percpu.c 82.6 KB
Newer Older
1
/*
2
 * mm/percpu.c - percpu memory allocator
3 4 5 6
 *
 * Copyright (C) 2009		SUSE Linux Products GmbH
 * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
 *
7 8 9
 * Copyright (C) 2017		Facebook Inc.
 * Copyright (C) 2017		Dennis Zhou <dennisszhou@gmail.com>
 *
10
 * This file is released under the GPLv2 license.
11
 *
12 13 14 15
 * The percpu allocator handles both static and dynamic areas.  Percpu
 * areas are allocated in chunks which are divided into units.  There is
 * a 1-to-1 mapping for units to possible cpus.  These units are grouped
 * based on NUMA properties of the machine.
16 17 18 19 20 21
 *
 *  c0                           c1                         c2
 *  -------------------          -------------------        ------------
 * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
 *  -------------------  ......  -------------------  ....  ------------
 *
22 23 24 25 26 27 28 29 30
 * Allocation is done by offsets into a unit's address space.  Ie., an
 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
 * c1:u1, c1:u2, etc.  On NUMA machines, the mapping may be non-linear
 * and even sparse.  Access is handled by configuring percpu base
 * registers according to the cpu to unit mappings and offsetting the
 * base address using pcpu_unit_size.
 *
 * There is special consideration for the first chunk which must handle
 * the static percpu variables in the kernel image as allocation services
31
 * are not online yet.  In short, the first chunk is structured like so:
32 33 34 35 36 37 38
 *
 *                  <Static | [Reserved] | Dynamic>
 *
 * The static data is copied from the original section managed by the
 * linker.  The reserved section, if non-zero, primarily manages static
 * percpu variables from kernel modules.  Finally, the dynamic section
 * takes care of normal allocations.
39
 *
40 41 42 43 44 45 46 47 48 49 50 51 52 53
 * The allocator organizes chunks into lists according to free size and
 * tries to allocate from the fullest chunk first.  Each chunk is managed
 * by a bitmap with metadata blocks.  The allocation map is updated on
 * every allocation and free to reflect the current state while the boundary
 * map is only updated on allocation.  Each metadata block contains
 * information to help mitigate the need to iterate over large portions
 * of the bitmap.  The reverse mapping from page to chunk is stored in
 * the page's index.  Lastly, units are lazily backed and grow in unison.
 *
 * There is a unique conversion that goes on here between bytes and bits.
 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE.  The chunk
 * tracks the number of pages it is responsible for in nr_pages.  Helper
 * functions are used to convert from between the bytes, bits, and blocks.
 * All hints are managed in bits unless explicitly stated.
54
 *
55
 * To use this allocator, arch code should do the following:
56 57
 *
 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
58 59
 *   regular address to percpu pointer and back if they need to be
 *   different from the default
60
 *
61 62
 * - use pcpu_setup_first_chunk() during percpu area initialization to
 *   setup the first chunk containing the kernel static percpu area
63 64
 */

65 66
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

67 68
#include <linux/bitmap.h>
#include <linux/bootmem.h>
69
#include <linux/err.h>
70
#include <linux/lcm.h>
71
#include <linux/list.h>
72
#include <linux/log2.h>
73 74 75 76 77 78
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/percpu.h>
#include <linux/pfn.h>
#include <linux/slab.h>
79
#include <linux/spinlock.h>
80
#include <linux/vmalloc.h>
81
#include <linux/workqueue.h>
82
#include <linux/kmemleak.h>
83 84

#include <asm/cacheflush.h>
85
#include <asm/sections.h>
86
#include <asm/tlbflush.h>
87
#include <asm/io.h>
88

89 90 91
#define CREATE_TRACE_POINTS
#include <trace/events/percpu.h>

92 93
#include "percpu-internal.h"

94 95 96
/* the slots are sorted by free bytes left, 1-31 bytes share the same slot */
#define PCPU_SLOT_BASE_SHIFT		5

97 98
#define PCPU_EMPTY_POP_PAGES_LOW	2
#define PCPU_EMPTY_POP_PAGES_HIGH	4
99

100
#ifdef CONFIG_SMP
101 102 103
/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
#ifndef __addr_to_pcpu_ptr
#define __addr_to_pcpu_ptr(addr)					\
104 105 106
	(void __percpu *)((unsigned long)(addr) -			\
			  (unsigned long)pcpu_base_addr	+		\
			  (unsigned long)__per_cpu_start)
107 108 109
#endif
#ifndef __pcpu_ptr_to_addr
#define __pcpu_ptr_to_addr(ptr)						\
110 111 112
	(void __force *)((unsigned long)(ptr) +				\
			 (unsigned long)pcpu_base_addr -		\
			 (unsigned long)__per_cpu_start)
113
#endif
114 115 116 117 118
#else	/* CONFIG_SMP */
/* on UP, it's always identity mapped */
#define __addr_to_pcpu_ptr(addr)	(void __percpu *)(addr)
#define __pcpu_ptr_to_addr(ptr)		(void __force *)(ptr)
#endif	/* CONFIG_SMP */
119

120 121 122 123
static int pcpu_unit_pages __ro_after_init;
static int pcpu_unit_size __ro_after_init;
static int pcpu_nr_units __ro_after_init;
static int pcpu_atom_size __ro_after_init;
124
int pcpu_nr_slots __ro_after_init;
125
static size_t pcpu_chunk_struct_size __ro_after_init;
126

T
Tejun Heo 已提交
127
/* cpus with the lowest and highest unit addresses */
128 129
static unsigned int pcpu_low_unit_cpu __ro_after_init;
static unsigned int pcpu_high_unit_cpu __ro_after_init;
130

131
/* the address of the first chunk which starts with the kernel static area */
132
void *pcpu_base_addr __ro_after_init;
133 134
EXPORT_SYMBOL_GPL(pcpu_base_addr);

135 136
static const int *pcpu_unit_map __ro_after_init;		/* cpu -> unit */
const unsigned long *pcpu_unit_offsets __ro_after_init;	/* cpu -> unit offset */
137

138
/* group information, used for vm allocation */
139 140 141
static int pcpu_nr_groups __ro_after_init;
static const unsigned long *pcpu_group_offsets __ro_after_init;
static const size_t *pcpu_group_sizes __ro_after_init;
142

143 144 145 146 147
/*
 * The first chunk which always exists.  Note that unlike other
 * chunks, this one can be allocated and mapped in several different
 * ways and thus often doesn't live in the vmalloc area.
 */
148
struct pcpu_chunk *pcpu_first_chunk __ro_after_init;
149 150 151

/*
 * Optional reserved chunk.  This chunk reserves part of the first
152 153
 * chunk and serves it for reserved allocations.  When the reserved
 * region doesn't exist, the following variable is NULL.
154
 */
155
struct pcpu_chunk *pcpu_reserved_chunk __ro_after_init;
156

157
DEFINE_SPINLOCK(pcpu_lock);	/* all internal data structures */
158
static DEFINE_MUTEX(pcpu_alloc_mutex);	/* chunk create/destroy, [de]pop, map ext */
159

160
struct list_head *pcpu_slot __ro_after_init; /* chunk list slots */
161

162 163 164
/* chunks which need their map areas extended, protected by pcpu_lock */
static LIST_HEAD(pcpu_map_extend_chunks);

165 166 167 168
/*
 * The number of empty populated pages, protected by pcpu_lock.  The
 * reserved chunk doesn't contribute to the count.
 */
169
int pcpu_nr_empty_pop_pages;
170

171 172 173 174 175 176
/*
 * Balance work is used to populate or destroy chunks asynchronously.  We
 * try to keep the number of populated free pages between
 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
 * empty chunk.
 */
177 178
static void pcpu_balance_workfn(struct work_struct *work);
static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn);
179 180 181 182 183 184 185 186
static bool pcpu_async_enabled __read_mostly;
static bool pcpu_atomic_alloc_failed;

static void pcpu_schedule_balance_work(void)
{
	if (pcpu_async_enabled)
		schedule_work(&pcpu_balance_work);
}
187

188
/**
189 190 191
 * pcpu_addr_in_chunk - check if the address is served from this chunk
 * @chunk: chunk of interest
 * @addr: percpu address
192 193
 *
 * RETURNS:
194
 * True if the address is served from this chunk.
195
 */
196
static bool pcpu_addr_in_chunk(struct pcpu_chunk *chunk, void *addr)
197
{
198 199
	void *start_addr, *end_addr;

200
	if (!chunk)
201
		return false;
202

203 204 205
	start_addr = chunk->base_addr + chunk->start_offset;
	end_addr = chunk->base_addr + chunk->nr_pages * PAGE_SIZE -
		   chunk->end_offset;
206 207

	return addr >= start_addr && addr < end_addr;
208 209
}

210
static int __pcpu_size_to_slot(int size)
211
{
T
Tejun Heo 已提交
212
	int highbit = fls(size);	/* size is in bytes */
213 214 215
	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
}

216 217 218 219 220 221 222
static int pcpu_size_to_slot(int size)
{
	if (size == pcpu_unit_size)
		return pcpu_nr_slots - 1;
	return __pcpu_size_to_slot(size);
}

223 224
static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
{
225
	if (chunk->free_bytes < PCPU_MIN_ALLOC_SIZE || chunk->contig_bits == 0)
226 227
		return 0;

228
	return pcpu_size_to_slot(chunk->free_bytes);
229 230
}

231 232 233 234 235 236 237 238 239 240 241 242 243
/* set the pointer to a chunk in a page struct */
static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
{
	page->index = (unsigned long)pcpu;
}

/* obtain pointer to a chunk from a page struct */
static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
{
	return (struct pcpu_chunk *)page->index;
}

static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx)
244
{
245
	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
246 247
}

248 249 250 251 252
static unsigned long pcpu_unit_page_offset(unsigned int cpu, int page_idx)
{
	return pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT);
}

253 254
static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
				     unsigned int cpu, int page_idx)
255
{
256 257
	return (unsigned long)chunk->base_addr +
	       pcpu_unit_page_offset(cpu, page_idx);
258 259
}

260
static void pcpu_next_unpop(unsigned long *bitmap, int *rs, int *re, int end)
T
Tejun Heo 已提交
261
{
262 263
	*rs = find_next_zero_bit(bitmap, end, *rs);
	*re = find_next_bit(bitmap, end, *rs + 1);
T
Tejun Heo 已提交
264 265
}

266
static void pcpu_next_pop(unsigned long *bitmap, int *rs, int *re, int end)
T
Tejun Heo 已提交
267
{
268 269
	*rs = find_next_bit(bitmap, end, *rs);
	*re = find_next_zero_bit(bitmap, end, *rs + 1);
T
Tejun Heo 已提交
270 271 272
}

/*
273 274 275
 * Bitmap region iterators.  Iterates over the bitmap between
 * [@start, @end) in @chunk.  @rs and @re should be integer variables
 * and will be set to start and end index of the current free region.
T
Tejun Heo 已提交
276
 */
277 278 279 280
#define pcpu_for_each_unpop_region(bitmap, rs, re, start, end)		     \
	for ((rs) = (start), pcpu_next_unpop((bitmap), &(rs), &(re), (end)); \
	     (rs) < (re);						     \
	     (rs) = (re) + 1, pcpu_next_unpop((bitmap), &(rs), &(re), (end)))
T
Tejun Heo 已提交
281

282 283 284 285
#define pcpu_for_each_pop_region(bitmap, rs, re, start, end)		     \
	for ((rs) = (start), pcpu_next_pop((bitmap), &(rs), &(re), (end));   \
	     (rs) < (re);						     \
	     (rs) = (re) + 1, pcpu_next_pop((bitmap), &(rs), &(re), (end)))
T
Tejun Heo 已提交
286

287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/*
 * The following are helper functions to help access bitmaps and convert
 * between bitmap offsets to address offsets.
 */
static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk *chunk, int index)
{
	return chunk->alloc_map +
	       (index * PCPU_BITMAP_BLOCK_BITS / BITS_PER_LONG);
}

static unsigned long pcpu_off_to_block_index(int off)
{
	return off / PCPU_BITMAP_BLOCK_BITS;
}

static unsigned long pcpu_off_to_block_off(int off)
{
	return off & (PCPU_BITMAP_BLOCK_BITS - 1);
}

307 308 309 310 311
static unsigned long pcpu_block_off_to_off(int index, int off)
{
	return index * PCPU_BITMAP_BLOCK_BITS + off;
}

312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
/**
 * pcpu_next_md_free_region - finds the next hint free area
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of free area
 *
 * Helper function for pcpu_for_each_md_free_region.  It checks
 * block->contig_hint and performs aggregation across blocks to find the
 * next hint.  It modifies bit_off and bits in-place to be consumed in the
 * loop.
 */
static void pcpu_next_md_free_region(struct pcpu_chunk *chunk, int *bit_off,
				     int *bits)
{
	int i = pcpu_off_to_block_index(*bit_off);
	int block_off = pcpu_off_to_block_off(*bit_off);
	struct pcpu_block_md *block;

