i915_gem.c 133.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Eric Anholt <eric@anholt.net>
 *
 */

#include "drmP.h"
#include "drm.h"
#include "i915_drm.h"
#include "i915_drv.h"
C
Chris Wilson 已提交
32
#include "i915_trace.h"
33
#include "intel_drv.h"
34
#include <linux/slab.h>
35
#include <linux/swap.h>
J
Jesse Barnes 已提交
36
#include <linux/pci.h>
37
#include <linux/intel-gtt.h>
38

39
static uint32_t i915_gem_get_gtt_alignment(struct drm_gem_object *obj);
40 41 42

static int i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
						  bool pipelined);
43 44 45 46 47 48 49 50
static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
					     int write);
static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
						     uint64_t offset,
						     uint64_t size);
static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
51 52
static int i915_gem_object_wait_rendering(struct drm_gem_object *obj,
					  bool interruptible);
53 54 55
static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
					   unsigned alignment);
static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
56 57 58
static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
				struct drm_i915_gem_pwrite *args,
				struct drm_file *file_priv);
59
static void i915_gem_free_object_tail(struct drm_gem_object *obj);
60

61 62 63 64 65 66 67
static int
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask);

static void
i915_gem_object_put_pages(struct drm_gem_object *obj);

68 69 70
static LIST_HEAD(shrink_list);
static DEFINE_SPINLOCK(shrink_list_lock);

71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
/* some bookkeeping */
static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.object_count++;
	dev_priv->mm.object_memory += size;
}

static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.object_count--;
	dev_priv->mm.object_memory -= size;
}

static void i915_gem_info_add_gtt(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.gtt_count++;
	dev_priv->mm.gtt_memory += size;
}

static void i915_gem_info_remove_gtt(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.gtt_count--;
	dev_priv->mm.gtt_memory -= size;
}

static void i915_gem_info_add_pin(struct drm_i915_private *dev_priv,
				  size_t size)
{
	dev_priv->mm.pin_count++;
	dev_priv->mm.pin_memory += size;
}

static void i915_gem_info_remove_pin(struct drm_i915_private *dev_priv,
				     size_t size)
{
	dev_priv->mm.pin_count--;
	dev_priv->mm.pin_memory -= size;
}

114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
int
i915_gem_check_is_wedged(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct completion *x = &dev_priv->error_completion;
	unsigned long flags;
	int ret;

	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	ret = wait_for_completion_interruptible(x);
	if (ret)
		return ret;

	/* Success, we reset the GPU! */
	if (!atomic_read(&dev_priv->mm.wedged))
		return 0;

	/* GPU is hung, bump the completion count to account for
	 * the token we just consumed so that we never hit zero and
	 * end up waiting upon a subsequent completion event that
	 * will never happen.
	 */
	spin_lock_irqsave(&x->wait.lock, flags);
	x->done++;
	spin_unlock_irqrestore(&x->wait.lock, flags);
	return -EIO;
}

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
static int i915_mutex_lock_interruptible(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

	ret = mutex_lock_interruptible(&dev->struct_mutex);
	if (ret)
		return ret;

	if (atomic_read(&dev_priv->mm.wedged)) {
		mutex_unlock(&dev->struct_mutex);
		return -EAGAIN;
	}

162
	WARN_ON(i915_verify_lists(dev));
163 164
	return 0;
}
165

166 167 168 169 170 171 172 173
static inline bool
i915_gem_object_is_inactive(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->gtt_space &&
		!obj_priv->active &&
		obj_priv->pin_count == 0;
}

174 175
int i915_gem_do_init(struct drm_device *dev,
		     unsigned long start,
J
Jesse Barnes 已提交
176
		     unsigned long end)
177 178 179
{
	drm_i915_private_t *dev_priv = dev->dev_private;

J
Jesse Barnes 已提交
180 181 182
	if (start >= end ||
	    (start & (PAGE_SIZE - 1)) != 0 ||
	    (end & (PAGE_SIZE - 1)) != 0) {
183 184 185
		return -EINVAL;
	}

J
Jesse Barnes 已提交
186 187
	drm_mm_init(&dev_priv->mm.gtt_space, start,
		    end - start);
188

189
	dev_priv->mm.gtt_total = end - start;
J
Jesse Barnes 已提交
190 191 192

	return 0;
}
193

J
Jesse Barnes 已提交
194 195 196 197 198 199 200 201 202
int
i915_gem_init_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_init *args = data;
	int ret;

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
203 204
	mutex_unlock(&dev->struct_mutex);

J
Jesse Barnes 已提交
205
	return ret;
206 207
}

208 209 210 211
int
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
			    struct drm_file *file_priv)
{
212
	struct drm_i915_private *dev_priv = dev->dev_private;
213 214 215 216 217
	struct drm_i915_gem_get_aperture *args = data;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

218 219 220 221
	mutex_lock(&dev->struct_mutex);
	args->aper_size = dev_priv->mm.gtt_total;
	args->aper_available_size = args->aper_size - dev_priv->mm.pin_memory;
	mutex_unlock(&dev->struct_mutex);
222 223 224 225

	return 0;
}

226 227 228 229 230 231 232 233 234 235

/**
 * Creates a new mm object and returns a handle to it.
 */
int
i915_gem_create_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_create *args = data;
	struct drm_gem_object *obj;
236 237
	int ret;
	u32 handle;
238 239 240 241

	args->size = roundup(args->size, PAGE_SIZE);

	/* Allocate the new object */
242
	obj = i915_gem_alloc_object(dev, args->size);
243 244 245 246
	if (obj == NULL)
		return -ENOMEM;

	ret = drm_gem_handle_create(file_priv, obj, &handle);
247 248
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
249
		return ret;
250
	}
251

252 253
	/* Sink the floating reference from kref_init(handlecount) */
	drm_gem_object_handle_unreference_unlocked(obj);
254

255
	args->handle = handle;
256 257 258
	return 0;
}

259 260 261 262 263 264 265
static inline int
fast_shmem_read(struct page **pages,
		loff_t page_base, int page_offset,
		char __user *data,
		int length)
{
	char __iomem *vaddr;
266
	int unwritten;
267 268 269 270

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
271
	unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
272 273
	kunmap_atomic(vaddr, KM_USER0);

274 275 276 277
	if (unwritten)
		return -EFAULT;

	return 0;
278 279
}

280 281 282
static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
{
	drm_i915_private_t *dev_priv = obj->dev->dev_private;
283
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
284 285 286 287 288

	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
		obj_priv->tiling_mode != I915_TILING_NONE;
}

289
static inline void
290 291 292 293 294 295 296 297
slow_shmem_copy(struct page *dst_page,
		int dst_offset,
		struct page *src_page,
		int src_offset,
		int length)
{
	char *dst_vaddr, *src_vaddr;

298 299
	dst_vaddr = kmap(dst_page);
	src_vaddr = kmap(src_page);
300 301 302

	memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);

303 304
	kunmap(src_page);
	kunmap(dst_page);
305 306
}

307
static inline void
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
slow_shmem_bit17_copy(struct page *gpu_page,
		      int gpu_offset,
		      struct page *cpu_page,
		      int cpu_offset,
		      int length,
		      int is_read)
{
	char *gpu_vaddr, *cpu_vaddr;

	/* Use the unswizzled path if this page isn't affected. */
	if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
		if (is_read)
			return slow_shmem_copy(cpu_page, cpu_offset,
					       gpu_page, gpu_offset, length);
		else
			return slow_shmem_copy(gpu_page, gpu_offset,
					       cpu_page, cpu_offset, length);
	}

327 328
	gpu_vaddr = kmap(gpu_page);
	cpu_vaddr = kmap(cpu_page);
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	/* Copy the data, XORing A6 with A17 (1). The user already knows he's
	 * XORing with the other bits (A9 for Y, A9 and A10 for X)
	 */
	while (length > 0) {
		int cacheline_end = ALIGN(gpu_offset + 1, 64);
		int this_length = min(cacheline_end - gpu_offset, length);
		int swizzled_gpu_offset = gpu_offset ^ 64;

		if (is_read) {
			memcpy(cpu_vaddr + cpu_offset,
			       gpu_vaddr + swizzled_gpu_offset,
			       this_length);
		} else {
			memcpy(gpu_vaddr + swizzled_gpu_offset,
			       cpu_vaddr + cpu_offset,
			       this_length);
		}
		cpu_offset += this_length;
		gpu_offset += this_length;
		length -= this_length;
	}

352 353
	kunmap(cpu_page);
	kunmap(gpu_page);
354 355
}

356 357 358 359 360 361 362 363 364 365
/**
 * This is the fast shmem pread path, which attempts to copy_from_user directly
 * from the backing pages of the object to the user's address space.  On a
 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
 */
static int
i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
366
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
367 368 369 370 371 372 373 374 375
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
	int ret;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;

376 377 378
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
379

380
	ret = i915_gem_object_get_pages(obj, 0);
381 382 383 384 385 386 387 388
	if (ret != 0)
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

389
	obj_priv = to_intel_bo(obj);
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_read(obj_priv->pages,
				      page_base, page_offset,
				      user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

424 425 426 427 428
static int
i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
{
	int ret;

429
	ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
430 431 432 433 434 435 436

	/* If we've insufficient memory to map in the pages, attempt
	 * to make some space by throwing out some old buffers.
	 */
	if (ret == -ENOMEM) {
		struct drm_device *dev = obj->dev;

437 438
		ret = i915_gem_evict_something(dev, obj->size,
					       i915_gem_get_gtt_alignment(obj));
439 440 441
		if (ret)
			return ret;

442
		ret = i915_gem_object_get_pages(obj, 0);
443 444 445 446 447
	}

	return ret;
}

448 449 450 451 452 453 454 455 456 457 458
/**
 * This is the fallback shmem pread path, which allocates temporary storage
 * in kernel space to copy_to_user into outside of the struct_mutex, so we
 * can copy out of the object's backing pages while holding the struct mutex
 * and not take page faults.
 */
static int
i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
			  struct drm_i915_gem_pread *args,
			  struct drm_file *file_priv)
{
459
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
460 461 462 463 464 465 466 467 468 469
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
470
	int do_bit17_swizzling;
471 472 473 474 475 476 477 478 479 480 481

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, yet we want to hold it while
	 * dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

482
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
483 484 485 486 487
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
488
				      num_pages, 1, 0, user_pages, NULL);
489 490 491 492 493 494
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
	}

495 496
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

497 498 499
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
500

501 502
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
503 504 505 506 507 508 509
		goto fail_unlock;

	ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
							args->size);
	if (ret != 0)
		goto fail_put_pages;

510
	obj_priv = to_intel_bo(obj);
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
	offset = args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

533
		if (do_bit17_swizzling) {
534
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
535
					      shmem_page_offset,
536 537 538 539 540 541 542 543 544 545
					      user_pages[data_page_index],
					      data_page_offset,
					      page_length,
					      1);
		} else {
			slow_shmem_copy(user_pages[data_page_index],
					data_page_offset,
					obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					page_length);
546
		}
547 548 549 550 551 552 553 554 555 556 557 558 559 560 561

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++) {
		SetPageDirty(user_pages[i]);
		page_cache_release(user_pages[i]);
	}
562
	drm_free_large(user_pages);
563 564 565 566

	return ret;
}

567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
/**
 * Reads data from the object referenced by handle.
 *
 * On error, the contents of *data are undefined.
 */
int
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pread *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
583
		return -ENOENT;
584
	obj_priv = to_intel_bo(obj);
585 586 587 588 589 590 591

	/* Bounds check source.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
592
		drm_gem_object_unreference_unlocked(obj);
593 594 595
		return -EINVAL;
	}

596
	if (i915_gem_object_needs_bit17_swizzle(obj)) {
597
		ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
598 599 600 601 602 603
	} else {
		ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
		if (ret != 0)
			ret = i915_gem_shmem_pread_slow(dev, obj, args,
							file_priv);
	}
604

605
	drm_gem_object_unreference_unlocked(obj);
606

607
	return ret;
608 609
}

610 611
/* This is the fast write path which cannot handle
 * page faults in the source data
612
 */
613 614 615 616 617 618

static inline int
fast_user_write(struct io_mapping *mapping,
		loff_t page_base, int page_offset,
		char __user *user_data,
		int length)
619 620
{
	char *vaddr_atomic;
621
	unsigned long unwritten;
622

623
	vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base, KM_USER0);
624 625
	unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
						      user_data, length);
626
	io_mapping_unmap_atomic(vaddr_atomic, KM_USER0);
627 628 629 630 631 632 633 634 635
	if (unwritten)
		return -EFAULT;
	return 0;
}

/* Here's the write path which can sleep for
 * page faults
 */

636
static inline void
637 638 639 640
slow_kernel_write(struct io_mapping *mapping,
		  loff_t gtt_base, int gtt_offset,
		  struct page *user_page, int user_offset,
		  int length)
641
{
642 643
	char __iomem *dst_vaddr;
	char *src_vaddr;
644

645 646 647 648 649 650 651 652 653
	dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
	src_vaddr = kmap(user_page);

	memcpy_toio(dst_vaddr + gtt_offset,
		    src_vaddr + user_offset,
		    length);

	kunmap(user_page);
	io_mapping_unmap(dst_vaddr);
654 655
}

656 657 658 659 660 661 662
static inline int
fast_shmem_write(struct page **pages,
		 loff_t page_base, int page_offset,
		 char __user *data,
		 int length)
{
	char __iomem *vaddr;
663
	unsigned long unwritten;
664 665 666 667

	vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
	if (vaddr == NULL)
		return -ENOMEM;
668
	unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
669 670
	kunmap_atomic(vaddr, KM_USER0);

671 672
	if (unwritten)
		return -EFAULT;
673 674 675
	return 0;
}

676 677 678 679
/**
 * This is the fast pwrite path, where we copy the data directly from the
 * user into the GTT, uncached.
 */
680
static int
681 682 683
i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
684
{
685
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
686
	drm_i915_private_t *dev_priv = dev->dev_private;
687
	ssize_t remain;
688
	loff_t offset, page_base;
689
	char __user *user_data;
690 691
	int page_offset, page_length;
	int ret;
692 693 694 695 696 697

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
	if (!access_ok(VERIFY_READ, user_data, remain))
		return -EFAULT;

698 699 700
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
701 702 703 704 705 706

	ret = i915_gem_object_pin(obj, 0);
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}
707
	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
708 709 710
	if (ret)
		goto fail;

711
	obj_priv = to_intel_bo(obj);
712 713 714 715 716
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
717 718 719
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
720
		 */
721 722 723 724 725 726 727 728 729 730
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
				       page_offset, user_data, page_length);

		/* If we get a fault while copying data, then (presumably) our
731 732
		 * source page isn't available.  Return the error and we'll
		 * retry in the slow path.
733
		 */
734 735
		if (ret)
			goto fail;
736

737 738 739
		remain -= page_length;
		user_data += page_length;
		offset += page_length;
740 741 742 743 744 745 746 747 748
	}

fail:
	i915_gem_object_unpin(obj);
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

749 750 751 752 753 754 755
/**
 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
 */
756
static int
757 758 759
i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			 struct drm_i915_gem_pwrite *args,
			 struct drm_file *file_priv)
760
{
761
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
762 763 764 765 766 767 768 769
	drm_i915_private_t *dev_priv = dev->dev_private;
	ssize_t remain;
	loff_t gtt_page_base, offset;
	loff_t first_data_page, last_data_page, num_pages;
	loff_t pinned_pages, i;
	struct page **user_pages;
	struct mm_struct *mm = current->mm;
	int gtt_page_offset, data_page_offset, data_page_index, page_length;
770
	int ret;
771 772 773 774 775 776 777 778 779 780 781 782
	uint64_t data_ptr = args->data_ptr;

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

783
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
784 785 786 787 788 789 790 791 792 793 794
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto out_unpin_pages;
	}
795

796 797 798 799
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto out_unpin_pages;

800 801 802 803 804 805 806 807
	ret = i915_gem_object_pin(obj, 0);
	if (ret)
		goto out_unlock;

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret)
		goto out_unpin_object;

808
	obj_priv = to_intel_bo(obj);
809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830
	offset = obj_priv->gtt_offset + args->offset;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * gtt_page_base = page offset within aperture
		 * gtt_page_offset = offset within page in aperture
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		gtt_page_base = offset & PAGE_MASK;
		gtt_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((gtt_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - gtt_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

831 832 833 834 835
		slow_kernel_write(dev_priv->mm.gtt_mapping,
				  gtt_page_base, gtt_page_offset,
				  user_pages[data_page_index],
				  data_page_offset,
				  page_length);
836 837 838 839 840 841 842 843 844 845 846 847 848

		remain -= page_length;
		offset += page_length;
		data_ptr += page_length;
	}

out_unpin_object:
	i915_gem_object_unpin(obj);
out_unlock:
	mutex_unlock(&dev->struct_mutex);
out_unpin_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
849
	drm_free_large(user_pages);
850 851 852 853

	return ret;
}

854 855 856 857
/**
 * This is the fast shmem pwrite path, which attempts to directly
 * copy_from_user into the kmapped pages backing the object.
 */
858
static int
859 860 861
i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
862
{
863
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
864 865 866 867
	ssize_t remain;
	loff_t offset, page_base;
	char __user *user_data;
	int page_offset, page_length;
868
	int ret;
869 870 871

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	remain = args->size;
872

873 874 875
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		return ret;
876

877
	ret = i915_gem_object_get_pages(obj, 0);
878 879
	if (ret != 0)
		goto fail_unlock;
880

881
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
882 883 884
	if (ret != 0)
		goto fail_put_pages;

