dmar.c 33.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28
 */

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */

31 32
#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
33 34
#include <linux/iova.h>
#include <linux/intel-iommu.h>
35
#include <linux/timer.h>
36 37
#include <linux/irq.h>
#include <linux/interrupt.h>
38
#include <linux/tboot.h>
39
#include <linux/dmi.h>
40
#include <linux/slab.h>
41
#include <asm/irq_remapping.h>
42
#include <asm/iommu_table.h>
43

44 45
#include "irq_remapping.h"

46 47 48 49 50 51
/* No locks are needed as DMA remapping hardware unit
 * list is constructed at boot time and hotplug of
 * these units are not supported by the architecture.
 */
LIST_HEAD(dmar_drhd_units);

52
struct acpi_table_header * __initdata dmar_tbl;
53
static acpi_size dmar_tbl_size;
54

55
static int alloc_iommu(struct dmar_drhd_unit *drhd);
56
static void free_iommu(struct intel_iommu *iommu);
57

58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
		list_add_tail(&drhd->list, &dmar_drhd_units);
	else
		list_add(&drhd->list, &dmar_drhd_units);
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
					   struct pci_dev **dev, u16 segment)
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
91
			pr_warn("Device scope bus [%d] not found\n", scope->bus);
92 93
			break;
		}
L
Lv Zheng 已提交
94
		pdev = pci_get_slot(bus, PCI_DEVFN(path->device, path->function));
95
		if (!pdev) {
96
			/* warning will be printed below */
97 98 99 100 101 102 103
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
104
		pr_warn("Device scope device [%04x:%02x:%02x.%02x] not found\n",
L
Lv Zheng 已提交
105
			segment, scope->bus, path->device, path->function);
106 107 108 109 110 111
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
112 113
		pr_warn("Device scope type does not match for %s\n",
			pci_name(pdev));
114 115 116 117 118 119
		return -EINVAL;
	}
	*dev = pdev;
	return 0;
}

120
void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
121 122 123 124 125 126 127 128 129
{
	struct acpi_dmar_device_scope *scope;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
130 131
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
132
			pr_warn("Unsupported device scope\n");
133
		}
134 135 136
		start += scope->length;
	}
	if (*cnt == 0)
137 138 139 140 141 142 143 144 145 146
		return NULL;

	return kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
}

int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
				struct pci_dev ***devices, u16 segment)
{
	struct acpi_dmar_device_scope *scope;
	int index, ret;
147

148 149 150 151
	*devices = dmar_alloc_dev_scope(start, end, cnt);
	if (*cnt == 0)
		return 0;
	else if (!*devices)
152 153
		return -ENOMEM;

154
	for (index = 0; start < end; start += scope->length) {
155 156 157 158 159 160
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
161
				dmar_free_dev_scope(devices, cnt);
162 163 164 165 166 167 168 169 170
				return ret;
			}
			index ++;
		}
	}

	return 0;
}

171 172 173 174 175 176 177 178 179 180 181
void dmar_free_dev_scope(struct pci_dev ***devices, int *cnt)
{
	if (*devices && *cnt) {
		while (--*cnt >= 0)
			pci_dev_put((*devices)[*cnt]);
		kfree(*devices);
		*devices = NULL;
		*cnt = 0;
	}
}

182 183 184 185 186 187 188 189 190 191 192 193
/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

194
	drhd = (struct acpi_dmar_hardware_unit *)header;
195 196 197 198
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

199
	dmaru->hdr = header;
200
	dmaru->reg_base_addr = drhd->address;
201
	dmaru->segment = drhd->segment;
202 203
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

204 205 206 207 208 209 210 211 212
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

213 214 215 216 217 218 219 220 221
static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
{
	if (dmaru->devices && dmaru->devices_cnt)
		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
	if (dmaru->iommu)
		free_iommu(dmaru->iommu);
	kfree(dmaru);
}

222
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
223 224 225 226 227
{
	struct acpi_dmar_hardware_unit *drhd;

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

228 229 230
	if (dmaru->include_all)
		return 0;

231 232 233 234
	return dmar_parse_dev_scope((void *)(drhd + 1),
				    ((void *)drhd) + drhd->header.length,
				    &dmaru->devices_cnt, &dmaru->devices,
				    drhd->segment);
235 236
}

237
#ifdef CONFIG_ACPI_NUMA
238 239 240 241 242 243 244
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
245
	for_each_drhd_unit(drhd) {
246 247 248 249 250 251
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
252 253
			return 0;
		}
254
	}
255 256 257 258 259 260 261 262
	WARN_TAINT(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		drhd->reg_base_addr,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
263