	*bits = 0;
	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
	     block++, i++) {
		/* handles contig area across blocks */
		if (*bits) {
			*bits += block->left_free;
			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
				continue;
			return;
		}

		/*
		 * This checks three things.  First is there a contig_hint to
		 * check.  Second, have we checked this hint before by
		 * comparing the block_off.  Third, is this the same as the
		 * right contig hint.  In the last case, it spills over into
		 * the next block and should be handled by the contig area
		 * across blocks code.
		 */
		*bits = block->contig_hint;
		if (*bits && block->contig_hint_start >= block_off &&
		    *bits + block->contig_hint_start < PCPU_BITMAP_BLOCK_BITS) {
			*bit_off = pcpu_block_off_to_off(i,
					block->contig_hint_start);
			return;
		}
356 357
		/* reset to satisfy the second predicate above */
		block_off = 0;
358 359 360 361 362 363

		*bits = block->right_free;
		*bit_off = (i + 1) * PCPU_BITMAP_BLOCK_BITS - block->right_free;
	}
}

364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
/**
 * pcpu_next_fit_region - finds fit areas for a given allocation request
 * @chunk: chunk of interest
 * @alloc_bits: size of allocation
 * @align: alignment of area (max PAGE_SIZE)
 * @bit_off: chunk offset
 * @bits: size of free area
 *
 * Finds the next free region that is viable for use with a given size and
 * alignment.  This only returns if there is a valid area to be used for this
 * allocation.  block->first_free is returned if the allocation request fits
 * within the block to see if the request can be fulfilled prior to the contig
 * hint.
 */
static void pcpu_next_fit_region(struct pcpu_chunk *chunk, int alloc_bits,
				 int align, int *bit_off, int *bits)
{
	int i = pcpu_off_to_block_index(*bit_off);
	int block_off = pcpu_off_to_block_off(*bit_off);
	struct pcpu_block_md *block;

	*bits = 0;
	for (block = chunk->md_blocks + i; i < pcpu_chunk_nr_blocks(chunk);
	     block++, i++) {
		/* handles contig area across blocks */
		if (*bits) {
			*bits += block->left_free;
			if (*bits >= alloc_bits)
				return;
			if (block->left_free == PCPU_BITMAP_BLOCK_BITS)
				continue;
		}

		/* check block->contig_hint */
		*bits = ALIGN(block->contig_hint_start, align) -
			block->contig_hint_start;
		/*
		 * This uses the block offset to determine if this has been
		 * checked in the prior iteration.
		 */
		if (block->contig_hint &&
		    block->contig_hint_start >= block_off &&
		    block->contig_hint >= *bits + alloc_bits) {
			*bits += alloc_bits + block->contig_hint_start -
				 block->first_free;
			*bit_off = pcpu_block_off_to_off(i, block->first_free);
			return;
		}
412 413
		/* reset to satisfy the second predicate above */
		block_off = 0;
414 415 416 417 418 419 420 421 422 423 424 425 426

		*bit_off = ALIGN(PCPU_BITMAP_BLOCK_BITS - block->right_free,
				 align);
		*bits = PCPU_BITMAP_BLOCK_BITS - *bit_off;
		*bit_off = pcpu_block_off_to_off(i, *bit_off);
		if (*bits >= alloc_bits)
			return;
	}

	/* no valid offsets were found - fail condition */
	*bit_off = pcpu_chunk_map_bits(chunk);
}

427 428 429
/*
 * Metadata free area iterators.  These perform aggregation of free areas
 * based on the metadata blocks and return the offset @bit_off and size in
430 431
 * bits of the free area @bits.  pcpu_for_each_fit_region only returns when
 * a fit is found for the allocation request.
432 433 434 435 436 437 438
 */
#define pcpu_for_each_md_free_region(chunk, bit_off, bits)		\
	for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits));	\
	     (bit_off) < pcpu_chunk_map_bits((chunk));			\
	     (bit_off) += (bits) + 1,					\
	     pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))

439 440 441 442 443 444 445 446
#define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits)     \
	for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
				  &(bits));				      \
	     (bit_off) < pcpu_chunk_map_bits((chunk));			      \
	     (bit_off) += (bits),					      \
	     pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
				  &(bits)))

447
/**
448
 * pcpu_mem_zalloc - allocate memory
449
 * @size: bytes to allocate
450
 *
451
 * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
452
 * kzalloc() is used; otherwise, vzalloc() is used.  The returned
453
 * memory is always zeroed.
454
 *
455 456 457
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
458
 * RETURNS:
459
 * Pointer to the allocated area on success, NULL on failure.
460
 */
461
static void *pcpu_mem_zalloc(size_t size)
462
{
463 464 465
	if (WARN_ON_ONCE(!slab_is_available()))
		return NULL;

466 467
	if (size <= PAGE_SIZE)
		return kzalloc(size, GFP_KERNEL);
468 469
	else
		return vzalloc(size);
470
}
471

472 473 474 475
/**
 * pcpu_mem_free - free memory
 * @ptr: memory to free
 *
476
 * Free @ptr.  @ptr should have been allocated using pcpu_mem_zalloc().
477
 */
478
static void pcpu_mem_free(void *ptr)
479
{
480
	kvfree(ptr);
481 482 483 484 485 486 487 488 489
}

/**
 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
 * @chunk: chunk of interest
 * @oslot: the previous slot it was on
 *
 * This function is called after an allocation or free changed @chunk.
 * New slot according to the changed state is determined and @chunk is
490 491
 * moved to the slot.  Note that the reserved chunk is never put on
 * chunk slots.
492 493 494
 *
 * CONTEXT:
 * pcpu_lock.
495 496 497 498 499
 */
static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
{
	int nslot = pcpu_chunk_slot(chunk);

500
	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
501 502 503 504 505 506 507
		if (oslot < nslot)
			list_move(&chunk->list, &pcpu_slot[nslot]);
		else
			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
	}
}

508
/**
509
 * pcpu_cnt_pop_pages- counts populated backing pages in range
510
 * @chunk: chunk of interest
511 512
 * @bit_off: start offset
 * @bits: size of area to check
513
 *
514 515 516
 * Calculates the number of populated pages in the region
 * [page_start, page_end).  This keeps track of how many empty populated
 * pages are available and decide if async work should be scheduled.
517
 *
518
 * RETURNS:
519
 * The nr of populated pages.
520
 */
521 522
static inline int pcpu_cnt_pop_pages(struct pcpu_chunk *chunk, int bit_off,
				     int bits)
523
{
524 525
	int page_start = PFN_UP(bit_off * PCPU_MIN_ALLOC_SIZE);
	int page_end = PFN_DOWN((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
526

527
	if (page_start >= page_end)
528 529
		return 0;

530 531 532 533 534 535 536 537 538
	/*
	 * bitmap_weight counts the number of bits set in a bitmap up to
	 * the specified number of bits.  This is counting the populated
	 * pages up to page_end and then subtracting the populated pages
	 * up to page_start to count the populated pages in
	 * [page_start, page_end).
	 */
	return bitmap_weight(chunk->populated, page_end) -
	       bitmap_weight(chunk->populated, page_start);
539 540 541
}

/**
542
 * pcpu_chunk_update - updates the chunk metadata given a free area
543
 * @chunk: chunk of interest
544 545
 * @bit_off: chunk offset
 * @bits: size of free area
546
 *
547
 * This updates the chunk's contig hint and starting offset given a free area.
548
 * Choose the best starting offset if the contig hint is equal.
549 550 551
 */
static void pcpu_chunk_update(struct pcpu_chunk *chunk, int bit_off, int bits)
{
552 553
	if (bits > chunk->contig_bits) {
		chunk->contig_bits_start = bit_off;
554
		chunk->contig_bits = bits;
555 556 557 558 559
	} else if (bits == chunk->contig_bits && chunk->contig_bits_start &&
		   (!bit_off ||
		    __ffs(bit_off) > __ffs(chunk->contig_bits_start))) {
		/* use the start with the best alignment */
		chunk->contig_bits_start = bit_off;
560
	}
561 562 563 564 565
}

/**
 * pcpu_chunk_refresh_hint - updates metadata about a chunk
 * @chunk: chunk of interest
566
 *
567 568 569
 * Iterates over the metadata blocks to find the largest contig area.
 * It also counts the populated pages and uses the delta to update the
 * global count.
570
 *
571 572
 * Updates:
 *      chunk->contig_bits
573
 *      chunk->contig_bits_start
574
 *      nr_empty_pop_pages (chunk and global)
575
 */
576
static void pcpu_chunk_refresh_hint(struct pcpu_chunk *chunk)
577
{
578
	int bit_off, bits, nr_empty_pop_pages;
579

580 581
	/* clear metadata */
	chunk->contig_bits = 0;
582

583
	bit_off = chunk->first_bit;
584
	bits = nr_empty_pop_pages = 0;
585 586
	pcpu_for_each_md_free_region(chunk, bit_off, bits) {
		pcpu_chunk_update(chunk, bit_off, bits);
587

588
		nr_empty_pop_pages += pcpu_cnt_pop_pages(chunk, bit_off, bits);
589
	}
590

591 592 593 594 595 596 597 598 599 600 601
	/*
	 * Keep track of nr_empty_pop_pages.
	 *
	 * The chunk maintains the previous number of free pages it held,
	 * so the delta is used to update the global counter.  The reserved
	 * chunk is not part of the free page count as they are populated
	 * at init and are special to serving reserved allocations.
	 */
	if (chunk != pcpu_reserved_chunk)
		pcpu_nr_empty_pop_pages +=
			(nr_empty_pop_pages - chunk->nr_empty_pop_pages);
602

603 604
	chunk->nr_empty_pop_pages = nr_empty_pop_pages;
}
605

606 607 608 609 610 611 612
/**
 * pcpu_block_update - updates a block given a free area
 * @block: block of interest
 * @start: start offset in block
 * @end: end offset in block
 *
 * Updates a block given a known free area.  The region [start, end) is
613 614
 * expected to be the entirety of the free area within a block.  Chooses
 * the best starting offset if the contig hints are equal.
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
 */
static void pcpu_block_update(struct pcpu_block_md *block, int start, int end)
{
	int contig = end - start;

	block->first_free = min(block->first_free, start);
	if (start == 0)
		block->left_free = contig;

	if (end == PCPU_BITMAP_BLOCK_BITS)
		block->right_free = contig;

	if (contig > block->contig_hint) {
		block->contig_hint_start = start;
		block->contig_hint = contig;
630 631 632 633
	} else if (block->contig_hint_start && contig == block->contig_hint &&
		   (!start || __ffs(start) > __ffs(block->contig_hint_start))) {
		/* use the start with the best alignment */
		block->contig_hint_start = start;
634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
	}
}

/**
 * pcpu_block_refresh_hint
 * @chunk: chunk of interest
 * @index: index of the metadata block
 *
 * Scans over the block beginning at first_free and updates the block
 * metadata accordingly.
 */
static void pcpu_block_refresh_hint(struct pcpu_chunk *chunk, int index)
{
	struct pcpu_block_md *block = chunk->md_blocks + index;
	unsigned long *alloc_map = pcpu_index_alloc_map(chunk, index);
	int rs, re;	/* region start, region end */

	/* clear hints */
	block->contig_hint = 0;
	block->left_free = block->right_free = 0;

	/* iterate over free areas and update the contig hints */
	pcpu_for_each_unpop_region(alloc_map, rs, re, block->first_free,
				   PCPU_BITMAP_BLOCK_BITS) {
		pcpu_block_update(block, rs, re);
	}
}

/**
 * pcpu_block_update_hint_alloc - update hint on allocation path
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of request
667 668 669 670
 *
 * Updates metadata for the allocation path.  The metadata only has to be
 * refreshed by a full scan iff the chunk's contig hint is broken.  Block level
 * scans are required if the block's contig hint is broken.
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
 */
static void pcpu_block_update_hint_alloc(struct pcpu_chunk *chunk, int bit_off,
					 int bits)
{
	struct pcpu_block_md *s_block, *e_block, *block;
	int s_index, e_index;	/* block indexes of the freed allocation */
	int s_off, e_off;	/* block offsets of the freed allocation */

	/*
	 * Calculate per block offsets.
	 * The calculation uses an inclusive range, but the resulting offsets
	 * are [start, end).  e_index always points to the last block in the
	 * range.
	 */
	s_index = pcpu_off_to_block_index(bit_off);
	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
	s_off = pcpu_off_to_block_off(bit_off);
	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;

	s_block = chunk->md_blocks + s_index;
	e_block = chunk->md_blocks + e_index;

