spapr.c 110.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
P
Peter Maydell 已提交
27
#include "qemu/osdep.h"
28
#include "qapi/error.h"
29
#include "sysemu/sysemu.h"
30
#include "sysemu/numa.h"
31
#include "hw/hw.h"
32
#include "qemu/log.h"
33
#include "hw/fw-path-provider.h"
34
#include "elf.h"
P
Paolo Bonzini 已提交
35
#include "net/net.h"
A
Andrew Jones 已提交
36
#include "sysemu/device_tree.h"
37
#include "sysemu/block-backend.h"
38
#include "sysemu/cpus.h"
39
#include "sysemu/hw_accel.h"
40
#include "kvm_ppc.h"
41
#include "migration/migration.h"
42
#include "mmu-hash64.h"
43
#include "qom/cpu.h"
44 45

#include "hw/boards.h"
P
Paolo Bonzini 已提交
46
#include "hw/ppc/ppc.h"
47 48
#include "hw/loader.h"

49
#include "hw/ppc/fdt.h"
P
Paolo Bonzini 已提交
50 51 52 53
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
54
#include "hw/pci/msi.h"
55

56
#include "hw/pci/pci.h"
57 58
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
59

60
#include "exec/address-spaces.h"
61
#include "hw/usb.h"
62
#include "qemu/config-file.h"
63
#include "qemu/error-report.h"
64
#include "trace.h"
65
#include "hw/nmi.h"
66
#include "hw/intc/intc.h"
A
Avi Kivity 已提交
67

68
#include "hw/compat.h"
69
#include "qemu/cutils.h"
70
#include "hw/ppc/spapr_cpu_core.h"
71
#include "qmp-commands.h"
72

73 74
#include <libfdt.h>

75 76 77 78 79 80 81 82 83 84
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
85
#define FDT_MAX_SIZE            0x100000
86
#define RTAS_MAX_SIZE           0x10000
87
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
88 89
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
90 91
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
92

93
#define MIN_RMA_SLOF            128UL
94

95 96
#define PHANDLE_XICP            0x00001111

97 98
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

99 100 101
static int try_create_xics(sPAPRMachineState *spapr, const char *type_ics,
                           const char *type_icp, int nr_servers,
                           int nr_irqs, Error **errp)
102
{
103
    XICSFabric *xi = XICS_FABRIC(spapr);
104 105
    Error *err = NULL, *local_err = NULL;
    ICSState *ics = NULL;
106
    int i;
107 108

    ics = ICS_SIMPLE(object_new(type_ics));
109
    object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL);
110
    object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err);
111
    object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL);
112 113 114 115 116 117
    object_property_set_bool(OBJECT(ics), true, "realized", &local_err);
    error_propagate(&err, local_err);
    if (err) {
        goto error;
    }

118 119
    spapr->icps = g_malloc0(nr_servers * sizeof(ICPState));
    spapr->nr_servers = nr_servers;
120 121

    for (i = 0; i < nr_servers; i++) {
122
        ICPState *icp = &spapr->icps[i];
123 124

        object_initialize(icp, sizeof(*icp), type_icp);
125
        object_property_add_child(OBJECT(spapr), "icp[*]", OBJECT(icp), NULL);
126
        object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL);
127 128 129 130 131 132 133
        object_property_set_bool(OBJECT(icp), true, "realized", &err);
        if (err) {
            goto error;
        }
        object_unref(OBJECT(icp));
    }

134
    spapr->ics = ics;
135
    return 0;
136 137 138 139 140 141

error:
    error_propagate(errp, err);
    if (ics) {
        object_unparent(OBJECT(ics));
    }
142
    return -1;
143 144
}

145 146
static int xics_system_init(MachineState *machine,
                            int nr_servers, int nr_irqs, Error **errp)
147
{
148
    int rc = -1;
149

150
    if (kvm_enabled()) {
151 152
        Error *err = NULL;

153 154
        if (machine_kernel_irqchip_allowed(machine) &&
            !xics_kvm_init(SPAPR_MACHINE(machine), errp)) {
155 156
            rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_KVM,
                                 TYPE_KVM_ICP, nr_servers, nr_irqs, &err);
157
        }
158
        if (machine_kernel_irqchip_required(machine) && rc < 0) {
159 160 161 162
            error_reportf_err(err,
                              "kernel_irqchip requested but unavailable: ");
        } else {
            error_free(err);
163 164 165
        }
    }

166
    if (rc < 0) {
167
        xics_spapr_init(SPAPR_MACHINE(machine), errp);
168
        rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_SIMPLE,
169
                               TYPE_ICP, nr_servers, nr_irqs, errp);
170 171
    }

172
    return rc;
173 174
}

175 176 177 178 179 180 181 182
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

183 184
    if (cpu->compat_pvr) {
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
185 186 187 188 189
        if (ret < 0) {
            return ret;
        }
    }

190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
{
    int ret = 0;
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t associativity[] = {cpu_to_be32(0x5),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(cs->numa_node),
                                cpu_to_be32(index)};

    /* Advertise NUMA via ibm,associativity */
    if (nb_numa_nodes > 1) {
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                          sizeof(associativity));
    }

    return ret;
}

229
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
230
{
231 232
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
233 234
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
235
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
236

237 238 239 240
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
241
        int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
242

243
        if ((index % smt) != 0) {
244 245 246
            continue;
        }

247
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
248

249 250 251 252 253 254 255 256 257
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
258
        if (offset < 0) {
259 260 261 262
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
263 264
        }

265 266
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
267 268 269
        if (ret < 0) {
            return ret;
        }
270

271 272 273 274 275
        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
        if (ret < 0) {
            return ret;
        }

276
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
277 278 279
        if (ret < 0) {
            return ret;
        }
280 281 282 283
    }
    return ret;
}

284 285
static hwaddr spapr_node0_size(void)
{
286 287
    MachineState *machine = MACHINE(qdev_get_machine());

288 289 290 291
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
292 293
                return MIN(pow2floor(numa_info[i].node_mem),
                           machine->ram_size);
294 295 296
            }
        }
    }
297
    return machine->ram_size;
298 299
}

300 301 302 303
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
304

305
static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
306 307 308 309 310
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
311
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
328
    return off;
329 330
}

331
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
332
{
333
    MachineState *machine = MACHINE(spapr);
334 335 336 337 338 339 340 341
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
342
        ramnode.node_mem = machine->ram_size;
343
        nodes = &ramnode;
344
    }
345

346 347 348 349
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
350
        if (mem_start >= machine->ram_size) {
351 352
            node_size = 0;
        } else {
353
            node_size = nodes[i].node_mem;
354 355
            if (node_size > machine->ram_size - mem_start) {
                node_size = machine->ram_size - mem_start;
356 357
            }
        }
358 359
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
360
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
361 362 363
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
364 365 366 367 368 369 370 371 372 373 374 375
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
376 377 378 379 380
    }

    return 0;
}

381 382 383 384 385 386 387 388 389
/* Populate the "ibm,pa-features" property */
static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
{
    uint8_t pa_features_206[] = { 6, 0,
        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
    uint8_t pa_features_207[] = { 24, 0,
        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
390
        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
391 392 393 394 395 396 397 398 399 400 401 402 403 404
    /* Currently we don't advertise any of the "new" ISAv3.00 functionality */
    uint8_t pa_features_300[] = { 64, 0,
        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /*  0 -  5 */
        0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /*  6 - 11 */
        0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
        0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 24 - 29 */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 30 - 35 */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 36 - 41 */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 42 - 47 */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 48 - 53 */
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 54 - 59 */
        0x00, 0x00, 0x00, 0x00           }; /* 60 - 63 */

405 406 407
    uint8_t *pa_features;
    size_t pa_size;