264
	return 0;
265
}
266
#endif
267

268 269 270 271 272
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
273
	struct acpi_dmar_atsr *atsr;
274
	struct acpi_dmar_rhsa *rhsa;
275 276 277

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
278 279
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
280
		pr_info("DRHD base: %#016Lx flags: %#x\n",
281
			(unsigned long long)drhd->address, drhd->flags);
282 283
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
284 285
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
286
		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
287 288
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
289
		break;
290 291
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
292
		pr_info("ATSR flags: %#x\n", atsr->flags);
293
		break;
294 295
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
296
		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
297 298 299
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
300 301 302
	}
}

303 304 305 306 307 308 309 310
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
311 312 313
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
314 315

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
316
		pr_warn("Unable to map DMAR\n");
317 318 319 320 321
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
322

323 324 325 326 327 328 329 330 331
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;
332
	int drhd_count = 0;
333

334 335 336 337 338 339
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

340 341 342 343 344 345
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

346 347 348 349
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
350
	if (dmar->width < PAGE_SHIFT - 1) {
351
		pr_warn("Invalid DMAR haw\n");
352 353 354
		return -EINVAL;
	}

355
	pr_info("Host address width %d\n", dmar->width + 1);
356 357 358 359

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
360 361
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
362
			pr_warn("Invalid 0-length structure\n");
363 364 365 366
			ret = -EINVAL;
			break;
		}

367 368 369 370
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
371
			drhd_count++;
372 373 374 375
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
			ret = dmar_parse_one_rmrr(entry_header);
376 377 378
			break;
		case ACPI_DMAR_TYPE_ATSR:
			ret = dmar_parse_one_atsr(entry_header);
379
			break;
380
		case ACPI_DMAR_HARDWARE_AFFINITY:
381
#ifdef CONFIG_ACPI_NUMA
382
			ret = dmar_parse_one_rhsa(entry_header);
383
#endif
384
			break;
385
		default:
386
			pr_warn("Unknown DMAR structure type %d\n",
387
				entry_header->type);
388 389 390 391 392 393 394 395
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
396 397
	if (drhd_count == 0)
		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
398 399 400
	return ret;
}

401
static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
			  struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
421 422 423
	struct dmar_drhd_unit *dmaru = NULL;
	struct acpi_dmar_hardware_unit *drhd;

424 425
	dev = pci_physfn(dev);

426
	for_each_drhd_unit(dmaru) {
427 428 429 430 431 432 433
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
			return dmaru;
434

435 436 437
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
			return dmaru;
438 439 440 441 442
	}

	return NULL;
}

443 444
int __init dmar_dev_scope_init(void)
{
445
	static int dmar_dev_scope_initialized;
446
	struct dmar_drhd_unit *drhd;
447 448
	int ret = -ENODEV;

449 450 451
	if (dmar_dev_scope_initialized)
		return dmar_dev_scope_initialized;

452 453 454
	if (list_empty(&dmar_drhd_units))
		goto fail;

455
	list_for_each_entry(drhd, &dmar_drhd_units, list) {
456 457
		ret = dmar_parse_dev(drhd);
		if (ret)
458
			goto fail;
459 460
	}

461 462 463
	ret = dmar_parse_rmrr_atsr_dev();
	if (ret)
		goto fail;
464

465 466 467 468 469
	dmar_dev_scope_initialized = 1;
	return 0;

fail:
	dmar_dev_scope_initialized = ret;
470 471 472
	return ret;
}

473 474 475

int __init dmar_table_init(void)
{
476
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
477 478
	int ret;

479 480 481 482 483 484 485 486 487
	if (dmar_table_initialized == 0) {
		ret = parse_dmar_table();
		if (ret < 0) {
			if (ret != -ENODEV)
				pr_info("parse DMAR table failure.\n");
		} else  if (list_empty(&dmar_drhd_units)) {
			pr_info("No DMAR devices found\n");
			ret = -ENODEV;
		}
F
Fenghua Yu 已提交
488

489 490 491 492
		if (ret < 0)
			dmar_table_initialized = ret;
		else
			dmar_table_initialized = 1;
493
	}
F
Fenghua Yu 已提交
494

495
	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
496 497
}

498 499
static void warn_invalid_dmar(u64 addr, const char *message)
{
500 501 502 503 504 505 506 507
	WARN_TAINT_ONCE(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
508
}
509

