fw-sbp2.c 45.4 KB
Newer Older
1 2
/*
 * SBP2 driver (SCSI over IEEE1394)
3
 *
4
 * Copyright (C) 2005-2007  Kristian Hoegsberg <krh@bitplanet.net>
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 */

21 22
/*
 * The basic structure of this driver is based on the old storage driver,
23 24 25 26 27 28 29 30
 * drivers/ieee1394/sbp2.c, originally written by
 *     James Goodwin <jamesg@filanet.com>
 * with later contributions and ongoing maintenance from
 *     Ben Collins <bcollins@debian.org>,
 *     Stefan Richter <stefanr@s5r6.in-berlin.de>
 * and many others.
 */

31 32 33 34
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
35
#include <linux/kernel.h>
36
#include <linux/mod_devicetable.h>
37
#include <linux/module.h>
38
#include <linux/moduleparam.h>
A
Andrew Morton 已提交
39
#include <linux/scatterlist.h>
40
#include <linux/string.h>
41
#include <linux/stringify.h>
42
#include <linux/timer.h>
43
#include <linux/workqueue.h>
44
#include <asm/system.h>
45 46 47 48 49 50 51

#include <scsi/scsi.h>
#include <scsi/scsi_cmnd.h>
#include <scsi/scsi_device.h>
#include <scsi/scsi_host.h>

#include "fw-device.h"
52 53
#include "fw-topology.h"
#include "fw-transaction.h"
54

55 56 57 58 59 60 61 62 63 64 65 66
/*
 * So far only bridges from Oxford Semiconductor are known to support
 * concurrent logins. Depending on firmware, four or two concurrent logins
 * are possible on OXFW911 and newer Oxsemi bridges.
 *
 * Concurrent logins are useful together with cluster filesystems.
 */
static int sbp2_param_exclusive_login = 1;
module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
		 "(default = Y, use N for concurrent initiators)");

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
/*
 * Flags for firmware oddities
 *
 * - 128kB max transfer
 *   Limit transfer size. Necessary for some old bridges.
 *
 * - 36 byte inquiry
 *   When scsi_mod probes the device, let the inquiry command look like that
 *   from MS Windows.
 *
 * - skip mode page 8
 *   Suppress sending of mode_sense for mode page 8 if the device pretends to
 *   support the SCSI Primary Block commands instead of Reduced Block Commands.
 *
 * - fix capacity
 *   Tell sd_mod to correct the last sector number reported by read_capacity.
 *   Avoids access beyond actual disk limits on devices with an off-by-one bug.
 *   Don't use this with devices which don't have this bug.
 *
86 87 88
 * - delay inquiry
 *   Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
 *
89 90 91 92 93 94 95 96 97
 * - override internal blacklist
 *   Instead of adding to the built-in blacklist, use only the workarounds
 *   specified in the module load parameter.
 *   Useful if a blacklist entry interfered with a non-broken device.
 */
#define SBP2_WORKAROUND_128K_MAX_TRANS	0x1
#define SBP2_WORKAROUND_INQUIRY_36	0x2
#define SBP2_WORKAROUND_MODE_SENSE_8	0x4
#define SBP2_WORKAROUND_FIX_CAPACITY	0x8
98 99
#define SBP2_WORKAROUND_DELAY_INQUIRY	0x10
#define SBP2_INQUIRY_DELAY		12
100 101 102 103 104 105 106 107 108
#define SBP2_WORKAROUND_OVERRIDE	0x100

static int sbp2_param_workarounds;
module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
	", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
	", 36 byte inquiry = "    __stringify(SBP2_WORKAROUND_INQUIRY_36)
	", skip mode page 8 = "   __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
	", fix capacity = "       __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
109
	", delay inquiry = "      __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
110 111 112
	", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
	", or a combination)");

113
/* I don't know why the SCSI stack doesn't define something like this... */
114
typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
115 116 117

static const char sbp2_driver_name[] = "sbp2";

118 119 120 121 122 123 124
/*
 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
 * and one struct scsi_device per sbp2_logical_unit.
 */
struct sbp2_logical_unit {
	struct sbp2_target *tgt;
	struct list_head link;
125 126
	struct fw_address_handler address_handler;
	struct list_head orb_list;
127

128
	u64 command_block_agent_address;
129
	u16 lun;
130 131
	int login_id;

132
	/*
133 134 135 136
	 * The generation is updated once we've logged in or reconnected
	 * to the logical unit.  Thus, I/O to the device will automatically
	 * fail and get retried if it happens in a window where the device
	 * is not ready, e.g. after a bus reset but before we reconnect.
137
	 */
138
	int generation;
139 140
	int retries;
	struct delayed_work work;
141
	bool has_sdev;
142
	bool blocked;
143 144
};

145 146 147 148 149 150 151
/*
 * We create one struct sbp2_target per IEEE 1212 Unit Directory
 * and one struct Scsi_Host per sbp2_target.
 */
struct sbp2_target {
	struct kref kref;
	struct fw_unit *unit;
152
	const char *bus_id;
153
	struct list_head lu_list;
154 155 156 157 158

	u64 management_agent_address;
	int directory_id;
	int node_id;
	int address_high;
159
	unsigned int workarounds;
160
	unsigned int mgt_orb_timeout;
161 162 163

	int dont_block;	/* counter for each logical unit */
	int blocked;	/* ditto */
164 165
};

166 167
/*
 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
168 169
 * provided in the config rom. Most devices do provide a value, which
 * we'll use for login management orbs, but with some sane limits.
170
 */
171 172
#define SBP2_MIN_LOGIN_ORB_TIMEOUT	5000U	/* Timeout in ms */
#define SBP2_MAX_LOGIN_ORB_TIMEOUT	40000U	/* Timeout in ms */
173
#define SBP2_ORB_TIMEOUT		2000U	/* Timeout in ms */
174
#define SBP2_ORB_NULL			0x80000000
175
#define SBP2_MAX_SG_ELEMENT_LENGTH	0xf000
176 177 178 179 180

#define SBP2_DIRECTION_TO_MEDIA		0x0
#define SBP2_DIRECTION_FROM_MEDIA	0x1

/* Unit directory keys */
181
#define SBP2_CSR_UNIT_CHARACTERISTICS	0x3a
182 183 184
#define SBP2_CSR_FIRMWARE_REVISION	0x3c
#define SBP2_CSR_LOGICAL_UNIT_NUMBER	0x14
#define SBP2_CSR_LOGICAL_UNIT_DIRECTORY	0xd4
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

/* Management orb opcodes */
#define SBP2_LOGIN_REQUEST		0x0
#define SBP2_QUERY_LOGINS_REQUEST	0x1
#define SBP2_RECONNECT_REQUEST		0x3
#define SBP2_SET_PASSWORD_REQUEST	0x4
#define SBP2_LOGOUT_REQUEST		0x7
#define SBP2_ABORT_TASK_REQUEST		0xb
#define SBP2_ABORT_TASK_SET		0xc
#define SBP2_LOGICAL_UNIT_RESET		0xe
#define SBP2_TARGET_RESET_REQUEST	0xf