408 409
    switch (POWERPC_MMU_VER(env->mmu_model)) {
    case POWERPC_MMU_VER_2_06:
410 411
        pa_features = pa_features_206;
        pa_size = sizeof(pa_features_206);
412
        break;
413
    case POWERPC_MMU_VER_2_07:
414 415
        pa_features = pa_features_207;
        pa_size = sizeof(pa_features_207);
416
        break;
417
    case POWERPC_MMU_VER_3_00:
418 419 420
        pa_features = pa_features_300;
        pa_size = sizeof(pa_features_300);
        break;
421 422
    default:
        return;
423 424 425 426 427 428 429 430 431 432 433 434
    }

    if (env->ci_large_pages) {
        /*
         * Note: we keep CI large pages off by default because a 64K capable
         * guest provisioned with large pages might otherwise try to map a qemu
         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
         * even if that qemu runs on a 4k host.
         * We dd this bit back here if we are confident this is not an issue
         */
        pa_features[3] |= 0x20;
    }
435 436 437
    if (kvmppc_has_cap_htm() && pa_size > 24) {
        pa_features[24] |= 0x80;    /* Transactional memory support */
    }
438 439 440 441

    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
}

442 443 444 445 446 447 448 449 450
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
                                  sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                       0xffffffff, 0xffffffff};
451 452
    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
        : SPAPR_TIMEBASE_FREQ;
453 454 455
    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
    uint32_t page_sizes_prop[64];
    size_t page_sizes_prop_size;
456
    uint32_t vcpus_per_socket = smp_threads * smp_cores;
457
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
458
    int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
B
Bharata B Rao 已提交
459 460 461
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    int drc_index;
462 463
    uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
    int i;
B
Bharata B Rao 已提交
464 465 466 467 468 469 470

    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
    if (drc) {
        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drc_index = drck->get_index(drc);
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
    }
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488

    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));

    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
                           env->icache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
                           env->icache_line_size)));

    if (pcc->l1_dcache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
                               pcc->l1_dcache_size)));
    } else {
489
        error_report("Warning: Unknown L1 dcache size for cpu");
490 491 492 493 494
    }
    if (pcc->l1_icache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
                               pcc->l1_icache_size)));
    } else {
495
        error_report("Warning: Unknown L1 icache size for cpu");
496 497 498 499
    }

    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
500
    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));

    if (env->spr_cb[SPR_PURR].oea_read) {
        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
    }

    if (env->mmu_model & POWERPC_MMU_1TSEG) {
        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
                          segs, sizeof(segs))));
    }

    /* Advertise VMX/VSX (vector extensions) if available
     *   0 / no property == no vector extensions
     *   1               == VMX / Altivec available
     *   2               == VSX available */
    if (env->insns_flags & PPC_ALTIVEC) {
        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
    }

    /* Advertise DFP (Decimal Floating Point) if available
     *   0 / no property == no DFP
     *   1               == DFP available */
    if (env->insns_flags2 & PPC2_DFP) {
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
    }

531
    page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
532 533 534 535 536 537
                                                  sizeof(page_sizes_prop));
    if (page_sizes_prop_size) {
        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
                          page_sizes_prop, page_sizes_prop_size)));
    }

538
    spapr_populate_pa_features(env, fdt, offset);
539

540
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
541
                           cs->cpu_index / vcpus_per_socket)));
542 543 544 545 546 547

    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
                      pft_size_prop, sizeof(pft_size_prop))));

    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));

548
    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
549 550 551 552 553 554 555 556 557 558 559

    if (pcc->radix_page_info) {
        for (i = 0; i < pcc->radix_page_info->count; i++) {
            radix_AP_encodings[i] =
                cpu_to_be32(pcc->radix_page_info->entries[i]);
        }
        _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
                          radix_AP_encodings,
                          pcc->radix_page_info->count *
                          sizeof(radix_AP_encodings[0]))));
    }
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
}

static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
{
    CPUState *cs;
    int cpus_offset;
    char *nodename;
    int smt = kvmppc_smt_threads();

    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
    _FDT(cpus_offset);
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));

    /*
     * We walk the CPUs in reverse order to ensure that CPU DT nodes
     * created by fdt_add_subnode() end up in the right order in FDT
     * for the guest kernel the enumerate the CPUs correctly.
     */
    CPU_FOREACH_REVERSE(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int offset;

        if ((index % smt) != 0) {
            continue;
        }

        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
        g_free(nodename);
        _FDT(offset);
        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    }

}

598 599 600 601 602 603 604 605 606 607 608
/*
 * Adds ibm,dynamic-reconfiguration-memory node.
 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 * of this device tree node.
 */
static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
{
    MachineState *machine = MACHINE(spapr);
    int ret, i, offset;
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
609 610 611 612
    uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
    uint32_t nr_lmbs = (spapr->hotplug_memory.base +
                       memory_region_size(&spapr->hotplug_memory.mr)) /
                       lmb_size;
613
    uint32_t *int_buf, *cur_index, buf_len;
614
    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
615

616
    /*
617
     * Don't create the node if there is no hotpluggable memory
618
     */
619
    if (machine->ram_size == machine->maxram_size) {
620 621 622
        return 0;
    }

623 624 625 626 627 628
    /*
     * Allocate enough buffer size to fit in ibm,dynamic-memory
     * or ibm,associativity-lookup-arrays
     */
    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
              * sizeof(uint32_t);
629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652
    cur_index = int_buf = g_malloc0(buf_len);

    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");

    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
                    sizeof(prop_lmb_size));
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
    if (ret < 0) {
        goto out;
    }

    /* ibm,dynamic-memory */
    int_buf[0] = cpu_to_be32(nr_lmbs);
    cur_index++;
    for (i = 0; i < nr_lmbs; i++) {
653
        uint64_t addr = i * lmb_size;
654 655
        uint32_t *dynamic_memory = cur_index;

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
        if (i >= hotplug_lmb_start) {
            sPAPRDRConnector *drc;
            sPAPRDRConnectorClass *drck;

            drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
            g_assert(drc);
            drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

            dynamic_memory[0] = cpu_to_be32(addr >> 32);
            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
            dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
            dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
            if (memory_region_present(get_system_memory(), addr)) {
                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
            } else {
                dynamic_memory[5] = cpu_to_be32(0);
            }
674
        } else {
675 676 677 678 679 680 681 682 683 684 685 686
            /*
             * LMB information for RMA, boot time RAM and gap b/n RAM and
             * hotplug memory region -- all these are marked as reserved
             * and as having no valid DRC.
             */
            dynamic_memory[0] = cpu_to_be32(addr >> 32);
            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
            dynamic_memory[2] = cpu_to_be32(0);
            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
            dynamic_memory[4] = cpu_to_be32(-1);
            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
                                            SPAPR_LMB_FLAGS_DRC_INVALID);
687 688 689 690 691 692 693 694 695 696 697
        }

        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
    }
    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
    if (ret < 0) {
        goto out;
    }

    /* ibm,associativity-lookup-arrays */
    cur_index = int_buf;
698
    int_buf[0] = cpu_to_be32(nr_nodes);
699 700
    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
    cur_index += 2;
701
    for (i = 0; i < nr_nodes; i++) {
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
        uint32_t associativity[] = {
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(i)
        };
        memcpy(cur_index, associativity, sizeof(associativity));
        cur_index += 4;
    }
    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
            (cur_index - int_buf) * sizeof(uint32_t));
out:
    g_free(int_buf);
    return ret;
}

718 719 720 721
static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
                                sPAPROptionVector *ov5_updates)
{
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
722
    int ret = 0, offset;
723 724 725 726 727

    /* Generate ibm,dynamic-reconfiguration-memory node if required */
    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
        g_assert(smc->dr_lmb_enabled);
        ret = spapr_populate_drconf_memory(spapr, fdt);
728 729 730
        if (ret) {
            goto out;
        }
731 732
    }

733 734 735 736 737 738 739 740 741 742 743
    offset = fdt_path_offset(fdt, "/chosen");
    if (offset < 0) {
        offset = fdt_add_subnode(fdt, 0, "chosen");
        if (offset < 0) {
            return offset;
        }
    }
    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
                                 "ibm,architecture-vec-5");

out:
744 745 746
    return ret;
}

747 748
int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
                                 target_ulong addr, target_ulong size,
749
                                 sPAPROptionVector *ov5_updates)
750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

    /* Fixup cpu nodes */
767
    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
768

769 770
    if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
        return -1;
771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
    }