	/*
	 * Update s_block.
695 696 697
	 * block->first_free must be updated if the allocation takes its place.
	 * If the allocation breaks the contig_hint, a scan is required to
	 * restore this hint.
698
	 */
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
	if (s_off == s_block->first_free)
		s_block->first_free = find_next_zero_bit(
					pcpu_index_alloc_map(chunk, s_index),
					PCPU_BITMAP_BLOCK_BITS,
					s_off + bits);

	if (s_off >= s_block->contig_hint_start &&
	    s_off < s_block->contig_hint_start + s_block->contig_hint) {
		/* block contig hint is broken - scan to fix it */
		pcpu_block_refresh_hint(chunk, s_index);
	} else {
		/* update left and right contig manually */
		s_block->left_free = min(s_block->left_free, s_off);
		if (s_index == e_index)
			s_block->right_free = min_t(int, s_block->right_free,
					PCPU_BITMAP_BLOCK_BITS - e_off);
		else
			s_block->right_free = 0;
	}
718 719 720 721 722

	/*
	 * Update e_block.
	 */
	if (s_index != e_index) {
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
		/*
		 * When the allocation is across blocks, the end is along
		 * the left part of the e_block.
		 */
		e_block->first_free = find_next_zero_bit(
				pcpu_index_alloc_map(chunk, e_index),
				PCPU_BITMAP_BLOCK_BITS, e_off);

		if (e_off == PCPU_BITMAP_BLOCK_BITS) {
			/* reset the block */
			e_block++;
		} else {
			if (e_off > e_block->contig_hint_start) {
				/* contig hint is broken - scan to fix it */
				pcpu_block_refresh_hint(chunk, e_index);
			} else {
				e_block->left_free = 0;
				e_block->right_free =
					min_t(int, e_block->right_free,
					      PCPU_BITMAP_BLOCK_BITS - e_off);
			}
		}
745 746 747 748 749 750 751 752 753

		/* update in-between md_blocks */
		for (block = s_block + 1; block < e_block; block++) {
			block->contig_hint = 0;
			block->left_free = 0;
			block->right_free = 0;
		}
	}

754 755 756 757 758 759 760 761
	/*
	 * The only time a full chunk scan is required is if the chunk
	 * contig hint is broken.  Otherwise, it means a smaller space
	 * was used and therefore the chunk contig hint is still correct.
	 */
	if (bit_off >= chunk->contig_bits_start  &&
	    bit_off < chunk->contig_bits_start + chunk->contig_bits)
		pcpu_chunk_refresh_hint(chunk);
762 763 764 765 766 767 768
}

/**
 * pcpu_block_update_hint_free - updates the block hints on the free path
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of request
769 770 771 772 773 774 775 776 777 778 779
 *
 * Updates metadata for the allocation path.  This avoids a blind block
 * refresh by making use of the block contig hints.  If this fails, it scans
 * forward and backward to determine the extent of the free area.  This is
 * capped at the boundary of blocks.
 *
 * A chunk update is triggered if a page becomes free, a block becomes free,
 * or the free spans across blocks.  This tradeoff is to minimize iterating
 * over the block metadata to update chunk->contig_bits.  chunk->contig_bits
 * may be off by up to a page, but it will never be more than the available
 * space.  If the contig hint is contained in one block, it will be accurate.
780 781 782 783 784 785 786
 */
static void pcpu_block_update_hint_free(struct pcpu_chunk *chunk, int bit_off,
					int bits)
{
	struct pcpu_block_md *s_block, *e_block, *block;
	int s_index, e_index;	/* block indexes of the freed allocation */
	int s_off, e_off;	/* block offsets of the freed allocation */
787
	int start, end;		/* start and end of the whole free area */
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802

	/*
	 * Calculate per block offsets.
	 * The calculation uses an inclusive range, but the resulting offsets
	 * are [start, end).  e_index always points to the last block in the
	 * range.
	 */
	s_index = pcpu_off_to_block_index(bit_off);
	e_index = pcpu_off_to_block_index(bit_off + bits - 1);
	s_off = pcpu_off_to_block_off(bit_off);
	e_off = pcpu_off_to_block_off(bit_off + bits - 1) + 1;

	s_block = chunk->md_blocks + s_index;
	e_block = chunk->md_blocks + e_index;

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
	/*
	 * Check if the freed area aligns with the block->contig_hint.
	 * If it does, then the scan to find the beginning/end of the
	 * larger free area can be avoided.
	 *
	 * start and end refer to beginning and end of the free area
	 * within each their respective blocks.  This is not necessarily
	 * the entire free area as it may span blocks past the beginning
	 * or end of the block.
	 */
	start = s_off;
	if (s_off == s_block->contig_hint + s_block->contig_hint_start) {
		start = s_block->contig_hint_start;
	} else {
		/*
		 * Scan backwards to find the extent of the free area.
		 * find_last_bit returns the starting bit, so if the start bit
		 * is returned, that means there was no last bit and the
		 * remainder of the chunk is free.
		 */
		int l_bit = find_last_bit(pcpu_index_alloc_map(chunk, s_index),
					  start);
		start = (start == l_bit) ? 0 : l_bit + 1;
	}

	end = e_off;
	if (e_off == e_block->contig_hint_start)
		end = e_block->contig_hint_start + e_block->contig_hint;
	else
		end = find_next_bit(pcpu_index_alloc_map(chunk, e_index),
				    PCPU_BITMAP_BLOCK_BITS, end);

835
	/* update s_block */
836 837
	e_off = (s_index == e_index) ? end : PCPU_BITMAP_BLOCK_BITS;
	pcpu_block_update(s_block, start, e_off);
838 839 840 841

	/* freeing in the same block */
	if (s_index != e_index) {
		/* update e_block */
842
		pcpu_block_update(e_block, 0, end);
843 844 845 846 847 848 849 850 851 852 853

		/* reset md_blocks in the middle */
		for (block = s_block + 1; block < e_block; block++) {
			block->first_free = 0;
			block->contig_hint_start = 0;
			block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
			block->left_free = PCPU_BITMAP_BLOCK_BITS;
			block->right_free = PCPU_BITMAP_BLOCK_BITS;
		}
	}

854 855 856 857 858 859 860 861 862 863 864 865 866
	/*
	 * Refresh chunk metadata when the free makes a page free, a block
	 * free, or spans across blocks.  The contig hint may be off by up to
	 * a page, but if the hint is contained in a block, it will be accurate
	 * with the else condition below.
	 */
	if ((ALIGN_DOWN(end, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS)) >
	     ALIGN(start, min(PCPU_BITS_PER_PAGE, PCPU_BITMAP_BLOCK_BITS))) ||
	    s_index != e_index)
		pcpu_chunk_refresh_hint(chunk);
	else
		pcpu_chunk_update(chunk, pcpu_block_off_to_off(s_index, start),
				  s_block->contig_hint);
867 868
}

869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885
/**
 * pcpu_is_populated - determines if the region is populated
 * @chunk: chunk of interest
 * @bit_off: chunk offset
 * @bits: size of area
 * @next_off: return value for the next offset to start searching
 *
 * For atomic allocations, check if the backing pages are populated.
 *
 * RETURNS:
 * Bool if the backing pages are populated.
 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
 */
static bool pcpu_is_populated(struct pcpu_chunk *chunk, int bit_off, int bits,
			      int *next_off)
{
	int page_start, page_end, rs, re;
886

887 888
	page_start = PFN_DOWN(bit_off * PCPU_MIN_ALLOC_SIZE);
	page_end = PFN_UP((bit_off + bits) * PCPU_MIN_ALLOC_SIZE);
889

890 891 892 893
	rs = page_start;
	pcpu_next_unpop(chunk->populated, &rs, &re, page_end);
	if (rs >= page_end)
		return true;
894

895 896
	*next_off = re * PAGE_SIZE / PCPU_MIN_ALLOC_SIZE;
	return false;
897 898
}

899
/**
900 901 902 903 904 905
 * pcpu_find_block_fit - finds the block index to start searching
 * @chunk: chunk of interest
 * @alloc_bits: size of request in allocation units
 * @align: alignment of area (max PAGE_SIZE bytes)
 * @pop_only: use populated regions only
 *
906 907 908 909 910 911 912 913
 * Given a chunk and an allocation spec, find the offset to begin searching
 * for a free region.  This iterates over the bitmap metadata blocks to
 * find an offset that will be guaranteed to fit the requirements.  It is
 * not quite first fit as if the allocation does not fit in the contig hint
 * of a block or chunk, it is skipped.  This errs on the side of caution
 * to prevent excess iteration.  Poor alignment can cause the allocator to
 * skip over blocks and chunks that have valid free areas.
 *
914 915 916
 * RETURNS:
 * The offset in the bitmap to begin searching.
 * -1 if no offset is found.
917
 */
918 919
static int pcpu_find_block_fit(struct pcpu_chunk *chunk, int alloc_bits,
			       size_t align, bool pop_only)
920
{
921
	int bit_off, bits, next_off;
922

923 924 925 926 927 928 929 930 931 932 933
	/*
	 * Check to see if the allocation can fit in the chunk's contig hint.
	 * This is an optimization to prevent scanning by assuming if it
	 * cannot fit in the global hint, there is memory pressure and creating
	 * a new chunk would happen soon.
	 */
	bit_off = ALIGN(chunk->contig_bits_start, align) -
		  chunk->contig_bits_start;
	if (bit_off + alloc_bits > chunk->contig_bits)
		return -1;

934 935 936
	bit_off = chunk->first_bit;
	bits = 0;
	pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) {
937
		if (!pop_only || pcpu_is_populated(chunk, bit_off, bits,
938
						   &next_off))
939
			break;
940

941
		bit_off = next_off;
942
		bits = 0;
943
	}
944 945 946 947 948

	if (bit_off == pcpu_chunk_map_bits(chunk))
		return -1;

	return bit_off;
949 950
}

951
/**
952
 * pcpu_alloc_area - allocates an area from a pcpu_chunk
953
 * @chunk: chunk of interest
954 955 956
 * @alloc_bits: size of request in allocation units
 * @align: alignment of area (max PAGE_SIZE)
 * @start: bit_off to start searching
957
 *
958
 * This function takes in a @start offset to begin searching to fit an
959 960 961 962 963 964
 * allocation of @alloc_bits with alignment @align.  It needs to scan
 * the allocation map because if it fits within the block's contig hint,
 * @start will be block->first_free. This is an attempt to fill the
 * allocation prior to breaking the contig hint.  The allocation and
 * boundary maps are updated accordingly if it confirms a valid
 * free area.
965
 *
966
 * RETURNS:
967 968
 * Allocated addr offset in @chunk on success.
 * -1 if no matching area is found.
969
 */
970 971
static int pcpu_alloc_area(struct pcpu_chunk *chunk, int alloc_bits,
			   size_t align, int start)
972
{
973 974
	size_t align_mask = (align) ? (align - 1) : 0;
	int bit_off, end, oslot;
975

976
	lockdep_assert_held(&pcpu_lock);
977

978
	oslot = pcpu_chunk_slot(chunk);
979

980 981 982
	/*
	 * Search to find a fit.
	 */
983
	end = start + alloc_bits + PCPU_BITMAP_BLOCK_BITS;
984 985 986 987
	bit_off = bitmap_find_next_zero_area(chunk->alloc_map, end, start,
					     alloc_bits, align_mask);
	if (bit_off >= end)
		return -1;
988

989 990
	/* update alloc map */
	bitmap_set(chunk->alloc_map, bit_off, alloc_bits);
A
Al Viro 已提交
991

992 993 994 995
	/* update boundary map */
	set_bit(bit_off, chunk->bound_map);
	bitmap_clear(chunk->bound_map, bit_off + 1, alloc_bits - 1);
	set_bit(bit_off + alloc_bits, chunk->bound_map);
996

997
	chunk->free_bytes -= alloc_bits * PCPU_MIN_ALLOC_SIZE;
998

999 1000 1001 1002 1003 1004 1005
	/* update first free bit */
	if (bit_off == chunk->first_bit)
		chunk->first_bit = find_next_zero_bit(
					chunk->alloc_map,
					pcpu_chunk_map_bits(chunk),
					bit_off + alloc_bits);

1006
	pcpu_block_update_hint_alloc(chunk, bit_off, alloc_bits);
1007 1008 1009

	pcpu_chunk_relocate(chunk, oslot);

1010
	return bit_off * PCPU_MIN_ALLOC_SIZE;
1011 1012 1013
}

/**
1014
 * pcpu_free_area - frees the corresponding offset
1015
 * @chunk: chunk of interest
1016
 * @off: addr offset into chunk
1017
 *
1018 1019
 * This function determines the size of an allocation to free using
 * the boundary bitmap and clears the allocation map.
1020
 */
1021
static void pcpu_free_area(struct pcpu_chunk *chunk, int off)
1022
{
1023
	int bit_off, bits, end, oslot;
1024