510
static int __init check_zero_address(void)
511 512 513 514 515 516 517 518 519 520 521 522
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	struct acpi_dmar_hardware_unit *drhd;

	dmar = (struct acpi_table_dmar *)dmar_tbl;
	entry_header = (struct acpi_dmar_header *)(dmar + 1);

	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
523
			pr_warn("Invalid 0-length structure\n");
524 525 526 527
			return 0;
		}

		if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
528 529 530
			void __iomem *addr;
			u64 cap, ecap;

531 532
			drhd = (void *)entry_header;
			if (!drhd->address) {
533
				warn_invalid_dmar(0, "");
534 535 536 537 538 539 540 541 542 543 544 545
				goto failed;
			}

			addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
			if (!addr ) {
				printk("IOMMU: can't validate: %llx\n", drhd->address);
				goto failed;
			}
			cap = dmar_readq(addr + DMAR_CAP_REG);
			ecap = dmar_readq(addr + DMAR_ECAP_REG);
			early_iounmap(addr, VTD_PAGE_SIZE);
			if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
546 547
				warn_invalid_dmar(drhd->address,
						  " returns all ones");
548
				goto failed;
549 550 551 552 553 554
			}
		}

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return 1;
555 556 557

failed:
	return 0;
558 559
}

560
int __init detect_intel_iommu(void)
561 562 563
{
	int ret;

564
	ret = dmar_table_detect();
565 566
	if (ret)
		ret = check_zero_address();
567
	{
568
		if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
569
			iommu_detected = 1;
C
Chris Wright 已提交
570 571 572
			/* Make sure ACS will be enabled */
			pci_request_acs();
		}
573

574 575 576
#ifdef CONFIG_X86
		if (ret)
			x86_init.iommu.iommu_init = intel_iommu_init;
577
#endif
578
	}
579
	early_acpi_os_unmap_memory((void __iomem *)dmar_tbl, dmar_tbl_size);
580
	dmar_tbl = NULL;
581

582
	return ret ? 1 : -ENODEV;
583 584 585
}


586 587 588 589 590 591 592 593 594 595
static void unmap_iommu(struct intel_iommu *iommu)
{
	iounmap(iommu->reg);
	release_mem_region(iommu->reg_phys, iommu->reg_size);
}

/**
 * map_iommu: map the iommu's registers
 * @iommu: the iommu to map
 * @phys_addr: the physical address of the base resgister
596
 *
597
 * Memory map the iommu's registers.  Start w/ a single page, and
598
 * possibly expand if that turns out to be insufficent.
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660
 */
static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
{
	int map_size, err=0;

	iommu->reg_phys = phys_addr;
	iommu->reg_size = VTD_PAGE_SIZE;

	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
		pr_err("IOMMU: can't reserve memory\n");
		err = -EBUSY;
		goto out;
	}

	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
	if (!iommu->reg) {
		pr_err("IOMMU: can't map the region\n");
		err = -ENOMEM;
		goto release;
	}

	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
		err = -EINVAL;
		warn_invalid_dmar(phys_addr, " returns all ones");
		goto unmap;
	}

	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
			 cap_max_fault_reg_offset(iommu->cap));
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > iommu->reg_size) {
		iounmap(iommu->reg);
		release_mem_region(iommu->reg_phys, iommu->reg_size);
		iommu->reg_size = map_size;
		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
					iommu->name)) {
			pr_err("IOMMU: can't reserve memory\n");
			err = -EBUSY;
			goto out;
		}
		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
		if (!iommu->reg) {
			pr_err("IOMMU: can't map the region\n");
			err = -ENOMEM;
			goto release;
		}
	}
	err = 0;
	goto out;

unmap:
	iounmap(iommu->reg);
release:
	release_mem_region(iommu->reg_phys, iommu->reg_size);
out:
	return err;
}

661
static int alloc_iommu(struct dmar_drhd_unit *drhd)
662
{
663
	struct intel_iommu *iommu;
664
	u32 ver, sts;
665
	static int iommu_allocated = 0;
666
	int agaw = 0;
F
Fenghua Yu 已提交
667
	int msagaw = 0;
668
	int err;
669

670
	if (!drhd->reg_base_addr) {
671
		warn_invalid_dmar(0, "");
672 673 674
		return -EINVAL;
	}

675 676
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
677
		return -ENOMEM;
678 679

	iommu->seq_id = iommu_allocated++;
680
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
681

682 683 684
	err = map_iommu(iommu, drhd->reg_base_addr);
	if (err) {
		pr_err("IOMMU: failed to map %s\n", iommu->name);
685 686
		goto error;
	}
687

