dmar.c 38.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28
 */

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */

31 32
#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
33 34
#include <linux/iova.h>
#include <linux/intel-iommu.h>
35
#include <linux/timer.h>
36 37
#include <linux/irq.h>
#include <linux/interrupt.h>
38
#include <linux/tboot.h>
39
#include <linux/dmi.h>
40
#include <linux/slab.h>
41
#include <asm/irq_remapping.h>
42
#include <asm/iommu_table.h>
43

44 45
#include "irq_remapping.h"

46 47 48 49 50 51 52 53 54 55 56
/*
 * Assumptions:
 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
 *    before IO devices managed by that unit.
 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
 *    after IO devices managed by that unit.
 * 3) Hotplug events are rare.
 *
 * Locking rules for DMA and interrupt remapping related global data structures:
 * 1) Use dmar_global_lock in process context
 * 2) Use RCU in interrupt context
57
 */
58
DECLARE_RWSEM(dmar_global_lock);
59 60
LIST_HEAD(dmar_drhd_units);

61
struct acpi_table_header * __initdata dmar_tbl;
62
static acpi_size dmar_tbl_size;
63
static int dmar_dev_scope_status = 1;
64

65
static int alloc_iommu(struct dmar_drhd_unit *drhd);
66
static void free_iommu(struct intel_iommu *iommu);
67

68 69 70 71 72 73 74
static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
75
		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
76
	else
77
		list_add_rcu(&drhd->list, &dmar_drhd_units);
78 79
}

80
void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
81 82 83 84 85 86
{
	struct acpi_dmar_device_scope *scope;

	*cnt = 0;
	while (start < end) {
		scope = start;
87 88
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ACPI ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
89 90
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
91 92
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
93
			pr_warn("Unsupported device scope\n");
94
		}
95 96 97
		start += scope->length;
	}
	if (*cnt == 0)
98 99 100 101 102
		return NULL;

	return kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
}

103
void dmar_free_dev_scope(struct pci_dev __rcu ***devices, int *cnt)
104
{
105 106 107
	int i;
	struct pci_dev *tmp_dev;

108
	if (*devices && *cnt) {
109 110
		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
			pci_dev_put(tmp_dev);
111 112
		kfree(*devices);
	}
113 114 115

	*devices = NULL;
	*cnt = 0;
116 117
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
/* Optimize out kzalloc()/kfree() for normal cases */
static char dmar_pci_notify_info_buf[64];

static struct dmar_pci_notify_info *
dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
{
	int level = 0;
	size_t size;
	struct pci_dev *tmp;
	struct dmar_pci_notify_info *info;

	BUG_ON(dev->is_virtfn);

	/* Only generate path[] for device addition event */
	if (event == BUS_NOTIFY_ADD_DEVICE)
		for (tmp = dev; tmp; tmp = tmp->bus->self)
			level++;

	size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
	if (size <= sizeof(dmar_pci_notify_info_buf)) {
		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
	} else {
		info = kzalloc(size, GFP_KERNEL);
		if (!info) {
			pr_warn("Out of memory when allocating notify_info "
				"for %s.\n", pci_name(dev));
144 145
			if (dmar_dev_scope_status == 0)
				dmar_dev_scope_status = -ENOMEM;
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
			return NULL;
		}
	}

	info->event = event;
	info->dev = dev;
	info->seg = pci_domain_nr(dev->bus);
	info->level = level;
	if (event == BUS_NOTIFY_ADD_DEVICE) {
		for (tmp = dev, level--; tmp; tmp = tmp->bus->self) {
			info->path[level].device = PCI_SLOT(tmp->devfn);
			info->path[level].function = PCI_FUNC(tmp->devfn);
			if (pci_is_root_bus(tmp->bus))
				info->bus = tmp->bus->number;
		}
	}

	return info;
}

static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
{
	if ((void *)info != dmar_pci_notify_info_buf)
		kfree(info);
}

static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
				struct acpi_dmar_pci_path *path, int count)
{
	int i;

	if (info->bus != bus)
		return false;
	if (info->level != count)
		return false;

	for (i = 0; i < count; i++) {
		if (path[i].device != info->path[i].device ||
		    path[i].function != info->path[i].function)
			return false;
	}