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
{
    int rtas;
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
    uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
        memory_region_size(&spapr->hotplug_memory.mr);
    uint32_t lrdr_capacity[] = {
        cpu_to_be32(max_hotplug_addr >> 32),
        cpu_to_be32(max_hotplug_addr & 0xffffffff),
        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
        cpu_to_be32(max_cpus / smp_threads),
    };

    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));

    /* hypertas */
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(hypertas, "hcall-sprg0");
    add_str(hypertas, "hcall-copy");
    add_str(hypertas, "hcall-debug");
    add_str(qemu_hypertas, "hcall-memop1");

    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
                     hypertas->str, hypertas->len));
    g_string_free(hypertas, TRUE);
    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
                     qemu_hypertas->str, qemu_hypertas->len));
    g_string_free(qemu_hypertas, TRUE);

    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
                     refpoints, sizeof(refpoints)));

    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
                          RTAS_ERROR_LOG_MAX));
    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
                          RTAS_EVENT_SCAN_RATE));

    if (msi_nonbroken) {
        _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
    }

    /*
     * According to PAPR, rtas ibm,os-term does not guarantee a return
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates
     * that rtas call return will always occur. Set this property.
     */
    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));

    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
                     lrdr_capacity, sizeof(lrdr_capacity)));

    spapr_dt_rtas_tokens(fdt, rtas);
}

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
{
    MachineState *machine = MACHINE(spapr);
    int chosen;
    const char *boot_device = machine->boot_order;
    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
    size_t cb = 0;
    char *bootlist = get_boot_devices_list(&cb, true);

    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));

    _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
                          spapr->initrd_base));
    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
                          spapr->initrd_base + spapr->initrd_size));

    if (spapr->kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(spapr->kernel_size) };

        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
                         &kprop, sizeof(kprop)));
        if (spapr->kernel_le) {
            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
        }
    }
    if (boot_menu) {
        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
    }
    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));

    if (cb && bootlist) {
        int i;

        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }
        }
        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
    }

    if (boot_device && strlen(boot_device)) {
        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
    }

    if (!spapr->has_graphics && stdout_path) {
        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
    }

    g_free(stdout_path);
    g_free(bootlist);
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937
static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
{
    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
     * KVM to work under pHyp with some guest co-operation */
    int hypervisor;
    uint8_t hypercall[16];

    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
    /* indicate KVM hypercall interface */
    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
    if (kvmppc_has_cap_fixup_hcalls()) {
        /*
         * Older KVM versions with older guest kernels were broken
         * with the magic page, don't allow the guest to map it.
         */
        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                  sizeof(hypercall))) {
            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
                             hypercall, sizeof(hypercall)));
        }
    }
}

938 939 940
static void *spapr_build_fdt(sPAPRMachineState *spapr,
                             hwaddr rtas_addr,
                             hwaddr rtas_size)
941
{
942
    MachineState *machine = MACHINE(qdev_get_machine());
943
    MachineClass *mc = MACHINE_GET_CLASS(machine);
B
Bharata B Rao 已提交
944
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
945
    int ret;
946
    void *fdt;
947
    sPAPRPHBState *phb;
948
    char *buf;
949

950 951
    fdt = g_malloc0(FDT_MAX_SIZE);
    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
952

953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
    /* Root node */
    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));

    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
        g_free(buf);
    }

    buf = qemu_uuid_unparse_strdup(&qemu_uuid);

    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
    if (qemu_uuid_set) {
        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
    }
    g_free(buf);

    if (qemu_get_vm_name()) {
        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
                                qemu_get_vm_name()));
    }

    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
986

987
    /* /interrupt controller */
988
    spapr_dt_xics(spapr->nr_servers, fdt, PHANDLE_XICP);
989

990 991
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
992
        error_report("couldn't setup memory nodes in fdt");
993
        exit(1);
994 995
    }

996 997
    /* /vdevice */
    spapr_dt_vdevice(spapr->vio_bus, fdt);
998

999 1000 1001
    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
        ret = spapr_rng_populate_dt(fdt);
        if (ret < 0) {
1002
            error_report("could not set up rng device in the fdt");
1003 1004 1005 1006
            exit(1);
        }
    }

1007
    QLIST_FOREACH(phb, &spapr->phbs, list) {
1008
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1009 1010 1011 1012
        if (ret < 0) {
            error_report("couldn't setup PCI devices in fdt");
            exit(1);
        }
1013 1014
    }

1015 1016
    /* cpus */
    spapr_populate_cpus_dt_node(fdt, spapr);
1017

B
Bharata B Rao 已提交
1018 1019 1020 1021
    if (smc->dr_lmb_enabled) {
        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
    }

1022
    if (mc->has_hotpluggable_cpus) {
B
Bharata B Rao 已提交
1023 1024 1025 1026 1027 1028 1029 1030 1031
        int offset = fdt_path_offset(fdt, "/cpus");
        ret = spapr_drc_populate_dt(fdt, offset, NULL,
                                    SPAPR_DR_CONNECTOR_TYPE_CPU);
        if (ret < 0) {
            error_report("Couldn't set up CPU DR device tree properties");
            exit(1);
        }
    }

1032
    /* /event-sources */
1033
    spapr_dt_events(spapr, fdt);
1034

1035 1036 1037
    /* /rtas */
    spapr_dt_rtas(spapr, fdt);

1038 1039
    /* /chosen */
    spapr_dt_chosen(spapr, fdt);
1040

1041 1042 1043 1044 1045
    /* /hypervisor */
    if (kvm_enabled()) {
        spapr_dt_hypervisor(spapr, fdt);
    }

1046 1047 1048 1049 1050 1051 1052 1053
    /* Build memory reserve map */
    if (spapr->kernel_size) {
        _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
    }
    if (spapr->initrd_size) {
        _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
    }

1054 1055 1056 1057 1058 1059 1060
    /* ibm,client-architecture-support updates */
    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
    if (ret < 0) {
        error_report("couldn't setup CAS properties fdt");
        exit(1);
    }

1061
    return fdt;
1062 1063 1064 1065 1066 1067 1068
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

1069 1070
static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
                                    PowerPCCPU *cpu)
1071
{
1072 1073
    CPUPPCState *env = &cpu->env;

1074 1075 1076
    /* The TCG path should also be holding the BQL at this point */
    g_assert(qemu_mutex_iothread_locked());

1077 1078 1079 1080
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
1081
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1082
    }
1083 1084
}

1085 1086 1087 1088 1089 1090 1091
static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);

    return spapr->patb_entry;
}

1092 1093 1094 1095 1096 1097
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
/*
 * Get the fd to access the kernel htab, re-opening it if necessary
 */
static int get_htab_fd(sPAPRMachineState *spapr)
{
    if (spapr->htab_fd >= 0) {
        return spapr->htab_fd;
    }

    spapr->htab_fd = kvmppc_get_htab_fd(false);
    if (spapr->htab_fd < 0) {
        error_report("Unable to open fd for reading hash table from KVM: %s",
                     strerror(errno));
    }

    return spapr->htab_fd;
}

static void close_htab_fd(sPAPRMachineState *spapr)
{
    if (spapr->htab_fd >= 0) {
        close(spapr->htab_fd);
    }
    spapr->htab_fd = -1;
}

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);

    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
}

static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
                                                hwaddr ptex, int n)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;

    if (!spapr->htab) {
        /*
         * HTAB is controlled by KVM. Fetch into temporary buffer
         */
        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
        kvmppc_read_hptes(hptes, ptex, n);
        return hptes;
    }

    /*
     * HTAB is controlled by QEMU. Just point to the internally
     * accessible PTEG.
     */
    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
}

static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
                              const ppc_hash_pte64_t *hptes,
                              hwaddr ptex, int n)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);

    if (!spapr->htab) {
        g_free((void *)hptes);
    }

    /* Nothing to do for qemu managed HPT */
}

static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
                             uint64_t pte0, uint64_t pte1)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
    hwaddr offset = ptex * HASH_PTE_SIZE_64;

    if (!spapr->htab) {
        kvmppc_write_hpte(ptex, pte0, pte1);
    } else {
        stq_p(spapr->htab + offset, pte0);
        stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
    }
}

