helper.c 342.2 KB
Newer Older
1
#include "qemu/osdep.h"
2
#include "trace.h"
3
#include "cpu.h"
4
#include "internals.h"
5
#include "exec/gdbstub.h"
6
#include "exec/helper-proto.h"
7
#include "qemu/host-utils.h"
8
#include "sysemu/arch_init.h"
9
#include "sysemu/sysemu.h"
10
#include "qemu/bitops.h"
11
#include "qemu/crc32c.h"
12
#include "exec/exec-all.h"
13
#include "exec/cpu_ldst.h"
14
#include "arm_ldst.h"
15
#include <zlib.h> /* For crc32 */
16
#include "exec/semihost.h"
17
#include "sysemu/kvm.h"
18

19 20
#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */

21
#ifndef CONFIG_USER_ONLY
22 23 24
static bool get_phys_addr(CPUARMState *env, target_ulong address,
                          int access_type, ARMMMUIdx mmu_idx,
                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25 26
                          target_ulong *page_size, uint32_t *fsr,
                          ARMMMUFaultInfo *fi);
27

28 29 30 31 32 33
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
                               int access_type, ARMMMUIdx mmu_idx,
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
                               target_ulong *page_size_ptr, uint32_t *fsr,
                               ARMMMUFaultInfo *fi);

34 35 36 37
/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1
38 39
#endif

40
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        stfq_le_p(buf, env->vfp.regs[reg]);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

67
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        env->vfp.regs[reg] = ldfq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
88 89 90 91
    }
    return 0;
}

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        stfq_le_p(buf, env->vfp.regs[reg * 2]);
        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
        return 16;
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
        return 16;
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

134
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
135
{
136
    assert(ri->fieldoffset);
137
    if (cpreg_field_is_64bit(ri)) {
138
        return CPREG_FIELD64(env, ri);
139
    } else {
140
        return CPREG_FIELD32(env, ri);
141
    }
142 143
}

144 145
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
146
{
147
    assert(ri->fieldoffset);
148
    if (cpreg_field_is_64bit(ri)) {
149 150 151 152
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
153 154
}

155 156 157 158 159
static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return (char *)env + ri->fieldoffset;
}

160
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
161
{
162
    /* Raw read of a coprocessor register (as needed for migration, etc). */
163
    if (ri->type & ARM_CP_CONST) {
164
        return ri->resetvalue;
165
    } else if (ri->raw_readfn) {
166
        return ri->raw_readfn(env, ri);
167
    } else if (ri->readfn) {
168
        return ri->readfn(env, ri);
169
    } else {
170
        return raw_read(env, ri);
171 172 173
    }
}

174
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175
                             uint64_t v)
176 177 178 179 180 181 182
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
183
        return;
184
    } else if (ri->raw_writefn) {
185
        ri->raw_writefn(env, ri, v);
186
    } else if (ri->writefn) {
187
        ri->writefn(env, ri, v);
188
    } else {
189
        raw_write(env, ri, v);
190 191 192
    }
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
{
   /* Return true if the regdef would cause an assertion if you called
    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
    * program bug for it not to have the NO_RAW flag).
    * NB that returning false here doesn't necessarily mean that calling
    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
    * read/write access functions which are safe for raw use" from "has
    * read/write access functions which have side effects but has forgotten
    * to provide raw access functions".
    * The tests here line up with the conditions in read/write_raw_cp_reg()
    * and assertions in raw_read()/raw_write().
    */
    if ((ri->type & ARM_CP_CONST) ||
        ri->fieldoffset ||
        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
        return false;
    }
    return true;
}

214 215 216 217 218 219 220 221 222
bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
223

224
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225 226 227 228
        if (!ri) {
            ok = false;
            continue;
        }
229
        if (ri->type & ARM_CP_NO_RAW) {
230 231
            continue;
        }
232
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
233 234 235 236 237 238 239 240 241 242 243 244 245 246
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

247
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248 249 250 251
        if (!ri) {
            ok = false;
            continue;
        }
252
        if (ri->type & ARM_CP_NO_RAW) {
253 254 255 256 257 258
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
259 260
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
261 262 263 264 265 266 267 268 269 270 271 272 273
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
274
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
275

276
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277 278 279 280 281 282 283 284 285 286 287 288 289
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
290
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
291

292
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293 294 295 296 297 298
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
299 300
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
301

302 303 304 305 306 307 308
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
309 310 311 312 313 314 315
}

void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
316
    GList *keys;
317 318
    int arraylen;

319
    keys = g_hash_table_get_keys(cpu->cp_regs);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

341 342 343 344 345 346 347 348
/*
 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
 *
 * access_el3_aa32ns: Used to check AArch32 register views.
 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
 */
static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349 350
                                        const ARMCPRegInfo *ri,
                                        bool isread)
351 352 353 354 355 356 357 358 359 360 361
{
    bool secure = arm_is_secure_below_el3(env);

    assert(!arm_el_is_aa64(env, 3));
    if (secure) {
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362 363
                                                const ARMCPRegInfo *ri,
                                                bool isread)
364 365
{
    if (!arm_el_is_aa64(env, 3)) {
366
        return access_el3_aa32ns(env, ri, isread);
367 368 369 370
    }
    return CP_ACCESS_OK;
}

371 372 373 374 375 376
/* Some secure-only AArch32 registers trap to EL3 if used from
 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 * We assume that the .access field is set to PL1_RW.
 */
static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377 378
                                            const ARMCPRegInfo *ri,
                                            bool isread)
379 380 381 382 383 384 385 386 387 388 389
{
    if (arm_current_el(env) == 3) {
        return CP_ACCESS_OK;
    }
    if (arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL3;
    }
    /* This will be EL1 NS and EL2 NS, which just UNDEF */
    return CP_ACCESS_TRAP_UNCATEGORIZED;
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/* Check for traps to "powerdown debug" registers, which are controlled
 * by MDCR.TDOSA
 */
static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/* Check for traps to "debug ROM" registers, which are controlled
 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/* Check for traps to general debug registers, which are controlled
 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/* Check for traps to performance monitor registers, which are controlled
 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 */
static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

462
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
463
{
464 465
    ARMCPU *cpu = arm_env_get_cpu(env);

466
    raw_write(env, ri, value);
467
    tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
468 469
}

470
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
471
{
472 473
    ARMCPU *cpu = arm_env_get_cpu(env);

474
    if (raw_read(env, ri) != value) {
475 476 477
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
478
        tlb_flush(CPU(cpu));
479
        raw_write(env, ri, value);
480 481
    }
}
482 483 484

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
485
{
486 487
    ARMCPU *cpu = arm_env_get_cpu(env);

488
    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
489
        && !extended_addresses_enabled(env)) {
490 491 492 493
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
494
        tlb_flush(CPU(cpu));
495
    }
496
    raw_write(env, ri, value);
497 498
}

499 500
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
501 502
{
    /* Invalidate all (TLBIALL) */
503 504
    ARMCPU *cpu = arm_env_get_cpu(env);

505
    tlb_flush(CPU(cpu));
506 507
}

508 509
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
510 511
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512 513 514
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
515 516
}

517 518
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
519 520
{
    /* Invalidate by ASID (TLBIASID) */
521 522
    ARMCPU *cpu = arm_env_get_cpu(env);

523
    tlb_flush(CPU(cpu));
524 525
}

526 527
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
528 529
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 531 532
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
533 534
}

535 536 537 538 539 540 541
/* IS variants of TLB operations must affect all cores */
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
542
        tlb_flush(other_cs);
543 544 545 546 547 548 549 550 551
    }
}

static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
552
        tlb_flush(other_cs);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
    }
}

static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
    }
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    CPUState *cs = ENV_GET_CPU(env);

    tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
                        ARMMMUIdx_S2NS, -1);
}

static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
                            ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
    }
}

static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* Invalidate by IPA. This has to invalidate any structures that
     * contain only stage 2 translation information, but does not need
     * to apply to structures that contain combined stage 1 and stage 2
     * translation information.
     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
     */
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 40);

    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
}

static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 40);

    CPU_FOREACH(other_cs) {
        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
    }
}

static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    CPUState *cs = ENV_GET_CPU(env);

    tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
}

static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
    }
}

static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);

    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
}

static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);

    CPU_FOREACH(other_cs) {
        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
    }
}

672
static const ARMCPRegInfo cp_reginfo[] = {
673 674 675 676 677 678 679 680 681 682 683 684 685 686
    /* Define the secure and non-secure FCSE identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated. There is also no
     * v8 EL1 version of the register so the non-secure instance stands alone.
     */
    { .name = "FCSEIDR(NS)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
    { .name = "FCSEIDR(S)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
687
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
688 689 690 691 692 693 694
    /* Define the secure and non-secure context identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated.  In the
     * non-secure case, the 32-bit register will have reset and migration
     * disabled during registration as it is handled by the 64-bit instance.
     */
    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
695
      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
696 697 698 699 700 701 702
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
    { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
703
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
704 705 706 707 708 709 710 711
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v8_cp_reginfo[] = {
    /* NB: Some of these registers exist in v8 but with more precise
     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
     */
    /* MMU Domain access control / MPU write buffer control */
712 713 714 715 716 717
    { .name = "DACR",
      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
718 719
    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
     * For v6 and v5, these mappings are overly broad.
720
     */
721 722 723 724 725 726 727
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
728
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
729 730 731 732
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
733 734 735
    REGINFO_SENTINEL
};

736 737 738 739 740 741 742 743 744 745 746 747 748 749 750
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
751 752 753 754 755 756 757 758 759 760
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
761 762
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
763
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
764
      .resetvalue = 0 },
765 766 767 768 769 770 771
    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
     * implementing it as RAZ means the "debug architecture version" bits
     * will read as a reserved value, which should cause Linux to not try
     * to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
772 773 774 775 776
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
777
      .type = ARM_CP_NO_RAW },
778 779
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
780
      .type = ARM_CP_NO_RAW },
781 782
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
783
      .type = ARM_CP_NO_RAW },
784 785
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
786
      .type = ARM_CP_NO_RAW },
787 788 789 790
    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
791 792 793
    REGINFO_SENTINEL
};

794 795
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
796
{
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823
    uint32_t mask = 0;

    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
         */
        if (arm_feature(env, ARM_FEATURE_VFP)) {
            /* VFP coprocessor: cp10 & cp11 [23:20] */
            mask |= (1 << 31) | (1 << 30) | (0xf << 20);

            if (!arm_feature(env, ARM_FEATURE_NEON)) {
                /* ASEDIS [31] bit is RAO/WI */
                value |= (1 << 31);
            }

            /* VFPv3 and upwards with NEON implement 32 double precision
             * registers (D0-D31).
             */
            if (!arm_feature(env, ARM_FEATURE_NEON) ||
                    !arm_feature(env, ARM_FEATURE_VFP3)) {
                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
                value |= (1 << 30);
            }
        }
        value &= mask;
824
    }
825
    env->cp15.cpacr_el1 = value;
826 827
}

828 829
static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
{
    if (arm_feature(env, ARM_FEATURE_V8)) {
        /* Check if CPACR accesses are to be trapped to EL2 */
        if (arm_current_el(env) == 1 &&
            (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
            return CP_ACCESS_TRAP_EL2;
        /* Check if CPACR accesses are to be trapped to EL3 */
        } else if (arm_current_el(env) < 3 &&
                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
            return CP_ACCESS_TRAP_EL3;
        }
    }

    return CP_ACCESS_OK;
}

846 847
static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
848 849 850 851 852 853 854 855 856
{
    /* Check if CPTR accesses are set to trap to EL3 */
    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
        return CP_ACCESS_TRAP_EL3;
    }

    return CP_ACCESS_OK;
}

857 858 859 860 861
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
862 863 864 865
    /* We need to break the TB after ISB to execute self-modifying code
     * correctly and also to take any pending interrupts immediately.
     * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
     */
866
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
867
      .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
868
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
869
      .access = PL0_W, .type = ARM_CP_NOP },
870
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
871
      .access = PL0_W, .type = ARM_CP_NOP },
872
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
873
      .access = PL1_RW,
874 875
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
                             offsetof(CPUARMState, cp15.ifar_ns) },
876 877 878 879 880 881
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
882
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
883
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
884
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
885
      .resetvalue = 0, .writefn = cpacr_write },
886 887 888
    REGINFO_SENTINEL
};

889 890
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
891
{
S
Stefan Weil 已提交
892
    /* Performance monitor registers user accessibility is controlled
893 894
     * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
     * trapping to EL2 or EL3 for other accesses.
895
     */
896 897 898
    int el = arm_current_el(env);

    if (el == 0 && !env->cp15.c9_pmuserenr) {
899
        return CP_ACCESS_TRAP;
900
    }
901 902 903 904 905 906 907 908
    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
        return CP_ACCESS_TRAP_EL3;
    }

909
    return CP_ACCESS_OK;
910 911
}

912
#ifndef CONFIG_USER_ONLY
913 914 915 916 917 918 919 920 921 922 923 924

static inline bool arm_ccnt_enabled(CPUARMState *env)
{
    /* This does not support checking PMCCFILTR_EL0 register */

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        return false;
    }

    return true;
}

925 926 927 928
void pmccntr_sync(CPUARMState *env)
{
    uint64_t temp_ticks;

929 930
    temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                          ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
931 932 933 934 935 936 937 938 939 940 941

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        temp_ticks /= 64;
    }

    if (arm_ccnt_enabled(env)) {
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

942 943
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
944
{
945
    pmccntr_sync(env);
946 947 948 949 950 951

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

952 953 954
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
955

956
    pmccntr_sync(env);
957 958 959 960
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
961
    uint64_t total_ticks;
962

963
    if (!arm_ccnt_enabled(env)) {
964 965 966 967
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

968 969
    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
970 971 972 973 974 975 976 977 978 979 980

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
981
    uint64_t total_ticks;
982

983
    if (!arm_ccnt_enabled(env)) {
984 985 986 987 988
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

989 990
    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
991 992 993 994 995 996

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
997
}
998 999 1000 1001 1002 1003 1004 1005 1006

static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    uint64_t cur_val = pmccntr_read(env, NULL);

    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
}

1007 1008 1009 1010 1011 1012
#else /* CONFIG_USER_ONLY */

void pmccntr_sync(CPUARMState *env)
{
}

1013
#endif
1014

1015 1016 1017 1018 1019 1020 1021 1022
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    pmccntr_sync(env);
    env->cp15.pmccfiltr_el0 = value & 0x7E000000;
    pmccntr_sync(env);
}

1023
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1024 1025 1026 1027 1028 1029
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
}

1030 1031
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1032 1033 1034 1035 1036
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
}

1037 1038
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
1039 1040 1041 1042
{
    env->cp15.c9_pmovsr &= ~value;
}

1043 1044
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1045 1046 1047 1048
{
    env->cp15.c9_pmxevtyper = value & 0xff;
}

1049
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1050 1051 1052 1053 1054
                            uint64_t value)
{
    env->cp15.c9_pmuserenr = value & 1;
}

1055 1056
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1057 1058 1059 1060 1061 1062
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
}

1063 1064
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1065 1066 1067 1068 1069
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
}

1070 1071
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
1072
{
1073 1074 1075 1076 1077 1078
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
1079
    raw_write(env, ri, value & ~0x1FULL);
1080 1081
}

1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    /* We only mask off bits that are RES0 both for AArch64 and AArch32.
     * For bits that vary between AArch32/64, code needs to check the
     * current execution mode before directly using the feature bit.
     */
    uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;

    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        valid_mask &= ~SCR_HCE;

        /* On ARMv7, SMD (or SCD as it is called in v7) is only
         * supported if EL2 exists. The bit is UNK/SBZP when
         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
         * when EL2 is unavailable.
1097
         * On ARMv8, this bit is always available.
1098
         */
1099 1100
        if (arm_feature(env, ARM_FEATURE_V7) &&
            !arm_feature(env, ARM_FEATURE_V8)) {
1101 1102 1103 1104 1105 1106 1107 1108 1109
            valid_mask &= ~SCR_SMD;
        }
    }

    /* Clear all-context RES0 bits.  */
    value &= valid_mask;
    raw_write(env, ri, value);
}

1110
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1111 1112
{
    ARMCPU *cpu = arm_env_get_cpu(env);
1113 1114 1115 1116 1117 1118 1119 1120

    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
     * bank
     */
    uint32_t index = A32_BANKED_REG_GET(env, csselr,
                                        ri->secure & ARM_CP_SECSTATE_S);

    return cpu->ccsidr[index];
1121 1122
}

1123 1124
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
1125
{
1126
    raw_write(env, ri, value & 0xf);
1127 1128
}

1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t ret = 0;

    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
        ret |= CPSR_I;
    }
    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
        ret |= CPSR_F;
    }
    /* External aborts are not possible in QEMU so A bit is always clear */
    return ret;
}

1144
static const ARMCPRegInfo v7_cp_reginfo[] = {
1145 1146 1147
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1160
      .access = PL0_RW, .type = ARM_CP_ALIAS,
1161
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1162 1163 1164
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
1165 1166 1167 1168 1169
    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
      .access = PL0_RW, .accessfn = pmreg_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
      .writefn = pmcntenset_write, .raw_writefn = raw_write },
1170
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1171 1172
      .access = PL0_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1173 1174
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
1175
      .type = ARM_CP_ALIAS },
1176 1177 1178
    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
      .access = PL0_RW, .accessfn = pmreg_access,
1179
      .type = ARM_CP_ALIAS,
1180 1181
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
      .writefn = pmcntenclr_write },
1182 1183
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1184 1185 1186
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
1187 1188 1189 1190 1191 1192 1193
    { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
1194
    /* Unimplemented so WI. */
1195
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1196
      .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
1197
    /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
1198
     * We choose to RAZ/WI.
1199 1200
     */
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
1201 1202
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
1203
#ifndef CONFIG_USER_ONLY
1204
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1205
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1206
      .readfn = pmccntr_read, .writefn = pmccntr_write32,
1207
      .accessfn = pmreg_access },
1208 1209 1210 1211 1212
    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write, },
1213
#endif
1214 1215
    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1216
      .writefn = pmccfiltr_write,
1217 1218 1219 1220
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
      .resetvalue = 0, },
1221 1222 1223
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL0_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
1224 1225 1226
      .accessfn = pmreg_access, .writefn = pmxevtyper_write,
      .raw_writefn = raw_write },
    /* Unimplemented, RAZ/WI. */
1227
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1228 1229
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
      .accessfn = pmreg_access },
1230
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1231
      .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1232 1233
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
1234
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
1235 1236
    { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1237
      .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1238 1239 1240
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
1241
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1242
      .access = PL1_RW, .accessfn = access_tpm,
1243 1244
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .resetvalue = 0,
1245
      .writefn = pmintenset_write, .raw_writefn = raw_write },
1246
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1247
      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1248
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1249
      .writefn = pmintenclr_write, },
1250 1251
    { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1252
      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1253 1254
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .writefn = pmintenclr_write },
1255 1256
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1257
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1258 1259
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
1260 1261 1262
      .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
                             offsetof(CPUARMState, cp15.csselr_ns) } },
1263 1264 1265
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
1266 1267
    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1268
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1269 1270 1271 1272 1273 1274 1275 1276 1277
    /* Auxiliary fault status registers: these also are IMPDEF, and we
     * choose to RAZ/WI for all cores.
     */
    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1278 1279 1280 1281 1282
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
1283
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1284
      .resetvalue = 0 },
1285 1286 1287 1288
    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
      .resetvalue = 0 },
1289 1290 1291
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     */
1292
     /* MAIR0/1 are defined separately from their 64-bit counterpart which
1293 1294 1295
      * allows them to assign the correct fieldoffset based on the endianness
      * handled in the field definitions.
      */
1296
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1297
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
1298 1299
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
                             offsetof(CPUARMState, cp15.mair0_ns) },
1300
      .resetfn = arm_cp_reset_ignore },
1301
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1302
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
1303 1304
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
                             offsetof(CPUARMState, cp15.mair1_ns) },
1305
      .resetfn = arm_cp_reset_ignore },
1306 1307
    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1308
      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1309 1310
    /* 32 bit ITLB invalidates */
    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1311
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1312
    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1313
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1314
    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1315
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1316 1317
    /* 32 bit DTLB invalidates */
    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1318
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1319
    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1320
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1321
    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1322
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1323 1324
    /* 32 bit TLB invalidates */
    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1325
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1326
    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1327
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1328
    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1329
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1330
    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1331
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1332 1333 1334 1335 1336 1337
    REGINFO_SENTINEL
};

static const ARMCPRegInfo v7mp_cp_reginfo[] = {
    /* 32 bit TLB invalidates, Inner Shareable */
    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1338
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1339
    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1340
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1341
    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1342
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1343
      .writefn = tlbiasid_is_write },
1344
    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1345
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1346
      .writefn = tlbimvaa_is_write },
1347 1348 1349
    REGINFO_SENTINEL
};

1350 1351
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1352 1353 1354 1355 1356
{
    value &= 1;
    env->teecr = value;
}

1357 1358
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                    bool isread)
1359
{
1360
    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1361
        return CP_ACCESS_TRAP;
1362
    }
1363
    return CP_ACCESS_OK;
1364 1365 1366 1367 1368 1369 1370 1371 1372
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1373
      .accessfn = teehbr_access, .resetvalue = 0 },
1374 1375 1376
    REGINFO_SENTINEL
};

1377
static const ARMCPRegInfo v6k_cp_reginfo[] = {
1378 1379 1380
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
1381
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1382 1383
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
1384 1385
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1386 1387 1388 1389
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
1390 1391
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
      .resetvalue = 0},
1392 1393
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
1394 1395
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1396
      .resetfn = arm_cp_reset_ignore },
1397
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1398
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1399
      .access = PL1_RW,
1400 1401 1402 1403 1404 1405
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
      .access = PL1_RW,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
      .resetvalue = 0 },
1406 1407 1408
    REGINFO_SENTINEL
};

1409 1410
#ifndef CONFIG_USER_ONLY

1411 1412
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
1413
{
1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
     * Writable only at the highest implemented exception level.
     */
    int el = arm_current_el(env);

    switch (el) {
    case 0:
        if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
            return CP_ACCESS_TRAP;
        }
        break;
    case 1:
        if (!isread && ri->state == ARM_CP_STATE_AA32 &&
            arm_is_secure_below_el3(env)) {
            /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
            return CP_ACCESS_TRAP_UNCATEGORIZED;
        }
        break;
    case 2:
    case 3:
        break;
1435
    }
1436 1437 1438 1439 1440

    if (!isread && el < arm_highest_el(env)) {
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }

1441 1442 1443
    return CP_ACCESS_OK;
}

1444 1445
static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
                                        bool isread)
1446
{
1447 1448 1449
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

1450
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1451
    if (cur_el == 0 &&
1452 1453 1454
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
1455 1456 1457 1458 1459 1460

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 0, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
1461 1462 1463
    return CP_ACCESS_OK;
}

1464 1465
static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
                                      bool isread)
1466
{
1467 1468 1469
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

1470 1471 1472
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
1473
    if (cur_el == 0 &&
1474 1475 1476
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
1477 1478 1479 1480 1481 1482

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 1, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
1483 1484 1485 1486
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
1487 1488
                                    const ARMCPRegInfo *ri,
                                    bool isread)
1489
{
1490
    return gt_counter_access(env, GTIMER_PHYS, isread);
1491 1492 1493
}

static CPAccessResult gt_vct_access(CPUARMState *env,
1494 1495
                                    const ARMCPRegInfo *ri,
                                    bool isread)
1496
{
1497
    return gt_counter_access(env, GTIMER_VIRT, isread);
1498 1499
}

1500 1501
static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
1502
{
1503
    return gt_timer_access(env, GTIMER_PHYS, isread);
1504 1505
}

1506 1507
static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
1508
{
1509
    return gt_timer_access(env, GTIMER_VIRT, isread);
1510 1511
}

1512
static CPAccessResult gt_stimer_access(CPUARMState *env,
1513 1514
                                       const ARMCPRegInfo *ri,
                                       bool isread)
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
{
    /* The AArch64 register view of the secure physical timer is
     * always accessible from EL3, and configurably accessible from
     * Secure EL1.
     */
    switch (arm_current_el(env)) {
    case 1:
        if (!arm_is_secure(env)) {
            return CP_ACCESS_TRAP;
        }
        if (!(env->cp15.scr_el3 & SCR_ST)) {
            return CP_ACCESS_TRAP_EL3;
        }
        return CP_ACCESS_OK;
    case 0:
    case 2:
        return CP_ACCESS_TRAP;
    case 3:
        return CP_ACCESS_OK;
    default:
        g_assert_not_reached();
    }
}

1539 1540
static uint64_t gt_get_countervalue(CPUARMState *env)
{
1541
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
1552 1553
        uint64_t offset = timeridx == GTIMER_VIRT ?
                                      cpu->env.cp15.cntvoff_el2 : 0;
1554 1555
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
1556
        int istatus = count - offset >= gt->cval;
1557
        uint64_t nexttick;
1558
        int irqstate;
1559 1560

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1561 1562 1563 1564

        irqstate = (istatus && !(gt->ctl & 2));
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);

1565 1566 1567 1568 1569
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
1570
            nexttick = gt->cval + offset;
1571 1572 1573 1574 1575 1576 1577 1578 1579
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
1580
        timer_mod(cpu->gt_timer[timeridx], nexttick);
1581
        trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1582 1583 1584 1585
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1586
        timer_del(cpu->gt_timer[timeridx]);
1587
        trace_arm_gt_recalc_disabled(timeridx);
1588 1589 1590
    }
}

1591 1592
static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
                           int timeridx)
1593 1594 1595
{
    ARMCPU *cpu = arm_env_get_cpu(env);

1596
    timer_del(cpu->gt_timer[timeridx]);
1597 1598
}

1599
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1600
{
1601
    return gt_get_countervalue(env);
1602 1603
}

1604 1605 1606 1607 1608
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
}

1609
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1610
                          int timeridx,
1611
                          uint64_t value)
1612
{
1613
    trace_arm_gt_cval_write(timeridx, value);
1614 1615 1616
    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
1617

1618 1619
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
                             int timeridx)
1620
{
1621
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1622

1623
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
1624
                      (gt_get_countervalue(env) - offset));
1625 1626
}

1627
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1628
                          int timeridx,
1629
                          uint64_t value)
1630
{
1631
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1632

1633
    trace_arm_gt_tval_write(timeridx, value);
1634
    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1635
                                         sextract64(value, 0, 32);
1636 1637 1638
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

1639
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1640
                         int timeridx,
1641
                         uint64_t value)
1642 1643 1644 1645
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

1646
    trace_arm_gt_ctl_write(timeridx, value);
1647
    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1648 1649 1650
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
1651
    } else if ((oldval ^ value) & 2) {
1652 1653 1654
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
1655 1656 1657 1658
        int irqstate = (oldval & 4) && !(value & 2);

        trace_arm_gt_imask_toggle(timeridx, irqstate);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1659 1660 1661
    }
}

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_PHYS);
}

static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_PHYS, value);
}

static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_PHYS);
}

static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_PHYS, value);
}

static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_PHYS, value);
}

static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_VIRT);
}

static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_VIRT, value);
}

static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_VIRT);
}

static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_VIRT, value);
}

static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_VIRT, value);
}

1718 1719 1720 1721 1722
static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

1723
    trace_arm_gt_cntvoff_write(value);
1724 1725 1726 1727
    raw_write(env, ri, value);
    gt_recalc_timer(cpu, GTIMER_VIRT);
}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755
static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_HYP);
}

static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_HYP, value);
}

static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_HYP);
}

static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_HYP, value);
}

static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_HYP, value);
}

1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_SEC);
}

static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_SEC, value);
}

static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_SEC);
}

static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_SEC, value);
}

static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_SEC, value);
}

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

1798 1799 1800 1801 1802 1803 1804
void arm_gt_htimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_HYP);
}

1805 1806 1807 1808 1809 1810 1811
void arm_gt_stimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_SEC);
}

1812 1813 1814 1815 1816 1817
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1818
      .type = ARM_CP_ALIAS,
1819 1820 1821 1822 1823 1824
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1825 1826 1827 1828
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
1829 1830
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1831 1832 1833 1834 1835 1836
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1837
      .secure = ARM_CP_SECSTATE_NS,
1838
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1839 1840 1841
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
1842
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1843
    },
1844 1845 1846 1847 1848 1849 1850 1851 1852
    { .name = "CNTP_CTL(S)",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_SEC].ctl),
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
1853 1854
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1855
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1856
      .accessfn = gt_ptimer_access,
1857 1858
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
1859
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1860 1861
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1862
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1863 1864 1865
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
1866
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1867 1868 1869
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1870
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1871
      .accessfn = gt_vtimer_access,
1872 1873
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
1874
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1875 1876 1877
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1878
      .secure = ARM_CP_SECSTATE_NS,
1879
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1880
      .accessfn = gt_ptimer_access,
1881
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1882
    },
1883 1884 1885 1886 1887 1888 1889
    { .name = "CNTP_TVAL(S)",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
    },
1890 1891
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1892
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1893 1894
      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1895
    },
1896
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1897
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1898
      .accessfn = gt_vtimer_access,
1899
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1900
    },
1901 1902
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1903
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1904 1905
      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1906
    },
1907 1908
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
1909
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1910
      .accessfn = gt_pct_access,
1911 1912 1913 1914
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
1915
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1916
      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
1917 1918
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
1919
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
1920
      .accessfn = gt_vct_access,
1921
      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
1922 1923 1924
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
1925
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
1926
      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
1927 1928 1929
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
1930
      .secure = ARM_CP_SECSTATE_NS,
1931
      .access = PL1_RW | PL0_R,
1932
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1933
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1934
      .accessfn = gt_ptimer_access,
1935
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1936
    },
1937 1938 1939 1940 1941 1942 1943 1944
    { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
      .secure = ARM_CP_SECSTATE_S,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .accessfn = gt_ptimer_access,
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
1945 1946 1947 1948 1949
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
1950
      .resetvalue = 0, .accessfn = gt_ptimer_access,
1951
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
1952 1953 1954
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
1955
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
1956
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
1957
      .accessfn = gt_vtimer_access,
1958
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1959 1960 1961 1962 1963 1964 1965
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
1966
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
1967
    },
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993
    /* Secure timer -- this is actually restricted to only EL3
     * and configurably Secure-EL1 via the accessfn.
     */
    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .readfn = gt_sec_tval_read,
      .writefn = gt_sec_tval_write,
      .resetfn = gt_sec_timer_reset,
    },
    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
      .resetvalue = 0,
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
1994 1995 1996 1997 1998
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
1999
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2000 2001
 * so instead just don't register any of them.
 */
2002 2003 2004 2005
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

2006 2007
#endif

2008
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2009
{
2010
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
2011
        raw_write(env, ri, value);
2012
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
2013
        raw_write(env, ri, value & 0xfffff6ff);
2014
    } else {
2015
        raw_write(env, ri, value & 0xfffff1ff);
2016 2017 2018 2019 2020
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
2021

2022 2023
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
2024 2025
{
    if (ri->opc2 & 4) {
2026 2027 2028 2029
        /* The ATS12NSO* operations must trap to EL3 if executed in
         * Secure EL1 (which can only happen if EL3 is AArch64).
         * They are simply UNDEF if executed from NS EL1.
         * They function normally from EL2 or EL3.
2030
         */
2031 2032 2033 2034 2035 2036
        if (arm_current_el(env) == 1) {
            if (arm_is_secure_below_el3(env)) {
                return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
            }
            return CP_ACCESS_TRAP_UNCATEGORIZED;
        }
2037 2038 2039 2040
    }
    return CP_ACCESS_OK;
}

2041
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2042
                             int access_type, ARMMMUIdx mmu_idx)
2043
{
2044
    hwaddr phys_addr;
2045 2046
    target_ulong page_size;
    int prot;
2047 2048
    uint32_t fsr;
    bool ret;
2049
    uint64_t par64;
2050
    MemTxAttrs attrs = {};
2051
    ARMMMUFaultInfo fi = {};
2052

2053
    ret = get_phys_addr(env, value, access_type, mmu_idx,
2054
                        &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2055
    if (extended_addresses_enabled(env)) {
2056
        /* fsr is a DFSR/IFSR value for the long descriptor
2057 2058 2059
         * translation table format, but with WnR always clear.
         * Convert it to a 64-bit PAR.
         */
2060
        par64 = (1 << 11); /* LPAE bit always set */
2061
        if (!ret) {
2062
            par64 |= phys_addr & ~0xfffULL;
2063 2064 2065
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
2066
            /* We don't set the ATTR or SH fields in the PAR. */
2067
        } else {
2068
            par64 |= 1; /* F */
2069
            par64 |= (fsr & 0x3f) << 1; /* FS */
2070 2071 2072 2073
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
2074 2075
        }
    } else {
2076
        /* fsr is a DFSR/IFSR value for the short descriptor
2077 2078 2079
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
2080
        if (!ret) {
2081 2082 2083
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
2084
                par64 = (phys_addr & 0xff000000) | (1 << 1);
2085
            } else {
2086
                par64 = phys_addr & 0xfffff000;
2087
            }
2088 2089 2090
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
2091
        } else {
2092 2093
            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
                    ((fsr & 0xf) << 1) | 1;
2094
        }
2095
    }
2096 2097 2098 2099 2100 2101 2102
    return par64;
}

static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    int access_type = ri->opc2 & 1;
    uint64_t par64;
2103 2104 2105
    ARMMMUIdx mmu_idx;
    int el = arm_current_el(env);
    bool secure = arm_is_secure_below_el3(env);
2106

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152
    switch (ri->opc2 & 6) {
    case 0:
        /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE1;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2:
        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1SE0;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE0;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 4:
        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
        mmu_idx = ARMMMUIdx_S12NSE1;
        break;
    case 6:
        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
        mmu_idx = ARMMMUIdx_S12NSE0;
        break;
    default:
        g_assert_not_reached();
    }

    par64 = do_ats_write(env, value, access_type, mmu_idx);
2153 2154

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
2155
}
2156

2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167
static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    int access_type = ri->opc2 & 1;
    uint64_t par64;

    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
}

2168 2169
static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
2170 2171 2172 2173 2174 2175 2176
{
    if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2177 2178 2179 2180
static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    int access_type = ri->opc2 & 1;
2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
    ARMMMUIdx mmu_idx;
    int secure = arm_is_secure_below_el3(env);

    switch (ri->opc2 & 6) {
    case 0:
        switch (ri->opc1) {
        case 0: /* AT S1E1R, AT S1E1W */
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        case 4: /* AT S1E2R, AT S1E2W */
            mmu_idx = ARMMMUIdx_S1E2;
            break;
        case 6: /* AT S1E3R, AT S1E3W */
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2: /* AT S1E0R, AT S1E0W */
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
        break;
    case 4: /* AT S12E1R, AT S12E1W */
2204
        mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2205 2206
        break;
    case 6: /* AT S12E0R, AT S12E0W */
2207
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2208 2209 2210 2211
        break;
    default:
        g_assert_not_reached();
    }
2212

2213
    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2214
}
2215 2216 2217 2218 2219
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
2220 2221
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
                             offsetoflow32(CPUARMState, cp15.par_ns) },
2222 2223
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
2224
    /* This underdecoding is safe because the reginfo is NO_RAW. */
2225
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2226
      .access = PL1_W, .accessfn = ats_access,
2227
      .writefn = ats_write, .type = ARM_CP_NO_RAW },
2228 2229 2230 2231
#endif
    REGINFO_SENTINEL
};

2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

2262 2263
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2264
{
2265
    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2266 2267
}

2268
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2269
{
2270
    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2271 2272
}

2273 2274
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2275
{
2276
    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2277 2278
}

2279
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2280
{
2281
    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2282 2283
}

2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return 0;
    }

    u32p += env->cp15.c6_rgnr;
    return *u32p;
}

static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return;
    }

    u32p += env->cp15.c6_rgnr;
2307
    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
    *u32p = value;
}

static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return;
    }

    memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
}

static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t nrgs = cpu->pmsav7_dregion;

    if (value >= nrgs) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
        return;
    }

    raw_write(env, ri, value);
}

static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
      .writefn = pmsav7_rgnr_write },
    REGINFO_SENTINEL
};

2359 2360
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2361
      .access = PL1_RW, .type = ARM_CP_ALIAS,
2362
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2363 2364
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2365
      .access = PL1_RW, .type = ARM_CP_ALIAS,
2366
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2367 2368 2369
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
2370 2371
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0, },
2372 2373
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
2374 2375
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0, },
2376 2377 2378 2379 2380 2381
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2382
    /* Protection region base and size registers */
2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2407 2408 2409
    REGINFO_SENTINEL
};

2410 2411
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2412
{
2413
    TCR *tcr = raw_ptr(env, ri);
2414 2415
    int maskshift = extract32(value, 0, 3);

2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
             * using Long-desciptor translation table format */
            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
            /* In an implementation that includes the Security Extensions
             * TTBCR has additional fields PD0 [4] and PD1 [5] for
             * Short-descriptor translation table format.
             */
            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
        } else {
            value &= TTBCR_N;
        }
2430
    }
2431

2432
    /* Update the masks corresponding to the TCR bank being written
2433
     * Note that we always calculate mask and base_mask, but
2434
     * they are only used for short-descriptor tables (ie if EAE is 0);
2435 2436
     * for long-descriptor tables the TCR fields are used differently
     * and the mask and base_mask values are meaningless.
2437
     */
2438 2439 2440
    tcr->raw_tcr = value;
    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2441 2442
}

2443 2444
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
2445
{
2446 2447
    ARMCPU *cpu = arm_env_get_cpu(env);

2448 2449 2450 2451
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
2452
        tlb_flush(CPU(cpu));
2453
    }
2454
    vmsa_ttbcr_raw_write(env, ri, value);
2455 2456
}

2457 2458
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
2459 2460 2461 2462 2463 2464 2465 2466
    TCR *tcr = raw_ptr(env, ri);

    /* Reset both the TCR as well as the masks corresponding to the bank of
     * the TCR being reset.
     */
    tcr->raw_tcr = 0;
    tcr->mask = 0;
    tcr->base_mask = 0xffffc000u;
2467 2468
}

2469 2470 2471
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
2472
    ARMCPU *cpu = arm_env_get_cpu(env);
2473
    TCR *tcr = raw_ptr(env, ri);
2474

2475
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2476
    tlb_flush(CPU(cpu));
2477
    tcr->raw_tcr = value;
2478 2479
}

2480 2481 2482 2483 2484 2485 2486
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
2487 2488
        ARMCPU *cpu = arm_env_get_cpu(env);

2489
        tlb_flush(CPU(cpu));
2490 2491 2492 2493
    }
    raw_write(env, ri, value);
}

2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
    if (raw_read(env, ri) != value) {
        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
                            ARMMMUIdx_S2NS, -1);
        raw_write(env, ri, value);
    }
}

2508
static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2509
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2510
      .access = PL1_RW, .type = ARM_CP_ALIAS,
2511
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2512
                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2513
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2514 2515 2516
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528
    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
                             offsetof(CPUARMState, cp15.dfar_ns) } },
    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
      .resetvalue = 0, },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2529 2530 2531
    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
2532
      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2533
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
2534 2535 2536 2537
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
2538
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
2539 2540 2541 2542
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
2543 2544 2545 2546
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
2547
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2548
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2549
      .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2550
      .raw_writefn = vmsa_ttbcr_raw_write,
2551 2552
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2553 2554 2555
    REGINFO_SENTINEL
};

2556 2557
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
2558 2559 2560 2561 2562 2563 2564
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

2565 2566
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
2567 2568 2569 2570
{
    env->cp15.c15_threadid = value & 0xffff;
}

2571 2572
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
2573 2574
{
    /* Wait-for-interrupt (deprecated) */
2575
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2576 2577
}

2578 2579
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
2580 2581 2582 2583 2584 2585 2586 2587
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

2588 2589 2590
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2591
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2592
      .resetvalue = 0, },
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2611
      .type = ARM_CP_NO_RAW,
2612 2613 2614 2615 2616 2617
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
2618
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2619
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2620
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2621
      .writefn = omap_cachemaint_write },
2622 2623 2624
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2625 2626 2627
    REGINFO_SENTINEL
};

2628 2629
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
2630
{
2631
    env->cp15.c15_cpar = value & 0x3fff;
2632 2633 2634 2635 2636 2637 2638
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
2639 2640 2641 2642
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657
    /* XScale specific cache-lockdown: since we have no cache we NOP these
     * and hope the guest does not really rely on cache behaviour.
     */
    { .name = "XSCALE_LOCK_ICACHE_LINE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_ICACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_DCACHE_LOCK",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_DCACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2669
      .access = PL1_RW,
2670
      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2671
      .resetvalue = 0 },
2672 2673 2674
    REGINFO_SENTINEL
};

2675 2676 2677
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2678
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2679
      .resetvalue = 0 },
2680 2681 2682 2683 2684 2685
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2686
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2687
      .resetvalue = 0 },
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2701 2702 2703 2704 2705 2706 2707 2708
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2709
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2710
      .resetvalue = (1 << 30) },
2711
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2712
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2713
      .resetvalue = (1 << 30) },
2714 2715 2716
    REGINFO_SENTINEL
};

2717 2718 2719 2720
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2721
      .access = PL1_RW, .resetvalue = 0,
2722
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2723 2724 2725
    REGINFO_SENTINEL
};

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
        return env->cp15.vpidr_el2;
    }
    return raw_read(env, ri);
}

2738
static uint64_t mpidr_read_val(CPUARMState *env)
P
Peter Maydell 已提交
2739
{
2740 2741 2742
    ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
    uint64_t mpidr = cpu->mp_affinity;

P
Peter Maydell 已提交
2743
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
2744
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
2745 2746
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
2747
         * bit 30. (For instance, Cortex-R5).
P
Peter Maydell 已提交
2748
         */
2749 2750 2751
        if (cpu->mp_is_up) {
            mpidr |= (1u << 30);
        }
P
Peter Maydell 已提交
2752
    }
2753
    return mpidr;
P
Peter Maydell 已提交
2754 2755
}

2756 2757
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
2758 2759 2760 2761 2762 2763
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
        return env->cp15.vmpidr_el2;
    }
2764 2765 2766
    return mpidr_read_val(env);
}

P
Peter Maydell 已提交
2767
static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2768 2769
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2770
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
P
Peter Maydell 已提交
2771 2772 2773
    REGINFO_SENTINEL
};

2774
static const ARMCPRegInfo lpae_cp_reginfo[] = {
2775
    /* NOP AMAIR0/1 */
2776 2777
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2778
      .access = PL1_RW, .type = ARM_CP_CONST,
2779
      .resetvalue = 0 },
2780
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2781
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2782
      .access = PL1_RW, .type = ARM_CP_CONST,
2783
      .resetvalue = 0 },
2784
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
2785 2786 2787
      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
                             offsetof(CPUARMState, cp15.par_ns)} },
2788
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2789
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2790 2791
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) },
2792
      .writefn = vmsa_ttbr_write, },
2793
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2794
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
2795 2796
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) },
2797
      .writefn = vmsa_ttbr_write, },
2798 2799 2800
    REGINFO_SENTINEL
};

2801
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2802
{
2803
    return vfp_get_fpcr(env);
2804 2805
}

2806 2807
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2808 2809 2810 2811
{
    vfp_set_fpcr(env, value);
}

2812
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2813
{
2814
    return vfp_get_fpsr(env);
2815 2816
}

2817 2818
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2819 2820 2821 2822
{
    vfp_set_fpsr(env, value);
}

2823 2824
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
2825
{
2826
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->daif = value & PSTATE_DAIF;
}

2838
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2839 2840
                                          const ARMCPRegInfo *ri,
                                          bool isread)
2841 2842 2843 2844
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
2845
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2846 2847 2848 2849 2850
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2851 2852 2853 2854
/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 * Page D4-1736 (DDI0487A.b)
 */

2855 2856
static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
2857
{
2858
    ARMCPU *cpu = arm_env_get_cpu(env);
2859
    CPUState *cs = CPU(cpu);
2860

2861 2862 2863 2864 2865
    if (arm_is_secure_below_el3(env)) {
        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
    } else {
        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
    }
2866 2867
}

2868 2869
static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                      uint64_t value)
2870
{
2871 2872
    bool sec = arm_is_secure_below_el3(env);
    CPUState *other_cs;
2873

2874 2875 2876 2877 2878 2879 2880 2881
    CPU_FOREACH(other_cs) {
        if (sec) {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
        } else {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
                                ARMMMUIdx_S12NSE0, -1);
        }
    }
2882 2883
}