	return true;
}

/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
			  void *start, void*end, u16 segment,
			  struct pci_dev __rcu **devices, int devices_cnt)
{
	int i, level;
	struct pci_dev *tmp, *dev = info->dev;
	struct acpi_dmar_device_scope *scope;
	struct acpi_dmar_pci_path *path;

	if (segment != info->seg)
		return 0;

	for (; start < end; start += scope->length) {
		scope = start;
		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			continue;

		path = (struct acpi_dmar_pci_path *)(scope + 1);
		level = (scope->length - sizeof(*scope)) / sizeof(*path);
		if (!dmar_match_pci_path(info, scope->bus, path, level))
			continue;

		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT) ^
		    (dev->hdr_type == PCI_HEADER_TYPE_NORMAL)) {
			pr_warn("Device scope type does not match for %s\n",
				pci_name(dev));
			return -EINVAL;
		}

		for_each_dev_scope(devices, devices_cnt, i, tmp)
			if (tmp == NULL) {
				rcu_assign_pointer(devices[i],
						   pci_dev_get(dev));
				return 1;
			}
		BUG_ON(i >= devices_cnt);
	}

	return 0;
}

int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
			  struct pci_dev __rcu **devices, int count)
{
	int index;
	struct pci_dev *tmp;

	if (info->seg != segment)
		return 0;

	for_each_active_dev_scope(devices, count, index, tmp)
		if (tmp == info->dev) {
			rcu_assign_pointer(devices[index], NULL);
			synchronize_rcu();
			pci_dev_put(tmp);
			return 1;
		}

	return 0;
}

static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
{
	int ret = 0;
	struct dmar_drhd_unit *dmaru;
	struct acpi_dmar_hardware_unit *drhd;

	for_each_drhd_unit(dmaru) {
		if (dmaru->include_all)
			continue;

		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit, header);
		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
				((void *)drhd) + drhd->header.length,
				dmaru->segment,
				dmaru->devices, dmaru->devices_cnt);
		if (ret != 0)
			break;
	}
	if (ret >= 0)
		ret = dmar_iommu_notify_scope_dev(info);
275 276
	if (ret < 0 && dmar_dev_scope_status == 0)
		dmar_dev_scope_status = ret;
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324

	return ret;
}

static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
{
	struct dmar_drhd_unit *dmaru;

	for_each_drhd_unit(dmaru)
		if (dmar_remove_dev_scope(info, dmaru->segment,
			dmaru->devices, dmaru->devices_cnt))
			break;
	dmar_iommu_notify_scope_dev(info);
}

static int dmar_pci_bus_notifier(struct notifier_block *nb,
				 unsigned long action, void *data)
{
	struct pci_dev *pdev = to_pci_dev(data);
	struct dmar_pci_notify_info *info;

	/* Only care about add/remove events for physical functions */
	if (pdev->is_virtfn)
		return NOTIFY_DONE;
	if (action != BUS_NOTIFY_ADD_DEVICE && action != BUS_NOTIFY_DEL_DEVICE)
		return NOTIFY_DONE;

	info = dmar_alloc_pci_notify_info(pdev, action);
	if (!info)
		return NOTIFY_DONE;

	down_write(&dmar_global_lock);
	if (action == BUS_NOTIFY_ADD_DEVICE)
		dmar_pci_bus_add_dev(info);
	else if (action == BUS_NOTIFY_DEL_DEVICE)
		dmar_pci_bus_del_dev(info);
	up_write(&dmar_global_lock);

	dmar_free_pci_notify_info(info);

	return NOTIFY_OK;
}

static struct notifier_block dmar_pci_bus_nb = {
	.notifier_call = dmar_pci_bus_notifier,
	.priority = INT_MIN,
};

325 326 327 328 329 330 331 332 333 334 335 336
/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

337
	drhd = (struct acpi_dmar_hardware_unit *)header;
338 339 340 341
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

342
	dmaru->hdr = header;
343
	dmaru->reg_base_addr = drhd->address;
344
	dmaru->segment = drhd->segment;
345
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
346 347 348 349 350 351
	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
					      ((void *)drhd) + drhd->header.length,
					      &dmaru->devices_cnt);
	if (dmaru->devices_cnt && dmaru->devices == NULL) {
		kfree(dmaru);
		return -ENOMEM;
352
	}
353