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192
static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
{
    int shift;

    /* We aim for a hash table of size 1/128 the size of RAM (rounded
     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
     * that's much more than is needed for Linux guests */
    shift = ctz64(pow2ceil(ramsize)) - 7;
    shift = MAX(shift, 18); /* Minimum architected size */
    shift = MIN(shift, 46); /* Maximum architected size */
    return shift;
}

1193 1194
static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
                                 Error **errp)
1195
{
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
    long rc;

    /* Clean up any HPT info from a previous boot */
    g_free(spapr->htab);
    spapr->htab = NULL;
    spapr->htab_shift = 0;
    close_htab_fd(spapr);

    rc = kvmppc_reset_htab(shift);
    if (rc < 0) {
        /* kernel-side HPT needed, but couldn't allocate one */
        error_setg_errno(errp, errno,
                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
                         shift);
        /* This is almost certainly fatal, but if the caller really
         * wants to carry on with shift == 0, it's welcome to try */
    } else if (rc > 0) {
        /* kernel-side HPT allocated */
        if (rc != shift) {
            error_setg(errp,
                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
                       shift, rc);
1218 1219
        }

1220
        spapr->htab_shift = shift;
1221
        spapr->htab = NULL;
1222
    } else {
1223 1224 1225
        /* kernel-side HPT not needed, allocate in userspace instead */
        size_t size = 1ULL << shift;
        int i;
1226

1227 1228 1229 1230 1231
        spapr->htab = qemu_memalign(size, size);
        if (!spapr->htab) {
            error_setg_errno(errp, errno,
                             "Could not allocate HPT of order %d", shift);
            return;
1232 1233
        }

1234 1235
        memset(spapr->htab, 0, size);
        spapr->htab_shift = shift;
1236

1237 1238
        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
            DIRTY_HPTE(HPTE(spapr->htab, i));
1239
        }
1240
    }
1241 1242
}

1243
static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }
}

1258
static void ppc_spapr_reset(void)
1259
{
1260 1261
    MachineState *machine = MACHINE(qdev_get_machine());
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1262
    PowerPCCPU *first_ppc_cpu;
1263
    uint32_t rtas_limit;
1264
    hwaddr rtas_addr, fdt_addr;
1265 1266
    void *fdt;
    int rc;
1267

1268 1269 1270
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

1271 1272
    spapr->patb_entry = 0;

1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
    /* Allocate and/or reset the hash page table */
    spapr_reallocate_hpt(spapr,
                         spapr_hpt_shift_for_ramsize(machine->maxram_size),
                         &error_fatal);

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
    }
1283

1284
    qemu_devices_reset();
1285

1286 1287 1288 1289 1290 1291
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1292 1293
    rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    fdt_addr = rtas_addr - FDT_MAX_SIZE;
1294

1295 1296 1297 1298 1299 1300 1301
    /* if this reset wasn't generated by CAS, we should reset our
     * negotiated options and start from scratch */
    if (!spapr->cas_reboot) {
        spapr_ovec_cleanup(spapr->ov5_cas);
        spapr->ov5_cas = spapr_ovec_new();
    }

1302
    fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1303

D
David Gibson 已提交
1304
    spapr_load_rtas(spapr, fdt, rtas_addr);
1305

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
    rc = fdt_pack(fdt);

    /* Should only fail if we've built a corrupted tree */
    assert(rc == 0);

    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
                     fdt_totalsize(fdt), FDT_MAX_SIZE);
        exit(1);
    }

    /* Load the fdt */
    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1319
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1320 1321
    g_free(fdt);

1322
    /* Set up the entry state */
1323
    first_ppc_cpu = POWERPC_CPU(first_cpu);
1324
    first_ppc_cpu->env.gpr[3] = fdt_addr;
1325 1326
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
1327
    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1328

1329
    spapr->cas_reboot = false;
1330 1331
}

1332
static void spapr_create_nvram(sPAPRMachineState *spapr)
D
David Gibson 已提交
1333
{
1334
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
1335
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
1336

P
Paolo Bonzini 已提交
1337
    if (dinfo) {
1338 1339
        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
                            &error_fatal);
D
David Gibson 已提交
1340 1341 1342 1343 1344 1345 1346
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

1347
static void spapr_rtc_create(sPAPRMachineState *spapr)
1348
{
1349 1350 1351 1352 1353 1354 1355
    object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
    object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
                              &error_fatal);
    object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
                              &error_fatal);
    object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
                              "date", &error_fatal);
1356 1357
}

1358
/* Returns whether we want to use VGA or not */
1359
static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1360
{
1361 1362
    switch (vga_interface_type) {
    case VGA_NONE:
1363 1364 1365
        return false;
    case VGA_DEVICE:
        return true;
1366
    case VGA_STD:
1367
    case VGA_VIRTIO:
1368
        return pci_vga_init(pci_bus) != NULL;
1369
    default:
1370 1371 1372
        error_setg(errp,
                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
        return false;
1373 1374 1375
    }
}

1376 1377
static int spapr_post_load(void *opaque, int version_id)
{
1378
    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1379 1380
    int err = 0;

1381 1382 1383 1384 1385 1386 1387
    if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
        int i;
        for (i = 0; i < spapr->nr_servers; i++) {
            icp_resend(&spapr->icps[i]);
        }
    }

S
Stefan Weil 已提交
1388
    /* In earlier versions, there was no separate qdev for the PAPR
1389 1390 1391 1392
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
1393
        err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
static bool spapr_ov5_cas_needed(void *opaque)
{
    sPAPRMachineState *spapr = opaque;
    sPAPROptionVector *ov5_mask = spapr_ovec_new();
    sPAPROptionVector *ov5_legacy = spapr_ovec_new();
    sPAPROptionVector *ov5_removed = spapr_ovec_new();
    bool cas_needed;

    /* Prior to the introduction of sPAPROptionVector, we had two option
     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
     * Both of these options encode machine topology into the device-tree
     * in such a way that the now-booted OS should still be able to interact
     * appropriately with QEMU regardless of what options were actually
     * negotiatied on the source side.
     *
     * As such, we can avoid migrating the CAS-negotiated options if these
     * are the only options available on the current machine/platform.
     * Since these are the only options available for pseries-2.7 and
     * earlier, this allows us to maintain old->new/new->old migration
     * compatibility.
     *
     * For QEMU 2.8+, there are additional CAS-negotiatable options available
     * via default pseries-2.8 machines and explicit command-line parameters.
     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
     * of the actual CAS-negotiated values to continue working properly. For
     * example, availability of memory unplug depends on knowing whether
     * OV5_HP_EVT was negotiated via CAS.
     *
     * Thus, for any cases where the set of available CAS-negotiatable
     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
     * include the CAS-negotiated options in the migration stream.
     */
    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);

    /* spapr_ovec_diff returns true if bits were removed. we avoid using
     * the mask itself since in the future it's possible "legacy" bits may be
     * removed via machine options, which could generate a false positive
     * that breaks migration.
     */
    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);

    spapr_ovec_cleanup(ov5_mask);
    spapr_ovec_cleanup(ov5_legacy);
    spapr_ovec_cleanup(ov5_removed);

    return cas_needed;
}

static const VMStateDescription vmstate_spapr_ov5_cas = {
    .name = "spapr_option_vector_ov5_cas",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = spapr_ov5_cas_needed,
    .fields = (VMStateField[]) {
        VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
                                 vmstate_spapr_ovec, sPAPROptionVector),
        VMSTATE_END_OF_LIST()
    },
};

1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
static bool spapr_patb_entry_needed(void *opaque)
{
    sPAPRMachineState *spapr = opaque;

    return !!spapr->patb_entry;
}

static const VMStateDescription vmstate_spapr_patb_entry = {
    .name = "spapr_patb_entry",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = spapr_patb_entry_needed,
    .fields = (VMStateField[]) {
        VMSTATE_UINT64(patb_entry, sPAPRMachineState),
        VMSTATE_END_OF_LIST()
    },
};

1484 1485
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1486
    .version_id = 3,
1487
    .minimum_version_id = 1,
1488
    .post_load = spapr_post_load,
1489
    .fields = (VMStateField[]) {
1490 1491
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1492 1493