1025
	lockdep_assert_held(&pcpu_lock);
1026
	pcpu_stats_area_dealloc(chunk);
1027

1028
	oslot = pcpu_chunk_slot(chunk);
1029

1030
	bit_off = off / PCPU_MIN_ALLOC_SIZE;
A
Al Viro 已提交
1031

1032 1033 1034 1035 1036
	/* find end index */
	end = find_next_bit(chunk->bound_map, pcpu_chunk_map_bits(chunk),
			    bit_off + 1);
	bits = end - bit_off;
	bitmap_clear(chunk->alloc_map, bit_off, bits);
1037

1038 1039
	/* update metadata */
	chunk->free_bytes += bits * PCPU_MIN_ALLOC_SIZE;
1040

1041 1042 1043
	/* update first free bit */
	chunk->first_bit = min(chunk->first_bit, bit_off);

1044
	pcpu_block_update_hint_free(chunk, bit_off, bits);
1045 1046 1047 1048

	pcpu_chunk_relocate(chunk, oslot);
}

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
static void pcpu_init_md_blocks(struct pcpu_chunk *chunk)
{
	struct pcpu_block_md *md_block;

	for (md_block = chunk->md_blocks;
	     md_block != chunk->md_blocks + pcpu_chunk_nr_blocks(chunk);
	     md_block++) {
		md_block->contig_hint = PCPU_BITMAP_BLOCK_BITS;
		md_block->left_free = PCPU_BITMAP_BLOCK_BITS;
		md_block->right_free = PCPU_BITMAP_BLOCK_BITS;
	}
}

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074
/**
 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
 * @tmp_addr: the start of the region served
 * @map_size: size of the region served
 *
 * This is responsible for creating the chunks that serve the first chunk.  The
 * base_addr is page aligned down of @tmp_addr while the region end is page
 * aligned up.  Offsets are kept track of to determine the region served. All
 * this is done to appease the bitmap allocator in avoiding partial blocks.
 *
 * RETURNS:
 * Chunk serving the region at @tmp_addr of @map_size.
 */
1075
static struct pcpu_chunk * __init pcpu_alloc_first_chunk(unsigned long tmp_addr,
1076
							 int map_size)
1077 1078
{
	struct pcpu_chunk *chunk;
1079
	unsigned long aligned_addr, lcm_align;
1080
	int start_offset, offset_bits, region_size, region_bits;
1081 1082 1083 1084 1085

	/* region calculations */
	aligned_addr = tmp_addr & PAGE_MASK;

	start_offset = tmp_addr - aligned_addr;
1086

1087 1088 1089 1090 1091 1092 1093
	/*
	 * Align the end of the region with the LCM of PAGE_SIZE and
	 * PCPU_BITMAP_BLOCK_SIZE.  One of these constants is a multiple of
	 * the other.
	 */
	lcm_align = lcm(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE);
	region_size = ALIGN(start_offset + map_size, lcm_align);
1094

1095
	/* allocate chunk */
1096 1097 1098
	chunk = memblock_virt_alloc(sizeof(struct pcpu_chunk) +
				    BITS_TO_LONGS(region_size >> PAGE_SHIFT),
				    0);
1099

1100
	INIT_LIST_HEAD(&chunk->list);
1101 1102

	chunk->base_addr = (void *)aligned_addr;
1103
	chunk->start_offset = start_offset;
1104
	chunk->end_offset = region_size - chunk->start_offset - map_size;
1105

1106
	chunk->nr_pages = region_size >> PAGE_SHIFT;
1107
	region_bits = pcpu_chunk_map_bits(chunk);
1108

1109 1110 1111 1112 1113 1114 1115
	chunk->alloc_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits) *
					       sizeof(chunk->alloc_map[0]), 0);
	chunk->bound_map = memblock_virt_alloc(BITS_TO_LONGS(region_bits + 1) *
					       sizeof(chunk->bound_map[0]), 0);
	chunk->md_blocks = memblock_virt_alloc(pcpu_chunk_nr_blocks(chunk) *
					       sizeof(chunk->md_blocks[0]), 0);
	pcpu_init_md_blocks(chunk);
1116 1117 1118

	/* manage populated page bitmap */
	chunk->immutable = true;
1119 1120
	bitmap_fill(chunk->populated, chunk->nr_pages);
	chunk->nr_populated = chunk->nr_pages;
1121 1122 1123
	chunk->nr_empty_pop_pages =
		pcpu_cnt_pop_pages(chunk, start_offset / PCPU_MIN_ALLOC_SIZE,
				   map_size / PCPU_MIN_ALLOC_SIZE);
1124

1125 1126
	chunk->contig_bits = map_size / PCPU_MIN_ALLOC_SIZE;
	chunk->free_bytes = map_size;
1127 1128 1129

	if (chunk->start_offset) {
		/* hide the beginning of the bitmap */
1130 1131 1132 1133
		offset_bits = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
		bitmap_set(chunk->alloc_map, 0, offset_bits);
		set_bit(0, chunk->bound_map);
		set_bit(offset_bits, chunk->bound_map);
1134

1135 1136
		chunk->first_bit = offset_bits;

1137
		pcpu_block_update_hint_alloc(chunk, 0, offset_bits);
1138 1139
	}

1140 1141
	if (chunk->end_offset) {
		/* hide the end of the bitmap */
1142 1143 1144 1145 1146 1147 1148
		offset_bits = chunk->end_offset / PCPU_MIN_ALLOC_SIZE;
		bitmap_set(chunk->alloc_map,
			   pcpu_chunk_map_bits(chunk) - offset_bits,
			   offset_bits);
		set_bit((start_offset + map_size) / PCPU_MIN_ALLOC_SIZE,
			chunk->bound_map);
		set_bit(region_bits, chunk->bound_map);
1149

1150 1151 1152
		pcpu_block_update_hint_alloc(chunk, pcpu_chunk_map_bits(chunk)
					     - offset_bits, offset_bits);
	}
1153

1154 1155 1156
	return chunk;
}

1157 1158 1159
static struct pcpu_chunk *pcpu_alloc_chunk(void)
{
	struct pcpu_chunk *chunk;
1160
	int region_bits;
1161

1162
	chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size);
1163 1164 1165
	if (!chunk)
		return NULL;

1166 1167 1168
	INIT_LIST_HEAD(&chunk->list);
	chunk->nr_pages = pcpu_unit_pages;
	region_bits = pcpu_chunk_map_bits(chunk);
1169

1170 1171 1172 1173
	chunk->alloc_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits) *
					   sizeof(chunk->alloc_map[0]));
	if (!chunk->alloc_map)
		goto alloc_map_fail;
1174

1175 1176 1177 1178
	chunk->bound_map = pcpu_mem_zalloc(BITS_TO_LONGS(region_bits + 1) *
					   sizeof(chunk->bound_map[0]));
	if (!chunk->bound_map)
		goto bound_map_fail;
1179

1180 1181 1182 1183 1184 1185 1186
	chunk->md_blocks = pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk) *
					   sizeof(chunk->md_blocks[0]));
	if (!chunk->md_blocks)
		goto md_blocks_fail;

	pcpu_init_md_blocks(chunk);

1187 1188 1189
	/* init metadata */
	chunk->contig_bits = region_bits;
	chunk->free_bytes = chunk->nr_pages * PAGE_SIZE;
1190

1191
	return chunk;
1192

1193 1194
md_blocks_fail:
	pcpu_mem_free(chunk->bound_map);
1195 1196 1197 1198 1199 1200
bound_map_fail:
	pcpu_mem_free(chunk->alloc_map);
alloc_map_fail:
	pcpu_mem_free(chunk);

	return NULL;
1201 1202 1203 1204 1205 1206
}

static void pcpu_free_chunk(struct pcpu_chunk *chunk)
{
	if (!chunk)
		return;
1207 1208
	pcpu_mem_free(chunk->bound_map);
	pcpu_mem_free(chunk->alloc_map);
1209
	pcpu_mem_free(chunk);
1210 1211
}

1212 1213 1214 1215 1216
/**
 * pcpu_chunk_populated - post-population bookkeeping
 * @chunk: pcpu_chunk which got populated
 * @page_start: the start page
 * @page_end: the end page
1217
 * @for_alloc: if this is to populate for allocation
1218 1219 1220 1221
 *
 * Pages in [@page_start,@page_end) have been populated to @chunk.  Update
 * the bookkeeping information accordingly.  Must be called after each
 * successful population.
1222 1223 1224
 *
 * If this is @for_alloc, do not increment pcpu_nr_empty_pop_pages because it
 * is to serve an allocation in that area.
1225
 */
1226 1227
static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start,
				 int page_end, bool for_alloc)
1228 1229 1230 1231 1232 1233 1234
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_set(chunk->populated, page_start, nr);
	chunk->nr_populated += nr;
1235 1236 1237 1238 1239

	if (!for_alloc) {
		chunk->nr_empty_pop_pages += nr;
		pcpu_nr_empty_pop_pages += nr;
	}
1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260
}

/**
 * pcpu_chunk_depopulated - post-depopulation bookkeeping
 * @chunk: pcpu_chunk which got depopulated
 * @page_start: the start page
 * @page_end: the end page
 *
 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
 * Update the bookkeeping information accordingly.  Must be called after
 * each successful depopulation.
 */
static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk,
				   int page_start, int page_end)
{
	int nr = page_end - page_start;

	lockdep_assert_held(&pcpu_lock);

	bitmap_clear(chunk->populated, page_start, nr);
	chunk->nr_populated -= nr;
1261
	chunk->nr_empty_pop_pages -= nr;
1262 1263 1264
	pcpu_nr_empty_pop_pages -= nr;
}

1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
/*
 * Chunk management implementation.
 *
 * To allow different implementations, chunk alloc/free and
 * [de]population are implemented in a separate file which is pulled
 * into this file and compiled together.  The following functions
 * should be implemented.
 *
 * pcpu_populate_chunk		- populate the specified range of a chunk
 * pcpu_depopulate_chunk	- depopulate the specified range of a chunk
 * pcpu_create_chunk		- create a new chunk
 * pcpu_destroy_chunk		- destroy a chunk, always preceded by full depop
 * pcpu_addr_to_page		- translate address to physical address
 * pcpu_verify_alloc_info	- check alloc_info is acceptable during init
1279
 */
1280 1281 1282 1283
static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
			       int page_start, int page_end);
static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
				  int page_start, int page_end);
1284 1285 1286 1287
static struct pcpu_chunk *pcpu_create_chunk(void);
static void pcpu_destroy_chunk(struct pcpu_chunk *chunk);
static struct page *pcpu_addr_to_page(void *addr);
static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai);
1288

1289 1290 1291
#ifdef CONFIG_NEED_PER_CPU_KM
#include "percpu-km.c"
#else
1292
#include "percpu-vm.c"
1293
#endif
1294

1295 1296 1297 1298
/**
 * pcpu_chunk_addr_search - determine chunk containing specified address
 * @addr: address for which the chunk needs to be determined.
 *
1299 1300 1301
 * This is an internal function that handles all but static allocations.
 * Static percpu address values should never be passed into the allocator.
 *
1302 1303 1304 1305 1306
 * RETURNS:
 * The address of the found chunk.
 */
static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
{
1307
	/* is it in the dynamic region (first chunk)? */
1308
	if (pcpu_addr_in_chunk(pcpu_first_chunk, addr))
1309
		return pcpu_first_chunk;
1310 1311

	/* is it in the reserved region? */
1312
	if (pcpu_addr_in_chunk(pcpu_reserved_chunk, addr))
1313
		return pcpu_reserved_chunk;
1314 1315 1316 1317 1318 1319 1320 1321 1322

	/*
	 * The address is relative to unit0 which might be unused and
	 * thus unmapped.  Offset the address to the unit space of the
	 * current processor before looking it up in the vmalloc
	 * space.  Note that any possible cpu id can be used here, so
	 * there's no need to worry about preemption or cpu hotplug.
	 */
	addr += pcpu_unit_offsets[raw_smp_processor_id()];
1323
	return pcpu_get_page_chunk(pcpu_addr_to_page(addr));
1324 1325
}