354 355
	ret = alloc_iommu(dmaru);
	if (ret) {
356 357
		dmar_free_dev_scope(&dmaru->devices,
				    &dmaru->devices_cnt);
358 359 360 361 362 363 364
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

365 366 367 368 369 370 371 372 373
static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
{
	if (dmaru->devices && dmaru->devices_cnt)
		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
	if (dmaru->iommu)
		free_iommu(dmaru->iommu);
	kfree(dmaru);
}

D
David Woodhouse 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
static int __init dmar_parse_one_andd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_andd *andd = (void *)header;

	/* Check for NUL termination within the designated length */
	if (strnlen(andd->object_name, header->length - 8) == header->length - 8) {
		WARN_TAINT(1, TAINT_FIRMWARE_WORKAROUND,
			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
			   dmi_get_system_info(DMI_BIOS_VENDOR),
			   dmi_get_system_info(DMI_BIOS_VERSION),
			   dmi_get_system_info(DMI_PRODUCT_VERSION));
		return -EINVAL;
	}
	pr_info("ANDD device: %x name: %s\n", andd->device_number,
		andd->object_name);

	return 0;
}

394
#ifdef CONFIG_ACPI_NUMA
395 396 397 398 399 400 401
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
402
	for_each_drhd_unit(drhd) {
403 404 405 406 407 408
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
409 410
			return 0;
		}
411
	}
412 413 414 415 416 417 418 419
	WARN_TAINT(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		drhd->reg_base_addr,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
420

421
	return 0;
422
}
423
#endif
424

425 426 427 428 429
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
430
	struct acpi_dmar_atsr *atsr;
431
	struct acpi_dmar_rhsa *rhsa;
432 433 434

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
435 436
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
437
		pr_info("DRHD base: %#016Lx flags: %#x\n",
438
			(unsigned long long)drhd->address, drhd->flags);
439 440
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
441 442
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
443
		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
444 445
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
446
		break;
447 448
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
449
		pr_info("ATSR flags: %#x\n", atsr->flags);
450
		break;
451 452
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
453
		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
454 455 456
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
D
David Woodhouse 已提交
457 458 459 460
	case ACPI_DMAR_TYPE_ANDD:
		/* We don't print this here because we need to sanity-check
		   it first. So print it in dmar_parse_one_andd() instead. */
		break;
461 462 463
	}
}

464 465 466 467 468 469 470 471
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
472 473 474
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
475 476

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
477
		pr_warn("Unable to map DMAR\n");
478 479 480 481 482
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
483

484 485 486 487 488 489 490 491 492
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;
493
	int drhd_count = 0;
494

495 496 497 498 499 500
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

501 502 503 504 505 506
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

507 508 509 510
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
511
	if (dmar->width < PAGE_SHIFT - 1) {
512
		pr_warn("Invalid DMAR haw\n");
513 514 515
		return -EINVAL;
	}

516
	pr_info("Host address width %d\n", dmar->width + 1);
517 518 519 520

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
521 522
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
523
			pr_warn("Invalid 0-length structure\n");
524 525 526 527
			ret = -EINVAL;
			break;
		}

528 529 530 531
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
532
			drhd_count++;
533 534 535 536
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
			ret = dmar_parse_one_rmrr(entry_header);
537 538 539
			break;
		case ACPI_DMAR_TYPE_ATSR:
			ret = dmar_parse_one_atsr(entry_header);
540
			break;
541
		case ACPI_DMAR_HARDWARE_AFFINITY:
542
#ifdef CONFIG_ACPI_NUMA
543
			ret = dmar_parse_one_rhsa(entry_header);
544
#endif
545
			break;
D
David Woodhouse 已提交
546 547 548
		case ACPI_DMAR_TYPE_ANDD:
			ret = dmar_parse_one_andd(entry_header);
			break;
549
		default:
550
			pr_warn("Unknown DMAR structure type %d\n",
551
				entry_header->type);
552 553 554 555 556 557 558 559
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
560 561
	if (drhd_count == 0)
		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
562 563 564
	return ret;
}

