller must guarantee that noone will allocate memory from the cache
 * during the kmem_cache_destroy().
 */
2519
void kmem_cache_destroy(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
2520
{
2521
	BUG_ON(!cachep || in_interrupt());
L
Linus Torvalds 已提交
2522 2523

	/* Find the cache in the chain of caches. */
2524
	get_online_cpus();
I
Ingo Molnar 已提交
2525
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
2526 2527 2528 2529 2530 2531
	/*
	 * the chain is never empty, cache_cache is never destroyed
	 */
	list_del(&cachep->next);
	if (__cache_shrink(cachep)) {
		slab_error(cachep, "Can't free all objects");
P
Pekka Enberg 已提交
2532
		list_add(&cachep->next, &cache_chain);
I
Ingo Molnar 已提交
2533
		mutex_unlock(&cache_chain_mutex);
2534
		put_online_cpus();
2535
		return;
L
Linus Torvalds 已提交
2536 2537 2538
	}

	if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
2539
		rcu_barrier();
L
Linus Torvalds 已提交
2540

2541
	__kmem_cache_destroy(cachep);
2542
	mutex_unlock(&cache_chain_mutex);
2543
	put_online_cpus();
L
Linus Torvalds 已提交
2544 2545 2546
}
EXPORT_SYMBOL(kmem_cache_destroy);

2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have slabp_cache same as the original cache.
 */
2558
static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
2559 2560
				   int colour_off, gfp_t local_flags,
				   int nodeid)
L
Linus Torvalds 已提交
2561 2562
{
	struct slab *slabp;
P
Pekka Enberg 已提交
2563

L
Linus Torvalds 已提交
2564 2565
	if (OFF_SLAB(cachep)) {
		/* Slab management obj is off-slab. */
2566
		slabp = kmem_cache_alloc_node(cachep->slabp_cache,
2567
					      local_flags, nodeid);
2568 2569 2570 2571 2572 2573
		/*
		 * If the first object in the slab is leaked (it's allocated
		 * but no one has a reference to it), we want to make sure
		 * kmemleak does not treat the ->s_mem pointer as a reference
		 * to the object. Otherwise we will not report the leak.
		 */
2574 2575
		kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
				   local_flags);
L
Linus Torvalds 已提交
2576 2577 2578
		if (!slabp)
			return NULL;
	} else {
P
Pekka Enberg 已提交
2579
		slabp = objp + colour_off;
L
Linus Torvalds 已提交
2580 2581 2582 2583
		colour_off += cachep->slab_size;
	}
	slabp->inuse = 0;
	slabp->colouroff = colour_off;
P
Pekka Enberg 已提交
2584
	slabp->s_mem = objp + colour_off;
2585
	slabp->nodeid = nodeid;
2586
	slabp->free = 0;
L
Linus Torvalds 已提交
2587 2588 2589 2590 2591
	return slabp;
}

static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
{
P
Pekka Enberg 已提交
2592
	return (kmem_bufctl_t *) (slabp + 1);
L
Linus Torvalds 已提交
2593 2594
}

2595
static void cache_init_objs(struct kmem_cache *cachep,
C
Christoph Lameter 已提交
2596
			    struct slab *slabp)
L
Linus Torvalds 已提交
2597 2598 2599 2600
{
	int i;

	for (i = 0; i < cachep->num; i++) {
2601
		void *objp = index_to_obj(cachep, slabp, i);
L
Linus Torvalds 已提交
2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613
#if DEBUG
		/* need to poison the objs? */
		if (cachep->flags & SLAB_POISON)
			poison_obj(cachep, objp, POISON_FREE);
		if (cachep->flags & SLAB_STORE_USER)
			*dbg_userword(cachep, objp) = NULL;

		if (cachep->flags & SLAB_RED_ZONE) {
			*dbg_redzone1(cachep, objp) = RED_INACTIVE;
			*dbg_redzone2(cachep, objp) = RED_INACTIVE;
		}
		/*
A
Andrew Morton 已提交
2614 2615 2616
		 * Constructors are not allowed to allocate memory from the same
		 * cache which they are a constructor for.  Otherwise, deadlock.
		 * They must also be threaded.
L
Linus Torvalds 已提交
2617 2618
		 */
		if (cachep->ctor && !(cachep->flags & SLAB_POISON))
2619
			cachep->ctor(objp + obj_offset(cachep));
L
Linus Torvalds 已提交
2620 2621 2622 2623

		if (cachep->flags & SLAB_RED_ZONE) {
			if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2624
					   " end of an object");
L
Linus Torvalds 已提交
2625 2626
			if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
				slab_error(cachep, "constructor overwrote the"
P
Pekka Enberg 已提交
2627
					   " start of an object");
L
Linus Torvalds 已提交
2628
		}
A
Andrew Morton 已提交
2629 2630
		if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
			    OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
P
Pekka Enberg 已提交
2631
			kernel_map_pages(virt_to_page(objp),
2632
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2633 2634
#else
		if (cachep->ctor)
2635
			cachep->ctor(objp);
L
Linus Torvalds 已提交
2636
#endif
P
Pekka Enberg 已提交
2637
		slab_bufctl(slabp)[i] = i + 1;
L
Linus Torvalds 已提交
2638
	}
P
Pekka Enberg 已提交
2639
	slab_bufctl(slabp)[i - 1] = BUFCTL_END;
L
Linus Torvalds 已提交
2640 2641
}

2642
static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2643
{
2644 2645 2646 2647 2648 2649
	if (CONFIG_ZONE_DMA_FLAG) {
		if (flags & GFP_DMA)
			BUG_ON(!(cachep->gfpflags & GFP_DMA));
		else
			BUG_ON(cachep->gfpflags & GFP_DMA);
	}
L
Linus Torvalds 已提交
2650 2651
}

A
Andrew Morton 已提交
2652 2653
static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
				int nodeid)
2654
{
2655
	void *objp = index_to_obj(cachep, slabp, slabp->free);
2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
	kmem_bufctl_t next;

	slabp->inuse++;
	next = slab_bufctl(slabp)[slabp->free];
#if DEBUG
	slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
	WARN_ON(slabp->nodeid != nodeid);
#endif
	slabp->free = next;

	return objp;
}

A
Andrew Morton 已提交
2669 2670
static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
				void *objp, int nodeid)
2671
{
2672
	unsigned int objnr = obj_to_index(cachep, slabp, objp);
2673 2674 2675 2676 2677

#if DEBUG
	/* Verify that the slab belongs to the intended node */
	WARN_ON(slabp->nodeid != nodeid);

2678
	if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
2679
		printk(KERN_ERR "slab: double free detected in cache "
A
Andrew Morton 已提交
2680
				"'%s', objp %p\n", cachep->name, objp);
2681 2682 2683 2684 2685 2686 2687 2688
		BUG();
	}
#endif
	slab_bufctl(slabp)[objnr] = slabp->free;
	slabp->free = objnr;
	slabp->inuse--;
}

2689 2690 2691 2692 2693 2694 2695
/*
 * Map pages beginning at addr to the given cache and slab. This is required
 * for the slab allocator to be able to lookup the cache and slab of a
 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
 */
static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
			   void *addr)
L
Linus Torvalds 已提交
2696
{
2697
	int nr_pages;
L
Linus Torvalds 已提交
2698 2699
	struct page *page;

2700
	page = virt_to_page(addr);
2701

2702
	nr_pages = 1;
2703
	if (likely(!PageCompound(page)))
2704 2705
		nr_pages <<= cache->gfporder;

L
Linus Torvalds 已提交
2706
	do {
2707 2708
		page_set_cache(page, cache);
		page_set_slab(page, slab);
L
Linus Torvalds 已提交
2709
		page++;
2710
	} while (--nr_pages);
L
Linus Torvalds 已提交
2711 2712 2713 2714 2715 2716
}

/*
 * Grow (by 1) the number of slabs within a cache.  This is called by
 * kmem_cache_alloc() when there are no active objs left in a cache.
 */
2717 2718
static int cache_grow(struct kmem_cache *cachep,
		gfp_t flags, int nodeid, void *objp)
L
Linus Torvalds 已提交
2719
{
P
Pekka Enberg 已提交
2720 2721 2722
	struct slab *slabp;
	size_t offset;
	gfp_t local_flags;
2723
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
2724

A
Andrew Morton 已提交
2725 2726 2727
	/*
	 * Be lazy and only check for valid flags here,  keeping it out of the
	 * critical path in kmem_cache_alloc().
L
Linus Torvalds 已提交
2728
	 */
C
Christoph Lameter 已提交
2729 2730
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
L
Linus Torvalds 已提交
2731

2732
	/* Take the l3 list lock to change the colour_next on this node */
L
Linus Torvalds 已提交
2733
	check_irq_off();
2734 2735
	l3 = cachep->nodelists[nodeid];
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2736 2737

	/* Get colour for the slab, and cal the next value. */
2738 2739 2740 2741 2742
	offset = l3->colour_next;
	l3->colour_next++;
	if (l3->colour_next >= cachep->colour)
		l3->colour_next = 0;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2743

