dmar.c 32.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28
 */

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */

31 32
#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
33 34
#include <linux/iova.h>
#include <linux/intel-iommu.h>
35
#include <linux/timer.h>
36 37
#include <linux/irq.h>
#include <linux/interrupt.h>
38
#include <linux/tboot.h>
39
#include <linux/dmi.h>
40
#include <linux/slab.h>
41
#include <asm/irq_remapping.h>
42
#include <asm/iommu_table.h>
43 44 45 46 47 48 49

/* No locks are needed as DMA remapping hardware unit
 * list is constructed at boot time and hotplug of
 * these units are not supported by the architecture.
 */
LIST_HEAD(dmar_drhd_units);

50
struct acpi_table_header * __initdata dmar_tbl;
51
static acpi_size dmar_tbl_size;
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
		list_add_tail(&drhd->list, &dmar_drhd_units);
	else
		list_add(&drhd->list, &dmar_drhd_units);
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
					   struct pci_dev **dev, u16 segment)
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
86
			pr_warn("Device scope bus [%d] not found\n", scope->bus);
87 88 89 90
			break;
		}
		pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
		if (!pdev) {
91
			/* warning will be printed below */
92 93 94 95 96 97 98
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
99
		pr_warn("Device scope device [%04x:%02x:%02x.%02x] not found\n",
100
			segment, scope->bus, path->dev, path->fn);
101 102 103 104 105 106 107
		*dev = NULL;
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
108 109
		pr_warn("Device scope type does not match for %s\n",
			pci_name(pdev));
110 111 112 113 114 115
		return -EINVAL;
	}
	*dev = pdev;
	return 0;
}

116 117
int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
				struct pci_dev ***devices, u16 segment)
118 119 120 121 122 123 124 125 126 127 128 129
{
	struct acpi_dmar_device_scope *scope;
	void * tmp = start;
	int index;
	int ret;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
130
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
131
			pr_warn("Unsupported device scope\n");
132
		}
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
		start += scope->length;
	}
	if (*cnt == 0)
		return 0;

	*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
	if (!*devices)
		return -ENOMEM;

	start = tmp;
	index = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
				kfree(*devices);
				return ret;
			}
			index ++;
		}
		start += scope->length;
	}

	return 0;
}

/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

174
	drhd = (struct acpi_dmar_hardware_unit *)header;
175 176 177 178
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

179
	dmaru->hdr = header;
180
	dmaru->reg_base_addr = drhd->address;
181
	dmaru->segment = drhd->segment;
182 183
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

184 185 186 187 188 189 190 191 192
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

193
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
194 195
{
	struct acpi_dmar_hardware_unit *drhd;
196
	int ret = 0;
197 198 199

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

200 201 202 203
	if (dmaru->include_all)
		return 0;

	ret = dmar_parse_dev_scope((void *)(drhd + 1),
204
				((void *)drhd) + drhd->header.length,
205 206
				&dmaru->devices_cnt, &dmaru->devices,
				drhd->segment);
207
	if (ret) {
208
		list_del(&dmaru->list);
209
		kfree(dmaru);
210
	}
211 212 213
	return ret;
}

214
#ifdef CONFIG_ACPI_NUMA
215 216 217 218 219 220 221
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
222
	for_each_drhd_unit(drhd) {
223 224 225 226 227 228
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
229 230
			return 0;
		}
231
	}
232 233 234 235 236 237 238 239
	WARN_TAINT(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		drhd->reg_base_addr,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
240

241
	return 0;
242
}
243
#endif
244

245 246 247 248 249
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
250
	struct acpi_dmar_atsr *atsr;
251
	struct acpi_dmar_rhsa *rhsa;
252 253 254

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
255 256
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
257
		pr_info("DRHD base: %#016Lx flags: %#x\n",
258
			(unsigned long long)drhd->address, drhd->flags);
259 260
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
261 262
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
263
		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
264 265
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
266
		break;
267 268
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
269
		pr_info("ATSR flags: %#x\n", atsr->flags);
270
		break;
271 272
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
273
		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
274 275 276
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
277 278 279
	}
}