565
static int dmar_pci_device_match(struct pci_dev __rcu *devices[], int cnt,
566 567 568
			  struct pci_dev *dev)
{
	int index;
569
	struct pci_dev *tmp;
570 571

	while (dev) {
572 573
		for_each_active_dev_scope(devices, cnt, index, tmp)
			if (dev == tmp)
574 575 576 577 578 579 580 581 582 583 584 585
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
586
	struct dmar_drhd_unit *dmaru;
587 588
	struct acpi_dmar_hardware_unit *drhd;

589 590
	dev = pci_physfn(dev);

591
	rcu_read_lock();
592
	for_each_drhd_unit(dmaru) {
593 594 595 596 597 598
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
599
			goto out;
600

601 602
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
603
			goto out;
604
	}
605 606 607
	dmaru = NULL;
out:
	rcu_read_unlock();
608

609
	return dmaru;
610 611
}

612 613
int __init dmar_dev_scope_init(void)
{
614 615
	struct pci_dev *dev = NULL;
	struct dmar_pci_notify_info *info;
616

617 618
	if (dmar_dev_scope_status != 1)
		return dmar_dev_scope_status;
619

620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
	if (list_empty(&dmar_drhd_units)) {
		dmar_dev_scope_status = -ENODEV;
	} else {
		dmar_dev_scope_status = 0;

		for_each_pci_dev(dev) {
			if (dev->is_virtfn)
				continue;

			info = dmar_alloc_pci_notify_info(dev,
					BUS_NOTIFY_ADD_DEVICE);
			if (!info) {
				return dmar_dev_scope_status;
			} else {
				dmar_pci_bus_add_dev(info);
				dmar_free_pci_notify_info(info);
			}
		}
638

639
		bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
640 641
	}

642
	return dmar_dev_scope_status;
643 644
}

645 646 647

int __init dmar_table_init(void)
{
648
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
649 650
	int ret;

651 652 653 654 655 656 657 658 659
	if (dmar_table_initialized == 0) {
		ret = parse_dmar_table();
		if (ret < 0) {
			if (ret != -ENODEV)
				pr_info("parse DMAR table failure.\n");
		} else  if (list_empty(&dmar_drhd_units)) {
			pr_info("No DMAR devices found\n");
			ret = -ENODEV;
		}
F
Fenghua Yu 已提交
660

661 662 663 664
		if (ret < 0)
			dmar_table_initialized = ret;
		else
			dmar_table_initialized = 1;
665
	}
F
Fenghua Yu 已提交
666

667
	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
668 669
}

670 671
static void warn_invalid_dmar(u64 addr, const char *message)
{
672 673 674 675 676 677 678 679
	WARN_TAINT_ONCE(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
680
}
681

682
static int __init check_zero_address(void)
683 684 685 686 687 688 689 690 691 692 693 694
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	struct acpi_dmar_hardware_unit *drhd;

	dmar = (struct acpi_table_dmar *)dmar_tbl;
	entry_header = (struct acpi_dmar_header *)(dmar + 1);

	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
695
			pr_warn("Invalid 0-length structure\n");
696 697 698 699
			return 0;
		}

		if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
700 701 702
			void __iomem *addr;
			u64 cap, ecap;

703 704
			drhd = (void *)entry_header;
			if (!drhd->address) {
705
				warn_invalid_dmar(0, "");
706 707 708 709 710 711 712 713 714 715 716 717
				goto failed;
			}

			addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
			if (!addr ) {
				printk("IOMMU: can't validate: %llx\n", drhd->address);
				goto failed;
			}
			cap = dmar_readq(addr + DMAR_CAP_REG);
			ecap = dmar_readq(addr + DMAR_ECAP_REG);
			early_iounmap(addr, VTD_PAGE_SIZE);
			if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
718 719
				warn_invalid_dmar(drhd->address,
						  " returns all ones");
720
				goto failed;
721 722 723 724 725 726
			}
		}

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return 1;
727 728 729

failed:
	return 0;
730 731
}

732
int __init detect_intel_iommu(void)
733 734 735
{
	int ret;

736
	down_write(&dmar_global_lock);
737
	ret = dmar_table_detect();
738 739
	if (ret)
		ret = check_zero_address();
740
	{
741
		if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
742
			iommu_detected = 1;
C
Chris Wright 已提交
743 744 745
			/* Make sure ACS will be enabled */
			pci_request_acs();
		}
746

