dmar.c 32.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/*
 * Copyright (c) 2006, Intel Corporation.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
 * Place - Suite 330, Boston, MA 02111-1307 USA.
 *
17 18 19 20
 * Copyright (C) 2006-2008 Intel Corporation
 * Author: Ashok Raj <ashok.raj@intel.com>
 * Author: Shaohua Li <shaohua.li@intel.com>
 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21
 *
22
 * This file implements early detection/parsing of Remapping Devices
23 24
 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
 * tables.
25 26
 *
 * These routines are used by both DMA-remapping and Interrupt-remapping
27 28
 */

29 30
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt /* has to precede printk.h */

31 32
#include <linux/pci.h>
#include <linux/dmar.h>
K
Kay, Allen M 已提交
33 34
#include <linux/iova.h>
#include <linux/intel-iommu.h>
35
#include <linux/timer.h>
36 37
#include <linux/irq.h>
#include <linux/interrupt.h>
38
#include <linux/tboot.h>
39
#include <linux/dmi.h>
40
#include <linux/slab.h>
41
#include <asm/irq_remapping.h>
42
#include <asm/iommu_table.h>
43

44 45
#include "irq_remapping.h"

46 47 48 49 50 51
/* No locks are needed as DMA remapping hardware unit
 * list is constructed at boot time and hotplug of
 * these units are not supported by the architecture.
 */
LIST_HEAD(dmar_drhd_units);

52
struct acpi_table_header * __initdata dmar_tbl;
53
static acpi_size dmar_tbl_size;
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
{
	/*
	 * add INCLUDE_ALL at the tail, so scan the list will find it at
	 * the very end.
	 */
	if (drhd->include_all)
		list_add_tail(&drhd->list, &dmar_drhd_units);
	else
		list_add(&drhd->list, &dmar_drhd_units);
}

static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
					   struct pci_dev **dev, u16 segment)
{
	struct pci_bus *bus;
	struct pci_dev *pdev = NULL;
	struct acpi_dmar_pci_path *path;
	int count;

	bus = pci_find_bus(segment, scope->bus);
	path = (struct acpi_dmar_pci_path *)(scope + 1);
	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
		/ sizeof(struct acpi_dmar_pci_path);

	while (count) {
		if (pdev)
			pci_dev_put(pdev);
		/*
		 * Some BIOSes list non-exist devices in DMAR table, just
		 * ignore it
		 */
		if (!bus) {
88
			pr_warn("Device scope bus [%d] not found\n", scope->bus);
89 90 91 92
			break;
		}
		pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
		if (!pdev) {
93
			/* warning will be printed below */
94 95 96 97 98 99 100
			break;
		}
		path ++;
		count --;
		bus = pdev->subordinate;
	}
	if (!pdev) {
101
		pr_warn("Device scope device [%04x:%02x:%02x.%02x] not found\n",
102
			segment, scope->bus, path->dev, path->fn);
103 104 105 106 107 108 109
		*dev = NULL;
		return 0;
	}
	if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
			pdev->subordinate) || (scope->entry_type == \
			ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
		pci_dev_put(pdev);
110 111
		pr_warn("Device scope type does not match for %s\n",
			pci_name(pdev));
112 113 114 115 116 117
		return -EINVAL;
	}
	*dev = pdev;
	return 0;
}

118 119
int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
				struct pci_dev ***devices, u16 segment)
120 121 122 123 124 125 126 127 128 129 130 131
{
	struct acpi_dmar_device_scope *scope;
	void * tmp = start;
	int index;
	int ret;

	*cnt = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
			(*cnt)++;
132
		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC) {
133
			pr_warn("Unsupported device scope\n");
134
		}
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
		start += scope->length;
	}
	if (*cnt == 0)
		return 0;

	*devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
	if (!*devices)
		return -ENOMEM;

	start = tmp;
	index = 0;
	while (start < end) {
		scope = start;
		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
			ret = dmar_parse_one_dev_scope(scope,
				&(*devices)[index], segment);
			if (ret) {
				kfree(*devices);
				return ret;
			}
			index ++;
		}
		start += scope->length;
	}

	return 0;
}

/**
 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
 * structure which uniquely represent one DMA remapping hardware unit
 * present in the platform
 */
static int __init
dmar_parse_one_drhd(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct dmar_drhd_unit *dmaru;
	int ret = 0;

176
	drhd = (struct acpi_dmar_hardware_unit *)header;
177 178 179 180
	dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
	if (!dmaru)
		return -ENOMEM;

181
	dmaru->hdr = header;
182
	dmaru->reg_base_addr = drhd->address;
183
	dmaru->segment = drhd->segment;
184 185
	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */

186 187 188 189 190 191 192 193 194
	ret = alloc_iommu(dmaru);
	if (ret) {
		kfree(dmaru);
		return ret;
	}
	dmar_register_drhd_unit(dmaru);
	return 0;
}

195
static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
196 197
{
	struct acpi_dmar_hardware_unit *drhd;
198
	int ret = 0;
199 200 201

	drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;