/* Offsets for command block agent registers */
#define SBP2_AGENT_STATE		0x00
#define SBP2_AGENT_RESET		0x04
#define SBP2_ORB_POINTER		0x08
#define SBP2_DOORBELL			0x10
#define SBP2_UNSOLICITED_STATUS_ENABLE	0x14

/* Status write response codes */
#define SBP2_STATUS_REQUEST_COMPLETE	0x0
#define SBP2_STATUS_TRANSPORT_FAILURE	0x1
#define SBP2_STATUS_ILLEGAL_REQUEST	0x2
#define SBP2_STATUS_VENDOR_DEPENDENT	0x3

210 211 212 213 214 215 216 217
#define STATUS_GET_ORB_HIGH(v)		((v).status & 0xffff)
#define STATUS_GET_SBP_STATUS(v)	(((v).status >> 16) & 0xff)
#define STATUS_GET_LEN(v)		(((v).status >> 24) & 0x07)
#define STATUS_GET_DEAD(v)		(((v).status >> 27) & 0x01)
#define STATUS_GET_RESPONSE(v)		(((v).status >> 28) & 0x03)
#define STATUS_GET_SOURCE(v)		(((v).status >> 30) & 0x03)
#define STATUS_GET_ORB_LOW(v)		((v).orb_low)
#define STATUS_GET_DATA(v)		((v).data)
218 219 220 221 222 223 224 225 226 227 228 229 230 231

struct sbp2_status {
	u32 status;
	u32 orb_low;
	u8 data[24];
};

struct sbp2_pointer {
	u32 high;
	u32 low;
};

struct sbp2_orb {
	struct fw_transaction t;
232
	struct kref kref;
233 234 235
	dma_addr_t request_bus;
	int rcode;
	struct sbp2_pointer pointer;
236
	void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
237 238 239
	struct list_head link;
};

240 241 242
#define MANAGEMENT_ORB_LUN(v)			((v))
#define MANAGEMENT_ORB_FUNCTION(v)		((v) << 16)
#define MANAGEMENT_ORB_RECONNECT(v)		((v) << 20)
243
#define MANAGEMENT_ORB_EXCLUSIVE(v)		((v) ? 1 << 28 : 0)
244 245
#define MANAGEMENT_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define MANAGEMENT_ORB_NOTIFY			((1) << 31)
246

247 248
#define MANAGEMENT_ORB_RESPONSE_LENGTH(v)	((v))
#define MANAGEMENT_ORB_PASSWORD_LENGTH(v)	((v) << 16)
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264

struct sbp2_management_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer password;
		struct sbp2_pointer response;
		u32 misc;
		u32 length;
		struct sbp2_pointer status_fifo;
	} request;
	__be32 response[4];
	dma_addr_t response_bus;
	struct completion done;
	struct sbp2_status status;
};

265 266
#define LOGIN_RESPONSE_GET_LOGIN_ID(v)	((v).misc & 0xffff)
#define LOGIN_RESPONSE_GET_LENGTH(v)	(((v).misc >> 16) & 0xffff)
267 268 269 270 271 272

struct sbp2_login_response {
	u32 misc;
	struct sbp2_pointer command_block_agent;
	u32 reconnect_hold;
};
273 274 275 276 277 278 279 280
#define COMMAND_ORB_DATA_SIZE(v)	((v))
#define COMMAND_ORB_PAGE_SIZE(v)	((v) << 16)
#define COMMAND_ORB_PAGE_TABLE_PRESENT	((1) << 19)
#define COMMAND_ORB_MAX_PAYLOAD(v)	((v) << 20)
#define COMMAND_ORB_SPEED(v)		((v) << 24)
#define COMMAND_ORB_DIRECTION(v)	((v) << 27)
#define COMMAND_ORB_REQUEST_FORMAT(v)	((v) << 29)
#define COMMAND_ORB_NOTIFY		((1) << 31)
281 282 283 284 285 286 287 288 289 290 291

struct sbp2_command_orb {
	struct sbp2_orb base;
	struct {
		struct sbp2_pointer next;
		struct sbp2_pointer data_descriptor;
		u32 misc;
		u8 command_block[12];
	} request;
	struct scsi_cmnd *cmd;
	scsi_done_fn_t done;
292
	struct sbp2_logical_unit *lu;
293

294
	struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
	dma_addr_t page_table_bus;
};

/*
 * List of devices with known bugs.
 *
 * The firmware_revision field, masked with 0xffff00, is the best
 * indicator for the type of bridge chip of a device.  It yields a few
 * false positives but this did not break correctly behaving devices
 * so far.  We use ~0 as a wildcard, since the 24 bit values we get
 * from the config rom can never match that.
 */
static const struct {
	u32 firmware_revision;
	u32 model;
310
	unsigned int workarounds;
311 312 313 314 315 316 317
} sbp2_workarounds_table[] = {
	/* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x001010,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36 |
					  SBP2_WORKAROUND_MODE_SENSE_8,
	},
318 319 320 321 322
	/* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
		.firmware_revision	= 0x002800,
		.model			= 0x000000,
		.workarounds		= SBP2_WORKAROUND_DELAY_INQUIRY,
	},
323 324 325 326 327 328 329 330 331 332
	/* Initio bridges, actually only needed for some older ones */ {
		.firmware_revision	= 0x000200,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_INQUIRY_36,
	},
	/* Symbios bridge */ {
		.firmware_revision	= 0xa0b800,
		.model			= ~0,
		.workarounds		= SBP2_WORKAROUND_128K_MAX_TRANS,
	},
333 334 335

	/*
	 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
336 337
	 * these iPods do not feature the read_capacity bug according
	 * to one report.  Read_capacity behaviour as well as model_id
338 339 340
	 * could change due to Apple-supplied firmware updates though.
	 */

341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
	/* iPod 4th generation. */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000021,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod mini */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x000023,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	},
	/* iPod Photo */ {
		.firmware_revision	= 0x0a2700,
		.model			= 0x00007e,
		.workarounds		= SBP2_WORKAROUND_FIX_CAPACITY,
	}
};

358 359 360 361 362 363 364 365
static void
free_orb(struct kref *kref)
{
	struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);

	kfree(orb);
}

366 367 368 369 370 371 372
static void
sbp2_status_write(struct fw_card *card, struct fw_request *request,
		  int tcode, int destination, int source,
		  int generation, int speed,
		  unsigned long long offset,
		  void *payload, size_t length, void *callback_data)
{
373
	struct sbp2_logical_unit *lu = callback_data;
374 375 376 377 378 379
	struct sbp2_orb *orb;
	struct sbp2_status status;
	size_t header_size;
	unsigned long flags;

	if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
380
	    length == 0 || length > sizeof(status)) {
381 382 383 384 385 386 387 388
		fw_send_response(card, request, RCODE_TYPE_ERROR);
		return;
	}

	header_size = min(length, 2 * sizeof(u32));
	fw_memcpy_from_be32(&status, payload, header_size);
	if (length > header_size)
		memcpy(status.data, payload + 8, length - header_size);
389
	if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
390 391 392 393 394 395 396
		fw_notify("non-orb related status write, not handled\n");
		fw_send_response(card, request, RCODE_COMPLETE);
		return;
	}