747 748 749
#ifdef CONFIG_X86
		if (ret)
			x86_init.iommu.iommu_init = intel_iommu_init;
750
#endif
751
	}
752
	early_acpi_os_unmap_memory((void __iomem *)dmar_tbl, dmar_tbl_size);
753
	dmar_tbl = NULL;
754
	up_write(&dmar_global_lock);
755

756
	return ret ? 1 : -ENODEV;
757 758 759
}


760 761 762 763 764 765 766 767 768 769
static void unmap_iommu(struct intel_iommu *iommu)
{
	iounmap(iommu->reg);
	release_mem_region(iommu->reg_phys, iommu->reg_size);
}

/**
 * map_iommu: map the iommu's registers
 * @iommu: the iommu to map
 * @phys_addr: the physical address of the base resgister
770
 *
771
 * Memory map the iommu's registers.  Start w/ a single page, and
772
 * possibly expand if that turns out to be insufficent.
773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
 */
static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
{
	int map_size, err=0;

	iommu->reg_phys = phys_addr;
	iommu->reg_size = VTD_PAGE_SIZE;

	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
		pr_err("IOMMU: can't reserve memory\n");
		err = -EBUSY;
		goto out;
	}

	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
	if (!iommu->reg) {
		pr_err("IOMMU: can't map the region\n");
		err = -ENOMEM;
		goto release;
	}

	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
		err = -EINVAL;
		warn_invalid_dmar(phys_addr, " returns all ones");
		goto unmap;
	}

	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
			 cap_max_fault_reg_offset(iommu->cap));
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > iommu->reg_size) {
		iounmap(iommu->reg);
		release_mem_region(iommu->reg_phys, iommu->reg_size);
		iommu->reg_size = map_size;
		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
					iommu->name)) {
			pr_err("IOMMU: can't reserve memory\n");
			err = -EBUSY;
			goto out;
		}
		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
		if (!iommu->reg) {
			pr_err("IOMMU: can't map the region\n");
			err = -ENOMEM;
			goto release;
		}
	}
	err = 0;
	goto out;

unmap:
	iounmap(iommu->reg);
release:
	release_mem_region(iommu->reg_phys, iommu->reg_size);
out:
	return err;
}

835
static int alloc_iommu(struct dmar_drhd_unit *drhd)
836
{
837
	struct intel_iommu *iommu;
838
	u32 ver, sts;
839
	static int iommu_allocated = 0;
840
	int agaw = 0;
F
Fenghua Yu 已提交
841
	int msagaw = 0;
842
	int err;
843

844
	if (!drhd->reg_base_addr) {
845
		warn_invalid_dmar(0, "");
846 847 848
		return -EINVAL;
	}

849 850
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
851
		return -ENOMEM;
852 853

	iommu->seq_id = iommu_allocated++;
854
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
855

856 857 858
	err = map_iommu(iommu, drhd->reg_base_addr);
	if (err) {
		pr_err("IOMMU: failed to map %s\n", iommu->name);
859 860
		goto error;
	}
861

862
	err = -EINVAL;
W
Weidong Han 已提交
863 864
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
865 866
		pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
			iommu->seq_id);
867
		goto err_unmap;
F
Fenghua Yu 已提交
868 869 870
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
871
		pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
872
			iommu->seq_id);
873
		goto err_unmap;
W
Weidong Han 已提交
874 875
	}
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
876
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
877

878 879
	iommu->node = -1;

880
	ver = readl(iommu->reg + DMAR_VER_REG);
Y
Yinghai Lu 已提交
881 882
	pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->seq_id,
F
Fenghua Yu 已提交
883 884 885 886
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
887

888 889 890 891 892 893 894 895 896
	/* Reflect status in gcmd */
	sts = readl(iommu->reg + DMAR_GSTS_REG);
	if (sts & DMA_GSTS_IRES)
		iommu->gcmd |= DMA_GCMD_IRE;
	if (sts & DMA_GSTS_TES)
		iommu->gcmd |= DMA_GCMD_TE;
	if (sts & DMA_GSTS_QIES)
		iommu->gcmd |= DMA_GCMD_QIE;