280 281 282 283 284 285 286 287
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
288 289 290
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
291 292

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
293
		pr_warn("Unable to map DMAR\n");
294 295 296 297 298
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
299

300 301 302 303 304 305 306 307 308 309
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;

310 311 312 313 314 315
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

316 317 318 319 320 321
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

322 323 324 325
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
326
	if (dmar->width < PAGE_SHIFT - 1) {
327
		pr_warn("Invalid DMAR haw\n");
328 329 330
		return -EINVAL;
	}

331
	pr_info("Host address width %d\n", dmar->width + 1);
332 333 334 335

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
336 337
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
338
			pr_warn("Invalid 0-length structure\n");
339 340 341 342
			ret = -EINVAL;
			break;
		}

343 344 345 346 347 348 349 350
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
			ret = dmar_parse_one_rmrr(entry_header);
351 352 353
			break;
		case ACPI_DMAR_TYPE_ATSR:
			ret = dmar_parse_one_atsr(entry_header);
354
			break;
355
		case ACPI_DMAR_HARDWARE_AFFINITY:
356
#ifdef CONFIG_ACPI_NUMA
357
			ret = dmar_parse_one_rhsa(entry_header);
358
#endif
359
			break;
360
		default:
361
			pr_warn("Unknown DMAR structure type %d\n",
362
				entry_header->type);
363 364 365 366 367 368 369 370 371 372 373
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return ret;
}

374
static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
			  struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
394 395 396
	struct dmar_drhd_unit *dmaru = NULL;
	struct acpi_dmar_hardware_unit *drhd;

397 398
	dev = pci_physfn(dev);

399 400 401 402 403 404 405 406
	list_for_each_entry(dmaru, &dmar_drhd_units, list) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
			return dmaru;
407

408 409 410
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
			return dmaru;
411 412 413 414 415
	}

	return NULL;
}

416 417
int __init dmar_dev_scope_init(void)
{
418
	static int dmar_dev_scope_initialized;
419
	struct dmar_drhd_unit *drhd, *drhd_n;
420 421
	int ret = -ENODEV;

422 423 424
	if (dmar_dev_scope_initialized)
		return dmar_dev_scope_initialized;

425 426 427
	if (list_empty(&dmar_drhd_units))
		goto fail;

428
	list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
429 430
		ret = dmar_parse_dev(drhd);
		if (ret)
431
			goto fail;
432 433
	}

434 435 436
	ret = dmar_parse_rmrr_atsr_dev();
	if (ret)
		goto fail;
437

438 439 440 441 442
	dmar_dev_scope_initialized = 1;
	return 0;

fail:
	dmar_dev_scope_initialized = ret;
443 444 445
	return ret;
}

446 447 448

int __init dmar_table_init(void)
{
449
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
450 451
	int ret;

452 453 454 455 456
	if (dmar_table_initialized)
		return 0;

	dmar_table_initialized = 1;

F
Fenghua Yu 已提交
457 458
	ret = parse_dmar_table();
	if (ret) {
459
		if (ret != -ENODEV)
460
			pr_info("parse DMAR table failure.\n");
F
Fenghua Yu 已提交
461 462 463
		return ret;
	}

464
	if (list_empty(&dmar_drhd_units)) {
465
		pr_info("No DMAR devices found\n");
466 467
		return -ENODEV;
	}
F
Fenghua Yu 已提交
468

469 470 471
	return 0;
}

472 473
static void warn_invalid_dmar(u64 addr, const char *message)
{
474 475 476 477 478 479 480 481
	WARN_TAINT_ONCE(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
482
}
483

484 485 486 487 488 489 490 491 492 493 494 495 496
int __init check_zero_address(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	struct acpi_dmar_hardware_unit *drhd;

	dmar = (struct acpi_table_dmar *)dmar_tbl;
	entry_header = (struct acpi_dmar_header *)(dmar + 1);

	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
497
			pr_warn("Invalid 0-length structure\n");
498 499 500 501
			return 0;
		}

		if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
502 503 504
			void __iomem *addr;
			u64 cap, ecap;