2744
	offset *= cachep->colour_off;
L
Linus Torvalds 已提交
2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

	if (local_flags & __GFP_WAIT)
		local_irq_enable();

	/*
	 * The test for missing atomic flag is performed here, rather than
	 * the more obvious place, simply to reduce the critical path length
	 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
	 * will eventually be caught here (where it matters).
	 */
	kmem_flagcheck(cachep, flags);

A
Andrew Morton 已提交
2757 2758 2759
	/*
	 * Get mem for the objs.  Attempt to allocate a physical page from
	 * 'nodeid'.
2760
	 */
2761
	if (!objp)
2762
		objp = kmem_getpages(cachep, local_flags, nodeid);
A
Andrew Morton 已提交
2763
	if (!objp)
L
Linus Torvalds 已提交
2764 2765 2766
		goto failed;

	/* Get slab management. */
2767
	slabp = alloc_slabmgmt(cachep, objp, offset,
C
Christoph Lameter 已提交
2768
			local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
A
Andrew Morton 已提交
2769
	if (!slabp)
L
Linus Torvalds 已提交
2770 2771
		goto opps1;

2772
	slab_map_pages(cachep, slabp, objp);
L
Linus Torvalds 已提交
2773

C
Christoph Lameter 已提交
2774
	cache_init_objs(cachep, slabp);
L
Linus Torvalds 已提交
2775 2776 2777 2778

	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	check_irq_off();
2779
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2780 2781

	/* Make slab active. */
2782
	list_add_tail(&slabp->list, &(l3->slabs_free));
L
Linus Torvalds 已提交
2783
	STATS_INC_GROWN(cachep);
2784 2785
	l3->free_objects += cachep->num;
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2786
	return 1;
A
Andrew Morton 已提交
2787
opps1:
L
Linus Torvalds 已提交
2788
	kmem_freepages(cachep, objp);
A
Andrew Morton 已提交
2789
failed:
L
Linus Torvalds 已提交
2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	if (local_flags & __GFP_WAIT)
		local_irq_disable();
	return 0;
}

#if DEBUG

/*
 * Perform extra freeing checks:
 * - detect bad pointers.
 * - POISON/RED_ZONE checking
 */
static void kfree_debugcheck(const void *objp)
{
	if (!virt_addr_valid(objp)) {
		printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
P
Pekka Enberg 已提交
2806 2807
		       (unsigned long)objp);
		BUG();
L
Linus Torvalds 已提交
2808 2809 2810
	}
}

2811 2812
static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
{
2813
	unsigned long long redzone1, redzone2;
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828

	redzone1 = *dbg_redzone1(cache, obj);
	redzone2 = *dbg_redzone2(cache, obj);

	/*
	 * Redzone is ok.
	 */
	if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
		return;

	if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
		slab_error(cache, "double free detected");
	else
		slab_error(cache, "memory outside object was overwritten");

2829
	printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
2830 2831 2832
			obj, redzone1, redzone2);
}

2833
static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
P
Pekka Enberg 已提交
2834
				   void *caller)
L
Linus Torvalds 已提交
2835 2836 2837 2838 2839
{
	struct page *page;
	unsigned int objnr;
	struct slab *slabp;

2840 2841
	BUG_ON(virt_to_cache(objp) != cachep);

2842
	objp -= obj_offset(cachep);
L
Linus Torvalds 已提交
2843
	kfree_debugcheck(objp);
2844
	page = virt_to_head_page(objp);
L
Linus Torvalds 已提交
2845

2846
	slabp = page_get_slab(page);
L
Linus Torvalds 已提交
2847 2848

	if (cachep->flags & SLAB_RED_ZONE) {
2849
		verify_redzone_free(cachep, objp);
L
Linus Torvalds 已提交
2850 2851 2852 2853 2854 2855
		*dbg_redzone1(cachep, objp) = RED_INACTIVE;
		*dbg_redzone2(cachep, objp) = RED_INACTIVE;
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

2856
	objnr = obj_to_index(cachep, slabp, objp);
L
Linus Torvalds 已提交
2857 2858

	BUG_ON(objnr >= cachep->num);
2859
	BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
L
Linus Torvalds 已提交
2860

2861 2862 2863
#ifdef CONFIG_DEBUG_SLAB_LEAK
	slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
#endif
L
Linus Torvalds 已提交
2864 2865
	if (cachep->flags & SLAB_POISON) {
#ifdef CONFIG_DEBUG_PAGEALLOC
A
Andrew Morton 已提交
2866
		if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
L
Linus Torvalds 已提交
2867
			store_stackinfo(cachep, objp, (unsigned long)caller);
P
Pekka Enberg 已提交
2868
			kernel_map_pages(virt_to_page(objp),
2869
					 cachep->buffer_size / PAGE_SIZE, 0);
L
Linus Torvalds 已提交
2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
		} else {
			poison_obj(cachep, objp, POISON_FREE);
		}
#else
		poison_obj(cachep, objp, POISON_FREE);
#endif
	}
	return objp;
}

2880
static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
L
Linus Torvalds 已提交
2881 2882 2883
{
	kmem_bufctl_t i;
	int entries = 0;
P
Pekka Enberg 已提交
2884

L
Linus Torvalds 已提交
2885 2886 2887 2888 2889 2890 2891
	/* Check slab's freelist to see if this obj is there. */
	for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
		entries++;
		if (entries > cachep->num || i >= cachep->num)
			goto bad;
	}
	if (entries != cachep->num - slabp->inuse) {
A
Andrew Morton 已提交
2892 2893 2894 2895
bad:
		printk(KERN_ERR "slab: Internal list corruption detected in "
				"cache '%s'(%d), slabp %p(%d). Hexdump:\n",
			cachep->name, cachep->num, slabp, slabp->inuse);
P
Pekka Enberg 已提交
2896
		for (i = 0;
2897
		     i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
P
Pekka Enberg 已提交
2898
		     i++) {
A
Andrew Morton 已提交
2899
			if (i % 16 == 0)
L
Linus Torvalds 已提交
2900
				printk("\n%03x:", i);
P
Pekka Enberg 已提交
2901
			printk(" %02x", ((unsigned char *)slabp)[i]);
L
Linus Torvalds 已提交
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
		}
		printk("\n");
		BUG();
	}
}
#else
#define kfree_debugcheck(x) do { } while(0)
#define cache_free_debugcheck(x,objp,z) (objp)
#define check_slabp(x,y) do { } while(0)
#endif

2913
static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
2914 2915 2916 2917
{
	int batchcount;
	struct kmem_list3 *l3;
	struct array_cache *ac;
P
Pekka Enberg 已提交
2918 2919
	int node;

2920
retry:
L
Linus Torvalds 已提交
2921
	check_irq_off();
2922
	node = numa_node_id();
2923
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
2924 2925
	batchcount = ac->batchcount;
	if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
A
Andrew Morton 已提交
2926 2927 2928 2929
		/*
		 * If there was little recent activity on this cache, then
		 * perform only a partial refill.  Otherwise we could generate
		 * refill bouncing.
L
Linus Torvalds 已提交
2930 2931 2932
		 */
		batchcount = BATCHREFILL_LIMIT;
	}
P
Pekka Enberg 已提交
2933
	l3 = cachep->nodelists[node];
2934 2935 2936

	BUG_ON(ac->avail > 0 || !l3);
	spin_lock(&l3->list_lock);
L
Linus Torvalds 已提交
2937

2938
	/* See if we can refill from the shared array */
2939 2940
	if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
		l3->shared->touched = 1;
2941
		goto alloc_done;
2942
	}
2943

L
Linus Torvalds 已提交
2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958
	while (batchcount > 0) {
		struct list_head *entry;
		struct slab *slabp;
		/* Get slab alloc is to come from. */
		entry = l3->slabs_partial.next;
		if (entry == &l3->slabs_partial) {
			l3->free_touched = 1;
			entry = l3->slabs_free.next;
			if (entry == &l3->slabs_free)
				goto must_grow;
		}

		slabp = list_entry(entry, struct slab, list);
		check_slabp(cachep, slabp);
		check_spinlock_acquired(cachep);
2959 2960 2961 2962 2963 2964

		/*
		 * The slab was either on partial or free list so
		 * there must be at least one object available for
		 * allocation.
		 */
2965
		BUG_ON(slabp->inuse >= cachep->num);
2966

L
Linus Torvalds 已提交
2967 2968 2969 2970 2971
		while (slabp->inuse < cachep->num && batchcount--) {
			STATS_INC_ALLOCED(cachep);
			STATS_INC_ACTIVE(cachep);
			STATS_SET_HIGH(cachep);

2972
			ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
P
Pekka Enberg 已提交
2973
							    node);
L
Linus Torvalds 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984
		}
		check_slabp(cachep, slabp);

		/* move slabp to correct slabp list: */
		list_del(&slabp->list);
		if (slabp->free == BUFCTL_END)
			list_add(&slabp->list, &l3->slabs_full);
		else
			list_add(&slabp->list, &l3->slabs_partial);
	}