897
	raw_spin_lock_init(&iommu->register_lock);
898 899

	drhd->iommu = iommu;
900
	return 0;
901 902

 err_unmap:
903
	unmap_iommu(iommu);
904
 error:
905
	kfree(iommu);
906
	return err;
907 908
}

909
static void free_iommu(struct intel_iommu *iommu)
910
{
911 912 913 914 915
	if (iommu->irq) {
		free_irq(iommu->irq, iommu);
		irq_set_handler_data(iommu->irq, NULL);
		destroy_irq(iommu->irq);
	}
916

917 918 919 920 921 922
	if (iommu->qi) {
		free_page((unsigned long)iommu->qi->desc);
		kfree(iommu->qi->desc_status);
		kfree(iommu->qi);
	}

923
	if (iommu->reg)
924 925
		unmap_iommu(iommu);

926 927
	kfree(iommu);
}
928 929 930 931 932 933

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
934 935
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
936 937 938 939 940 941
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

942 943 944
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
945
	int head, tail;
946 947 948
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

949 950 951
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

952 953 954 955 956 957 958 959 960
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
961
		if ((head >> DMAR_IQ_SHIFT) == index) {
962
			pr_err("VT-d detected invalid descriptor: "
963 964 965
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
966 967 968 969 970 971 972 973 974
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

1001 1002 1003
	return 0;
}

1004 1005 1006 1007
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
1008
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1009
{
1010
	int rc;
1011 1012 1013 1014 1015 1016
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
1017
		return 0;
1018 1019 1020

	hw = qi->desc;

1021 1022 1023
restart:
	rc = 0;

1024
	raw_spin_lock_irqsave(&qi->q_lock, flags);
1025
	while (qi->free_cnt < 3) {
1026
		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1027
		cpu_relax();
1028
		raw_spin_lock_irqsave(&qi->q_lock, flags);
1029 1030 1031 1032 1033 1034 1035 1036 1037
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

1038 1039
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
1054
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
1055 1056

	while (qi->desc_status[wait_index] != QI_DONE) {
1057 1058 1059 1060 1061 1062 1063
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
1064 1065
		rc = qi_check_fault(iommu, index);
		if (rc)
1066
			break;
1067

1068
		raw_spin_unlock(&qi->q_lock);
1069
		cpu_relax();
1070
		raw_spin_lock(&qi->q_lock);
1071
	}
1072 1073

	qi->desc_status[index] = QI_DONE;
1074 1075

	reclaim_free_desc(qi);
1076
	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1077

1078 1079 1080
	if (rc == -EAGAIN)
		goto restart;

1081
	return rc;
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

1094
	/* should never fail */
1095 1096 1097
	qi_submit_sync(&desc, iommu);
}

1098 1099
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
1100 1101 1102 1103 1104 1105 1106
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

1107
	qi_submit_sync(&desc, iommu);
1108 1109
}

1110 1111
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

1129
	qi_submit_sync(&desc, iommu);
1130 1131
}

1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

1165
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
1185
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1186 1187
}

1188 1189 1190 1191 1192
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
1193
	u32 sts;
1194 1195 1196 1197 1198 1199
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1200
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1201 1202 1203 1204 1205 1206 1207

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
1208
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1209 1210 1211 1212

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

1213
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1214 1215
}

1216 1217 1218 1219 1220 1221 1222 1223
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1224
	struct page *desc_page;
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1235
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1236 1237 1238 1239 1240
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1241 1242 1243

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
1244
		kfree(qi);
1245
		iommu->qi = NULL;
1246 1247 1248
		return -ENOMEM;
	}

1249 1250
	qi->desc = page_address(desc_page);

1251
	qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1252 1253 1254
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
1255
		iommu->qi = NULL;
1256 1257 1258 1259 1260 1261
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1262
	raw_spin_lock_init(&qi->q_lock);
1263

1264
	__dmar_enable_qi(iommu);
1265 1266 1267

	return 0;
}
1268 1269 1270

/* iommu interrupt handling. Most stuff are MSI-like. */

1271 1272 1273 1274 1275 1276 1277
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
1292
	"PCE for translation request specifies blocking",
1293
};
1294