	/* Lookup the orb corresponding to this status write. */
	spin_lock_irqsave(&card->lock, flags);
397
	list_for_each_entry(orb, &lu->orb_list, link) {
398
		if (STATUS_GET_ORB_HIGH(status) == 0 &&
399 400
		    STATUS_GET_ORB_LOW(status) == orb->request_bus) {
			orb->rcode = RCODE_COMPLETE;
401 402 403 404 405 406
			list_del(&orb->link);
			break;
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);

407
	if (&orb->link != &lu->orb_list)
408 409 410 411
		orb->callback(orb, &status);
	else
		fw_error("status write for unknown orb\n");

412 413
	kref_put(&orb->kref, free_orb);

414 415 416 417 418 419 420 421 422 423
	fw_send_response(card, request, RCODE_COMPLETE);
}

static void
complete_transaction(struct fw_card *card, int rcode,
		     void *payload, size_t length, void *data)
{
	struct sbp2_orb *orb = data;
	unsigned long flags;

424 425 426 427 428 429 430 431 432 433 434 435 436 437
	/*
	 * This is a little tricky.  We can get the status write for
	 * the orb before we get this callback.  The status write
	 * handler above will assume the orb pointer transaction was
	 * successful and set the rcode to RCODE_COMPLETE for the orb.
	 * So this callback only sets the rcode if it hasn't already
	 * been set and only does the cleanup if the transaction
	 * failed and we didn't already get a status write.
	 */
	spin_lock_irqsave(&card->lock, flags);

	if (orb->rcode == -1)
		orb->rcode = rcode;
	if (orb->rcode != RCODE_COMPLETE) {
438
		list_del(&orb->link);
439
		spin_unlock_irqrestore(&card->lock, flags);
440
		orb->callback(orb, NULL);
441 442
	} else {
		spin_unlock_irqrestore(&card->lock, flags);
443
	}
444 445

	kref_put(&orb->kref, free_orb);
446 447 448
}

static void
449
sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
450 451
	      int node_id, int generation, u64 offset)
{
452
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
453 454 455 456
	unsigned long flags;

	orb->pointer.high = 0;
	orb->pointer.low = orb->request_bus;
457
	fw_memcpy_to_be32(&orb->pointer, &orb->pointer, sizeof(orb->pointer));
458 459

	spin_lock_irqsave(&device->card->lock, flags);
460
	list_add_tail(&orb->link, &lu->orb_list);
461 462
	spin_unlock_irqrestore(&device->card->lock, flags);

463 464 465 466
	/* Take a ref for the orb list and for the transaction callback. */
	kref_get(&orb->kref);
	kref_get(&orb->kref);

467
	fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
468
			node_id, generation, device->max_speed, offset,
469
			&orb->pointer, sizeof(orb->pointer),
470 471 472
			complete_transaction, orb);
}

473
static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
474
{
475
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
476 477 478
	struct sbp2_orb *orb, *next;
	struct list_head list;
	unsigned long flags;
479
	int retval = -ENOENT;
480 481 482

	INIT_LIST_HEAD(&list);
	spin_lock_irqsave(&device->card->lock, flags);
483
	list_splice_init(&lu->orb_list, &list);
484 485 486
	spin_unlock_irqrestore(&device->card->lock, flags);

	list_for_each_entry_safe(orb, next, &list, link) {
487
		retval = 0;
488 489 490
		if (fw_cancel_transaction(device->card, &orb->t) == 0)
			continue;

491 492 493 494
		orb->rcode = RCODE_CANCELLED;
		orb->callback(orb, NULL);
	}

495
	return retval;
496 497
}

498 499 500 501
static void
complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
	struct sbp2_management_orb *orb =
502
		container_of(base_orb, struct sbp2_management_orb, base);
503 504

	if (status)
505
		memcpy(&orb->status, status, sizeof(*status));
506 507 508 509
	complete(&orb->done);
}

static int
510 511 512
sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
			 int generation, int function, int lun_or_login_id,
			 void *response)
513
{
514
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
515
	struct sbp2_management_orb *orb;
516
	unsigned int timeout;
517 518
	int retval = -ENOMEM;

519 520 521
	if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
		return 0;

522
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
523 524 525
	if (orb == NULL)
		return -ENOMEM;

526
	kref_init(&orb->base.kref);
527 528
	orb->response_bus =
		dma_map_single(device->card->device, &orb->response,
529
			       sizeof(orb->response), DMA_FROM_DEVICE);
530
	if (dma_mapping_error(orb->response_bus))
531
		goto fail_mapping_response;
532 533 534 535 536

	orb->request.response.high    = 0;
	orb->request.response.low     = orb->response_bus;

	orb->request.misc =
537 538
		MANAGEMENT_ORB_NOTIFY |
		MANAGEMENT_ORB_FUNCTION(function) |
539
		MANAGEMENT_ORB_LUN(lun_or_login_id);
540
	orb->request.length =
541
		MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response));
542

543 544
	orb->request.status_fifo.high = lu->address_handler.offset >> 32;
	orb->request.status_fifo.low  = lu->address_handler.offset;
545 546

	if (function == SBP2_LOGIN_REQUEST) {
547
		/* Ask for 2^2 == 4 seconds reconnect grace period */
548
		orb->request.misc |=
549 550
			MANAGEMENT_ORB_RECONNECT(2) |
			MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login);
551
		timeout = lu->tgt->mgt_orb_timeout;
552 553
	} else {
		timeout = SBP2_ORB_TIMEOUT;
554 555
	}

556
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
557 558 559

	init_completion(&orb->done);
	orb->base.callback = complete_management_orb;
560

561 562 563 564 565 566
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
		goto fail_mapping_request;

567 568
	sbp2_send_orb(&orb->base, lu, node_id, generation,
		      lu->tgt->management_agent_address);
569

570
	wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
571 572

	retval = -EIO;
573
	if (sbp2_cancel_orbs(lu) == 0) {
574 575
		fw_error("%s: orb reply timed out, rcode=0x%02x\n",
			 lu->tgt->bus_id, orb->base.rcode);
576 577 578
		goto out;
	}

579
	if (orb->base.rcode != RCODE_COMPLETE) {
580 581
		fw_error("%s: management write failed, rcode 0x%02x\n",
			 lu->tgt->bus_id, orb->base.rcode);
582 583 584
		goto out;
	}