A
Andrew Morton 已提交
2985
must_grow:
L
Linus Torvalds 已提交
2986
	l3->free_objects -= ac->avail;
A
Andrew Morton 已提交
2987
alloc_done:
2988
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
2989 2990 2991

	if (unlikely(!ac->avail)) {
		int x;
2992
		x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
2993

A
Andrew Morton 已提交
2994
		/* cache_grow can reenable interrupts, then ac could change. */
2995
		ac = cpu_cache_get(cachep);
A
Andrew Morton 已提交
2996
		if (!x && ac->avail == 0)	/* no objects in sight? abort */
L
Linus Torvalds 已提交
2997 2998
			return NULL;

A
Andrew Morton 已提交
2999
		if (!ac->avail)		/* objects refilled by interrupt? */
L
Linus Torvalds 已提交
3000 3001 3002
			goto retry;
	}
	ac->touched = 1;
3003
	return ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3004 3005
}

A
Andrew Morton 已提交
3006 3007
static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
						gfp_t flags)
L
Linus Torvalds 已提交
3008 3009 3010 3011 3012 3013 3014 3015
{
	might_sleep_if(flags & __GFP_WAIT);
#if DEBUG
	kmem_flagcheck(cachep, flags);
#endif
}

#if DEBUG
A
Andrew Morton 已提交
3016 3017
static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
				gfp_t flags, void *objp, void *caller)
L
Linus Torvalds 已提交
3018
{
P
Pekka Enberg 已提交
3019
	if (!objp)
L
Linus Torvalds 已提交
3020
		return objp;
P
Pekka Enberg 已提交
3021
	if (cachep->flags & SLAB_POISON) {
L
Linus Torvalds 已提交
3022
#ifdef CONFIG_DEBUG_PAGEALLOC
3023
		if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
P
Pekka Enberg 已提交
3024
			kernel_map_pages(virt_to_page(objp),
3025
					 cachep->buffer_size / PAGE_SIZE, 1);
L
Linus Torvalds 已提交
3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036
		else
			check_poison_obj(cachep, objp);
#else
		check_poison_obj(cachep, objp);
#endif
		poison_obj(cachep, objp, POISON_INUSE);
	}
	if (cachep->flags & SLAB_STORE_USER)
		*dbg_userword(cachep, objp) = caller;

	if (cachep->flags & SLAB_RED_ZONE) {
A
Andrew Morton 已提交
3037 3038 3039 3040
		if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
				*dbg_redzone2(cachep, objp) != RED_INACTIVE) {
			slab_error(cachep, "double free, or memory outside"
						" object was overwritten");
P
Pekka Enberg 已提交
3041
			printk(KERN_ERR
3042
				"%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
A
Andrew Morton 已提交
3043 3044
				objp, *dbg_redzone1(cachep, objp),
				*dbg_redzone2(cachep, objp));
L
Linus Torvalds 已提交
3045 3046 3047 3048
		}
		*dbg_redzone1(cachep, objp) = RED_ACTIVE;
		*dbg_redzone2(cachep, objp) = RED_ACTIVE;
	}
3049 3050 3051 3052 3053
#ifdef CONFIG_DEBUG_SLAB_LEAK
	{
		struct slab *slabp;
		unsigned objnr;

3054
		slabp = page_get_slab(virt_to_head_page(objp));
3055 3056 3057 3058
		objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
		slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
	}
#endif
3059
	objp += obj_offset(cachep);
3060
	if (cachep->ctor && cachep->flags & SLAB_POISON)
3061
		cachep->ctor(objp);
3062 3063 3064 3065 3066 3067
#if ARCH_SLAB_MINALIGN
	if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
		printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
		       objp, ARCH_SLAB_MINALIGN);
	}
#endif
L
Linus Torvalds 已提交
3068 3069 3070 3071 3072 3073
	return objp;
}
#else
#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
#endif

A
Akinobu Mita 已提交
3074
static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
3075 3076
{
	if (cachep == &cache_cache)
A
Akinobu Mita 已提交
3077
		return false;
3078

3079
	return should_failslab(obj_size(cachep), flags, cachep->flags);
3080 3081
}

3082
static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3083
{
P
Pekka Enberg 已提交
3084
	void *objp;
L
Linus Torvalds 已提交
3085 3086
	struct array_cache *ac;

3087
	check_irq_off();
3088

3089
	ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3090 3091 3092
	if (likely(ac->avail)) {
		STATS_INC_ALLOCHIT(cachep);
		ac->touched = 1;
3093
		objp = ac->entry[--ac->avail];
L
Linus Torvalds 已提交
3094 3095 3096
	} else {
		STATS_INC_ALLOCMISS(cachep);
		objp = cache_alloc_refill(cachep, flags);
3097 3098 3099 3100 3101
		/*
		 * the 'ac' may be updated by cache_alloc_refill(),
		 * and kmemleak_erase() requires its correct value.
		 */
		ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3102
	}
3103 3104 3105 3106 3107
	/*
	 * To avoid a false negative, if an object that is in one of the
	 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
	 * treat the array pointers as a reference to the object.
	 */
3108 3109
	if (objp)
		kmemleak_erase(&ac->entry[ac->avail]);
3110 3111 3112
	return objp;
}

3113
#ifdef CONFIG_NUMA
3114
/*
3115
 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
3116 3117 3118 3119 3120 3121 3122 3123
 *
 * If we are in_interrupt, then process context, including cpusets and
 * mempolicy, may not apply and should not be used for allocation policy.
 */
static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	int nid_alloc, nid_here;

3124
	if (in_interrupt() || (flags & __GFP_THISNODE))
3125 3126 3127 3128 3129 3130 3131
		return NULL;
	nid_alloc = nid_here = numa_node_id();
	if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
		nid_alloc = cpuset_mem_spread_node();
	else if (current->mempolicy)
		nid_alloc = slab_node(current->mempolicy);
	if (nid_alloc != nid_here)
3132
		return ____cache_alloc_node(cachep, flags, nid_alloc);
3133 3134 3135
	return NULL;
}

3136 3137
/*
 * Fallback function if there was no memory available and no objects on a
3138 3139 3140 3141 3142
 * certain node and fall back is permitted. First we scan all the
 * available nodelists for available objects. If that fails then we
 * perform an allocation without specifying a node. This allows the page
 * allocator to do its reclaim / fallback magic. We then insert the
 * slab into the proper nodelist and then allocate from it.
3143
 */
3144
static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3145
{
3146 3147
	struct zonelist *zonelist;
	gfp_t local_flags;
3148
	struct zoneref *z;
3149 3150
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
3151
	void *obj = NULL;
3152
	int nid;
3153 3154 3155 3156

	if (flags & __GFP_THISNODE)
		return NULL;

3157
	zonelist = node_zonelist(slab_node(current->mempolicy), flags);
C
Christoph Lameter 已提交
3158
	local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
3159

3160 3161 3162 3163 3164
retry:
	/*
	 * Look through allowed nodes for objects available
	 * from existing per node queues.
	 */
3165 3166
	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
		nid = zone_to_nid(zone);
3167

3168
		if (cpuset_zone_allowed_hardwall(zone, flags) &&
3169
			cache->nodelists[nid] &&
3170
			cache->nodelists[nid]->free_objects) {
3171 3172
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
3173 3174 3175
				if (obj)
					break;
		}
3176 3177
	}

3178
	if (!obj) {
3179 3180 3181 3182 3183 3184
		/*
		 * This allocation will be performed within the constraints
		 * of the current cpuset / memory policy requirements.
		 * We may trigger various forms of reclaim on the allowed
		 * set and go into memory reserves if necessary.
		 */
3185 3186 3187
		if (local_flags & __GFP_WAIT)
			local_irq_enable();
		kmem_flagcheck(cache, flags);
3188
		obj = kmem_getpages(cache, local_flags, numa_node_id());
3189 3190
		if (local_flags & __GFP_WAIT)
			local_irq_disable();
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206
		if (obj) {
			/*
			 * Insert into the appropriate per node queues
			 */
			nid = page_to_nid(virt_to_page(obj));
			if (cache_grow(cache, flags, nid, obj)) {
				obj = ____cache_alloc_node(cache,
					flags | GFP_THISNODE, nid);
				if (!obj)
					/*
					 * Another processor may allocate the
					 * objects in the slab since we are
					 * not holding any locks.
					 */
					goto retry;
			} else {
3207
				/* cache_grow already freed obj */
3208 3209 3210
				obj = NULL;
			}
		}
3211
	}
3212 3213 3214
	return obj;
}

3215 3216
/*
 * A interface to enable slab creation on nodeid
L
Linus Torvalds 已提交
3217
 */
3218
static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
A
Andrew Morton 已提交
3219
				int nodeid)
3220 3221
{
	struct list_head *entry;
P
Pekka Enberg 已提交
3222 3223 3224 3225 3226 3227 3228 3229
	struct slab *slabp;
	struct kmem_list3 *l3;
	void *obj;
	int x;

	l3 = cachep->nodelists[nodeid];
	BUG_ON(!l3);