202 203 204 205
	if (dmaru->include_all)
		return 0;

	ret = dmar_parse_dev_scope((void *)(drhd + 1),
206
				((void *)drhd) + drhd->header.length,
207 208
				&dmaru->devices_cnt, &dmaru->devices,
				drhd->segment);
209
	if (ret) {
210
		list_del(&dmaru->list);
211
		kfree(dmaru);
212
	}
213 214 215
	return ret;
}

216
#ifdef CONFIG_ACPI_NUMA
217 218 219 220 221 222 223
static int __init
dmar_parse_one_rhsa(struct acpi_dmar_header *header)
{
	struct acpi_dmar_rhsa *rhsa;
	struct dmar_drhd_unit *drhd;

	rhsa = (struct acpi_dmar_rhsa *)header;
224
	for_each_drhd_unit(drhd) {
225 226 227 228 229 230
		if (drhd->reg_base_addr == rhsa->base_address) {
			int node = acpi_map_pxm_to_node(rhsa->proximity_domain);

			if (!node_online(node))
				node = -1;
			drhd->iommu->node = node;
231 232
			return 0;
		}
233
	}
234 235 236 237 238 239 240 241
	WARN_TAINT(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		drhd->reg_base_addr,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
242

243
	return 0;
244
}
245
#endif
246

247 248 249 250 251
static void __init
dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
{
	struct acpi_dmar_hardware_unit *drhd;
	struct acpi_dmar_reserved_memory *rmrr;
252
	struct acpi_dmar_atsr *atsr;
253
	struct acpi_dmar_rhsa *rhsa;
254 255 256

	switch (header->type) {
	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
257 258
		drhd = container_of(header, struct acpi_dmar_hardware_unit,
				    header);
259
		pr_info("DRHD base: %#016Lx flags: %#x\n",
260
			(unsigned long long)drhd->address, drhd->flags);
261 262
		break;
	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
263 264
		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
				    header);
265
		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
F
Fenghua Yu 已提交
266 267
			(unsigned long long)rmrr->base_address,
			(unsigned long long)rmrr->end_address);
268
		break;
269 270
	case ACPI_DMAR_TYPE_ATSR:
		atsr = container_of(header, struct acpi_dmar_atsr, header);
271
		pr_info("ATSR flags: %#x\n", atsr->flags);
272
		break;
273 274
	case ACPI_DMAR_HARDWARE_AFFINITY:
		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
275
		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
276 277 278
		       (unsigned long long)rhsa->base_address,
		       rhsa->proximity_domain);
		break;
279 280 281
	}
}

282 283 284 285 286 287 288 289
/**
 * dmar_table_detect - checks to see if the platform supports DMAR devices
 */
static int __init dmar_table_detect(void)
{
	acpi_status status = AE_OK;

	/* if we could find DMAR table, then there are DMAR devices */
290 291 292
	status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
				(struct acpi_table_header **)&dmar_tbl,
				&dmar_tbl_size);
293 294

	if (ACPI_SUCCESS(status) && !dmar_tbl) {
295
		pr_warn("Unable to map DMAR\n");
296 297 298 299 300
		status = AE_NOT_FOUND;
	}

	return (ACPI_SUCCESS(status) ? 1 : 0);
}
301

302 303 304 305 306 307 308 309 310 311
/**
 * parse_dmar_table - parses the DMA reporting table
 */
static int __init
parse_dmar_table(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	int ret = 0;

312 313 314 315 316 317
	/*
	 * Do it again, earlier dmar_tbl mapping could be mapped with
	 * fixed map.
	 */
	dmar_table_detect();

318 319 320 321 322 323
	/*
	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
	 */
	dmar_tbl = tboot_get_dmar_table(dmar_tbl);

324 325 326 327
	dmar = (struct acpi_table_dmar *)dmar_tbl;
	if (!dmar)
		return -ENODEV;

F
Fenghua Yu 已提交
328
	if (dmar->width < PAGE_SHIFT - 1) {
329
		pr_warn("Invalid DMAR haw\n");
330 331 332
		return -EINVAL;
	}

333
	pr_info("Host address width %d\n", dmar->width + 1);
334 335 336 337

	entry_header = (struct acpi_dmar_header *)(dmar + 1);
	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
338 339
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
340
			pr_warn("Invalid 0-length structure\n");
341 342 343 344
			ret = -EINVAL;
			break;
		}

345 346 347 348 349 350 351 352
		dmar_table_print_dmar_entry(entry_header);

		switch (entry_header->type) {
		case ACPI_DMAR_TYPE_HARDWARE_UNIT:
			ret = dmar_parse_one_drhd(entry_header);
			break;
		case ACPI_DMAR_TYPE_RESERVED_MEMORY:
			ret = dmar_parse_one_rmrr(entry_header);
353 354 355
			break;
		case ACPI_DMAR_TYPE_ATSR:
			ret = dmar_parse_one_atsr(entry_header);
356
			break;
357
		case ACPI_DMAR_HARDWARE_AFFINITY:
358
#ifdef CONFIG_ACPI_NUMA
359
			ret = dmar_parse_one_rhsa(entry_header);
360
#endif
361
			break;
362
		default:
363
			pr_warn("Unknown DMAR structure type %d\n",
364
				entry_header->type);
365 366 367 368 369 370 371 372 373 374 375
			ret = 0; /* for forward compatibility */
			break;
		}
		if (ret)
			break;

