dmar.c 39.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28
 */

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */

31 32
#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
33 34
#include <linux/iova.h>
#include <linux/intel-iommu.h>
35
#include <linux/timer.h>
36 37
#include <linux/irq.h>
#include <linux/interrupt.h>
38
#include <linux/tboot.h>
39
#include <linux/dmi.h>
40
#include <linux/slab.h>
41
#include <asm/irq_remapping.h>
42
#include <asm/iommu_table.h>
43

44 45
#include "irq_remapping.h"

46 47 48 49 50 51 52 53 54 55 56
/*
 * Assumptions:
 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
 *    before IO devices managed by that unit.
 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
 *    after IO devices managed by that unit.
 * 3) Hotplug events are rare.
 *
 * Locking rules for DMA and interrupt remapping related global data structures:
 * 1) Use dmar_global_lock in process context
 * 2) Use RCU in interrupt context
57
 */
58
DECLARE_RWSEM(dmar_global_lock);
59 60
LIST_HEAD(dmar_drhd_units);

61
struct acpi_table_header * __initdata dmar_tbl;
62
static acpi_size dmar_tbl_size;
63

64
static int alloc_iommu(struct dmar_drhd_unit *drhd);
65
static void free_iommu(struct intel_iommu *iommu);
66

67 68 69 70 71 72 73
static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
74
		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
75
	else
76
		list_add_rcu(&drhd->list, &dmar_drhd_units);
77 78 79
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
80
					   struct pci_dev __rcu **dev, u16 segment)
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
100
			pr_warn("Device scope bus [%d] not found\n", scope->bus);
101 102
			break;
		}
L
Lv Zheng 已提交
103
		pdev = pci_get_slot(bus, PCI_DEVFN(path->device, path->function));
104
		if (!pdev) {
105
			/* warning will be printed below */
106 107 108 109 110 111 112
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
113
		pr_warn("Device scope device [%04x:%02x:%02x.%02x] not found\n",
L
Lv Zheng 已提交
114
			segment, scope->bus, path->device, path->function);
115 116 117 118 119 120
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
121 122
		pr_warn("Device scope type does not match for %s\n",
			pci_name(pdev));
123 124
		return -EINVAL;
	}
125 126 127

	rcu_assign_pointer(*dev, pdev);

128 129 130
	return 0;
}

131
void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
132 133 134 135 136 137 138 139 140
{
	struct acpi_dmar_device_scope *scope;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
141 142
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
143
			pr_warn("Unsupported device scope\n");
144
		}
145 146 147
		start += scope->length;
	}
	if (*cnt == 0)
148 149 150 151 152 153
		return NULL;

	return kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
}

int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
154
				struct pci_dev __rcu ***devices, u16 segment)
155 156 157
{
	struct acpi_dmar_device_scope *scope;
	int index, ret;
158

159 160 161 162
	*devices = dmar_alloc_dev_scope(start, end, cnt);
	if (*cnt == 0)
		return 0;
	else if (!*devices)
163 164
		return -ENOMEM;

165
	for (index = 0; start < end; start += scope->length) {
166 167 168 169 170 171
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
172
				dmar_free_dev_scope(devices, cnt);
173 174 175 176 177 178 179 180 181
				return ret;
			}
			index ++;
		}
	}

	return 0;
}

182
void dmar_free_dev_scope(struct pci_dev __rcu ***devices, int *cnt)
183
{
184 185 186
	int i;
	struct pci_dev *tmp_dev;

187
	if (*devices && *cnt) {
188 189
		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
			pci_dev_put(tmp_dev);
190 191
		kfree(*devices);
	}
192 193 194

	*devices = NULL;
	*cnt = 0;
195 196
}

197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
/* Optimize out kzalloc()/kfree() for normal cases */
static char dmar_pci_notify_info_buf[64];

static struct dmar_pci_notify_info *
dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
{
	int level = 0;
	size_t size;
	struct pci_dev *tmp;
	struct dmar_pci_notify_info *info;

	BUG_ON(dev->is_virtfn);