        /* RTC offset */
1494
        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1495

1496
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1497 1498
        VMSTATE_END_OF_LIST()
    },
1499 1500
    .subsections = (const VMStateDescription*[]) {
        &vmstate_spapr_ov5_cas,
1501
        &vmstate_spapr_patb_entry,
1502 1503
        NULL
    }
1504 1505 1506 1507
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
1508
    sPAPRMachineState *spapr = opaque;
1509 1510 1511 1512

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1513 1514 1515 1516 1517 1518 1519 1520
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());
    }


1521 1522 1523
    return 0;
}

1524
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1525 1526
                                 int64_t max_ns)
{
1527
    bool has_timeout = max_ns != -1;
1528 1529
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1530
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
M
Marc-André Lureau 已提交
1541
            index++;
1542 1543 1544 1545
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1546
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1547 1548
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
M
Marc-André Lureau 已提交
1549
            index++;
1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1561 1562
            if (has_timeout &&
                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1576
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1577
                                int64_t max_ns)
1578 1579 1580 1581 1582
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1583
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1599
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1600 1601 1602 1603 1604 1605 1606 1607 1608
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1609
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1628
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1650
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1651 1652
}

1653 1654 1655
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1656 1657
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
1658
    sPAPRMachineState *spapr = opaque;
1659
    int fd;
1660
    int rc = 0;
1661 1662 1663 1664

    /* Iteration header */
    qemu_put_be32(f, 0);

1665 1666 1667
    if (!spapr->htab) {
        assert(kvm_enabled());

1668 1669 1670
        fd = get_htab_fd(spapr);
        if (fd < 0) {
            return fd;
1671 1672
        }

1673
        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1674 1675 1676 1677
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1678 1679
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1680
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1681 1682 1683 1684 1685 1686 1687
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1688
    return rc;
1689 1690 1691 1692
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
1693
    sPAPRMachineState *spapr = opaque;
1694
    int fd;
1695 1696 1697 1698

    /* Iteration header */
    qemu_put_be32(f, 0);

1699 1700 1701 1702 1703
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1704 1705 1706
        fd = get_htab_fd(spapr);
        if (fd < 0) {
            return fd;
1707 1708
        }

1709
        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1710 1711 1712 1713
        if (rc < 0) {
            return rc;
        }
    } else {
1714 1715 1716
        if (spapr->htab_first_pass) {
            htab_save_first_pass(f, spapr, -1);
        }
1717 1718
        htab_save_later_pass(f, spapr, -1);
    }
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
1730
    sPAPRMachineState *spapr = opaque;
1731
    uint32_t section_hdr;
1732
    int fd = -1;
1733 1734

    if (version_id < 1 || version_id > 1) {
1735
        error_report("htab_load() bad version");
1736 1737 1738 1739 1740 1741
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
1742
        Error *local_err = NULL;
1743 1744 1745 1746 1747

        /* First section gives the htab size */
        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
        if (local_err) {
            error_report_err(local_err);
1748 1749 1750 1751 1752
            return -EINVAL;
        }
        return 0;
    }

1753 1754 1755 1756 1757
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
1758 1759
            error_report("Unable to open fd to restore KVM hash table: %s",
                         strerror(errno));
1760 1761 1762
        }
    }

1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1776
        if ((index + n_valid + n_invalid) >
1777 1778
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
1779 1780 1781
            error_report(
                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
                index, n_valid, n_invalid, spapr->htab_shift);
1782 1783 1784
            return -EINVAL;
        }

1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1803 1804 1805
        }
    }

1806 1807 1808 1809 1810
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1811 1812 1813
    return 0;
}

1814 1815 1816 1817 1818 1819 1820
static void htab_cleanup(void *opaque)
{
    sPAPRMachineState *spapr = opaque;

    close_htab_fd(spapr);
}

1821 1822 1823
static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
1824
    .save_live_complete_precopy = htab_save_complete,
1825
    .cleanup = htab_cleanup,
1826 1827 1828
    .load_state = htab_load,
};

1829 1830 1831 1832 1833 1834 1835
static void spapr_boot_set(void *opaque, const char *boot_device,
                           Error **errp)
{
    MachineState *machine = MACHINE(qdev_get_machine());
    machine->boot_order = g_strdup(boot_device);
}

D
David Gibson 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857
/*
 * Reset routine for LMB DR devices.
 *
 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
 * routine. Reset for PCI DR devices will be handled by PHB reset routine
 * when it walks all its children devices. LMB devices reset occurs
 * as part of spapr_ppc_reset().
 */
static void spapr_drc_reset(void *opaque)
{
    sPAPRDRConnector *drc = opaque;
    DeviceState *d = DEVICE(drc);

    if (d) {
        device_reset(d);
    }
}

static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
{
    MachineState *machine = MACHINE(spapr);
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1858
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
D
David Gibson 已提交
1859 1860 1861 1862 1863 1864
    int i;

    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        uint64_t addr;

1865
        addr = i * lmb_size + spapr->hotplug_memory.base;
D
David Gibson 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
        drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
                                     addr/lmb_size);
        qemu_register_reset(spapr_drc_reset, drc);
    }
}

/*
 * If RAM size, maxmem size and individual node mem sizes aren't aligned
 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
 * since we can't support such unaligned sizes with DRCONF_MEMORY.
 */
1877
static void spapr_validate_node_memory(MachineState *machine, Error **errp)
D
David Gibson 已提交
1878 1879 1880
{
    int i;

1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
                   " is not aligned to %llu MiB",
                   machine->ram_size,
                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
        return;
    }

    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
                   " is not aligned to %llu MiB",
                   machine->ram_size,
                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
        return;
D
David Gibson 已提交
1895 1896 1897 1898
    }

    for (i = 0; i < nb_numa_nodes; i++) {
        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1899 1900 1901 1902 1903 1904
            error_setg(errp,
                       "Node %d memory size 0x%" PRIx64
                       " is not aligned to %llu MiB",
                       i, numa_info[i].node_mem,
                       SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
            return;
D
David Gibson 已提交
1905 1906 1907 1908
        }
    }
}

1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
/* find cpu slot in machine->possible_cpus by core_id */
static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
{
    int index = id / smp_threads;

    if (index >= ms->possible_cpus->len) {
        return NULL;
    }
    if (idx) {
        *idx = index;
    }
    return &ms->possible_cpus->cpus[index];
}

1923 1924 1925 1926 1927 1928
static void spapr_init_cpus(sPAPRMachineState *spapr)
{
    MachineState *machine = MACHINE(spapr);
    MachineClass *mc = MACHINE_GET_CLASS(machine);
    char *type = spapr_get_cpu_core_type(machine->cpu_model);
    int smt = kvmppc_smt_threads();
1929 1930
    const CPUArchIdList *possible_cpus;
    int boot_cores_nr = smp_cpus / smp_threads;
1931 1932 1933 1934 1935 1936 1937
    int i;

    if (!type) {
        error_report("Unable to find sPAPR CPU Core definition");
        exit(1);
    }

1938
    possible_cpus = mc->possible_cpu_arch_ids(machine);
1939
    if (mc->has_hotpluggable_cpus) {
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
        if (smp_cpus % smp_threads) {
            error_report("smp_cpus (%u) must be multiple of threads (%u)",
                         smp_cpus, smp_threads);
            exit(1);
        }
        if (max_cpus % smp_threads) {
            error_report("max_cpus (%u) must be multiple of threads (%u)",
                         max_cpus, smp_threads);
            exit(1);
        }
    } else {
        if (max_cpus != smp_cpus) {
            error_report("This machine version does not support CPU hotplug");
            exit(1);
        }
1955
        boot_cores_nr = possible_cpus->len;
1956 1957
    }

1958
    for (i = 0; i < possible_cpus->len; i++) {
1959 1960
        int core_id = i * smp_threads;

1961
        if (mc->has_hotpluggable_cpus) {
1962 1963 1964 1965 1966 1967 1968 1969
            sPAPRDRConnector *drc =
                spapr_dr_connector_new(OBJECT(spapr),
                                       SPAPR_DR_CONNECTOR_TYPE_CPU,
                                       (core_id / smp_threads) * smt);

            qemu_register_reset(spapr_drc_reset, drc);
        }

1970
        if (i < boot_cores_nr) {
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
            Object *core  = object_new(type);
            int nr_threads = smp_threads;