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return ret;
}

376
static int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
			  struct pci_dev *dev)
{
	int index;

	while (dev) {
		for (index = 0; index < cnt; index++)
			if (dev == devices[index])
				return 1;

		/* Check our parent */
		dev = dev->bus->self;
	}

	return 0;
}

struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev *dev)
{
396 397 398
	struct dmar_drhd_unit *dmaru = NULL;
	struct acpi_dmar_hardware_unit *drhd;

399 400
	dev = pci_physfn(dev);

401 402 403 404 405 406 407 408
	list_for_each_entry(dmaru, &dmar_drhd_units, list) {
		drhd = container_of(dmaru->hdr,
				    struct acpi_dmar_hardware_unit,
				    header);

		if (dmaru->include_all &&
		    drhd->segment == pci_domain_nr(dev->bus))
			return dmaru;
409

410 411 412
		if (dmar_pci_device_match(dmaru->devices,
					  dmaru->devices_cnt, dev))
			return dmaru;
413 414 415 416 417
	}

	return NULL;
}

418 419
int __init dmar_dev_scope_init(void)
{
420
	static int dmar_dev_scope_initialized;
421
	struct dmar_drhd_unit *drhd, *drhd_n;
422 423
	int ret = -ENODEV;

424 425 426
	if (dmar_dev_scope_initialized)
		return dmar_dev_scope_initialized;

427 428 429
	if (list_empty(&dmar_drhd_units))
		goto fail;

430
	list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
431 432
		ret = dmar_parse_dev(drhd);
		if (ret)
433
			goto fail;
434 435
	}

436 437 438
	ret = dmar_parse_rmrr_atsr_dev();
	if (ret)
		goto fail;
439

440 441 442 443 444
	dmar_dev_scope_initialized = 1;
	return 0;

fail:
	dmar_dev_scope_initialized = ret;
445 446 447
	return ret;
}

448 449 450

int __init dmar_table_init(void)
{
451
	static int dmar_table_initialized;
F
Fenghua Yu 已提交
452 453
	int ret;

454 455 456 457 458
	if (dmar_table_initialized)
		return 0;

	dmar_table_initialized = 1;

F
Fenghua Yu 已提交
459 460
	ret = parse_dmar_table();
	if (ret) {
461
		if (ret != -ENODEV)
462
			pr_info("parse DMAR table failure.\n");
F
Fenghua Yu 已提交
463 464 465
		return ret;
	}

466
	if (list_empty(&dmar_drhd_units)) {
467
		pr_info("No DMAR devices found\n");
468 469
		return -ENODEV;
	}
F
Fenghua Yu 已提交
470

471 472 473
	return 0;
}

474 475
static void warn_invalid_dmar(u64 addr, const char *message)
{
476 477 478 479 480 481 482 483
	WARN_TAINT_ONCE(
		1, TAINT_FIRMWARE_WORKAROUND,
		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
		addr, message,
		dmi_get_system_info(DMI_BIOS_VENDOR),
		dmi_get_system_info(DMI_BIOS_VERSION),
		dmi_get_system_info(DMI_PRODUCT_VERSION));
484
}
485

486 487 488 489 490 491 492 493 494 495 496 497 498
int __init check_zero_address(void)
{
	struct acpi_table_dmar *dmar;
	struct acpi_dmar_header *entry_header;
	struct acpi_dmar_hardware_unit *drhd;

	dmar = (struct acpi_table_dmar *)dmar_tbl;
	entry_header = (struct acpi_dmar_header *)(dmar + 1);

	while (((unsigned long)entry_header) <
			(((unsigned long)dmar) + dmar_tbl->length)) {
		/* Avoid looping forever on bad ACPI tables */
		if (entry_header->length == 0) {
499
			pr_warn("Invalid 0-length structure\n");
500 501 502 503
			return 0;
		}

		if (entry_header->type == ACPI_DMAR_TYPE_HARDWARE_UNIT) {
504 505 506
			void __iomem *addr;
			u64 cap, ecap;

507 508
			drhd = (void *)entry_header;
			if (!drhd->address) {
509
				warn_invalid_dmar(0, "");
510 511 512 513 514 515 516 517 518 519 520 521
				goto failed;
			}

			addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
			if (!addr ) {
				printk("IOMMU: can't validate: %llx\n", drhd->address);
				goto failed;
			}
			cap = dmar_readq(addr + DMAR_CAP_REG);
			ecap = dmar_readq(addr + DMAR_ECAP_REG);
			early_iounmap(addr, VTD_PAGE_SIZE);
			if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
522 523
				warn_invalid_dmar(drhd->address,
						  " returns all ones");
524
				goto failed;
525 526 527 528 529 530
			}
		}

		entry_header = ((void *)entry_header + entry_header->length);
	}
	return 1;
531 532 533

failed:
	return 0;
534 535
}

536
int __init detect_intel_iommu(void)
537 538 539
{
	int ret;