505 506
			drhd = (void *)entry_header;
			if (!drhd->address) {
507
				warn_invalid_dmar(0, "");
508 509 510 511 512 513 514 515 516 517 518 519
				goto failed;
			}

			addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
			if (!addr ) {
				printk("IOMMU: can't validate: %llx\n", drhd->address);
				goto failed;
			}
			cap = dmar_readq(addr + DMAR_CAP_REG);
			ecap = dmar_readq(addr + DMAR_ECAP_REG);
			early_iounmap(addr, VTD_PAGE_SIZE);
			if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
520 521
				warn_invalid_dmar(drhd->address,
						  " returns all ones");
522
				goto failed;
523 524 525 526 527 528
			}
		}

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return 1;
529 530 531

failed:
	return 0;
532 533
}

534
int __init detect_intel_iommu(void)
535 536 537
{
	int ret;

538
	ret = dmar_table_detect();
539 540
	if (ret)
		ret = check_zero_address();
541
	{
542
		struct acpi_table_dmar *dmar;
543

544
		dmar = (struct acpi_table_dmar *) dmar_tbl;
545

546
		if (ret && irq_remapping_enabled && cpu_has_x2apic &&
547
		    dmar->flags & 0x1)
548
			pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
549

550
		if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
551
			iommu_detected = 1;
C
Chris Wright 已提交
552 553 554
			/* Make sure ACS will be enabled */
			pci_request_acs();
		}
555

556 557 558
#ifdef CONFIG_X86
		if (ret)
			x86_init.iommu.iommu_init = intel_iommu_init;
559
#endif
560
	}
561
	early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
562
	dmar_tbl = NULL;
563

564
	return ret ? 1 : -ENODEV;
565 566 567
}


568 569 570 571 572 573 574 575 576 577
static void unmap_iommu(struct intel_iommu *iommu)
{
	iounmap(iommu->reg);
	release_mem_region(iommu->reg_phys, iommu->reg_size);
}

/**
 * map_iommu: map the iommu's registers
 * @iommu: the iommu to map
 * @phys_addr: the physical address of the base resgister
578
 *
579
 * Memory map the iommu's registers.  Start w/ a single page, and
580
 * possibly expand if that turns out to be insufficent.
581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
 */
static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
{
	int map_size, err=0;

	iommu->reg_phys = phys_addr;
	iommu->reg_size = VTD_PAGE_SIZE;

	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
		pr_err("IOMMU: can't reserve memory\n");
		err = -EBUSY;
		goto out;
	}

	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
	if (!iommu->reg) {
		pr_err("IOMMU: can't map the region\n");
		err = -ENOMEM;
		goto release;
	}

	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
		err = -EINVAL;
		warn_invalid_dmar(phys_addr, " returns all ones");
		goto unmap;
	}

	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
			 cap_max_fault_reg_offset(iommu->cap));
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > iommu->reg_size) {
		iounmap(iommu->reg);
		release_mem_region(iommu->reg_phys, iommu->reg_size);
		iommu->reg_size = map_size;
		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
					iommu->name)) {
			pr_err("IOMMU: can't reserve memory\n");
			err = -EBUSY;
			goto out;
		}
		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
		if (!iommu->reg) {
			pr_err("IOMMU: can't map the region\n");
			err = -ENOMEM;
			goto release;
		}
	}
	err = 0;
	goto out;

unmap:
	iounmap(iommu->reg);
release:
	release_mem_region(iommu->reg_phys, iommu->reg_size);
out:
	return err;
}

643
int alloc_iommu(struct dmar_drhd_unit *drhd)
644
{
645
	struct intel_iommu *iommu;
646
	u32 ver;
647
	static int iommu_allocated = 0;
648
	int agaw = 0;
F
Fenghua Yu 已提交
649
	int msagaw = 0;
650
	int err;
651

652
	if (!drhd->reg_base_addr) {
653
		warn_invalid_dmar(0, "");
654 655 656
		return -EINVAL;
	}