1326
/**
1327
 * pcpu_alloc - the percpu allocator
T
Tejun Heo 已提交
1328
 * @size: size of area to allocate in bytes
1329
 * @align: alignment of area (max PAGE_SIZE)
1330
 * @reserved: allocate from the reserved chunk if available
1331
 * @gfp: allocation flags
1332
 *
1333
 * Allocate percpu area of @size bytes aligned at @align.  If @gfp doesn't
1334 1335 1336
 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
 * then no warning will be triggered on invalid or failed allocation
 * requests.
1337 1338 1339 1340
 *
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1341 1342
static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved,
				 gfp_t gfp)
1343
{
1344 1345
	bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL;
	bool do_warn = !(gfp & __GFP_NOWARN);
1346
	static int warn_limit = 10;
1347
	struct pcpu_chunk *chunk;
1348
	const char *err;
1349
	int slot, off, cpu, ret;
1350
	unsigned long flags;
1351
	void __percpu *ptr;
1352
	size_t bits, bit_align;
1353

1354
	/*
1355 1356 1357 1358
	 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
	 * therefore alignment must be a minimum of that many bytes.
	 * An allocation may have internal fragmentation from rounding up
	 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1359
	 */
1360 1361
	if (unlikely(align < PCPU_MIN_ALLOC_SIZE))
		align = PCPU_MIN_ALLOC_SIZE;
1362

1363
	size = ALIGN(size, PCPU_MIN_ALLOC_SIZE);
1364 1365
	bits = size >> PCPU_MIN_ALLOC_SHIFT;
	bit_align = align >> PCPU_MIN_ALLOC_SHIFT;
V
Viro 已提交
1366

1367 1368
	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE ||
		     !is_power_of_2(align))) {
1369
		WARN(do_warn, "illegal size (%zu) or align (%zu) for percpu allocation\n",
J
Joe Perches 已提交
1370
		     size, align);
1371 1372 1373
		return NULL;
	}

1374 1375 1376
	if (!is_atomic)
		mutex_lock(&pcpu_alloc_mutex);

1377
	spin_lock_irqsave(&pcpu_lock, flags);
1378

1379 1380 1381
	/* serve reserved allocations from the reserved chunk if available */
	if (reserved && pcpu_reserved_chunk) {
		chunk = pcpu_reserved_chunk;
1382

1383 1384
		off = pcpu_find_block_fit(chunk, bits, bit_align, is_atomic);
		if (off < 0) {
1385
			err = "alloc from reserved chunk failed";
1386
			goto fail_unlock;
1387
		}
1388

1389
		off = pcpu_alloc_area(chunk, bits, bit_align, off);
1390 1391
		if (off >= 0)
			goto area_found;
1392

1393
		err = "alloc from reserved chunk failed";
1394
		goto fail_unlock;
1395 1396
	}

1397
restart:
1398
	/* search through normal chunks */
1399 1400
	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1401 1402 1403
			off = pcpu_find_block_fit(chunk, bits, bit_align,
						  is_atomic);
			if (off < 0)
1404
				continue;
1405

1406
			off = pcpu_alloc_area(chunk, bits, bit_align, off);
1407 1408
			if (off >= 0)
				goto area_found;
1409

1410 1411 1412
		}
	}

1413
	spin_unlock_irqrestore(&pcpu_lock, flags);
1414

T
Tejun Heo 已提交
1415 1416 1417 1418 1419
	/*
	 * No space left.  Create a new chunk.  We don't want multiple
	 * tasks to create chunks simultaneously.  Serialize and create iff
	 * there's still no empty chunk after grabbing the mutex.
	 */
1420 1421
	if (is_atomic) {
		err = "atomic alloc failed, no space left";
1422
		goto fail;
1423
	}
1424

T
Tejun Heo 已提交
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435
	if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) {
		chunk = pcpu_create_chunk();
		if (!chunk) {
			err = "failed to allocate new chunk";
			goto fail;
		}

		spin_lock_irqsave(&pcpu_lock, flags);
		pcpu_chunk_relocate(chunk, -1);
	} else {
		spin_lock_irqsave(&pcpu_lock, flags);
1436
	}
1437 1438

	goto restart;
1439 1440

area_found:
1441
	pcpu_stats_area_alloc(chunk, size);
1442
	spin_unlock_irqrestore(&pcpu_lock, flags);
1443

1444
	/* populate if not all pages are already there */
1445
	if (!is_atomic) {
1446
		int page_start, page_end, rs, re;
1447

1448 1449
		page_start = PFN_DOWN(off);
		page_end = PFN_UP(off + size);
T
Tejun Heo 已提交
1450

1451 1452
		pcpu_for_each_unpop_region(chunk->populated, rs, re,
					   page_start, page_end) {
1453 1454 1455 1456 1457 1458
			WARN_ON(chunk->immutable);

			ret = pcpu_populate_chunk(chunk, rs, re);

			spin_lock_irqsave(&pcpu_lock, flags);
			if (ret) {
1459
				pcpu_free_area(chunk, off);
1460 1461 1462
				err = "failed to populate";
				goto fail_unlock;
			}
1463
			pcpu_chunk_populated(chunk, rs, re, true);
1464
			spin_unlock_irqrestore(&pcpu_lock, flags);
1465
		}
1466

1467 1468
		mutex_unlock(&pcpu_alloc_mutex);
	}
1469

1470 1471 1472
	if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW)
		pcpu_schedule_balance_work();

1473 1474 1475 1476
	/* clear the areas and return address relative to base address */
	for_each_possible_cpu(cpu)
		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);

1477
	ptr = __addr_to_pcpu_ptr(chunk->base_addr + off);
1478
	kmemleak_alloc_percpu(ptr, size, gfp);
1479 1480 1481 1482

	trace_percpu_alloc_percpu(reserved, is_atomic, size, align,
			chunk->base_addr, off, ptr);

1483
	return ptr;
1484 1485

fail_unlock:
1486
	spin_unlock_irqrestore(&pcpu_lock, flags);
T
Tejun Heo 已提交
1487
fail:
1488 1489
	trace_percpu_alloc_percpu_fail(reserved, is_atomic, size, align);

1490
	if (!is_atomic && do_warn && warn_limit) {
1491
		pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
J
Joe Perches 已提交
1492
			size, align, is_atomic, err);
1493 1494
		dump_stack();
		if (!--warn_limit)
1495
			pr_info("limit reached, disable warning\n");
1496
	}
1497 1498 1499 1500
	if (is_atomic) {
		/* see the flag handling in pcpu_blance_workfn() */
		pcpu_atomic_alloc_failed = true;
		pcpu_schedule_balance_work();
1501 1502
	} else {
		mutex_unlock(&pcpu_alloc_mutex);
1503
	}
1504
	return NULL;
1505
}
1506 1507

/**
1508
 * __alloc_percpu_gfp - allocate dynamic percpu area
1509 1510
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
1511
 * @gfp: allocation flags
1512
 *
1513 1514
 * Allocate zero-filled percpu area of @size bytes aligned at @align.  If
 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1515 1516 1517
 * be called from any context but is a lot more likely to fail. If @gfp
 * has __GFP_NOWARN then no warning will be triggered on invalid or failed
 * allocation requests.
1518
 *
1519 1520 1521
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp)
{
	return pcpu_alloc(size, align, false, gfp);
}
EXPORT_SYMBOL_GPL(__alloc_percpu_gfp);

/**
 * __alloc_percpu - allocate dynamic percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
 */
1535
void __percpu *__alloc_percpu(size_t size, size_t align)
1536
{
1537
	return pcpu_alloc(size, align, false, GFP_KERNEL);
1538
}
1539 1540
EXPORT_SYMBOL_GPL(__alloc_percpu);

1541 1542 1543 1544 1545
/**
 * __alloc_reserved_percpu - allocate reserved percpu area
 * @size: size of area to allocate in bytes
 * @align: alignment of area (max PAGE_SIZE)
 *
1546 1547 1548 1549
 * Allocate zero-filled percpu area of @size bytes aligned at @align
 * from reserved percpu area if arch has set it up; otherwise,
 * allocation is served from the same dynamic area.  Might sleep.
 * Might trigger writeouts.
1550
 *
1551 1552 1553
 * CONTEXT:
 * Does GFP_KERNEL allocation.
 *
1554 1555 1556
 * RETURNS:
 * Percpu pointer to the allocated area on success, NULL on failure.
 */
1557
void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1558
{
1559
	return pcpu_alloc(size, align, true, GFP_KERNEL);
1560 1561
}

1562
/**
1563
 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1564 1565 1566 1567
 * @work: unused
 *
 * Reclaim all fully free chunks except for the first one.
 */
1568
static void pcpu_balance_workfn(struct work_struct *work)
1569
{
1570 1571
	LIST_HEAD(to_free);
	struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1];
1572
	struct pcpu_chunk *chunk, *next;
1573
	int slot, nr_to_pop, ret;
1574

1575 1576 1577 1578
	/*
	 * There's no reason to keep around multiple unused chunks and VM
	 * areas can be scarce.  Destroy all free chunks except for one.
	 */
1579 1580
	mutex_lock(&pcpu_alloc_mutex);
	spin_lock_irq(&pcpu_lock);
1581

1582
	list_for_each_entry_safe(chunk, next, free_head, list) {
1583 1584 1585
		WARN_ON(chunk->immutable);

		/* spare the first one */
1586
		if (chunk == list_first_entry(free_head, struct pcpu_chunk, list))
1587 1588
			continue;

1589
		list_move(&chunk->list, &to_free);
1590 1591
	}

1592
	spin_unlock_irq(&pcpu_lock);
1593

1594
	list_for_each_entry_safe(chunk, next, &to_free, list) {
1595
		int rs, re;
1596

1597 1598
		pcpu_for_each_pop_region(chunk->populated, rs, re, 0,
					 chunk->nr_pages) {
1599
			pcpu_depopulate_chunk(chunk, rs, re);
1600 1601 1602
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_depopulated(chunk, rs, re);
			spin_unlock_irq(&pcpu_lock);
1603
		}
1604
		pcpu_destroy_chunk(chunk);
1605
	}
T
Tejun Heo 已提交
1606

1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	/*
	 * Ensure there are certain number of free populated pages for
	 * atomic allocs.  Fill up from the most packed so that atomic
	 * allocs don't increase fragmentation.  If atomic allocation
	 * failed previously, always populate the maximum amount.  This
	 * should prevent atomic allocs larger than PAGE_SIZE from keeping
	 * failing indefinitely; however, large atomic allocs are not
	 * something we support properly and can be highly unreliable and
	 * inefficient.
	 */
retry_pop:
	if (pcpu_atomic_alloc_failed) {
		nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH;
		/* best effort anyway, don't worry about synchronization */
		pcpu_atomic_alloc_failed = false;
	} else {
		nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH -
				  pcpu_nr_empty_pop_pages,
				  0, PCPU_EMPTY_POP_PAGES_HIGH);
	}

	for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) {
		int nr_unpop = 0, rs, re;

		if (!nr_to_pop)
			break;

		spin_lock_irq(&pcpu_lock);
		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1636
			nr_unpop = chunk->nr_pages - chunk->nr_populated;
1637 1638 1639 1640 1641 1642 1643 1644 1645
			if (nr_unpop)
				break;
		}
		spin_unlock_irq(&pcpu_lock);

		if (!nr_unpop)
			continue;

		/* @chunk can't go away while pcpu_alloc_mutex is held */
1646 1647
		pcpu_for_each_unpop_region(chunk->populated, rs, re, 0,
					   chunk->nr_pages) {
1648 1649 1650 1651 1652 1653
			int nr = min(re - rs, nr_to_pop);

			ret = pcpu_populate_chunk(chunk, rs, rs + nr);
			if (!ret) {
				nr_to_pop -= nr;
				spin_lock_irq(&pcpu_lock);
1654
				pcpu_chunk_populated(chunk, rs, rs + nr, false);
1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
				spin_unlock_irq(&pcpu_lock);
			} else {
				nr_to_pop = 0;
			}

			if (!nr_to_pop)
				break;
		}
	}

	if (nr_to_pop) {
		/* ran out of chunks to populate, create a new one and retry */
		chunk = pcpu_create_chunk();
		if (chunk) {
			spin_lock_irq(&pcpu_lock);
			pcpu_chunk_relocate(chunk, -1);
			spin_unlock_irq(&pcpu_lock);
			goto retry_pop;
		}
	}

T
Tejun Heo 已提交
1676
	mutex_unlock(&pcpu_alloc_mutex);
1677 1678 1679 1680 1681 1682
}

/**
 * free_percpu - free percpu area
 * @ptr: pointer to area to free
 *
1683 1684 1685 1686
 * Free percpu area @ptr.
 *
 * CONTEXT:
 * Can be called from atomic context.
1687
 */
1688
void free_percpu(void __percpu *ptr)
1689
{
1690
	void *addr;
1691
	struct pcpu_chunk *chunk;
1692
	unsigned long flags;
1693
	int off;
1694 1695 1696 1697

	if (!ptr)
		return;

1698 1699
	kmemleak_free_percpu(ptr);