540
	ret = dmar_table_detect();
541 542
	if (ret)
		ret = check_zero_address();
543
	{
544
		struct acpi_table_dmar *dmar;
545

546
		dmar = (struct acpi_table_dmar *) dmar_tbl;
547

548
		if (ret && irq_remapping_enabled && cpu_has_x2apic &&
549
		    dmar->flags & 0x1)
550
			pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
551

552
		if (ret && !no_iommu && !iommu_detected && !dmar_disabled) {
553
			iommu_detected = 1;
C
Chris Wright 已提交
554 555 556
			/* Make sure ACS will be enabled */
			pci_request_acs();
		}
557

558 559 560
#ifdef CONFIG_X86
		if (ret)
			x86_init.iommu.iommu_init = intel_iommu_init;
561
#endif
562
	}
563
	early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
564
	dmar_tbl = NULL;
565

566
	return ret ? 1 : -ENODEV;
567 568 569
}


570 571 572 573 574 575 576 577 578 579
static void unmap_iommu(struct intel_iommu *iommu)
{
	iounmap(iommu->reg);
	release_mem_region(iommu->reg_phys, iommu->reg_size);
}

/**
 * map_iommu: map the iommu's registers
 * @iommu: the iommu to map
 * @phys_addr: the physical address of the base resgister
580
 *
581
 * Memory map the iommu's registers.  Start w/ a single page, and
582
 * possibly expand if that turns out to be insufficent.
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
 */
static int map_iommu(struct intel_iommu *iommu, u64 phys_addr)
{
	int map_size, err=0;

	iommu->reg_phys = phys_addr;
	iommu->reg_size = VTD_PAGE_SIZE;

	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
		pr_err("IOMMU: can't reserve memory\n");
		err = -EBUSY;
		goto out;
	}

	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
	if (!iommu->reg) {
		pr_err("IOMMU: can't map the region\n");
		err = -ENOMEM;
		goto release;
	}

	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);

	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
		err = -EINVAL;
		warn_invalid_dmar(phys_addr, " returns all ones");
		goto unmap;
	}

	/* the registers might be more than one page */
	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
			 cap_max_fault_reg_offset(iommu->cap));
	map_size = VTD_PAGE_ALIGN(map_size);
	if (map_size > iommu->reg_size) {
		iounmap(iommu->reg);
		release_mem_region(iommu->reg_phys, iommu->reg_size);
		iommu->reg_size = map_size;
		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
					iommu->name)) {
			pr_err("IOMMU: can't reserve memory\n");
			err = -EBUSY;
			goto out;
		}
		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
		if (!iommu->reg) {
			pr_err("IOMMU: can't map the region\n");
			err = -ENOMEM;
			goto release;
		}
	}
	err = 0;
	goto out;

unmap:
	iounmap(iommu->reg);
release:
	release_mem_region(iommu->reg_phys, iommu->reg_size);
out:
	return err;
}

645
int alloc_iommu(struct dmar_drhd_unit *drhd)
646
{
647
	struct intel_iommu *iommu;
648
	u32 ver;
649
	static int iommu_allocated = 0;
650
	int agaw = 0;
F
Fenghua Yu 已提交
651
	int msagaw = 0;
652
	int err;
653

654
	if (!drhd->reg_base_addr) {
655
		warn_invalid_dmar(0, "");
656 657 658
		return -EINVAL;
	}

659 660
	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
	if (!iommu)
661
		return -ENOMEM;
662 663

	iommu->seq_id = iommu_allocated++;
664
	sprintf (iommu->name, "dmar%d", iommu->seq_id);
665

666 667 668
	err = map_iommu(iommu, drhd->reg_base_addr);
	if (err) {
		pr_err("IOMMU: failed to map %s\n", iommu->name);
669 670
		goto error;
	}
671

672
	err = -EINVAL;
W
Weidong Han 已提交
673 674
	agaw = iommu_calculate_agaw(iommu);
	if (agaw < 0) {
675 676
		pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
			iommu->seq_id);
677
		goto err_unmap;
F
Fenghua Yu 已提交
678 679 680
	}
	msagaw = iommu_calculate_max_sagaw(iommu);
	if (msagaw < 0) {
681
		pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
W
Weidong Han 已提交
682
			iommu->seq_id);
683
		goto err_unmap;
W
Weidong Han 已提交
684 685
	}
	iommu->agaw = agaw;
F
Fenghua Yu 已提交
686
	iommu->msagaw = msagaw;
W
Weidong Han 已提交
687

688 689
	iommu->node = -1;