2884 2885
static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
2886
{
2887 2888 2889 2890
    /* Note that the 'ALL' scope must invalidate both stage 1 and
     * stage 2 translations, whereas most other scopes only invalidate
     * stage 1 translations.
     */
2891
    ARMCPU *cpu = arm_env_get_cpu(env);
2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
    CPUState *cs = CPU(cpu);

    if (arm_is_secure_below_el3(env)) {
        tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
    } else {
        if (arm_feature(env, ARM_FEATURE_EL2)) {
            tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
                                ARMMMUIdx_S2NS, -1);
        } else {
            tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
        }
    }
2904 2905
}

2906
static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
2907 2908
                                  uint64_t value)
{
2909 2910 2911 2912 2913 2914
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
}

2915 2916 2917 2918 2919 2920 2921 2922 2923
static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
}

2924 2925 2926 2927 2928 2929 2930 2931 2932
static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    /* Note that the 'ALL' scope must invalidate both stage 1 and
     * stage 2 translations, whereas most other scopes only invalidate
     * stage 1 translations.
     */
    bool sec = arm_is_secure_below_el3(env);
    bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
2933 2934 2935
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
2936 2937 2938 2939 2940 2941 2942 2943 2944
        if (sec) {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
        } else if (has_el2) {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
                                ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
        } else {
            tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
                                ARMMMUIdx_S12NSE0, -1);
        }
2945 2946 2947
    }
}

2948 2949 2950 2951 2952 2953 2954 2955 2956 2957
static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
    }
}

2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    CPUState *other_cs;

    CPU_FOREACH(other_cs) {
        tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
    }
}

2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990
static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL1&0 (AArch64 version).
     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
     * since we don't support flush-for-specific-ASID-only or
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    if (arm_is_secure_below_el3(env)) {
        tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
                                 ARMMMUIdx_S1SE0, -1);
    } else {
        tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
                                 ARMMMUIdx_S12NSE0, -1);
    }
}

static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2991
{
2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002
    /* Invalidate by VA, EL2
     * Currently handles both VAE2 and VALE2, since we don't support
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
}

3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL3
     * Currently handles both VAE3 and VALE3, since we don't support
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
}

3017 3018 3019 3020
static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
    bool sec = arm_is_secure_below_el3(env);
3021 3022 3023 3024
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
3025 3026 3027 3028 3029 3030 3031
        if (sec) {
            tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
                                     ARMMMUIdx_S1SE0, -1);
        } else {
            tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
                                     ARMMMUIdx_S12NSE0, -1);
        }
3032 3033 3034
    }
}

3035 3036
static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
3037 3038
{
    CPUState *other_cs;
3039
    uint64_t pageaddr = sextract64(value << 12, 0, 56);
3040 3041

    CPU_FOREACH(other_cs) {
3042
        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
3043 3044 3045
    }
}

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    CPU_FOREACH(other_cs) {
        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
    }
}

3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095
static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    /* Invalidate by IPA. This has to invalidate any structures that
     * contain only stage 2 translation information, but does not need
     * to apply to structures that contain combined stage 1 and stage 2
     * translation information.
     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 48);

    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
}

static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                      uint64_t value)
{
    CPUState *other_cs;
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 48);

    CPU_FOREACH(other_cs) {
        tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
    }
}

3096 3097
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                      bool isread)
3098 3099 3100 3101
{
    /* We don't implement EL2, so the only control on DC ZVA is the
     * bit in the SCTLR which can prohibit access for EL0.
     */
3102
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int dzp_bit = 1 << 4;

    /* DZP indicates whether DC ZVA access is allowed */
3114
    if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3115 3116 3117 3118 3119
        dzp_bit = 0;
    }
    return cpu->dcz_blocksize | dzp_bit;
}

3120 3121
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                    bool isread)
3122
{
3123
    if (!(env->pstate & PSTATE_SP)) {
3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
        /* Access to SP_EL0 is undefined if it's being used as
         * the stack pointer.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_SP;
}

static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
    update_spsel(env, val);
}

3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (raw_read(env, ri) == value) {
        /* Skip the TLB flush if nothing actually changed; Linux likes
         * to do a lot of pointless SCTLR writes.
         */
        return;
    }

    raw_write(env, ri, value);
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
3157
    tlb_flush(CPU(cpu));
3158 3159
}

3160 3161
static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
3162 3163
{
    if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3164
        return CP_ACCESS_TRAP_FP_EL2;
3165 3166
    }
    if (env->cp15.cptr_el[3] & CPTR_TFP) {
3167
        return CP_ACCESS_TRAP_FP_EL3;
3168 3169 3170 3171
    }
    return CP_ACCESS_OK;
}

3172 3173 3174 3175 3176 3177
static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
{
    env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
}

3178 3179 3180 3181 3182 3183 3184
static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
3185 3186
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3187
      .type = ARM_CP_NO_RAW,
3188 3189 3190
      .access = PL0_RW, .accessfn = aa64_daif_access,
      .fieldoffset = offsetof(CPUARMState, daif),
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3191 3192 3193 3194 3195 3196 3197 3198
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3199
      .access = PL0_R, .type = ARM_CP_NO_RAW,
3200 3201 3202 3203 3204 3205 3206 3207 3208
      .readfn = aa64_dczid_read },
    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_DC_ZVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
3209 3210 3211
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
3247 3248
    /* TLBI operations */
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3249
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3250
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3251
      .writefn = tlbi_aa64_vmalle1is_write },
3252
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3253
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3254
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3255
      .writefn = tlbi_aa64_vae1is_write },
3256
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3257
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3258
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3259
      .writefn = tlbi_aa64_vmalle1is_write },
3260
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3261
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3262
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3263
      .writefn = tlbi_aa64_vae1is_write },
3264
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3265
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3266
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3267
      .writefn = tlbi_aa64_vae1is_write },
3268
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3269
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3270
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3271
      .writefn = tlbi_aa64_vae1is_write },
3272
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3273
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3274
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3275
      .writefn = tlbi_aa64_vmalle1_write },
3276
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3277
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3278
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3279
      .writefn = tlbi_aa64_vae1_write },
3280
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3281
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3282
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3283
      .writefn = tlbi_aa64_vmalle1_write },
3284
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3285
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3286
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3287
      .writefn = tlbi_aa64_vae1_write },
3288
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3289
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3290
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3291
      .writefn = tlbi_aa64_vae1_write },
3292
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3293
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3294
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3295
      .writefn = tlbi_aa64_vae1_write },
3296 3297 3298 3299 3300 3301 3302 3303
    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1is_write },
    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1is_write },
3304 3305 3306
    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
3307
      .writefn = tlbi_aa64_alle1is_write },
3308 3309 3310 3311
    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
3312 3313 3314 3315 3316 3317 3318 3319
    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1_write },
    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1_write },
3320 3321 3322
    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
3323
      .writefn = tlbi_aa64_alle1_write },
3324 3325 3326 3327
    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
3328 3329 3330 3331
#ifndef CONFIG_USER_ONLY
    /* 64 bit address translation operations */
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3332
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3333 3334
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3335
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3336 3337
    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3338
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3339 3340
    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3341
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3342
    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3343
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3344 3345
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3346
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3347 3348
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3349
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3350 3351
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3352
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3353 3354 3355 3356 3357 3358 3359 3360
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3361 3362 3363 3364 3365 3366
    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
      .writefn = par_write },
3367
#endif
3368
    /* TLB invalidate last level of translation table walk */
3369
    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3370
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3371
    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3372
      .type = ARM_CP_NO_RAW, .access = PL1_W,
3373
      .writefn = tlbimvaa_is_write },
3374
    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3375
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3376
    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3377
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400
    { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_write },
    { .name = "TLBIMVALHIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_is_write },
    { .name = "TLBIIPAS2",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_write },
    { .name = "TLBIIPAS2IS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_is_write },
    { .name = "TLBIIPAS2L",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_write },
    { .name = "TLBIIPAS2LIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_is_write },
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
    /* 32 bit cache operations */
    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    /* MMU Domain access control / MPU write buffer control */
3429 3430 3431 3432 3433
    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3434
    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3435
      .type = ARM_CP_ALIAS,
3436
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3437 3438
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3439
    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3440
      .type = ARM_CP_ALIAS,
3441
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3442 3443
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3444 3445 3446 3447 3448 3449 3450
    /* We rely on the access checks not allowing the guest to write to the
     * state field when SPSel indicates that it's being used as the stack
     * pointer.
     */
    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = sp_el0_access,
3451
      .type = ARM_CP_ALIAS,
3452
      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3453 3454
    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3455
      .access = PL2_RW, .type = ARM_CP_ALIAS,
3456
      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3457 3458
    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3459
      .type = ARM_CP_NO_RAW,
3460
      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3461 3462 3463 3464 3465
    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
      .access = PL2_RW, .accessfn = fpexc32_access },
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494
    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
    { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
    { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
    { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
    { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3495 3496 3497 3498 3499 3500 3501 3502 3503
    { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
      .resetvalue = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
    { .name = "SDCR", .type = ARM_CP_ALIAS,
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .writefn = sdcr_write,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3504 3505 3506
    REGINFO_SENTINEL
};

3507
/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3508
static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3509 3510 3511 3512
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3513
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3514
      .type = ARM_CP_NO_RAW,
3515 3516 3517
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3518 3519 3520
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3521 3522 3523 3524 3525 3526 3527
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3528 3529 3530 3531 3532 3533 3534 3535
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3536 3537 3538 3539 3540 3541 3542 3543
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3544 3545 3546
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3547 3548 3549 3550
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
      .type = ARM_CP_CONST, .resetvalue = 0 },
3551 3552 3553 3554 3555 3556 3557
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 6, .crm = 2,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3558 3559 3560
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3561 3562 3563
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3564 3565 3566 3567 3568 3569
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
3570 3571 3572
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3573 3574 3575 3576 3577 3578
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3591 3592
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3593 3594
      .access = PL2_RW, .accessfn = access_tda,
      .type = ARM_CP_CONST, .resetvalue = 0 },
3595 3596 3597 3598
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
      .type = ARM_CP_CONST, .resetvalue = 0 },
3599 3600 3601
    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3602 3603 3604
    REGINFO_SENTINEL
};

3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t valid_mask = HCR_MASK;

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        valid_mask &= ~HCR_HCD;
    } else {
        valid_mask &= ~HCR_TSC;
    }

    /* Clear RES0 bits.  */
    value &= valid_mask;

    /* These bits change the MMU setup:
     * HCR_VM enables stage 2 translation
     * HCR_PTW forbids certain page-table setups
     * HCR_DC Disables stage1 and enables stage2 translation
     */
    if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3625
        tlb_flush(CPU(cpu));
3626 3627 3628 3629
    }
    raw_write(env, ri, value);
}

3630
static const ARMCPRegInfo el2_cp_reginfo[] = {
3631 3632 3633 3634
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
      .writefn = hcr_write },
3635
    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3636
      .type = ARM_CP_ALIAS,
3637 3638 3639
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3640 3641 3642
    { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3643 3644 3645
    { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3646
    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3647
      .type = ARM_CP_ALIAS,
3648
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3649 3650
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3651 3652 3653 3654 3655
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
      .resetvalue = 0 },
3656 3657
    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3658
      .access = PL3_RW, .type = ARM_CP_ALIAS,
3659
      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3660 3661 3662 3663
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
3664 3665 3666 3667 3668 3669 3670 3671
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3672 3673 3674 3675 3676 3677 3678 3679 3680
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3681 3682 3683 3684 3685 3686 3687 3688
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3689 3690
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3691 3692 3693 3694
      .access = PL2_RW,
      /* no .writefn needed as this can't cause an ASID change;
       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
       */
3695
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
3696 3697
    { .name = "VTCR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3698
      .type = ARM_CP_ALIAS,
3699 3700 3701 3702
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3703 3704 3705 3706
      .access = PL2_RW,
      /* no .writefn needed as this can't cause an ASID change;
       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
       */
3707
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
3708 3709 3710 3711 3712 3713 3714 3715 3716 3717
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 6, .crm = 2,
      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
      .writefn = vttbr_write },
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .writefn = vttbr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
3718 3719 3720 3721
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
3722 3723 3724 3725
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
3726 3727 3728 3729 3730 3731 3732
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752
    { .name = "TLBIALLNSNH",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_nsnh_write },
    { .name = "TLBIALLNSNHIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_nsnh_is_write },
    { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_hyp_write },
    { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_hyp_is_write },
    { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_write },
    { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_is_write },
3753 3754 3755
    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3756
      .writefn = tlbi_aa64_alle2_write },
3757 3758 3759
    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3760
      .writefn = tlbi_aa64_vae2_write },
3761 3762 3763 3764 3765 3766 3767 3768
    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2_write },
    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle2is_write },
3769 3770 3771
    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3772
      .writefn = tlbi_aa64_vae2is_write },
3773 3774 3775 3776
    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2is_write },
3777
#ifndef CONFIG_USER_ONLY
3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
    /* Unlike the other EL2-related AT operations, these must
     * UNDEF from EL3 if EL2 is not implemented, which is why we
     * define them here rather than with the rest of the AT ops.
     */
    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
     * to behave as if SCR.NS was 1.
     */
    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
3801 3802 3803 3804 3805 3806 3807 3808
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
       * reset values as IMPDEF. We choose to reset to 3 to comply with
       * both ARMv7 and ARMv8.
       */
      .access = PL2_RW, .resetvalue = 3,
      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
3809 3810 3811 3812 3813 3814 3815 3816 3817
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .type = ARM_CP_IO, .access = PL2_RW,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3829
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3830 3831 3832 3833 3834 3835 3836 3837 3838
      .resetfn = gt_hyp_timer_reset,
      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .type = ARM_CP_IO,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
      .resetvalue = 0,
      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
3839
#endif
3840 3841 3842 3843 3844 3845 3846 3847 3848
    /* The only field of MDCR_EL2 that has a defined architectural reset value
     * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
     * don't impelment any PMU event counters, so using zero as a reset
     * value for MDCR_EL2 is okay
     */
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
3849 3850 3851 3852 3853 3854 3855 3856
    { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3857 3858 3859 3860
    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
      .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3861 3862 3863
    REGINFO_SENTINEL
};

3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882
static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
     * At Secure EL1 it traps to EL3.
     */
    if (arm_current_el(env) == 3) {
        return CP_ACCESS_OK;
    }
    if (arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL3;
    }
    /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
    if (isread) {
        return CP_ACCESS_OK;
    }
    return CP_ACCESS_TRAP_UNCATEGORIZED;
}

3883 3884 3885 3886 3887
static const ARMCPRegInfo el3_cp_reginfo[] = {
    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
      .resetvalue = 0, .writefn = scr_write },
3888
    { .name = "SCR",  .type = ARM_CP_ALIAS,
3889
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3890 3891
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3892
      .writefn = scr_write },
3893 3894 3895 3896 3897 3898 3899 3900 3901
    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
    { .name = "SDER",
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
3902 3903
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .writefn = vbar_write, .resetvalue = 0,
3904
      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
3905 3906 3907 3908
    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
3909 3910
    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
3911 3912
      .access = PL3_RW,
      /* no .writefn needed as this can't cause an ASID change;
3913 3914 3915
       * we must provide a .raw_writefn and .resetfn because we handle
       * reset and migration for the AArch32 TTBCR(S), which might be
       * using mask and base_mask.
3916
       */
3917
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
3918
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
3919
    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
3920
      .type = ARM_CP_ALIAS,
3921 3922 3923
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
3924 3925 3926
    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
3927 3928 3929
    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
3930
    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
3931
      .type = ARM_CP_ALIAS,
3932
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
3933 3934
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
3935 3936 3937 3938 3939
    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
      .resetvalue = 0 },
3940 3941 3942 3943
    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
3944 3945 3946 3947
    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
3948 3949 3950 3951
    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3952 3953 3954 3955 3956 3957 3958 3959
    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3is_write },
    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3_write },
    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
3984 3985 3986
    REGINFO_SENTINEL
};

3987 3988
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
3989 3990 3991 3992
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
3993
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
3994 3995 3996 3997 3998
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    /* Writes to OSLAR_EL1 may update the OS lock status, which can be
     * read via a bit in OSLSR_EL1.
     */
    int oslock;

    if (ri->state == ARM_CP_STATE_AA32) {
        oslock = (value == 0xC5ACCE55);
    } else {
        oslock = value & 1;
    }

    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
}

4016 4017
static const ARMCPRegInfo debug_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4018 4019 4020 4021
     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
     * unlike DBGDRAR it is never accessible from EL0.
     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
     * accessor.
4022 4023
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4024 4025
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
4026 4027
    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4028 4029
      .access = PL1_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
4030
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4031 4032
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
4033
    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4034 4035
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4036
      .access = PL1_RW, .accessfn = access_tda,
4037 4038
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetvalue = 0 },
4039 4040 4041 4042 4043
    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
     * We don't implement the configurable EL0 access.
     */
    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4044
      .type = ARM_CP_ALIAS,
4045
      .access = PL1_R, .accessfn = access_tda,
4046
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4047 4048
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4049
      .access = PL1_W, .type = ARM_CP_NO_RAW,
4050
      .accessfn = access_tdosa,
4051 4052 4053 4054
      .writefn = oslar_write },
    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
      .access = PL1_R, .resetvalue = 10,
4055
      .accessfn = access_tdosa,
4056
      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4057 4058 4059
    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4060 4061
      .access = PL1_RW, .accessfn = access_tdosa,
      .type = ARM_CP_NOP },
4062 4063 4064 4065 4066
    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
     * implement vector catch debug events yet.
     */
    { .name = "DBGVCR",
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4067 4068
      .access = PL1_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
4069 4070 4071 4072 4073 4074 4075
    /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
     * to save and restore a 32-bit guest's DBGVCR)
     */
    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL2_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
4076 4077 4078 4079 4080 4081 4082 4083
    /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
     * Channel but Linux may try to access this register. The 32-bit
     * alias is DBGDCCINT.
     */
    { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095
    REGINFO_SENTINEL
};

static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    REGINFO_SENTINEL
};

4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220
void hw_watchpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    vaddr len = 0;
    vaddr wvr = env->cp15.dbgwvr[n];
    uint64_t wcr = env->cp15.dbgwcr[n];
    int mask;
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;

    if (env->cpu_watchpoint[n]) {
        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
        env->cpu_watchpoint[n] = NULL;
    }

    if (!extract64(wcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    switch (extract64(wcr, 3, 2)) {
    case 0:
        /* LSC 00 is reserved and must behave as if the wp is disabled */
        return;
    case 1:
        flags |= BP_MEM_READ;
        break;
    case 2:
        flags |= BP_MEM_WRITE;
        break;
    case 3:
        flags |= BP_MEM_ACCESS;
        break;
    }

    /* Attempts to use both MASK and BAS fields simultaneously are
     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
     * thus generating a watchpoint for every byte in the masked region.
     */
    mask = extract64(wcr, 24, 4);
    if (mask == 1 || mask == 2) {
        /* Reserved values of MASK; we must act as if the mask value was
         * some non-reserved value, or as if the watchpoint were disabled.
         * We choose the latter.
         */
        return;
    } else if (mask) {
        /* Watchpoint covers an aligned area up to 2GB in size */
        len = 1ULL << mask;
        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
         * whether the watchpoint fires when the unmasked bits match; we opt
         * to generate the exceptions.
         */
        wvr &= ~(len - 1);
    } else {
        /* Watchpoint covers bytes defined by the byte address select bits */
        int bas = extract64(wcr, 5, 8);
        int basstart;

        if (bas == 0) {
            /* This must act as if the watchpoint is disabled */
            return;
        }

        if (extract64(wvr, 2, 1)) {
            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
             * ignored, and BAS[3:0] define which bytes to watch.
             */
            bas &= 0xf;
        }
        /* The BAS bits are supposed to be programmed to indicate a contiguous
         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
         * we fire for each byte in the word/doubleword addressed by the WVR.
         * We choose to ignore any non-zero bits after the first range of 1s.
         */
        basstart = ctz32(bas);
        len = cto32(bas >> basstart);
        wvr += basstart;
    }

    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
                          &env->cpu_watchpoint[n]);
}

void hw_watchpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU watchpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
        hw_watchpoint_update(cpu, i);
    }
}

static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
     * register reads and behaves as if values written are sign extended.
     * Bits [1:0] are RES0.
     */
    value = sextract64(value, 0, 49) & ~3ULL;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
void hw_breakpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    uint64_t bvr = env->cp15.dbgbvr[n];
    uint64_t bcr = env->cp15.dbgbcr[n];
    vaddr addr;
    int bt;
    int flags = BP_CPU;

    if (env->cpu_breakpoint[n]) {
        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
        env->cpu_breakpoint[n] = NULL;
    }

    if (!extract64(bcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    bt = extract64(bcr, 20, 4);

    switch (bt) {
    case 4: /* unlinked address mismatch (reserved if AArch64) */
    case 5: /* linked address mismatch (reserved if AArch64) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: address mismatch breakpoint types not implemented");
        return;
    case 0: /* unlinked address match */
    case 1: /* linked address match */
    {
        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
         * we behave as if the register was sign extended. Bits [1:0] are
         * RES0. The BAS field is used to allow setting breakpoints on 16
         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
         * a bp will fire if the addresses covered by the bp and the addresses
         * covered by the insn overlap but the insn doesn't start at the
         * start of the bp address range. We choose to require the insn and
         * the bp to have the same address. The constraints on writing to
         * BAS enforced in dbgbcr_write mean we have only four cases:
         *  0b0000  => no breakpoint
         *  0b0011  => breakpoint on addr
         *  0b1100  => breakpoint on addr + 2
         *  0b1111  => breakpoint on addr
         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
         */
        int bas = extract64(bcr, 5, 4);
        addr = sextract64(bvr, 0, 49) & ~3ULL;
        if (bas == 0) {
            return;
        }
        if (bas == 0xc) {
            addr += 2;
        }
        break;
    }
    case 2: /* unlinked context ID match */
    case 8: /* unlinked VMID match (reserved if no EL2) */
    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: unlinked context breakpoint types not implemented");
        return;
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    case 3: /* linked context ID match */
    default:
        /* We must generate no events for Linked context matches (unless
         * they are linked to by some other bp/wp, which is handled in
         * updates for the linking bp/wp). We choose to also generate no events
         * for reserved values.
         */
        return;
    }