585 586
	if (STATUS_GET_RESPONSE(orb->status) != 0 ||
	    STATUS_GET_SBP_STATUS(orb->status) != 0) {
587
		fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
588 589
			 STATUS_GET_RESPONSE(orb->status),
			 STATUS_GET_SBP_STATUS(orb->status));
590 591 592 593 594 595
		goto out;
	}

	retval = 0;
 out:
	dma_unmap_single(device->card->device, orb->base.request_bus,
596
			 sizeof(orb->request), DMA_TO_DEVICE);
597
 fail_mapping_request:
598
	dma_unmap_single(device->card->device, orb->response_bus,
599
			 sizeof(orb->response), DMA_FROM_DEVICE);
600
 fail_mapping_response:
601 602
	if (response)
		fw_memcpy_from_be32(response,
603
				    orb->response, sizeof(orb->response));
604
	kref_put(&orb->base.kref, free_orb);
605 606 607 608 609 610

	return retval;
}

static void
complete_agent_reset_write(struct fw_card *card, int rcode,
611
			   void *payload, size_t length, void *done)
612
{
613 614 615 616 617 618 619 620 621
	complete(done);
}

static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
{
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
	DECLARE_COMPLETION_ONSTACK(done);
	struct fw_transaction t;
	static u32 z;
622

623 624 625 626 627
	fw_send_request(device->card, &t, TCODE_WRITE_QUADLET_REQUEST,
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
			&z, sizeof(z), complete_agent_reset_write, &done);
	wait_for_completion(&done);
628 629
}

630 631 632 633 634 635 636 637
static void
complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
				   void *payload, size_t length, void *data)
{
	kfree(data);
}

static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
638
{
639
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
640
	struct fw_transaction *t;
641
	static u32 z;
642

643
	t = kmalloc(sizeof(*t), GFP_ATOMIC);
644
	if (t == NULL)
645
		return;
646 647

	fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
648 649
			lu->tgt->node_id, lu->generation, device->max_speed,
			lu->command_block_agent_address + SBP2_AGENT_RESET,
650
			&z, sizeof(z), complete_agent_reset_write_no_wait, t);
651 652
}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
static void sbp2_set_generation(struct sbp2_logical_unit *lu, int generation)
{
	struct fw_card *card = fw_device(lu->tgt->unit->device.parent)->card;
	unsigned long flags;

	/* serialize with comparisons of lu->generation and card->generation */
	spin_lock_irqsave(&card->lock, flags);
	lu->generation = generation;
	spin_unlock_irqrestore(&card->lock, flags);
}

static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
{
	/*
	 * We may access dont_block without taking card->lock here:
	 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
	 * are currently serialized against each other.
	 * And a wrong result in sbp2_conditionally_block()'s access of
	 * dont_block is rather harmless, it simply misses its first chance.
	 */
	--lu->tgt->dont_block;
}

/*
 * Blocks lu->tgt if all of the following conditions are met:
 *   - Login, INQUIRY, and high-level SCSI setup of all of the target's
 *     logical units have been finished (indicated by dont_block == 0).
 *   - lu->generation is stale.
 *
 * Note, scsi_block_requests() must be called while holding card->lock,
 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
 * unblock the target.
 */
static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
{
	struct sbp2_target *tgt = lu->tgt;
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	if (!tgt->dont_block && !lu->blocked &&
	    lu->generation != card->generation) {
		lu->blocked = true;
		if (++tgt->blocked == 1) {
			scsi_block_requests(shost);
			fw_notify("blocked %s\n", lu->tgt->bus_id);
		}
	}
	spin_unlock_irqrestore(&card->lock, flags);
}

/*
 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
 * Note, it is harmless to run scsi_unblock_requests() outside the
 * card->lock protected section.  On the other hand, running it inside
 * the section might clash with shost->host_lock.
 */
static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
{
	struct sbp2_target *tgt = lu->tgt;
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;
	bool unblock = false;

	spin_lock_irqsave(&card->lock, flags);
	if (lu->blocked && lu->generation == card->generation) {
		lu->blocked = false;
		unblock = --tgt->blocked == 0;
	}
	spin_unlock_irqrestore(&card->lock, flags);

	if (unblock) {
		scsi_unblock_requests(shost);
		fw_notify("unblocked %s\n", lu->tgt->bus_id);
	}
}

/*
 * Prevents future blocking of tgt and unblocks it.
 * Note, it is harmless to run scsi_unblock_requests() outside the
 * card->lock protected section.  On the other hand, running it inside
 * the section might clash with shost->host_lock.
 */
static void sbp2_unblock(struct sbp2_target *tgt)
{
	struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
	unsigned long flags;

	spin_lock_irqsave(&card->lock, flags);
	++tgt->dont_block;
	spin_unlock_irqrestore(&card->lock, flags);

	scsi_unblock_requests(shost);
}

754 755 756 757 758 759 760 761 762 763 764
static int sbp2_lun2int(u16 lun)
{
	struct scsi_lun eight_bytes_lun;

	memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
	eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
	eight_bytes_lun.scsi_lun[1] = lun & 0xff;

	return scsilun_to_int(&eight_bytes_lun);
}

765
static void sbp2_release_target(struct kref *kref)
766
{
767 768 769 770
	struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
	struct sbp2_logical_unit *lu, *next;
	struct Scsi_Host *shost =
		container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
771
	struct scsi_device *sdev;
772
	struct fw_device *device = fw_device(tgt->unit->device.parent);
773

774 775 776
	/* prevent deadlocks */
	sbp2_unblock(tgt);

777
	list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
778 779 780 781
		sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
		if (sdev) {
			scsi_remove_device(sdev);
			scsi_device_put(sdev);
782
		}
783 784
		sbp2_send_management_orb(lu, tgt->node_id, lu->generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
785

786 787 788 789 790
		fw_core_remove_address_handler(&lu->address_handler);
		list_del(&lu->link);
		kfree(lu);
	}
	scsi_remove_host(shost);
791
	fw_notify("released %s\n", tgt->bus_id);
792 793 794

	put_device(&tgt->unit->device);
	scsi_host_put(shost);
795
	fw_device_put(device);
796 797
}

798 799
static struct workqueue_struct *sbp2_wq;

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
/*
 * Always get the target's kref when scheduling work on one its units.
 * Each workqueue job is responsible to call sbp2_target_put() upon return.
 */
static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
{
	if (queue_delayed_work(sbp2_wq, &lu->work, delay))
		kref_get(&lu->tgt->kref);
}

static void sbp2_target_put(struct sbp2_target *tgt)
{
	kref_put(&tgt->kref, sbp2_release_target);
}

815 816
static void sbp2_reconnect(struct work_struct *work);

817 818
static void sbp2_login(struct work_struct *work)
{
819 820
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
821 822 823
	struct sbp2_target *tgt = lu->tgt;
	struct fw_device *device = fw_device(tgt->unit->device.parent);
	struct Scsi_Host *shost;
824
	struct scsi_device *sdev;
825
	struct sbp2_login_response response;
826
	int generation, node_id, local_node_id;
827

828 829 830
	if (fw_device_is_shutdown(device))
		goto out;

831
	generation    = device->generation;
832
	smp_rmb();    /* node_id must not be older than generation */
833 834
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
835