690
	ver = readl(iommu->reg + DMAR_VER_REG);
Y
Yinghai Lu 已提交
691 692
	pr_info("IOMMU %d: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
		iommu->seq_id,
F
Fenghua Yu 已提交
693 694 695 696
		(unsigned long long)drhd->reg_base_addr,
		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
		(unsigned long long)iommu->cap,
		(unsigned long long)iommu->ecap);
697

698
	raw_spin_lock_init(&iommu->register_lock);
699 700

	drhd->iommu = iommu;
701
	return 0;
702 703

 err_unmap:
704
	unmap_iommu(iommu);
705
 error:
706
	kfree(iommu);
707
	return err;
708 709 710 711 712 713 714 715 716 717
}

void free_iommu(struct intel_iommu *iommu)
{
	if (!iommu)
		return;

	free_dmar_iommu(iommu);

	if (iommu->reg)
718 719
		unmap_iommu(iommu);

720 721
	kfree(iommu);
}
722 723 724 725 726 727

/*
 * Reclaim all the submitted descriptors which have completed its work.
 */
static inline void reclaim_free_desc(struct q_inval *qi)
{
728 729
	while (qi->desc_status[qi->free_tail] == QI_DONE ||
	       qi->desc_status[qi->free_tail] == QI_ABORT) {
730 731 732 733 734 735
		qi->desc_status[qi->free_tail] = QI_FREE;
		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
		qi->free_cnt++;
	}
}

736 737 738
static int qi_check_fault(struct intel_iommu *iommu, int index)
{
	u32 fault;
739
	int head, tail;
740 741 742
	struct q_inval *qi = iommu->qi;
	int wait_index = (index + 1) % QI_LENGTH;

743 744 745
	if (qi->desc_status[wait_index] == QI_ABORT)
		return -EAGAIN;

746 747 748 749 750 751 752 753 754
	fault = readl(iommu->reg + DMAR_FSTS_REG);

	/*
	 * If IQE happens, the head points to the descriptor associated
	 * with the error. No new descriptors are fetched until the IQE
	 * is cleared.
	 */
	if (fault & DMA_FSTS_IQE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
755
		if ((head >> DMAR_IQ_SHIFT) == index) {
756
			pr_err("VT-d detected invalid descriptor: "
757 758 759
				"low=%llx, high=%llx\n",
				(unsigned long long)qi->desc[index].low,
				(unsigned long long)qi->desc[index].high);
760 761 762 763 764 765 766 767 768
			memcpy(&qi->desc[index], &qi->desc[wait_index],
					sizeof(struct qi_desc));
			__iommu_flush_cache(iommu, &qi->desc[index],
					sizeof(struct qi_desc));
			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
			return -EINVAL;
		}
	}

769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
	/*
	 * If ITE happens, all pending wait_desc commands are aborted.
	 * No new descriptors are fetched until the ITE is cleared.
	 */
	if (fault & DMA_FSTS_ITE) {
		head = readl(iommu->reg + DMAR_IQH_REG);
		head = ((head >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;
		head |= 1;
		tail = readl(iommu->reg + DMAR_IQT_REG);
		tail = ((tail >> DMAR_IQ_SHIFT) - 1 + QI_LENGTH) % QI_LENGTH;

		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);

		do {
			if (qi->desc_status[head] == QI_IN_USE)
				qi->desc_status[head] = QI_ABORT;
			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
		} while (head != tail);

		if (qi->desc_status[wait_index] == QI_ABORT)
			return -EAGAIN;
	}

	if (fault & DMA_FSTS_ICE)
		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);

795 796 797
	return 0;
}

798 799 800 801
/*
 * Submit the queued invalidation descriptor to the remapping
 * hardware unit and wait for its completion.
 */
802
int qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
803
{
804
	int rc;
805 806 807 808 809 810
	struct q_inval *qi = iommu->qi;
	struct qi_desc *hw, wait_desc;
	int wait_index, index;
	unsigned long flags;

	if (!qi)
811
		return 0;
812 813 814

	hw = qi->desc;

815 816 817
restart:
	rc = 0;

818
	raw_spin_lock_irqsave(&qi->q_lock, flags);
819
	while (qi->free_cnt < 3) {
820
		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
821
		cpu_relax();
822
		raw_spin_lock_irqsave(&qi->q_lock, flags);
823 824 825 826 827 828 829 830 831
	}

	index = qi->free_head;
	wait_index = (index + 1) % QI_LENGTH;

	qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;

	hw[index] = *desc;

832 833
	wait_desc.low = QI_IWD_STATUS_DATA(QI_DONE) |
			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
834 835 836 837 838 839 840 841 842 843 844 845 846 847
	wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);

	hw[wait_index] = wait_desc;

	__iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
	__iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));

	qi->free_head = (qi->free_head + 2) % QI_LENGTH;
	qi->free_cnt -= 2;