A
Andrew Morton 已提交
3230
retry:
3231
	check_irq_off();
P
Pekka Enberg 已提交
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
	spin_lock(&l3->list_lock);
	entry = l3->slabs_partial.next;
	if (entry == &l3->slabs_partial) {
		l3->free_touched = 1;
		entry = l3->slabs_free.next;
		if (entry == &l3->slabs_free)
			goto must_grow;
	}

	slabp = list_entry(entry, struct slab, list);
	check_spinlock_acquired_node(cachep, nodeid);
	check_slabp(cachep, slabp);

	STATS_INC_NODEALLOCS(cachep);
	STATS_INC_ACTIVE(cachep);
	STATS_SET_HIGH(cachep);

	BUG_ON(slabp->inuse == cachep->num);

3251
	obj = slab_get_obj(cachep, slabp, nodeid);
P
Pekka Enberg 已提交
3252 3253 3254 3255 3256
	check_slabp(cachep, slabp);
	l3->free_objects--;
	/* move slabp to correct slabp list: */
	list_del(&slabp->list);

A
Andrew Morton 已提交
3257
	if (slabp->free == BUFCTL_END)
P
Pekka Enberg 已提交
3258
		list_add(&slabp->list, &l3->slabs_full);
A
Andrew Morton 已提交
3259
	else
P
Pekka Enberg 已提交
3260
		list_add(&slabp->list, &l3->slabs_partial);
3261

P
Pekka Enberg 已提交
3262 3263
	spin_unlock(&l3->list_lock);
	goto done;
3264

A
Andrew Morton 已提交
3265
must_grow:
P
Pekka Enberg 已提交
3266
	spin_unlock(&l3->list_lock);
3267
	x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
3268 3269
	if (x)
		goto retry;
L
Linus Torvalds 已提交
3270

3271
	return fallback_alloc(cachep, flags);
3272

A
Andrew Morton 已提交
3273
done:
P
Pekka Enberg 已提交
3274
	return obj;
3275
}
3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295

/**
 * kmem_cache_alloc_node - Allocate an object on the specified node
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 * @nodeid: node number of the target node.
 * @caller: return address of caller, used for debug information
 *
 * Identical to kmem_cache_alloc but it will allocate memory on the given
 * node, which can improve the performance for cpu bound structures.
 *
 * Fallback to other node is possible if __GFP_THISNODE is not set.
 */
static __always_inline void *
__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
		   void *caller)
{
	unsigned long save_flags;
	void *ptr;

3296
	flags &= gfp_allowed_mask;
3297

3298 3299
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3300
	if (slab_should_failslab(cachep, flags))
3301 3302
		return NULL;

3303 3304 3305
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);

3306
	if (nodeid == -1)
3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
		nodeid = numa_node_id();

	if (unlikely(!cachep->nodelists[nodeid])) {
		/* Node not bootstrapped yet */
		ptr = fallback_alloc(cachep, flags);
		goto out;
	}

	if (nodeid == numa_node_id()) {
		/*
		 * Use the locally cached objects if possible.
		 * However ____cache_alloc does not allow fallback
		 * to other nodes. It may fail while we still have
		 * objects on other nodes available.
		 */
		ptr = ____cache_alloc(cachep, flags);
		if (ptr)
			goto out;
	}
	/* ___cache_alloc_node can fall back to other nodes */
	ptr = ____cache_alloc_node(cachep, flags, nodeid);
  out:
	local_irq_restore(save_flags);
	ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3331 3332
	kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
				 flags);
3333

P
Pekka Enberg 已提交
3334 3335 3336
	if (likely(ptr))
		kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));

3337 3338 3339
	if (unlikely((flags & __GFP_ZERO) && ptr))
		memset(ptr, 0, obj_size(cachep));

3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
	return ptr;
}

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
{
	void *objp;

	if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
		objp = alternate_node_alloc(cache, flags);
		if (objp)
			goto out;
	}
	objp = ____cache_alloc(cache, flags);

	/*
	 * We may just have run out of memory on the local node.
	 * ____cache_alloc_node() knows how to locate memory on other nodes
	 */
 	if (!objp)
 		objp = ____cache_alloc_node(cache, flags, numa_node_id());

  out:
	return objp;
}
#else

static __always_inline void *
__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
{
	return ____cache_alloc(cachep, flags);
}

#endif /* CONFIG_NUMA */

static __always_inline void *
__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
{
	unsigned long save_flags;
	void *objp;

3381
	flags &= gfp_allowed_mask;
3382

3383 3384
	lockdep_trace_alloc(flags);

A
Akinobu Mita 已提交
3385
	if (slab_should_failslab(cachep, flags))
3386 3387
		return NULL;

3388 3389 3390 3391 3392
	cache_alloc_debugcheck_before(cachep, flags);
	local_irq_save(save_flags);
	objp = __do_cache_alloc(cachep, flags);
	local_irq_restore(save_flags);
	objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3393 3394
	kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
				 flags);
3395 3396
	prefetchw(objp);

P
Pekka Enberg 已提交
3397 3398 3399
	if (likely(objp))
		kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));

3400 3401 3402
	if (unlikely((flags & __GFP_ZERO) && objp))
		memset(objp, 0, obj_size(cachep));

3403 3404
	return objp;
}
3405 3406 3407 3408

/*
 * Caller needs to acquire correct kmem_list's list_lock
 */
3409
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
P
Pekka Enberg 已提交
3410
		       int node)
L
Linus Torvalds 已提交
3411 3412
{
	int i;
3413
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
3414 3415 3416 3417 3418

	for (i = 0; i < nr_objects; i++) {
		void *objp = objpp[i];
		struct slab *slabp;

3419
		slabp = virt_to_slab(objp);
3420
		l3 = cachep->nodelists[node];
L
Linus Torvalds 已提交
3421
		list_del(&slabp->list);
3422
		check_spinlock_acquired_node(cachep, node);
L
Linus Torvalds 已提交
3423
		check_slabp(cachep, slabp);
3424
		slab_put_obj(cachep, slabp, objp, node);
L
Linus Torvalds 已提交
3425
		STATS_DEC_ACTIVE(cachep);
3426
		l3->free_objects++;
L
Linus Torvalds 已提交
3427 3428 3429 3430
		check_slabp(cachep, slabp);

		/* fixup slab chains */
		if (slabp->inuse == 0) {
3431 3432
			if (l3->free_objects > l3->free_limit) {
				l3->free_objects -= cachep->num;
3433 3434 3435 3436 3437 3438
				/* No need to drop any previously held
				 * lock here, even if we have a off-slab slab
				 * descriptor it is guaranteed to come from
				 * a different cache, refer to comments before
				 * alloc_slabmgmt.
				 */
L
Linus Torvalds 已提交
3439 3440
				slab_destroy(cachep, slabp);
			} else {
3441
				list_add(&slabp->list, &l3->slabs_free);
L
Linus Torvalds 已提交
3442 3443 3444 3445 3446 3447
			}
		} else {
			/* Unconditionally move a slab to the end of the
			 * partial list on free - maximum time for the
			 * other objects to be freed, too.
			 */
3448
			list_add_tail(&slabp->list, &l3->slabs_partial);
L
Linus Torvalds 已提交
3449 3450 3451 3452
		}
	}
}

3453
static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
L
Linus Torvalds 已提交
3454 3455
{
	int batchcount;
3456
	struct kmem_list3 *l3;
3457
	int node = numa_node_id();
L
Linus Torvalds 已提交
3458 3459 3460 3461 3462 3463

	batchcount = ac->batchcount;
#if DEBUG
	BUG_ON(!batchcount || batchcount > ac->avail);
#endif
	check_irq_off();
3464
	l3 = cachep->nodelists[node];
3465
	spin_lock(&l3->list_lock);
3466 3467
	if (l3->shared) {
		struct array_cache *shared_array = l3->shared;
P
Pekka Enberg 已提交
3468
		int max = shared_array->limit - shared_array->avail;
L
Linus Torvalds 已提交
3469 3470 3471
		if (max) {
			if (batchcount > max)
				batchcount = max;
3472
			memcpy(&(shared_array->entry[shared_array->avail]),
P
Pekka Enberg 已提交
3473
			       ac->entry, sizeof(void *) * batchcount);
L
Linus Torvalds 已提交
3474 3475 3476 3477 3478
			shared_array->avail += batchcount;
			goto free_done;
		}
	}

3479
	free_block(cachep, ac->entry, batchcount, node);
A
Andrew Morton 已提交
3480
free_done:
L
Linus Torvalds 已提交
3481 3482 3483 3484 3485
#if STATS
	{
		int i = 0;
		struct list_head *p;

3486 3487
		p = l3->slabs_free.next;
		while (p != &(l3->slabs_free)) {
L
Linus Torvalds 已提交
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498
			struct slab *slabp;

			slabp = list_entry(p, struct slab, list);
			BUG_ON(slabp->inuse);

			i++;
			p = p->next;
		}
		STATS_SET_FREEABLE(cachep, i);
	}
#endif
3499
	spin_unlock(&l3->list_lock);
L
Linus Torvalds 已提交
3500
	ac->avail -= batchcount;
A
Andrew Morton 已提交
3501
	memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
L
Linus Torvalds 已提交
3502 3503 3504
}