836
	/* If this is a re-login attempt, log out, or we might be rejected. */
837
	if (lu->has_sdev)
838 839 840
		sbp2_send_management_orb(lu, device->node_id, generation,
				SBP2_LOGOUT_REQUEST, lu->login_id, NULL);

841 842
	if (sbp2_send_management_orb(lu, node_id, generation,
				SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
843
		if (lu->retries++ < 5) {
844
			sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
845
		} else {
846 847
			fw_error("%s: failed to login to LUN %04x\n",
				 tgt->bus_id, lu->lun);
848 849 850
			/* Let any waiting I/O fail from now on. */
			sbp2_unblock(lu->tgt);
		}
851
		goto out;
852 853
	}

854 855
	tgt->node_id	  = node_id;
	tgt->address_high = local_node_id << 16;
856
	sbp2_set_generation(lu, generation);
857 858

	/* Get command block agent offset and login id. */
859
	lu->command_block_agent_address =
860
		((u64) (response.command_block_agent.high & 0xffff) << 32) |
861
		response.command_block_agent.low;
862
	lu->login_id = LOGIN_RESPONSE_GET_LOGIN_ID(response);
863

864 865
	fw_notify("%s: logged in to LUN %04x (%d retries)\n",
		  tgt->bus_id, lu->lun, lu->retries);
866 867 868 869 870 871

#if 0
	/* FIXME: The linux1394 sbp2 does this last step. */
	sbp2_set_busy_timeout(scsi_id);
#endif

872 873 874
	PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
	sbp2_agent_reset(lu);

875
	/* This was a re-login. */
876
	if (lu->has_sdev) {
877
		sbp2_cancel_orbs(lu);
878
		sbp2_conditionally_unblock(lu);
879 880 881
		goto out;
	}

882 883 884
	if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
		ssleep(SBP2_INQUIRY_DELAY);

885
	shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
886
	sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
887 888 889 890 891 892 893
	/*
	 * FIXME:  We are unable to perform reconnects while in sbp2_login().
	 * Therefore __scsi_add_device() will get into trouble if a bus reset
	 * happens in parallel.  It will either fail or leave us with an
	 * unusable sdev.  As a workaround we check for this and retry the
	 * whole login and SCSI probing.
	 */
894

895 896 897 898 899 900 901 902
	/* Reported error during __scsi_add_device() */
	if (IS_ERR(sdev))
		goto out_logout_login;

	/* Unreported error during __scsi_add_device() */
	smp_rmb(); /* get current card generation */
	if (generation != device->card->generation) {
		scsi_remove_device(sdev);
903
		scsi_device_put(sdev);
904
		goto out_logout_login;
905
	}
906 907

	/* No error during __scsi_add_device() */
908 909
	lu->has_sdev = true;
	scsi_device_put(sdev);
910
	sbp2_allow_block(lu);
911 912 913 914 915 916 917 918 919 920 921 922 923 924
	goto out;

 out_logout_login:
	smp_rmb(); /* generation may have changed */
	generation = device->generation;
	smp_rmb(); /* node_id must not be older than generation */

	sbp2_send_management_orb(lu, device->node_id, generation,
				 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
	/*
	 * If a bus reset happened, sbp2_update will have requeued
	 * lu->work already.  Reset the work from reconnect to login.
	 */
	PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
925
 out:
926
	sbp2_target_put(tgt);
927
}
928

929
static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
930
{
931
	struct sbp2_logical_unit *lu;
932

933 934 935
	lu = kmalloc(sizeof(*lu), GFP_KERNEL);
	if (!lu)
		return -ENOMEM;
936

937 938 939
	lu->address_handler.length           = 0x100;
	lu->address_handler.address_callback = sbp2_status_write;
	lu->address_handler.callback_data    = lu;
940

941 942 943 944 945
	if (fw_core_add_address_handler(&lu->address_handler,
					&fw_high_memory_region) < 0) {
		kfree(lu);
		return -ENOMEM;
	}
946

947 948 949 950 951
	lu->tgt      = tgt;
	lu->lun      = lun_entry & 0xffff;
	lu->retries  = 0;
	lu->has_sdev = false;
	lu->blocked  = false;
952
	++tgt->dont_block;
953 954
	INIT_LIST_HEAD(&lu->orb_list);
	INIT_DELAYED_WORK(&lu->work, sbp2_login);
955

956 957 958
	list_add_tail(&lu->link, &tgt->lu_list);
	return 0;
}
959

960 961 962 963
static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
{
	struct fw_csr_iterator ci;
	int key, value;
964

965 966 967 968 969 970 971 972 973 974 975 976 977
	fw_csr_iterator_init(&ci, directory);
	while (fw_csr_iterator_next(&ci, &key, &value))
		if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
		    sbp2_add_logical_unit(tgt, value) < 0)
			return -ENOMEM;
	return 0;
}

static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
			      u32 *model, u32 *firmware_revision)
{
	struct fw_csr_iterator ci;
	int key, value;
978
	unsigned int timeout;
979 980

	fw_csr_iterator_init(&ci, directory);
981 982
	while (fw_csr_iterator_next(&ci, &key, &value)) {
		switch (key) {
983

984
		case CSR_DEPENDENT_INFO | CSR_OFFSET:
985 986
			tgt->management_agent_address =
					CSR_REGISTER_BASE + 4 * value;
987
			break;
988 989 990

		case CSR_DIRECTORY_ID:
			tgt->directory_id = value;
991
			break;
992

993
		case CSR_MODEL:
994 995 996 997 998 999 1000
			*model = value;
			break;

		case SBP2_CSR_FIRMWARE_REVISION:
			*firmware_revision = value;
			break;

1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
		case SBP2_CSR_UNIT_CHARACTERISTICS:
			/* the timeout value is stored in 500ms units */
			timeout = ((unsigned int) value >> 8 & 0xff) * 500;
			timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
			tgt->mgt_orb_timeout =
				  min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);

			if (timeout > tgt->mgt_orb_timeout)
				fw_notify("%s: config rom contains %ds "
					  "management ORB timeout, limiting "
1011
					  "to %ds\n", tgt->bus_id,
1012 1013 1014 1015
					  timeout / 1000,
					  tgt->mgt_orb_timeout / 1000);
			break;

1016 1017 1018 1019 1020 1021 1022 1023
		case SBP2_CSR_LOGICAL_UNIT_NUMBER:
			if (sbp2_add_logical_unit(tgt, value) < 0)
				return -ENOMEM;
			break;

		case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
			if (sbp2_scan_logical_unit_dir(tgt, ci.p + value) < 0)
				return -ENOMEM;
1024 1025 1026
			break;
		}
	}
1027 1028 1029 1030 1031 1032 1033
	return 0;
}

static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
				  u32 firmware_revision)
{
	int i;
1034
	unsigned int w = sbp2_param_workarounds;
1035 1036 1037 1038

	if (w)
		fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
			  "if you need the workarounds parameter for %s\n",
1039
			  tgt->bus_id);
1040