    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}

void hw_breakpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU breakpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
        hw_breakpoint_update(cpu, i);
    }
}

static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
     * copy of BAS[0].
     */
    value = deposit64(value, 6, 1, extract64(value, 5, 1));
    value = deposit64(value, 8, 1, extract64(value, 7, 1));

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

4339
static void define_debug_regs(ARMCPU *cpu)
4340
{
4341 4342
    /* Define v7 and v8 architectural debug registers.
     * These are just dummy implementations for now.
4343 4344
     */
    int i;
4345
    int wrps, brps, ctx_cmps;
4346 4347
    ARMCPRegInfo dbgdidr = {
        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4348 4349
        .access = PL0_R, .accessfn = access_tda,
        .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4350 4351
    };

4352
    /* Note that all these register fields hold "number of Xs minus 1". */
4353 4354
    brps = extract32(cpu->dbgdidr, 24, 4);
    wrps = extract32(cpu->dbgdidr, 28, 4);
4355 4356 4357
    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);

    assert(ctx_cmps <= brps);
4358 4359 4360 4361 4362 4363 4364 4365

    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
     * of the debug registers such as number of breakpoints;
     * check that if they both exist then they agree.
     */
    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4366
        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4367
    }
4368

4369
    define_one_arm_cp_reg(cpu, &dbgdidr);
4370 4371 4372 4373 4374 4375
    define_arm_cp_regs(cpu, debug_cp_reginfo);

    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
    }

4376
    for (i = 0; i < brps + 1; i++) {
4377
        ARMCPRegInfo dbgregs[] = {
4378 4379
            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4380
              .access = PL1_RW, .accessfn = access_tda,
4381 4382 4383
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
              .writefn = dbgbvr_write, .raw_writefn = raw_write
            },
4384 4385
            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4386
              .access = PL1_RW, .accessfn = access_tda,
4387 4388 4389
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
              .writefn = dbgbcr_write, .raw_writefn = raw_write
            },
4390 4391 4392 4393 4394 4395 4396
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }

    for (i = 0; i < wrps + 1; i++) {
        ARMCPRegInfo dbgregs[] = {
4397 4398
            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4399
              .access = PL1_RW, .accessfn = access_tda,
4400 4401 4402
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
              .writefn = dbgwvr_write, .raw_writefn = raw_write
            },
4403 4404
            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4405
              .access = PL1_RW, .accessfn = access_tda,
4406 4407 4408 4409
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
              .writefn = dbgwcr_write, .raw_writefn = raw_write
            },
            REGINFO_SENTINEL
4410 4411 4412 4413 4414
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

4415 4416 4417 4418 4419 4420 4421 4422 4423
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

4424
    define_arm_cp_regs(cpu, cp_reginfo);
4425 4426 4427 4428 4429 4430 4431
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* Must go early as it is full of wildcards that may be
         * overridden by later definitions.
         */
        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
    }

4432
    if (arm_feature(env, ARM_FEATURE_V6)) {
4433 4434
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
4435 4436 4437
            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
4438
              .resetvalue = cpu->id_pfr0 },
4439 4440 4441
            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
4442
              .resetvalue = cpu->id_pfr1 },
4443 4444 4445
            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
4446
              .resetvalue = cpu->id_dfr0 },
4447 4448 4449
            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
4450
              .resetvalue = cpu->id_afr0 },
4451 4452 4453
            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
4454
              .resetvalue = cpu->id_mmfr0 },
4455 4456 4457
            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
4458
              .resetvalue = cpu->id_mmfr1 },
4459 4460 4461
            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
4462
              .resetvalue = cpu->id_mmfr2 },
4463 4464 4465
            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
4466
              .resetvalue = cpu->id_mmfr3 },
4467 4468 4469
            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
4470
              .resetvalue = cpu->id_isar0 },
4471 4472 4473
            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
4474
              .resetvalue = cpu->id_isar1 },
4475 4476 4477
            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
4478
              .resetvalue = cpu->id_isar2 },
4479 4480 4481
            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
4482
              .resetvalue = cpu->id_isar3 },
4483 4484 4485
            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
4486
              .resetvalue = cpu->id_isar4 },
4487 4488 4489
            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
4490
              .resetvalue = cpu->id_isar5 },
4491 4492 4493 4494 4495 4496 4497 4498
            { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr4 },
            /* 7 is as yet unallocated and must RAZ */
            { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
4499 4500 4501 4502
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
4503 4504 4505 4506
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
4507 4508 4509
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
4510 4511
    if (arm_feature(env, ARM_FEATURE_V7MP) &&
        !arm_feature(env, ARM_FEATURE_MPU)) {
4512 4513
        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
    }
4514
    if (arm_feature(env, ARM_FEATURE_V7)) {
4515
        /* v7 performance monitor control register: same implementor
4516 4517
         * field as main ID register, and we implement only the cycle
         * count register.
4518
         */
4519
#ifndef CONFIG_USER_ONLY
4520 4521
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4522
            .access = PL0_RW,
4523
            .type = ARM_CP_IO | ARM_CP_ALIAS,
4524
            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4525 4526
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
4527
        };
4528 4529 4530 4531 4532 4533 4534 4535 4536
        ARMCPRegInfo pmcr64 = {
            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
            .access = PL0_RW, .accessfn = pmreg_access,
            .type = ARM_CP_IO,
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
            .resetvalue = cpu->midr & 0xff000000,
            .writefn = pmcr_write, .raw_writefn = raw_write,
        };
4537
        define_one_arm_cp_reg(cpu, &pmcr);
4538
        define_one_arm_cp_reg(cpu, &pmcr64);
4539
#endif
4540
        ARMCPRegInfo clidr = {
4541 4542
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4543 4544 4545
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
4546
        define_arm_cp_regs(cpu, v7_cp_reginfo);
4547
        define_debug_regs(cpu);
4548 4549
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4550
    }
4551
    if (arm_feature(env, ARM_FEATURE_V8)) {
4552 4553 4554 4555 4556
        /* AArch64 ID registers, which all have impdef reset values.
         * Note that within the ID register ranges the unused slots
         * must all RAZ, not UNDEF; future architecture versions may
         * define new registers here.
         */
4557 4558 4559 4560 4561 4562 4563 4564 4565
        ARMCPRegInfo v8_idregs[] = {
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr0 },
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589
            { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4590 4591 4592
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
4593
              /* We mask out the PMUVer field, because we don't currently
4594 4595 4596 4597 4598
               * implement the PMU. Not advertising it prevents the guest
               * from trying to use it and getting UNDEFs on registers we
               * don't implement.
               */
              .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
4599 4600 4601 4602
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
4603 4604 4605 4606 4607 4608 4609 4610
            { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4611 4612 4613 4614 4615 4616 4617 4618
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
4619 4620 4621 4622 4623 4624 4625 4626
            { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4627 4628 4629 4630 4631 4632 4633 4634
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
            { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4659 4660 4661 4662 4663 4664 4665 4666
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690
            { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr0 },
            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr1 },
            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr2 },
4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
            { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738
            { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid0 },
            { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid0 },
            { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid1 },
            { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid1 },
4739 4740
            REGINFO_SENTINEL
        };
4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3) &&
            !arm_feature(env, ARM_FEATURE_EL2)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
4751
        define_arm_cp_regs(cpu, v8_idregs);
4752 4753
        define_arm_cp_regs(cpu, v8_cp_reginfo);
    }
4754
    if (arm_feature(env, ARM_FEATURE_EL2)) {
4755
        uint64_t vmpidr_def = mpidr_read_val(env);
4756 4757 4758 4759 4760 4761 4762 4763 4764 4765
        ARMCPRegInfo vpidr_regs[] = {
            { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
              .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
            { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL2_RW, .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4766 4767 4768 4769 4770 4771 4772 4773 4774 4775
            { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
              .resetvalue = vmpidr_def,
              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
            { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
              .access = PL2_RW,
              .resetvalue = vmpidr_def,
              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
4776 4777 4778
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, vpidr_regs);
4779
        define_arm_cp_regs(cpu, el2_cp_reginfo);
4780 4781 4782 4783 4784 4785 4786 4787 4788
        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
4789 4790 4791 4792 4793
    } else {
        /* If EL2 is missing but higher ELs are enabled, we need to
         * register the no_el2 reginfos.
         */
        if (arm_feature(env, ARM_FEATURE_EL3)) {
4794 4795
            /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
             * of MIDR_EL1 and MPIDR_EL1.
4796 4797 4798 4799 4800 4801 4802
             */
            ARMCPRegInfo vpidr_regs[] = {
                { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
                  .type = ARM_CP_CONST, .resetvalue = cpu->midr,
                  .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
4803 4804 4805 4806 4807
                { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
                  .type = ARM_CP_NO_RAW,
                  .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
4808 4809 4810
                REGINFO_SENTINEL
            };
            define_arm_cp_regs(cpu, vpidr_regs);
4811
            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4812
        }
4813
    }
4814
    if (arm_feature(env, ARM_FEATURE_EL3)) {
4815
        define_arm_cp_regs(cpu, el3_cp_reginfo);
4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826
        ARMCPRegInfo el3_regs[] = {
            { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
              .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
            { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
              .access = PL3_RW,
              .raw_writefn = raw_write, .writefn = sctlr_write,
              .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
              .resetvalue = cpu->reset_sctlr },
            REGINFO_SENTINEL
4827
        };
4828 4829

        define_arm_cp_regs(cpu, el3_regs);
4830
    }
4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
    /* The behaviour of NSACR is sufficiently various that we don't
     * try to describe it in a single reginfo:
     *  if EL3 is 64 bit, then trap to EL3 from S EL1,
     *     reads as constant 0xc00 from NS EL1 and NS EL2
     *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
     *  if v7 without EL3, register doesn't exist
     *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
     */
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            ARMCPRegInfo nsacr = {
                .name = "NSACR", .type = ARM_CP_CONST,
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL1_RW, .accessfn = nsacr_access,
                .resetvalue = 0xc00
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        } else {
            ARMCPRegInfo nsacr = {
                .name = "NSACR",
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL3_RW | PL1_R,
                .resetvalue = 0,
                .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        }
    } else {
        if (arm_feature(env, ARM_FEATURE_V8)) {
            ARMCPRegInfo nsacr = {
                .name = "NSACR", .type = ARM_CP_CONST,
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL1_R,
                .resetvalue = 0xc00
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        }
    }

4870
    if (arm_feature(env, ARM_FEATURE_MPU)) {
4871 4872 4873 4874 4875 4876 4877 4878
        if (arm_feature(env, ARM_FEATURE_V6)) {
            /* PMSAv6 not implemented */
            assert(arm_feature(env, ARM_FEATURE_V7));
            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
        }
4879
    } else {
4880
        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4881 4882
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
4883 4884 4885
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
4886 4887 4888
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
4889 4890 4891
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
4892 4893 4894 4895 4896 4897 4898 4899 4900
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
4901 4902 4903
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
4904 4905 4906
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
4907 4908 4909 4910 4911 4912
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
4913 4914 4915
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
4916 4917 4918 4919 4920
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
4921 4922 4923
        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
            /* Pre-v8 MIDR space.
             * Note that the MIDR isn't a simple constant register because
4924 4925
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
4926 4927 4928 4929
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
4930 4931
             */
            { .name = "MIDR",
4932
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
4933
              .access = PL1_R, .resetvalue = cpu->midr,
4934
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
4935
              .readfn = midr_read,
4936 4937
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
4956 4957 4958
        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
4959 4960 4961
              .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .readfn = midr_read },
4962 4963 4964 4965 4966 4967 4968
            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .resetvalue = cpu->midr },
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
              .access = PL1_R, .resetvalue = cpu->midr },
4969 4970
            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
4971
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_cp_reginfo[] = {
            /* These are common to v8 and pre-v8 */
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
4989 4990 4991 4992 4993 4994
        /* TLBTR is specific to VMSA */
        ARMCPRegInfo id_tlbtr_reginfo = {
              .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
        };
4995 4996 4997 4998 4999 5000 5001
        /* MPUIR is specific to PMSA V6+ */
        ARMCPRegInfo id_mpuir_reginfo = {
              .name = "MPUIR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmsav7_dregion << 8
        };
5002 5003 5004 5005 5006 5007 5008 5009 5010
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
5011 5012 5013
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
5014 5015
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5016 5017 5018 5019
            for (r = id_pre_v8_midr_cp_reginfo;
                 r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
5020 5021 5022
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
5023
            id_tlbtr_reginfo.access = PL1_RW;
5024
            id_tlbtr_reginfo.access = PL1_RW;
5025
        }
5026 5027 5028 5029 5030
        if (arm_feature(env, ARM_FEATURE_V8)) {
            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
        }
5031
        define_arm_cp_regs(cpu, id_cp_reginfo);
5032 5033
        if (!arm_feature(env, ARM_FEATURE_MPU)) {
            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5034 5035
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5036
        }
5037 5038
    }

5039 5040 5041 5042
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

5043
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
        ARMCPRegInfo auxcr_reginfo[] = {
            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL1_RW, .type = ARM_CP_CONST,
              .resetvalue = cpu->reset_auxcr },
            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL2_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL3_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
5058
        };
5059
        define_arm_cp_regs(cpu, auxcr_reginfo);
5060 5061
    }

5062
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 32 bit view is [31:18] 0...0 [43:32]. */
            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
                | extract64(cpu->reset_cbar, 32, 12);
            ARMCPRegInfo cbar_reginfo[] = {
                { .name = "CBAR",
                  .type = ARM_CP_CONST,
                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
                  .type = ARM_CP_CONST,
                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cbar32 },
                REGINFO_SENTINEL
            };
            /* We don't implement a r/w 64 bit CBAR currently */
            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
            define_arm_cp_regs(cpu, cbar_reginfo);
        } else {
            ARMCPRegInfo cbar = {
                .name = "CBAR",
                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
                .fieldoffset = offsetof(CPUARMState,
                                        cp15.c15_config_base_address)
            };
            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
                cbar.access = PL1_R;
                cbar.fieldoffset = 0;
                cbar.type = ARM_CP_CONST;
            }
            define_one_arm_cp_reg(cpu, &cbar);
        }
5096 5097
    }

5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110
    if (arm_feature(env, ARM_FEATURE_VBAR)) {
        ARMCPRegInfo vbar_cp_reginfo[] = {
            { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
              .access = PL1_RW, .writefn = vbar_write,
              .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
                                     offsetof(CPUARMState, cp15.vbar_ns) },
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, vbar_cp_reginfo);
    }

5111 5112 5113
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
5114
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5115 5116 5117 5118
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
            .access = PL1_RW,
            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
                                   offsetof(CPUARMState, cp15.sctlr_ns) },
5119 5120
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
5131 5132
}

5133
ARMCPU *cpu_arm_init(const char *cpu_model)
P
pbrook 已提交
5134
{
5135
    return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
5136 5137 5138 5139
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
5140
    CPUState *cs = CPU(cpu);
5141 5142
    CPUARMState *env = &cpu->env;

5143 5144 5145 5146 5147
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5148
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5149 5150
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5151
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5152 5153
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5154
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
5155 5156
                                 19, "arm-vfp.xml", 0);
    }
P
pbrook 已提交
5157 5158
}

5159 5160
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
5161
{
5162 5163 5164
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
5165

5166 5167
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
5168
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5169
        return 1;
5170
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5171 5172 5173
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
5174 5175 5176
    }
}

5177
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
5178
{
5179
    ObjectClass *oc = data;
5180
    CPUListState *s = user_data;
5181 5182
    const char *typename;
    char *name;
P
pbrook 已提交
5183

5184 5185
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5186
    (*s->cpu_fprintf)(s->file, "  %s\n",
5187 5188
                      name);
    g_free(name);
5189 5190 5191 5192
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
5193
    CPUListState s = {
5194 5195 5196 5197 5198 5199 5200 5201 5202 5203
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
5204 5205 5206 5207 5208 5209
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
5210 5211
}

5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));
5224
    info->q_typename = g_strdup(typename);
5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

5244
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5245
                                   void *opaque, int state, int secstate,
5246
                                   int crm, int opc1, int opc2)
5247 5248 5249 5250 5251 5252 5253
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264
    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;

    /* Reset the secure state to the specific incoming state.  This is
     * necessary as the register may have been defined with both states.
     */
    r2->secure = secstate;

    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
        /* Register is banked (using both entries in array).
         * Overwriting fieldoffset as the array is only used to define
         * banked registers but later only fieldoffset is used.
5265
         */
5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
        r2->fieldoffset = r->bank_fieldoffsets[ns];
    }

    if (state == ARM_CP_STATE_AA32) {
        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
            /* If the register is banked then we don't need to migrate or
             * reset the 32-bit instance in certain cases:
             *
             * 1) If the register has both 32-bit and 64-bit instances then we
             *    can count on the 64-bit instance taking care of the
             *    non-secure bank.
             * 2) If ARMv8 is enabled then we can count on a 64-bit version
             *    taking care of the secure bank.  This requires that separate
             *    32 and 64-bit definitions are provided.
             */
            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5283
                r2->type |= ARM_CP_ALIAS;
5284 5285 5286 5287 5288
            }
        } else if ((secstate != r->secure) && !ns) {
            /* The register is not banked so we only want to allow migration of
             * the non-secure instance.
             */
5289
            r2->type |= ARM_CP_ALIAS;
5290
        }
5291 5292 5293 5294 5295 5296 5297 5298

        if (r->state == ARM_CP_STATE_BOTH) {
            /* We assume it is a cp15 register if the .cp field is left unset.
             */
            if (r2->cp == 0) {
                r2->cp = 15;
            }

5299
#ifdef HOST_WORDS_BIGENDIAN
5300 5301 5302
            if (r2->fieldoffset) {
                r2->fieldoffset += sizeof(uint32_t);
            }
5303
#endif
5304
        }
5305 5306 5307 5308 5309
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
5310 5311 5312
         * STATE_BOTH definitions are also always "standard
         * sysreg" in their AArch64 view (the .cp value may
         * be non-zero for the benefit of the AArch32 view).
5313
         */
5314
        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5315 5316 5317 5318 5319
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
5320
        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5321
    }
5322 5323 5324
    if (opaque) {
        r2->opaque = opaque;
    }
5325 5326 5327 5328
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
5329 5330 5331 5332 5333 5334 5335 5336
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
5337
     * ALIAS so we don't try to transfer the register
5338
     * multiple times. Special registers (ie NOP/WFI) are
5339
     * never migratable and not even raw-accessible.
5340
     */
5341 5342 5343 5344
    if ((r->type & ARM_CP_SPECIAL)) {
        r2->type |= ARM_CP_NO_RAW;
    }
    if (((r->crm == CP_ANY) && crm != 0) ||
5345 5346
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
5347
        r2->type |= ARM_CP_ALIAS;
5348 5349
    }

5350 5351 5352 5353 5354 5355 5356 5357
    /* Check that raw accesses are either forbidden or handled. Note that
     * we can't assert this earlier because the setup of fieldoffset for
     * banked registers has to be done first.
     */
    if (!(r2->type & ARM_CP_NO_RAW)) {
        assert(!raw_accessors_invalid(r2));
    }

5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
5402
     */
5403
    int crm, opc1, opc2, state;
5404 5405 5406 5407 5408 5409 5410 5411
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

5458 5459 5460 5461 5462
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
5463 5464 5465
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->readfn);
5466 5467
        }
        if (r->access & PL3_W) {
5468 5469 5470
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->writefn);
5471 5472 5473 5474 5475 5476 5477
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5478 5479 5480 5481 5482
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508
                    if (state == ARM_CP_STATE_AA32) {
                        /* Under AArch32 CP registers can be common
                         * (same for secure and non-secure world) or banked.
                         */
                        switch (r->secure) {
                        case ARM_CP_SECSTATE_S:
                        case ARM_CP_SECSTATE_NS:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   r->secure, crm, opc1, opc2);
                            break;
                        default:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_S,
                                                   crm, opc1, opc2);
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_NS,
                                                   crm, opc1, opc2);
                            break;
                        }
                    } else {
                        /* AArch64 registers get mapped to non-secure instance
                         * of AArch32 */
                        add_cpreg_to_hashtable(cpu, r, opaque, state,
                                               ARM_CP_SECSTATE_NS,
                                               crm, opc1, opc2);
                    }
5509
                }
5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

5525
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5526
{
5527
    return g_hash_table_lookup(cpregs, &encoded_cp);
5528 5529
}

5530 5531
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
5532 5533 5534 5535
{
    /* Helper coprocessor write function for write-ignore registers */
}

5536
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5537 5538 5539 5540 5541
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

5542 5543 5544 5545 5546
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

5547
static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5548 5549 5550 5551 5552
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
5553 5554 5555 5556 5557 5558 5559 5560

    /* Changes to or from Hyp via MSR and CPS are illegal. */
    if (write_type == CPSRWriteByInstr &&
        ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
         mode == ARM_CPU_MODE_HYP)) {
        return 1;
    }

5561 5562
    switch (mode) {
    case ARM_CPU_MODE_USR:
5563
        return 0;
5564 5565 5566 5567 5568 5569
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
5570 5571 5572
        /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
         * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
         */
5573 5574 5575 5576 5577 5578 5579 5580 5581
        /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
         * and CPS are treated as illegal mode changes.
         */
        if (write_type == CPSRWriteByInstr &&
            (env->cp15.hcr_el2 & HCR_TGE) &&
            (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
            !arm_is_secure_below_el3(env)) {
            return 1;
        }
5582
        return 0;
5583 5584 5585
    case ARM_CPU_MODE_HYP:
        return !arm_feature(env, ARM_FEATURE_EL2)
            || arm_current_el(env) < 2 || arm_is_secure(env);
5586
    case ARM_CPU_MODE_MON:
5587
        return arm_current_el(env) < 3;
5588 5589 5590 5591 5592
    default:
        return 1;
    }
}

5593 5594 5595
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
5596 5597
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5598 5599 5600
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
5601
        | (env->GE << 16) | (env->daif & CPSR_AIF);
5602 5603
}

5604 5605
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
                CPSRWriteType write_type)
5606
{
5607 5608
    uint32_t changed_daif;

5609
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
5610 5611
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