            /* Handle the partially filled core for older machine types */
            if ((i + 1) * smp_threads >= smp_cpus) {
                nr_threads = smp_cpus - i * smp_threads;
            }

            object_property_set_int(core, nr_threads, "nr-threads",
                                    &error_fatal);
            object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
                                    &error_fatal);
            object_property_set_bool(core, true, "realized", &error_fatal);
        }
    }
    g_free(type);
}

1989
/* pSeries LPAR / sPAPR hardware init */
1990
static void ppc_spapr_init(MachineState *machine)
1991
{
1992
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
D
David Gibson 已提交
1993
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1994 1995
    const char *kernel_filename = machine->kernel_filename;
    const char *initrd_filename = machine->initrd_filename;
1996
    PCIHostState *phb;
1997
    int i;
A
Avi Kivity 已提交
1998 1999
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
2000 2001
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
2002
    hwaddr rma_alloc_size;
2003
    hwaddr node0_size = spapr_node0_size();
2004
    long load_limit, fw_size;
2005
    char *filename;
2006
    int smt = kvmppc_smt_threads();
2007

2008
    msi_nonbroken = true;
2009

2010 2011
    QLIST_INIT(&spapr->phbs);

2012
    /* Allocate RMA if necessary */
2013
    rma_alloc_size = kvmppc_alloc_rma(&rma);
2014 2015

    if (rma_alloc_size == -1) {
2016
        error_report("Unable to create RMA");
2017 2018
        exit(1);
    }
2019

2020
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2021
        spapr->rma_size = rma_alloc_size;
2022
    } else {
2023
        spapr->rma_size = node0_size;
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
2038 2039 2040 2041 2042 2043 2044

        /* Actually we don't support unbounded RMA anymore since we
         * added proper emulation of HV mode. The max we can get is
         * 16G which also happens to be what we configure for PAPR
         * mode so make sure we don't do anything bigger than that
         */
        spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2045 2046
    }

2047
    if (spapr->rma_size > node0_size) {
2048 2049
        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
                     spapr->rma_size);
2050 2051 2052
        exit(1);
    }

2053 2054
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2055

2056
    /* Set up Interrupt Controller before we create the VCPUs */
2057 2058
    xics_system_init(machine, DIV_ROUND_UP(max_cpus * smt, smp_threads),
                     XICS_IRQS_SPAPR, &error_fatal);
2059

2060 2061 2062 2063
    /* Set up containers for ibm,client-set-architecture negotiated options */
    spapr->ov5 = spapr_ovec_new();
    spapr->ov5_cas = spapr_ovec_new();

D
David Gibson 已提交
2064
    if (smc->dr_lmb_enabled) {
2065
        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2066
        spapr_validate_node_memory(machine, &error_fatal);
D
David Gibson 已提交
2067 2068
    }

2069 2070
    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);

2071 2072 2073 2074 2075
    /* advertise support for dedicated HP event source to guests */
    if (spapr->use_hotplug_event_source) {
        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
    }

2076
    /* init CPUs */
2077
    if (machine->cpu_model == NULL) {
2078
        machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2079
    }
2080

G
Greg Kurz 已提交
2081 2082
    ppc_cpu_parse_features(machine->cpu_model);

2083
    spapr_init_cpus(spapr);
2084

2085 2086 2087
    if (kvm_enabled()) {
        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
        kvmppc_enable_logical_ci_hcalls();
2088
        kvmppc_enable_set_mode_hcall();
2089 2090 2091

        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
        kvmppc_enable_clear_ref_mod_hcalls();
2092 2093
    }

2094
    /* allocate RAM */
2095
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2096
                                         machine->ram_size);
2097
    memory_region_add_subregion(sysmem, 0, ram);
2098

2099 2100 2101 2102 2103 2104 2105 2106
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

2107 2108 2109
    /* initialize hotplug memory address space */
    if (machine->ram_size < machine->maxram_size) {
        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2110 2111 2112 2113 2114 2115 2116
        /*
         * Limit the number of hotpluggable memory slots to half the number
         * slots that KVM supports, leaving the other half for PCI and other
         * devices. However ensure that number of slots doesn't drop below 32.
         */
        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
                           SPAPR_MAX_RAM_SLOTS;
2117

2118 2119 2120 2121
        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
            max_memslots = SPAPR_MAX_RAM_SLOTS;
        }
        if (machine->ram_slots > max_memslots) {
2122 2123
            error_report("Specified number of memory slots %"
                         PRIu64" exceeds max supported %d",
2124
                         machine->ram_slots, max_memslots);
2125
            exit(1);
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
        }

        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
                                              SPAPR_HOTPLUG_MEM_ALIGN);
        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
                           "hotplug-memory", hotplug_mem_size);
        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
                                    &spapr->hotplug_memory.mr);
    }

D
David Gibson 已提交
2136 2137 2138 2139
    if (smc->dr_lmb_enabled) {
        spapr_create_lmb_dr_connectors(spapr);
    }

2140
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2141
    if (!filename) {
2142
        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2143 2144
        exit(1);
    }
2145
    spapr->rtas_size = get_image_size(filename);
2146 2147 2148 2149
    if (spapr->rtas_size < 0) {
        error_report("Could not get size of LPAR rtas '%s'", filename);
        exit(1);
    }
2150 2151
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2152
        error_report("Could not load LPAR rtas '%s'", filename);
2153 2154
        exit(1);
    }
2155
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
2156 2157
        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2158 2159
        exit(1);
    }
2160
    g_free(filename);
2161

2162
    /* Set up RTAS event infrastructure */
2163 2164
    spapr_events_init(spapr);

2165
    /* Set up the RTC RTAS interfaces */
2166
    spapr_rtc_create(spapr);
2167

2168
    /* Set up VIO bus */
2169 2170
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
2171
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2172
        if (serial_hds[i]) {
2173
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2174 2175
        }
    }
2176

D
David Gibson 已提交
2177 2178 2179
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

2180
    /* Set up PCI */
2181 2182
    spapr_pci_rtas_init();

2183
    phb = spapr_create_phb(spapr, 0);
2184

P
Paolo Bonzini 已提交
2185
    for (i = 0; i < nb_nics; i++) {
2186 2187 2188
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
2189
            nd->model = g_strdup("ibmveth");
2190 2191 2192
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
2193
            spapr_vlan_create(spapr->vio_bus, nd);
2194
        } else {
2195
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2196 2197 2198
        }
    }

2199
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2200
        spapr_vscsi_create(spapr->vio_bus);
2201 2202
    }

2203
    /* Graphics */
2204
    if (spapr_vga_init(phb->bus, &error_fatal)) {
2205
        spapr->has_graphics = true;
2206
        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2207 2208
    }

2209
    if (machine->usb) {
2210 2211 2212 2213 2214
        if (smc->use_ohci_by_default) {
            pci_create_simple(phb->bus, -1, "pci-ohci");
        } else {
            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
        }
2215

2216
        if (spapr->has_graphics) {
2217 2218 2219 2220
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
2221 2222 2223
        }
    }

2224
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2225 2226 2227
        error_report(
            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
            MIN_RMA_SLOF);
2228 2229 2230
        exit(1);
    }

2231 2232 2233
    if (kernel_filename) {
        uint64_t lowaddr = 0;

2234 2235 2236 2237 2238 2239 2240 2241 2242
        spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
                                      NULL, NULL, &lowaddr, NULL, 1,
                                      PPC_ELF_MACHINE, 0, 0);
        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
            spapr->kernel_size = load_elf(kernel_filename,
                                          translate_kernel_address, NULL, NULL,
                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
                                          0, 0);
            spapr->kernel_le = spapr->kernel_size > 0;
2243
        }
2244 2245 2246
        if (spapr->kernel_size < 0) {
            error_report("error loading %s: %s", kernel_filename,
                         load_elf_strerror(spapr->kernel_size));
2247 2248 2249 2250 2251
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
2252 2253 2254
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
2255 2256 2257 2258 2259 2260 2261
            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
                                  + 0x1ffff) & ~0xffff;
            spapr->initrd_size = load_image_targphys(initrd_filename,
                                                     spapr->initrd_base,
                                                     load_limit
                                                     - spapr->initrd_base);
            if (spapr->initrd_size < 0) {
2262 2263
                error_report("could not load initial ram disk '%s'",
                             initrd_filename);
2264 2265 2266
                exit(1);
            }
        }
2267
    }
2268