/*
A
Andrew Morton 已提交
3505 3506
 * Release an obj back to its cache. If the obj has a constructed state, it must
 * be in this state _before_ it is released.  Called with disabled ints.
L
Linus Torvalds 已提交
3507
 */
3508
static inline void __cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3509
{
3510
	struct array_cache *ac = cpu_cache_get(cachep);
L
Linus Torvalds 已提交
3511 3512

	check_irq_off();
3513
	kmemleak_free_recursive(objp, cachep->flags);
L
Linus Torvalds 已提交
3514 3515
	objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));

P
Pekka Enberg 已提交
3516 3517
	kmemcheck_slab_free(cachep, objp, obj_size(cachep));

3518 3519 3520 3521 3522 3523 3524
	/*
	 * Skip calling cache_free_alien() when the platform is not numa.
	 * This will avoid cache misses that happen while accessing slabp (which
	 * is per page memory  reference) to get nodeid. Instead use a global
	 * variable to skip the call, which is mostly likely to be present in
	 * the cache.
	 */
3525
	if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3526 3527
		return;

L
Linus Torvalds 已提交
3528 3529
	if (likely(ac->avail < ac->limit)) {
		STATS_INC_FREEHIT(cachep);
3530
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3531 3532 3533 3534
		return;
	} else {
		STATS_INC_FREEMISS(cachep);
		cache_flusharray(cachep, ac);
3535
		ac->entry[ac->avail++] = objp;
L
Linus Torvalds 已提交
3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546
	}
}

/**
 * kmem_cache_alloc - Allocate an object
 * @cachep: The cache to allocate from.
 * @flags: See kmalloc().
 *
 * Allocate an object from this cache.  The flags are only relevant
 * if the cache has no available objects.
 */
3547
void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
L
Linus Torvalds 已提交
3548
{
E
Eduard - Gabriel Munteanu 已提交
3549 3550
	void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));

3551 3552
	trace_kmem_cache_alloc(_RET_IP_, ret,
			       obj_size(cachep), cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3553 3554

	return ret;
L
Linus Torvalds 已提交
3555 3556 3557
}
EXPORT_SYMBOL(kmem_cache_alloc);

3558
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
3559 3560 3561 3562 3563 3564 3565
void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
{
	return __cache_alloc(cachep, flags, __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_notrace);
#endif

L
Linus Torvalds 已提交
3566
/**
3567
 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
L
Linus Torvalds 已提交
3568 3569 3570
 * @cachep: the cache we're checking against
 * @ptr: pointer to validate
 *
3571
 * This verifies that the untrusted pointer looks sane;
L
Linus Torvalds 已提交
3572 3573 3574 3575 3576 3577 3578
 * it is _not_ a guarantee that the pointer is actually
 * part of the slab cache in question, but it at least
 * validates that the pointer can be dereferenced and
 * looks half-way sane.
 *
 * Currently only used for dentry validation.
 */
3579
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
L
Linus Torvalds 已提交
3580
{
3581
	unsigned long size = cachep->buffer_size;
L
Linus Torvalds 已提交
3582 3583
	struct page *page;

3584
	if (unlikely(!kern_ptr_validate(ptr, size)))
L
Linus Torvalds 已提交
3585 3586 3587 3588
		goto out;
	page = virt_to_page(ptr);
	if (unlikely(!PageSlab(page)))
		goto out;
3589
	if (unlikely(page_get_cache(page) != cachep))
L
Linus Torvalds 已提交
3590 3591
		goto out;
	return 1;
A
Andrew Morton 已提交
3592
out:
L
Linus Torvalds 已提交
3593 3594 3595 3596
	return 0;
}

#ifdef CONFIG_NUMA
3597 3598
void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
{
E
Eduard - Gabriel Munteanu 已提交
3599 3600 3601
	void *ret = __cache_alloc_node(cachep, flags, nodeid,
				       __builtin_return_address(0));

3602 3603 3604
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
				    obj_size(cachep), cachep->buffer_size,
				    flags, nodeid);
E
Eduard - Gabriel Munteanu 已提交
3605 3606

	return ret;
3607
}
L
Linus Torvalds 已提交
3608 3609
EXPORT_SYMBOL(kmem_cache_alloc_node);

3610
#ifdef CONFIG_TRACING
E
Eduard - Gabriel Munteanu 已提交
3611 3612 3613 3614 3615 3616 3617 3618 3619 3620
void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
				    gfp_t flags,
				    int nodeid)
{
	return __cache_alloc_node(cachep, flags, nodeid,
				  __builtin_return_address(0));
}
EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
#endif

3621 3622
static __always_inline void *
__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
3623
{
3624
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3625
	void *ret;
3626 3627

	cachep = kmem_find_general_cachep(size, flags);
3628 3629
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3630 3631
	ret = kmem_cache_alloc_node_notrace(cachep, flags, node);

3632 3633
	trace_kmalloc_node((unsigned long) caller, ret,
			   size, cachep->buffer_size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3634 3635

	return ret;
3636
}
3637

3638
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3639 3640 3641 3642 3643
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node,
			__builtin_return_address(0));
}
3644
EXPORT_SYMBOL(__kmalloc_node);
3645 3646

void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3647
		int node, unsigned long caller)
3648
{
3649
	return __do_kmalloc_node(size, flags, node, (void *)caller);
3650 3651 3652 3653 3654 3655 3656 3657
}
EXPORT_SYMBOL(__kmalloc_node_track_caller);
#else
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	return __do_kmalloc_node(size, flags, node, NULL);
}
EXPORT_SYMBOL(__kmalloc_node);
3658
#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
3659
#endif /* CONFIG_NUMA */
L
Linus Torvalds 已提交
3660 3661

/**
3662
 * __do_kmalloc - allocate memory
L
Linus Torvalds 已提交
3663
 * @size: how many bytes of memory are required.
3664
 * @flags: the type of memory to allocate (see kmalloc).
3665
 * @caller: function caller for debug tracking of the caller
L
Linus Torvalds 已提交
3666
 */
3667 3668
static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
					  void *caller)
L
Linus Torvalds 已提交
3669
{
3670
	struct kmem_cache *cachep;
E
Eduard - Gabriel Munteanu 已提交
3671
	void *ret;
L
Linus Torvalds 已提交
3672

3673 3674 3675 3676 3677 3678
	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = __find_general_cachep(size, flags);
3679 3680
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
E
Eduard - Gabriel Munteanu 已提交
3681 3682
	ret = __cache_alloc(cachep, flags, caller);

3683 3684
	trace_kmalloc((unsigned long) caller, ret,
		      size, cachep->buffer_size, flags);
E
Eduard - Gabriel Munteanu 已提交
3685 3686

	return ret;
3687 3688 3689
}


3690
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
3691 3692
void *__kmalloc(size_t size, gfp_t flags)
{
3693
	return __do_kmalloc(size, flags, __builtin_return_address(0));
L
Linus Torvalds 已提交
3694 3695 3696
}
EXPORT_SYMBOL(__kmalloc);

3697
void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3698
{
3699
	return __do_kmalloc(size, flags, (void *)caller);
3700 3701
}
EXPORT_SYMBOL(__kmalloc_track_caller);
3702 3703 3704 3705 3706 3707 3708

#else
void *__kmalloc(size_t size, gfp_t flags)
{
	return __do_kmalloc(size, flags, NULL);
}
EXPORT_SYMBOL(__kmalloc);
3709 3710
#endif

L
Linus Torvalds 已提交
3711 3712 3713 3714 3715 3716 3717 3718
/**
 * kmem_cache_free - Deallocate an object
 * @cachep: The cache the allocation was from.
 * @objp: The previously allocated object.
 *
 * Free an object which was previously allocated from this
 * cache.
 */
3719
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
L
Linus Torvalds 已提交
3720 3721 3722 3723
{
	unsigned long flags;

	local_irq_save(flags);
3724
	debug_check_no_locks_freed(objp, obj_size(cachep));
3725 3726
	if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(objp, obj_size(cachep));
3727
	__cache_free(cachep, objp);
L
Linus Torvalds 已提交
3728
	local_irq_restore(flags);
E
Eduard - Gabriel Munteanu 已提交
3729

3730
	trace_kmem_cache_free(_RET_IP_, objp);
L
Linus Torvalds 已提交
3731 3732 3733 3734 3735 3736 3737
}
EXPORT_SYMBOL(kmem_cache_free);

/**
 * kfree - free previously allocated memory
 * @objp: pointer returned by kmalloc.
 *
3738 3739
 * If @objp is NULL, no operation is performed.
 *
L
Linus Torvalds 已提交
3740 3741 3742 3743 3744
 * Don't free memory not originally allocated by kmalloc()
 * or you will run into trouble.
 */
void kfree(const void *objp)
{
3745
	struct kmem_cache *c;
L
Linus Torvalds 已提交
3746 3747
	unsigned long flags;

3748 3749
	trace_kfree(_RET_IP_, objp);