	/* Only generate path[] for device addition event */
	if (event == BUS_NOTIFY_ADD_DEVICE)
		for (tmp = dev; tmp; tmp = tmp->bus->self)
			level++;

	size = sizeof(*info) + level * sizeof(struct acpi_dmar_pci_path);
	if (size <= sizeof(dmar_pci_notify_info_buf)) {
		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
	} else {
		info = kzalloc(size, GFP_KERNEL);
		if (!info) {
			pr_warn("Out of memory when allocating notify_info "
				"for %s.\n", pci_name(dev));
			return NULL;
		}
	}

	info->event = event;
	info->dev = dev;
	info->seg = pci_domain_nr(dev->bus);
	info->level = level;
	if (event == BUS_NOTIFY_ADD_DEVICE) {
		for (tmp = dev, level--; tmp; tmp = tmp->bus->self) {
			info->path[level].device = PCI_SLOT(tmp->devfn);
			info->path[level].function = PCI_FUNC(tmp->devfn);
			if (pci_is_root_bus(tmp->bus))
				info->bus = tmp->bus->number;
		}
	}

	return info;
}

static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
{
	if ((void *)info != dmar_pci_notify_info_buf)
		kfree(info);
}

static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
				struct acpi_dmar_pci_path *path, int count)
{
	int i;

	if (info->bus != bus)
		return false;
	if (info->level != count)
		return false;

	for (i = 0; i < count; i++) {
		if (path[i].device != info->path[i].device ||
		    path[i].function != info->path[i].function)
			return false;
	}

	return true;
}

/* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
			  void *start, void*end, u16 segment,
			  struct pci_dev __rcu **devices, int devices_cnt)
{
	int i, level;
	struct pci_dev *tmp, *dev = info->dev;
	struct acpi_dmar_device_scope *scope;
	struct acpi_dmar_pci_path *path;

	if (segment != info->seg)
		return 0;

	for (; start < end; start += scope->length) {
		scope = start;
		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			continue;

		path = (struct acpi_dmar_pci_path *)(scope + 1);
		level = (scope->length - sizeof(*scope)) / sizeof(*path);
		if (!dmar_match_pci_path(info, scope->bus, path, level))
			continue;

		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT) ^
		    (dev->hdr_type == PCI_HEADER_TYPE_NORMAL)) {
			pr_warn("Device scope type does not match for %s\n",
				pci_name(dev));
			return -EINVAL;
		}

		for_each_dev_scope(devices, devices_cnt, i, tmp)
			if (tmp == NULL) {
				rcu_assign_pointer(devices[i],
						   pci_dev_get(dev));
				return 1;
			}
		BUG_ON(i >= devices_cnt);
	}

	return 0;
}

int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
			  struct pci_dev __rcu **devices, int count)
{
	int index;
	struct pci_dev *tmp;

	if (info->seg != segment)
		return 0;

	for_each_active_dev_scope(devices, count, index, tmp)
		if (tmp == info->dev) {
			rcu_assign_pointer(devices[index], NULL);
			synchronize_rcu();
			pci_dev_put(tmp);
			return 1;
		}

	return 0;
}

static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
{
	int ret = 0;
	struct dmar_drhd_unit *dmaru;
	struct acpi_dmar_hardware_unit *drhd;

	for_each_drhd_unit(dmaru) {
		if (dmaru->include_all)
			continue;

		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit, header);
		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
				((void *)drhd) + drhd->header.length,
				dmaru->segment,
				dmaru->devices, dmaru->devices_cnt);
		if (ret != 0)
			break;
	}
	if (ret >= 0)
		ret = dmar_iommu_notify_scope_dev(info);

	return ret;
}

static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
{
	struct dmar_drhd_unit *dmaru;

	for_each_drhd_unit(dmaru)
		if (dmar_remove_dev_scope(info, dmaru->segment,
			dmaru->devices, dmaru->devices_cnt))
			break;
	dmar_iommu_notify_scope_dev(info);
}

static int dmar_pci_bus_notifier(struct notifier_block *nb,
				 unsigned long action, void *data)
{
	struct pci_dev *pdev = to_pci_dev(data);
	struct dmar_pci_notify_info *info;