885
	obj_priv = to_intel_bo(obj);
886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
	offset = args->offset;
	obj_priv->dirty = 1;

	while (remain > 0) {
		/* Operation in this page
		 *
		 * page_base = page offset within aperture
		 * page_offset = offset within page
		 * page_length = bytes to copy for this page
		 */
		page_base = (offset & ~(PAGE_SIZE-1));
		page_offset = offset & (PAGE_SIZE-1);
		page_length = remain;
		if ((page_offset + remain) > PAGE_SIZE)
			page_length = PAGE_SIZE - page_offset;

		ret = fast_shmem_write(obj_priv->pages,
				       page_base, page_offset,
				       user_data, page_length);
		if (ret)
			goto fail_put_pages;

		remain -= page_length;
		user_data += page_length;
		offset += page_length;
	}

fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
	mutex_unlock(&dev->struct_mutex);

	return ret;
}

/**
 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
 * the memory and maps it using kmap_atomic for copying.
 *
 * This avoids taking mmap_sem for faulting on the user's address while the
 * struct_mutex is held.
 */
static int
i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
			   struct drm_i915_gem_pwrite *args,
			   struct drm_file *file_priv)
{
933
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
934 935 936 937 938 939 940 941 942 943
	struct mm_struct *mm = current->mm;
	struct page **user_pages;
	ssize_t remain;
	loff_t offset, pinned_pages, i;
	loff_t first_data_page, last_data_page, num_pages;
	int shmem_page_index, shmem_page_offset;
	int data_page_index,  data_page_offset;
	int page_length;
	int ret;
	uint64_t data_ptr = args->data_ptr;
944
	int do_bit17_swizzling;
945 946 947 948 949 950 951 952 953 954 955

	remain = args->size;

	/* Pin the user pages containing the data.  We can't fault while
	 * holding the struct mutex, and all of the pwrite implementations
	 * want to hold it while dereferencing the user data.
	 */
	first_data_page = data_ptr / PAGE_SIZE;
	last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
	num_pages = last_data_page - first_data_page + 1;

956
	user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
957 958 959 960 961 962 963 964 965 966
	if (user_pages == NULL)
		return -ENOMEM;

	down_read(&mm->mmap_sem);
	pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
				      num_pages, 0, 0, user_pages, NULL);
	up_read(&mm->mmap_sem);
	if (pinned_pages < num_pages) {
		ret = -EFAULT;
		goto fail_put_user_pages;
967 968
	}

969 970
	do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);

971 972 973
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto fail_put_user_pages;
974

975 976
	ret = i915_gem_object_get_pages_or_evict(obj);
	if (ret)
977 978 979 980 981 982
		goto fail_unlock;

	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
	if (ret != 0)
		goto fail_put_pages;

983
	obj_priv = to_intel_bo(obj);
984
	offset = args->offset;
985
	obj_priv->dirty = 1;
986

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
	while (remain > 0) {
		/* Operation in this page
		 *
		 * shmem_page_index = page number within shmem file
		 * shmem_page_offset = offset within page in shmem file
		 * data_page_index = page number in get_user_pages return
		 * data_page_offset = offset with data_page_index page.
		 * page_length = bytes to copy for this page
		 */
		shmem_page_index = offset / PAGE_SIZE;
		shmem_page_offset = offset & ~PAGE_MASK;
		data_page_index = data_ptr / PAGE_SIZE - first_data_page;
		data_page_offset = data_ptr & ~PAGE_MASK;

		page_length = remain;
		if ((shmem_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - shmem_page_offset;
		if ((data_page_offset + page_length) > PAGE_SIZE)
			page_length = PAGE_SIZE - data_page_offset;

1007
		if (do_bit17_swizzling) {
1008
			slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
1009 1010 1011
					      shmem_page_offset,
					      user_pages[data_page_index],
					      data_page_offset,
1012 1013 1014 1015 1016 1017 1018 1019
					      page_length,
					      0);
		} else {
			slow_shmem_copy(obj_priv->pages[shmem_page_index],
					shmem_page_offset,
					user_pages[data_page_index],
					data_page_offset,
					page_length);
1020
		}
1021 1022 1023 1024

		remain -= page_length;
		data_ptr += page_length;
		offset += page_length;
1025 1026
	}

1027 1028 1029
fail_put_pages:
	i915_gem_object_put_pages(obj);
fail_unlock:
1030
	mutex_unlock(&dev->struct_mutex);
1031 1032 1033
fail_put_user_pages:
	for (i = 0; i < pinned_pages; i++)
		page_cache_release(user_pages[i]);
1034
	drm_free_large(user_pages);
1035

1036
	return ret;
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
}

/**
 * Writes data to the object referenced by handle.
 *
 * On error, the contents of the buffer that were to be modified are undefined.
 */
int
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_pwrite *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1055
		return -ENOENT;
1056
	obj_priv = to_intel_bo(obj);
1057 1058 1059 1060 1061 1062 1063

	/* Bounds check destination.
	 *
	 * XXX: This could use review for overflow issues...
	 */
	if (args->offset > obj->size || args->size > obj->size ||
	    args->offset + args->size > obj->size) {
1064
		drm_gem_object_unreference_unlocked(obj);
1065 1066 1067 1068 1069 1070 1071 1072 1073
		return -EINVAL;
	}

	/* We can only do the GTT pwrite on untiled buffers, as otherwise
	 * it would end up going through the fenced access, and we'll get
	 * different detiling behavior between reading and writing.
	 * pread/pwrite currently are reading and writing from the CPU
	 * perspective, requiring manual detiling by the client.
	 */
1074 1075 1076
	if (obj_priv->phys_obj)
		ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
	else if (obj_priv->tiling_mode == I915_TILING_NONE &&
1077
		 obj_priv->gtt_space &&
1078
		 obj->write_domain != I915_GEM_DOMAIN_CPU) {
1079 1080 1081 1082 1083
		ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
						       file_priv);
		}
1084 1085
	} else if (i915_gem_object_needs_bit17_swizzle(obj)) {
		ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
1086 1087 1088 1089 1090 1091 1092
	} else {
		ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
		if (ret == -EFAULT) {
			ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
							 file_priv);
		}
	}
1093 1094 1095 1096 1097 1098

#if WATCH_PWRITE
	if (ret)
		DRM_INFO("pwrite failed %d\n", ret);
#endif

1099
	drm_gem_object_unreference_unlocked(obj);
1100 1101 1102 1103 1104

	return ret;
}

/**
1105 1106
 * Called when user space prepares to use an object with the CPU, either
 * through the mmap ioctl's mapping or a GTT mapping.
1107 1108 1109 1110 1111
 */
int
i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
			  struct drm_file *file_priv)
{
1112
	struct drm_i915_private *dev_priv = dev->dev_private;
1113 1114
	struct drm_i915_gem_set_domain *args = data;
	struct drm_gem_object *obj;
1115
	struct drm_i915_gem_object *obj_priv;
1116 1117
	uint32_t read_domains = args->read_domains;
	uint32_t write_domain = args->write_domain;
1118 1119 1120 1121 1122
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

1123
	/* Only handle setting domains to types used by the CPU. */
1124
	if (write_domain & I915_GEM_GPU_DOMAINS)
1125 1126
		return -EINVAL;

1127
	if (read_domains & I915_GEM_GPU_DOMAINS)
1128 1129 1130 1131 1132 1133 1134 1135
		return -EINVAL;

	/* Having something in the write domain implies it's in the read
	 * domain, and only that read domain.  Enforce that in the request.
	 */
	if (write_domain != 0 && read_domains != write_domain)
		return -EINVAL;

1136 1137
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1138
		return -ENOENT;
1139
	obj_priv = to_intel_bo(obj);
1140

1141 1142 1143 1144 1145
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1146 1147 1148

	intel_mark_busy(dev, obj);

1149 1150
	if (read_domains & I915_GEM_DOMAIN_GTT) {
		ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1151

1152 1153 1154 1155
		/* Update the LRU on the fence for the CPU access that's
		 * about to occur.
		 */
		if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1156 1157 1158
			struct drm_i915_fence_reg *reg =
				&dev_priv->fence_regs[obj_priv->fence_reg];
			list_move_tail(&reg->lru_list,
1159 1160 1161
				       &dev_priv->mm.fence_list);
		}

1162 1163 1164 1165 1166 1167
		/* Silently promote "you're not bound, there was nothing to do"
		 * to success, since the client was just asking us to
		 * make sure everything was done.
		 */
		if (ret == -EINVAL)
			ret = 0;
1168
	} else {
1169
		ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1170 1171
	}

1172 1173 1174 1175
	/* Maintain LRU order of "inactive" objects */
	if (ret == 0 && i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Called when user space has done writes to this buffer
 */
int
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
		      struct drm_file *file_priv)
{
	struct drm_i915_gem_sw_finish *args = data;
	struct drm_gem_object *obj;
	int ret = 0;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1196
	if (obj == NULL)
1197
		return -ENOENT;
1198 1199 1200 1201 1202

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
1203 1204 1205
	}

	/* Pinned buffers may be scanout, so flush the cache */
1206
	if (to_intel_bo(obj)->pin_count)
1207 1208
		i915_gem_object_flush_cpu_write_domain(obj);

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

/**
 * Maps the contents of an object, returning the address it is mapped
 * into.
 *
 * While the mapping holds a reference on the contents of the object, it doesn't
 * imply a ref on the object itself.
 */
int
i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap *args = data;
	struct drm_gem_object *obj;
	loff_t offset;
	unsigned long addr;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1235
		return -ENOENT;
1236 1237 1238 1239 1240 1241 1242 1243

	offset = args->offset;

	down_write(&current->mm->mmap_sem);
	addr = do_mmap(obj->filp, 0, args->size,
		       PROT_READ | PROT_WRITE, MAP_SHARED,
		       args->offset);
	up_write(&current->mm->mmap_sem);
1244
	drm_gem_object_unreference_unlocked(obj);
1245 1246 1247 1248 1249 1250 1251 1252
	if (IS_ERR((void *)addr))
		return addr;

	args->addr_ptr = (uint64_t) addr;

	return 0;
}

1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
/**
 * i915_gem_fault - fault a page into the GTT
 * vma: VMA in question
 * vmf: fault info
 *
 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
 * from userspace.  The fault handler takes care of binding the object to
 * the GTT (if needed), allocating and programming a fence register (again,
 * only if needed based on whether the old reg is still valid or the object
 * is tiled) and inserting a new PTE into the faulting process.
 *
 * Note that the faulting process may involve evicting existing objects
 * from the GTT and/or fence registers to make room.  So performance may
 * suffer if the GTT working set is large or there are few fence registers
 * left.
 */
int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
	struct drm_gem_object *obj = vma->vm_private_data;
	struct drm_device *dev = obj->dev;
1273
	drm_i915_private_t *dev_priv = dev->dev_private;
1274
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1275 1276 1277
	pgoff_t page_offset;
	unsigned long pfn;
	int ret = 0;
1278
	bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1279 1280 1281 1282 1283 1284 1285 1286

	/* We don't use vmf->pgoff since that has the fake offset */
	page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
		PAGE_SHIFT;

	/* Now bind it into the GTT if needed */
	mutex_lock(&dev->struct_mutex);
	if (!obj_priv->gtt_space) {
1287
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1288 1289
		if (ret)
			goto unlock;
1290 1291

		ret = i915_gem_object_set_to_gtt_domain(obj, write);
1292 1293
		if (ret)
			goto unlock;
1294 1295 1296
	}

	/* Need a new fence register? */
1297
	if (obj_priv->tiling_mode != I915_TILING_NONE) {
1298
		ret = i915_gem_object_get_fence_reg(obj, true);
1299 1300
		if (ret)
			goto unlock;
1301
	}
1302

1303 1304 1305
	if (i915_gem_object_is_inactive(obj_priv))
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1306 1307 1308 1309 1310
	pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
		page_offset;

	/* Finally, remap it using the new GTT offset */
	ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1311
unlock:
1312 1313 1314
	mutex_unlock(&dev->struct_mutex);

	switch (ret) {
1315 1316 1317
	case 0:
	case -ERESTARTSYS:
		return VM_FAULT_NOPAGE;
1318 1319 1320 1321
	case -ENOMEM:
	case -EAGAIN:
		return VM_FAULT_OOM;
	default:
1322
		return VM_FAULT_SIGBUS;
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
	}
}

/**
 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
 * @obj: obj in question
 *
 * GEM memory mapping works by handing back to userspace a fake mmap offset
 * it can use in a subsequent mmap(2) call.  The DRM core code then looks
 * up the object based on the offset and sets up the various memory mapping
 * structures.
 *
 * This routine allocates and attaches a fake offset for @obj.
 */
static int
i915_gem_create_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_gem_mm *mm = dev->mm_private;
1342
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1343
	struct drm_map_list *list;
1344
	struct drm_local_map *map;
1345 1346 1347 1348
	int ret = 0;

	/* Set the object up for mmap'ing */
	list = &obj->map_list;
1349
	list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362
	if (!list->map)
		return -ENOMEM;

	map = list->map;
	map->type = _DRM_GEM;
	map->size = obj->size;
	map->handle = obj;

	/* Get a DRM GEM mmap offset allocated... */
	list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
						    obj->size / PAGE_SIZE, 0, 0);
	if (!list->file_offset_node) {
		DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1363
		ret = -ENOSPC;
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
		goto out_free_list;
	}

	list->file_offset_node = drm_mm_get_block(list->file_offset_node,
						  obj->size / PAGE_SIZE, 0);
	if (!list->file_offset_node) {
		ret = -ENOMEM;
		goto out_free_list;
	}

	list->hash.key = list->file_offset_node->start;
1375 1376
	ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
	if (ret) {
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
		DRM_ERROR("failed to add to map hash\n");
		goto out_free_mm;
	}

	/* By now we should be all set, any drm_mmap request on the offset
	 * below will get to our mmap & fault handler */
	obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;

	return 0;

out_free_mm:
	drm_mm_put_block(list->file_offset_node);
out_free_list:
1390
	kfree(list->map);
1391 1392 1393 1394

	return ret;
}

1395 1396 1397 1398
/**
 * i915_gem_release_mmap - remove physical page mappings
 * @obj: obj in question
 *
1399
 * Preserve the reservation of the mmapping with the DRM core code, but
1400 1401 1402 1403 1404 1405 1406 1407 1408
 * relinquish ownership of the pages back to the system.
 *
 * It is vital that we remove the page mapping if we have mapped a tiled
 * object through the GTT and then lose the fence register due to
 * resource pressure. Similarly if the object has been moved out of the
 * aperture, than pages mapped into userspace must be revoked. Removing the
 * mapping will then trigger a page fault on the next user access, allowing
 * fixup by i915_gem_fault().
 */
1409
void
1410 1411 1412
i915_gem_release_mmap(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1413
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1414 1415 1416 1417 1418 1419

	if (dev->dev_mapping)
		unmap_mapping_range(dev->dev_mapping,
				    obj_priv->mmap_offset, obj->size, 1);
}

1420 1421 1422 1423
static void
i915_gem_free_mmap_offset(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1424
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
	struct drm_gem_mm *mm = dev->mm_private;
	struct drm_map_list *list;

	list = &obj->map_list;
	drm_ht_remove_item(&mm->offset_hash, &list->hash);

	if (list->file_offset_node) {
		drm_mm_put_block(list->file_offset_node);
		list->file_offset_node = NULL;
	}

	if (list->map) {
1437
		kfree(list->map);
1438 1439 1440 1441 1442 1443
		list->map = NULL;
	}

	obj_priv->mmap_offset = 0;
}

1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
/**
 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
 * @obj: object to check
 *
 * Return the required GTT alignment for an object, taking into account
 * potential fence register mapping if needed.
 */
static uint32_t
i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
1455
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1456 1457 1458 1459 1460 1461
	int start, i;

	/*
	 * Minimum alignment is 4k (GTT page size), but might be greater
	 * if a fence register is needed for the object.
	 */
1462
	if (INTEL_INFO(dev)->gen >= 4 || obj_priv->tiling_mode == I915_TILING_NONE)
1463 1464 1465 1466 1467 1468
		return 4096;

	/*
	 * Previous chips need to be aligned to the size of the smallest
	 * fence register that can contain the object.
	 */
1469
	if (INTEL_INFO(dev)->gen == 3)
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
		start = 1024*1024;
	else
		start = 512*1024;

	for (i = start; i < obj->size; i <<= 1)
		;

	return i;
}

/**
 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
 * @dev: DRM device
 * @data: GTT mapping ioctl data
 * @file_priv: GEM object info
 *
 * Simply returns the fake offset to userspace so it can mmap it.
 * The mmap call will end up in drm_gem_mmap(), which will set things
 * up so we can get faults in the handler above.
 *
 * The fault handler will take care of binding the object into the GTT
 * (since it may have been evicted to make room for something), allocating
 * a fence register, and mapping the appropriate aperture address into
 * userspace.
 */
int
i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
	struct drm_i915_gem_mmap_gtt *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	if (!(dev->driver->driver_features & DRIVER_GEM))
		return -ENODEV;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL)
1509
		return -ENOENT;
1510

1511 1512 1513 1514 1515
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}
1516

1517
	obj_priv = to_intel_bo(obj);
1518

1519 1520 1521 1522 1523 1524 1525 1526
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to mmap a purgeable buffer\n");
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}


1527 1528
	if (!obj_priv->mmap_offset) {
		ret = i915_gem_create_mmap_offset(obj);
1529 1530 1531
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
1532
			return ret;
1533
		}
1534 1535 1536 1537 1538 1539 1540 1541 1542
	}

	args->offset = obj_priv->mmap_offset;

	/*
	 * Pull it into the GTT so that we have a page list (makes the
	 * initial fault faster and any subsequent flushing possible).
	 */
	if (!obj_priv->agp_mem) {
1543
		ret = i915_gem_object_bind_to_gtt(obj, 0);
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
		if (ret) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

1557
static void
1558
i915_gem_object_put_pages(struct drm_gem_object *obj)
1559
{
1560
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1561 1562 1563
	int page_count = obj->size / PAGE_SIZE;
	int i;

1564
	BUG_ON(obj_priv->pages_refcount == 0);
C
Chris Wilson 已提交
1565
	BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1566

1567 1568
	if (--obj_priv->pages_refcount != 0)
		return;
1569

1570 1571 1572
	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_save_bit_17_swizzle(obj);