1295
static const char *irq_remap_fault_reasons[] =
1296 1297 1298 1299 1300 1301 1302 1303 1304 1305
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1306
static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1307
{
1308 1309
	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
					ARRAY_SIZE(irq_remap_fault_reasons))) {
1310
		*fault_type = INTR_REMAP;
1311
		return irq_remap_fault_reasons[fault_reason - 0x20];
1312 1313 1314 1315 1316
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1317
		return "Unknown";
1318
	}
1319 1320
}

1321
void dmar_msi_unmask(struct irq_data *data)
1322
{
1323
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1324 1325 1326
	unsigned long flag;

	/* unmask it */
1327
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1328 1329 1330
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1331
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1332 1333
}

1334
void dmar_msi_mask(struct irq_data *data)
1335 1336
{
	unsigned long flag;
1337
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1338 1339

	/* mask it */
1340
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1341 1342 1343
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1344
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1345 1346 1347 1348
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
1349
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1350 1351
	unsigned long flag;

1352
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1353 1354 1355
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1356
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1357 1358 1359 1360
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
1361
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1362 1363
	unsigned long flag;

1364
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1365 1366 1367
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1368
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1369 1370 1371 1372 1373 1374
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1375
	int fault_type;
1376

1377
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1378

1379
	if (fault_type == INTR_REMAP)
1380
		pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1381 1382 1383 1384 1385 1386
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
1387
		pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1388 1389 1390 1391 1392
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1393 1394 1395 1396
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1397
irqreturn_t dmar_fault(int irq, void *dev_id)
1398 1399 1400 1401 1402 1403
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

1404
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1405
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1406
	if (fault_status)
1407
		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1408 1409 1410

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1411
		goto unlock_exit;
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

1442
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1443 1444 1445 1446 1447

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1448
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1449
			fault_index = 0;
1450
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1451 1452
	}

1453 1454 1455
	writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);

unlock_exit:
1456
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1457 1458 1459 1460 1461 1462 1463
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1464 1465 1466 1467 1468 1469
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1470 1471
	irq = create_irq();
	if (!irq) {
1472
		pr_err("IOMMU: no free vectors\n");
1473 1474 1475
		return -EINVAL;
	}

1476
	irq_set_handler_data(irq, iommu);
1477 1478 1479 1480
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
1481
		irq_set_handler_data(irq, NULL);
1482 1483
		iommu->irq = 0;
		destroy_irq(irq);
1484
		return ret;
1485 1486
	}

1487
	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1488
	if (ret)
1489
		pr_err("IOMMU: can't request irq\n");
1490 1491
	return ret;
}
1492 1493 1494 1495

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;
1496
	struct intel_iommu *iommu;
1497 1498 1499 1500

	/*
	 * Enable fault control interrupt.
	 */
1501
	for_each_iommu(iommu, drhd) {
1502
		u32 fault_status;
1503
		int ret = dmar_set_interrupt(iommu);
1504 1505

		if (ret) {
1506
			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1507 1508 1509
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
1510 1511 1512 1513 1514

		/*
		 * Clear any previous faults.
		 */
		dmar_fault(iommu->irq, iommu);
1515 1516
		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1517 1518 1519 1520
	}

	return 0;
}
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1546 1547 1548 1549

/*
 * Check interrupt remapping support in DMAR table description.
 */
1550
int __init dmar_ir_support(void)
1551 1552 1553
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
1554 1555
	if (!dmar)
		return 0;
1556 1557
	return dmar->flags & 0x1;
}
1558

1559 1560 1561 1562 1563 1564 1565 1566
static int __init dmar_free_unused_resources(void)
{
	struct dmar_drhd_unit *dmaru, *dmaru_n;

	/* DMAR units are in use */
	if (irq_remapping_enabled || intel_iommu_enabled)
		return 0;

1567 1568
	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
1569

1570
	down_write(&dmar_global_lock);
1571 1572 1573 1574
	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
		list_del(&dmaru->list);
		dmar_free_drhd(dmaru);
	}
1575
	up_write(&dmar_global_lock);
1576 1577 1578 1579 1580

	return 0;
}

late_initcall(dmar_free_unused_resources);
1581
IOMMU_INIT_POST(detect_intel_iommu);