1700 1701
	addr = __pcpu_ptr_to_addr(ptr);

1702
	spin_lock_irqsave(&pcpu_lock, flags);
1703 1704

	chunk = pcpu_chunk_addr_search(addr);
T
Tejun Heo 已提交
1705
	off = addr - chunk->base_addr;
1706

1707
	pcpu_free_area(chunk, off);
1708

1709
	/* if there are more than one fully free chunks, wake up grim reaper */
1710
	if (chunk->free_bytes == pcpu_unit_size) {
1711 1712
		struct pcpu_chunk *pos;

1713
		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1714
			if (pos != chunk) {
1715
				pcpu_schedule_balance_work();
1716 1717 1718 1719
				break;
			}
	}

1720 1721
	trace_percpu_free_percpu(chunk->base_addr, off, ptr);

1722
	spin_unlock_irqrestore(&pcpu_lock, flags);
1723 1724 1725
}
EXPORT_SYMBOL_GPL(free_percpu);

1726
bool __is_kernel_percpu_address(unsigned long addr, unsigned long *can_addr)
1727
{
1728
#ifdef CONFIG_SMP
1729 1730 1731 1732 1733 1734
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	unsigned int cpu;

	for_each_possible_cpu(cpu) {
		void *start = per_cpu_ptr(base, cpu);
1735
		void *va = (void *)addr;
1736

1737
		if (va >= start && va < start + static_size) {
1738
			if (can_addr) {
1739
				*can_addr = (unsigned long) (va - start);
1740 1741 1742
				*can_addr += (unsigned long)
					per_cpu_ptr(base, get_boot_cpu_id());
			}
1743
			return true;
1744 1745
		}
	}
1746 1747
#endif
	/* on UP, can't distinguish from other static vars, always false */
1748 1749 1750
	return false;
}

1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
/**
 * is_kernel_percpu_address - test whether address is from static percpu area
 * @addr: address to test
 *
 * Test whether @addr belongs to in-kernel static percpu area.  Module
 * static percpu areas are not considered.  For those, use
 * is_module_percpu_address().
 *
 * RETURNS:
 * %true if @addr is from in-kernel static percpu area, %false otherwise.
 */
bool is_kernel_percpu_address(unsigned long addr)
{
	return __is_kernel_percpu_address(addr, NULL);
}

1767 1768 1769 1770 1771 1772 1773 1774 1775
/**
 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
 * @addr: the address to be converted to physical address
 *
 * Given @addr which is dereferenceable address obtained via one of
 * percpu access macros, this function translates it into its physical
 * address.  The caller is responsible for ensuring @addr stays valid
 * until this function finishes.
 *
1776 1777 1778 1779 1780
 * percpu allocator has special setup for the first chunk, which currently
 * supports either embedding in linear address space or vmalloc mapping,
 * and, from the second one, the backing allocator (currently either vm or
 * km) provides translation.
 *
1781
 * The addr can be translated simply without checking if it falls into the
1782 1783 1784 1785 1786
 * first chunk. But the current code reflects better how percpu allocator
 * actually works, and the verification can discover both bugs in percpu
 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
 * code.
 *
1787 1788 1789 1790 1791
 * RETURNS:
 * The physical address for @addr.
 */
phys_addr_t per_cpu_ptr_to_phys(void *addr)
{
1792 1793
	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
	bool in_first_chunk = false;
T
Tejun Heo 已提交
1794
	unsigned long first_low, first_high;
1795 1796 1797
	unsigned int cpu;

	/*
T
Tejun Heo 已提交
1798
	 * The following test on unit_low/high isn't strictly
1799 1800
	 * necessary but will speed up lookups of addresses which
	 * aren't in the first chunk.
1801 1802 1803 1804 1805
	 *
	 * The address check is against full chunk sizes.  pcpu_base_addr
	 * points to the beginning of the first chunk including the
	 * static region.  Assumes good intent as the first chunk may
	 * not be full (ie. < pcpu_unit_pages in size).
1806
	 */
1807 1808 1809 1810
	first_low = (unsigned long)pcpu_base_addr +
		    pcpu_unit_page_offset(pcpu_low_unit_cpu, 0);
	first_high = (unsigned long)pcpu_base_addr +
		     pcpu_unit_page_offset(pcpu_high_unit_cpu, pcpu_unit_pages);
T
Tejun Heo 已提交
1811 1812
	if ((unsigned long)addr >= first_low &&
	    (unsigned long)addr < first_high) {
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
		for_each_possible_cpu(cpu) {
			void *start = per_cpu_ptr(base, cpu);

			if (addr >= start && addr < start + pcpu_unit_size) {
				in_first_chunk = true;
				break;
			}
		}
	}

	if (in_first_chunk) {
1824
		if (!is_vmalloc_addr(addr))
1825 1826
			return __pa(addr);
		else
1827 1828
			return page_to_phys(vmalloc_to_page(addr)) +
			       offset_in_page(addr);
1829
	} else
1830 1831
		return page_to_phys(pcpu_addr_to_page(addr)) +
		       offset_in_page(addr);
1832 1833
}

1834
/**
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
 * pcpu_alloc_alloc_info - allocate percpu allocation info
 * @nr_groups: the number of groups
 * @nr_units: the number of units
 *
 * Allocate ai which is large enough for @nr_groups groups containing
 * @nr_units units.  The returned ai's groups[0].cpu_map points to the
 * cpu_map array which is long enough for @nr_units and filled with
 * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
 * pointer of other groups.
 *
 * RETURNS:
 * Pointer to the allocated pcpu_alloc_info on success, NULL on
 * failure.
 */
struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
						      int nr_units)
{
	struct pcpu_alloc_info *ai;
	size_t base_size, ai_size;
	void *ptr;
	int unit;

	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
			  __alignof__(ai->groups[0].cpu_map[0]));
	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);

1861
	ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), PAGE_SIZE);
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
	if (!ptr)
		return NULL;
	ai = ptr;
	ptr += base_size;

	ai->groups[0].cpu_map = ptr;

	for (unit = 0; unit < nr_units; unit++)
		ai->groups[0].cpu_map[unit] = NR_CPUS;

	ai->nr_groups = nr_groups;
	ai->__ai_size = PFN_ALIGN(ai_size);

	return ai;
}

/**
 * pcpu_free_alloc_info - free percpu allocation info
 * @ai: pcpu_alloc_info to free
 *
 * Free @ai which was allocated by pcpu_alloc_alloc_info().
 */
void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
{
1886
	memblock_free_early(__pa(ai), ai->__ai_size);
1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
}

/**
 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
 * @lvl: loglevel
 * @ai: allocation info to dump
 *
 * Print out information about @ai using loglevel @lvl.
 */
static void pcpu_dump_alloc_info(const char *lvl,
				 const struct pcpu_alloc_info *ai)
1898
{
1899
	int group_width = 1, cpu_width = 1, width;
1900
	char empty_str[] = "--------";
1901 1902 1903 1904 1905 1906 1907
	int alloc = 0, alloc_end = 0;
	int group, v;
	int upa, apl;	/* units per alloc, allocs per line */

	v = ai->nr_groups;
	while (v /= 10)
		group_width++;
1908

1909
	v = num_possible_cpus();
1910
	while (v /= 10)
1911 1912
		cpu_width++;
	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1913

1914 1915 1916
	upa = ai->alloc_size / ai->unit_size;
	width = upa * (cpu_width + 1) + group_width + 3;
	apl = rounddown_pow_of_two(max(60 / width, 1));
1917

1918 1919 1920
	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1921

1922 1923 1924 1925 1926 1927 1928 1929
	for (group = 0; group < ai->nr_groups; group++) {
		const struct pcpu_group_info *gi = &ai->groups[group];
		int unit = 0, unit_end = 0;

		BUG_ON(gi->nr_units % upa);
		for (alloc_end += gi->nr_units / upa;
		     alloc < alloc_end; alloc++) {
			if (!(alloc % apl)) {
1930
				pr_cont("\n");
1931 1932
				printk("%spcpu-alloc: ", lvl);
			}
1933
			pr_cont("[%0*d] ", group_width, group);
1934 1935 1936

			for (unit_end += upa; unit < unit_end; unit++)
				if (gi->cpu_map[unit] != NR_CPUS)
1937 1938
					pr_cont("%0*d ",
						cpu_width, gi->cpu_map[unit]);
1939
				else
1940
					pr_cont("%s ", empty_str);
1941 1942
		}
	}
1943
	pr_cont("\n");
1944 1945
}

1946
/**
1947
 * pcpu_setup_first_chunk - initialize the first percpu chunk
1948
 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1949
 * @base_addr: mapped address
1950 1951 1952
 *
 * Initialize the first percpu chunk which contains the kernel static
 * perpcu area.  This function is to be called from arch percpu area
1953
 * setup path.
1954
 *
1955 1956 1957 1958 1959 1960
 * @ai contains all information necessary to initialize the first
 * chunk and prime the dynamic percpu allocator.
 *
 * @ai->static_size is the size of static percpu area.
 *
 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1961 1962 1963 1964 1965 1966 1967
 * reserve after the static area in the first chunk.  This reserves
 * the first chunk such that it's available only through reserved
 * percpu allocation.  This is primarily used to serve module percpu
 * static areas on architectures where the addressing model has
 * limited offset range for symbol relocations to guarantee module
 * percpu symbols fall inside the relocatable range.
 *
1968 1969 1970
 * @ai->dyn_size determines the number of bytes available for dynamic
 * allocation in the first chunk.  The area between @ai->static_size +
 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1971
 *
1972 1973 1974
 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
 * and equal to or larger than @ai->static_size + @ai->reserved_size +
 * @ai->dyn_size.
1975
 *
1976 1977
 * @ai->atom_size is the allocation atom size and used as alignment
 * for vm areas.
1978
 *
1979 1980 1981 1982 1983 1984 1985 1986 1987
 * @ai->alloc_size is the allocation size and always multiple of
 * @ai->atom_size.  This is larger than @ai->atom_size if
 * @ai->unit_size is larger than @ai->atom_size.
 *
 * @ai->nr_groups and @ai->groups describe virtual memory layout of
 * percpu areas.  Units which should be colocated are put into the
 * same group.  Dynamic VM areas will be allocated according to these
 * groupings.  If @ai->nr_groups is zero, a single group containing
 * all units is assumed.
1988
 *
1989 1990
 * The caller should have mapped the first chunk at @base_addr and
 * copied static data to each unit.
1991
 *
1992 1993 1994 1995 1996 1997 1998
 * The first chunk will always contain a static and a dynamic region.
 * However, the static region is not managed by any chunk.  If the first
 * chunk also contains a reserved region, it is served by two chunks -
 * one for the reserved region and one for the dynamic region.  They
 * share the same vm, but use offset regions in the area allocation map.
 * The chunk serving the dynamic region is circulated in the chunk slots
 * and available for dynamic allocation like any other chunk.
1999
 *
2000
 * RETURNS:
T
Tejun Heo 已提交
2001
 * 0 on success, -errno on failure.
2002
 */
T
Tejun Heo 已提交
2003 2004
int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
				  void *base_addr)
2005
{
2006
	size_t size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2007
	size_t static_size, dyn_size;
2008
	struct pcpu_chunk *chunk;
2009 2010
	unsigned long *group_offsets;
	size_t *group_sizes;
T
Tejun Heo 已提交
2011
	unsigned long *unit_off;
2012
	unsigned int cpu;
2013 2014
	int *unit_map;
	int group, unit, i;
2015 2016
	int map_size;
	unsigned long tmp_addr;
2017

2018 2019
#define PCPU_SETUP_BUG_ON(cond)	do {					\
	if (unlikely(cond)) {						\
2020 2021
		pr_emerg("failed to initialize, %s\n", #cond);		\
		pr_emerg("cpu_possible_mask=%*pb\n",			\
2022
			 cpumask_pr_args(cpu_possible_mask));		\
2023 2024 2025 2026 2027
		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
		BUG();							\
	}								\
} while (0)

2028
	/* sanity checks */
2029
	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
2030
#ifdef CONFIG_SMP
2031
	PCPU_SETUP_BUG_ON(!ai->static_size);
2032
	PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start));
2033
#endif
2034
	PCPU_SETUP_BUG_ON(!base_addr);
2035
	PCPU_SETUP_BUG_ON(offset_in_page(base_addr));
2036
	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
2037
	PCPU_SETUP_BUG_ON(offset_in_page(ai->unit_size));
2038
	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
2039
	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->unit_size, PCPU_BITMAP_BLOCK_SIZE));
2040
	PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE);
2041
	PCPU_SETUP_BUG_ON(!ai->dyn_size);
2042
	PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai->reserved_size, PCPU_MIN_ALLOC_SIZE));
2043 2044
	PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE, PAGE_SIZE) ||
			    IS_ALIGNED(PAGE_SIZE, PCPU_BITMAP_BLOCK_SIZE)));
2045
	PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0);
2046