1573
	if (obj_priv->madv == I915_MADV_DONTNEED)
1574
		obj_priv->dirty = 0;
1575 1576 1577 1578 1579 1580

	for (i = 0; i < page_count; i++) {
		if (obj_priv->dirty)
			set_page_dirty(obj_priv->pages[i]);

		if (obj_priv->madv == I915_MADV_WILLNEED)
1581
			mark_page_accessed(obj_priv->pages[i]);
1582 1583 1584

		page_cache_release(obj_priv->pages[i]);
	}
1585 1586
	obj_priv->dirty = 0;

1587
	drm_free_large(obj_priv->pages);
1588
	obj_priv->pages = NULL;
1589 1590
}

1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
static uint32_t
i915_gem_next_request_seqno(struct drm_device *dev,
			    struct intel_ring_buffer *ring)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	ring->outstanding_lazy_request = true;
	return dev_priv->next_seqno;
}

1601
static void
1602
i915_gem_object_move_to_active(struct drm_gem_object *obj,
1603
			       struct intel_ring_buffer *ring)
1604
{
1605
	struct drm_device *dev = obj->dev;
1606
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1607
	uint32_t seqno = i915_gem_next_request_seqno(dev, ring);
1608

1609 1610
	BUG_ON(ring == NULL);
	obj_priv->ring = ring;
1611 1612 1613 1614 1615 1616

	/* Add a reference if we're newly entering the active list. */
	if (!obj_priv->active) {
		drm_gem_object_reference(obj);
		obj_priv->active = 1;
	}
1617

1618
	/* Move from whatever list we were on to the tail of execution. */
1619
	list_move_tail(&obj_priv->list, &ring->active_list);
1620
	obj_priv->last_rendering_seqno = seqno;
1621 1622
}

1623 1624 1625 1626 1627
static void
i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1628
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1629 1630 1631 1632 1633

	BUG_ON(!obj_priv->active);
	list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
	obj_priv->last_rendering_seqno = 0;
}
1634

1635 1636 1637 1638
/* Immediately discard the backing storage */
static void
i915_gem_object_truncate(struct drm_gem_object *obj)
{
1639
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
1640
	struct inode *inode;
1641

1642 1643 1644 1645 1646 1647
	/* Our goal here is to return as much of the memory as
	 * is possible back to the system as we are called from OOM.
	 * To do this we must instruct the shmfs to drop all of its
	 * backing pages, *now*. Here we mirror the actions taken
	 * when by shmem_delete_inode() to release the backing store.
	 */
C
Chris Wilson 已提交
1648
	inode = obj->filp->f_path.dentry->d_inode;
1649 1650 1651
	truncate_inode_pages(inode->i_mapping, 0);
	if (inode->i_op->truncate_range)
		inode->i_op->truncate_range(inode, 0, (loff_t)-1);
C
Chris Wilson 已提交
1652 1653

	obj_priv->madv = __I915_MADV_PURGED;
1654 1655 1656 1657 1658 1659 1660 1661
}

static inline int
i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
{
	return obj_priv->madv == I915_MADV_DONTNEED;
}

1662 1663 1664 1665 1666
static void
i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
1667
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1668 1669

	if (obj_priv->pin_count != 0)
C
Chris Wilson 已提交
1670
		list_move_tail(&obj_priv->list, &dev_priv->mm.pinned_list);
1671 1672 1673
	else
		list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);

1674 1675
	BUG_ON(!list_empty(&obj_priv->gpu_write_list));

1676
	obj_priv->last_rendering_seqno = 0;
1677
	obj_priv->ring = NULL;
1678 1679 1680 1681
	if (obj_priv->active) {
		obj_priv->active = 0;
		drm_gem_object_unreference(obj);
	}
1682
	WARN_ON(i915_verify_lists(dev));
1683 1684
}

1685
static void
1686
i915_gem_process_flushing_list(struct drm_device *dev,
1687
			       uint32_t flush_domains,
1688
			       struct intel_ring_buffer *ring)
1689 1690 1691 1692 1693 1694 1695
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv, *next;

	list_for_each_entry_safe(obj_priv, next,
				 &dev_priv->mm.gpu_write_list,
				 gpu_write_list) {
1696
		struct drm_gem_object *obj = &obj_priv->base;
1697

1698 1699
		if (obj->write_domain & flush_domains &&
		    obj_priv->ring == ring) {
1700 1701 1702 1703
			uint32_t old_write_domain = obj->write_domain;

			obj->write_domain = 0;
			list_del_init(&obj_priv->gpu_write_list);
1704
			i915_gem_object_move_to_active(obj, ring);
1705 1706

			/* update the fence lru list */
1707 1708 1709 1710
			if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
				struct drm_i915_fence_reg *reg =
					&dev_priv->fence_regs[obj_priv->fence_reg];
				list_move_tail(&reg->lru_list,
1711
						&dev_priv->mm.fence_list);
1712
			}
1713 1714 1715 1716 1717 1718 1719

			trace_i915_gem_object_change_domain(obj,
							    obj->read_domains,
							    old_write_domain);
		}
	}
}
1720

1721
uint32_t
1722
i915_add_request(struct drm_device *dev,
1723
		 struct drm_file *file,
C
Chris Wilson 已提交
1724
		 struct drm_i915_gem_request *request,
1725
		 struct intel_ring_buffer *ring)
1726 1727
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1728
	struct drm_i915_file_private *file_priv = NULL;
1729 1730 1731
	uint32_t seqno;
	int was_empty;

1732 1733
	if (file != NULL)
		file_priv = file->driver_priv;
1734

C
Chris Wilson 已提交
1735 1736 1737 1738 1739
	if (request == NULL) {
		request = kzalloc(sizeof(*request), GFP_KERNEL);
		if (request == NULL)
			return 0;
	}
1740

1741
	seqno = ring->add_request(dev, ring, 0);
1742
	ring->outstanding_lazy_request = false;
1743 1744

	request->seqno = seqno;
1745
	request->ring = ring;
1746
	request->emitted_jiffies = jiffies;
1747 1748 1749
	was_empty = list_empty(&ring->request_list);
	list_add_tail(&request->list, &ring->request_list);

1750
	if (file_priv) {
1751
		spin_lock(&file_priv->mm.lock);
1752
		request->file_priv = file_priv;
1753
		list_add_tail(&request->client_list,
1754
			      &file_priv->mm.request_list);
1755
		spin_unlock(&file_priv->mm.lock);
1756
	}
1757

B
Ben Gamari 已提交
1758
	if (!dev_priv->mm.suspended) {
1759 1760
		mod_timer(&dev_priv->hangcheck_timer,
			  jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
B
Ben Gamari 已提交
1761
		if (was_empty)
1762 1763
			queue_delayed_work(dev_priv->wq,
					   &dev_priv->mm.retire_work, HZ);
B
Ben Gamari 已提交
1764
	}
1765 1766 1767 1768 1769 1770 1771 1772 1773
	return seqno;
}

/**
 * Command execution barrier
 *
 * Ensures that all commands in the ring are finished
 * before signalling the CPU
 */
1774
static void
1775
i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1776 1777 1778 1779
{
	uint32_t flush_domains = 0;

	/* The sampler always gets flushed on i965 (sigh) */
1780
	if (INTEL_INFO(dev)->gen >= 4)
1781
		flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1782 1783 1784

	ring->flush(dev, ring,
			I915_GEM_DOMAIN_COMMAND, flush_domains);
1785 1786
}

1787 1788
static inline void
i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1789
{
1790 1791 1792 1793 1794 1795 1796 1797 1798
	struct drm_i915_file_private *file_priv = request->file_priv;

	if (!file_priv)
		return;

	spin_lock(&file_priv->mm.lock);
	list_del(&request->client_list);
	request->file_priv = NULL;
	spin_unlock(&file_priv->mm.lock);
1799 1800
}

1801 1802
static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
				      struct intel_ring_buffer *ring)
1803
{
1804 1805
	while (!list_empty(&ring->request_list)) {
		struct drm_i915_gem_request *request;
1806

1807 1808 1809 1810 1811
		request = list_first_entry(&ring->request_list,
					   struct drm_i915_gem_request,
					   list);

		list_del(&request->list);
1812
		i915_gem_request_remove_from_client(request);
1813 1814 1815 1816
		kfree(request);
	}

	while (!list_empty(&ring->active_list)) {
1817 1818
		struct drm_i915_gem_object *obj_priv;

1819
		obj_priv = list_first_entry(&ring->active_list,
1820 1821 1822 1823
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
1824
		list_del_init(&obj_priv->gpu_write_list);
1825 1826 1827 1828
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}
}

1829
void i915_gem_reset(struct drm_device *dev)
1830 1831 1832
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
1833
	int i;
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
	i915_gem_reset_ring_lists(dev_priv, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_reset_ring_lists(dev_priv, &dev_priv->bsd_ring);

	/* Remove anything from the flushing lists. The GPU cache is likely
	 * to be lost on reset along with the data, so simply move the
	 * lost bo to the inactive list.
	 */
	while (!list_empty(&dev_priv->mm.flushing_list)) {
		obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
					    struct drm_i915_gem_object,
					    list);

		obj_priv->base.write_domain = 0;
		list_del_init(&obj_priv->gpu_write_list);
		i915_gem_object_move_to_inactive(&obj_priv->base);
	}

	/* Move everything out of the GPU domains to ensure we do any
	 * necessary invalidation upon reuse.
	 */
1856 1857 1858 1859 1860 1861
	list_for_each_entry(obj_priv,
			    &dev_priv->mm.inactive_list,
			    list)
	{
		obj_priv->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
	}
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872

	/* The fence registers are invalidated so clear them out */
	for (i = 0; i < 16; i++) {
		struct drm_i915_fence_reg *reg;

		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			continue;

		i915_gem_clear_fence_reg(reg->obj);
	}
1873 1874
}

1875 1876 1877
/**
 * This function clears the request list as sequence numbers are passed.
 */
1878 1879 1880
static void
i915_gem_retire_requests_ring(struct drm_device *dev,
			      struct intel_ring_buffer *ring)
1881 1882 1883 1884
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	uint32_t seqno;

1885 1886
	if (!ring->status_page.page_addr ||
	    list_empty(&ring->request_list))
1887 1888
		return;

1889 1890
	WARN_ON(i915_verify_lists(dev));

1891
	seqno = ring->get_seqno(dev, ring);
1892
	while (!list_empty(&ring->request_list)) {
1893 1894
		struct drm_i915_gem_request *request;

1895
		request = list_first_entry(&ring->request_list,
1896 1897 1898
					   struct drm_i915_gem_request,
					   list);

1899
		if (!i915_seqno_passed(seqno, request->seqno))
1900 1901 1902 1903 1904
			break;

		trace_i915_gem_request_retire(dev, request->seqno);

		list_del(&request->list);
1905
		i915_gem_request_remove_from_client(request);
1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
		kfree(request);
	}

	/* Move any buffers on the active list that are no longer referenced
	 * by the ringbuffer to the flushing/inactive lists as appropriate.
	 */
	while (!list_empty(&ring->active_list)) {
		struct drm_gem_object *obj;
		struct drm_i915_gem_object *obj_priv;

		obj_priv = list_first_entry(&ring->active_list,
					    struct drm_i915_gem_object,
					    list);
1919

1920
		if (!i915_seqno_passed(seqno, obj_priv->last_rendering_seqno))
1921
			break;
1922 1923 1924 1925 1926 1927

		obj = &obj_priv->base;
		if (obj->write_domain != 0)
			i915_gem_object_move_to_flushing(obj);
		else
			i915_gem_object_move_to_inactive(obj);
1928
	}
1929 1930 1931

	if (unlikely (dev_priv->trace_irq_seqno &&
		      i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1932
		ring->user_irq_put(dev, ring);
1933 1934
		dev_priv->trace_irq_seqno = 0;
	}
1935 1936

	WARN_ON(i915_verify_lists(dev));
1937 1938
}

1939 1940 1941 1942 1943
void
i915_gem_retire_requests(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
	if (!list_empty(&dev_priv->mm.deferred_free_list)) {
	    struct drm_i915_gem_object *obj_priv, *tmp;

	    /* We must be careful that during unbind() we do not
	     * accidentally infinitely recurse into retire requests.
	     * Currently:
	     *   retire -> free -> unbind -> wait -> retire_ring
	     */
	    list_for_each_entry_safe(obj_priv, tmp,
				     &dev_priv->mm.deferred_free_list,
				     list)
		    i915_gem_free_object_tail(&obj_priv->base);
	}

1958 1959 1960 1961 1962
	i915_gem_retire_requests_ring(dev, &dev_priv->render_ring);
	if (HAS_BSD(dev))
		i915_gem_retire_requests_ring(dev, &dev_priv->bsd_ring);
}

1963
static void
1964 1965 1966 1967 1968 1969 1970 1971 1972
i915_gem_retire_work_handler(struct work_struct *work)
{
	drm_i915_private_t *dev_priv;
	struct drm_device *dev;

	dev_priv = container_of(work, drm_i915_private_t,
				mm.retire_work.work);
	dev = dev_priv->dev;

1973 1974 1975 1976 1977 1978
	/* Come back later if the device is busy... */
	if (!mutex_trylock(&dev->struct_mutex)) {
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
		return;
	}

1979
	i915_gem_retire_requests(dev);
1980

1981
	if (!dev_priv->mm.suspended &&
1982 1983 1984
		(!list_empty(&dev_priv->render_ring.request_list) ||
			(HAS_BSD(dev) &&
			 !list_empty(&dev_priv->bsd_ring.request_list))))
1985
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1986 1987 1988
	mutex_unlock(&dev->struct_mutex);
}

1989
int
1990
i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1991
		     bool interruptible, struct intel_ring_buffer *ring)
1992 1993
{
	drm_i915_private_t *dev_priv = dev->dev_private;
1994
	u32 ier;
1995 1996 1997 1998
	int ret = 0;

	BUG_ON(seqno == 0);

1999 2000 2001
	if (atomic_read(&dev_priv->mm.wedged))
		return -EAGAIN;

2002
	if (ring->outstanding_lazy_request) {
C
Chris Wilson 已提交
2003
		seqno = i915_add_request(dev, NULL, NULL, ring);
2004 2005 2006
		if (seqno == 0)
			return -ENOMEM;
	}
2007
	BUG_ON(seqno == dev_priv->next_seqno);
2008

2009
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
2010
		if (HAS_PCH_SPLIT(dev))
2011 2012 2013
			ier = I915_READ(DEIER) | I915_READ(GTIER);
		else
			ier = I915_READ(IER);
2014 2015 2016 2017 2018 2019 2020
		if (!ier) {
			DRM_ERROR("something (likely vbetool) disabled "
				  "interrupts, re-enabling\n");
			i915_driver_irq_preinstall(dev);
			i915_driver_irq_postinstall(dev);
		}

C
Chris Wilson 已提交
2021 2022
		trace_i915_gem_request_wait_begin(dev, seqno);

2023
		ring->waiting_gem_seqno = seqno;
2024
		ring->user_irq_get(dev, ring);
2025
		if (interruptible)
2026 2027
			ret = wait_event_interruptible(ring->irq_queue,
				i915_seqno_passed(
2028
					ring->get_seqno(dev, ring), seqno)
2029
				|| atomic_read(&dev_priv->mm.wedged));
2030
		else
2031 2032
			wait_event(ring->irq_queue,
				i915_seqno_passed(
2033
					ring->get_seqno(dev, ring), seqno)
2034
				|| atomic_read(&dev_priv->mm.wedged));
2035

2036
		ring->user_irq_put(dev, ring);
2037
		ring->waiting_gem_seqno = 0;
C
Chris Wilson 已提交
2038 2039

		trace_i915_gem_request_wait_end(dev, seqno);
2040
	}
2041
	if (atomic_read(&dev_priv->mm.wedged))
2042
		ret = -EAGAIN;
2043 2044

	if (ret && ret != -ERESTARTSYS)
2045
		DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2046
			  __func__, ret, seqno, ring->get_seqno(dev, ring),
2047
			  dev_priv->next_seqno);
2048 2049 2050 2051 2052 2053 2054

	/* Directly dispatch request retiring.  While we have the work queue
	 * to handle this, the waiter on a request often wants an associated
	 * buffer to have made it to the inactive list, and we would need
	 * a separate wait queue to handle that.
	 */
	if (ret == 0)
2055
		i915_gem_retire_requests_ring(dev, ring);
2056 2057 2058 2059

	return ret;
}

2060 2061 2062 2063 2064
/**
 * Waits for a sequence number to be signaled, and cleans up the
 * request and object lists appropriately for that event.
 */
static int
2065
i915_wait_request(struct drm_device *dev, uint32_t seqno,
2066
		  struct intel_ring_buffer *ring)
2067
{
2068
	return i915_do_wait_request(dev, seqno, 1, ring);
2069 2070
}

2071
static void
2072
i915_gem_flush_ring(struct drm_device *dev,
2073
		    struct drm_file *file_priv,
2074 2075 2076 2077 2078 2079 2080 2081
		    struct intel_ring_buffer *ring,
		    uint32_t invalidate_domains,
		    uint32_t flush_domains)
{
	ring->flush(dev, ring, invalidate_domains, flush_domains);
	i915_gem_process_flushing_list(dev, flush_domains, ring);
}

2082 2083
static void
i915_gem_flush(struct drm_device *dev,
2084
	       struct drm_file *file_priv,
2085
	       uint32_t invalidate_domains,
2086 2087
	       uint32_t flush_domains,
	       uint32_t flush_rings)
2088 2089
{
	drm_i915_private_t *dev_priv = dev->dev_private;
2090

2091 2092
	if (flush_domains & I915_GEM_DOMAIN_CPU)
		drm_agp_chipset_flush(dev);
2093

2094 2095
	if ((flush_domains | invalidate_domains) & I915_GEM_GPU_DOMAINS) {
		if (flush_rings & RING_RENDER)
2096
			i915_gem_flush_ring(dev, file_priv,
2097 2098 2099
					    &dev_priv->render_ring,
					    invalidate_domains, flush_domains);
		if (flush_rings & RING_BSD)
2100
			i915_gem_flush_ring(dev, file_priv,
2101 2102 2103
					    &dev_priv->bsd_ring,
					    invalidate_domains, flush_domains);
	}
2104 2105
}