	/*
	 * update the HW tail register indicating the presence of
	 * new descriptors.
	 */
848
	writel(qi->free_head << DMAR_IQ_SHIFT, iommu->reg + DMAR_IQT_REG);
849 850

	while (qi->desc_status[wait_index] != QI_DONE) {
851 852 853 854 855 856 857
		/*
		 * We will leave the interrupts disabled, to prevent interrupt
		 * context to queue another cmd while a cmd is already submitted
		 * and waiting for completion on this cpu. This is to avoid
		 * a deadlock where the interrupt context can wait indefinitely
		 * for free slots in the queue.
		 */
858 859
		rc = qi_check_fault(iommu, index);
		if (rc)
860
			break;
861

862
		raw_spin_unlock(&qi->q_lock);
863
		cpu_relax();
864
		raw_spin_lock(&qi->q_lock);
865
	}
866 867

	qi->desc_status[index] = QI_DONE;
868 869

	reclaim_free_desc(qi);
870
	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
871

872 873 874
	if (rc == -EAGAIN)
		goto restart;

875
	return rc;
876 877 878 879 880 881 882 883 884 885 886 887
}

/*
 * Flush the global interrupt entry cache.
 */
void qi_global_iec(struct intel_iommu *iommu)
{
	struct qi_desc desc;

	desc.low = QI_IEC_TYPE;
	desc.high = 0;

888
	/* should never fail */
889 890 891
	qi_submit_sync(&desc, iommu);
}

892 893
void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
		      u64 type)
894 895 896 897 898 899 900
{
	struct qi_desc desc;

	desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
			| QI_CC_GRAN(type) | QI_CC_TYPE;
	desc.high = 0;

901
	qi_submit_sync(&desc, iommu);
902 903
}

904 905
void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
		    unsigned int size_order, u64 type)
906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
{
	u8 dw = 0, dr = 0;

	struct qi_desc desc;
	int ih = 0;

	if (cap_write_drain(iommu->cap))
		dw = 1;

	if (cap_read_drain(iommu->cap))
		dr = 1;

	desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
	desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
		| QI_IOTLB_AM(size_order);

923
	qi_submit_sync(&desc, iommu);
924 925
}

926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 qdep,
			u64 addr, unsigned mask)
{
	struct qi_desc desc;

	if (mask) {
		BUG_ON(addr & ((1 << (VTD_PAGE_SHIFT + mask)) - 1));
		addr |= (1 << (VTD_PAGE_SHIFT + mask - 1)) - 1;
		desc.high = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
	} else
		desc.high = QI_DEV_IOTLB_ADDR(addr);

	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
		qdep = 0;

	desc.low = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
		   QI_DIOTLB_TYPE;

	qi_submit_sync(&desc, iommu);
}

947 948 949 950 951 952 953 954 955 956 957 958
/*
 * Disable Queued Invalidation interface.
 */
void dmar_disable_qi(struct intel_iommu *iommu)
{
	unsigned long flags;
	u32 sts;
	cycles_t start_time = get_cycles();

	if (!ecap_qis(iommu->ecap))
		return;

959
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978

	sts =  dmar_readq(iommu->reg + DMAR_GSTS_REG);
	if (!(sts & DMA_GSTS_QIES))
		goto end;

	/*
	 * Give a chance to HW to complete the pending invalidation requests.
	 */
	while ((readl(iommu->reg + DMAR_IQT_REG) !=
		readl(iommu->reg + DMAR_IQH_REG)) &&
		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
		cpu_relax();

	iommu->gcmd &= ~DMA_GCMD_QIE;
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);

	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
		      !(sts & DMA_GSTS_QIES), sts);
end:
979
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
980 981
}

982 983 984 985 986
/*
 * Enable queued invalidation.
 */
static void __dmar_enable_qi(struct intel_iommu *iommu)
{
987
	u32 sts;
988 989 990 991 992 993
	unsigned long flags;
	struct q_inval *qi = iommu->qi;

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

994
	raw_spin_lock_irqsave(&iommu->register_lock, flags);
995 996 997 998 999 1000 1001

	/* write zero to the tail reg */
	writel(0, iommu->reg + DMAR_IQT_REG);

	dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));

	iommu->gcmd |= DMA_GCMD_QIE;
1002
	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1003 1004 1005 1006

	/* Make sure hardware complete it */
	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);

1007
	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1008 1009
}

1010 1011 1012 1013 1014 1015 1016 1017
/*
 * Enable Queued Invalidation interface. This is a must to support
 * interrupt-remapping. Also used by DMA-remapping, which replaces
 * register based IOTLB invalidation.
 */
int dmar_enable_qi(struct intel_iommu *iommu)
{
	struct q_inval *qi;
1018
	struct page *desc_page;
1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	/*
	 * queued invalidation is already setup and enabled.
	 */
	if (iommu->qi)
		return 0;

1029
	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1030 1031 1032 1033 1034
	if (!iommu->qi)
		return -ENOMEM;

	qi = iommu->qi;

1035 1036 1037

	desc_page = alloc_pages_node(iommu->node, GFP_ATOMIC | __GFP_ZERO, 0);
	if (!desc_page) {
1038 1039 1040 1041 1042
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

1043 1044
	qi->desc = page_address(desc_page);