2269 2270 2271 2272
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2273
    if (!filename) {
2274
        error_report("Could not find LPAR firmware '%s'", bios_name);
2275 2276
        exit(1);
    }
2277
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2278 2279
    if (fw_size <= 0) {
        error_report("Could not load LPAR firmware '%s'", filename);
2280 2281 2282 2283
        exit(1);
    }
    g_free(filename);

2284 2285 2286
    /* FIXME: Should register things through the MachineState's qdev
     * interface, this is a legacy from the sPAPREnvironment structure
     * which predated MachineState but had a similar function */
2287 2288 2289 2290
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

2291 2292 2293 2294
    /* used by RTAS */
    QTAILQ_INIT(&spapr->ccs_list);
    qemu_register_reset(spapr_ccs_reset_hook, spapr);

2295
    qemu_register_boot_set(spapr_boot_set, spapr);
2296 2297 2298 2299 2300 2301

    /* to stop and start vmclock */
    if (kvm_enabled()) {
        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
                                         &spapr->tb);
    }
2302 2303
}

2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

2322
/*
2323
 * Implementation of an interface to adjust firmware path
2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
    /*
     * SLOF probes the USB devices, and if it recognizes that the device is a
     * storage device, it changes its name to "storage" instead of "usb-host",
     * and additionally adds a child node for the SCSI LUN, so the correct
     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
     */
    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
        if (usb_host_dev_is_scsi_storage(usbdev)) {
            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
        }
    }

2384 2385 2386 2387 2388 2389 2390 2391
    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
2392 2393
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
2394
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2395

2396
    return g_strdup(spapr->kvm_type);
E
Eduardo Habkost 已提交
2397 2398 2399 2400
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
2401
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2402

2403 2404
    g_free(spapr->kvm_type);
    spapr->kvm_type = g_strdup(value);
E
Eduardo Habkost 已提交
2405 2406
}

2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    return spapr->use_hotplug_event_source;
}

static void spapr_set_modern_hotplug_events(Object *obj, bool value,
                                            Error **errp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    spapr->use_hotplug_event_source = value;
}

E
Eduardo Habkost 已提交
2422 2423
static void spapr_machine_initfn(Object *obj)
{
2424 2425 2426
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    spapr->htab_fd = -1;
2427
    spapr->use_hotplug_event_source = true;
E
Eduardo Habkost 已提交
2428 2429
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2430 2431 2432
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
2433 2434 2435 2436 2437 2438 2439 2440 2441
    object_property_add_bool(obj, "modern-hotplug-events",
                            spapr_get_modern_hotplug_events,
                            spapr_set_modern_hotplug_events,
                            NULL);
    object_property_set_description(obj, "modern-hotplug-events",
                                    "Use dedicated hotplug event mechanism in"
                                    " place of standard EPOW events when possible"
                                    " (required for memory hot-unplug support)",
                                    NULL);
E
Eduardo Habkost 已提交
2442 2443
}

2444 2445 2446 2447 2448 2449 2450
static void spapr_machine_finalizefn(Object *obj)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    g_free(spapr->kvm_type);
}

2451
void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
{
    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
2462
        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2463 2464 2465
    }
}

2466 2467 2468
static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
                           uint32_t node, bool dedicated_hp_event_source,
                           Error **errp)
B
Bharata B Rao 已提交
2469 2470 2471 2472 2473 2474
{
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
    int i, fdt_offset, fdt_size;
    void *fdt;
2475
    uint64_t addr = addr_start;
B
Bharata B Rao 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488

    for (i = 0; i < nr_lmbs; i++) {
        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                addr/SPAPR_MEMORY_BLOCK_SIZE);
        g_assert(drc);

        fdt = create_device_tree(&fdt_size);
        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
                                                SPAPR_MEMORY_BLOCK_SIZE);

        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
        addr += SPAPR_MEMORY_BLOCK_SIZE;
2489 2490 2491 2492 2493
        if (!dev->hotplugged) {
            /* guests expect coldplugged LMBs to be pre-allocated */
            drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
            drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
        }
B
Bharata B Rao 已提交
2494
    }
2495 2496 2497 2498
    /* send hotplug notification to the
     * guest only in case of hotplugged memory
     */
    if (dev->hotplugged) {
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
        if (dedicated_hp_event_source) {
            drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                    addr_start / SPAPR_MEMORY_BLOCK_SIZE);
            drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                                   nr_lmbs,
                                                   drck->get_index(drc));
        } else {
            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                           nr_lmbs);
        }
2510
    }
B
Bharata B Rao 已提交
2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523
}

static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                              uint32_t node, Error **errp)
{
    Error *local_err = NULL;
    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);
    uint64_t align = memory_region_get_alignment(mr);
    uint64_t size = memory_region_size(mr);
    uint64_t addr;
2524
    char *mem_dev;
B
Bharata B Rao 已提交
2525 2526 2527 2528 2529 2530 2531

    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(&local_err, "Hotplugged memory size must be a multiple of "
                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
        goto out;
    }

2532 2533 2534 2535 2536 2537 2538
    mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
    if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
        error_setg(&local_err, "Memory backend has bad page size. "
                   "Use 'memory-backend-file' with correct mem-path.");
        goto out;
    }

2539
    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
B
Bharata B Rao 已提交
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549
    if (local_err) {
        goto out;
    }

    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
    if (local_err) {
        pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
        goto out;
    }

2550 2551 2552
    spapr_add_lmbs(dev, addr, size, node,
                   spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
                   &error_abort);
B
Bharata B Rao 已提交
2553 2554 2555 2556 2557

out:
    error_propagate(errp, local_err);
}

B
Bharata B Rao 已提交
2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
typedef struct sPAPRDIMMState {
    uint32_t nr_lmbs;
} sPAPRDIMMState;

static void spapr_lmb_release(DeviceState *dev, void *opaque)
{
    sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
    HotplugHandler *hotplug_ctrl;

    if (--ds->nr_lmbs) {
        return;
    }

    g_free(ds);

    /*
     * Now that all the LMBs have been removed by the guest, call the
     * pc-dimm unplug handler to cleanup up the pc-dimm device.
     */
    hotplug_ctrl = qdev_get_hotplug_handler(dev);
    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
}

static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
                           Error **errp)
{
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
    int i;
    sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
    uint64_t addr = addr_start;

    ds->nr_lmbs = nr_lmbs;
    for (i = 0; i < nr_lmbs; i++) {
        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                addr / SPAPR_MEMORY_BLOCK_SIZE);
        g_assert(drc);

        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->detach(drc, dev, spapr_lmb_release, ds, errp);
        addr += SPAPR_MEMORY_BLOCK_SIZE;
    }

    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                              nr_lmbs,
                                              drck->get_index(drc));
}

static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
                                Error **errp)
{
    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);

    pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
    object_unparent(OBJECT(dev));
}

static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
                                        DeviceState *dev, Error **errp)
{
    Error *local_err = NULL;
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);
    uint64_t size = memory_region_size(mr);
    uint64_t addr;

    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
    if (local_err) {
        goto out;
    }

    spapr_del_lmbs(dev, addr, size, &error_abort);
out:
    error_propagate(errp, local_err);
}

B
Bharata B Rao 已提交
2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
                                    sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    DeviceClass *dc = DEVICE_GET_CLASS(cs);
    int id = ppc_get_vcpu_dt_id(cpu);
    void *fdt;
    int offset, fdt_size;
    char *nodename;

    fdt = create_device_tree(&fdt_size);
    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
    offset = fdt_add_subnode(fdt, 0, nodename);

    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    g_free(nodename);