	/* Only care about add/remove events for physical functions */
	if (pdev->is_virtfn)
		return NOTIFY_DONE;
	if (action != BUS_NOTIFY_ADD_DEVICE && action != BUS_NOTIFY_DEL_DEVICE)
		return NOTIFY_DONE;

	info = dmar_alloc_pci_notify_info(pdev, action);
	if (!info)
		return NOTIFY_DONE;

	down_write(&dmar_global_lock);
	if (action == BUS_NOTIFY_ADD_DEVICE)
		dmar_pci_bus_add_dev(info);
	else if (action == BUS_NOTIFY_DEL_DEVICE)
		dmar_pci_bus_del_dev(info);
	up_write(&dmar_global_lock);

	dmar_free_pci_notify_info(info);

	return NOTIFY_OK;
}

static struct notifier_block dmar_pci_bus_nb = {
	.notifier_call = dmar_pci_bus_notifier,
	.priority = INT_MIN,
};

400 401 402 403 404 405 406 407 408 409 410 411
/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

412
	drhd = (struct acpi_dmar_hardware_unit *)header;
413 414 415 416
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

417
	dmaru->hdr = header;
418
	dmaru->reg_base_addr = drhd->address;
419
	dmaru->segment = drhd->segment;
420 421
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

422 423 424 425 426 427 428 429 430
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

431 432 433 434 435 436 437 438 439
static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
{
	if (dmaru->devices && dmaru->devices_cnt)
		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
	if (dmaru->iommu)
		free_iommu(dmaru->iommu);
	kfree(dmaru);
}

440
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
441 442 443 444 445
{
	struct acpi_dmar_hardware_unit *drhd;

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

446 447 448
	if (dmaru->include_all)
		return 0;

449 450 451 452
	return dmar_parse_dev_scope((void *)(drhd + 1),
				    ((void *)drhd) + drhd->header.length,
				    &dmaru->devices_cnt, &dmaru->devices,
				    drhd->segment);
453 454
}

455
#ifdef CONFIG_ACPI_NUMA
456 457 458 459 460 461 462
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
463
	for_each_drhd_unit(drhd) {
464 465 466 467 468 469
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
470 471
			return 0;
		}
472
	}
473 474 475 476 477 478 479 480
	WARN_TAINT(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		drhd->reg_base_addr,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
481

482
	return 0;
483
}
484
#endif
485

486 487 488 489 490
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
491
	struct acpi_dmar_atsr *atsr;
492
	struct acpi_dmar_rhsa *rhsa;
493 494 495

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
496 497
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
498
		pr_info("DRHD base: %#016Lx flags: %#x\n",
499
			(unsigned long long)drhd->address, drhd->flags);
500 501
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
502 503
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
504
		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
505 506
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
507
		break;
508 509
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
510
		pr_info("ATSR flags: %#x\n", atsr->flags);
511
		break;
512 513
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
514
		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
515 516 517
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
518 519 520
	}
}

521 522 523 524 525 526 527 528
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
529 530 531
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
532 533

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
534
		pr_warn("Unable to map DMAR\n");
535 536 537 538 539
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
540

541 542 543 544 545 546 547 548 549
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;
550
	int drhd_count = 0;
551

552 553 554 555 556 557
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

558 559 560 561 562 563
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

564 565 566 567
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
568
	if (dmar->width < PAGE_SHIFT - 1) {
569
		pr_warn("Invalid DMAR haw\n");
570 571 572
		return -EINVAL;
	}

573
	pr_info("Host address width %d\n", dmar->width + 1);
574 575 576 577

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
578 579
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
580
			pr_warn("Invalid 0-length structure\n");
581 582 583 584
			ret = -EINVAL;
			break;
		}

585 586 587 588
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
589
			drhd_count++;
590 591 592 593
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
			ret = dmar_parse_one_rmrr(entry_header);
594 595 596
			break;
		case ACPI_DMAR_TYPE_ATSR:
			ret = dmar_parse_one_atsr(entry_header);
597
			break;
598
		case ACPI_DMAR_HARDWARE_AFFINITY:
599
#ifdef CONFIG_ACPI_NUMA
600
			ret = dmar_parse_one_rhsa(entry_header);
601
#endif
602
			break;
603
		default:
604
			pr_warn("Unknown DMAR structure type %d\n",
605
				entry_header->type);
606 607 608 609 610 611 612 613
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
614 615
	if (drhd_count == 0)
		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
616 617 618
	return ret;
}