3750
	if (unlikely(ZERO_OR_NULL_PTR(objp)))
L
Linus Torvalds 已提交
3751 3752 3753
		return;
	local_irq_save(flags);
	kfree_debugcheck(objp);
3754
	c = virt_to_cache(objp);
3755
	debug_check_no_locks_freed(objp, obj_size(c));
3756
	debug_check_no_obj_freed(objp, obj_size(c));
3757
	__cache_free(c, (void *)objp);
L
Linus Torvalds 已提交
3758 3759 3760 3761
	local_irq_restore(flags);
}
EXPORT_SYMBOL(kfree);

3762
unsigned int kmem_cache_size(struct kmem_cache *cachep)
L
Linus Torvalds 已提交
3763
{
3764
	return obj_size(cachep);
L
Linus Torvalds 已提交
3765 3766 3767
}
EXPORT_SYMBOL(kmem_cache_size);

3768
const char *kmem_cache_name(struct kmem_cache *cachep)
3769 3770 3771 3772 3773
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

3774
/*
S
Simon Arlott 已提交
3775
 * This initializes kmem_list3 or resizes various caches for all nodes.
3776
 */
3777
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
3778 3779 3780
{
	int node;
	struct kmem_list3 *l3;
3781
	struct array_cache *new_shared;
3782
	struct array_cache **new_alien = NULL;
3783

3784
	for_each_online_node(node) {
3785

3786
                if (use_alien_caches) {
3787
                        new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3788 3789 3790
                        if (!new_alien)
                                goto fail;
                }
3791

3792 3793 3794
		new_shared = NULL;
		if (cachep->shared) {
			new_shared = alloc_arraycache(node,
3795
				cachep->shared*cachep->batchcount,
3796
					0xbaadf00d, gfp);
3797 3798 3799 3800
			if (!new_shared) {
				free_alien_cache(new_alien);
				goto fail;
			}
3801
		}
3802

A
Andrew Morton 已提交
3803 3804
		l3 = cachep->nodelists[node];
		if (l3) {
3805 3806
			struct array_cache *shared = l3->shared;

3807 3808
			spin_lock_irq(&l3->list_lock);

3809
			if (shared)
3810 3811
				free_block(cachep, shared->entry,
						shared->avail, node);
3812

3813 3814
			l3->shared = new_shared;
			if (!l3->alien) {
3815 3816 3817
				l3->alien = new_alien;
				new_alien = NULL;
			}
P
Pekka Enberg 已提交
3818
			l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3819
					cachep->batchcount + cachep->num;
3820
			spin_unlock_irq(&l3->list_lock);
3821
			kfree(shared);
3822 3823 3824
			free_alien_cache(new_alien);
			continue;
		}
3825
		l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
3826 3827 3828
		if (!l3) {
			free_alien_cache(new_alien);
			kfree(new_shared);
3829
			goto fail;
3830
		}
3831 3832 3833

		kmem_list3_init(l3);
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
A
Andrew Morton 已提交
3834
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
3835
		l3->shared = new_shared;
3836
		l3->alien = new_alien;
P
Pekka Enberg 已提交
3837
		l3->free_limit = (1 + nr_cpus_node(node)) *
A
Andrew Morton 已提交
3838
					cachep->batchcount + cachep->num;
3839 3840
		cachep->nodelists[node] = l3;
	}
3841
	return 0;
3842

A
Andrew Morton 已提交
3843
fail:
3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858
	if (!cachep->next.next) {
		/* Cache is not active yet. Roll back what we did */
		node--;
		while (node >= 0) {
			if (cachep->nodelists[node]) {
				l3 = cachep->nodelists[node];

				kfree(l3->shared);
				free_alien_cache(l3->alien);
				kfree(l3);
				cachep->nodelists[node] = NULL;
			}
			node--;
		}
	}
3859
	return -ENOMEM;
3860 3861
}

L
Linus Torvalds 已提交
3862
struct ccupdate_struct {
3863
	struct kmem_cache *cachep;
L
Linus Torvalds 已提交
3864 3865 3866 3867 3868
	struct array_cache *new[NR_CPUS];
};

static void do_ccupdate_local(void *info)
{
A
Andrew Morton 已提交
3869
	struct ccupdate_struct *new = info;
L
Linus Torvalds 已提交
3870 3871 3872
	struct array_cache *old;

	check_irq_off();
3873
	old = cpu_cache_get(new->cachep);
3874

L
Linus Torvalds 已提交
3875 3876 3877 3878
	new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
	new->new[smp_processor_id()] = old;
}

3879
/* Always called with the cache_chain_mutex held */
A
Andrew Morton 已提交
3880
static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3881
				int batchcount, int shared, gfp_t gfp)
L
Linus Torvalds 已提交
3882
{
3883
	struct ccupdate_struct *new;
3884
	int i;
L
Linus Torvalds 已提交
3885

3886
	new = kzalloc(sizeof(*new), gfp);
3887 3888 3889
	if (!new)
		return -ENOMEM;

3890
	for_each_online_cpu(i) {
3891
		new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
3892
						batchcount, gfp);
3893
		if (!new->new[i]) {
P
Pekka Enberg 已提交
3894
			for (i--; i >= 0; i--)
3895 3896
				kfree(new->new[i]);
			kfree(new);
3897
			return -ENOMEM;
L
Linus Torvalds 已提交
3898 3899
		}
	}
3900
	new->cachep = cachep;
L
Linus Torvalds 已提交
3901

3902
	on_each_cpu(do_ccupdate_local, (void *)new, 1);
3903

L
Linus Torvalds 已提交
3904 3905 3906
	check_irq_on();
	cachep->batchcount = batchcount;
	cachep->limit = limit;
3907
	cachep->shared = shared;
L
Linus Torvalds 已提交
3908

3909
	for_each_online_cpu(i) {
3910
		struct array_cache *ccold = new->new[i];
L
Linus Torvalds 已提交
3911 3912
		if (!ccold)
			continue;
3913
		spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
3914
		free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
3915
		spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
L
Linus Torvalds 已提交
3916 3917
		kfree(ccold);
	}
3918
	kfree(new);
3919
	return alloc_kmemlist(cachep, gfp);
L
Linus Torvalds 已提交
3920 3921
}

3922
/* Called with cache_chain_mutex held always */
3923
static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
L
Linus Torvalds 已提交
3924 3925 3926 3927
{
	int err;
	int limit, shared;

A
Andrew Morton 已提交
3928 3929
	/*
	 * The head array serves three purposes:
L
Linus Torvalds 已提交
3930 3931
	 * - create a LIFO ordering, i.e. return objects that are cache-warm
	 * - reduce the number of spinlock operations.
A
Andrew Morton 已提交
3932
	 * - reduce the number of linked list operations on the slab and
L
Linus Torvalds 已提交
3933 3934 3935 3936
	 *   bufctl chains: array operations are cheaper.
	 * The numbers are guessed, we should auto-tune as described by
	 * Bonwick.
	 */
3937
	if (cachep->buffer_size > 131072)
L
Linus Torvalds 已提交
3938
		limit = 1;
3939
	else if (cachep->buffer_size > PAGE_SIZE)
L
Linus Torvalds 已提交
3940
		limit = 8;
3941
	else if (cachep->buffer_size > 1024)
L
Linus Torvalds 已提交
3942
		limit = 24;
3943
	else if (cachep->buffer_size > 256)
L
Linus Torvalds 已提交
3944 3945 3946 3947
		limit = 54;
	else
		limit = 120;

A
Andrew Morton 已提交
3948 3949
	/*
	 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
L
Linus Torvalds 已提交
3950 3951 3952 3953 3954 3955 3956 3957
	 * allocation behaviour: Most allocs on one cpu, most free operations
	 * on another cpu. For these cases, an efficient object passing between
	 * cpus is necessary. This is provided by a shared array. The array
	 * replaces Bonwick's magazine layer.
	 * On uniprocessor, it's functionally equivalent (but less efficient)
	 * to a larger limit. Thus disabled by default.
	 */
	shared = 0;
3958
	if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
L
Linus Torvalds 已提交
3959 3960 3961
		shared = 8;

#if DEBUG
A
Andrew Morton 已提交
3962 3963 3964
	/*
	 * With debugging enabled, large batchcount lead to excessively long
	 * periods with disabled local interrupts. Limit the batchcount
L
Linus Torvalds 已提交
3965 3966 3967 3968
	 */
	if (limit > 32)
		limit = 32;
#endif
3969
	err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
L
Linus Torvalds 已提交
3970 3971
	if (err)
		printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
P
Pekka Enberg 已提交
3972
		       cachep->name, -err);
3973
	return err;
L
Linus Torvalds 已提交
3974 3975
}

3976 3977
/*
 * Drain an array if it contains any elements taking the l3 lock only if
3978 3979
 * necessary. Note that the l3 listlock also protects the array_cache
 * if drain_array() is used on the shared array.
3980 3981 3982
 */
void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
			 struct array_cache *ac, int force, int node)
L
Linus Torvalds 已提交
3983 3984 3985
{
	int tofree;