1041 1042
	if (w & SBP2_WORKAROUND_OVERRIDE)
		goto out;
1043 1044

	for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1045

1046 1047 1048
		if (sbp2_workarounds_table[i].firmware_revision !=
		    (firmware_revision & 0xffffff00))
			continue;
1049

1050 1051 1052
		if (sbp2_workarounds_table[i].model != model &&
		    sbp2_workarounds_table[i].model != ~0)
			continue;
1053

1054
		w |= sbp2_workarounds_table[i].workarounds;
1055 1056
		break;
	}
1057 1058
 out:
	if (w)
1059
		fw_notify("Workarounds for %s: 0x%x "
1060
			  "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1061
			  tgt->bus_id, w, firmware_revision, model);
1062
	tgt->workarounds = w;
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
}

static struct scsi_host_template scsi_driver_template;

static int sbp2_probe(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
	struct fw_device *device = fw_device(unit->device.parent);
	struct sbp2_target *tgt;
	struct sbp2_logical_unit *lu;
	struct Scsi_Host *shost;
	u32 model, firmware_revision;

	shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
	if (shost == NULL)
		return -ENOMEM;

	tgt = (struct sbp2_target *)shost->hostdata;
	unit->device.driver_data = tgt;
	tgt->unit = unit;
	kref_init(&tgt->kref);
	INIT_LIST_HEAD(&tgt->lu_list);
1085
	tgt->bus_id = unit->device.bus_id;
1086 1087 1088 1089 1090 1091 1092

	if (fw_device_enable_phys_dma(device) < 0)
		goto fail_shost_put;

	if (scsi_add_host(shost, &unit->device) < 0)
		goto fail_shost_put;

1093 1094
	fw_device_get(device);

1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
	/* Initialize to values that won't match anything in our table. */
	firmware_revision = 0xff000000;
	model = 0xff000000;

	/* implicit directory ID */
	tgt->directory_id = ((unit->directory - device->config_rom) * 4
			     + CSR_CONFIG_ROM) & 0xffffff;

	if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
			       &firmware_revision) < 0)
		goto fail_tgt_put;

	sbp2_init_workarounds(tgt, model, firmware_revision);
1108

1109 1110
	get_device(&unit->device);

1111
	/* Do the login in a workqueue so we can easily reschedule retries. */
1112
	list_for_each_entry(lu, &tgt->lu_list, link)
1113
		sbp2_queue_work(lu, 0);
1114
	return 0;
1115

1116
 fail_tgt_put:
1117
	sbp2_target_put(tgt);
1118 1119 1120 1121 1122
	return -ENOMEM;

 fail_shost_put:
	scsi_host_put(shost);
	return -ENOMEM;
1123 1124 1125 1126 1127
}

static int sbp2_remove(struct device *dev)
{
	struct fw_unit *unit = fw_unit(dev);
1128
	struct sbp2_target *tgt = unit->device.driver_data;
1129

1130
	sbp2_target_put(tgt);
1131 1132 1133 1134 1135
	return 0;
}

static void sbp2_reconnect(struct work_struct *work)
{
1136 1137
	struct sbp2_logical_unit *lu =
		container_of(work, struct sbp2_logical_unit, work.work);
1138 1139
	struct sbp2_target *tgt = lu->tgt;
	struct fw_device *device = fw_device(tgt->unit->device.parent);
1140 1141
	int generation, node_id, local_node_id;

1142 1143 1144
	if (fw_device_is_shutdown(device))
		goto out;

1145
	generation    = device->generation;
1146
	smp_rmb();    /* node_id must not be older than generation */
1147 1148
	node_id       = device->node_id;
	local_node_id = device->card->node_id;
1149

1150
	if (sbp2_send_management_orb(lu, node_id, generation,
1151
				     SBP2_RECONNECT_REQUEST,
1152
				     lu->login_id, NULL) < 0) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		/*
		 * If reconnect was impossible even though we are in the
		 * current generation, fall back and try to log in again.
		 *
		 * We could check for "Function rejected" status, but
		 * looking at the bus generation as simpler and more general.
		 */
		smp_rmb(); /* get current card generation */
		if (generation == device->card->generation ||
		    lu->retries++ >= 5) {
1163
			fw_error("%s: failed to reconnect\n", tgt->bus_id);
1164 1165
			lu->retries = 0;
			PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1166
		}
1167 1168
		sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
		goto out;
1169
	}
1170

1171 1172
	tgt->node_id      = node_id;
	tgt->address_high = local_node_id << 16;
1173
	sbp2_set_generation(lu, generation);
1174

1175 1176
	fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
		  tgt->bus_id, lu->lun, lu->retries);
1177 1178 1179

	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1180
	sbp2_conditionally_unblock(lu);
1181
 out:
1182
	sbp2_target_put(tgt);
1183 1184 1185 1186
}

static void sbp2_update(struct fw_unit *unit)
{
1187 1188
	struct sbp2_target *tgt = unit->device.driver_data;
	struct sbp2_logical_unit *lu;
1189

1190 1191 1192 1193 1194 1195 1196
	fw_device_enable_phys_dma(fw_device(unit->device.parent));

	/*
	 * Fw-core serializes sbp2_update() against sbp2_remove().
	 * Iteration over tgt->lu_list is therefore safe here.
	 */
	list_for_each_entry(lu, &tgt->lu_list, link) {
1197
		sbp2_conditionally_block(lu);
1198
		lu->retries = 0;
1199
		sbp2_queue_work(lu, 0);
1200
	}
1201 1202 1203 1204 1205
}

#define SBP2_UNIT_SPEC_ID_ENTRY	0x0000609e
#define SBP2_SW_VERSION_ENTRY	0x00010483

1206
static const struct fw_device_id sbp2_id_table[] = {
1207 1208 1209
	{
		.match_flags  = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
		.specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1210
		.version      = SBP2_SW_VERSION_ENTRY,
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	},
	{ }
};

static struct fw_driver sbp2_driver = {
	.driver   = {
		.owner  = THIS_MODULE,
		.name   = sbp2_driver_name,
		.bus    = &fw_bus_type,
		.probe  = sbp2_probe,
		.remove = sbp2_remove,
	},
	.update   = sbp2_update,
	.id_table = sbp2_id_table,
};

1227 1228
static unsigned int
sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1229
{
1230 1231
	int sam_status;

1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248
	sense_data[0] = 0x70;
	sense_data[1] = 0x0;
	sense_data[2] = sbp2_status[1];
	sense_data[3] = sbp2_status[4];
	sense_data[4] = sbp2_status[5];
	sense_data[5] = sbp2_status[6];
	sense_data[6] = sbp2_status[7];
	sense_data[7] = 10;
	sense_data[8] = sbp2_status[8];
	sense_data[9] = sbp2_status[9];
	sense_data[10] = sbp2_status[10];
	sense_data[11] = sbp2_status[11];
	sense_data[12] = sbp2_status[2];
	sense_data[13] = sbp2_status[3];
	sense_data[14] = sbp2_status[12];
	sense_data[15] = sbp2_status[13];