5631 5632 5633 5634 5635 5636 5637 5638
    /* In a V7 implementation that includes the security extensions but does
     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
     * bits respectively.
     *
     * In a V8 implementation, it is permitted for privileged software to
     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
     */
5639
    if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682
        arm_feature(env, ARM_FEATURE_EL3) &&
        !arm_feature(env, ARM_FEATURE_EL2) &&
        !arm_is_secure(env)) {

        changed_daif = (env->daif ^ val) & mask;

        if (changed_daif & CPSR_A) {
            /* Check to see if we are allowed to change the masking of async
             * abort exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_AW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_A flag from "
                              "non-secure world with SCR.AW bit clear\n");
                mask &= ~CPSR_A;
            }
        }

        if (changed_daif & CPSR_F) {
            /* Check to see if we are allowed to change the masking of FIQ
             * exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_FW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_F flag from "
                              "non-secure world with SCR.FW bit clear\n");
                mask &= ~CPSR_F;
            }

            /* Check whether non-maskable FIQ (NMFI) support is enabled.
             * If this bit is set software is not allowed to mask
             * FIQs, but is allowed to set CPSR_F to 0.
             */
            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
                (val & CPSR_F)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to enable CPSR_F flag "
                              "(non-maskable FIQ [NMFI] support enabled)\n");
                mask &= ~CPSR_F;
            }
        }
    }

5683 5684 5685
    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

5686 5687
    if (write_type != CPSRWriteRaw &&
        ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5688 5689 5690 5691 5692 5693 5694 5695 5696
        if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
            /* Note that we can only get here in USR mode if this is a
             * gdb stub write; for this case we follow the architectural
             * behaviour for guest writes in USR mode of ignoring an attempt
             * to switch mode. (Those are caught by translate.c for writes
             * triggered by guest instructions.)
             */
            mask &= ~CPSR_M;
        } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5697 5698 5699 5700 5701 5702 5703
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
             * v7, and has defined behaviour in v8:
             *  + leave CPSR.M untouched
             *  + allow changes to the other CPSR fields
             *  + set PSTATE.IL
             * For user changes via the GDB stub, we don't set PSTATE.IL,
             * as this would be unnecessarily harsh for a user error.
5704 5705
             */
            mask &= ~CPSR_M;
5706 5707 5708 5709 5710
            if (write_type != CPSRWriteByGDBStub &&
                arm_feature(env, ARM_FEATURE_V8)) {
                mask |= CPSR_IL;
                val |= CPSR_IL;
            }
5711 5712 5713
        } else {
            switch_mode(env, val & CPSR_M);
        }
5714 5715 5716 5717 5718
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
5736 5737 5738 5739
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
5740 5741
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
5754
    return revbit32(x);
P
pbrook 已提交
5755 5756
}

5757
#if defined(CONFIG_USER_ONLY)
5758

P
pbrook 已提交
5759
/* These should probably raise undefined insn exceptions.  */
5760
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
5761
{
5762 5763 5764
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
P
pbrook 已提交
5765 5766
}

5767
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
5768
{
5769 5770 5771
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
P
pbrook 已提交
5772 5773 5774
    return 0;
}

5775
void switch_mode(CPUARMState *env, int mode)
5776
{
5777 5778 5779 5780 5781
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
5782 5783
}

5784 5785
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
5786 5787 5788 5789
{
    return 1;
}

5790 5791 5792 5793 5794
void aarch64_sync_64_to_32(CPUARMState *env)
{
    g_assert_not_reached();
}

5795 5796
#else

5797
void switch_mode(CPUARMState *env, int mode)
5798 5799 5800 5801 5802 5803 5804 5805 5806 5807
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
5808
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
5809 5810
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
5811
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
5812 5813
    }

5814
    i = bank_number(old_mode);
5815 5816 5817 5818
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

5819
    i = bank_number(mode);
5820 5821 5822 5823 5824
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861
/* Physical Interrupt Target EL Lookup Table
 *
 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
 *
 * The below multi-dimensional table is used for looking up the target
 * exception level given numerous condition criteria.  Specifically, the
 * target EL is based on SCR and HCR routing controls as well as the
 * currently executing EL and secure state.
 *
 *    Dimensions:
 *    target_el_table[2][2][2][2][2][4]
 *                    |  |  |  |  |  +--- Current EL
 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
 *                    |  |  |  +--------- HCR mask override
 *                    |  |  +------------ SCR exec state control
 *                    |  +--------------- SCR mask override
 *                    +------------------ 32-bit(0)/64-bit(1) EL3
 *
 *    The table values are as such:
 *    0-3 = EL0-EL3
 *     -1 = Cannot occur
 *
 * The ARM ARM target EL table includes entries indicating that an "exception
 * is not taken".  The two cases where this is applicable are:
 *    1) An exception is taken from EL3 but the SCR does not have the exception
 *    routed to EL3.
 *    2) An exception is taken from EL2 but the HCR does not have the exception
 *    routed to EL2.
 * In these two cases, the below table contain a target of EL1.  This value is
 * returned as it is expected that the consumer of the table data will check
 * for "target EL >= current EL" to ensure the exception is not taken.
 *
 *            SCR     HCR
 *         64  EA     AMO                 From
 *        BIT IRQ     IMO      Non-secure         Secure
 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
 */
5862
static const int8_t target_el_table[2][2][2][2][2][4] = {
5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883
    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
};

/*
 * Determine the target EL for physical exceptions
 */
5884 5885
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
5886 5887
{
    CPUARMState *env = cs->env_ptr;
5888
    int rw;
5889 5890 5891
    int scr;
    int hcr;
    int target_el;
5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
    /* Is the highest EL AArch64? */
    int is64 = arm_feature(env, ARM_FEATURE_AARCH64);

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
    } else {
        /* Either EL2 is the highest EL (and so the EL2 register width
         * is given by is64); or there is no EL2 or EL3, in which case
         * the value of 'rw' does not affect the table lookup anyway.
         */
        rw = is64;
    }
5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930

    switch (excp_idx) {
    case EXCP_IRQ:
        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
        hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
        break;
    case EXCP_FIQ:
        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
        hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
        break;
    default:
        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
        hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
        break;
    };

    /* If HCR.TGE is set then HCR is treated as being 1 */
    hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);

    /* Perform a table-lookup for the target EL given the current state */
    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];

    assert(target_el > 0);

    return target_el;
}

P
pbrook 已提交
5931 5932
static void v7m_push(CPUARMState *env, uint32_t val)
{
5933 5934
    CPUState *cs = CPU(arm_env_get_cpu(env));

P
pbrook 已提交
5935
    env->regs[13] -= 4;
5936
    stl_phys(cs->as, env->regs[13], val);
P
pbrook 已提交
5937 5938 5939 5940
}

static uint32_t v7m_pop(CPUARMState *env)
{
5941
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
5942
    uint32_t val;
5943

5944
    val = ldl_phys(cs->as, env->regs[13]);
P
pbrook 已提交
5945 5946 5947 5948 5949
    env->regs[13] += 4;
    return val;
}

/* Switch to V7M main or process stack pointer.  */
5950
static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
P
pbrook 已提交
5951 5952
{
    uint32_t tmp;
5953 5954 5955
    bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK;

    if (old_spsel != new_spsel) {
P
pbrook 已提交
5956 5957 5958
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
5959 5960 5961 5962

        env->v7m.control = deposit32(env->v7m.control,
                                     R_V7M_CONTROL_SPSEL_SHIFT,
                                     R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
P
pbrook 已提交
5963 5964 5965 5966 5967 5968 5969 5970 5971
    }
}

static void do_v7m_exception_exit(CPUARMState *env)
{
    uint32_t type;
    uint32_t xpsr;

    type = env->regs[15];
5972 5973 5974 5975 5976
    if (env->v7m.exception != ARMV7M_EXCP_NMI) {
        /* Auto-clear FAULTMASK on return from other than NMI */
        env->daif &= ~PSTATE_F;
    }
    if (env->v7m.exception != 0) {
P
Paul Brook 已提交
5977
        armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
5978
    }
P
pbrook 已提交
5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989

    /* Switch to the target stack.  */
    switch_v7m_sp(env, (type & 4) != 0);
    /* Pop registers.  */
    env->regs[0] = v7m_pop(env);
    env->regs[1] = v7m_pop(env);
    env->regs[2] = v7m_pop(env);
    env->regs[3] = v7m_pop(env);
    env->regs[12] = v7m_pop(env);
    env->regs[14] = v7m_pop(env);
    env->regs[15] = v7m_pop(env);
5990 5991 5992 5993 5994 5995 5996 5997 5998 5999
    if (env->regs[15] & 1) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "M profile return from interrupt with misaligned "
                      "PC is UNPREDICTABLE\n");
        /* Actual hardware seems to ignore the lsbit, and there are several
         * RTOSes out there which incorrectly assume the r15 in the stack
         * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
         */
        env->regs[15] &= ~1U;
    }
P
pbrook 已提交
6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011
    xpsr = v7m_pop(env);
    xpsr_write(env, xpsr, 0xfffffdff);
    /* Undo stack alignment.  */
    if (xpsr & 0x200)
        env->regs[13] |= 4;
    /* ??? The exception return type specifies Thread/Handler mode.  However
       this is also implied by the xPSR value. Not sure what to do
       if there is a mismatch.  */
    /* ??? Likewise for mismatches between the CONTROL register and the stack
       pointer.  */
}

6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026
static void arm_log_exception(int idx)
{
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
        const char *exc = NULL;

        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
            exc = excnames[idx];
        }
        if (!exc) {
            exc = "unknown";
        }
        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
    }
}

6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050
static uint32_t arm_v7m_load_vector(ARMCPU *cpu)

{
    CPUState *cs = CPU(cpu);
    CPUARMState *env = &cpu->env;
    MemTxResult result;
    hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4;
    uint32_t addr;

    addr = address_space_ldl(cs->as, vec,
                             MEMTXATTRS_UNSPECIFIED, &result);
    if (result != MEMTX_OK) {
        /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
         * which would then be immediately followed by our failing to load
         * the entry vector for that HardFault, which is a Lockup case.
         * Since we don't model Lockup, we just report this guest error
         * via cpu_abort().
         */
        cpu_abort(cs, "Failed to read from exception vector table "
                  "entry %08x\n", (unsigned)vec);
    }
    return addr;
}

6051
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
6052
{
6053 6054
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
6055 6056 6057 6058
    uint32_t xpsr = xpsr_read(env);
    uint32_t lr;
    uint32_t addr;

6059
    arm_log_exception(cs->exception_index);
6060

P
pbrook 已提交
6061
    lr = 0xfffffff1;
6062
    if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
P
pbrook 已提交
6063
        lr |= 4;
6064
    }
P
pbrook 已提交
6065 6066 6067 6068 6069 6070 6071
    if (env->v7m.exception == 0)
        lr |= 8;

    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
    /* TODO: Need to escalate if the current priority is higher than the
       one we're raising.  */
6072
    switch (cs->exception_index) {
P
pbrook 已提交
6073
    case EXCP_UDEF:
P
Paul Brook 已提交
6074
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
P
pbrook 已提交
6075 6076
        return;
    case EXCP_SWI:
6077
        /* The PC already points to the next instruction.  */
P
Paul Brook 已提交
6078
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
P
pbrook 已提交
6079 6080 6081
        return;
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
6082 6083 6084
        /* TODO: if we implemented the MPU registers, this is where we
         * should set the MMFAR, etc from exception.fsr and exception.vaddress.
         */
P
Paul Brook 已提交
6085
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
P
pbrook 已提交
6086 6087
        return;
    case EXCP_BKPT:
6088
        if (semihosting_enabled()) {
P
pbrook 已提交
6089
            int nr;
6090
            nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
P
pbrook 已提交
6091 6092
            if (nr == 0xab) {
                env->regs[15] += 2;
6093 6094 6095
                qemu_log_mask(CPU_LOG_INT,
                              "...handling as semihosting call 0x%x\n",
                              env->regs[0]);
P
pbrook 已提交
6096 6097 6098 6099
                env->regs[0] = do_arm_semihosting(env);
                return;
            }
        }
P
Paul Brook 已提交
6100
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
P
pbrook 已提交
6101 6102
        return;
    case EXCP_IRQ:
P
Paul Brook 已提交
6103
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
P
pbrook 已提交
6104 6105 6106 6107 6108
        break;
    case EXCP_EXCEPTION_EXIT:
        do_v7m_exception_exit(env);
        return;
    default:
6109
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
P
pbrook 已提交
6110 6111 6112
        return; /* Never happens.  Keep compiler happy.  */
    }

6113 6114
    /* Align stack pointer if the guest wants that */
    if ((env->regs[13] & 4) && (env->v7m.ccr & R_V7M_CCR_STKALIGN_MASK)) {
6115
        env->regs[13] -= 4;
P
pbrook 已提交
6116 6117
        xpsr |= 0x200;
    }
B
balrog 已提交
6118
    /* Switch to the handler mode.  */
P
pbrook 已提交
6119 6120 6121 6122 6123 6124 6125 6126 6127
    v7m_push(env, xpsr);
    v7m_push(env, env->regs[15]);
    v7m_push(env, env->regs[14]);
    v7m_push(env, env->regs[12]);
    v7m_push(env, env->regs[3]);
    v7m_push(env, env->regs[2]);
    v7m_push(env, env->regs[1]);
    v7m_push(env, env->regs[0]);
    switch_v7m_sp(env, 0);
6128 6129
    /* Clear IT bits */
    env->condexec_bits = 0;
P
pbrook 已提交
6130
    env->regs[14] = lr;
6131
    addr = arm_v7m_load_vector(cpu);
P
pbrook 已提交
6132 6133 6134 6135
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186
/* Function used to synchronize QEMU's AArch64 register set with AArch32
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_32_to_64(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy R[0:7] to X[0:7] */
    for (i = 0; i < 8; i++) {
        env->xregs[i] = env->regs[i];
    }

    /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
     * Otherwise, they come from the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->usr_regs[i - 8];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->regs[i];
        }
    }

    /* Registers x13-x23 are the various mode SP and FP registers. Registers
     * r13 and r14 are only copied if we are in that mode, otherwise we copy
     * from the mode banked register.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->xregs[13] = env->regs[13];
        env->xregs[14] = env->regs[14];
    } else {
        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
        /* HYP is an exception in that it is copied from r14 */
        if (mode == ARM_CPU_MODE_HYP) {
            env->xregs[14] = env->regs[14];
        } else {
            env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->xregs[15] = env->regs[13];
    } else {
        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
6187 6188
        env->xregs[16] = env->regs[14];
        env->xregs[17] = env->regs[13];
6189
    } else {
6190 6191
        env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6192 6193 6194
    }

    if (mode == ARM_CPU_MODE_SVC) {
6195 6196
        env->xregs[18] = env->regs[14];
        env->xregs[19] = env->regs[13];
6197
    } else {
6198 6199
        env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6200 6201 6202
    }

    if (mode == ARM_CPU_MODE_ABT) {
6203 6204
        env->xregs[20] = env->regs[14];
        env->xregs[21] = env->regs[13];
6205
    } else {
6206 6207
        env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6208 6209 6210
    }

    if (mode == ARM_CPU_MODE_UND) {
6211 6212
        env->xregs[22] = env->regs[14];
        env->xregs[23] = env->regs[13];
6213
    } else {
6214 6215
        env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->xregs[i] = env->fiq_regs[i - 24];
        }
        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
        env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
    }

    env->pc = env->regs[15];
}

/* Function used to synchronize QEMU's AArch32 register set with AArch64
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_64_to_32(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy X[0:7] to R[0:7] */
    for (i = 0; i < 8; i++) {
        env->regs[i] = env->xregs[i];
    }

    /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
     * Otherwise, we copy x8-x12 into the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->usr_regs[i - 8] = env->xregs[i];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->regs[i] = env->xregs[i];
        }
    }

    /* Registers r13 & r14 depend on the current mode.
     * If we are in a given mode, we copy the corresponding x registers to r13
     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
     * for the mode.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->regs[13] = env->xregs[13];
        env->regs[14] = env->xregs[14];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];

        /* HYP is an exception in that it does not have its own banked r14 but
         * shares the USR r14
         */
        if (mode == ARM_CPU_MODE_HYP) {
            env->regs[14] = env->xregs[14];
        } else {
            env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->regs[13] = env->xregs[15];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
6292 6293
        env->regs[14] = env->xregs[16];
        env->regs[13] = env->xregs[17];
6294
    } else {
6295 6296
        env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6297 6298 6299
    }

    if (mode == ARM_CPU_MODE_SVC) {
6300 6301
        env->regs[14] = env->xregs[18];
        env->regs[13] = env->xregs[19];
6302
    } else {
6303 6304
        env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6305 6306 6307
    }

    if (mode == ARM_CPU_MODE_ABT) {
6308 6309
        env->regs[14] = env->xregs[20];
        env->regs[13] = env->xregs[21];
6310
    } else {
6311 6312
        env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6313 6314 6315
    }

    if (mode == ARM_CPU_MODE_UND) {
6316 6317
        env->regs[14] = env->xregs[22];
        env->regs[13] = env->xregs[23];
6318
    } else {
6319 6320
        env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->fiq_regs[i - 24] = env->xregs[i];
        }
        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
        env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
    }

    env->regs[15] = env->pc;
}

6342
static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
6343
{
6344 6345
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
6346 6347 6348 6349
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;
6350
    uint32_t moe;
6351

6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376
    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
    switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
    case EC_BREAKPOINT:
    case EC_BREAKPOINT_SAME_EL:
        moe = 1;
        break;
    case EC_WATCHPOINT:
    case EC_WATCHPOINT_SAME_EL:
        moe = 10;
        break;
    case EC_AA32_BKPT:
        moe = 3;
        break;
    case EC_VECTORCATCH:
        moe = 5;
        break;
    default:
        moe = 0;
        break;
    }

    if (moe) {
        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
    }

6377
    /* TODO: Vectored interrupt controller.  */
6378
    switch (cs->exception_index) {
6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
6392
        /* The PC already points to the next instruction.  */
6393 6394
        offset = 0;
        break;
P
pbrook 已提交
6395
    case EXCP_BKPT:
6396
        env->exception.fsr = 2;
P
pbrook 已提交
6397 6398
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
6399
        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
6400
        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6401
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
6402
                      env->exception.fsr, (uint32_t)env->exception.vaddress);
6403 6404 6405 6406 6407 6408
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
6409
        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
6410
        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6411
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
6412
                      env->exception.fsr,
6413
                      (uint32_t)env->exception.vaddress);
6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
6425 6426 6427 6428 6429
        if (env->cp15.scr_el3 & SCR_IRQ) {
            /* IRQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
            mask |= CPSR_F;
        }
6430 6431 6432 6433 6434 6435
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
6436 6437 6438 6439
        if (env->cp15.scr_el3 & SCR_FIQ) {
            /* FIQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
        }
6440 6441
        offset = 4;
        break;
6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455
    case EXCP_VIRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_VFIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 4;
        break;
6456 6457 6458 6459 6460 6461
    case EXCP_SMC:
        new_mode = ARM_CPU_MODE_MON;
        addr = 0x08;
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 0;
        break;
6462
    default:
6463
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
6464 6465
        return; /* Never happens.  Keep compiler happy.  */
    }
6466 6467 6468

    if (new_mode == ARM_CPU_MODE_MON) {
        addr += env->cp15.mvbar;
6469
    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
6470
        /* High vectors. When enabled, base address cannot be remapped. */
6471
        addr += 0xffff0000;
6472 6473 6474
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
6475
         * This register is only followed in non-monitor mode, and is banked.
6476 6477
         * Note: only bits 31:5 are valid.
         */
6478
        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
6479
    }
6480 6481 6482 6483 6484

    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
        env->cp15.scr_el3 &= ~SCR_NS;
    }

6485
    switch_mode (env, new_mode);
6486 6487 6488 6489
    /* For exceptions taken to AArch32 we must clear the SS bit in both
     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
     */
    env->uncached_cpsr &= ~PSTATE_SS;
6490
    env->spsr = cpsr_read(env);
P
pbrook 已提交
6491 6492
    /* Clear IT bits.  */
    env->condexec_bits = 0;
6493
    /* Switch to the new mode, and to the correct instruction set.  */
6494
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6495 6496 6497
    /* Set new mode endianness */
    env->uncached_cpsr &= ~CPSR_E;
    if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6498
        env->uncached_cpsr |= CPSR_E;
6499
    }
6500
    env->daif |= mask;
6501 6502 6503
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
6504
        env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6505
    }
6506 6507 6508 6509
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
}

6510 6511
/* Handle exception entry to a target EL which is using AArch64 */
static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6512 6513 6514 6515 6516 6517 6518 6519
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    unsigned int new_el = env->exception.target_el;
    target_ulong addr = env->cp15.vbar_el[new_el];
    unsigned int new_mode = aarch64_pstate_mode(new_el, true);

    if (arm_current_el(env) < new_el) {
6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
        /* Entry vector offset depends on whether the implemented EL
         * immediately lower than the target level is using AArch32 or AArch64
         */
        bool is_aa64;

        switch (new_el) {
        case 3:
            is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
            break;
        case 2:
            is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
            break;
        case 1:
            is_aa64 = is_a64(env);
            break;
        default:
            g_assert_not_reached();
        }

        if (is_aa64) {
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603
            addr += 0x400;
        } else {
            addr += 0x600;
        }
    } else if (pstate_read(env) & PSTATE_SP) {
        addr += 0x200;
    }

    switch (cs->exception_index) {
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
        env->cp15.far_el[new_el] = env->exception.vaddress;
        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
                      env->cp15.far_el[new_el]);
        /* fall through */
    case EXCP_BKPT:
    case EXCP_UDEF:
    case EXCP_SWI:
    case EXCP_HVC:
    case EXCP_HYP_TRAP:
    case EXCP_SMC:
        env->cp15.esr_el[new_el] = env->exception.syndrome;
        break;
    case EXCP_IRQ:
    case EXCP_VIRQ:
        addr += 0x80;
        break;
    case EXCP_FIQ:
    case EXCP_VFIQ:
        addr += 0x100;
        break;
    case EXCP_SEMIHOST:
        qemu_log_mask(CPU_LOG_INT,
                      "...handling as semihosting call 0x%" PRIx64 "\n",
                      env->xregs[0]);
        env->xregs[0] = do_arm_semihosting(env);
        return;
    default:
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
    }

    if (is_a64(env)) {
        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
        aarch64_save_sp(env, arm_current_el(env));
        env->elr_el[new_el] = env->pc;
    } else {
        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
        env->elr_el[new_el] = env->regs[15];

        aarch64_sync_32_to_64(env);

        env->condexec_bits = 0;
    }
    qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
                  env->elr_el[new_el]);

    pstate_write(env, PSTATE_DAIF | new_mode);
    env->aarch64 = 1;
    aarch64_restore_sp(env, new_el);

    env->pc = addr;

    qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
                  new_el, env->pc, pstate_read(env));
6604 6605
}