1045
	qi->desc_status = kzalloc(QI_LENGTH * sizeof(int), GFP_ATOMIC);
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
	if (!qi->desc_status) {
		free_page((unsigned long) qi->desc);
		kfree(qi);
		iommu->qi = 0;
		return -ENOMEM;
	}

	qi->free_head = qi->free_tail = 0;
	qi->free_cnt = QI_LENGTH;

1056
	raw_spin_lock_init(&qi->q_lock);
1057

1058
	__dmar_enable_qi(iommu);
1059 1060 1061

	return 0;
}
1062 1063 1064

/* iommu interrupt handling. Most stuff are MSI-like. */

1065 1066 1067 1068 1069 1070 1071
enum faulttype {
	DMA_REMAP,
	INTR_REMAP,
	UNKNOWN,
};

static const char *dma_remap_fault_reasons[] =
1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
{
	"Software",
	"Present bit in root entry is clear",
	"Present bit in context entry is clear",
	"Invalid context entry",
	"Access beyond MGAW",
	"PTE Write access is not set",
	"PTE Read access is not set",
	"Next page table ptr is invalid",
	"Root table address invalid",
	"Context table ptr is invalid",
	"non-zero reserved fields in RTP",
	"non-zero reserved fields in CTP",
	"non-zero reserved fields in PTE",
1086
	"PCE for translation request specifies blocking",
1087
};
1088

1089
static const char *irq_remap_fault_reasons[] =
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099
{
	"Detected reserved fields in the decoded interrupt-remapped request",
	"Interrupt index exceeded the interrupt-remapping table size",
	"Present field in the IRTE entry is clear",
	"Error accessing interrupt-remapping table pointed by IRTA_REG",
	"Detected reserved fields in the IRTE entry",
	"Blocked a compatibility format interrupt request",
	"Blocked an interrupt request due to source-id verification failure",
};

1100 1101
#define MAX_FAULT_REASON_IDX 	(ARRAY_SIZE(fault_reason_strings) - 1)

1102
const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1103
{
1104 1105
	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
					ARRAY_SIZE(irq_remap_fault_reasons))) {
1106
		*fault_type = INTR_REMAP;
1107
		return irq_remap_fault_reasons[fault_reason - 0x20];
1108 1109 1110 1111 1112
	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
		*fault_type = DMA_REMAP;
		return dma_remap_fault_reasons[fault_reason];
	} else {
		*fault_type = UNKNOWN;
1113
		return "Unknown";
1114
	}
1115 1116
}

1117
void dmar_msi_unmask(struct irq_data *data)
1118
{
1119
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1120 1121 1122
	unsigned long flag;

	/* unmask it */
1123
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1124 1125 1126
	writel(0, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1127
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1128 1129
}

1130
void dmar_msi_mask(struct irq_data *data)
1131 1132
{
	unsigned long flag;
1133
	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1134 1135

	/* mask it */
1136
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1137 1138 1139
	writel(DMA_FECTL_IM, iommu->reg + DMAR_FECTL_REG);
	/* Read a reg to force flush the post write */
	readl(iommu->reg + DMAR_FECTL_REG);
1140
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1141 1142 1143 1144
}

void dmar_msi_write(int irq, struct msi_msg *msg)
{
1145
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1146 1147
	unsigned long flag;

1148
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1149 1150 1151
	writel(msg->data, iommu->reg + DMAR_FEDATA_REG);
	writel(msg->address_lo, iommu->reg + DMAR_FEADDR_REG);
	writel(msg->address_hi, iommu->reg + DMAR_FEUADDR_REG);
1152
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1153 1154 1155 1156
}

void dmar_msi_read(int irq, struct msi_msg *msg)
{
1157
	struct intel_iommu *iommu = irq_get_handler_data(irq);
1158 1159
	unsigned long flag;

1160
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1161 1162 1163
	msg->data = readl(iommu->reg + DMAR_FEDATA_REG);
	msg->address_lo = readl(iommu->reg + DMAR_FEADDR_REG);
	msg->address_hi = readl(iommu->reg + DMAR_FEUADDR_REG);
1164
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1165 1166 1167 1168 1169 1170
}

static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
		u8 fault_reason, u16 source_id, unsigned long long addr)
{
	const char *reason;
1171
	int fault_type;
1172

1173
	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1174

1175
	if (fault_type == INTR_REMAP)
1176
		pr_err("INTR-REMAP: Request device [[%02x:%02x.%d] "
1177 1178 1179 1180 1181 1182
		       "fault index %llx\n"
			"INTR-REMAP:[fault reason %02d] %s\n",
			(source_id >> 8), PCI_SLOT(source_id & 0xFF),
			PCI_FUNC(source_id & 0xFF), addr >> 48,
			fault_reason, reason);
	else
1183
		pr_err("DMAR:[%s] Request device [%02x:%02x.%d] "
1184 1185 1186 1187 1188
		       "fault addr %llx \n"
		       "DMAR:[fault reason %02d] %s\n",
		       (type ? "DMA Read" : "DMA Write"),
		       (source_id >> 8), PCI_SLOT(source_id & 0xFF),
		       PCI_FUNC(source_id & 0xFF), addr, fault_reason, reason);
1189 1190 1191 1192
	return 0;
}