1249
	sam_status = sbp2_status[0] & 0x3f;
1250

1251 1252
	switch (sam_status) {
	case SAM_STAT_GOOD:
1253 1254
	case SAM_STAT_CHECK_CONDITION:
	case SAM_STAT_CONDITION_MET:
1255
	case SAM_STAT_BUSY:
1256 1257
	case SAM_STAT_RESERVATION_CONFLICT:
	case SAM_STAT_COMMAND_TERMINATED:
1258 1259
		return DID_OK << 16 | sam_status;

1260
	default:
1261
		return DID_ERROR << 16;
1262 1263 1264 1265 1266 1267
	}
}

static void
complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
{
1268 1269
	struct sbp2_command_orb *orb =
		container_of(base_orb, struct sbp2_command_orb, base);
1270
	struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1271 1272 1273
	int result;

	if (status != NULL) {
1274
		if (STATUS_GET_DEAD(*status))
1275
			sbp2_agent_reset_no_wait(orb->lu);
1276

1277
		switch (STATUS_GET_RESPONSE(*status)) {
1278
		case SBP2_STATUS_REQUEST_COMPLETE:
1279
			result = DID_OK << 16;
1280 1281
			break;
		case SBP2_STATUS_TRANSPORT_FAILURE:
1282
			result = DID_BUS_BUSY << 16;
1283 1284 1285 1286
			break;
		case SBP2_STATUS_ILLEGAL_REQUEST:
		case SBP2_STATUS_VENDOR_DEPENDENT:
		default:
1287
			result = DID_ERROR << 16;
1288 1289 1290
			break;
		}

1291 1292
		if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
			result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1293 1294
							   orb->cmd->sense_buffer);
	} else {
1295 1296
		/*
		 * If the orb completes with status == NULL, something
1297
		 * went wrong, typically a bus reset happened mid-orb
1298 1299
		 * or when sending the write (less likely).
		 */
1300
		result = DID_BUS_BUSY << 16;
1301
		sbp2_conditionally_block(orb->lu);
1302 1303 1304
	}

	dma_unmap_single(device->card->device, orb->base.request_bus,
1305
			 sizeof(orb->request), DMA_TO_DEVICE);
1306

1307 1308 1309
	if (scsi_sg_count(orb->cmd) > 0)
		dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
			     scsi_sg_count(orb->cmd),
1310 1311 1312 1313
			     orb->cmd->sc_data_direction);

	if (orb->page_table_bus != 0)
		dma_unmap_single(device->card->device, orb->page_table_bus,
1314
				 sizeof(orb->page_table), DMA_TO_DEVICE);
1315

1316
	orb->cmd->result = result;
1317 1318 1319
	orb->done(orb->cmd);
}

1320 1321 1322
static int
sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
		     struct sbp2_logical_unit *lu)
1323 1324 1325 1326 1327
{
	struct scatterlist *sg;
	int sg_len, l, i, j, count;
	dma_addr_t sg_addr;

1328 1329
	sg = scsi_sglist(orb->cmd);
	count = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1330
			   orb->cmd->sc_data_direction);
1331 1332
	if (count == 0)
		goto fail;
1333

1334 1335
	/*
	 * Handle the special case where there is only one element in
1336 1337 1338
	 * the scatter list by converting it to an immediate block
	 * request. This is also a workaround for broken devices such
	 * as the second generation iPod which doesn't support page
1339 1340
	 * tables.
	 */
1341
	if (count == 1 && sg_dma_len(sg) < SBP2_MAX_SG_ELEMENT_LENGTH) {
1342
		orb->request.data_descriptor.high = lu->tgt->address_high;
1343
		orb->request.data_descriptor.low  = sg_dma_address(sg);
1344
		orb->request.misc |= COMMAND_ORB_DATA_SIZE(sg_dma_len(sg));
1345
		return 0;
1346 1347
	}

1348 1349
	/*
	 * Convert the scatterlist to an sbp2 page table.  If any
1350 1351 1352 1353
	 * scatterlist entries are too big for sbp2, we split them as we
	 * go.  Even if we ask the block I/O layer to not give us sg
	 * elements larger than 65535 bytes, some IOMMUs may merge sg elements
	 * during DMA mapping, and Linux currently doesn't prevent this.
1354
	 */
1355 1356 1357
	for (i = 0, j = 0; i < count; i++, sg = sg_next(sg)) {
		sg_len = sg_dma_len(sg);
		sg_addr = sg_dma_address(sg);
1358
		while (sg_len) {
1359 1360 1361 1362 1363
			/* FIXME: This won't get us out of the pinch. */
			if (unlikely(j >= ARRAY_SIZE(orb->page_table))) {
				fw_error("page table overflow\n");
				goto fail_page_table;
			}
1364 1365 1366 1367 1368 1369 1370 1371 1372
			l = min(sg_len, SBP2_MAX_SG_ELEMENT_LENGTH);
			orb->page_table[j].low = sg_addr;
			orb->page_table[j].high = (l << 16);
			sg_addr += l;
			sg_len -= l;
			j++;
		}
	}

1373 1374 1375 1376 1377 1378 1379
	fw_memcpy_to_be32(orb->page_table, orb->page_table,
			  sizeof(orb->page_table[0]) * j);
	orb->page_table_bus =
		dma_map_single(device->card->device, orb->page_table,
			       sizeof(orb->page_table), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->page_table_bus))
		goto fail_page_table;
1380

1381 1382
	/*
	 * The data_descriptor pointer is the one case where we need
1383 1384 1385
	 * to fill in the node ID part of the address.  All other
	 * pointers assume that the data referenced reside on the
	 * initiator (i.e. us), but data_descriptor can refer to data
1386 1387
	 * on other nodes so we need to put our ID in descriptor.high.
	 */
1388
	orb->request.data_descriptor.high = lu->tgt->address_high;
1389 1390
	orb->request.data_descriptor.low  = orb->page_table_bus;
	orb->request.misc |=
1391 1392
		COMMAND_ORB_PAGE_TABLE_PRESENT |
		COMMAND_ORB_DATA_SIZE(j);
1393

1394 1395 1396
	return 0;

 fail_page_table:
1397
	dma_unmap_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1398 1399 1400
		     orb->cmd->sc_data_direction);
 fail:
	return -ENOMEM;
1401 1402 1403 1404 1405 1406
}

/* SCSI stack integration */

static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
{
1407 1408
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
	struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1409
	struct sbp2_command_orb *orb;
1410
	unsigned int max_payload;
1411
	int retval = SCSI_MLQUEUE_HOST_BUSY;
1412

1413 1414 1415 1416
	/*
	 * Bidirectional commands are not yet implemented, and unknown
	 * transfer direction not handled.
	 */
1417
	if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1418
		fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1419 1420 1421
		cmd->result = DID_ERROR << 16;
		done(cmd);
		return 0;
1422 1423
	}