619
static int dmar_pci_device_match(struct pci_dev __rcu *devices[], int cnt,
620 621 622
			  struct pci_dev *dev)
{
	int index;
623
	struct pci_dev *tmp;
624 625

	while (dev) {
626 627
		for_each_active_dev_scope(devices, cnt, index, tmp)
			if (dev == tmp)
628 629 630 631 632 633 634 635 636 637 638 639
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
640
	struct dmar_drhd_unit *dmaru;
641 642
	struct acpi_dmar_hardware_unit *drhd;

643 644
	dev = pci_physfn(dev);

645
	rcu_read_lock();
646
	for_each_drhd_unit(dmaru) {
647 648 649 650 651 652
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
653
			goto out;
654

655 656
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
657
			goto out;
658
	}
659 660 661
	dmaru = NULL;
out:
	rcu_read_unlock();
662

663
	return dmaru;
664 665
}

666 667
int __init dmar_dev_scope_init(void)
{
668
	static int dmar_dev_scope_initialized;
669
	struct dmar_drhd_unit *drhd;
670 671
	int ret = -ENODEV;

672 673 674
	if (dmar_dev_scope_initialized)
		return dmar_dev_scope_initialized;

675 676 677
	if (list_empty(&dmar_drhd_units))
		goto fail;

678
	for_each_drhd_unit(drhd) {
679 680
		ret = dmar_parse_dev(drhd);
		if (ret)
681
			goto fail;
682 683
	}

684 685 686
	ret = dmar_parse_rmrr_atsr_dev();
	if (ret)
		goto fail;
687

688 689
	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);

690 691 692 693 694
	dmar_dev_scope_initialized = 1;
	return 0;

fail:
	dmar_dev_scope_initialized = ret;
695 696 697
	return ret;
}

698 699 700

int __init dmar_table_init(void)
{
701
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
702 703
	int ret;

704 705 706 707 708 709 710 711 712
	if (dmar_table_initialized == 0) {
		ret = parse_dmar_table();
		if (ret < 0) {
			if (ret != -ENODEV)
				pr_info("parse DMAR table failure.\n");
		} else  if (list_empty(&dmar_drhd_units)) {
			pr_info("No DMAR devices found\n");
			ret = -ENODEV;
		}
F
Fenghua Yu 已提交
713

714 715 716 717
		if (ret < 0)
			dmar_table_initialized = ret;
		else
			dmar_table_initialized = 1;
718
	}
F
Fenghua Yu 已提交
719

720
	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
721 722
}

723 724
static void warn_invalid_dmar(u64 addr, const char *message)
{
725 726 727 728 729 730 731 732
	WARN_TAINT_ONCE(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
733
}
734

735
static int __init check_zero_address(void)
736 737 738 739 740 741 742 743 744 745 746 747
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	struct acpi_dmar_hardware_unit *drhd;

	dmar = (struct acpi_table_dmar *)dmar_tbl;
	entry_header = (struct acpi_dmar_header *)(dmar + 1);

	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
748
			pr_warn("Invalid 0-length structure\n");
749 750 751 752
			return 0;
		}

		if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
753 754 755
			void __iomem *addr;
			u64 cap, ecap;

756 757
			drhd = (void *)entry_header;
			if (!drhd->address) {
758
				warn_invalid_dmar(0, "");
759 760 761 762 763 764 765 766 767 768 769 770
				goto failed;
			}

			addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
			if (!addr ) {
				printk("IOMMU: can't validate: %llx\n", drhd->address);
				goto failed;
			}
			cap = dmar_readq(addr + DMAR_CAP_REG);
			ecap = dmar_readq(addr + DMAR_ECAP_REG);
			early_iounmap(addr, VTD_PAGE_SIZE);
			if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
771 772
				warn_invalid_dmar(drhd->address,
						  " returns all ones");
773
				goto failed;
774 775 776 777 778 779
			}
		}

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return 1;
780 781 782

failed:
	return 0;
783 784
}

785
int __init detect_intel_iommu(void)
786 787 788
{
	int ret;

789
	down_write(&dmar_global_lock);
790
	ret = dmar_table_detect();
791 792
	if (ret)
		ret = check_zero_address();
793
	{
794
		if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
795
			iommu_detected = 1;
C
Chris Wright 已提交
796 797 798
			/* Make sure ACS will be enabled */
			pci_request_acs();
		}
799