6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
static inline bool check_for_semihosting(CPUState *cs)
{
    /* Check whether this exception is a semihosting call; if so
     * then handle it and return true; otherwise return false.
     */
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    if (is_a64(env)) {
        if (cs->exception_index == EXCP_SEMIHOST) {
            /* This is always the 64-bit semihosting exception.
             * The "is this usermode" and "is semihosting enabled"
             * checks have been done at translate time.
             */
            qemu_log_mask(CPU_LOG_INT,
                          "...handling as semihosting call 0x%" PRIx64 "\n",
                          env->xregs[0]);
            env->xregs[0] = do_arm_semihosting(env);
            return true;
        }
        return false;
    } else {
        uint32_t imm;

        /* Only intercept calls from privileged modes, to provide some
         * semblance of security.
         */
6633 6634 6635
        if (cs->exception_index != EXCP_SEMIHOST &&
            (!semihosting_enabled() ||
             ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
6636 6637 6638 6639
            return false;
        }

        switch (cs->exception_index) {
6640 6641 6642 6643 6644 6645
        case EXCP_SEMIHOST:
            /* This is always a semihosting call; the "is this usermode"
             * and "is semihosting enabled" checks have been done at
             * translate time.
             */
            break;
6646 6647 6648
        case EXCP_SWI:
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
6649
                imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6650 6651 6652 6653 6654
                    & 0xff;
                if (imm == 0xab) {
                    break;
                }
            } else {
6655
                imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6656 6657 6658 6659 6660 6661 6662 6663 6664
                    & 0xffffff;
                if (imm == 0x123456) {
                    break;
                }
            }
            return false;
        case EXCP_BKPT:
            /* See if this is a semihosting syscall.  */
            if (env->thumb) {
6665
                imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684
                    & 0xff;
                if (imm == 0xab) {
                    env->regs[15] += 2;
                    break;
                }
            }
            return false;
        default:
            return false;
        }

        qemu_log_mask(CPU_LOG_INT,
                      "...handling as semihosting call 0x%x\n",
                      env->regs[0]);
        env->regs[0] = do_arm_semihosting(env);
        return true;
    }
}

6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695
/* Handle a CPU exception for A and R profile CPUs.
 * Do any appropriate logging, handle PSCI calls, and then hand off
 * to the AArch64-entry or AArch32-entry function depending on the
 * target exception level's register width.
 */
void arm_cpu_do_interrupt(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    unsigned int new_el = env->exception.target_el;

6696
    assert(!arm_feature(env, ARM_FEATURE_M));
6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713

    arm_log_exception(cs->exception_index);
    qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
                  new_el);
    if (qemu_loglevel_mask(CPU_LOG_INT)
        && !excp_is_internal(cs->exception_index)) {
        qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
                      env->exception.syndrome >> ARM_EL_EC_SHIFT,
                      env->exception.syndrome);
    }

    if (arm_is_psci_call(cpu, cs->exception_index)) {
        arm_handle_psci_call(cpu);
        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
        return;
    }

6714 6715 6716
    /* Semihosting semantics depend on the register width of the
     * code that caused the exception, not the target exception level,
     * so must be handled here.
6717
     */
6718 6719 6720 6721 6722 6723
    if (check_for_semihosting(cs)) {
        return;
    }

    assert(!excp_is_internal(cs->exception_index));
    if (arm_el_is_aa64(env, new_el)) {
6724 6725 6726 6727
        arm_cpu_do_interrupt_aarch64(cs);
    } else {
        arm_cpu_do_interrupt_aarch32(cs);
    }
6728

6729 6730
    arm_call_el_change_hook(cpu);

6731 6732 6733 6734
    if (!kvm_enabled()) {
        cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
    }
}
6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755

/* Return the exception level which controls this address translation regime */
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S2NS:
    case ARMMMUIdx_S1E2:
        return 2;
    case ARMMMUIdx_S1E3:
        return 3;
    case ARMMMUIdx_S1SE0:
        return arm_el_is_aa64(env, 3) ? 1 : 3;
    case ARMMMUIdx_S1SE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
        return 1;
    default:
        g_assert_not_reached();
    }
}

6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
/* Return true if this address translation regime is secure */
static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
    case ARMMMUIdx_S1E2:
    case ARMMMUIdx_S2NS:
        return false;
    case ARMMMUIdx_S1E3:
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1SE1:
        return true;
    default:
        g_assert_not_reached();
    }
}

6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791
/* Return the SCTLR value which controls this address translation regime */
static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}

/* Return true if the specified stage of address translation is disabled */
static inline bool regime_translation_disabled(CPUARMState *env,
                                               ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        return (env->cp15.hcr_el2 & HCR_VM) == 0;
    }
    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}

6792 6793 6794 6795 6796 6797
static inline bool regime_translation_big_endian(CPUARMState *env,
                                                 ARMMMUIdx mmu_idx)
{
    return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
}

6798 6799 6800 6801
/* Return the TCR controlling this translation regime */
static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
6802
        return &env->cp15.vtcr_el2;
6803 6804 6805 6806
    }
    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
}

6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852
/* Returns TBI0 value for current regime el */
uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    TCR *tcr;
    uint32_t el;

    /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
       * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
       */
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        mmu_idx += ARMMMUIdx_S1NSE0;
    }

    tcr = regime_tcr(env, mmu_idx);
    el = regime_el(env, mmu_idx);

    if (el > 1) {
        return extract64(tcr->raw_tcr, 20, 1);
    } else {
        return extract64(tcr->raw_tcr, 37, 1);
    }
}

/* Returns TBI1 value for current regime el */
uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    TCR *tcr;
    uint32_t el;

    /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
       * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
       */
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        mmu_idx += ARMMMUIdx_S1NSE0;
    }

    tcr = regime_tcr(env, mmu_idx);
    el = regime_el(env, mmu_idx);

    if (el > 1) {
        return 0;
    } else {
        return extract64(tcr->raw_tcr, 38, 1);
    }
}

6853 6854 6855 6856 6857
/* Return the TTBR associated with this translation regime */
static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
                                   int ttbrn)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
6858
        return env->cp15.vttbr_el2;
6859 6860 6861 6862 6863 6864 6865 6866
    }
    if (ttbrn == 0) {
        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
    } else {
        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
    }
}

6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881
/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env,
                                            ARMMMUIdx mmu_idx)
{
    int el = regime_el(env, mmu_idx);
    if (el == 2 || arm_el_is_aa64(env, el)) {
        return true;
    }
    if (arm_feature(env, ARM_FEATURE_LPAE)
        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
        return true;
    }
    return false;
}

6882 6883 6884 6885
/* Returns true if the stage 1 translation regime is using LPAE format page
 * tables. Used when raising alignment exceptions, whose FSR changes depending
 * on whether the long or short descriptor format is in use. */
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
6886
{
6887 6888 6889 6890
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        mmu_idx += ARMMMUIdx_S1NSE0;
    }

6891 6892 6893
    return regime_using_lpae_format(env, mmu_idx);
}

6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907
static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1NSE0:
        return true;
    default:
        return false;
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
        g_assert_not_reached();
    }
}

6908 6909
/* Translate section/page access permissions to page
 * R/W protection flags
6910 6911 6912 6913 6914
 *
 * @env:         CPUARMState
 * @mmu_idx:     MMU index indicating required translation regime
 * @ap:          The 3-bit access permissions (AP[2:0])
 * @domain_prot: The 2-bit domain access permissions
6915 6916 6917 6918
 */
static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
                                int ap, int domain_prot)
{
6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
    bool is_user = regime_is_user(env, mmu_idx);

    if (domain_prot == 3) {
        return PAGE_READ | PAGE_WRITE;
    }

    switch (ap) {
    case 0:
        if (arm_feature(env, ARM_FEATURE_V7)) {
            return 0;
        }
        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
        case SCTLR_S:
            return is_user ? 0 : PAGE_READ;
        case SCTLR_R:
            return PAGE_READ;
        default:
            return 0;
        }
    case 1:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 2:
6941
        if (is_user) {
6942
            return PAGE_READ;
6943
        } else {
6944
            return PAGE_READ | PAGE_WRITE;
6945
        }
6946 6947 6948 6949 6950
    case 3:
        return PAGE_READ | PAGE_WRITE;
    case 4: /* Reserved.  */
        return 0;
    case 5:
6951
        return is_user ? 0 : PAGE_READ;
6952
    case 6:
6953
        return PAGE_READ;
6954
    case 7:
6955
        if (!arm_feature(env, ARM_FEATURE_V6K)) {
6956
            return 0;
6957
        }
6958
        return PAGE_READ;
6959
    default:
6960
        g_assert_not_reached();
6961
    }
6962 6963
}

6964 6965 6966 6967
/* Translate section/page access permissions to page
 * R/W protection flags.
 *
 * @ap:      The 2-bit simple AP (AP[2:1])
6968
 * @is_user: TRUE if accessing from PL0
6969
 */
6970
static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
{
    switch (ap) {
    case 0:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 1:
        return PAGE_READ | PAGE_WRITE;
    case 2:
        return is_user ? 0 : PAGE_READ;
    case 3:
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

6986 6987 6988 6989 6990 6991
static inline int
simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
{
    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
}

6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
/* Translate S2 section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @s2ap:    The 2-bit stage2 access permissions (S2AP)
 * @xn:      XN (execute-never) bit
 */
static int get_S2prot(CPUARMState *env, int s2ap, int xn)
{
    int prot = 0;

    if (s2ap & 1) {
        prot |= PAGE_READ;
    }
    if (s2ap & 2) {
        prot |= PAGE_WRITE;
    }
    if (!xn) {
7009 7010 7011
        if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
            prot |= PAGE_EXEC;
        }
7012 7013 7014 7015
    }
    return prot;
}

7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096
/* Translate section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @mmu_idx: MMU index indicating required translation regime
 * @is_aa64: TRUE if AArch64
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @ns:      NS (non-secure) bit
 * @xn:      XN (execute-never) bit
 * @pxn:     PXN (privileged execute-never) bit
 */
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
                      int ap, int ns, int xn, int pxn)
{
    bool is_user = regime_is_user(env, mmu_idx);
    int prot_rw, user_rw;
    bool have_wxn;
    int wxn = 0;

    assert(mmu_idx != ARMMMUIdx_S2NS);

    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
    if (is_user) {
        prot_rw = user_rw;
    } else {
        prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
    }

    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
        return prot_rw;
    }

    /* TODO have_wxn should be replaced with
     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
     * compatible processors have EL2, which is required for [U]WXN.
     */
    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);

    if (have_wxn) {
        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
    }

    if (is_aa64) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
            if (!is_user) {
                xn = pxn || (user_rw & PAGE_WRITE);
            }
            break;
        case 2:
        case 3:
            break;
        }
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
        case 3:
            if (is_user) {
                xn = xn || !(user_rw & PAGE_READ);
            } else {
                int uwxn = 0;
                if (have_wxn) {
                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
                }
                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
                     (uwxn && (user_rw & PAGE_WRITE));
            }
            break;
        case 2:
            break;
        }
    } else {
        xn = wxn = 0;
    }

    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
        return prot_rw;
    }
    return prot_rw | PAGE_EXEC;
}

7097 7098
static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
                                     uint32_t *table, uint32_t address)
7099
{
7100 7101
    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
    TCR *tcr = regime_tcr(env, mmu_idx);
7102 7103 7104

    if (address & tcr->mask) {
        if (tcr->raw_tcr & TTBCR_PD1) {
7105 7106 7107
            /* Translation table walk disabled for TTBR1 */
            return false;
        }
7108
        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7109
    } else {
7110
        if (tcr->raw_tcr & TTBCR_PD0) {
7111 7112 7113
            /* Translation table walk disabled for TTBR0 */
            return false;
        }
7114
        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7115 7116 7117
    }
    *table |= (address >> 18) & 0x3ffc;
    return true;
7118 7119
}

7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145
/* Translate a S1 pagetable walk through S2 if needed.  */
static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
                               hwaddr addr, MemTxAttrs txattrs,
                               uint32_t *fsr,
                               ARMMMUFaultInfo *fi)
{
    if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
        !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
        target_ulong s2size;
        hwaddr s2pa;
        int s2prot;
        int ret;

        ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
                                 &txattrs, &s2prot, &s2size, fsr, fi);
        if (ret) {
            fi->s2addr = addr;
            fi->stage2 = true;
            fi->s1ptw = true;
            return ~0;
        }
        addr = s2pa;
    }
    return addr;
}

7146 7147 7148 7149 7150 7151 7152
/* All loads done in the course of a page table walk go through here.
 * TODO: rather than ignoring errors from physical memory reads (which
 * are external aborts in ARM terminology) we should propagate this
 * error out so that we can turn it into a Data Abort if this walk
 * was being done for a CPU load/store or an address translation instruction
 * (but not if it was for a debug access).
 */
7153 7154 7155
static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
                            ARMMMUIdx mmu_idx, uint32_t *fsr,
                            ARMMMUFaultInfo *fi)
7156
{
7157 7158
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
7159
    MemTxAttrs attrs = {};
7160
    AddressSpace *as;
7161 7162

    attrs.secure = is_secure;
7163
    as = arm_addressspace(cs, attrs);
7164 7165 7166 7167
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
    if (fi->s1ptw) {
        return 0;
    }
7168 7169 7170 7171 7172
    if (regime_translation_big_endian(env, mmu_idx)) {
        return address_space_ldl_be(as, addr, attrs, NULL);
    } else {
        return address_space_ldl_le(as, addr, attrs, NULL);
    }
7173 7174
}

7175 7176 7177
static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
                            ARMMMUIdx mmu_idx, uint32_t *fsr,
                            ARMMMUFaultInfo *fi)
7178
{
7179 7180
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
7181
    MemTxAttrs attrs = {};
7182
    AddressSpace *as;
7183 7184

    attrs.secure = is_secure;
7185
    as = arm_addressspace(cs, attrs);
7186 7187 7188 7189
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
    if (fi->s1ptw) {
        return 0;
    }
7190 7191 7192 7193 7194
    if (regime_translation_big_endian(env, mmu_idx)) {
        return address_space_ldq_be(as, addr, attrs, NULL);
    } else {
        return address_space_ldq_le(as, addr, attrs, NULL);
    }
7195 7196
}

7197 7198 7199
static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
                             int access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, int *prot,
7200 7201
                             target_ulong *page_size, uint32_t *fsr,
                             ARMMMUFaultInfo *fi)
7202
{
7203
    CPUState *cs = CPU(arm_env_get_cpu(env));
7204 7205 7206 7207 7208
    int code;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
7209
    int domain = 0;
7210
    int domain_prot;
7211
    hwaddr phys_addr;
7212
    uint32_t dacr;
7213

P
pbrook 已提交
7214 7215
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
7216
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7217 7218 7219 7220
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
7221 7222
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                       mmu_idx, fsr, fi);
P
pbrook 已提交
7223
    type = (desc & 3);
7224
    domain = (desc >> 5) & 0x0f;
7225 7226 7227 7228 7229 7230
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
P
pbrook 已提交
7231
    if (type == 0) {
7232
        /* Section translation fault.  */
P
pbrook 已提交
7233 7234 7235
        code = 5;
        goto do_fault;
    }
7236
    if (domain_prot == 0 || domain_prot == 2) {
P
pbrook 已提交
7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247
        if (type == 2)
            code = 9; /* Section domain fault.  */
        else
            code = 11; /* Page domain fault.  */
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        code = 13;
P
Paul Brook 已提交
7248
        *page_size = 1024 * 1024;
P
pbrook 已提交
7249 7250
    } else {
        /* Lookup l2 entry.  */
7251 7252 7253 7254 7255 7256 7257
        if (type == 1) {
            /* Coarse pagetable.  */
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        } else {
            /* Fine pagetable.  */
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
        }
7258 7259
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                           mmu_idx, fsr, fi);
P
pbrook 已提交
7260 7261 7262 7263 7264 7265 7266
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
7267
            *page_size = 0x10000;
P
pbrook 已提交
7268
            break;
P
pbrook 已提交
7269 7270
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7271
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
P
Paul Brook 已提交
7272
            *page_size = 0x1000;
P
pbrook 已提交
7273
            break;
7274
        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7275
            if (type == 1) {
7276 7277 7278
                /* ARMv6/XScale extended small page format */
                if (arm_feature(env, ARM_FEATURE_XSCALE)
                    || arm_feature(env, ARM_FEATURE_V6)) {
7279
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7280
                    *page_size = 0x1000;
7281
                } else {
7282 7283 7284
                    /* UNPREDICTABLE in ARMv5; we choose to take a
                     * page translation fault.
                     */
7285 7286 7287 7288 7289
                    code = 7;
                    goto do_fault;
                }
            } else {
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7290
                *page_size = 0x400;
7291
            }
P
pbrook 已提交
7292
            ap = (desc >> 4) & 3;
P
pbrook 已提交
7293 7294
            break;
        default:
P
pbrook 已提交
7295 7296
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
7297
        }
P
pbrook 已提交
7298 7299
        code = 15;
    }
7300 7301 7302
    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
    *prot |= *prot ? PAGE_EXEC : 0;
    if (!(*prot & (1 << access_type))) {
P
pbrook 已提交
7303 7304 7305 7306
        /* Access permission fault.  */
        goto do_fault;
    }
    *phys_ptr = phys_addr;
7307
    return false;
P
pbrook 已提交
7308
do_fault:
7309 7310
    *fsr = code | (domain << 4);
    return true;
P
pbrook 已提交
7311 7312
}

7313 7314 7315
static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
                             int access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7316 7317
                             target_ulong *page_size, uint32_t *fsr,
                             ARMMMUFaultInfo *fi)
P
pbrook 已提交
7318
{
7319
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
7320 7321 7322 7323
    int code;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
7324
    uint32_t pxn = 0;
P
pbrook 已提交
7325 7326
    int type;
    int ap;
7327
    int domain = 0;
7328
    int domain_prot;
7329
    hwaddr phys_addr;
7330
    uint32_t dacr;
7331
    bool ns;
P
pbrook 已提交
7332 7333 7334

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
7335
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7336 7337 7338 7339
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
7340 7341
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                       mmu_idx, fsr, fi);
P
pbrook 已提交
7342
    type = (desc & 3);
7343 7344 7345 7346
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
P
pbrook 已提交
7347 7348
        code = 5;
        goto do_fault;
7349 7350 7351
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
7352
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
7353
    }
7354 7355 7356 7357 7358 7359
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
7360
    if (domain_prot == 0 || domain_prot == 2) {
7361
        if (type != 1) {
P
pbrook 已提交
7362
            code = 9; /* Section domain fault.  */
7363
        } else {
P
pbrook 已提交
7364
            code = 11; /* Page domain fault.  */
7365
        }
P
pbrook 已提交
7366 7367
        goto do_fault;
    }
7368
    if (type != 1) {
P
pbrook 已提交
7369 7370 7371
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7372 7373
            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
P
Paul Brook 已提交
7374
            *page_size = 0x1000000;
7375
        } else {
P
pbrook 已提交
7376 7377
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
7378
            *page_size = 0x100000;
7379
        }
P
pbrook 已提交
7380 7381
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
7382
        pxn = desc & 1;
P
pbrook 已提交
7383
        code = 13;
7384
        ns = extract32(desc, 19, 1);
P
pbrook 已提交
7385
    } else {
7386 7387 7388
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
7389
        ns = extract32(desc, 3, 1);
P
pbrook 已提交
7390 7391
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7392 7393
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                           mmu_idx, fsr, fi);
P
pbrook 已提交
7394 7395 7396 7397
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
7398
            goto do_fault;
P
pbrook 已提交
7399 7400 7401
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
7402
            *page_size = 0x10000;
P
pbrook 已提交
7403 7404 7405 7406
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
7407
            *page_size = 0x1000;
P
pbrook 已提交
7408 7409 7410 7411
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
7412
        }
P
pbrook 已提交
7413 7414
        code = 15;
    }
7415
    if (domain_prot == 3) {
7416 7417
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
7418
        if (pxn && !regime_is_user(env, mmu_idx)) {
7419 7420
            xn = 1;
        }
7421 7422
        if (xn && access_type == 2)
            goto do_fault;
P
pbrook 已提交
7423

7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434
        if (arm_feature(env, ARM_FEATURE_V6K) &&
                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
            /* The simplified model uses AP[0] as an access control bit.  */
            if ((ap & 1) == 0) {
                /* Access flag fault.  */
                code = (code == 15) ? 6 : 3;
                goto do_fault;
            }
            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
        } else {
            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7435
        }
7436 7437 7438 7439
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        if (!(*prot & (1 << access_type))) {
7440 7441 7442
            /* Access permission fault.  */
            goto do_fault;
        }
7443
    }
7444 7445 7446 7447 7448 7449 7450
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        attrs->secure = false;
    }
P
pbrook 已提交
7451
    *phys_ptr = phys_addr;
7452
    return false;
7453
do_fault:
7454 7455
    *fsr = code | (domain << 4);
    return true;
7456 7457
}

7458 7459 7460 7461 7462 7463 7464 7465 7466
/* Fault type for long-descriptor MMU fault reporting; this corresponds
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 */
typedef enum {
    translation_fault = 1,
    access_fault = 2,
    permission_fault = 3,
} MMUFaultType;

7467
/*
7468
 * check_s2_mmu_setup
7469 7470 7471 7472 7473 7474
 * @cpu:        ARMCPU
 * @is_aa64:    True if the translation regime is in AArch64 state
 * @startlevel: Suggested starting level
 * @inputsize:  Bitsize of IPAs
 * @stride:     Page-table stride (See the ARM ARM)
 *
7475 7476
 * Returns true if the suggested S2 translation parameters are OK and
 * false otherwise.
7477
 */
7478 7479
static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
                               int inputsize, int stride)
7480
{
7481 7482 7483
    const int grainsize = stride + 3;
    int startsizecheck;

7484 7485 7486 7487 7488
    /* Negative levels are never allowed.  */
    if (level < 0) {
        return false;
    }

7489 7490 7491 7492 7493
    startsizecheck = inputsize - ((3 - level) * stride + grainsize);
    if (startsizecheck < 1 || startsizecheck > stride + 4) {
        return false;
    }