2106 2107 2108 2109 2110
/**
 * Ensures that all rendering to the object has completed and the object is
 * safe to unbind from the GTT or access from the CPU.
 */
static int
2111 2112
i915_gem_object_wait_rendering(struct drm_gem_object *obj,
			       bool interruptible)
2113 2114
{
	struct drm_device *dev = obj->dev;
2115
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2116 2117
	int ret;

2118 2119
	/* This function only exists to support waiting for existing rendering,
	 * not for emitting required flushes.
2120
	 */
2121
	BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
2122 2123 2124 2125 2126

	/* If there is rendering queued on the buffer being evicted, wait for
	 * it.
	 */
	if (obj_priv->active) {
2127 2128 2129 2130 2131
		ret = i915_do_wait_request(dev,
					   obj_priv->last_rendering_seqno,
					   interruptible,
					   obj_priv->ring);
		if (ret)
2132 2133 2134 2135 2136 2137 2138 2139 2140
			return ret;
	}

	return 0;
}

/**
 * Unbinds an object from the GTT aperture.
 */
2141
int
2142 2143 2144
i915_gem_object_unbind(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
2145
	struct drm_i915_private *dev_priv = dev->dev_private;
2146
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
	int ret = 0;

	if (obj_priv->gtt_space == NULL)
		return 0;

	if (obj_priv->pin_count != 0) {
		DRM_ERROR("Attempting to unbind pinned buffer\n");
		return -EINVAL;
	}

2157 2158 2159
	/* blow away mappings if mapped through GTT */
	i915_gem_release_mmap(obj);

2160 2161 2162 2163 2164 2165
	/* Move the object to the CPU domain to ensure that
	 * any possible CPU writes while it's not in the GTT
	 * are flushed when we go to remap it. This will
	 * also ensure that all pending GPU writes are finished
	 * before we unbind.
	 */
2166
	ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2167
	if (ret == -ERESTARTSYS)
2168
		return ret;
2169 2170 2171 2172
	/* Continue on if we fail due to EIO, the GPU is hung so we
	 * should be safe and we need to cleanup or else we might
	 * cause memory corruption through use-after-free.
	 */
2173 2174 2175 2176
	if (ret) {
		i915_gem_clflush_object(obj);
		obj->read_domains = obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2177

2178 2179 2180 2181
	/* release the fence reg _after_ flushing */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
		i915_gem_clear_fence_reg(obj);

2182 2183
	drm_unbind_agp(obj_priv->agp_mem);
	drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
2184

2185
	i915_gem_object_put_pages(obj);
2186
	BUG_ON(obj_priv->pages_refcount);
2187

2188
	i915_gem_info_remove_gtt(dev_priv, obj->size);
C
Chris Wilson 已提交
2189
	list_del_init(&obj_priv->list);
2190

2191 2192 2193
	drm_mm_put_block(obj_priv->gtt_space);
	obj_priv->gtt_space = NULL;

2194 2195 2196
	if (i915_gem_object_is_purgeable(obj_priv))
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
2197 2198
	trace_i915_gem_object_unbind(obj);

2199
	return ret;
2200 2201
}

2202 2203 2204 2205 2206 2207 2208 2209 2210 2211
static int i915_ring_idle(struct drm_device *dev,
			  struct intel_ring_buffer *ring)
{
	i915_gem_flush_ring(dev, NULL, ring,
			    I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
	return i915_wait_request(dev,
				 i915_gem_next_request_seqno(dev, ring),
				 ring);
}

2212
int
2213 2214 2215 2216
i915_gpu_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	bool lists_empty;
2217
	int ret;
2218

2219 2220 2221 2222
	lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
		       list_empty(&dev_priv->render_ring.active_list) &&
		       (!HAS_BSD(dev) ||
			list_empty(&dev_priv->bsd_ring.active_list)));
2223 2224 2225 2226
	if (lists_empty)
		return 0;

	/* Flush everything onto the inactive list. */
2227
	ret = i915_ring_idle(dev, &dev_priv->render_ring);
2228 2229
	if (ret)
		return ret;
2230 2231

	if (HAS_BSD(dev)) {
2232
		ret = i915_ring_idle(dev, &dev_priv->bsd_ring);
2233 2234 2235 2236
		if (ret)
			return ret;
	}

2237
	return 0;
2238 2239
}

2240
static int
2241 2242
i915_gem_object_get_pages(struct drm_gem_object *obj,
			  gfp_t gfpmask)
2243
{
2244
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2245 2246 2247 2248 2249
	int page_count, i;
	struct address_space *mapping;
	struct inode *inode;
	struct page *page;

2250 2251 2252
	BUG_ON(obj_priv->pages_refcount
			== DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);

2253
	if (obj_priv->pages_refcount++ != 0)
2254 2255 2256 2257 2258 2259
		return 0;

	/* Get the list of pages out of our struct file.  They'll be pinned
	 * at this point until we release them.
	 */
	page_count = obj->size / PAGE_SIZE;
2260
	BUG_ON(obj_priv->pages != NULL);
2261
	obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2262 2263
	if (obj_priv->pages == NULL) {
		obj_priv->pages_refcount--;
2264 2265 2266 2267 2268 2269
		return -ENOMEM;
	}

	inode = obj->filp->f_path.dentry->d_inode;
	mapping = inode->i_mapping;
	for (i = 0; i < page_count; i++) {
2270
		page = read_cache_page_gfp(mapping, i,
2271
					   GFP_HIGHUSER |
2272
					   __GFP_COLD |
2273
					   __GFP_RECLAIMABLE |
2274
					   gfpmask);
2275 2276 2277
		if (IS_ERR(page))
			goto err_pages;

2278
		obj_priv->pages[i] = page;
2279
	}
2280 2281 2282 2283

	if (obj_priv->tiling_mode != I915_TILING_NONE)
		i915_gem_object_do_bit_17_swizzle(obj);

2284
	return 0;
2285 2286 2287 2288 2289 2290 2291 2292 2293

err_pages:
	while (i--)
		page_cache_release(obj_priv->pages[i]);

	drm_free_large(obj_priv->pages);
	obj_priv->pages = NULL;
	obj_priv->pages_refcount--;
	return PTR_ERR(page);
2294 2295
}

2296 2297 2298 2299 2300
static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2301
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
		SANDYBRIDGE_FENCE_PITCH_SHIFT;

	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
}

2318 2319 2320 2321 2322
static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2323
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342
	int regnum = obj_priv->fence_reg;
	uint64_t val;

	val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
		    0xfffff000) << 32;
	val |= obj_priv->gtt_offset & 0xfffff000;
	val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I965_FENCE_TILING_Y_SHIFT;
	val |= I965_FENCE_REG_VALID;

	I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2343
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2344
	int regnum = obj_priv->fence_reg;
2345
	int tile_width;
2346
	uint32_t fence_reg, val;
2347 2348 2349 2350
	uint32_t pitch_val;

	if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2351
		WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2352
		     __func__, obj_priv->gtt_offset, obj->size);
2353 2354 2355
		return;
	}

2356 2357 2358
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		tile_width = 128;
2359
	else
2360 2361 2362 2363 2364
		tile_width = 512;

	/* Note: pitch better be a power of two tile widths */
	pitch_val = obj_priv->stride / tile_width;
	pitch_val = ffs(pitch_val) - 1;
2365

2366 2367 2368 2369 2370 2371
	if (obj_priv->tiling_mode == I915_TILING_Y &&
	    HAS_128_BYTE_Y_TILING(dev))
		WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
	else
		WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);

2372 2373 2374 2375 2376 2377 2378
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
	val |= I915_FENCE_SIZE_BITS(obj->size);
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

2379 2380 2381 2382 2383
	if (regnum < 8)
		fence_reg = FENCE_REG_830_0 + (regnum * 4);
	else
		fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
	I915_WRITE(fence_reg, val);
2384 2385 2386 2387 2388 2389 2390
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
{
	struct drm_gem_object *obj = reg->obj;
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2391
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2392 2393 2394
	int regnum = obj_priv->fence_reg;
	uint32_t val;
	uint32_t pitch_val;
2395
	uint32_t fence_size_bits;
2396

2397
	if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2398
	    (obj_priv->gtt_offset & (obj->size - 1))) {
2399
		WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2400
		     __func__, obj_priv->gtt_offset);
2401 2402 2403
		return;
	}

2404 2405 2406 2407
	pitch_val = obj_priv->stride / 128;
	pitch_val = ffs(pitch_val) - 1;
	WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);

2408 2409 2410
	val = obj_priv->gtt_offset;
	if (obj_priv->tiling_mode == I915_TILING_Y)
		val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2411 2412 2413
	fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
	WARN_ON(fence_size_bits & ~0x00000f00);
	val |= fence_size_bits;
2414 2415 2416 2417 2418 2419
	val |= pitch_val << I830_FENCE_PITCH_SHIFT;
	val |= I830_FENCE_REG_VALID;

	I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
}

2420 2421
static int i915_find_fence_reg(struct drm_device *dev,
			       bool interruptible)
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435
{
	struct drm_i915_fence_reg *reg = NULL;
	struct drm_i915_gem_object *obj_priv = NULL;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_gem_object *obj = NULL;
	int i, avail, ret;

	/* First try to find a free reg */
	avail = 0;
	for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
		reg = &dev_priv->fence_regs[i];
		if (!reg->obj)
			return i;

2436
		obj_priv = to_intel_bo(reg->obj);
2437 2438 2439 2440 2441 2442 2443 2444 2445
		if (!obj_priv->pin_count)
		    avail++;
	}

	if (avail == 0)
		return -ENOSPC;

	/* None available, try to steal one or wait for a user to finish */
	i = I915_FENCE_REG_NONE;
2446 2447 2448 2449
	list_for_each_entry(reg, &dev_priv->mm.fence_list,
			    lru_list) {
		obj = reg->obj;
		obj_priv = to_intel_bo(obj);
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

		if (obj_priv->pin_count)
			continue;

		/* found one! */
		i = obj_priv->fence_reg;
		break;
	}

	BUG_ON(i == I915_FENCE_REG_NONE);

	/* We only have a reference on obj from the active list. put_fence_reg
	 * might drop that one, causing a use-after-free in it. So hold a
	 * private reference to obj like the other callers of put_fence_reg
	 * (set_tiling ioctl) do. */
	drm_gem_object_reference(obj);
2466
	ret = i915_gem_object_put_fence_reg(obj, interruptible);
2467 2468 2469 2470 2471 2472 2473
	drm_gem_object_unreference(obj);
	if (ret != 0)
		return ret;

	return i;
}

2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486
/**
 * i915_gem_object_get_fence_reg - set up a fence reg for an object
 * @obj: object to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 *
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 */
2487
int
2488 2489
i915_gem_object_get_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2490 2491
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2492
	struct drm_i915_private *dev_priv = dev->dev_private;
2493
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2494
	struct drm_i915_fence_reg *reg = NULL;
2495
	int ret;
2496

2497 2498
	/* Just update our place in the LRU if our fence is getting used. */
	if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2499 2500
		reg = &dev_priv->fence_regs[obj_priv->fence_reg];
		list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2501 2502 2503
		return 0;
	}

2504 2505 2506 2507 2508
	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		WARN(1, "allocating a fence for non-tiled object?\n");
		break;
	case I915_TILING_X:
2509 2510 2511 2512 2513
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (512 - 1)),
		     "object 0x%08x is X tiled but has non-512B pitch\n",
		     obj_priv->gtt_offset);
2514 2515
		break;
	case I915_TILING_Y:
2516 2517 2518 2519 2520
		if (!obj_priv->stride)
			return -EINVAL;
		WARN((obj_priv->stride & (128 - 1)),
		     "object 0x%08x is Y tiled but has non-128B pitch\n",
		     obj_priv->gtt_offset);
2521 2522 2523
		break;
	}

2524
	ret = i915_find_fence_reg(dev, interruptible);
2525 2526
	if (ret < 0)
		return ret;
2527

2528 2529
	obj_priv->fence_reg = ret;
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2530
	list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2531

2532 2533
	reg->obj = obj;

2534 2535
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2536
		sandybridge_write_fence_reg(reg);
2537 2538 2539
		break;
	case 5:
	case 4:
2540
		i965_write_fence_reg(reg);
2541 2542
		break;
	case 3:
2543
		i915_write_fence_reg(reg);
2544 2545
		break;
	case 2:
2546
		i830_write_fence_reg(reg);
2547 2548
		break;
	}
2549

2550 2551
	trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
			obj_priv->tiling_mode);
C
Chris Wilson 已提交
2552

2553
	return 0;
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566
}

/**
 * i915_gem_clear_fence_reg - clear out fence register info
 * @obj: object to clear
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
static void
i915_gem_clear_fence_reg(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
J
Jesse Barnes 已提交
2567
	drm_i915_private_t *dev_priv = dev->dev_private;
2568
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2569 2570
	struct drm_i915_fence_reg *reg =
		&dev_priv->fence_regs[obj_priv->fence_reg];
2571
	uint32_t fence_reg;
2572

2573 2574
	switch (INTEL_INFO(dev)->gen) {
	case 6:
2575 2576
		I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
			     (obj_priv->fence_reg * 8), 0);
2577 2578 2579
		break;
	case 5:
	case 4:
2580
		I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2581 2582
		break;
	case 3:
2583
		if (obj_priv->fence_reg >= 8)
2584
			fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg - 8) * 4;
2585
		else
2586 2587
	case 2:
			fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2588 2589

		I915_WRITE(fence_reg, 0);
2590
		break;
2591
	}
2592

2593
	reg->obj = NULL;
2594
	obj_priv->fence_reg = I915_FENCE_REG_NONE;
2595
	list_del_init(&reg->lru_list);
2596 2597
}

2598 2599 2600 2601
/**
 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
 * to the buffer to finish, and then resets the fence register.
 * @obj: tiled object holding a fence register.
2602
 * @bool: whether the wait upon the fence is interruptible
2603 2604 2605 2606 2607
 *
 * Zeroes out the fence register itself and clears out the associated
 * data structures in dev_priv and obj_priv.
 */
int
2608 2609
i915_gem_object_put_fence_reg(struct drm_gem_object *obj,
			      bool interruptible)
2610 2611
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2612
	struct drm_i915_private *dev_priv = dev->dev_private;
2613
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2614
	struct drm_i915_fence_reg *reg;
2615 2616 2617 2618

	if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
		return 0;

2619 2620 2621 2622 2623 2624
	/* If we've changed tiling, GTT-mappings of the object
	 * need to re-fault to ensure that the correct fence register
	 * setup is in place.
	 */
	i915_gem_release_mmap(obj);

2625 2626 2627 2628
	/* On the i915, GPU access to tiled buffers is via a fence,
	 * therefore we must wait for any outstanding access to complete
	 * before clearing the fence.
	 */
C
Chris Wilson 已提交
2629 2630
	reg = &dev_priv->fence_regs[obj_priv->fence_reg];
	if (reg->gpu) {
2631 2632
		int ret;

2633
		ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2634 2635 2636
		if (ret)
			return ret;

2637
		ret = i915_gem_object_wait_rendering(obj, interruptible);
2638
		if (ret)
2639
			return ret;
C
Chris Wilson 已提交
2640 2641

		reg->gpu = false;
2642 2643
	}

2644
	i915_gem_object_flush_gtt_write_domain(obj);
2645
	i915_gem_clear_fence_reg(obj);
2646 2647 2648 2649

	return 0;
}

2650 2651 2652 2653 2654 2655 2656 2657
/**
 * Finds free space in the GTT aperture and binds the object there.
 */
static int
i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
2658
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2659
	struct drm_mm_node *free_space;
2660
	gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2661
	int ret;
2662

C
Chris Wilson 已提交
2663
	if (obj_priv->madv != I915_MADV_WILLNEED) {
2664 2665 2666 2667
		DRM_ERROR("Attempting to bind a purgeable object\n");
		return -EINVAL;
	}

2668
	if (alignment == 0)
2669
		alignment = i915_gem_get_gtt_alignment(obj);
2670
	if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2671 2672 2673 2674
		DRM_ERROR("Invalid object alignment requested %u\n", alignment);
		return -EINVAL;
	}

2675 2676 2677
	/* If the object is bigger than the entire aperture, reject it early
	 * before evicting everything in a vain attempt to find space.
	 */
2678
	if (obj->size > dev_priv->mm.gtt_total) {
2679 2680 2681 2682
		DRM_ERROR("Attempting to bind an object larger than the aperture\n");
		return -E2BIG;
	}

2683 2684 2685 2686 2687 2688
 search_free:
	free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
					obj->size, alignment, 0);
	if (free_space != NULL) {
		obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
						       alignment);
D
Daniel Vetter 已提交
2689
		if (obj_priv->gtt_space != NULL)
2690 2691 2692 2693 2694 2695
			obj_priv->gtt_offset = obj_priv->gtt_space->start;
	}
	if (obj_priv->gtt_space == NULL) {
		/* If the gtt is empty and we're still having trouble
		 * fitting our object in, we're out of memory.
		 */
2696
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2697
		if (ret)
2698
			return ret;
2699

2700 2701 2702
		goto search_free;
	}

2703
	ret = i915_gem_object_get_pages(obj, gfpmask);
2704 2705 2706
	if (ret) {
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2707 2708 2709

		if (ret == -ENOMEM) {
			/* first try to clear up some space from the GTT */
2710 2711
			ret = i915_gem_evict_something(dev, obj->size,
						       alignment);
2712 2713
			if (ret) {
				/* now try to shrink everyone else */
2714 2715 2716
				if (gfpmask) {
					gfpmask = 0;
					goto search_free;
2717 2718 2719 2720 2721 2722 2723 2724
				}

				return ret;
			}

			goto search_free;
		}

2725 2726 2727 2728 2729 2730 2731
		return ret;
	}

	/* Create an AGP memory structure pointing at our pages, and bind it
	 * into the GTT.
	 */
	obj_priv->agp_mem = drm_agp_bind_pages(dev,
2732
					       obj_priv->pages,
2733
					       obj->size >> PAGE_SHIFT,
2734 2735
					       obj_priv->gtt_offset,
					       obj_priv->agp_type);
2736
	if (obj_priv->agp_mem == NULL) {
2737
		i915_gem_object_put_pages(obj);
2738 2739
		drm_mm_put_block(obj_priv->gtt_space);
		obj_priv->gtt_space = NULL;
2740