657 658
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
659
		return -ENOMEM;
660 661

	iommu->seq_id = iommu_allocated++;
662
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
663

664 665 666
	err = map_iommu(iommu, drhd->reg_base_addr);
	if (err) {
		pr_err("IOMMU: failed to map %s\n", iommu->name);
667 668
		goto error;
	}
669

670
	err = -EINVAL;
W
Weidong Han 已提交
671 672
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
673 674
		pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
			iommu->seq_id);
675
		goto err_unmap;
F
Fenghua Yu 已提交
676 677 678
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
679
		pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
680
			iommu->seq_id);
681
		goto err_unmap;
W
Weidong Han 已提交
682 683
	}
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
684
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
685

686 687
	iommu->node = -1;

688
	ver = readl(iommu->reg + DMAR_VER_REG);
Y
Yinghai Lu 已提交
689 690
	pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->seq_id,
F
Fenghua Yu 已提交
691 692 693 694
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
695

696
	raw_spin_lock_init(&iommu->register_lock);
697 698

	drhd->iommu = iommu;
699
	return 0;
700 701

 err_unmap:
702
	unmap_iommu(iommu);
703
 error:
704
	kfree(iommu);
705
	return err;
706 707 708 709 710 711 712 713 714 715
}

void free_iommu(struct intel_iommu *iommu)
{
	if (!iommu)
		return;

	free_dmar_iommu(iommu);

	if (iommu->reg)
716 717
		unmap_iommu(iommu);

718 719
	kfree(iommu);
}
720 721 722 723 724 725

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
726 727
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
728 729 730 731 732 733
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

734 735 736
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
737
	int head, tail;
738 739 740
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

741 742 743
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

744 745 746 747 748 749 750 751 752
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
753
		if ((head >> DMAR_IQ_SHIFT) == index) {
754
			pr_err("VT-d detected invalid descriptor: "
755 756 757
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
758 759 760 761 762 763 764 765 766
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

793 794 795
	return 0;
}

796 797 798 799
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
800
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
801
{
802
	int rc;
803 804 805 806 807 808
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
809
		return 0;
810 811 812

	hw = qi->desc;

813 814 815
restart:
	rc = 0;

816
	raw_spin_lock_irqsave(&qi->q_lock, flags);
817
	while (qi->free_cnt < 3) {
818
		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
819
		cpu_relax();
820
		raw_spin_lock_irqsave(&qi->q_lock, flags);
821 822 823 824 825 826 827 828 829
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

830 831
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
832 833 834 835 836 837 838 839 840 841 842 843 844 845
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
846
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
847 848

	while (qi->desc_status[wait_index] != QI_DONE) {
849 850 851 852 853 854 855
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
856 857
		rc = qi_check_fault(iommu, index);
		if (rc)
858
			break;
859

860
		raw_spin_unlock(&qi->q_lock);
861
		cpu_relax();
862
		raw_spin_lock(&qi->q_lock);
863
	}
864 865

	qi->desc_status[index] = QI_DONE;
866 867

	reclaim_free_desc(qi);
868
	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
869

870 871 872
	if (rc == -EAGAIN)
		goto restart;

873
	return rc;
874 875 876 877 878 879 880 881 882 883 884 885
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

886
	/* should never fail */
887 888 889
	qi_submit_sync(&desc, iommu);
}

890 891
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
892 893 894 895 896 897 898
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

899
	qi_submit_sync(&desc, iommu);
900 901
}

902 903
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

921
	qi_submit_sync(&desc, iommu);
922 923
}

924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

945 946 947 948 949 950 951 952 953 954 955 956
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

957
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
977
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
978 979
}

980 981 982 983 984
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
985
	u32 sts;
986 987 988 989 990 991
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

992
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
993 994 995 996 997 998 999

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
1000
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1001 1002 1003 1004

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

1005
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1006 1007
}

1008 1009 1010 1011 1012 1013 1014 1015
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1016
	struct page *desc_page;
1017 1018 1019 1020 1021 1022 1023 1024 1025 1026