7494
    if (is_aa64) {
7495
        CPUARMState *env = &cpu->env;
7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516
        unsigned int pamax = arm_pamax(cpu);

        switch (stride) {
        case 13: /* 64KB Pages.  */
            if (level == 0 || (level == 1 && pamax <= 42)) {
                return false;
            }
            break;
        case 11: /* 16KB Pages.  */
            if (level == 0 || (level == 1 && pamax <= 40)) {
                return false;
            }
            break;
        case 9: /* 4KB Pages.  */
            if (level == 0 && pamax <= 42) {
                return false;
            }
            break;
        default:
            g_assert_not_reached();
        }
7517 7518 7519 7520 7521 7522 7523

        /* Inputsize checks.  */
        if (inputsize > pamax &&
            (arm_el_is_aa64(env, 1) || inputsize > 40)) {
            /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
            return false;
        }
7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534
    } else {
        /* AArch32 only supports 4KB pages. Assert on that.  */
        assert(stride == 9);

        if (level == 0) {
            return false;
        }
    }
    return true;
}

7535 7536 7537
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
                               int access_type, ARMMMUIdx mmu_idx,
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7538 7539
                               target_ulong *page_size_ptr, uint32_t *fsr,
                               ARMMMUFaultInfo *fi)
7540
{
7541 7542
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
7543 7544
    /* Read an LPAE long-descriptor translation table. */
    MMUFaultType fault_type = translation_fault;
7545
    uint32_t level;
7546
    uint32_t epd = 0;
7547
    int32_t t0sz, t1sz;
7548
    uint32_t tg;
7549 7550
    uint64_t ttbr;
    int ttbr_select;
7551
    hwaddr descaddr, indexmask, indexmask_grainsize;
7552 7553 7554
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
7555
    int32_t stride = 9;
7556
    int32_t addrsize;
7557
    int inputsize;
7558
    int32_t tbi = 0;
7559
    TCR *tcr = regime_tcr(env, mmu_idx);
7560
    int ap, ns, xn, pxn;
7561 7562
    uint32_t el = regime_el(env, mmu_idx);
    bool ttbr1_valid = true;
7563
    uint64_t descaddrmask;
7564
    bool aarch64 = arm_el_is_aa64(env, el);
7565 7566

    /* TODO:
7567 7568 7569 7570
     * This code does not handle the different format TCR for VTCR_EL2.
     * This code also does not support shareability levels.
     * Attribute and permission bit handling should also be checked when adding
     * support for those page table walks.
7571
     */
7572
    if (aarch64) {
7573
        level = 0;
7574
        addrsize = 64;
7575
        if (el > 1) {
7576 7577 7578
            if (mmu_idx != ARMMMUIdx_S2NS) {
                tbi = extract64(tcr->raw_tcr, 20, 1);
            }
7579 7580 7581 7582 7583 7584 7585
        } else {
            if (extract64(address, 55, 1)) {
                tbi = extract64(tcr->raw_tcr, 38, 1);
            } else {
                tbi = extract64(tcr->raw_tcr, 37, 1);
            }
        }
7586
        tbi *= 8;
7587 7588 7589 7590 7591 7592 7593

        /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
         * invalid.
         */
        if (el > 1) {
            ttbr1_valid = false;
        }
7594
    } else {
7595
        level = 1;
7596
        addrsize = 32;
7597 7598 7599 7600
        /* There is no TTBR1 for EL2 */
        if (el == 2) {
            ttbr1_valid = false;
        }
7601
    }
7602 7603 7604 7605 7606 7607

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
7608
    if (aarch64) {
7609 7610
        /* AArch64 translation.  */
        t0sz = extract32(tcr->raw_tcr, 0, 6);
7611 7612
        t0sz = MIN(t0sz, 39);
        t0sz = MAX(t0sz, 16);
7613 7614 7615 7616 7617 7618 7619
    } else if (mmu_idx != ARMMMUIdx_S2NS) {
        /* AArch32 stage 1 translation.  */
        t0sz = extract32(tcr->raw_tcr, 0, 3);
    } else {
        /* AArch32 stage 2 translation.  */
        bool sext = extract32(tcr->raw_tcr, 4, 1);
        bool sign = extract32(tcr->raw_tcr, 3, 1);
7620 7621 7622 7623 7624 7625
        /* Address size is 40-bit for a stage 2 translation,
         * and t0sz can be negative (from -8 to 7),
         * so we need to adjust it to use the TTBR selecting logic below.
         */
        addrsize = 40;
        t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
7626 7627 7628 7629 7630

        /* If the sign-extend bit is not the same as t0sz[3], the result
         * is unpredictable. Flag this as a guest error.  */
        if (sign != sext) {
            qemu_log_mask(LOG_GUEST_ERROR,
7631
                          "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
7632
        }
7633
    }
7634
    t1sz = extract32(tcr->raw_tcr, 16, 6);
7635
    if (aarch64) {
7636 7637 7638
        t1sz = MIN(t1sz, 39);
        t1sz = MAX(t1sz, 16);
    }
7639
    if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
7640 7641
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
7642
    } else if (ttbr1_valid && t1sz &&
7643
               !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
7644 7645 7646 7647 7648
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
7649
    } else if (!t1sz && ttbr1_valid) {
7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
        fault_type = translation_fault;
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
7666
        ttbr = regime_ttbr(env, mmu_idx, 0);
7667 7668 7669
        if (el < 2) {
            epd = extract32(tcr->raw_tcr, 7, 1);
        }
7670
        inputsize = addrsize - t0sz;
7671

7672
        tg = extract32(tcr->raw_tcr, 14, 2);
7673
        if (tg == 1) { /* 64KB pages */
7674
            stride = 13;
7675 7676
        }
        if (tg == 2) { /* 16KB pages */
7677
            stride = 11;
7678
        }
7679
    } else {
7680 7681 7682
        /* We should only be here if TTBR1 is valid */
        assert(ttbr1_valid);

7683
        ttbr = regime_ttbr(env, mmu_idx, 1);
7684
        epd = extract32(tcr->raw_tcr, 23, 1);
7685
        inputsize = addrsize - t1sz;
7686

7687
        tg = extract32(tcr->raw_tcr, 30, 2);
7688
        if (tg == 3)  { /* 64KB pages */
7689
            stride = 13;
7690 7691
        }
        if (tg == 1) { /* 16KB pages */
7692
            stride = 11;
7693
        }
7694 7695
    }

7696
    /* Here we should have set up all the parameters for the translation:
7697
     * inputsize, ttbr, epd, stride, tbi
7698 7699
     */

7700
    if (epd) {
7701 7702 7703
        /* Translation table walk disabled => Translation fault on TLB miss
         * Note: This is always 0 on 64-bit EL2 and EL3.
         */
7704 7705 7706
        goto do_fault;
    }

7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723
    if (mmu_idx != ARMMMUIdx_S2NS) {
        /* The starting level depends on the virtual address size (which can
         * be up to 48 bits) and the translation granule size. It indicates
         * the number of strides (stride bits at a time) needed to
         * consume the bits of the input address. In the pseudocode this is:
         *  level = 4 - RoundUp((inputsize - grainsize) / stride)
         * where their 'inputsize' is our 'inputsize', 'grainsize' is
         * our 'stride + 3' and 'stride' is our 'stride'.
         * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
         * = 4 - (inputsize - stride - 3 + stride - 1) / stride
         * = 4 - (inputsize - 4) / stride;
         */
        level = 4 - (inputsize - 4) / stride;
    } else {
        /* For stage 2 translations the starting level is specified by the
         * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
         */
7724 7725
        uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
        uint32_t startlevel;
7726 7727
        bool ok;

7728
        if (!aarch64 || stride == 9) {
7729
            /* AArch32 or 4KB pages */
7730
            startlevel = 2 - sl0;
7731 7732
        } else {
            /* 16KB or 64KB pages */
7733
            startlevel = 3 - sl0;
7734 7735 7736
        }

        /* Check that the starting level is valid. */
7737
        ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
7738
                                inputsize, stride);
7739 7740 7741 7742
        if (!ok) {
            fault_type = translation_fault;
            goto do_fault;
        }
7743
        level = startlevel;
7744
    }
7745

7746 7747
    indexmask_grainsize = (1ULL << (stride + 3)) - 1;
    indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
7748 7749

    /* Now we can extract the actual base address from the TTBR */
7750
    descaddr = extract64(ttbr, 0, 48);
7751
    descaddr &= ~indexmask;
7752

7753
    /* The address field in the descriptor goes up to bit 39 for ARMv7
7754 7755 7756
     * but up to bit 47 for ARMv8, but we use the descaddrmask
     * up to bit 39 for AArch32, because we don't need other bits in that case
     * to construct next descriptor address (anyway they should be all zeroes).
7757
     */
7758
    descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
7759
                   ~indexmask_grainsize;
7760

7761 7762 7763 7764 7765 7766
    /* Secure accesses start with the page table in secure memory and
     * can be downgraded to non-secure at any step. Non-secure accesses
     * remain non-secure. We implement this by just ORing in the NSTable/NS
     * bits at each step.
     */
    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
7767 7768
    for (;;) {
        uint64_t descriptor;
7769
        bool nstable;
7770

7771
        descaddr |= (address >> (stride * (4 - level))) & indexmask;
7772
        descaddr &= ~7ULL;
7773
        nstable = extract32(tableattrs, 4, 1);
7774 7775 7776 7777 7778
        descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
        if (fi->s1ptw) {
            goto do_fault;
        }

7779 7780 7781 7782 7783
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
7784
        descaddr = descriptor & descaddrmask;
7785 7786 7787 7788 7789 7790 7791 7792 7793

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
7794
            indexmask = indexmask_grainsize;
7795 7796 7797 7798 7799 7800
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
7801
        page_size = (1ULL << ((stride * (4 - level)) + 3));
7802
        descaddr |= (address & (page_size - 1));
7803
        /* Extract attributes from the descriptor */
7804 7805
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);
7806 7807 7808 7809 7810 7811

        if (mmu_idx == ARMMMUIdx_S2NS) {
            /* Stage 2 table descriptors do not include any attribute fields */
            break;
        }
        /* Merge in attributes from table descriptors */
7812 7813 7814 7815 7816 7817 7818 7819
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
7820
        attrs |= nstable << 3; /* NS */
7821 7822 7823 7824 7825 7826 7827 7828 7829 7830
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = access_fault;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
7831 7832 7833 7834

    ap = extract32(attrs, 4, 2);
    xn = extract32(attrs, 12, 1);

7835 7836 7837 7838 7839 7840
    if (mmu_idx == ARMMMUIdx_S2NS) {
        ns = true;
        *prot = get_S2prot(env, ap, xn);
    } else {
        ns = extract32(attrs, 3, 1);
        pxn = extract32(attrs, 11, 1);
7841
        *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
7842
    }
7843

7844
    fault_type = permission_fault;
7845
    if (!(*prot & (1 << access_type))) {
7846 7847 7848
        goto do_fault;
    }

7849 7850 7851 7852 7853 7854 7855
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        txattrs->secure = false;
    }
7856 7857
    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
7858
    return false;
7859 7860 7861

do_fault:
    /* Long-descriptor format IFSR/DFSR value */
7862
    *fsr = (1 << 9) | (fault_type << 2) | level;
7863 7864
    /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
    fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
7865
    return true;
7866 7867
}

7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028
static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
                                                ARMMMUIdx mmu_idx,
                                                int32_t address, int *prot)
{
    *prot = PAGE_READ | PAGE_WRITE;
    switch (address) {
    case 0xF0000000 ... 0xFFFFFFFF:
        if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
            *prot |= PAGE_EXEC;
        }
        break;
    case 0x00000000 ... 0x7FFFFFFF:
        *prot |= PAGE_EXEC;
        break;
    }

}

static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int n;
    bool is_user = regime_is_user(env, mmu_idx);

    *phys_ptr = address;
    *prot = 0;

    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
    } else { /* MPU enabled */
        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
            /* region search */
            uint32_t base = env->pmsav7.drbar[n];
            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
            uint32_t rmask;
            bool srdis = false;

            if (!(env->pmsav7.drsr[n] & 0x1)) {
                continue;
            }

            if (!rsize) {
                qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
                continue;
            }
            rsize++;
            rmask = (1ull << rsize) - 1;

            if (base & rmask) {
                qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
                              "to DRSR region size, mask = %" PRIx32,
                              base, rmask);
                continue;
            }

            if (address < base || address > base + rmask) {
                continue;
            }

            /* Region matched */

            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
                int i, snd;
                uint32_t srdis_mask;

                rsize -= 3; /* sub region size (power of 2) */
                snd = ((address - base) >> rsize) & 0x7;
                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);

                srdis_mask = srdis ? 0x3 : 0x0;
                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
                    /* This will check in groups of 2, 4 and then 8, whether
                     * the subregion bits are consistent. rsize is incremented
                     * back up to give the region size, considering consistent
                     * adjacent subregions as one region. Stop testing if rsize
                     * is already big enough for an entire QEMU page.
                     */
                    int snd_rounded = snd & ~(i - 1);
                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
                                                     snd_rounded + 8, i);
                    if (srdis_mask ^ srdis_multi) {
                        break;
                    }
                    srdis_mask = (srdis_mask << i) | srdis_mask;
                    rsize++;
                }
            }
            if (rsize < TARGET_PAGE_BITS) {
                qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
                              "alignment of %" PRIu32 " bits. Minimum is %d\n",
                              rsize, TARGET_PAGE_BITS);
                continue;
            }
            if (srdis) {
                continue;
            }
            break;
        }

        if (n == -1) { /* no hits */
            if (cpu->pmsav7_dregion &&
                (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
                /* background fault */
                *fsr = 0;
                return true;
            }
            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
        } else { /* a MPU hit! */
            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);

            if (is_user) { /* User mode AP bit decoding */
                switch (ap) {
                case 0:
                case 1:
                case 5:
                    break; /* no access */
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 2:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "Bad value for AP bits in DRACR %"
                                  PRIx32 "\n", ap);
                }
            } else { /* Priv. mode AP bits decoding */
                switch (ap) {
                case 0:
                    break; /* no access */
                case 1:
                case 2:
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 5:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "Bad value for AP bits in DRACR %"
                                  PRIx32 "\n", ap);
                }
            }

            /* execute never */
            if (env->pmsav7.dracr[n] & (1 << 12)) {
                *prot &= ~PAGE_EXEC;
            }
        }
    }

    *fsr = 0x00d; /* Permission fault */
    return !(*prot & (1 << access_type));
}

8029 8030 8031
static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
P
pbrook 已提交
8032 8033 8034 8035
{
    int n;
    uint32_t mask;
    uint32_t base;
8036
    bool is_user = regime_is_user(env, mmu_idx);
P
pbrook 已提交
8037 8038 8039

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
8040
        base = env->cp15.c6_region[n];
8041
        if ((base & 1) == 0) {
8042
            continue;
8043
        }
8044 8045 8046 8047
        mask = 1 << ((base >> 1) & 0x1f);
        /* Keep this shift separate from the above to avoid an
           (undefined) << 32.  */
        mask = (mask << 1) - 1;
8048
        if (((base ^ address) & ~mask) == 0) {
8049
            break;
8050
        }
P
pbrook 已提交
8051
    }
8052
    if (n < 0) {
8053 8054
        *fsr = 2;
        return true;
8055
    }
P
pbrook 已提交
8056 8057

    if (access_type == 2) {
8058
        mask = env->cp15.pmsav5_insn_ap;
P
pbrook 已提交
8059
    } else {
8060
        mask = env->cp15.pmsav5_data_ap;
P
pbrook 已提交
8061 8062 8063 8064
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
8065 8066
        *fsr = 1;
        return true;
P
pbrook 已提交
8067
    case 1:
8068
        if (is_user) {
8069 8070
            *fsr = 1;
            return true;
8071
        }
8072 8073
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
8074
    case 2:
8075
        *prot = PAGE_READ;
8076
        if (!is_user) {
8077
            *prot |= PAGE_WRITE;
8078
        }
8079
        break;
P
pbrook 已提交
8080
    case 3:
8081 8082
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
8083
    case 5:
8084
        if (is_user) {
8085 8086
            *fsr = 1;
            return true;
8087
        }
8088 8089
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
8090
    case 6:
8091 8092
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
8093
    default:
8094
        /* Bad permission.  */
8095 8096
        *fsr = 1;
        return true;
P
pbrook 已提交
8097
    }
8098
    *prot |= PAGE_EXEC;
8099
    return false;
P
pbrook 已提交
8100 8101
}

8102 8103 8104 8105 8106 8107
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
8108 8109
 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 * prot and page_size may not be filled in, and the populated fsr value provides
8110 8111 8112 8113
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
8114
 *  * for PSMAv5 based systems we don't bother to return a full FSR format
8115 8116 8117 8118 8119
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
8120
 * @mmu_idx: MMU index indicating required translation regime
8121
 * @phys_ptr: set to the physical address corresponding to the virtual address
8122
 * @attrs: set to the memory transaction attributes to use
8123 8124
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
8125
 * @fsr: set to the DFSR/IFSR value on failure
8126
 */
8127 8128 8129
static bool get_phys_addr(CPUARMState *env, target_ulong address,
                          int access_type, ARMMMUIdx mmu_idx,
                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8130 8131
                          target_ulong *page_size, uint32_t *fsr,
                          ARMMMUFaultInfo *fi)
P
pbrook 已提交
8132
{
8133
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8134 8135
        /* Call ourselves recursively to do the stage 1 and then stage 2
         * translations.
8136
         */
8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165
        if (arm_feature(env, ARM_FEATURE_EL2)) {
            hwaddr ipa;
            int s2_prot;
            int ret;

            ret = get_phys_addr(env, address, access_type,
                                mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
                                prot, page_size, fsr, fi);

            /* If S1 fails or S2 is disabled, return early.  */
            if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
                *phys_ptr = ipa;
                return ret;
            }

            /* S1 is done. Now do S2 translation.  */
            ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
                                     phys_ptr, attrs, &s2_prot,
                                     page_size, fsr, fi);
            fi->s2addr = ipa;
            /* Combine the S1 and S2 perms.  */
            *prot &= s2_prot;
            return ret;
        } else {
            /*
             * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
             */
            mmu_idx += ARMMMUIdx_S1NSE0;
        }
8166
    }
8167

8168 8169 8170 8171 8172
    /* The page table entries may downgrade secure to non-secure, but
     * cannot upgrade an non-secure translation regime's attributes
     * to secure.
     */
    attrs->secure = regime_is_secure(env, mmu_idx);
8173
    attrs->user = regime_is_user(env, mmu_idx);
8174

8175 8176 8177 8178 8179 8180 8181 8182 8183 8184
    /* Fast Context Switch Extension. This doesn't exist at all in v8.
     * In v7 and earlier it affects all stage 1 translations.
     */
    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
        && !arm_feature(env, ARM_FEATURE_V8)) {
        if (regime_el(env, mmu_idx) == 3) {
            address += env->cp15.fcseidr_s;
        } else {
            address += env->cp15.fcseidr_ns;
        }
8185
    }
P
pbrook 已提交
8186

8187 8188 8189 8190 8191 8192 8193 8194 8195 8196
    /* pmsav7 has special handling for when MPU is disabled so call it before
     * the common MMU/MPU disabled check below.
     */
    if (arm_feature(env, ARM_FEATURE_MPU) &&
        arm_feature(env, ARM_FEATURE_V7)) {
        *page_size = TARGET_PAGE_SIZE;
        return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
                                    phys_ptr, prot, fsr);
    }

8197
    if (regime_translation_disabled(env, mmu_idx)) {
P
pbrook 已提交
8198 8199
        /* MMU/MPU disabled.  */
        *phys_ptr = address;
8200
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
8201
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
8202
        return 0;
8203 8204 8205
    }

    if (arm_feature(env, ARM_FEATURE_MPU)) {
8206
        /* Pre-v7 MPU */
P
Paul Brook 已提交
8207
        *page_size = TARGET_PAGE_SIZE;
8208 8209
        return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
                                    phys_ptr, prot, fsr);
8210 8211 8212 8213
    }

    if (regime_using_lpae_format(env, mmu_idx)) {
        return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8214
                                  attrs, prot, page_size, fsr, fi);
8215 8216
    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
        return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8217
                                attrs, prot, page_size, fsr, fi);
P
pbrook 已提交
8218
    } else {
8219
        return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8220
                                prot, page_size, fsr, fi);
P
pbrook 已提交
8221 8222 8223
    }
}

8224
/* Walk the page table and (if the mapping exists) add the page
8225 8226
 * to the TLB. Return false on success, or true on failure. Populate
 * fsr with ARM DFSR/IFSR fault register format value on failure.
8227
 */
8228
bool arm_tlb_fill(CPUState *cs, vaddr address,
8229 8230
                  int access_type, int mmu_idx, uint32_t *fsr,
                  ARMMMUFaultInfo *fi)
8231
{
8232 8233
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
8234
    hwaddr phys_addr;
P
Paul Brook 已提交
8235
    target_ulong page_size;
8236
    int prot;
8237
    int ret;
8238
    MemTxAttrs attrs = {};
8239

8240
    ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
8241
                        &attrs, &prot, &page_size, fsr, fi);
8242
    if (!ret) {
8243
        /* Map a single [sub]page.  */
8244 8245
        phys_addr &= TARGET_PAGE_MASK;
        address &= TARGET_PAGE_MASK;
8246 8247
        tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
                                prot, mmu_idx, page_size);
P
Paul Brook 已提交
8248
        return 0;
8249 8250
    }

8251
    return ret;
8252 8253
}

8254 8255
hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
                                         MemTxAttrs *attrs)
8256
{
8257
    ARMCPU *cpu = ARM_CPU(cs);
8258
    CPUARMState *env = &cpu->env;
8259
    hwaddr phys_addr;
P
Paul Brook 已提交
8260
    target_ulong page_size;
8261
    int prot;
8262 8263
    bool ret;
    uint32_t fsr;
8264
    ARMMMUFaultInfo fi = {};
8265

8266 8267
    *attrs = (MemTxAttrs) {};

8268
    ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
8269
                        attrs, &prot, &page_size, &fsr, &fi);
8270

8271
    if (ret) {
8272
        return -1;
8273
    }
8274 8275 8276
    return phys_addr;
}

8277
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
8278
{
8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302
    uint32_t mask;
    unsigned el = arm_current_el(env);