2741
		ret = i915_gem_evict_something(dev, obj->size, alignment);
2742
		if (ret)
2743 2744 2745
			return ret;

		goto search_free;
2746 2747
	}

2748 2749
	/* keep track of bounds object by adding it to the inactive list */
	list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
2750
	i915_gem_info_add_gtt(dev_priv, obj->size);
2751

2752 2753 2754 2755
	/* Assert that the object is not currently in any GPU domain. As it
	 * wasn't in the GTT, there shouldn't be any way it could have been in
	 * a GPU cache
	 */
2756 2757
	BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
	BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2758

C
Chris Wilson 已提交
2759 2760
	trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);

2761 2762 2763 2764 2765 2766
	return 0;
}

void
i915_gem_clflush_object(struct drm_gem_object *obj)
{
2767
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
2768 2769 2770 2771 2772

	/* If we don't have a page list set up, then we're not pinned
	 * to GPU, and we can ignore the cache flush because it'll happen
	 * again at bind time.
	 */
2773
	if (obj_priv->pages == NULL)
2774 2775
		return;

C
Chris Wilson 已提交
2776
	trace_i915_gem_object_clflush(obj);
2777

2778
	drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2779 2780
}

2781
/** Flushes any GPU write domain for the object if it's dirty. */
2782
static int
2783 2784
i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj,
				       bool pipelined)
2785 2786
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2787
	uint32_t old_write_domain;
2788 2789

	if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2790
		return 0;
2791 2792

	/* Queue the GPU write cache flushing we need. */
C
Chris Wilson 已提交
2793
	old_write_domain = obj->write_domain;
2794
	i915_gem_flush_ring(dev, NULL,
2795 2796
			    to_intel_bo(obj)->ring,
			    0, obj->write_domain);
2797
	BUG_ON(obj->write_domain);
C
Chris Wilson 已提交
2798 2799 2800 2801

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2802 2803 2804 2805

	if (pipelined)
		return 0;

2806
	return i915_gem_object_wait_rendering(obj, true);
2807 2808 2809 2810 2811 2812
}

/** Flushes the GTT write domain for the object if it's dirty. */
static void
i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
{
C
Chris Wilson 已提交
2813 2814
	uint32_t old_write_domain;

2815 2816 2817 2818 2819 2820 2821
	if (obj->write_domain != I915_GEM_DOMAIN_GTT)
		return;

	/* No actual flushing is required for the GTT write domain.   Writes
	 * to it immediately go to main memory as far as we know, so there's
	 * no chipset flush.  It also doesn't land in render cache.
	 */
C
Chris Wilson 已提交
2822
	old_write_domain = obj->write_domain;
2823
	obj->write_domain = 0;
C
Chris Wilson 已提交
2824 2825 2826 2827

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2828 2829 2830 2831 2832 2833 2834
}

/** Flushes the CPU write domain for the object if it's dirty. */
static void
i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
2835
	uint32_t old_write_domain;
2836 2837 2838 2839 2840 2841

	if (obj->write_domain != I915_GEM_DOMAIN_CPU)
		return;

	i915_gem_clflush_object(obj);
	drm_agp_chipset_flush(dev);
C
Chris Wilson 已提交
2842
	old_write_domain = obj->write_domain;
2843
	obj->write_domain = 0;
C
Chris Wilson 已提交
2844 2845 2846 2847

	trace_i915_gem_object_change_domain(obj,
					    obj->read_domains,
					    old_write_domain);
2848 2849
}

2850 2851 2852 2853 2854 2855
/**
 * Moves a single object to the GTT read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
J
Jesse Barnes 已提交
2856
int
2857 2858
i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
{
2859
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
2860
	uint32_t old_write_domain, old_read_domains;
2861
	int ret;
2862

2863 2864 2865 2866
	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2867
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2868 2869 2870
	if (ret != 0)
		return ret;

2871
	i915_gem_object_flush_cpu_write_domain(obj);
C
Chris Wilson 已提交
2872

2873
	if (write) {
2874
		ret = i915_gem_object_wait_rendering(obj, true);
2875 2876 2877
		if (ret)
			return ret;
	}
2878

2879 2880
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;
2881

2882 2883 2884 2885 2886 2887
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
	if (write) {
2888
		obj->read_domains = I915_GEM_DOMAIN_GTT;
2889 2890
		obj->write_domain = I915_GEM_DOMAIN_GTT;
		obj_priv->dirty = 1;
2891 2892
	}

C
Chris Wilson 已提交
2893 2894 2895 2896
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2897 2898 2899
	return 0;
}

2900 2901 2902 2903 2904
/*
 * Prepare buffer for display plane. Use uninterruptible for possible flush
 * wait, as in modesetting process we're not supposed to be interrupted.
 */
int
2905 2906
i915_gem_object_set_to_display_plane(struct drm_gem_object *obj,
				     bool pipelined)
2907
{
2908
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2909
	uint32_t old_read_domains;
2910 2911 2912 2913 2914 2915
	int ret;

	/* Not valid to be called on unbound objects. */
	if (obj_priv->gtt_space == NULL)
		return -EINVAL;

2916
	ret = i915_gem_object_flush_gpu_write_domain(obj, true);
2917
	if (ret)
2918
		return ret;
2919

2920 2921 2922 2923 2924 2925 2926
	/* Currently, we are always called from an non-interruptible context. */
	if (!pipelined) {
		ret = i915_gem_object_wait_rendering(obj, false);
		if (ret)
			return ret;
	}

2927 2928
	i915_gem_object_flush_cpu_write_domain(obj);

2929
	old_read_domains = obj->read_domains;
2930
	obj->read_domains |= I915_GEM_DOMAIN_GTT;
2931 2932 2933

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
2934
					    obj->write_domain);
2935 2936 2937 2938

	return 0;
}

2939 2940 2941 2942 2943 2944 2945 2946 2947
/**
 * Moves a single object to the CPU read, and possibly write domain.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
{
C
Chris Wilson 已提交
2948
	uint32_t old_write_domain, old_read_domains;
2949 2950
	int ret;

2951
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
2952 2953
	if (ret != 0)
		return ret;
2954

2955
	i915_gem_object_flush_gtt_write_domain(obj);
2956

2957 2958
	/* If we have a partially-valid cache of the object in the CPU,
	 * finish invalidating it and free the per-page flags.
2959
	 */
2960
	i915_gem_object_set_to_full_cpu_read_domain(obj);
2961

2962
	if (write) {
2963
		ret = i915_gem_object_wait_rendering(obj, true);
2964 2965 2966 2967
		if (ret)
			return ret;
	}

C
Chris Wilson 已提交
2968 2969 2970
	old_write_domain = obj->write_domain;
	old_read_domains = obj->read_domains;

2971 2972
	/* Flush the CPU cache if it's still invalid. */
	if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2973 2974
		i915_gem_clflush_object(obj);

2975
		obj->read_domains |= I915_GEM_DOMAIN_CPU;
2976 2977 2978 2979 2980
	}

	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
2981 2982 2983 2984 2985 2986
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

	/* If we're writing through the CPU, then the GPU read domains will
	 * need to be invalidated at next use.
	 */
	if (write) {
2987
		obj->read_domains = I915_GEM_DOMAIN_CPU;
2988 2989
		obj->write_domain = I915_GEM_DOMAIN_CPU;
	}
2990

C
Chris Wilson 已提交
2991 2992 2993 2994
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    old_write_domain);

2995 2996 2997
	return 0;
}

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108
/*
 * Set the next domain for the specified object. This
 * may not actually perform the necessary flushing/invaliding though,
 * as that may want to be batched with other set_domain operations
 *
 * This is (we hope) the only really tricky part of gem. The goal
 * is fairly simple -- track which caches hold bits of the object
 * and make sure they remain coherent. A few concrete examples may
 * help to explain how it works. For shorthand, we use the notation
 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
 * a pair of read and write domain masks.
 *
 * Case 1: the batch buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Mapped to GTT
 *	4. Read by GPU
 *	5. Unmapped from GTT
 *	6. Freed
 *
 *	Let's take these a step at a time
 *
 *	1. Allocated
 *		Pages allocated from the kernel may still have
 *		cache contents, so we set them to (CPU, CPU) always.
 *	2. Written by CPU (using pwrite)
 *		The pwrite function calls set_domain (CPU, CPU) and
 *		this function does nothing (as nothing changes)
 *	3. Mapped by GTT
 *		This function asserts that the object is not
 *		currently in any GPU-based read or write domains
 *	4. Read by GPU
 *		i915_gem_execbuffer calls set_domain (COMMAND, 0).
 *		As write_domain is zero, this function adds in the
 *		current read domains (CPU+COMMAND, 0).
 *		flush_domains is set to CPU.
 *		invalidate_domains is set to COMMAND
 *		clflush is run to get data out of the CPU caches
 *		then i915_dev_set_domain calls i915_gem_flush to
 *		emit an MI_FLUSH and drm_agp_chipset_flush
 *	5. Unmapped from GTT
 *		i915_gem_object_unbind calls set_domain (CPU, CPU)
 *		flush_domains and invalidate_domains end up both zero
 *		so no flushing/invalidating happens
 *	6. Freed
 *		yay, done
 *
 * Case 2: The shared render buffer
 *
 *	1. Allocated
 *	2. Mapped to GTT
 *	3. Read/written by GPU
 *	4. set_domain to (CPU,CPU)
 *	5. Read/written by CPU
 *	6. Read/written by GPU
 *
 *	1. Allocated
 *		Same as last example, (CPU, CPU)
 *	2. Mapped to GTT
 *		Nothing changes (assertions find that it is not in the GPU)
 *	3. Read/written by GPU
 *		execbuffer calls set_domain (RENDER, RENDER)
 *		flush_domains gets CPU
 *		invalidate_domains gets GPU
 *		clflush (obj)
 *		MI_FLUSH and drm_agp_chipset_flush
 *	4. set_domain (CPU, CPU)
 *		flush_domains gets GPU
 *		invalidate_domains gets CPU
 *		wait_rendering (obj) to make sure all drawing is complete.
 *		This will include an MI_FLUSH to get the data from GPU
 *		to memory
 *		clflush (obj) to invalidate the CPU cache
 *		Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
 *	5. Read/written by CPU
 *		cache lines are loaded and dirtied
 *	6. Read written by GPU
 *		Same as last GPU access
 *
 * Case 3: The constant buffer
 *
 *	1. Allocated
 *	2. Written by CPU
 *	3. Read by GPU
 *	4. Updated (written) by CPU again
 *	5. Read by GPU
 *
 *	1. Allocated
 *		(CPU, CPU)
 *	2. Written by CPU
 *		(CPU, CPU)
 *	3. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 *	4. Updated (written) by CPU again
 *		(CPU, CPU)
 *		flush_domains = 0 (no previous write domain)
 *		invalidate_domains = 0 (no new read domains)
 *	5. Read by GPU
 *		(CPU+RENDER, 0)
 *		flush_domains = CPU
 *		invalidate_domains = RENDER
 *		clflush (obj)
 *		MI_FLUSH
 *		drm_agp_chipset_flush
 */
3109
static void
3110
i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3111 3112
{
	struct drm_device		*dev = obj->dev;
3113
	struct drm_i915_private		*dev_priv = dev->dev_private;
3114
	struct drm_i915_gem_object	*obj_priv = to_intel_bo(obj);
3115 3116
	uint32_t			invalidate_domains = 0;
	uint32_t			flush_domains = 0;
C
Chris Wilson 已提交
3117
	uint32_t			old_read_domains;
3118

3119 3120
	BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
	BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3121

3122 3123
	intel_mark_busy(dev, obj);

3124 3125 3126 3127
	/*
	 * If the object isn't moving to a new write domain,
	 * let the object stay in multiple read domains
	 */
3128 3129
	if (obj->pending_write_domain == 0)
		obj->pending_read_domains |= obj->read_domains;
3130 3131 3132 3133 3134 3135 3136 3137 3138
	else
		obj_priv->dirty = 1;

	/*
	 * Flush the current write domain if
	 * the new read domains don't match. Invalidate
	 * any read domains which differ from the old
	 * write domain
	 */
3139 3140
	if (obj->write_domain &&
	    obj->write_domain != obj->pending_read_domains) {
3141
		flush_domains |= obj->write_domain;
3142 3143
		invalidate_domains |=
			obj->pending_read_domains & ~obj->write_domain;
3144 3145 3146 3147 3148
	}
	/*
	 * Invalidate any read caches which may have
	 * stale data. That is, any new read domains.
	 */
3149
	invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3150
	if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU)
3151 3152
		i915_gem_clflush_object(obj);

C
Chris Wilson 已提交
3153 3154
	old_read_domains = obj->read_domains;

3155 3156 3157 3158 3159 3160 3161 3162
	/* The actual obj->write_domain will be updated with
	 * pending_write_domain after we emit the accumulated flush for all
	 * of our domain changes in execbuffers (which clears objects'
	 * write_domains).  So if we have a current write domain that we
	 * aren't changing, set pending_write_domain to that.
	 */
	if (flush_domains == 0 && obj->pending_write_domain == 0)
		obj->pending_write_domain = obj->write_domain;
3163
	obj->read_domains = obj->pending_read_domains;
3164 3165 3166

	dev->invalidate_domains |= invalidate_domains;
	dev->flush_domains |= flush_domains;
3167 3168
	if (obj_priv->ring)
		dev_priv->mm.flush_rings |= obj_priv->ring->id;
C
Chris Wilson 已提交
3169 3170 3171 3172

	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);
3173 3174 3175
}

/**
3176
 * Moves the object from a partially CPU read to a full one.
3177
 *
3178 3179
 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3180
 */
3181 3182
static void
i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3183
{
3184
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3185

3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
	if (!obj_priv->page_cpu_valid)
		return;

	/* If we're partially in the CPU read domain, finish moving it in.
	 */
	if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
		int i;

		for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
			if (obj_priv->page_cpu_valid[i])
				continue;
3197
			drm_clflush_pages(obj_priv->pages + i, 1);
3198 3199 3200 3201 3202 3203
		}
	}

	/* Free the page_cpu_valid mappings which are now stale, whether
	 * or not we've got I915_GEM_DOMAIN_CPU.
	 */
3204
	kfree(obj_priv->page_cpu_valid);
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	obj_priv->page_cpu_valid = NULL;
}

/**
 * Set the CPU read domain on a range of the object.
 *
 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
 * not entirely valid.  The page_cpu_valid member of the object flags which
 * pages have been flushed, and will be respected by
 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
 * of the whole object.
 *
 * This function returns when the move is complete, including waiting on
 * flushes to occur.
 */
static int
i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
					  uint64_t offset, uint64_t size)
{
3224
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3225
	uint32_t old_read_domains;
3226
	int i, ret;
3227

3228 3229
	if (offset == 0 && size == obj->size)
		return i915_gem_object_set_to_cpu_domain(obj, 0);
3230

3231
	ret = i915_gem_object_flush_gpu_write_domain(obj, false);
3232
	if (ret != 0)
3233
		return ret;
3234 3235 3236 3237 3238 3239
	i915_gem_object_flush_gtt_write_domain(obj);

	/* If we're already fully in the CPU read domain, we're done. */
	if (obj_priv->page_cpu_valid == NULL &&
	    (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
		return 0;
3240

3241 3242 3243
	/* Otherwise, create/clear the per-page CPU read domain flag if we're
	 * newly adding I915_GEM_DOMAIN_CPU
	 */
3244
	if (obj_priv->page_cpu_valid == NULL) {
3245 3246
		obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
						   GFP_KERNEL);
3247 3248 3249 3250
		if (obj_priv->page_cpu_valid == NULL)
			return -ENOMEM;
	} else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
		memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3251 3252 3253 3254

	/* Flush the cache on any pages that are still invalid from the CPU's
	 * perspective.
	 */
3255 3256
	for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
	     i++) {
3257 3258 3259
		if (obj_priv->page_cpu_valid[i])
			continue;

3260
		drm_clflush_pages(obj_priv->pages + i, 1);
3261 3262 3263 3264

		obj_priv->page_cpu_valid[i] = 1;
	}

3265 3266 3267 3268 3269
	/* It should now be out of any other write domains, and we can update
	 * the domain values for our changes.
	 */
	BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);

C
Chris Wilson 已提交
3270
	old_read_domains = obj->read_domains;
3271 3272
	obj->read_domains |= I915_GEM_DOMAIN_CPU;

C
Chris Wilson 已提交
3273 3274 3275 3276
	trace_i915_gem_object_change_domain(obj,
					    old_read_domains,
					    obj->write_domain);

3277 3278 3279 3280 3281 3282 3283 3284 3285
	return 0;
}

/**
 * Pin an object to the GTT and evaluate the relocations landing in it.
 */
static int
i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
				 struct drm_file *file_priv,
J
Jesse Barnes 已提交
3286
				 struct drm_i915_gem_exec_object2 *entry,
3287
				 struct drm_i915_gem_relocation_entry *relocs)
3288 3289
{
	struct drm_device *dev = obj->dev;
3290
	drm_i915_private_t *dev_priv = dev->dev_private;
3291
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3292
	int i, ret;
3293
	void __iomem *reloc_page;
J
Jesse Barnes 已提交
3294 3295 3296 3297 3298 3299
	bool need_fence;

	need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
	             obj_priv->tiling_mode != I915_TILING_NONE;