688
	err = -EINVAL;
W
Weidong Han 已提交
689 690
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
691 692
		pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
			iommu->seq_id);
693
		goto err_unmap;
F
Fenghua Yu 已提交
694 695 696
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
697
		pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
698
			iommu->seq_id);
699
		goto err_unmap;
W
Weidong Han 已提交
700 701
	}
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
702
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
703

704 705
	iommu->node = -1;

706
	ver = readl(iommu->reg + DMAR_VER_REG);
Y
Yinghai Lu 已提交
707 708
	pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->seq_id,
F
Fenghua Yu 已提交
709 710 711 712
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
713

714 715 716 717 718 719 720 721 722
	/* Reflect status in gcmd */
	sts = readl(iommu->reg + DMAR_GSTS_REG);
	if (sts & DMA_GSTS_IRES)
		iommu->gcmd |= DMA_GCMD_IRE;
	if (sts & DMA_GSTS_TES)
		iommu->gcmd |= DMA_GCMD_TE;
	if (sts & DMA_GSTS_QIES)
		iommu->gcmd |= DMA_GCMD_QIE;

723
	raw_spin_lock_init(&iommu->register_lock);
724 725

	drhd->iommu = iommu;
726
	return 0;
727 728

 err_unmap:
729
	unmap_iommu(iommu);
730
 error:
731
	kfree(iommu);
732
	return err;
733 734
}

735
static void free_iommu(struct intel_iommu *iommu)
736
{
737 738 739 740 741
	if (iommu->irq) {
		free_irq(iommu->irq, iommu);
		irq_set_handler_data(iommu->irq, NULL);
		destroy_irq(iommu->irq);
	}
742

743 744 745 746 747 748
	if (iommu->qi) {
		free_page((unsigned long)iommu->qi->desc);
		kfree(iommu->qi->desc_status);
		kfree(iommu->qi);
	}

749
	if (iommu->reg)
750 751
		unmap_iommu(iommu);

752 753
	kfree(iommu);
}
754 755 756 757 758 759

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
760 761
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
762 763 764 765 766 767
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

768 769 770
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
771
	int head, tail;
772 773 774
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

775 776 777
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

778 779 780 781 782 783 784 785 786
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
787
		if ((head >> DMAR_IQ_SHIFT) == index) {
788
			pr_err("VT-d detected invalid descriptor: "
789 790 791
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
792 793 794 795 796 797 798 799 800
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

827 828 829
	return 0;
}

830 831 832 833
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
834
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
835
{
836
	int rc;
837 838 839 840 841 842
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
843
		return 0;
844 845 846

	hw = qi->desc;

847 848 849
restart:
	rc = 0;

850
	raw_spin_lock_irqsave(&qi->q_lock, flags);
851
	while (qi->free_cnt < 3) {
852
		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
853
		cpu_relax();
854
		raw_spin_lock_irqsave(&qi->q_lock, flags);
855 856 857 858 859 860 861 862 863
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

864 865
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
866 867 868 869 870 871 872 873 874 875 876 877 878 879
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
880
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
881 882

	while (qi->desc_status[wait_index] != QI_DONE) {
883 884 885 886 887 888 889
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
890 891
		rc = qi_check_fault(iommu, index);
		if (rc)
892
			break;
893

894
		raw_spin_unlock(&qi->q_lock);
895
		cpu_relax();
896
		raw_spin_lock(&qi->q_lock);
897
	}
898 899

	qi->desc_status[index] = QI_DONE;
900 901

	reclaim_free_desc(qi);
902
	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
903

904 905 906
	if (rc == -EAGAIN)
		goto restart;

907
	return rc;
908 909 910 911 912 913 914 915 916 917 918 919
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

920
	/* should never fail */
921 922 923
	qi_submit_sync(&desc, iommu);
}

924 925
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
926 927 928 929 930 931 932
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

933
	qi_submit_sync(&desc, iommu);
934 935
}

936 937
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

955
	qi_submit_sync(&desc, iommu);
956 957
}

958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

979 980 981 982 983 984 985 986 987 988 989 990
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

991
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
1011
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1012 1013
}

1014 1015 1016 1017 1018
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
1019
	u32 sts;
1020 1021 1022 1023 1024 1025
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1026
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1027 1028 1029 1030 1031 1032 1033

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
1034
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1035 1036 1037 1038

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

1039
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1040 1041
}

1042 1043 1044 1045 1046 1047 1048 1049
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1050
	struct page *desc_page;
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1061
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1062 1063 1064 1065 1066
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1067 1068 1069