    /* First handle registers which unprivileged can read */

    switch (reg) {
    case 0 ... 7: /* xPSR sub-fields */
        mask = 0;
        if ((reg & 1) && el) {
            mask |= 0x000001ff; /* IPSR (unpriv. reads as zero) */
        }
        if (!(reg & 4)) {
            mask |= 0xf8000000; /* APSR */
        }
        /* EPSR reads as zero */
        return xpsr_read(env) & mask;
        break;
    case 20: /* CONTROL */
        return env->v7m.control;
    }

    if (el == 0) {
        return 0; /* unprivileged reads others as zero */
    }
8303

P
pbrook 已提交
8304 8305
    switch (reg) {
    case 8: /* MSP */
8306 8307
        return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
            env->v7m.other_sp : env->regs[13];
P
pbrook 已提交
8308
    case 9: /* PSP */
8309 8310
        return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
            env->regs[13] : env->v7m.other_sp;
P
pbrook 已提交
8311
    case 16: /* PRIMASK */
8312
        return (env->daif & PSTATE_I) != 0;
8313 8314
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
8315
        return env->v7m.basepri;
8316
    case 19: /* FAULTMASK */
8317
        return (env->daif & PSTATE_F) != 0;
P
pbrook 已提交
8318
    default:
8319 8320
        qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
                                       " register %d\n", reg);
P
pbrook 已提交
8321 8322 8323 8324
        return 0;
    }
}

8325
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
8326
{
8327 8328 8329 8330
    if (arm_current_el(env) == 0 && reg > 7) {
        /* only xPSR sub-fields may be written by unprivileged */
        return;
    }
8331

P
pbrook 已提交
8332
    switch (reg) {
8333 8334 8335 8336 8337
    case 0 ... 7: /* xPSR sub-fields */
        /* only APSR is actually writable */
        if (reg & 4) {
            xpsr_write(env, val, 0xf8000000); /* APSR */
        }
P
pbrook 已提交
8338 8339
        break;
    case 8: /* MSP */
8340
        if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
P
pbrook 已提交
8341
            env->v7m.other_sp = val;
8342
        } else {
P
pbrook 已提交
8343
            env->regs[13] = val;
8344
        }
P
pbrook 已提交
8345 8346
        break;
    case 9: /* PSP */
8347
        if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
P
pbrook 已提交
8348
            env->regs[13] = val;
8349
        } else {
P
pbrook 已提交
8350
            env->v7m.other_sp = val;
8351
        }
P
pbrook 已提交
8352 8353
        break;
    case 16: /* PRIMASK */
8354 8355 8356 8357 8358
        if (val & 1) {
            env->daif |= PSTATE_I;
        } else {
            env->daif &= ~PSTATE_I;
        }
P
pbrook 已提交
8359
        break;
8360
    case 17: /* BASEPRI */
P
pbrook 已提交
8361 8362
        env->v7m.basepri = val & 0xff;
        break;
8363
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
8364 8365 8366 8367
        val &= 0xff;
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
            env->v7m.basepri = val;
        break;
8368
    case 19: /* FAULTMASK */
8369 8370 8371 8372 8373
        if (val & 1) {
            env->daif |= PSTATE_F;
        } else {
            env->daif &= ~PSTATE_F;
        }
8374
        break;
P
pbrook 已提交
8375
    case 20: /* CONTROL */
8376 8377 8378
        switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
        env->v7m.control = val & (R_V7M_CONTROL_SPSEL_MASK |
                                  R_V7M_CONTROL_NPRIV_MASK);
P
pbrook 已提交
8379 8380
        break;
    default:
8381 8382
        qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
                                       " register %d\n", reg);
P
pbrook 已提交
8383 8384 8385 8386
        return;
    }
}

8387
#endif
P
pbrook 已提交
8388

8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */

    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t blocklen = 4 << cpu->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);

#ifndef CONFIG_USER_ONLY
    {
        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
         * the block size so we might have to do more than one TLB lookup.
         * We know that in fact for any v8 CPU the page size is at least 4K
         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
         * 1K as an artefact of legacy v5 subpage support being present in the
         * same QEMU executable.
         */
        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
        void *hostaddr[maxidx];
        int try, i;
8414
        unsigned mmu_idx = cpu_mmu_index(env, false);
8415
        TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8416 8417 8418 8419 8420 8421

        for (try = 0; try < 2; try++) {

            for (i = 0; i < maxidx; i++) {
                hostaddr[i] = tlb_vaddr_to_host(env,
                                                vaddr + TARGET_PAGE_SIZE * i,
8422
                                                1, mmu_idx);
8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442
                if (!hostaddr[i]) {
                    break;
                }
            }
            if (i == maxidx) {
                /* If it's all in the TLB it's fair game for just writing to;
                 * we know we don't need to update dirty status, etc.
                 */
                for (i = 0; i < maxidx - 1; i++) {
                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
                }
                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
                return;
            }
            /* OK, try a store and see if we can populate the tlb. This
             * might cause an exception if the memory isn't writable,
             * in which case we will longjmp out of here. We must for
             * this purpose use the actual register value passed to us
             * so that we get the fault address right.
             */
8443
            helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
8444 8445 8446 8447
            /* Now we can populate the other TLB entries, if any */
            for (i = 0; i < maxidx; i++) {
                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
8448
                    helper_ret_stb_mmu(env, va, 0, oi, GETPC());
8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464
                }
            }
        }

        /* Slow path (probably attempt to do this to an I/O device or
         * similar, or clearing of a block of code we have translations
         * cached for). Just do a series of byte writes as the architecture
         * demands. It's not worth trying to use a cpu_physical_memory_map(),
         * memset(), unmap() sequence here because:
         *  + we'd need to account for the blocksize being larger than a page
         *  + the direct-RAM access case is almost always going to be dealt
         *    with in the fastpath code above, so there's no speed benefit
         *  + we would have to deal with the map returning NULL because the
         *    bounce buffer was in use
         */
        for (i = 0; i < blocklen; i++) {
8465
            helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
8466 8467 8468 8469 8470 8471 8472
        }
    }
#else
    memset(g2h(vaddr), 0, blocklen);
#endif
}

P
pbrook 已提交
8473 8474 8475 8476 8477 8478
/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

8479
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

8494
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

8509
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

8524
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
8548
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
8549 8550 8551 8552 8553 8554 8555 8556
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
8557
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
8558
{
8559
    if (a > b)
P
pbrook 已提交
8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
8576
    if (a > b)
P
pbrook 已提交
8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
8593
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
8594 8595 8596 8597 8598 8599 8600
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
8601
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
8622
    if ((sum >> 16) == 1) \
P
pbrook 已提交
8623 8624 8625 8626 8627 8628 8629
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
8630 8631
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
8647
        ge |= 1 << n; \
P
pbrook 已提交
8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

8717 8718
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
8732
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
8733 8734 8735
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
8736 8737
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
8738 8739 8740
    return target_bits;
}

8741
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
8742 8743 8744 8745 8746 8747 8748 8749
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
8750
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
P
pbrook 已提交
8751 8752 8753 8754
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

8755
uint32_t vfp_get_fpscr(CPUARMState *env)
8756 8757 8758 8759
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
8775 8776
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
8777 8778 8779
    return host_bits;
}

8780
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
8794
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
8795 8796
            i = float_round_nearest_even;
            break;
8797
        case FPROUNDING_POSINF:
P
pbrook 已提交
8798 8799
            i = float_round_up;
            break;
8800
        case FPROUNDING_NEGINF:
P
pbrook 已提交
8801 8802
            i = float_round_down;
            break;
8803
        case FPROUNDING_ZERO:
P
pbrook 已提交
8804 8805 8806 8807 8808
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
    }
8809
    if (changed & (1 << 24)) {
8810
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
8811 8812
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
    }
P
pbrook 已提交
8813 8814
    if (changed & (1 << 25))
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
P
pbrook 已提交
8815

8816
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
8817
    set_float_exception_flags(i, &env->vfp.fp_status);
8818
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
8819 8820
}

8821
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
8822 8823 8824 8825
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
8826 8827 8828
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
8829
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
8830
{ \
8831 8832
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
8833
} \
8834
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
8835
{ \
8836 8837
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
8838 8839 8840 8841 8842
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
8843 8844 8845 8846
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
8847 8848 8849 8850 8851 8852 8853 8854 8855
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
8856
    return float64_chs(a);
P
pbrook 已提交
8857 8858 8859 8860 8861 8862 8863 8864 8865
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
8866
    return float64_abs(a);
P
pbrook 已提交
8867 8868
}

8869
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
8870 8871 8872 8873
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

8874
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
8875 8876 8877 8878 8879 8880
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
8881
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
8893
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

8909
/* Integer to float and float to integer conversions */
P
pbrook 已提交
8910

8911 8912 8913 8914
#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
8915
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
P
pbrook 已提交
8916 8917
}

8918 8919 8920 8921 8922 8923 8924 8925 8926
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
P
pbrook 已提交
8927 8928
}

8929 8930 8931 8932
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
P
pbrook 已提交
8933

8934 8935 8936 8937
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
P
pbrook 已提交
8938

8939 8940 8941
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
8942 8943

/* floating point conversion */
8944
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
8945
{
8946 8947 8948 8949
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
8950
    return float64_maybe_silence_nan(r, &env->vfp.fp_status);
P
pbrook 已提交
8951 8952
}

8953
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
8954
{
8955 8956 8957 8958
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
8959
    return float32_maybe_silence_nan(r, &env->vfp.fp_status);
P
pbrook 已提交
8960 8961 8962
}

/* VFP3 fixed point conversion.  */
8963
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
8964 8965
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
8966
{ \
8967
    float_status *fpst = fpstp; \
8968
    float##fsz tmp; \
8969
    tmp = itype##_to_##float##fsz(x, fpst); \
8970
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
8971 8972
}

8973 8974 8975 8976 8977
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
8978 8979 8980 8981
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
8982
{ \
8983
    float_status *fpst = fpstp; \
8984
    int old_exc_flags = get_float_exception_flags(fpst); \
8985 8986
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
8987
        float_raise(float_flag_invalid, fpst); \
8988
        return 0; \
8989
    } \
8990
    tmp = float##fsz##_scalbn(x, shift, fpst); \
8991 8992 8993
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
8994
    return float##fsz##_to_##itype##round(tmp, fpst); \
8995 8996
}

8997 8998
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
8999 9000 9001 9002 9003 9004
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9005

9006 9007
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
9008
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
9009 9010
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
9011
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
9012 9013
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
9014
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
9015 9016
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
9017
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
P
pbrook 已提交
9018
#undef VFP_CONV_FIX
9019 9020
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
P
pbrook 已提交
9021

9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
9052
/* Half precision conversions.  */
9053
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
9054 9055
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9056 9057
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
9058
        return float32_maybe_silence_nan(r, s);
9059 9060
    }
    return r;
P
Paul Brook 已提交
9061 9062
}

9063
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
9064 9065
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9066 9067
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
9068
        r = float16_maybe_silence_nan(r, s);
9069 9070
    }
    return float16_val(r);
P
Paul Brook 已提交
9071 9072
}

9073
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9074 9075 9076 9077
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

9078
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9079 9080 9081 9082
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

9083
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9084 9085 9086 9087
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

9088
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9089 9090 9091 9092
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

9093 9094 9095 9096 9097
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
9098
        return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9099 9100 9101 9102 9103 9104 9105 9106 9107
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
9108
        r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9109 9110 9111 9112
    }
    return float16_val(r);
}

9113
#define float32_two make_float32(0x40000000)
9114 9115
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
9116

9117
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
9118
{
9119 9120 9121
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9122 9123 9124
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
9125 9126 9127
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
9128 9129
}

9130
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
9131
{
9132
    float_status *s = &env->vfp.standard_fp_status;
9133 9134 9135
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9136 9137 9138
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
9139
        return float32_one_point_five;
9140
    }
9141 9142
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
9143 9144
}

P
pbrook 已提交
9145 9146
/* NEON helpers.  */

9147 9148 9149 9150
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
9151 9152
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9153

9154 9155 9156 9157
/* Reciprocal functions
 *
 * The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM, see FPRecipEstimate()
9158
 */
9159 9160

static float64 recip_estimate(float64 a, float_status *real_fp_status)
9161
{
9162 9163 9164
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
9165
    float_status dummy_status = *real_fp_status;
9166
    float_status *s = &dummy_status;
9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185
    /* q = (int)(a * 512.0) */
    float64 q = float64_mul(float64_512, a, s);
    int64_t q_int = float64_to_int64_round_to_zero(q, s);

    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
    q = int64_to_float64(q_int, s);
    q = float64_add(q, float64_half, s);
    q = float64_div(q, float64_512, s);
    q = float64_div(float64_one, q, s);

    /* s = (int)(256.0 * r + 0.5) */
    q = float64_mul(q, float64_256, s);
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0 */
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

9186 9187
/* Common wrapper to call recip_estimate */
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
P
pbrook 已提交
9188
{
9189 9190 9191 9192 9193
    uint64_t val64 = float64_val(num);
    uint64_t frac = extract64(val64, 0, 52);
    int64_t exp = extract64(val64, 52, 11);
    uint64_t sbit;
    float64 scaled, estimate;
9194

9195 9196 9197 9198 9199 9200 9201 9202 9203
    /* Generate the scaled number for the estimate function */
    if (exp == 0) {
        if (extract64(frac, 51, 1) == 0) {
            exp = -1;
            frac = extract64(frac, 0, 50) << 2;
        } else {
            frac = extract64(frac, 0, 51) << 1;
        }
    }
9204

9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257
    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
    scaled = make_float64((0x3feULL << 52)
                          | extract64(frac, 44, 8) << 44);

    estimate = recip_estimate(scaled, fpst);

    /* Build new result */
    val64 = float64_val(estimate);
    sbit = 0x8000000000000000ULL & val64;
    exp = off - exp;
    frac = extract64(val64, 0, 52);

    if (exp == 0) {
        frac = 1ULL << 51 | extract64(frac, 1, 51);
    } else if (exp == -1) {
        frac = 1ULL << 50 | extract64(frac, 2, 50);
        exp = 0;
    }

    return make_float64(sbit | (exp << 52) | frac);
}

static bool round_to_inf(float_status *fpst, bool sign_bit)
{
    switch (fpst->float_rounding_mode) {
    case float_round_nearest_even: /* Round to Nearest */
        return true;
    case float_round_up: /* Round to +Inf */
        return !sign_bit;
    case float_round_down: /* Round to -Inf */
        return sign_bit;
    case float_round_to_zero: /* Round to Zero */
        return false;
    }

    g_assert_not_reached();
}

float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float32 f32 = float32_squash_input_denormal(input, fpst);
    uint32_t f32_val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000ULL & f32_val;
    int32_t f32_exp = extract32(f32_val, 23, 8);
    uint32_t f32_frac = extract32(f32_val, 0, 23);
    float64 f64, r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
9258
        if (float32_is_signaling_nan(f32, fpst)) {
9259
            float_raise(float_flag_invalid, fpst);
9260
            nan = float32_maybe_silence_nan(f32, fpst);
9261
        }
9262
        if (fpst->default_nan_mode) {
9263
            nan =  float32_default_nan(fpst);
9264
        }
9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281
        return nan;
    } else if (float32_is_infinity(f32)) {
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, fpst);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
        /* Abs(value) < 2.0^-128 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f32_sbit)) {
            return float32_set_sign(float32_infinity, float32_is_neg(f32));
        } else {
            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
        }
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float32_set_sign(float32_zero, float32_is_neg(f32));
9282 9283 9284
    }


9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311
    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
    r64 = call_recip_estimate(f64, 253, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);

    /* result = sign : result_exp<7:0> : fraction<51:29>; */
    return make_float32(f32_sbit |
                        (r64_exp & 0xff) << 23 |
                        extract64(r64_frac, 29, 24));
}

float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64 = float64_squash_input_denormal(input, fpst);
    uint64_t f64_val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
    int64_t f64_exp = extract64(f64_val, 52, 11);
    float64 r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    /* Deal with any special cases */
    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
9312
        if (float64_is_signaling_nan(f64, fpst)) {
9313
            float_raise(float_flag_invalid, fpst);
9314
            nan = float64_maybe_silence_nan(f64, fpst);
9315 9316
        }
        if (fpst->default_nan_mode) {
9317
            nan =  float64_default_nan(fpst);
9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332
        }
        return nan;
    } else if (float64_is_infinity(f64)) {
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, fpst);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
        /* Abs(value) < 2.0^-1024 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f64_sbit)) {
            return float64_set_sign(float64_infinity, float64_is_neg(f64));
        } else {
            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
        }
9333
    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9334 9335 9336
        float_raise(float_flag_underflow, fpst);
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    }
9337

9338 9339 9340 9341
    r64 = call_recip_estimate(f64, 2045, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);
9342

9343 9344 9345 9346
    /* result = sign : result_exp<10:0> : fraction<51:0> */
    return make_float64(f64_sbit |
                        ((r64_exp & 0x7ff) << 52) |
                        r64_frac);
P
pbrook 已提交
9347 9348
}

9349 9350 9351
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
9352
static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9353
{
9354 9355 9356
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
9357
    float_status dummy_status = *real_fp_status;
9358
    float_status *s = &dummy_status;
9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403
    float64 q;
    int64_t q_int;

    if (float64_lt(a, float64_half, s)) {
        /* range 0.25 <= a < 0.5 */

        /* a in units of 1/512 rounded down */
        /* q0 = (int)(a * 512.0);  */
        q = float64_mul(float64_512, a, s);
        q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_512, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    } else {
        /* range 0.5 <= a < 1.0 */

        /* a in units of 1/256 rounded down */
        /* q1 = (int)(a * 256.0); */
        q = float64_mul(float64_256, a, s);
        int64_t q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_256, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    }
    /* r in units of 1/256 rounded to nearest */
    /* s = (int)(256.0 * r + 0.5); */

    q = float64_mul(q, float64_256,s );
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0;*/
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

9404
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
P
pbrook 已提交
9405
{
9406 9407 9408 9409 9410 9411 9412 9413
    float_status *s = fpstp;
    float32 f32 = float32_squash_input_denormal(input, s);
    uint32_t val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000 & val;
    int32_t f32_exp = extract32(val, 23, 8);
    uint32_t f32_frac = extract32(val, 0, 23);
    uint64_t f64_frac;
    uint64_t val64;
9414 9415 9416
    int result_exp;
    float64 f64;

9417 9418
    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
9419
        if (float32_is_signaling_nan(f32, s)) {
9420
            float_raise(float_flag_invalid, s);
9421
            nan = float32_maybe_silence_nan(f32, s);
9422
        }
9423
        if (s->default_nan_mode) {
9424
            nan =  float32_default_nan(s);
9425
        }
9426 9427
        return nan;
    } else if (float32_is_zero(f32)) {
9428
        float_raise(float_flag_divbyzero, s);
9429 9430
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_is_neg(f32)) {
9431
        float_raise(float_flag_invalid, s);
9432
        return float32_default_nan(s);
9433
    } else if (float32_is_infinity(f32)) {
9434 9435 9436
        return float32_zero;
    }

9437
    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9438
     * preserving the parity of the exponent.  */
9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450

    f64_frac = ((uint64_t) f32_frac) << 29;
    if (f32_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f32_exp = f32_exp-1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f32_exp, 0, 1) == 0) {
        f64 = make_float64(((uint64_t) f32_sbit) << 32
9451
                           | (0x3feULL << 52)
9452
                           | f64_frac);
9453
    } else {
9454
        f64 = make_float64(((uint64_t) f32_sbit) << 32
9455
                           | (0x3fdULL << 52)
9456
                           | f64_frac);
9457 9458
    }

9459
    result_exp = (380 - f32_exp) / 2;
9460

9461
    f64 = recip_sqrt_estimate(f64, s);
9462 9463 9464

    val64 = float64_val(f64);

9465
    val = ((result_exp & 0xff) << 23)
9466 9467
        | ((val64 >> 29)  & 0x7fffff);
    return make_float32(val);
P
pbrook 已提交
9468 9469
}

9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64 = float64_squash_input_denormal(input, s);
    uint64_t val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & val;
    int64_t f64_exp = extract64(val, 52, 11);
    uint64_t f64_frac = extract64(val, 0, 52);
    int64_t result_exp;
    uint64_t result_frac;

    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
9483
        if (float64_is_signaling_nan(f64, s)) {
9484
            float_raise(float_flag_invalid, s);
9485
            nan = float64_maybe_silence_nan(f64, s);
9486 9487
        }
        if (s->default_nan_mode) {
9488
            nan =  float64_default_nan(s);
9489 9490 9491 9492 9493 9494 9495
        }
        return nan;
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, s);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if (float64_is_neg(f64)) {
        float_raise(float_flag_invalid, s);
9496
        return float64_default_nan(s);
9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532
    } else if (float64_is_infinity(f64)) {
        return float64_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    if (f64_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f64_exp = f64_exp - 1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f64_exp, 0, 1) == 0) {
        f64 = make_float64(f64_sbit
                           | (0x3feULL << 52)
                           | f64_frac);
    } else {
        f64 = make_float64(f64_sbit
                           | (0x3fdULL << 52)
                           | f64_frac);
    }

    result_exp = (3068 - f64_exp) / 2;

    f64 = recip_sqrt_estimate(f64, s);

    result_frac = extract64(float64_val(f64), 0, 52);

    return make_float64(f64_sbit |
                        ((result_exp & 0x7ff) << 52) |
                        result_frac);
}

9533
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
9534
{
9535
    float_status *s = fpstp;
9536 9537 9538 9539 9540 9541 9542 9543 9544
    float64 f64;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(a & 0x7fffffff) << 21));

9545
    f64 = recip_estimate(f64, s);
9546 9547

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
9548 9549
}

9550
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
9551
{
9552
    float_status *fpst = fpstp;
9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566
    float64 f64;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    if (a & 0x80000000) {
        f64 = make_float64((0x3feULL << 52)
                           | ((uint64_t)(a & 0x7fffffff) << 21));
    } else { /* bits 31-30 == '01' */
        f64 = make_float64((0x3fdULL << 52)
                           | ((uint64_t)(a & 0x3fffffff) << 22));
    }

9567
    f64 = recip_sqrt_estimate(f64, fpst);
9568 9569

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
9570
}
9571

9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}
9657

9658 9659 9660 9661
/* CRC helpers.
 * The upper bytes of val (above the number specified by 'bytes') must have
 * been zeroed out by the caller.
 */
9662 9663 9664 9665
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

9666
    stl_le_p(buf, val);
9667 9668 9669 9670 9671 9672 9673 9674 9675

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

9676
    stl_le_p(buf, val);
9677 9678 9679 9680

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}