	/* Check fence reg constraints and rebind if necessary */
3300 3301 3302 3303 3304 3305 3306
	if (need_fence &&
	    !i915_gem_object_fence_offset_ok(obj,
					     obj_priv->tiling_mode)) {
		ret = i915_gem_object_unbind(obj);
		if (ret)
			return ret;
	}
3307 3308 3309 3310 3311 3312

	/* Choose the GTT offset for our buffer and put it there. */
	ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
	if (ret)
		return ret;

J
Jesse Barnes 已提交
3313 3314 3315 3316 3317
	/*
	 * Pre-965 chips need a fence register set up in order to
	 * properly handle blits to/from tiled surfaces.
	 */
	if (need_fence) {
C
Chris Wilson 已提交
3318
		ret = i915_gem_object_get_fence_reg(obj, true);
J
Jesse Barnes 已提交
3319 3320 3321 3322
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			return ret;
		}
C
Chris Wilson 已提交
3323 3324

		dev_priv->fence_regs[obj_priv->fence_reg].gpu = true;
J
Jesse Barnes 已提交
3325 3326
	}

3327 3328 3329 3330 3331 3332
	entry->offset = obj_priv->gtt_offset;

	/* Apply the relocations, using the GTT aperture to avoid cache
	 * flushing requirements.
	 */
	for (i = 0; i < entry->relocation_count; i++) {
3333
		struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3334 3335
		struct drm_gem_object *target_obj;
		struct drm_i915_gem_object *target_obj_priv;
3336 3337
		uint32_t reloc_val, reloc_offset;
		uint32_t __iomem *reloc_entry;
3338 3339

		target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3340
						   reloc->target_handle);
3341 3342
		if (target_obj == NULL) {
			i915_gem_object_unpin(obj);
3343
			return -ENOENT;
3344
		}
3345
		target_obj_priv = to_intel_bo(target_obj);
3346

3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
#if WATCH_RELOC
		DRM_INFO("%s: obj %p offset %08x target %d "
			 "read %08x write %08x gtt %08x "
			 "presumed %08x delta %08x\n",
			 __func__,
			 obj,
			 (int) reloc->offset,
			 (int) reloc->target_handle,
			 (int) reloc->read_domains,
			 (int) reloc->write_domain,
			 (int) target_obj_priv->gtt_offset,
			 (int) reloc->presumed_offset,
			 reloc->delta);
#endif

3362 3363 3364 3365 3366
		/* The target buffer should have appeared before us in the
		 * exec_object list, so it should have a GTT space bound by now.
		 */
		if (target_obj_priv->gtt_space == NULL) {
			DRM_ERROR("No GTT space found for object %d\n",
3367
				  reloc->target_handle);
3368 3369 3370 3371 3372
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3373
		/* Validate that the target is in a valid r/w GPU domain */
3374 3375 3376 3377 3378 3379 3380 3381 3382 3383
		if (reloc->write_domain & (reloc->write_domain - 1)) {
			DRM_ERROR("reloc with multiple write domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
			return -EINVAL;
		}
3384 3385
		if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
		    reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3386 3387 3388
			DRM_ERROR("reloc with read/write CPU domains: "
				  "obj %p target %d offset %d "
				  "read %08x write %08x",
3389 3390 3391 3392
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->read_domains,
				  reloc->write_domain);
3393 3394
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3395 3396
			return -EINVAL;
		}
3397 3398
		if (reloc->write_domain && target_obj->pending_write_domain &&
		    reloc->write_domain != target_obj->pending_write_domain) {
3399 3400 3401
			DRM_ERROR("Write domain conflict: "
				  "obj %p target %d offset %d "
				  "new %08x old %08x\n",
3402 3403 3404
				  obj, reloc->target_handle,
				  (int) reloc->offset,
				  reloc->write_domain,
3405 3406 3407 3408 3409 3410
				  target_obj->pending_write_domain);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3411 3412
		target_obj->pending_read_domains |= reloc->read_domains;
		target_obj->pending_write_domain |= reloc->write_domain;
3413 3414 3415 3416

		/* If the relocation already has the right value in it, no
		 * more work needs to be done.
		 */
3417
		if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3418 3419 3420 3421
			drm_gem_object_unreference(target_obj);
			continue;
		}

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
		/* Check that the relocation address is valid... */
		if (reloc->offset > obj->size - 4) {
			DRM_ERROR("Relocation beyond object bounds: "
				  "obj %p target %d offset %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset, (int) obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}
		if (reloc->offset & 3) {
			DRM_ERROR("Relocation not 4-byte aligned: "
				  "obj %p target %d offset %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->offset);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

		/* and points to somewhere within the target object. */
		if (reloc->delta >= target_obj->size) {
			DRM_ERROR("Relocation beyond target object bounds: "
				  "obj %p target %d delta %d size %d.\n",
				  obj, reloc->target_handle,
				  (int) reloc->delta, (int) target_obj->size);
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
			return -EINVAL;
		}

3453 3454 3455 3456
		ret = i915_gem_object_set_to_gtt_domain(obj, 1);
		if (ret != 0) {
			drm_gem_object_unreference(target_obj);
			i915_gem_object_unpin(obj);
3457
			return ret;
3458 3459 3460 3461 3462
		}

		/* Map the page containing the relocation we're going to
		 * perform.
		 */
3463
		reloc_offset = obj_priv->gtt_offset + reloc->offset;
3464 3465
		reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
						      (reloc_offset &
3466 3467
						       ~(PAGE_SIZE - 1)),
						      KM_USER0);
3468
		reloc_entry = (uint32_t __iomem *)(reloc_page +
3469
						   (reloc_offset & (PAGE_SIZE - 1)));
3470
		reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3471 3472

		writel(reloc_val, reloc_entry);
3473
		io_mapping_unmap_atomic(reloc_page, KM_USER0);
3474

3475 3476
		/* The updated presumed offset for this entry will be
		 * copied back out to the user.
3477
		 */
3478
		reloc->presumed_offset = target_obj_priv->gtt_offset;
3479 3480 3481 3482 3483 3484 3485 3486 3487 3488

		drm_gem_object_unreference(target_obj);
	}

	return 0;
}

/* Throttle our rendering by waiting until the ring has completed our requests
 * emitted over 20 msec ago.
 *
3489 3490 3491 3492
 * Note that if we were to use the current jiffies each time around the loop,
 * we wouldn't escape the function with any frames outstanding if the time to
 * render a frame was over 20ms.
 *
3493 3494 3495 3496
 * This should get us reasonable parallelism between CPU and GPU but also
 * relatively low latency when blocking on a particular request to finish.
 */
static int
3497
i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3498
{
3499 3500
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_file_private *file_priv = file->driver_priv;
3501
	unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3502 3503 3504 3505
	struct drm_i915_gem_request *request;
	struct intel_ring_buffer *ring = NULL;
	u32 seqno = 0;
	int ret;
3506

3507
	spin_lock(&file_priv->mm.lock);
3508
	list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3509 3510 3511
		if (time_after_eq(request->emitted_jiffies, recent_enough))
			break;

3512 3513
		ring = request->ring;
		seqno = request->seqno;
3514
	}
3515
	spin_unlock(&file_priv->mm.lock);
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538

	if (seqno == 0)
		return 0;

	ret = 0;
	if (!i915_seqno_passed(ring->get_seqno(dev, ring), seqno)) {
		/* And wait for the seqno passing without holding any locks and
		 * causing extra latency for others. This is safe as the irq
		 * generation is designed to be run atomically and so is
		 * lockless.
		 */
		ring->user_irq_get(dev, ring);
		ret = wait_event_interruptible(ring->irq_queue,
					       i915_seqno_passed(ring->get_seqno(dev, ring), seqno)
					       || atomic_read(&dev_priv->mm.wedged));
		ring->user_irq_put(dev, ring);

		if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
			ret = -EIO;
	}

	if (ret == 0)
		queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3539

3540 3541 3542
	return ret;
}

3543
static int
J
Jesse Barnes 已提交
3544
i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
			      uint32_t buffer_count,
			      struct drm_i915_gem_relocation_entry **relocs)
{
	uint32_t reloc_count = 0, reloc_index = 0, i;
	int ret;

	*relocs = NULL;
	for (i = 0; i < buffer_count; i++) {
		if (reloc_count + exec_list[i].relocation_count < reloc_count)
			return -EINVAL;
		reloc_count += exec_list[i].relocation_count;
	}

3558
	*relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
J
Jesse Barnes 已提交
3559 3560
	if (*relocs == NULL) {
		DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3561
		return -ENOMEM;
J
Jesse Barnes 已提交
3562
	}
3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573

	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

		ret = copy_from_user(&(*relocs)[reloc_index],
				     user_relocs,
				     exec_list[i].relocation_count *
				     sizeof(**relocs));
		if (ret != 0) {
3574
			drm_free_large(*relocs);
3575
			*relocs = NULL;
3576
			return -EFAULT;
3577 3578 3579 3580 3581
		}

		reloc_index += exec_list[i].relocation_count;
	}

3582
	return 0;
3583 3584 3585
}

static int
J
Jesse Barnes 已提交
3586
i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3587 3588 3589 3590
			    uint32_t buffer_count,
			    struct drm_i915_gem_relocation_entry *relocs)
{
	uint32_t reloc_count = 0, i;
3591
	int ret = 0;
3592

3593 3594 3595
	if (relocs == NULL)
	    return 0;

3596 3597
	for (i = 0; i < buffer_count; i++) {
		struct drm_i915_gem_relocation_entry __user *user_relocs;
3598
		int unwritten;
3599 3600 3601

		user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;

3602 3603 3604 3605 3606 3607 3608 3609
		unwritten = copy_to_user(user_relocs,
					 &relocs[reloc_count],
					 exec_list[i].relocation_count *
					 sizeof(*relocs));

		if (unwritten) {
			ret = -EFAULT;
			goto err;
3610 3611 3612 3613 3614
		}

		reloc_count += exec_list[i].relocation_count;
	}

3615
err:
3616
	drm_free_large(relocs);
3617 3618 3619 3620

	return ret;
}

3621
static int
J
Jesse Barnes 已提交
3622
i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638
			   uint64_t exec_offset)
{
	uint32_t exec_start, exec_len;

	exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
	exec_len = (uint32_t) exec->batch_len;

	if ((exec_start | exec_len) & 0x7)
		return -EINVAL;

	if (!exec_start)
		return -EINVAL;

	return 0;
}

3639
static int
3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652
i915_gem_wait_for_pending_flip(struct drm_device *dev,
			       struct drm_gem_object **object_list,
			       int count)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	DEFINE_WAIT(wait);
	int i, ret = 0;

	for (;;) {
		prepare_to_wait(&dev_priv->pending_flip_queue,
				&wait, TASK_INTERRUPTIBLE);
		for (i = 0; i < count; i++) {
3653
			obj_priv = to_intel_bo(object_list[i]);
3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
			if (atomic_read(&obj_priv->pending_flip) > 0)
				break;
		}
		if (i == count)
			break;

		if (!signal_pending(current)) {
			mutex_unlock(&dev->struct_mutex);
			schedule();
			mutex_lock(&dev->struct_mutex);
			continue;
		}
		ret = -ERESTARTSYS;
		break;
	}
	finish_wait(&dev_priv->pending_flip_queue, &wait);

	return ret;
}

C
Chris Wilson 已提交
3674
static int
J
Jesse Barnes 已提交
3675 3676 3677 3678
i915_gem_do_execbuffer(struct drm_device *dev, void *data,
		       struct drm_file *file_priv,
		       struct drm_i915_gem_execbuffer2 *args,
		       struct drm_i915_gem_exec_object2 *exec_list)
3679 3680 3681 3682
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object **object_list = NULL;
	struct drm_gem_object *batch_obj;
3683
	struct drm_i915_gem_object *obj_priv;
3684
	struct drm_clip_rect *cliprects = NULL;
3685
	struct drm_i915_gem_relocation_entry *relocs = NULL;
C
Chris Wilson 已提交
3686
	struct drm_i915_gem_request *request = NULL;
3687
	int ret, ret2, i, pinned = 0;
3688
	uint64_t exec_offset;
C
Chris Wilson 已提交
3689
	uint32_t reloc_index;
3690
	int pin_tries, flips;
3691

3692 3693
	struct intel_ring_buffer *ring = NULL;

3694 3695 3696 3697
	ret = i915_gem_check_is_wedged(dev);
	if (ret)
		return ret;

3698 3699 3700 3701
#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif
3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
	if (args->flags & I915_EXEC_BSD) {
		if (!HAS_BSD(dev)) {
			DRM_ERROR("execbuf with wrong flag\n");
			return -EINVAL;
		}
		ring = &dev_priv->bsd_ring;
	} else {
		ring = &dev_priv->render_ring;
	}

3712 3713 3714 3715
	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}
3716
	object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
J
Jesse Barnes 已提交
3717 3718
	if (object_list == NULL) {
		DRM_ERROR("Failed to allocate object list for %d buffers\n",
3719 3720 3721 3722 3723
			  args->buffer_count);
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3724
	if (args->num_cliprects != 0) {
3725 3726
		cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
				    GFP_KERNEL);
3727 3728
		if (cliprects == NULL) {
			ret = -ENOMEM;
3729
			goto pre_mutex_err;
3730
		}
3731 3732 3733 3734 3735 3736 3737 3738

		ret = copy_from_user(cliprects,
				     (struct drm_clip_rect __user *)
				     (uintptr_t) args->cliprects_ptr,
				     sizeof(*cliprects) * args->num_cliprects);
		if (ret != 0) {
			DRM_ERROR("copy %d cliprects failed: %d\n",
				  args->num_cliprects, ret);
3739
			ret = -EFAULT;
3740 3741 3742 3743
			goto pre_mutex_err;
		}
	}

C
Chris Wilson 已提交
3744 3745 3746 3747 3748 3749
	request = kzalloc(sizeof(*request), GFP_KERNEL);
	if (request == NULL) {
		ret = -ENOMEM;
		goto pre_mutex_err;
	}

3750 3751 3752 3753 3754
	ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
					    &relocs);
	if (ret != 0)
		goto pre_mutex_err;

3755 3756 3757
	ret = i915_mutex_lock_interruptible(dev);
	if (ret)
		goto pre_mutex_err;
3758 3759 3760

	if (dev_priv->mm.suspended) {
		mutex_unlock(&dev->struct_mutex);
3761 3762
		ret = -EBUSY;
		goto pre_mutex_err;
3763 3764
	}

3765
	/* Look up object handles */
3766
	flips = 0;
3767 3768 3769 3770 3771 3772
	for (i = 0; i < args->buffer_count; i++) {
		object_list[i] = drm_gem_object_lookup(dev, file_priv,
						       exec_list[i].handle);
		if (object_list[i] == NULL) {
			DRM_ERROR("Invalid object handle %d at index %d\n",
				   exec_list[i].handle, i);
3773 3774
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3775
			ret = -ENOENT;
3776 3777
			goto err;
		}
3778

3779
		obj_priv = to_intel_bo(object_list[i]);
3780 3781 3782
		if (obj_priv->in_execbuffer) {
			DRM_ERROR("Object %p appears more than once in object list\n",
				   object_list[i]);
3783 3784
			/* prevent error path from reading uninitialized data */
			args->buffer_count = i + 1;
3785
			ret = -EINVAL;
3786 3787 3788
			goto err;
		}
		obj_priv->in_execbuffer = true;
3789 3790 3791 3792 3793 3794 3795 3796
		flips += atomic_read(&obj_priv->pending_flip);
	}

	if (flips > 0) {
		ret = i915_gem_wait_for_pending_flip(dev, object_list,
						     args->buffer_count);
		if (ret)
			goto err;
3797
	}
3798

3799 3800 3801
	/* Pin and relocate */
	for (pin_tries = 0; ; pin_tries++) {
		ret = 0;
3802 3803
		reloc_index = 0;

3804 3805 3806 3807 3808
		for (i = 0; i < args->buffer_count; i++) {
			object_list[i]->pending_read_domains = 0;
			object_list[i]->pending_write_domain = 0;
			ret = i915_gem_object_pin_and_relocate(object_list[i],
							       file_priv,
3809 3810
							       &exec_list[i],
							       &relocs[reloc_index]);
3811 3812 3813
			if (ret)
				break;
			pinned = i + 1;
3814
			reloc_index += exec_list[i].relocation_count;
3815 3816 3817 3818 3819 3820
		}
		/* success */
		if (ret == 0)
			break;

		/* error other than GTT full, or we've already tried again */
C
Chris Wilson 已提交
3821
		if (ret != -ENOSPC || pin_tries >= 1) {
3822 3823
			if (ret != -ERESTARTSYS) {
				unsigned long long total_size = 0;
3824 3825
				int num_fences = 0;
				for (i = 0; i < args->buffer_count; i++) {
3826
					obj_priv = to_intel_bo(object_list[i]);
3827

3828
					total_size += object_list[i]->size;
3829 3830 3831 3832 3833
					num_fences +=
						exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
						obj_priv->tiling_mode != I915_TILING_NONE;
				}
				DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3834
					  pinned+1, args->buffer_count,
3835 3836
					  total_size, num_fences,
					  ret);
3837 3838 3839 3840 3841 3842 3843 3844 3845 3846
				DRM_ERROR("%u objects [%u pinned, %u GTT], "
					  "%zu object bytes [%zu pinned], "
					  "%zu /%zu gtt bytes\n",
					  dev_priv->mm.object_count,
					  dev_priv->mm.pin_count,
					  dev_priv->mm.gtt_count,
					  dev_priv->mm.object_memory,
					  dev_priv->mm.pin_memory,
					  dev_priv->mm.gtt_memory,
					  dev_priv->mm.gtt_total);
3847
			}
3848 3849
			goto err;
		}
3850 3851 3852 3853

		/* unpin all of our buffers */
		for (i = 0; i < pinned; i++)
			i915_gem_object_unpin(object_list[i]);
3854
		pinned = 0;
3855 3856 3857