800 801 802
#ifdef CONFIG_X86
		if (ret)
			x86_init.iommu.iommu_init = intel_iommu_init;
803
#endif
804
	}
805
	early_acpi_os_unmap_memory((void __iomem *)dmar_tbl, dmar_tbl_size);
806
	dmar_tbl = NULL;
807
	up_write(&dmar_global_lock);
808

809
	return ret ? 1 : -ENODEV;
810 811 812
}


813 814 815 816 817 818 819 820 821 822
static void unmap_iommu(struct intel_iommu *iommu)
{
	iounmap(iommu->reg);
	release_mem_region(iommu->reg_phys, iommu->reg_size);
}

/**
 * map_iommu: map the iommu's registers
 * @iommu: the iommu to map
 * @phys_addr: the physical address of the base resgister
823
 *
824
 * Memory map the iommu's registers.  Start w/ a single page, and
825
 * possibly expand if that turns out to be insufficent.
826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
 */
static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
{
	int map_size, err=0;

	iommu->reg_phys = phys_addr;
	iommu->reg_size = VTD_PAGE_SIZE;

	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
		pr_err("IOMMU: can't reserve memory\n");
		err = -EBUSY;
		goto out;
	}

	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
	if (!iommu->reg) {
		pr_err("IOMMU: can't map the region\n");
		err = -ENOMEM;
		goto release;
	}

	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
		err = -EINVAL;
		warn_invalid_dmar(phys_addr, " returns all ones");
		goto unmap;
	}

	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
			 cap_max_fault_reg_offset(iommu->cap));
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > iommu->reg_size) {
		iounmap(iommu->reg);
		release_mem_region(iommu->reg_phys, iommu->reg_size);
		iommu->reg_size = map_size;
		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
					iommu->name)) {
			pr_err("IOMMU: can't reserve memory\n");
			err = -EBUSY;
			goto out;
		}
		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
		if (!iommu->reg) {
			pr_err("IOMMU: can't map the region\n");
			err = -ENOMEM;
			goto release;
		}
	}
	err = 0;
	goto out;

unmap:
	iounmap(iommu->reg);
release:
	release_mem_region(iommu->reg_phys, iommu->reg_size);
out:
	return err;
}

888
static int alloc_iommu(struct dmar_drhd_unit *drhd)
889
{
890
	struct intel_iommu *iommu;
891
	u32 ver, sts;
892
	static int iommu_allocated = 0;
893
	int agaw = 0;
F
Fenghua Yu 已提交
894
	int msagaw = 0;
895
	int err;
896

897
	if (!drhd->reg_base_addr) {
898
		warn_invalid_dmar(0, "");
899 900 901
		return -EINVAL;
	}

902 903
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
904
		return -ENOMEM;
905 906

	iommu->seq_id = iommu_allocated++;
907
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
908

909 910 911
	err = map_iommu(iommu, drhd->reg_base_addr);
	if (err) {
		pr_err("IOMMU: failed to map %s\n", iommu->name);
912 913
		goto error;
	}
914

915
	err = -EINVAL;
W
Weidong Han 已提交
916 917
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
918 919
		pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
			iommu->seq_id);
920
		goto err_unmap;
F
Fenghua Yu 已提交
921 922 923
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
924
		pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
925
			iommu->seq_id);
926
		goto err_unmap;
W
Weidong Han 已提交
927 928
	}
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
929
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
930

931 932
	iommu->node = -1;

933
	ver = readl(iommu->reg + DMAR_VER_REG);
Y
Yinghai Lu 已提交
934 935
	pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->seq_id,
F
Fenghua Yu 已提交
936 937 938 939
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
940

941 942 943 944 945 946 947 948 949
	/* Reflect status in gcmd */
	sts = readl(iommu->reg + DMAR_GSTS_REG);
	if (sts & DMA_GSTS_IRES)
		iommu->gcmd |= DMA_GCMD_IRE;
	if (sts & DMA_GSTS_TES)
		iommu->gcmd |= DMA_GCMD_TE;
	if (sts & DMA_GSTS_QIES)
		iommu->gcmd |= DMA_GCMD_QIE;