#define PRIMARY_FAULT_REG_LEN (16)
1193
irqreturn_t dmar_fault(int irq, void *dev_id)
1194 1195 1196 1197 1198 1199
{
	struct intel_iommu *iommu = dev_id;
	int reg, fault_index;
	u32 fault_status;
	unsigned long flag;

1200
	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1201
	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1202
	if (fault_status)
1203
		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1204 1205 1206

	/* TBD: ignore advanced fault log currently */
	if (!(fault_status & DMA_FSTS_PPF))
1207
		goto unlock_exit;
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

	fault_index = dma_fsts_fault_record_index(fault_status);
	reg = cap_fault_reg_offset(iommu->cap);
	while (1) {
		u8 fault_reason;
		u16 source_id;
		u64 guest_addr;
		int type;
		u32 data;

		/* highest 32 bits */
		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 12);
		if (!(data & DMA_FRCD_F))
			break;

		fault_reason = dma_frcd_fault_reason(data);
		type = dma_frcd_type(data);

		data = readl(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN + 8);
		source_id = dma_frcd_source_id(data);

		guest_addr = dmar_readq(iommu->reg + reg +
				fault_index * PRIMARY_FAULT_REG_LEN);
		guest_addr = dma_frcd_page_addr(guest_addr);
		/* clear the fault */
		writel(DMA_FRCD_F, iommu->reg + reg +
			fault_index * PRIMARY_FAULT_REG_LEN + 12);

1238
		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1239 1240 1241 1242 1243

		dmar_fault_do_one(iommu, type, fault_reason,
				source_id, guest_addr);

		fault_index++;
1244
		if (fault_index >= cap_num_fault_regs(iommu->cap))
1245
			fault_index = 0;
1246
		raw_spin_lock_irqsave(&iommu->register_lock, flag);
1247 1248
	}

1249 1250 1251
	writel(DMA_FSTS_PFO | DMA_FSTS_PPF, iommu->reg + DMAR_FSTS_REG);

unlock_exit:
1252
	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1253 1254 1255 1256 1257 1258 1259
	return IRQ_HANDLED;
}

int dmar_set_interrupt(struct intel_iommu *iommu)
{
	int irq, ret;

1260 1261 1262 1263 1264 1265
	/*
	 * Check if the fault interrupt is already initialized.
	 */
	if (iommu->irq)
		return 0;

1266 1267
	irq = create_irq();
	if (!irq) {
1268
		pr_err("IOMMU: no free vectors\n");
1269 1270 1271
		return -EINVAL;
	}

1272
	irq_set_handler_data(irq, iommu);
1273 1274 1275 1276
	iommu->irq = irq;

	ret = arch_setup_dmar_msi(irq);
	if (ret) {
1277
		irq_set_handler_data(irq, NULL);
1278 1279
		iommu->irq = 0;
		destroy_irq(irq);
1280
		return ret;
1281 1282
	}

1283
	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
1284
	if (ret)
1285
		pr_err("IOMMU: can't request irq\n");
1286 1287
	return ret;
}
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

int __init enable_drhd_fault_handling(void)
{
	struct dmar_drhd_unit *drhd;

	/*
	 * Enable fault control interrupt.
	 */
	for_each_drhd_unit(drhd) {
		int ret;
		struct intel_iommu *iommu = drhd->iommu;
1299
		u32 fault_status;
1300 1301 1302
		ret = dmar_set_interrupt(iommu);

		if (ret) {
1303
			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
1304 1305 1306
			       (unsigned long long)drhd->reg_base_addr, ret);
			return -1;
		}
1307 1308 1309 1310 1311

		/*
		 * Clear any previous faults.
		 */
		dmar_fault(iommu->irq, iommu);
1312 1313
		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
1314 1315 1316 1317
	}

	return 0;
}
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342

/*
 * Re-enable Queued Invalidation interface.
 */
int dmar_reenable_qi(struct intel_iommu *iommu)
{
	if (!ecap_qis(iommu->ecap))
		return -ENOENT;

	if (!iommu->qi)
		return -ENOENT;

	/*
	 * First disable queued invalidation.
	 */
	dmar_disable_qi(iommu);
	/*
	 * Then enable queued invalidation again. Since there is no pending
	 * invalidation requests now, it's safe to re-enable queued
	 * invalidation.
	 */
	__dmar_enable_qi(iommu);

	return 0;
}
1343 1344 1345 1346

/*
 * Check interrupt remapping support in DMAR table description.
 */
1347
int __init dmar_ir_support(void)
1348 1349 1350
{
	struct acpi_table_dmar *dmar;
	dmar = (struct acpi_table_dmar *)dmar_tbl;
1351 1352
	if (!dmar)
		return 0;
1353 1354
	return dmar->flags & 0x1;
}
1355
IOMMU_INIT_POST(detect_intel_iommu);