3986 3987
	if (!ac || !ac->avail)
		return;
L
Linus Torvalds 已提交
3988 3989
	if (ac->touched && !force) {
		ac->touched = 0;
3990
	} else {
3991
		spin_lock_irq(&l3->list_lock);
3992 3993 3994 3995 3996 3997 3998 3999 4000
		if (ac->avail) {
			tofree = force ? ac->avail : (ac->limit + 4) / 5;
			if (tofree > ac->avail)
				tofree = (ac->avail + 1) / 2;
			free_block(cachep, ac->entry, tofree, node);
			ac->avail -= tofree;
			memmove(ac->entry, &(ac->entry[tofree]),
				sizeof(void *) * ac->avail);
		}
4001
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4002 4003 4004 4005 4006
	}
}

/**
 * cache_reap - Reclaim memory from caches.
4007
 * @w: work descriptor
L
Linus Torvalds 已提交
4008 4009 4010 4011 4012 4013
 *
 * Called from workqueue/eventd every few seconds.
 * Purpose:
 * - clear the per-cpu caches for this CPU.
 * - return freeable pages to the main free memory pool.
 *
A
Andrew Morton 已提交
4014 4015
 * If we cannot acquire the cache chain mutex then just give up - we'll try
 * again on the next iteration.
L
Linus Torvalds 已提交
4016
 */
4017
static void cache_reap(struct work_struct *w)
L
Linus Torvalds 已提交
4018
{
4019
	struct kmem_cache *searchp;
4020
	struct kmem_list3 *l3;
4021
	int node = numa_node_id();
4022
	struct delayed_work *work = to_delayed_work(w);
L
Linus Torvalds 已提交
4023

4024
	if (!mutex_trylock(&cache_chain_mutex))
L
Linus Torvalds 已提交
4025
		/* Give up. Setup the next iteration. */
4026
		goto out;
L
Linus Torvalds 已提交
4027

4028
	list_for_each_entry(searchp, &cache_chain, next) {
L
Linus Torvalds 已提交
4029 4030
		check_irq_on();

4031 4032 4033 4034 4035
		/*
		 * We only take the l3 lock if absolutely necessary and we
		 * have established with reasonable certainty that
		 * we can do some work if the lock was obtained.
		 */
4036
		l3 = searchp->nodelists[node];
4037

4038
		reap_alien(searchp, l3);
L
Linus Torvalds 已提交
4039

4040
		drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
L
Linus Torvalds 已提交
4041

4042 4043 4044 4045
		/*
		 * These are racy checks but it does not matter
		 * if we skip one check or scan twice.
		 */
4046
		if (time_after(l3->next_reap, jiffies))
4047
			goto next;
L
Linus Torvalds 已提交
4048

4049
		l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
L
Linus Torvalds 已提交
4050

4051
		drain_array(searchp, l3, l3->shared, 0, node);
L
Linus Torvalds 已提交
4052

4053
		if (l3->free_touched)
4054
			l3->free_touched = 0;
4055 4056
		else {
			int freed;
L
Linus Torvalds 已提交
4057

4058 4059 4060 4061
			freed = drain_freelist(searchp, l3, (l3->free_limit +
				5 * searchp->num - 1) / (5 * searchp->num));
			STATS_ADD_REAPED(searchp, freed);
		}
4062
next:
L
Linus Torvalds 已提交
4063 4064 4065
		cond_resched();
	}
	check_irq_on();
I
Ingo Molnar 已提交
4066
	mutex_unlock(&cache_chain_mutex);
4067
	next_reap_node();
4068
out:
A
Andrew Morton 已提交
4069
	/* Set up the next iteration */
4070
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
L
Linus Torvalds 已提交
4071 4072
}

4073
#ifdef CONFIG_SLABINFO
L
Linus Torvalds 已提交
4074

4075
static void print_slabinfo_header(struct seq_file *m)
L
Linus Torvalds 已提交
4076
{
4077 4078 4079 4080
	/*
	 * Output format version, so at least we can change it
	 * without _too_ many complaints.
	 */
L
Linus Torvalds 已提交
4081
#if STATS
4082
	seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
L
Linus Torvalds 已提交
4083
#else
4084
	seq_puts(m, "slabinfo - version: 2.1\n");
L
Linus Torvalds 已提交
4085
#endif
4086 4087 4088 4089
	seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
		 "<objperslab> <pagesperslab>");
	seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
	seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
L
Linus Torvalds 已提交
4090
#if STATS
4091
	seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
4092
		 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
4093
	seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
L
Linus Torvalds 已提交
4094
#endif
4095 4096 4097 4098 4099 4100 4101
	seq_putc(m, '\n');
}

static void *s_start(struct seq_file *m, loff_t *pos)
{
	loff_t n = *pos;

I
Ingo Molnar 已提交
4102
	mutex_lock(&cache_chain_mutex);
4103 4104
	if (!n)
		print_slabinfo_header(m);
4105 4106

	return seq_list_start(&cache_chain, *pos);
L
Linus Torvalds 已提交
4107 4108 4109 4110
}

static void *s_next(struct seq_file *m, void *p, loff_t *pos)
{
4111
	return seq_list_next(p, &cache_chain, pos);
L
Linus Torvalds 已提交
4112 4113 4114 4115
}

static void s_stop(struct seq_file *m, void *p)
{
I
Ingo Molnar 已提交
4116
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4117 4118 4119 4120
}

static int s_show(struct seq_file *m, void *p)
{
4121
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
P
Pekka Enberg 已提交
4122 4123 4124 4125 4126
	struct slab *slabp;
	unsigned long active_objs;
	unsigned long num_objs;
	unsigned long active_slabs = 0;
	unsigned long num_slabs, free_objects = 0, shared_avail = 0;
4127
	const char *name;
L
Linus Torvalds 已提交
4128
	char *error = NULL;
4129 4130
	int node;
	struct kmem_list3 *l3;
L
Linus Torvalds 已提交
4131 4132 4133

	active_objs = 0;
	num_slabs = 0;
4134 4135 4136 4137 4138
	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

4139 4140
		check_irq_on();
		spin_lock_irq(&l3->list_lock);
4141

4142
		list_for_each_entry(slabp, &l3->slabs_full, list) {
4143 4144 4145 4146 4147
			if (slabp->inuse != cachep->num && !error)
				error = "slabs_full accounting error";
			active_objs += cachep->num;
			active_slabs++;
		}
4148
		list_for_each_entry(slabp, &l3->slabs_partial, list) {
4149 4150 4151 4152 4153 4154 4155
			if (slabp->inuse == cachep->num && !error)
				error = "slabs_partial inuse accounting error";
			if (!slabp->inuse && !error)
				error = "slabs_partial/inuse accounting error";
			active_objs += slabp->inuse;
			active_slabs++;
		}
4156
		list_for_each_entry(slabp, &l3->slabs_free, list) {
4157 4158 4159 4160 4161
			if (slabp->inuse && !error)
				error = "slabs_free/inuse accounting error";
			num_slabs++;
		}
		free_objects += l3->free_objects;
4162 4163
		if (l3->shared)
			shared_avail += l3->shared->avail;
4164

4165
		spin_unlock_irq(&l3->list_lock);
L
Linus Torvalds 已提交
4166
	}
P
Pekka Enberg 已提交
4167 4168
	num_slabs += active_slabs;
	num_objs = num_slabs * cachep->num;
4169
	if (num_objs - active_objs != free_objects && !error)
L
Linus Torvalds 已提交
4170 4171
		error = "free_objects accounting error";

P
Pekka Enberg 已提交
4172
	name = cachep->name;
L
Linus Torvalds 已提交
4173 4174 4175 4176
	if (error)
		printk(KERN_ERR "slab: cache %s error: %s\n", name, error);

	seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
4177
		   name, active_objs, num_objs, cachep->buffer_size,
P
Pekka Enberg 已提交
4178
		   cachep->num, (1 << cachep->gfporder));
L
Linus Torvalds 已提交
4179
	seq_printf(m, " : tunables %4u %4u %4u",
P
Pekka Enberg 已提交
4180
		   cachep->limit, cachep->batchcount, cachep->shared);
4181
	seq_printf(m, " : slabdata %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4182
		   active_slabs, num_slabs, shared_avail);
L
Linus Torvalds 已提交
4183
#if STATS
P
Pekka Enberg 已提交
4184
	{			/* list3 stats */
L
Linus Torvalds 已提交
4185 4186 4187 4188 4189 4190 4191
		unsigned long high = cachep->high_mark;
		unsigned long allocs = cachep->num_allocations;
		unsigned long grown = cachep->grown;
		unsigned long reaped = cachep->reaped;
		unsigned long errors = cachep->errors;
		unsigned long max_freeable = cachep->max_freeable;
		unsigned long node_allocs = cachep->node_allocs;
4192
		unsigned long node_frees = cachep->node_frees;
4193
		unsigned long overflows = cachep->node_overflow;
L
Linus Torvalds 已提交
4194