2047
	/* process group information and build config tables accordingly */
2048 2049 2050 2051 2052 2053
	group_offsets = memblock_virt_alloc(ai->nr_groups *
					     sizeof(group_offsets[0]), 0);
	group_sizes = memblock_virt_alloc(ai->nr_groups *
					   sizeof(group_sizes[0]), 0);
	unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0);
	unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0);
2054

2055
	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
2056
		unit_map[cpu] = UINT_MAX;
T
Tejun Heo 已提交
2057 2058 2059

	pcpu_low_unit_cpu = NR_CPUS;
	pcpu_high_unit_cpu = NR_CPUS;
2060

2061 2062
	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
		const struct pcpu_group_info *gi = &ai->groups[group];
2063

2064 2065 2066
		group_offsets[group] = gi->base_offset;
		group_sizes[group] = gi->nr_units * ai->unit_size;

2067 2068 2069 2070
		for (i = 0; i < gi->nr_units; i++) {
			cpu = gi->cpu_map[i];
			if (cpu == NR_CPUS)
				continue;
2071

D
Dan Carpenter 已提交
2072
			PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids);
2073 2074
			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
2075

2076
			unit_map[cpu] = unit + i;
T
Tejun Heo 已提交
2077 2078
			unit_off[cpu] = gi->base_offset + i * ai->unit_size;

T
Tejun Heo 已提交
2079 2080 2081 2082 2083 2084 2085
			/* determine low/high unit_cpu */
			if (pcpu_low_unit_cpu == NR_CPUS ||
			    unit_off[cpu] < unit_off[pcpu_low_unit_cpu])
				pcpu_low_unit_cpu = cpu;
			if (pcpu_high_unit_cpu == NR_CPUS ||
			    unit_off[cpu] > unit_off[pcpu_high_unit_cpu])
				pcpu_high_unit_cpu = cpu;
2086
		}
2087
	}
2088 2089 2090
	pcpu_nr_units = unit;

	for_each_possible_cpu(cpu)
2091 2092 2093 2094
		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);

	/* we're done parsing the input, undefine BUG macro and dump config */
#undef PCPU_SETUP_BUG_ON
2095
	pcpu_dump_alloc_info(KERN_DEBUG, ai);
2096

2097 2098 2099
	pcpu_nr_groups = ai->nr_groups;
	pcpu_group_offsets = group_offsets;
	pcpu_group_sizes = group_sizes;
2100
	pcpu_unit_map = unit_map;
T
Tejun Heo 已提交
2101
	pcpu_unit_offsets = unit_off;
2102 2103

	/* determine basic parameters */
2104
	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
2105
	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2106
	pcpu_atom_size = ai->atom_size;
T
Tejun Heo 已提交
2107 2108
	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
2109

2110 2111
	pcpu_stats_save_ai(ai);

2112 2113 2114 2115 2116
	/*
	 * Allocate chunk slots.  The additional last slot is for
	 * empty chunks.
	 */
	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
2117 2118
	pcpu_slot = memblock_virt_alloc(
			pcpu_nr_slots * sizeof(pcpu_slot[0]), 0);
2119 2120 2121
	for (i = 0; i < pcpu_nr_slots; i++)
		INIT_LIST_HEAD(&pcpu_slot[i]);

2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
	/*
	 * The end of the static region needs to be aligned with the
	 * minimum allocation size as this offsets the reserved and
	 * dynamic region.  The first chunk ends page aligned by
	 * expanding the dynamic region, therefore the dynamic region
	 * can be shrunk to compensate while still staying above the
	 * configured sizes.
	 */
	static_size = ALIGN(ai->static_size, PCPU_MIN_ALLOC_SIZE);
	dyn_size = ai->dyn_size - (static_size - ai->static_size);

2133
	/*
2134 2135 2136 2137 2138 2139
	 * Initialize first chunk.
	 * If the reserved_size is non-zero, this initializes the reserved
	 * chunk.  If the reserved_size is zero, the reserved chunk is NULL
	 * and the dynamic region is initialized here.  The first chunk,
	 * pcpu_first_chunk, will always point to the chunk that serves
	 * the dynamic region.
2140
	 */
2141 2142
	tmp_addr = (unsigned long)base_addr + static_size;
	map_size = ai->reserved_size ?: dyn_size;
2143
	chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2144

2145
	/* init dynamic chunk if necessary */
2146
	if (ai->reserved_size) {
2147
		pcpu_reserved_chunk = chunk;
2148

2149
		tmp_addr = (unsigned long)base_addr + static_size +
2150
			   ai->reserved_size;
2151
		map_size = dyn_size;
2152
		chunk = pcpu_alloc_first_chunk(tmp_addr, map_size);
2153 2154
	}

2155
	/* link the first chunk in */
2156
	pcpu_first_chunk = chunk;
2157
	pcpu_nr_empty_pop_pages = pcpu_first_chunk->nr_empty_pop_pages;
2158
	pcpu_chunk_relocate(pcpu_first_chunk, -1);
2159

2160
	pcpu_stats_chunk_alloc();
2161
	trace_percpu_create_chunk(base_addr);
2162

2163
	/* we're done */
T
Tejun Heo 已提交
2164
	pcpu_base_addr = base_addr;
T
Tejun Heo 已提交
2165
	return 0;
2166
}
2167

2168 2169
#ifdef CONFIG_SMP

2170
const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = {
2171 2172 2173 2174
	[PCPU_FC_AUTO]	= "auto",
	[PCPU_FC_EMBED]	= "embed",
	[PCPU_FC_PAGE]	= "page",
};
2175

2176
enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
2177

2178 2179
static int __init percpu_alloc_setup(char *str)
{
2180 2181 2182
	if (!str)
		return -EINVAL;

2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193
	if (0)
		/* nada */;
#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
	else if (!strcmp(str, "embed"))
		pcpu_chosen_fc = PCPU_FC_EMBED;
#endif
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
	else if (!strcmp(str, "page"))
		pcpu_chosen_fc = PCPU_FC_PAGE;
#endif
	else
2194
		pr_warn("unknown allocator %s specified\n", str);
2195

2196
	return 0;
2197
}
2198
early_param("percpu_alloc", percpu_alloc_setup);
2199

2200 2201 2202 2203 2204
/*
 * pcpu_embed_first_chunk() is used by the generic percpu setup.
 * Build it if needed by the arch config or the generic setup is going
 * to be used.
 */
2205 2206
#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227
#define BUILD_EMBED_FIRST_CHUNK
#endif

/* build pcpu_page_first_chunk() iff needed by the arch config */
#if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
#define BUILD_PAGE_FIRST_CHUNK
#endif

/* pcpu_build_alloc_info() is used by both embed and page first chunk */
#if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
/**
 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
 * @reserved_size: the size of reserved percpu area in bytes
 * @dyn_size: minimum free size for dynamic allocation in bytes
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 *
 * This function determines grouping of units, their mappings to cpus
 * and other parameters considering needed percpu size, allocation
 * atom size and distances between CPUs.
 *
2228
 * Groups are always multiples of atom size and CPUs which are of
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
 * LOCAL_DISTANCE both ways are grouped together and share space for
 * units in the same group.  The returned configuration is guaranteed
 * to have CPUs on different nodes on different groups and >=75% usage
 * of allocated virtual address space.
 *
 * RETURNS:
 * On success, pointer to the new allocation_info is returned.  On
 * failure, ERR_PTR value is returned.
 */
static struct pcpu_alloc_info * __init pcpu_build_alloc_info(
				size_t reserved_size, size_t dyn_size,
				size_t atom_size,
				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
{
	static int group_map[NR_CPUS] __initdata;
	static int group_cnt[NR_CPUS] __initdata;
	const size_t static_size = __per_cpu_end - __per_cpu_start;
	int nr_groups = 1, nr_units = 0;
	size_t size_sum, min_unit_size, alloc_size;
	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
	int last_allocs, group, unit;
	unsigned int cpu, tcpu;
	struct pcpu_alloc_info *ai;
	unsigned int *cpu_map;

	/* this function may be called multiple times */
	memset(group_map, 0, sizeof(group_map));
	memset(group_cnt, 0, sizeof(group_cnt));

	/* calculate size_sum and ensure dyn_size is enough for early alloc */
	size_sum = PFN_ALIGN(static_size + reserved_size +
			    max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE));
	dyn_size = size_sum - static_size - reserved_size;

	/*
	 * Determine min_unit_size, alloc_size and max_upa such that
	 * alloc_size is multiple of atom_size and is the smallest
L
Lucas De Marchi 已提交
2266
	 * which can accommodate 4k aligned segments which are equal to
2267 2268 2269 2270
	 * or larger than min_unit_size.
	 */
	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);

2271
	/* determine the maximum # of units that can fit in an allocation */
2272 2273
	alloc_size = roundup(min_unit_size, atom_size);
	upa = alloc_size / min_unit_size;
2274
	while (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
		upa--;
	max_upa = upa;

	/* group cpus according to their proximity */
	for_each_possible_cpu(cpu) {
		group = 0;
	next_group:
		for_each_possible_cpu(tcpu) {
			if (cpu == tcpu)
				break;
			if (group_map[tcpu] == group && cpu_distance_fn &&
			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
				group++;
				nr_groups = max(nr_groups, group + 1);
				goto next_group;
			}
		}
		group_map[cpu] = group;
		group_cnt[group]++;
	}

	/*
2298 2299 2300
	 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
	 * Expand the unit_size until we use >= 75% of the units allocated.
	 * Related to atom_size, which could be much larger than the unit_size.
2301 2302 2303 2304 2305
	 */
	last_allocs = INT_MAX;
	for (upa = max_upa; upa; upa--) {
		int allocs = 0, wasted = 0;

2306
		if (alloc_size % upa || (offset_in_page(alloc_size / upa)))
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
			continue;

		for (group = 0; group < nr_groups; group++) {
			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
			allocs += this_allocs;
			wasted += this_allocs * upa - group_cnt[group];
		}

		/*
		 * Don't accept if wastage is over 1/3.  The
		 * greater-than comparison ensures upa==1 always
		 * passes the following check.
		 */
		if (wasted > num_possible_cpus() / 3)
			continue;

		/* and then don't consume more memory */
		if (allocs > last_allocs)
			break;
		last_allocs = allocs;
		best_upa = upa;
	}
	upa = best_upa;

	/* allocate and fill alloc_info */
	for (group = 0; group < nr_groups; group++)
		nr_units += roundup(group_cnt[group], upa);

	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
	if (!ai)
		return ERR_PTR(-ENOMEM);
	cpu_map = ai->groups[0].cpu_map;

	for (group = 0; group < nr_groups; group++) {
		ai->groups[group].cpu_map = cpu_map;
		cpu_map += roundup(group_cnt[group], upa);
	}

	ai->static_size = static_size;
	ai->reserved_size = reserved_size;
	ai->dyn_size = dyn_size;
	ai->unit_size = alloc_size / upa;
	ai->atom_size = atom_size;
	ai->alloc_size = alloc_size;

	for (group = 0, unit = 0; group_cnt[group]; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];

		/*
		 * Initialize base_offset as if all groups are located
		 * back-to-back.  The caller should update this to
		 * reflect actual allocation.
		 */
		gi->base_offset = unit * ai->unit_size;

		for_each_possible_cpu(cpu)
			if (group_map[cpu] == group)
				gi->cpu_map[gi->nr_units++] = cpu;
		gi->nr_units = roundup(gi->nr_units, upa);
		unit += gi->nr_units;
	}
	BUG_ON(unit != nr_units);

	return ai;
}
#endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */

#if defined(BUILD_EMBED_FIRST_CHUNK)
2375 2376 2377
/**
 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
 * @reserved_size: the size of reserved percpu area in bytes
2378
 * @dyn_size: minimum free size for dynamic allocation in bytes
2379 2380 2381
 * @atom_size: allocation atom size
 * @cpu_distance_fn: callback to determine distance between cpus, optional
 * @alloc_fn: function to allocate percpu page
L
Lucas De Marchi 已提交
2382
 * @free_fn: function to free percpu page
2383 2384 2385 2386 2387
 *
 * This is a helper to ease setting up embedded first percpu chunk and
 * can be called where pcpu_setup_first_chunk() is expected.
 *
 * If this function is used to setup the first chunk, it is allocated
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397
 * by calling @alloc_fn and used as-is without being mapped into
 * vmalloc area.  Allocations are always whole multiples of @atom_size
 * aligned to @atom_size.
 *
 * This enables the first chunk to piggy back on the linear physical
 * mapping which often uses larger page size.  Please note that this
 * can result in very sparse cpu->unit mapping on NUMA machines thus
 * requiring large vmalloc address space.  Don't use this allocator if
 * vmalloc space is not orders of magnitude larger than distances
 * between node memory addresses (ie. 32bit NUMA machines).
2398
 *
2399
 * @dyn_size specifies the minimum dynamic area size.
2400 2401
 *
 * If the needed size is smaller than the minimum or specified unit
2402
 * size, the leftover is returned using @free_fn.
2403 2404
 *
 * RETURNS:
T
Tejun Heo 已提交
2405
 * 0 on success, -errno on failure.
2406
 */
2407
int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size,
2408 2409 2410 2411
				  size_t atom_size,
				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
				  pcpu_fc_alloc_fn_t alloc_fn,
				  pcpu_fc_free_fn_t free_fn)
2412
{
2413 2414
	void *base = (void *)ULONG_MAX;
	void **areas = NULL;
2415
	struct pcpu_alloc_info *ai;
2416 2417
	size_t size_sum, areas_size;
	unsigned long max_distance;
2418
	int group, i, highest_group, rc;
2419