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1027
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1028 1029 1030 1031 1032
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1033 1034 1035

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
1036 1037 1038 1039 1040
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

1041 1042
	qi->desc = page_address(desc_page);

1043
	qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1054
	raw_spin_lock_init(&qi->q_lock);
1055

1056
	__dmar_enable_qi(iommu);
1057 1058 1059

	return 0;
}
1060 1061 1062

/* iommu interrupt handling. Most stuff are MSI-like. */

1063 1064 1065 1066 1067 1068 1069
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
};
1085

1086
static const char *irq_remap_fault_reasons[] =
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1097 1098
#define MAX_FAULT_REASON_IDX 	(ARRAY_SIZE(fault_reason_strings) - 1)

1099
const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1100
{
1101 1102
	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
					ARRAY_SIZE(irq_remap_fault_reasons))) {
1103
		*fault_type = INTR_REMAP;
1104
		return irq_remap_fault_reasons[fault_reason - 0x20];
1105 1106 1107 1108 1109
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1110
		return "Unknown";
1111
	}
1112 1113
}

1114
void dmar_msi_unmask(struct irq_data *data)
1115
{
1116
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1117 1118 1119
	unsigned long flag;

	/* unmask it */
1120
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1121 1122 1123
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1124
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1125 1126
}

1127
void dmar_msi_mask(struct irq_data *data)
1128 1129
{
	unsigned long flag;
1130
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1131 1132

	/* mask it */
1133
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1134 1135 1136
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1137
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1138 1139 1140 1141
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
1142
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1143 1144
	unsigned long flag;

1145
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1146 1147 1148
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1149
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1150 1151 1152 1153
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
1154
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1155 1156
	unsigned long flag;

1157
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1158 1159 1160
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1161
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1162 1163 1164 1165 1166 1167
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1168
	int fault_type;
1169

1170
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1171

1172
	if (fault_type == INTR_REMAP)
1173
		pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1174 1175 1176 1177 1178 1179
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
1180
		pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1181 1182 1183 1184 1185
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1186 1187 1188 1189
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1190
irqreturn_t dmar_fault(int irq, void *dev_id)
1191 1192 1193 1194 1195 1196
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

1197
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1198
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1199
	if (fault_status)
1200
		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1201 1202 1203

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1204
		goto clear_rest;
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

1235
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1236 1237 1238 1239 1240

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1241
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1242
			fault_index = 0;
1243
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1244
	}
1245 1246
clear_rest:
	/* clear all the other faults */
1247
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1248
	writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1249

1250
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1251 1252 1253 1254 1255 1256 1257
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1258 1259 1260 1261 1262 1263
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1264 1265
	irq = create_irq();
	if (!irq) {
1266
		pr_err("IOMMU: no free vectors\n");
1267 1268 1269
		return -EINVAL;
	}

1270
	irq_set_handler_data(irq, iommu);
1271 1272 1273 1274
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
1275
		irq_set_handler_data(irq, NULL);
1276 1277
		iommu->irq = 0;
		destroy_irq(irq);
1278
		return ret;
1279 1280
	}

1281
	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1282
	if (ret)
1283
		pr_err("IOMMU: can't request irq\n");
1284 1285
	return ret;
}
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;

	/*
	 * Enable fault control interrupt.
	 */
	for_each_drhd_unit(drhd) {
		int ret;
		struct intel_iommu *iommu = drhd->iommu;
		ret = dmar_set_interrupt(iommu);

		if (ret) {
1300
			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1301 1302 1303
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
1304 1305 1306 1307 1308

		/*
		 * Clear any previous faults.
		 */
		dmar_fault(iommu->irq, iommu);
1309 1310 1311 1312
	}

	return 0;
}
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1338 1339 1340 1341

/*
 * Check interrupt remapping support in DMAR table description.
 */
1342
int __init dmar_ir_support(void)
1343 1344 1345
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
1346 1347
	if (!dmar)
		return 0;
1348 1349
	return dmar->flags & 0x1;
}
1350
IOMMU_INIT_POST(detect_intel_iommu);