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
1070
		kfree(qi);
1071
		iommu->qi = NULL;
1072 1073 1074
		return -ENOMEM;
	}

1075 1076
	qi->desc = page_address(desc_page);

1077
	qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1078 1079 1080
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
1081
		iommu->qi = NULL;
1082 1083 1084 1085 1086 1087
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1088
	raw_spin_lock_init(&qi->q_lock);
1089

1090
	__dmar_enable_qi(iommu);
1091 1092 1093

	return 0;
}
1094 1095 1096

/* iommu interrupt handling. Most stuff are MSI-like. */

1097 1098 1099 1100 1101 1102 1103
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
1118
	"PCE for translation request specifies blocking",
1119
};
1120

1121
static const char *irq_remap_fault_reasons[] =
1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1132
static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1133
{
1134 1135
	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
					ARRAY_SIZE(irq_remap_fault_reasons))) {
1136
		*fault_type = INTR_REMAP;
1137
		return irq_remap_fault_reasons[fault_reason - 0x20];
1138 1139 1140 1141 1142
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1143
		return "Unknown";
1144
	}
1145 1146
}

1147
void dmar_msi_unmask(struct irq_data *data)
1148
{
1149
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1150 1151 1152
	unsigned long flag;

	/* unmask it */
1153
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1154 1155 1156
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1157
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1158 1159
}

1160
void dmar_msi_mask(struct irq_data *data)
1161 1162
{
	unsigned long flag;
1163
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1164 1165

	/* mask it */
1166
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1167 1168 1169
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1170
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1171 1172 1173 1174
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
1175
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1176 1177
	unsigned long flag;

1178
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1179 1180 1181
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1182
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1183 1184 1185 1186
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
1187
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1188 1189
	unsigned long flag;

1190
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1191 1192 1193
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1194
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1195 1196 1197 1198 1199 1200
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1201
	int fault_type;
1202

1203
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1204

1205
	if (fault_type == INTR_REMAP)
1206
		pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1207 1208 1209 1210 1211 1212
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
1213
		pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1214 1215 1216 1217 1218
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1219 1220 1221 1222
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1223
irqreturn_t dmar_fault(int irq, void *dev_id)
1224 1225 1226 1227 1228 1229
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

1230
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1231
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1232
	if (fault_status)
1233
		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1234 1235 1236

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1237
		goto unlock_exit;
1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

1268
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1269 1270 1271 1272 1273

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1274
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1275
			fault_index = 0;
1276
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1277 1278
	}

1279 1280 1281
	writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);

unlock_exit:
1282
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1283 1284 1285 1286 1287 1288 1289
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1290 1291 1292 1293 1294 1295
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1296 1297
	irq = create_irq();
	if (!irq) {
1298
		pr_err("IOMMU: no free vectors\n");
1299 1300 1301
		return -EINVAL;
	}

1302
	irq_set_handler_data(irq, iommu);
1303 1304 1305 1306
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
1307
		irq_set_handler_data(irq, NULL);
1308 1309
		iommu->irq = 0;
		destroy_irq(irq);
1310
		return ret;
1311 1312
	}

1313
	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1314
	if (ret)
1315
		pr_err("IOMMU: can't request irq\n");
1316 1317
	return ret;
}
1318 1319 1320 1321

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;
1322
	struct intel_iommu *iommu;
1323 1324 1325 1326

	/*
	 * Enable fault control interrupt.
	 */
1327
	for_each_iommu(iommu, drhd) {
1328
		u32 fault_status;
1329
		int ret = dmar_set_interrupt(iommu);
1330 1331

		if (ret) {
1332
			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1333 1334 1335
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
1336 1337 1338 1339 1340

		/*
		 * Clear any previous faults.
		 */
		dmar_fault(iommu->irq, iommu);
1341 1342
		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1343 1344 1345 1346
	}

	return 0;
}
1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1372 1373 1374 1375

/*
 * Check interrupt remapping support in DMAR table description.
 */
1376
int __init dmar_ir_support(void)
1377 1378 1379
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
1380 1381
	if (!dmar)
		return 0;
1382 1383
	return dmar->flags & 0x1;
}
1384

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401
static int __init dmar_free_unused_resources(void)
{
	struct dmar_drhd_unit *dmaru, *dmaru_n;

	/* DMAR units are in use */
	if (irq_remapping_enabled || intel_iommu_enabled)
		return 0;

	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
		list_del(&dmaru->list);
		dmar_free_drhd(dmaru);
	}

	return 0;
}

late_initcall(dmar_free_unused_resources);
1402
IOMMU_INIT_POST(detect_intel_iommu);