950
	raw_spin_lock_init(&iommu->register_lock);
951 952

	drhd->iommu = iommu;
953
	return 0;
954 955

 err_unmap:
956
	unmap_iommu(iommu);
957
 error:
958
	kfree(iommu);
959
	return err;
960 961
}

962
static void free_iommu(struct intel_iommu *iommu)
963
{
964 965 966 967 968
	if (iommu->irq) {
		free_irq(iommu->irq, iommu);
		irq_set_handler_data(iommu->irq, NULL);
		destroy_irq(iommu->irq);
	}
969

970 971 972 973 974 975
	if (iommu->qi) {
		free_page((unsigned long)iommu->qi->desc);
		kfree(iommu->qi->desc_status);
		kfree(iommu->qi);
	}

976
	if (iommu->reg)
977 978
		unmap_iommu(iommu);

979 980
	kfree(iommu);
}
981 982 983 984 985 986

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
987 988
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
989 990 991 992 993 994
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

995 996 997
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
998
	int head, tail;
999 1000 1001
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

1002 1003 1004
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

1005 1006 1007 1008 1009 1010 1011 1012 1013
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
1014
		if ((head >> DMAR_IQ_SHIFT) == index) {
1015
			pr_err("VT-d detected invalid descriptor: "
1016 1017 1018
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
1019 1020 1021 1022 1023 1024 1025 1026 1027
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

1054 1055 1056
	return 0;
}

1057 1058 1059 1060
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
1061
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
1062
{
1063
	int rc;
1064 1065 1066 1067 1068 1069
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
1070
		return 0;
1071 1072 1073

	hw = qi->desc;

1074 1075 1076
restart:
	rc = 0;

1077
	raw_spin_lock_irqsave(&qi->q_lock, flags);
1078
	while (qi->free_cnt < 3) {
1079
		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1080
		cpu_relax();
1081
		raw_spin_lock_irqsave(&qi->q_lock, flags);
1082 1083 1084 1085 1086 1087 1088 1089 1090
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

1091 1092
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
1107
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
1108 1109

	while (qi->desc_status[wait_index] != QI_DONE) {
1110 1111 1112 1113 1114 1115 1116
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
1117 1118
		rc = qi_check_fault(iommu, index);
		if (rc)
1119
			break;
1120

1121
		raw_spin_unlock(&qi->q_lock);
1122
		cpu_relax();
1123
		raw_spin_lock(&qi->q_lock);
1124
	}
1125 1126

	qi->desc_status[index] = QI_DONE;
1127 1128

	reclaim_free_desc(qi);
1129
	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1130

1131 1132 1133
	if (rc == -EAGAIN)
		goto restart;

1134
	return rc;
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

1147
	/* should never fail */
1148 1149 1150
	qi_submit_sync(&desc, iommu);
}

1151 1152
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
1153 1154 1155 1156 1157 1158 1159
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

1160
	qi_submit_sync(&desc, iommu);
1161 1162
}

1163 1164
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

1182
	qi_submit_sync(&desc, iommu);
1183 1184
}

1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

1218
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
1238
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1239 1240
}

1241 1242 1243 1244 1245
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
1246
	u32 sts;
1247 1248 1249 1250 1251 1252
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1253
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1254 1255 1256 1257 1258 1259 1260

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
1261
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1262 1263 1264 1265

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

1266
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1267 1268
}

1269 1270 1271 1272 1273 1274 1275 1276
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1277
	struct page *desc_page;
1278 1279 1280 1281 1282 1283 1284 1285 1286 1287

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1288
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1289 1290 1291 1292 1293
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1294 1295 1296

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
1297
		kfree(qi);
1298
		iommu->qi = NULL;
1299 1300 1301
		return -ENOMEM;
	}

1302 1303
	qi->desc = page_address(desc_page);

1304
	qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1305 1306 1307
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
1308
		iommu->qi = NULL;
1309 1310 1311 1312 1313 1314
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1315
	raw_spin_lock_init(&qi->q_lock);
1316

1317
	__dmar_enable_qi(iommu);
1318 1319 1320

	return 0;
}
1321 1322 1323

/* iommu interrupt handling. Most stuff are MSI-like. */

1324 1325 1326 1327 1328 1329 1330
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
1345
	"PCE for translation request specifies blocking",
1346
};
1347