2420 2421
	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
				   cpu_distance_fn);
2422 2423
	if (IS_ERR(ai))
		return PTR_ERR(ai);
2424

2425
	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
2426
	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
2427

2428
	areas = memblock_virt_alloc_nopanic(areas_size, 0);
2429
	if (!areas) {
T
Tejun Heo 已提交
2430
		rc = -ENOMEM;
2431
		goto out_free;
2432
	}
2433

2434 2435
	/* allocate, copy and determine base address & max_distance */
	highest_group = 0;
2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		unsigned int cpu = NR_CPUS;
		void *ptr;

		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
			cpu = gi->cpu_map[i];
		BUG_ON(cpu == NR_CPUS);

		/* allocate space for the whole group */
		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
		if (!ptr) {
			rc = -ENOMEM;
			goto out_free_areas;
		}
2451 2452
		/* kmemleak tracks the percpu allocations separately */
		kmemleak_free(ptr);
2453
		areas[group] = ptr;
2454

2455
		base = min(ptr, base);
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
		if (ptr > areas[highest_group])
			highest_group = group;
	}
	max_distance = areas[highest_group] - base;
	max_distance += ai->unit_size * ai->groups[highest_group].nr_units;

	/* warn if maximum distance is further than 75% of vmalloc space */
	if (max_distance > VMALLOC_TOTAL * 3 / 4) {
		pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
				max_distance, VMALLOC_TOTAL);
#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
		/* and fail if we have fallback */
		rc = -EINVAL;
		goto out_free_areas;
#endif
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	}

	/*
	 * Copy data and free unused parts.  This should happen after all
	 * allocations are complete; otherwise, we may end up with
	 * overlapping groups.
	 */
	for (group = 0; group < ai->nr_groups; group++) {
		struct pcpu_group_info *gi = &ai->groups[group];
		void *ptr = areas[group];
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491

		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
			if (gi->cpu_map[i] == NR_CPUS) {
				/* unused unit, free whole */
				free_fn(ptr, ai->unit_size);
				continue;
			}
			/* copy and return the unused part */
			memcpy(ptr, __per_cpu_load, ai->static_size);
			free_fn(ptr + size_sum, ai->unit_size - size_sum);
		}
2492
	}
2493

2494
	/* base address is now known, determine group base offsets */
2495
	for (group = 0; group < ai->nr_groups; group++) {
2496
		ai->groups[group].base_offset = areas[group] - base;
2497
	}
2498

2499
	pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2500 2501
		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
		ai->dyn_size, ai->unit_size);
2502

T
Tejun Heo 已提交
2503
	rc = pcpu_setup_first_chunk(ai, base);
2504 2505 2506 2507
	goto out_free;

out_free_areas:
	for (group = 0; group < ai->nr_groups; group++)
2508 2509 2510
		if (areas[group])
			free_fn(areas[group],
				ai->groups[group].nr_units * ai->unit_size);
2511
out_free:
2512
	pcpu_free_alloc_info(ai);
2513
	if (areas)
2514
		memblock_free_early(__pa(areas), areas_size);
T
Tejun Heo 已提交
2515
	return rc;
2516
}
2517
#endif /* BUILD_EMBED_FIRST_CHUNK */
2518

2519
#ifdef BUILD_PAGE_FIRST_CHUNK
2520
/**
2521
 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2522 2523
 * @reserved_size: the size of reserved percpu area in bytes
 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
L
Lucas De Marchi 已提交
2524
 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2525 2526
 * @populate_pte_fn: function to populate pte
 *
2527 2528
 * This is a helper to ease setting up page-remapped first percpu
 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2529 2530 2531 2532 2533
 *
 * This is the basic allocator.  Static percpu area is allocated
 * page-by-page into vmalloc area.
 *
 * RETURNS:
T
Tejun Heo 已提交
2534
 * 0 on success, -errno on failure.
2535
 */
T
Tejun Heo 已提交
2536 2537 2538 2539
int __init pcpu_page_first_chunk(size_t reserved_size,
				 pcpu_fc_alloc_fn_t alloc_fn,
				 pcpu_fc_free_fn_t free_fn,
				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2540
{
2541
	static struct vm_struct vm;
2542
	struct pcpu_alloc_info *ai;
2543
	char psize_str[16];
T
Tejun Heo 已提交
2544
	int unit_pages;
2545
	size_t pages_size;
T
Tejun Heo 已提交
2546
	struct page **pages;
T
Tejun Heo 已提交
2547
	int unit, i, j, rc;
2548 2549
	int upa;
	int nr_g0_units;
2550

2551 2552
	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);

2553
	ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL);
2554 2555 2556
	if (IS_ERR(ai))
		return PTR_ERR(ai);
	BUG_ON(ai->nr_groups != 1);
2557 2558 2559 2560 2561 2562
	upa = ai->alloc_size/ai->unit_size;
	nr_g0_units = roundup(num_possible_cpus(), upa);
	if (unlikely(WARN_ON(ai->groups[0].nr_units != nr_g0_units))) {
		pcpu_free_alloc_info(ai);
		return -EINVAL;
	}
2563 2564

	unit_pages = ai->unit_size >> PAGE_SHIFT;
2565 2566

	/* unaligned allocations can't be freed, round up to page size */
2567 2568
	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
			       sizeof(pages[0]));
2569
	pages = memblock_virt_alloc(pages_size, 0);
2570

2571
	/* allocate pages */
2572
	j = 0;
2573 2574
	for (unit = 0; unit < num_possible_cpus(); unit++) {
		unsigned int cpu = ai->groups[0].cpu_map[unit];
T
Tejun Heo 已提交
2575
		for (i = 0; i < unit_pages; i++) {
2576 2577
			void *ptr;

2578
			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2579
			if (!ptr) {
2580
				pr_warn("failed to allocate %s page for cpu%u\n",
2581
						psize_str, cpu);
2582 2583
				goto enomem;
			}
2584 2585
			/* kmemleak tracks the percpu allocations separately */
			kmemleak_free(ptr);
T
Tejun Heo 已提交
2586
			pages[j++] = virt_to_page(ptr);
2587
		}
2588
	}
2589

2590 2591
	/* allocate vm area, map the pages and copy static data */
	vm.flags = VM_ALLOC;
2592
	vm.size = num_possible_cpus() * ai->unit_size;
2593 2594
	vm_area_register_early(&vm, PAGE_SIZE);

2595
	for (unit = 0; unit < num_possible_cpus(); unit++) {
2596
		unsigned long unit_addr =
2597
			(unsigned long)vm.addr + unit * ai->unit_size;
2598

T
Tejun Heo 已提交
2599
		for (i = 0; i < unit_pages; i++)
2600 2601 2602
			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));

		/* pte already populated, the following shouldn't fail */
T
Tejun Heo 已提交
2603 2604 2605 2606
		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
				      unit_pages);
		if (rc < 0)
			panic("failed to map percpu area, err=%d\n", rc);
2607

2608 2609 2610 2611 2612 2613 2614 2615 2616
		/*
		 * FIXME: Archs with virtual cache should flush local
		 * cache for the linear mapping here - something
		 * equivalent to flush_cache_vmap() on the local cpu.
		 * flush_cache_vmap() can't be used as most supporting
		 * data structures are not set up yet.
		 */

		/* copy static data */
2617
		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
2618 2619 2620
	}

	/* we're ready, commit */
2621
	pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2622 2623
		unit_pages, psize_str, vm.addr, ai->static_size,
		ai->reserved_size, ai->dyn_size);
2624

T
Tejun Heo 已提交
2625
	rc = pcpu_setup_first_chunk(ai, vm.addr);
2626 2627 2628 2629
	goto out_free_ar;

enomem:
	while (--j >= 0)
T
Tejun Heo 已提交
2630
		free_fn(page_address(pages[j]), PAGE_SIZE);
T
Tejun Heo 已提交
2631
	rc = -ENOMEM;
2632
out_free_ar:
2633
	memblock_free_early(__pa(pages), pages_size);
2634
	pcpu_free_alloc_info(ai);
T
Tejun Heo 已提交
2635
	return rc;
2636
}
2637
#endif /* BUILD_PAGE_FIRST_CHUNK */
2638

2639
#ifndef	CONFIG_HAVE_SETUP_PER_CPU_AREA
2640
/*
2641
 * Generic SMP percpu area setup.
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654
 *
 * The embedding helper is used because its behavior closely resembles
 * the original non-dynamic generic percpu area setup.  This is
 * important because many archs have addressing restrictions and might
 * fail if the percpu area is located far away from the previous
 * location.  As an added bonus, in non-NUMA cases, embedding is
 * generally a good idea TLB-wise because percpu area can piggy back
 * on the physical linear memory mapping which uses large page
 * mappings on applicable archs.
 */
unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
EXPORT_SYMBOL(__per_cpu_offset);

2655 2656 2657
static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
				       size_t align)
{
2658 2659
	return  memblock_virt_alloc_from_nopanic(
			size, align, __pa(MAX_DMA_ADDRESS));
2660
}
2661

2662 2663
static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
{
2664
	memblock_free_early(__pa(ptr), size);
2665 2666
}

2667 2668 2669 2670
void __init setup_per_cpu_areas(void)
{
	unsigned long delta;
	unsigned int cpu;
T
Tejun Heo 已提交
2671
	int rc;
2672 2673 2674 2675 2676

	/*
	 * Always reserve area for module percpu variables.  That's
	 * what the legacy allocator did.
	 */
T
Tejun Heo 已提交
2677
	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2678 2679
				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
T
Tejun Heo 已提交
2680
	if (rc < 0)
2681
		panic("Failed to initialize percpu areas.");
2682 2683 2684

	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
	for_each_possible_cpu(cpu)
T
Tejun Heo 已提交
2685
		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2686
}
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706
#endif	/* CONFIG_HAVE_SETUP_PER_CPU_AREA */

#else	/* CONFIG_SMP */

/*
 * UP percpu area setup.
 *
 * UP always uses km-based percpu allocator with identity mapping.
 * Static percpu variables are indistinguishable from the usual static
 * variables and don't require any special preparation.
 */
void __init setup_per_cpu_areas(void)
{
	const size_t unit_size =
		roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE,
					 PERCPU_DYNAMIC_RESERVE));
	struct pcpu_alloc_info *ai;
	void *fc;

	ai = pcpu_alloc_alloc_info(1, 1);
2707 2708 2709
	fc = memblock_virt_alloc_from_nopanic(unit_size,
					      PAGE_SIZE,
					      __pa(MAX_DMA_ADDRESS));
2710 2711
	if (!ai || !fc)
		panic("Failed to allocate memory for percpu areas.");
2712 2713
	/* kmemleak tracks the percpu allocations separately */
	kmemleak_free(fc);
2714 2715 2716 2717 2718 2719 2720 2721 2722 2723

	ai->dyn_size = unit_size;
	ai->unit_size = unit_size;
	ai->atom_size = unit_size;
	ai->alloc_size = unit_size;
	ai->groups[0].nr_units = 1;
	ai->groups[0].cpu_map[0] = 0;

	if (pcpu_setup_first_chunk(ai, fc) < 0)
		panic("Failed to initialize percpu areas.");
2724 2725 2726
#ifdef CONFIG_CRIS
#warning "the CRIS architecture has physical and virtual addresses confused"
#else
2727
	pcpu_free_alloc_info(ai);
2728
#endif
2729 2730 2731
}

#endif	/* CONFIG_SMP */
2732

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743
/*
 * Percpu allocator is initialized early during boot when neither slab or
 * workqueue is available.  Plug async management until everything is up
 * and running.
 */
static int __init percpu_enable_async(void)
{
	pcpu_async_enabled = true;
	return 0;
}
subsys_initcall(percpu_enable_async);