		/* evict everyone we can from the aperture */
		ret = i915_gem_evict_everything(dev);
3858
		if (ret && ret != -ENOSPC)
3859
			goto err;
3860 3861 3862 3863
	}

	/* Set the pending read domains for the batch buffer to COMMAND */
	batch_obj = object_list[args->buffer_count-1];
3864 3865 3866 3867 3868 3869
	if (batch_obj->pending_write_domain) {
		DRM_ERROR("Attempting to use self-modifying batch buffer\n");
		ret = -EINVAL;
		goto err;
	}
	batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3870

3871 3872 3873 3874 3875 3876 3877 3878
	/* Sanity check the batch buffer, prior to moving objects */
	exec_offset = exec_list[args->buffer_count - 1].offset;
	ret = i915_gem_check_execbuffer (args, exec_offset);
	if (ret != 0) {
		DRM_ERROR("execbuf with invalid offset/length\n");
		goto err;
	}

3879 3880 3881 3882 3883 3884
	/* Zero the global flush/invalidate flags. These
	 * will be modified as new domains are computed
	 * for each object
	 */
	dev->invalidate_domains = 0;
	dev->flush_domains = 0;
3885
	dev_priv->mm.flush_rings = 0;
3886

3887 3888 3889
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];

3890
		/* Compute new gpu domains and update invalidate/flush */
3891
		i915_gem_object_set_to_gpu_domain(obj);
3892 3893
	}

3894 3895 3896 3897 3898 3899 3900
	if (dev->invalidate_domains | dev->flush_domains) {
#if WATCH_EXEC
		DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
			  __func__,
			 dev->invalidate_domains,
			 dev->flush_domains);
#endif
3901
		i915_gem_flush(dev, file_priv,
3902
			       dev->invalidate_domains,
3903 3904
			       dev->flush_domains,
			       dev_priv->mm.flush_rings);
3905 3906
	}

3907 3908
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
3909
		struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
C
Chris Wilson 已提交
3910
		uint32_t old_write_domain = obj->write_domain;
3911 3912

		obj->write_domain = obj->pending_write_domain;
3913 3914 3915 3916
		if (obj->write_domain)
			list_move_tail(&obj_priv->gpu_write_list,
				       &dev_priv->mm.gpu_write_list);

C
Chris Wilson 已提交
3917 3918 3919
		trace_i915_gem_object_change_domain(obj,
						    obj->read_domains,
						    old_write_domain);
3920 3921
	}

3922 3923 3924 3925 3926 3927 3928 3929
#if WATCH_COHERENCY
	for (i = 0; i < args->buffer_count; i++) {
		i915_gem_object_check_coherency(object_list[i],
						exec_list[i].handle);
	}
#endif

#if WATCH_EXEC
3930
	i915_gem_dump_object(batch_obj,
3931 3932 3933 3934 3935 3936
			      args->batch_len,
			      __func__,
			      ~0);
#endif

	/* Exec the batchbuffer */
3937 3938
	ret = ring->dispatch_gem_execbuffer(dev, ring, args,
			cliprects, exec_offset);
3939 3940 3941 3942 3943 3944 3945 3946 3947
	if (ret) {
		DRM_ERROR("dispatch failed %d\n", ret);
		goto err;
	}

	/*
	 * Ensure that the commands in the batch buffer are
	 * finished before the interrupt fires
	 */
3948
	i915_retire_commands(dev, ring);
3949

3950 3951 3952 3953 3954 3955
	for (i = 0; i < args->buffer_count; i++) {
		struct drm_gem_object *obj = object_list[i];
		obj_priv = to_intel_bo(obj);

		i915_gem_object_move_to_active(obj, ring);
	}
3956

C
Chris Wilson 已提交
3957
	i915_add_request(dev, file_priv, request, ring);
C
Chris Wilson 已提交
3958
	request = NULL;
3959 3960

err:
3961 3962 3963
	for (i = 0; i < pinned; i++)
		i915_gem_object_unpin(object_list[i]);

3964 3965
	for (i = 0; i < args->buffer_count; i++) {
		if (object_list[i]) {
3966
			obj_priv = to_intel_bo(object_list[i]);
3967 3968
			obj_priv->in_execbuffer = false;
		}
3969
		drm_gem_object_unreference(object_list[i]);
3970
	}
3971 3972 3973

	mutex_unlock(&dev->struct_mutex);

3974
pre_mutex_err:
3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
	/* Copy the updated relocations out regardless of current error
	 * state.  Failure to update the relocs would mean that the next
	 * time userland calls execbuf, it would do so with presumed offset
	 * state that didn't match the actual object state.
	 */
	ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
					   relocs);
	if (ret2 != 0) {
		DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);

		if (ret == 0)
			ret = ret2;
	}

3989
	drm_free_large(object_list);
3990
	kfree(cliprects);
C
Chris Wilson 已提交
3991
	kfree(request);
3992 3993 3994 3995

	return ret;
}

J
Jesse Barnes 已提交
3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
/*
 * Legacy execbuffer just creates an exec2 list from the original exec object
 * list array and passes it to the real function.
 */
int
i915_gem_execbuffer(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer *args = data;
	struct drm_i915_gem_execbuffer2 exec2;
	struct drm_i915_gem_exec_object *exec_list = NULL;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret, i;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	/* Copy in the exec list from userland */
	exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec_list == NULL || exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -ENOMEM;
	}
	ret = copy_from_user(exec_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec_list);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	for (i = 0; i < args->buffer_count; i++) {
		exec2_list[i].handle = exec_list[i].handle;
		exec2_list[i].relocation_count = exec_list[i].relocation_count;
		exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
		exec2_list[i].alignment = exec_list[i].alignment;
		exec2_list[i].offset = exec_list[i].offset;
4048
		if (INTEL_INFO(dev)->gen < 4)
J
Jesse Barnes 已提交
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
			exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
		else
			exec2_list[i].flags = 0;
	}

	exec2.buffers_ptr = args->buffers_ptr;
	exec2.buffer_count = args->buffer_count;
	exec2.batch_start_offset = args->batch_start_offset;
	exec2.batch_len = args->batch_len;
	exec2.DR1 = args->DR1;
	exec2.DR4 = args->DR4;
	exec2.num_cliprects = args->num_cliprects;
	exec2.cliprects_ptr = args->cliprects_ptr;
4062
	exec2.flags = I915_EXEC_RENDER;
J
Jesse Barnes 已提交
4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140

	ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		for (i = 0; i < args->buffer_count; i++)
			exec_list[i].offset = exec2_list[i].offset;
		/* ... and back out to userspace */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec_list,
				   sizeof(*exec_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec_list);
	drm_free_large(exec2_list);
	return ret;
}

int
i915_gem_execbuffer2(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_execbuffer2 *args = data;
	struct drm_i915_gem_exec_object2 *exec2_list = NULL;
	int ret;

#if WATCH_EXEC
	DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
		  (int) args->buffers_ptr, args->buffer_count, args->batch_len);
#endif

	if (args->buffer_count < 1) {
		DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
		return -EINVAL;
	}

	exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
	if (exec2_list == NULL) {
		DRM_ERROR("Failed to allocate exec list for %d buffers\n",
			  args->buffer_count);
		return -ENOMEM;
	}
	ret = copy_from_user(exec2_list,
			     (struct drm_i915_relocation_entry __user *)
			     (uintptr_t) args->buffers_ptr,
			     sizeof(*exec2_list) * args->buffer_count);
	if (ret != 0) {
		DRM_ERROR("copy %d exec entries failed %d\n",
			  args->buffer_count, ret);
		drm_free_large(exec2_list);
		return -EFAULT;
	}

	ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
	if (!ret) {
		/* Copy the new buffer offsets back to the user's exec list. */
		ret = copy_to_user((struct drm_i915_relocation_entry __user *)
				   (uintptr_t) args->buffers_ptr,
				   exec2_list,
				   sizeof(*exec2_list) * args->buffer_count);
		if (ret) {
			ret = -EFAULT;
			DRM_ERROR("failed to copy %d exec entries "
				  "back to user (%d)\n",
				  args->buffer_count, ret);
		}
	}

	drm_free_large(exec2_list);
	return ret;
}

4141 4142 4143 4144
int
i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
{
	struct drm_device *dev = obj->dev;
C
Chris Wilson 已提交
4145
	struct drm_i915_private *dev_priv = dev->dev_private;
4146
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4147 4148
	int ret;

4149
	BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4150
	WARN_ON(i915_verify_lists(dev));
4151 4152 4153 4154 4155

	if (obj_priv->gtt_space != NULL) {
		if (alignment == 0)
			alignment = i915_gem_get_gtt_alignment(obj);
		if (obj_priv->gtt_offset & (alignment - 1)) {
4156 4157 4158 4159
			WARN(obj_priv->pin_count,
			     "bo is already pinned with incorrect alignment:"
			     " offset=%x, req.alignment=%x\n",
			     obj_priv->gtt_offset, alignment);
4160 4161 4162 4163 4164 4165
			ret = i915_gem_object_unbind(obj);
			if (ret)
				return ret;
		}
	}

4166 4167
	if (obj_priv->gtt_space == NULL) {
		ret = i915_gem_object_bind_to_gtt(obj, alignment);
4168
		if (ret)
4169
			return ret;
4170
	}
J
Jesse Barnes 已提交
4171

4172 4173 4174 4175 4176 4177
	obj_priv->pin_count++;

	/* If the object is not active and not pending a flush,
	 * remove it from the inactive list
	 */
	if (obj_priv->pin_count == 1) {
4178
		i915_gem_info_add_pin(dev_priv, obj->size);
C
Chris Wilson 已提交
4179 4180 4181
		if (!obj_priv->active)
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.pinned_list);
4182 4183
	}

4184
	WARN_ON(i915_verify_lists(dev));
4185 4186 4187 4188 4189 4190 4191 4192
	return 0;
}

void
i915_gem_object_unpin(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	drm_i915_private_t *dev_priv = dev->dev_private;
4193
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4194

4195
	WARN_ON(i915_verify_lists(dev));
4196 4197 4198 4199 4200 4201 4202 4203 4204
	obj_priv->pin_count--;
	BUG_ON(obj_priv->pin_count < 0);
	BUG_ON(obj_priv->gtt_space == NULL);

	/* If the object is no longer pinned, and is
	 * neither active nor being flushed, then stick it on
	 * the inactive list
	 */
	if (obj_priv->pin_count == 0) {
C
Chris Wilson 已提交
4205
		if (!obj_priv->active)
4206 4207
			list_move_tail(&obj_priv->list,
				       &dev_priv->mm.inactive_list);
4208
		i915_gem_info_remove_pin(dev_priv, obj->size);
4209
	}
4210
	WARN_ON(i915_verify_lists(dev));
4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225
}

int
i915_gem_pin_ioctl(struct drm_device *dev, void *data,
		   struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4226
		return -ENOENT;
4227
	}
4228
	obj_priv = to_intel_bo(obj);
4229

4230 4231 4232 4233 4234 4235
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

C
Chris Wilson 已提交
4236 4237
	if (obj_priv->madv != I915_MADV_WILLNEED) {
		DRM_ERROR("Attempting to pin a purgeable buffer\n");
4238 4239 4240 4241 4242
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}

J
Jesse Barnes 已提交
4243 4244 4245
	if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
4246
		drm_gem_object_unreference(obj);
4247
		mutex_unlock(&dev->struct_mutex);
J
Jesse Barnes 已提交
4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259
		return -EINVAL;
	}

	obj_priv->user_pin_count++;
	obj_priv->pin_filp = file_priv;
	if (obj_priv->user_pin_count == 1) {
		ret = i915_gem_object_pin(obj, args->alignment);
		if (ret != 0) {
			drm_gem_object_unreference(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
4260 4261 4262 4263 4264
	}

	/* XXX - flush the CPU caches for pinned objects
	 * as the X server doesn't manage domains yet
	 */
4265
	i915_gem_object_flush_cpu_write_domain(obj);
4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278
	args->offset = obj_priv->gtt_offset;
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

int
i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
		     struct drm_file *file_priv)
{
	struct drm_i915_gem_pin *args = data;
	struct drm_gem_object *obj;
J
Jesse Barnes 已提交
4279
	struct drm_i915_gem_object *obj_priv;
4280
	int ret;
4281 4282 4283 4284 4285

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
			  args->handle);
4286
		return -ENOENT;
4287 4288
	}

4289
	obj_priv = to_intel_bo(obj);
4290 4291 4292 4293 4294 4295 4296

	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

J
Jesse Barnes 已提交
4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308
	if (obj_priv->pin_filp != file_priv) {
		DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
			  args->handle);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	obj_priv->user_pin_count--;
	if (obj_priv->user_pin_count == 0) {
		obj_priv->pin_filp = NULL;
		i915_gem_object_unpin(obj);
	}
4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
	return 0;
}

int
i915_gem_busy_ioctl(struct drm_device *dev, void *data,
		    struct drm_file *file_priv)
{
	struct drm_i915_gem_busy *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4322 4323
	int ret;

4324 4325 4326 4327
	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
			  args->handle);
4328
		return -ENOENT;
4329 4330
	}

4331 4332 4333 4334
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
4335 4336
	}

4337 4338 4339 4340
	/* Count all active objects as busy, even if they are currently not used
	 * by the gpu. Users of this interface expect objects to eventually
	 * become non-busy without any further actions, therefore emit any
	 * necessary flushes here.
4341
	 */
4342 4343 4344 4345 4346 4347 4348 4349
	obj_priv = to_intel_bo(obj);
	args->busy = obj_priv->active;
	if (args->busy) {
		/* Unconditionally flush objects, even when the gpu still uses this
		 * object. Userspace calling this function indicates that it wants to
		 * use this buffer rather sooner than later, so issuing the required
		 * flush earlier is beneficial.
		 */
4350 4351
		if (obj->write_domain & I915_GEM_GPU_DOMAINS)
			i915_gem_flush_ring(dev, file_priv,
4352 4353
					    obj_priv->ring,
					    0, obj->write_domain);
4354 4355 4356 4357 4358 4359 4360 4361 4362 4363

		/* Update the active list for the hardware's current position.
		 * Otherwise this only updates on a delayed timer or when irqs
		 * are actually unmasked, and our working set ends up being
		 * larger than required.
		 */
		i915_gem_retire_requests_ring(dev, obj_priv->ring);

		args->busy = obj_priv->active;
	}
4364 4365 4366

	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);
4367
	return 0;
4368 4369 4370 4371 4372 4373 4374 4375 4376
}

int
i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
			struct drm_file *file_priv)
{
    return i915_gem_ring_throttle(dev, file_priv);
}

4377 4378 4379 4380 4381 4382 4383
int
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	struct drm_i915_gem_madvise *args = data;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
4384
	int ret;
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397

	switch (args->madv) {
	case I915_MADV_DONTNEED:
	case I915_MADV_WILLNEED:
	    break;
	default:
	    return -EINVAL;
	}

	obj = drm_gem_object_lookup(dev, file_priv, args->handle);
	if (obj == NULL) {
		DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
			  args->handle);
4398
		return -ENOENT;
4399
	}
4400
	obj_priv = to_intel_bo(obj);
4401

4402 4403 4404 4405 4406 4407
	ret = i915_mutex_lock_interruptible(dev);
	if (ret) {
		drm_gem_object_unreference_unlocked(obj);
		return ret;
	}

4408 4409 4410 4411 4412 4413 4414 4415
	if (obj_priv->pin_count) {
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);

		DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
		return -EINVAL;
	}

C
Chris Wilson 已提交
4416 4417
	if (obj_priv->madv != __I915_MADV_PURGED)
		obj_priv->madv = args->madv;
4418

4419 4420 4421 4422 4423
	/* if the object is no longer bound, discard its backing storage */
	if (i915_gem_object_is_purgeable(obj_priv) &&
	    obj_priv->gtt_space == NULL)
		i915_gem_object_truncate(obj);

C
Chris Wilson 已提交
4424 4425
	args->retained = obj_priv->madv != __I915_MADV_PURGED;

4426 4427 4428 4429 4430 4431
	drm_gem_object_unreference(obj);
	mutex_unlock(&dev->struct_mutex);

	return 0;
}

4432 4433 4434
struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
					      size_t size)
{
4435
	struct drm_i915_private *dev_priv = dev->dev_private;
4436
	struct drm_i915_gem_object *obj;
4437

4438 4439 4440
	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
	if (obj == NULL)
		return NULL;
4441

4442 4443 4444 4445
	if (drm_gem_object_init(dev, &obj->base, size) != 0) {
		kfree(obj);
		return NULL;
	}
4446

4447 4448
	i915_gem_info_add_obj(dev_priv, size);

4449 4450
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4451

4452
	obj->agp_type = AGP_USER_MEMORY;
4453
	obj->base.driver_private = NULL;
4454 4455 4456 4457
	obj->fence_reg = I915_FENCE_REG_NONE;
	INIT_LIST_HEAD(&obj->list);
	INIT_LIST_HEAD(&obj->gpu_write_list);
	obj->madv = I915_MADV_WILLNEED;
4458

4459 4460 4461 4462 4463 4464 4465 4466
	trace_i915_gem_object_create(&obj->base);

	return &obj->base;
}

int i915_gem_init_object(struct drm_gem_object *obj)
{
	BUG();
4467

4468 4469 4470
	return 0;
}

4471
static void i915_gem_free_object_tail(struct drm_gem_object *obj)
4472
{
4473
	struct drm_device *dev = obj->dev;
4474
	drm_i915_private_t *dev_priv = dev->dev_private;
4475
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4476
	int ret;
4477

4478 4479 4480 4481 4482 4483
	ret = i915_gem_object_unbind(obj);
	if (ret == -ERESTARTSYS) {
		list_move(&obj_priv->list,
			  &dev_priv->mm.deferred_free_list);
		return;
	}
4484

4485 4486
	if (obj_priv->mmap_offset)
		i915_gem_free_mmap_offset(obj);
4487

4488
	drm_gem_object_release(obj);
4489
	i915_gem_info_remove_obj(dev_priv, obj->size);
4490