1348
static const char *irq_remap_fault_reasons[] =
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1359
static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1360
{
1361 1362
	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
					ARRAY_SIZE(irq_remap_fault_reasons))) {
1363
		*fault_type = INTR_REMAP;
1364
		return irq_remap_fault_reasons[fault_reason - 0x20];
1365 1366 1367 1368 1369
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1370
		return "Unknown";
1371
	}
1372 1373
}

1374
void dmar_msi_unmask(struct irq_data *data)
1375
{
1376
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1377 1378 1379
	unsigned long flag;

	/* unmask it */
1380
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1381 1382 1383
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1384
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1385 1386
}

1387
void dmar_msi_mask(struct irq_data *data)
1388 1389
{
	unsigned long flag;
1390
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1391 1392

	/* mask it */
1393
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1394 1395 1396
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1397
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1398 1399 1400 1401
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
1402
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1403 1404
	unsigned long flag;

1405
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1406 1407 1408
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1409
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1410 1411 1412 1413
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
1414
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1415 1416
	unsigned long flag;

1417
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1418 1419 1420
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1421
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1422 1423 1424 1425 1426 1427
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1428
	int fault_type;
1429

1430
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1431

1432
	if (fault_type == INTR_REMAP)
1433
		pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1434 1435 1436 1437 1438 1439
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
1440
		pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1441 1442 1443 1444 1445
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1446 1447 1448 1449
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1450
irqreturn_t dmar_fault(int irq, void *dev_id)
1451 1452 1453 1454 1455 1456
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

1457
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1458
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1459
	if (fault_status)
1460
		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1461 1462 1463

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1464
		goto unlock_exit;
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

1495
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1496 1497 1498 1499 1500

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1501
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1502
			fault_index = 0;
1503
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1504 1505
	}

1506 1507 1508
	writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);

unlock_exit:
1509
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1510 1511 1512 1513 1514 1515 1516
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1517 1518 1519 1520 1521 1522
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1523 1524
	irq = create_irq();
	if (!irq) {
1525
		pr_err("IOMMU: no free vectors\n");
1526 1527 1528
		return -EINVAL;
	}

1529
	irq_set_handler_data(irq, iommu);
1530 1531 1532 1533
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
1534
		irq_set_handler_data(irq, NULL);
1535 1536
		iommu->irq = 0;
		destroy_irq(irq);
1537
		return ret;
1538 1539
	}

1540
	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1541
	if (ret)
1542
		pr_err("IOMMU: can't request irq\n");
1543 1544
	return ret;
}
1545 1546 1547 1548

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;
1549
	struct intel_iommu *iommu;
1550 1551 1552 1553

	/*
	 * Enable fault control interrupt.
	 */
1554
	for_each_iommu(iommu, drhd) {
1555
		u32 fault_status;
1556
		int ret = dmar_set_interrupt(iommu);
1557 1558

		if (ret) {
1559
			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1560 1561 1562
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
1563 1564 1565 1566 1567

		/*
		 * Clear any previous faults.
		 */
		dmar_fault(iommu->irq, iommu);
1568 1569
		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1570 1571 1572 1573
	}

	return 0;
}
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1599 1600 1601 1602

/*
 * Check interrupt remapping support in DMAR table description.
 */
1603
int __init dmar_ir_support(void)
1604 1605 1606
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
1607 1608
	if (!dmar)
		return 0;
1609 1610
	return dmar->flags & 0x1;
}
1611

1612 1613 1614 1615 1616 1617 1618 1619
static int __init dmar_free_unused_resources(void)
{
	struct dmar_drhd_unit *dmaru, *dmaru_n;

	/* DMAR units are in use */
	if (irq_remapping_enabled || intel_iommu_enabled)
		return 0;

1620 1621
	bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);

1622
	down_write(&dmar_global_lock);
1623 1624 1625 1626
	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
		list_del(&dmaru->list);
		dmar_free_drhd(dmaru);
	}
1627
	up_write(&dmar_global_lock);
1628 1629 1630 1631 1632

	return 0;
}

late_initcall(dmar_free_unused_resources);
1633
IOMMU_INIT_POST(detect_intel_iommu);