4195
		seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
4196
				%4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
A
Andrew Morton 已提交
4197
				reaped, errors, max_freeable, node_allocs,
4198
				node_frees, overflows);
L
Linus Torvalds 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207
	}
	/* cpu stats */
	{
		unsigned long allochit = atomic_read(&cachep->allochit);
		unsigned long allocmiss = atomic_read(&cachep->allocmiss);
		unsigned long freehit = atomic_read(&cachep->freehit);
		unsigned long freemiss = atomic_read(&cachep->freemiss);

		seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
P
Pekka Enberg 已提交
4208
			   allochit, allocmiss, freehit, freemiss);
L
Linus Torvalds 已提交
4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228
	}
#endif
	seq_putc(m, '\n');
	return 0;
}

/*
 * slabinfo_op - iterator that generates /proc/slabinfo
 *
 * Output layout:
 * cache-name
 * num-active-objs
 * total-objs
 * object size
 * num-active-slabs
 * total-slabs
 * num-pages-per-slab
 * + further values on SMP and with statistics enabled
 */

4229
static const struct seq_operations slabinfo_op = {
P
Pekka Enberg 已提交
4230 4231 4232 4233
	.start = s_start,
	.next = s_next,
	.stop = s_stop,
	.show = s_show,
L
Linus Torvalds 已提交
4234 4235 4236 4237 4238 4239 4240 4241 4242 4243
};

#define MAX_SLABINFO_WRITE 128
/**
 * slabinfo_write - Tuning for the slab allocator
 * @file: unused
 * @buffer: user buffer
 * @count: data length
 * @ppos: unused
 */
P
Pekka Enberg 已提交
4244 4245
ssize_t slabinfo_write(struct file *file, const char __user * buffer,
		       size_t count, loff_t *ppos)
L
Linus Torvalds 已提交
4246
{
P
Pekka Enberg 已提交
4247
	char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
L
Linus Torvalds 已提交
4248
	int limit, batchcount, shared, res;
4249
	struct kmem_cache *cachep;
P
Pekka Enberg 已提交
4250

L
Linus Torvalds 已提交
4251 4252 4253 4254
	if (count > MAX_SLABINFO_WRITE)
		return -EINVAL;
	if (copy_from_user(&kbuf, buffer, count))
		return -EFAULT;
P
Pekka Enberg 已提交
4255
	kbuf[MAX_SLABINFO_WRITE] = '\0';
L
Linus Torvalds 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265

	tmp = strchr(kbuf, ' ');
	if (!tmp)
		return -EINVAL;
	*tmp = '\0';
	tmp++;
	if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
		return -EINVAL;

	/* Find the cache in the chain of caches. */
I
Ingo Molnar 已提交
4266
	mutex_lock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4267
	res = -EINVAL;
4268
	list_for_each_entry(cachep, &cache_chain, next) {
L
Linus Torvalds 已提交
4269
		if (!strcmp(cachep->name, kbuf)) {
A
Andrew Morton 已提交
4270 4271
			if (limit < 1 || batchcount < 1 ||
					batchcount > limit || shared < 0) {
4272
				res = 0;
L
Linus Torvalds 已提交
4273
			} else {
4274
				res = do_tune_cpucache(cachep, limit,
4275 4276
						       batchcount, shared,
						       GFP_KERNEL);
L
Linus Torvalds 已提交
4277 4278 4279 4280
			}
			break;
		}
	}
I
Ingo Molnar 已提交
4281
	mutex_unlock(&cache_chain_mutex);
L
Linus Torvalds 已提交
4282 4283 4284 4285
	if (res >= 0)
		res = count;
	return res;
}
4286

4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299
static int slabinfo_open(struct inode *inode, struct file *file)
{
	return seq_open(file, &slabinfo_op);
}

static const struct file_operations proc_slabinfo_operations = {
	.open		= slabinfo_open,
	.read		= seq_read,
	.write		= slabinfo_write,
	.llseek		= seq_lseek,
	.release	= seq_release,
};

4300 4301 4302 4303 4304
#ifdef CONFIG_DEBUG_SLAB_LEAK

static void *leaks_start(struct seq_file *m, loff_t *pos)
{
	mutex_lock(&cache_chain_mutex);
4305
	return seq_list_start(&cache_chain, *pos);
4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
}

static inline int add_caller(unsigned long *n, unsigned long v)
{
	unsigned long *p;
	int l;
	if (!v)
		return 1;
	l = n[1];
	p = n + 2;
	while (l) {
		int i = l/2;
		unsigned long *q = p + 2 * i;
		if (*q == v) {
			q[1]++;
			return 1;
		}
		if (*q > v) {
			l = i;
		} else {
			p = q + 2;
			l -= i + 1;
		}
	}
	if (++n[1] == n[0])
		return 0;
	memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
	p[0] = v;
	p[1] = 1;
	return 1;
}

static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
{
	void *p;
	int i;
	if (n[0] == n[1])
		return;
	for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
		if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
			continue;
		if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
			return;
	}
}

static void show_symbol(struct seq_file *m, unsigned long address)
{
#ifdef CONFIG_KALLSYMS
	unsigned long offset, size;
4356
	char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4357

4358
	if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4359
		seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4360
		if (modname[0])
4361 4362 4363 4364 4365 4366 4367 4368 4369
			seq_printf(m, " [%s]", modname);
		return;
	}
#endif
	seq_printf(m, "%p", (void *)address);
}

static int leaks_show(struct seq_file *m, void *p)
{
4370
	struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
	struct slab *slabp;
	struct kmem_list3 *l3;
	const char *name;
	unsigned long *n = m->private;
	int node;
	int i;

	if (!(cachep->flags & SLAB_STORE_USER))
		return 0;
	if (!(cachep->flags & SLAB_RED_ZONE))
		return 0;

	/* OK, we can do it */

	n[1] = 0;

	for_each_online_node(node) {
		l3 = cachep->nodelists[node];
		if (!l3)
			continue;

		check_irq_on();
		spin_lock_irq(&l3->list_lock);

4395
		list_for_each_entry(slabp, &l3->slabs_full, list)
4396
			handle_slab(n, cachep, slabp);
4397
		list_for_each_entry(slabp, &l3->slabs_partial, list)
4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
			handle_slab(n, cachep, slabp);
		spin_unlock_irq(&l3->list_lock);
	}
	name = cachep->name;
	if (n[0] == n[1]) {
		/* Increase the buffer size */
		mutex_unlock(&cache_chain_mutex);
		m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
		if (!m->private) {
			/* Too bad, we are really out */
			m->private = n;
			mutex_lock(&cache_chain_mutex);
			return -ENOMEM;
		}
		*(unsigned long *)m->private = n[0] * 2;
		kfree(n);
		mutex_lock(&cache_chain_mutex);
		/* Now make sure this entry will be retried */
		m->count = m->size;
		return 0;
	}
	for (i = 0; i < n[1]; i++) {
		seq_printf(m, "%s: %lu ", name, n[2*i+3]);
		show_symbol(m, n[2*i+2]);
		seq_putc(m, '\n');
	}
4424

4425 4426 4427
	return 0;
}

4428
static const struct seq_operations slabstats_op = {
4429 4430 4431 4432 4433
	.start = leaks_start,
	.next = s_next,
	.stop = s_stop,
	.show = leaks_show,
};
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461

static int slabstats_open(struct inode *inode, struct file *file)
{
	unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
	int ret = -ENOMEM;
	if (n) {
		ret = seq_open(file, &slabstats_op);
		if (!ret) {
			struct seq_file *m = file->private_data;
			*n = PAGE_SIZE / (2 * sizeof(unsigned long));
			m->private = n;
			n = NULL;
		}
		kfree(n);
	}
	return ret;
}

static const struct file_operations proc_slabstats_operations = {
	.open		= slabstats_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= seq_release_private,
};
#endif

static int __init slab_proc_init(void)
{
4462
	proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
4463 4464
#ifdef CONFIG_DEBUG_SLAB_LEAK
	proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4465
#endif
4466 4467 4468
	return 0;
}
module_init(slab_proc_init);
L
Linus Torvalds 已提交
4469 4470
#endif

4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482
/**
 * ksize - get the actual amount of memory allocated for a given object
 * @objp: Pointer to the object
 *
 * kmalloc may internally round up allocations and return more memory
 * than requested. ksize() can be used to determine the actual amount of
 * memory allocated. The caller may use this additional memory, even though
 * a smaller amount of memory was initially specified with the kmalloc call.
 * The caller must guarantee that objp points to a valid object previously
 * allocated with either kmalloc() or kmem_cache_alloc(). The object
 * must not be freed during the duration of the call.
 */
P
Pekka Enberg 已提交
4483
size_t ksize(const void *objp)
L
Linus Torvalds 已提交
4484
{
4485 4486
	BUG_ON(!objp);
	if (unlikely(objp == ZERO_SIZE_PTR))
4487
		return 0;
L
Linus Torvalds 已提交
4488

4489
	return obj_size(virt_to_cache(objp));
L
Linus Torvalds 已提交
4490
}
K
Kirill A. Shutemov 已提交
4491
EXPORT_SYMBOL(ksize);