1424
	orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1425 1426
	if (orb == NULL) {
		fw_notify("failed to alloc orb\n");
1427
		return SCSI_MLQUEUE_HOST_BUSY;
1428 1429
	}

1430 1431
	/* Initialize rcode to something not RCODE_COMPLETE. */
	orb->base.rcode = -1;
1432
	kref_init(&orb->base.kref);
1433

1434
	orb->lu   = lu;
1435 1436 1437 1438 1439
	orb->done = done;
	orb->cmd  = cmd;

	orb->request.next.high   = SBP2_ORB_NULL;
	orb->request.next.low    = 0x0;
1440 1441
	/*
	 * At speed 100 we can do 512 bytes per packet, at speed 200,
1442 1443
	 * 1024 bytes per packet etc.  The SBP-2 max_payload field
	 * specifies the max payload size as 2 ^ (max_payload + 2), so
1444 1445
	 * if we set this to max_speed + 7, we get the right value.
	 */
1446 1447
	max_payload = min(device->max_speed + 7,
			  device->card->max_receive - 1);
1448
	orb->request.misc =
1449
		COMMAND_ORB_MAX_PAYLOAD(max_payload) |
1450
		COMMAND_ORB_SPEED(device->max_speed) |
1451
		COMMAND_ORB_NOTIFY;
1452 1453 1454

	if (cmd->sc_data_direction == DMA_FROM_DEVICE)
		orb->request.misc |=
1455
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_FROM_MEDIA);
1456 1457
	else if (cmd->sc_data_direction == DMA_TO_DEVICE)
		orb->request.misc |=
1458
			COMMAND_ORB_DIRECTION(SBP2_DIRECTION_TO_MEDIA);
1459

1460 1461
	if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
		goto out;
1462

1463
	fw_memcpy_to_be32(&orb->request, &orb->request, sizeof(orb->request));
1464 1465

	memset(orb->request.command_block,
1466
	       0, sizeof(orb->request.command_block));
1467 1468 1469
	memcpy(orb->request.command_block, cmd->cmnd, COMMAND_SIZE(*cmd->cmnd));

	orb->base.callback = complete_command_orb;
1470 1471 1472 1473
	orb->base.request_bus =
		dma_map_single(device->card->device, &orb->request,
			       sizeof(orb->request), DMA_TO_DEVICE);
	if (dma_mapping_error(orb->base.request_bus))
1474
		goto out;
1475

1476 1477 1478 1479
	sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, lu->generation,
		      lu->command_block_agent_address + SBP2_ORB_POINTER);
	retval = 0;
 out:
1480
	kref_put(&orb->base.kref, free_orb);
1481
	return retval;
1482 1483
}

1484 1485
static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
{
1486
	struct sbp2_logical_unit *lu = sdev->hostdata;
1487

1488 1489 1490 1491
	/* (Re-)Adding logical units via the SCSI stack is not supported. */
	if (!lu)
		return -ENOSYS;

1492 1493
	sdev->allow_restart = 1;

1494 1495 1496 1497 1498 1499
	/*
	 * Update the dma alignment (minimum alignment requirements for
	 * start and end of DMA transfers) to be a sector
	 */
	blk_queue_update_dma_alignment(sdev->request_queue, 511);

1500
	if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1501
		sdev->inquiry_len = 36;
1502

1503 1504 1505
	return 0;
}

1506 1507
static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
{
1508
	struct sbp2_logical_unit *lu = sdev->hostdata;
1509

1510 1511 1512 1513
	sdev->use_10_for_rw = 1;

	if (sdev->type == TYPE_ROM)
		sdev->use_10_for_ms = 1;
1514

1515
	if (sdev->type == TYPE_DISK &&
1516
	    lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1517
		sdev->skip_ms_page_8 = 1;
1518 1519

	if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1520
		sdev->fix_capacity = 1;
1521 1522

	if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1523
		blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1524

1525 1526 1527 1528 1529 1530 1531 1532 1533
	return 0;
}

/*
 * Called by scsi stack when something has really gone wrong.  Usually
 * called when a command has timed-out for some reason.
 */
static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
{
1534
	struct sbp2_logical_unit *lu = cmd->device->hostdata;
1535

1536
	fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1537 1538
	sbp2_agent_reset(lu);
	sbp2_cancel_orbs(lu);
1539 1540 1541 1542

	return SUCCESS;
}

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
/*
 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
 * u64 EUI-64 : u24 directory_ID : u16 LUN  (all printed in hexadecimal)
 *
 * This is the concatenation of target port identifier and logical unit
 * identifier as per SAM-2...SAM-4 annex A.
 */
static ssize_t
sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
			    char *buf)
{
	struct scsi_device *sdev = to_scsi_device(dev);
1555
	struct sbp2_logical_unit *lu;
1556 1557 1558 1559 1560
	struct fw_device *device;

	if (!sdev)
		return 0;

1561 1562
	lu = sdev->hostdata;
	device = fw_device(lu->tgt->unit->device.parent);
1563 1564 1565

	return sprintf(buf, "%08x%08x:%06x:%04x\n",
			device->config_rom[3], device->config_rom[4],
1566
			lu->tgt->directory_id, lu->lun);
1567 1568 1569 1570 1571 1572 1573 1574 1575
}

static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);

static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
	&dev_attr_ieee1394_id,
	NULL
};

1576 1577 1578
static struct scsi_host_template scsi_driver_template = {
	.module			= THIS_MODULE,
	.name			= "SBP-2 IEEE-1394",
1579
	.proc_name		= sbp2_driver_name,
1580
	.queuecommand		= sbp2_scsi_queuecommand,
1581
	.slave_alloc		= sbp2_scsi_slave_alloc,
1582 1583 1584 1585 1586
	.slave_configure	= sbp2_scsi_slave_configure,
	.eh_abort_handler	= sbp2_scsi_abort,
	.this_id		= -1,
	.sg_tablesize		= SG_ALL,
	.use_clustering		= ENABLE_CLUSTERING,
1587 1588
	.cmd_per_lun		= 1,
	.can_queue		= 1,
1589
	.sdev_attrs		= sbp2_scsi_sysfs_attrs,
1590 1591 1592 1593 1594 1595 1596
};

MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
MODULE_DESCRIPTION("SCSI over IEEE1394");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);

1597 1598 1599 1600 1601
/* Provide a module alias so root-on-sbp2 initrds don't break. */
#ifndef CONFIG_IEEE1394_SBP2_MODULE
MODULE_ALIAS("sbp2");
#endif

1602 1603
static int __init sbp2_init(void)
{
1604 1605 1606 1607
	sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
	if (!sbp2_wq)
		return -ENOMEM;

1608 1609 1610 1611 1612 1613
	return driver_register(&sbp2_driver.driver);
}

static void __exit sbp2_cleanup(void)
{
	driver_unregister(&sbp2_driver.driver);
1614
	destroy_workqueue(sbp2_wq);
1615 1616 1617 1618
}

module_init(sbp2_init);
module_exit(sbp2_cleanup);