4491
	kfree(obj_priv->page_cpu_valid);
4492
	kfree(obj_priv->bit_17);
4493
	kfree(obj_priv);
4494 4495
}

4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511
void i915_gem_free_object(struct drm_gem_object *obj)
{
	struct drm_device *dev = obj->dev;
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);

	trace_i915_gem_object_destroy(obj);

	while (obj_priv->pin_count > 0)
		i915_gem_object_unpin(obj);

	if (obj_priv->phys_obj)
		i915_gem_detach_phys_object(dev, obj);

	i915_gem_free_object_tail(obj);
}

4512 4513 4514 4515 4516
int
i915_gem_idle(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4517

4518
	mutex_lock(&dev->struct_mutex);
C
Chris Wilson 已提交
4519

4520
	if (dev_priv->mm.suspended ||
4521 4522 4523
			(dev_priv->render_ring.gem_object == NULL) ||
			(HAS_BSD(dev) &&
			 dev_priv->bsd_ring.gem_object == NULL)) {
4524 4525
		mutex_unlock(&dev->struct_mutex);
		return 0;
4526 4527
	}

4528
	ret = i915_gpu_idle(dev);
4529 4530
	if (ret) {
		mutex_unlock(&dev->struct_mutex);
4531
		return ret;
4532
	}
4533

4534 4535
	/* Under UMS, be paranoid and evict. */
	if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4536
		ret = i915_gem_evict_inactive(dev);
4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547
		if (ret) {
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	/* Hack!  Don't let anybody do execbuf while we don't control the chip.
	 * We need to replace this with a semaphore, or something.
	 * And not confound mm.suspended!
	 */
	dev_priv->mm.suspended = 1;
4548
	del_timer_sync(&dev_priv->hangcheck_timer);
4549 4550

	i915_kernel_lost_context(dev);
4551
	i915_gem_cleanup_ringbuffer(dev);
4552

4553 4554
	mutex_unlock(&dev->struct_mutex);

4555 4556 4557
	/* Cancel the retire work handler, which should be idle now. */
	cancel_delayed_work_sync(&dev_priv->mm.retire_work);

4558 4559 4560
	return 0;
}

4561 4562 4563 4564
/*
 * 965+ support PIPE_CONTROL commands, which provide finer grained control
 * over cache flushing.
 */
4565
static int
4566 4567 4568 4569 4570 4571 4572
i915_gem_init_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;
	int ret;

4573
	obj = i915_gem_alloc_object(dev, 4096);
4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603
	if (obj == NULL) {
		DRM_ERROR("Failed to allocate seqno page\n");
		ret = -ENOMEM;
		goto err;
	}
	obj_priv = to_intel_bo(obj);
	obj_priv->agp_type = AGP_USER_CACHED_MEMORY;

	ret = i915_gem_object_pin(obj, 4096);
	if (ret)
		goto err_unref;

	dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
	dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
	if (dev_priv->seqno_page == NULL)
		goto err_unpin;

	dev_priv->seqno_obj = obj;
	memset(dev_priv->seqno_page, 0, PAGE_SIZE);

	return 0;

err_unpin:
	i915_gem_object_unpin(obj);
err_unref:
	drm_gem_object_unreference(obj);
err:
	return ret;
}

4604 4605

static void
4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619
i915_gem_cleanup_pipe_control(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_gem_object *obj;
	struct drm_i915_gem_object *obj_priv;

	obj = dev_priv->seqno_obj;
	obj_priv = to_intel_bo(obj);
	kunmap(obj_priv->pages[0]);
	i915_gem_object_unpin(obj);
	drm_gem_object_unreference(obj);
	dev_priv->seqno_obj = NULL;

	dev_priv->seqno_page = NULL;
4620 4621
}

4622 4623 4624 4625 4626
int
i915_gem_init_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;
4627

4628 4629 4630 4631 4632
	if (HAS_PIPE_CONTROL(dev)) {
		ret = i915_gem_init_pipe_control(dev);
		if (ret)
			return ret;
	}
4633

4634
	ret = intel_init_render_ring_buffer(dev);
4635 4636 4637 4638
	if (ret)
		goto cleanup_pipe_control;

	if (HAS_BSD(dev)) {
4639
		ret = intel_init_bsd_ring_buffer(dev);
4640 4641
		if (ret)
			goto cleanup_render_ring;
4642
	}
4643

4644 4645
	dev_priv->next_seqno = 1;

4646 4647 4648 4649 4650 4651 4652
	return 0;

cleanup_render_ring:
	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
cleanup_pipe_control:
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
4653 4654 4655 4656 4657 4658 4659 4660 4661
	return ret;
}

void
i915_gem_cleanup_ringbuffer(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;

	intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4662 4663
	if (HAS_BSD(dev))
		intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4664 4665 4666 4667
	if (HAS_PIPE_CONTROL(dev))
		i915_gem_cleanup_pipe_control(dev);
}

4668 4669 4670 4671 4672 4673 4674
int
i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int ret;

J
Jesse Barnes 已提交
4675 4676 4677
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4678
	if (atomic_read(&dev_priv->mm.wedged)) {
4679
		DRM_ERROR("Reenabling wedged hardware, good luck\n");
4680
		atomic_set(&dev_priv->mm.wedged, 0);
4681 4682 4683
	}

	mutex_lock(&dev->struct_mutex);
4684 4685 4686
	dev_priv->mm.suspended = 0;

	ret = i915_gem_init_ringbuffer(dev);
4687 4688
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
4689
		return ret;
4690
	}
4691

4692
	BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4693
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4694 4695
	BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
	BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4696
	BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4697
	BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4698
	mutex_unlock(&dev->struct_mutex);
4699

4700 4701 4702
	ret = drm_irq_install(dev);
	if (ret)
		goto cleanup_ringbuffer;
4703

4704
	return 0;
4705 4706 4707 4708 4709 4710 4711 4712

cleanup_ringbuffer:
	mutex_lock(&dev->struct_mutex);
	i915_gem_cleanup_ringbuffer(dev);
	dev_priv->mm.suspended = 1;
	mutex_unlock(&dev->struct_mutex);

	return ret;
4713 4714 4715 4716 4717 4718
}

int
i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
		       struct drm_file *file_priv)
{
J
Jesse Barnes 已提交
4719 4720 4721
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return 0;

4722
	drm_irq_uninstall(dev);
4723
	return i915_gem_idle(dev);
4724 4725 4726 4727 4728 4729 4730
}

void
i915_gem_lastclose(struct drm_device *dev)
{
	int ret;

4731 4732 4733
	if (drm_core_check_feature(dev, DRIVER_MODESET))
		return;

4734 4735 4736
	ret = i915_gem_idle(dev);
	if (ret)
		DRM_ERROR("failed to idle hardware: %d\n", ret);
4737 4738 4739 4740 4741
}

void
i915_gem_load(struct drm_device *dev)
{
4742
	int i;
4743 4744 4745
	drm_i915_private_t *dev_priv = dev->dev_private;

	INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4746
	INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4747
	INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
C
Chris Wilson 已提交
4748
	INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
4749
	INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4750
	INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
4751 4752
	INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
	INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4753 4754 4755 4756
	if (HAS_BSD(dev)) {
		INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
		INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
	}
4757 4758
	for (i = 0; i < 16; i++)
		INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4759 4760
	INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
			  i915_gem_retire_work_handler);
4761
	init_completion(&dev_priv->error_completion);
4762 4763 4764 4765
	spin_lock(&shrink_list_lock);
	list_add(&dev_priv->mm.shrink_list, &shrink_list);
	spin_unlock(&shrink_list_lock);

4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
	if (IS_GEN3(dev)) {
		u32 tmp = I915_READ(MI_ARB_STATE);
		if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
			/* arb state is a masked write, so set bit + bit in mask */
			tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
			I915_WRITE(MI_ARB_STATE, tmp);
		}
	}

4776
	/* Old X drivers will take 0-2 for front, back, depth buffers */
4777 4778
	if (!drm_core_check_feature(dev, DRIVER_MODESET))
		dev_priv->fence_reg_start = 3;
4779

4780
	if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4781 4782 4783 4784
		dev_priv->num_fence_regs = 16;
	else
		dev_priv->num_fence_regs = 8;

4785
	/* Initialize fence registers to zero */
4786 4787 4788 4789 4790 4791 4792
	switch (INTEL_INFO(dev)->gen) {
	case 6:
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (i * 8), 0);
		break;
	case 5:
	case 4:
4793 4794
		for (i = 0; i < 16; i++)
			I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4795 4796
		break;
	case 3:
4797 4798 4799
		if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
			for (i = 0; i < 8; i++)
				I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4800 4801 4802 4803
	case 2:
		for (i = 0; i < 8; i++)
			I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
		break;
4804
	}
4805
	i915_gem_detect_bit_6_swizzle(dev);
4806
	init_waitqueue_head(&dev_priv->pending_flip_queue);
4807
}
4808 4809 4810 4811 4812

/*
 * Create a physically contiguous memory object for this object
 * e.g. for cursor + overlay regs
 */
4813 4814
static int i915_gem_init_phys_object(struct drm_device *dev,
				     int id, int size, int align)
4815 4816 4817 4818 4819 4820 4821 4822
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;
	int ret;

	if (dev_priv->mm.phys_objs[id - 1] || !size)
		return 0;

4823
	phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4824 4825 4826 4827 4828
	if (!phys_obj)
		return -ENOMEM;

	phys_obj->id = id;

4829
	phys_obj->handle = drm_pci_alloc(dev, size, align);
4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841
	if (!phys_obj->handle) {
		ret = -ENOMEM;
		goto kfree_obj;
	}
#ifdef CONFIG_X86
	set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif

	dev_priv->mm.phys_objs[id - 1] = phys_obj;

	return 0;
kfree_obj:
4842
	kfree(phys_obj);
4843 4844 4845
	return ret;
}

4846
static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_phys_object *phys_obj;

	if (!dev_priv->mm.phys_objs[id - 1])
		return;

	phys_obj = dev_priv->mm.phys_objs[id - 1];
	if (phys_obj->cur_obj) {
		i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
	}

#ifdef CONFIG_X86
	set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
#endif
	drm_pci_free(dev, phys_obj->handle);
	kfree(phys_obj);
	dev_priv->mm.phys_objs[id - 1] = NULL;
}

void i915_gem_free_all_phys_object(struct drm_device *dev)
{
	int i;

4871
	for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
		i915_gem_free_phys_object(dev, i);
}

void i915_gem_detach_phys_object(struct drm_device *dev,
				 struct drm_gem_object *obj)
{
	struct drm_i915_gem_object *obj_priv;
	int i;
	int ret;
	int page_count;

4883
	obj_priv = to_intel_bo(obj);
4884 4885 4886
	if (!obj_priv->phys_obj)
		return;

4887
	ret = i915_gem_object_get_pages(obj, 0);
4888 4889 4890 4891 4892 4893
	if (ret)
		goto out;

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4894
		char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4895 4896 4897 4898 4899
		char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(dst, KM_USER0);
	}
4900
	drm_clflush_pages(obj_priv->pages, page_count);
4901
	drm_agp_chipset_flush(dev);
4902 4903

	i915_gem_object_put_pages(obj);
4904 4905 4906 4907 4908 4909 4910
out:
	obj_priv->phys_obj->cur_obj = NULL;
	obj_priv->phys_obj = NULL;
}

int
i915_gem_attach_phys_object(struct drm_device *dev,
4911 4912 4913
			    struct drm_gem_object *obj,
			    int id,
			    int align)
4914 4915 4916 4917 4918 4919 4920 4921 4922 4923
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_gem_object *obj_priv;
	int ret = 0;
	int page_count;
	int i;

	if (id > I915_MAX_PHYS_OBJECT)
		return -EINVAL;

4924
	obj_priv = to_intel_bo(obj);
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934

	if (obj_priv->phys_obj) {
		if (obj_priv->phys_obj->id == id)
			return 0;
		i915_gem_detach_phys_object(dev, obj);
	}

	/* create a new object */
	if (!dev_priv->mm.phys_objs[id - 1]) {
		ret = i915_gem_init_phys_object(dev, id,
4935
						obj->size, align);
4936
		if (ret) {
4937
			DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4938 4939 4940 4941 4942 4943 4944 4945
			goto out;
		}
	}

	/* bind to the object */
	obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
	obj_priv->phys_obj->cur_obj = obj;

4946
	ret = i915_gem_object_get_pages(obj, 0);
4947 4948 4949 4950 4951 4952 4953 4954
	if (ret) {
		DRM_ERROR("failed to get page list\n");
		goto out;
	}

	page_count = obj->size / PAGE_SIZE;

	for (i = 0; i < page_count; i++) {
4955
		char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4956 4957 4958 4959 4960 4961
		char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);

		memcpy(dst, src, PAGE_SIZE);
		kunmap_atomic(src, KM_USER0);
	}

4962 4963
	i915_gem_object_put_pages(obj);

4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
	return 0;
out:
	return ret;
}

static int
i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
		     struct drm_i915_gem_pwrite *args,
		     struct drm_file *file_priv)
{
4974
	struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4975 4976 4977 4978 4979 4980 4981
	void *obj_addr;
	int ret;
	char __user *user_data;

	user_data = (char __user *) (uintptr_t) args->data_ptr;
	obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;

4982
	DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4983 4984 4985 4986 4987 4988 4989
	ret = copy_from_user(obj_addr, user_data, args->size);
	if (ret)
		return -EFAULT;

	drm_agp_chipset_flush(dev);
	return 0;
}
4990

4991
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4992
{
4993
	struct drm_i915_file_private *file_priv = file->driver_priv;
4994 4995 4996 4997 4998

	/* Clean up our request list when the client is going away, so that
	 * later retire_requests won't dereference our soon-to-be-gone
	 * file_priv.
	 */
4999
	spin_lock(&file_priv->mm.lock);
5000 5001 5002 5003 5004 5005 5006 5007 5008
	while (!list_empty(&file_priv->mm.request_list)) {
		struct drm_i915_gem_request *request;

		request = list_first_entry(&file_priv->mm.request_list,
					   struct drm_i915_gem_request,
					   client_list);
		list_del(&request->client_list);
		request->file_priv = NULL;
	}
5009
	spin_unlock(&file_priv->mm.lock);
5010
}
5011

5012 5013 5014 5015 5016 5017 5018
static int
i915_gpu_is_active(struct drm_device *dev)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	int lists_empty;

	lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
5019
		      list_empty(&dev_priv->render_ring.active_list);
5020 5021
	if (HAS_BSD(dev))
		lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
5022 5023 5024 5025

	return !lists_empty;
}

5026
static int
5027
i915_gem_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054
{
	drm_i915_private_t *dev_priv, *next_dev;
	struct drm_i915_gem_object *obj_priv, *next_obj;
	int cnt = 0;
	int would_deadlock = 1;

	/* "fast-path" to count number of available objects */
	if (nr_to_scan == 0) {
		spin_lock(&shrink_list_lock);
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (mutex_trylock(&dev->struct_mutex)) {
				list_for_each_entry(obj_priv,
						    &dev_priv->mm.inactive_list,
						    list)
					cnt++;
				mutex_unlock(&dev->struct_mutex);
			}
		}
		spin_unlock(&shrink_list_lock);

		return (cnt / 100) * sysctl_vfs_cache_pressure;
	}

	spin_lock(&shrink_list_lock);

5055
rescan:
5056 5057 5058 5059 5060 5061 5062 5063 5064
	/* first scan for clean buffers */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);
5065
		i915_gem_retire_requests(dev);
5066 5067 5068 5069 5070

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (i915_gem_object_is_purgeable(obj_priv)) {
5071
				i915_gem_object_unbind(&obj_priv->base);
5072 5073 5074 5075 5076 5077 5078 5079
				if (--nr_to_scan <= 0)
					break;
			}
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

5080 5081
		would_deadlock = 0;

5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099
		if (nr_to_scan <= 0)
			break;
	}

	/* second pass, evict/count anything still on the inactive list */
	list_for_each_entry_safe(dev_priv, next_dev,
				 &shrink_list, mm.shrink_list) {
		struct drm_device *dev = dev_priv->dev;

		if (! mutex_trylock(&dev->struct_mutex))
			continue;

		spin_unlock(&shrink_list_lock);

		list_for_each_entry_safe(obj_priv, next_obj,
					 &dev_priv->mm.inactive_list,
					 list) {
			if (nr_to_scan > 0) {
5100
				i915_gem_object_unbind(&obj_priv->base);
5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111
				nr_to_scan--;
			} else
				cnt++;
		}

		spin_lock(&shrink_list_lock);
		mutex_unlock(&dev->struct_mutex);

		would_deadlock = 0;
	}

5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141
	if (nr_to_scan) {
		int active = 0;

		/*
		 * We are desperate for pages, so as a last resort, wait
		 * for the GPU to finish and discard whatever we can.
		 * This has a dramatic impact to reduce the number of
		 * OOM-killer events whilst running the GPU aggressively.
		 */
		list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
			struct drm_device *dev = dev_priv->dev;

			if (!mutex_trylock(&dev->struct_mutex))
				continue;

			spin_unlock(&shrink_list_lock);

			if (i915_gpu_is_active(dev)) {
				i915_gpu_idle(dev);
				active++;
			}

			spin_lock(&shrink_list_lock);
			mutex_unlock(&dev->struct_mutex);
		}

		if (active)
			goto rescan;
	}

5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167
	spin_unlock(&shrink_list_lock);

	if (would_deadlock)
		return -1;
	else if (cnt > 0)
		return (cnt / 100) * sysctl_vfs_cache_pressure;
	else
		return 0;
}

static struct shrinker shrinker = {
	.shrink = i915_gem_shrink,
	.seeks = DEFAULT_SEEKS,
};

__init void
i915_gem_shrinker_init(void)
{
    register_shrinker(&shrinker);
}

__exit void
i915_gem_shrinker_exit(void)
{
    unregister_shrinker(&shrinker);
}