    *fdt_offset = offset;
    return fdt;
}

2663 2664
static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
                              Error **errp)
2665
{
2666
    MachineState *ms = MACHINE(qdev_get_machine());
2667
    CPUCore *cc = CPU_CORE(dev);
2668
    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2669

2670
    core_slot->cpu = NULL;
2671 2672 2673
    object_unparent(OBJECT(dev));
}

2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684
static void spapr_core_release(DeviceState *dev, void *opaque)
{
    HotplugHandler *hotplug_ctrl;

    hotplug_ctrl = qdev_get_hotplug_handler(dev);
    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
}

static
void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
                               Error **errp)
2685
{
2686 2687
    int index;
    sPAPRDRConnector *drc;
2688 2689
    sPAPRDRConnectorClass *drck;
    Error *local_err = NULL;
2690 2691
    CPUCore *cc = CPU_CORE(dev);
    int smt = kvmppc_smt_threads();
2692

2693 2694 2695 2696 2697
    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
        error_setg(errp, "Unable to find CPU core with core-id: %d",
                   cc->core_id);
        return;
    }
2698 2699 2700 2701 2702
    if (index == 0) {
        error_setg(errp, "Boot CPU core may not be unplugged");
        return;
    }

2703
    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
    g_assert(drc);

    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
    drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }

    spapr_hotplug_req_remove_by_index(drc);
}

static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                            Error **errp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
    MachineClass *mc = MACHINE_GET_CLASS(spapr);
    sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
    CPUCore *cc = CPU_CORE(dev);
    CPUState *cs = CPU(core->threads);
    sPAPRDRConnector *drc;
    Error *local_err = NULL;
    void *fdt = NULL;
    int fdt_offset = 0;
    int smt = kvmppc_smt_threads();
2729 2730
    CPUArchId *core_slot;
    int index;
2731

2732 2733 2734 2735 2736 2737
    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
    if (!core_slot) {
        error_setg(errp, "Unable to find CPU core with core-id: %d",
                   cc->core_id);
        return;
    }
2738 2739
    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);

2740
    g_assert(drc || !mc->has_hotpluggable_cpus);
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775

    /*
     * Setup CPU DT entries only for hotplugged CPUs. For boot time or
     * coldplugged CPUs DT entries are setup in spapr_build_fdt().
     */
    if (dev->hotplugged) {
        fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
    }

    if (drc) {
        sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
        if (local_err) {
            g_free(fdt);
            error_propagate(errp, local_err);
            return;
        }
    }

    if (dev->hotplugged) {
        /*
         * Send hotplug notification interrupt to the guest only in case
         * of hotplugged CPUs.
         */
        spapr_hotplug_req_add_by_index(drc);
    } else {
        /*
         * Set the right DRC states for cold plugged CPU.
         */
        if (drc) {
            sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
            drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
            drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
        }
    }
2776
    core_slot->cpu = OBJECT(dev);
2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787
}

static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                                Error **errp)
{
    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
    Error *local_err = NULL;
    CPUCore *cc = CPU_CORE(dev);
    char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
    const char *type = object_get_typename(OBJECT(dev));
2788 2789
    CPUArchId *core_slot;
    int index;
2790

2791
    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
        error_setg(&local_err, "CPU hotplug not supported for this machine");
        goto out;
    }

    if (strcmp(base_core_type, type)) {
        error_setg(&local_err, "CPU core type should be %s", base_core_type);
        goto out;
    }

    if (cc->core_id % smp_threads) {
        error_setg(&local_err, "invalid core id %d", cc->core_id);
        goto out;
    }

2806 2807 2808 2809 2810 2811
    if (cc->nr_threads != smp_threads) {
        error_setg(errp, "invalid nr-threads %d, must be %d",
                   cc->nr_threads, smp_threads);
        return;
    }

2812 2813
    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
    if (!core_slot) {
2814 2815 2816 2817
        error_setg(&local_err, "core id %d out of range", cc->core_id);
        goto out;
    }

2818
    if (core_slot->cpu) {
2819 2820 2821 2822 2823 2824 2825 2826 2827
        error_setg(&local_err, "core %d already populated", cc->core_id);
        goto out;
    }

out:
    g_free(base_core_type);
    error_propagate(errp, local_err);
}

B
Bharata B Rao 已提交
2828 2829 2830 2831 2832 2833
static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2834
        int node;
B
Bharata B Rao 已提交
2835 2836 2837 2838 2839 2840 2841 2842 2843

        if (!smc->dr_lmb_enabled) {
            error_setg(errp, "Memory hotplug not supported for this machine");
            return;
        }
        node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
        if (*errp) {
            return;
        }
2844 2845 2846 2847
        if (node < 0 || node >= MAX_NODES) {
            error_setg(errp, "Invaild node %d", node);
            return;
        }
B
Bharata B Rao 已提交
2848

2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
        /*
         * Currently PowerPC kernel doesn't allow hot-adding memory to
         * memory-less node, but instead will silently add the memory
         * to the first node that has some memory. This causes two
         * unexpected behaviours for the user.
         *
         * - Memory gets hotplugged to a different node than what the user
         *   specified.
         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
         *   to memory-less node, a reboot will set things accordingly
         *   and the previously hotplugged memory now ends in the right node.
         *   This appears as if some memory moved from one node to another.
         *
         * So until kernel starts supporting memory hotplug to memory-less
         * nodes, just prevent such attempts upfront in QEMU.
         */
        if (nb_numa_nodes && !numa_info[node].node_mem) {
            error_setg(errp, "Can't hotplug memory to memory-less node %d",
                       node);
            return;
        }

B
Bharata B Rao 已提交
2871
        spapr_memory_plug(hotplug_dev, dev, node, errp);
B
Bharata B Rao 已提交
2872 2873
    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
        spapr_core_plug(hotplug_dev, dev, errp);
B
Bharata B Rao 已提交
2874 2875 2876 2877 2878 2879
    }
}

static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
B
Bharata B Rao 已提交
2880
    sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2881
    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
B
Bharata B Rao 已提交
2882

B
Bharata B Rao 已提交
2883
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
B
Bharata B Rao 已提交
2884 2885 2886 2887 2888 2889
        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
            spapr_memory_unplug(hotplug_dev, dev, errp);
        } else {
            error_setg(errp, "Memory hot unplug not supported for this guest");
        }
    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2890
        if (!mc->has_hotpluggable_cpus) {
B
Bharata B Rao 已提交
2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915
            error_setg(errp, "CPU hot unplug not supported on this machine");
            return;
        }
        spapr_core_unplug(hotplug_dev, dev, errp);
    }
}

static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
                                                DeviceState *dev, Error **errp)
{
    sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());

    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
            spapr_memory_unplug_request(hotplug_dev, dev, errp);
        } else {
            /* NOTE: this means there is a window after guest reset, prior to
             * CAS negotiation, where unplug requests will fail due to the
             * capability not being detected yet. This is a bit different than
             * the case with PCI unplug, where the events will be queued and
             * eventually handled by the guest after boot
             */
            error_setg(errp, "Memory hot unplug not supported for this guest");
        }
B
Bharata B Rao 已提交
2916
    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2917
        if (!mc->has_hotpluggable_cpus) {
B
Bharata B Rao 已提交
2918 2919 2920
            error_setg(errp, "CPU hot unplug not supported on this machine");
            return;
        }
2921
        spapr_core_unplug_request(hotplug_dev, dev, errp);
B
Bharata B Rao 已提交
2922 2923 2924
    }
}

2925 2926 2927 2928 2929 2930 2931 2932
static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
                                          DeviceState *dev, Error **errp)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
        spapr_core_pre_plug(hotplug_dev, dev, errp);
    }
}

2933 2934
static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
                                                 DeviceState *dev)
B
Bharata B Rao 已提交
2935
{
2936 2937
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
B
Bharata B Rao 已提交
2938 2939 2940 2941 2942
        return HOTPLUG_HANDLER(machine);
    }
    return NULL;
}

2943 2944 2945 2946 2947 2948 2949
static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
{
    /* Allocate to NUMA nodes on a "socket" basis (not that concept of
     * socket means much for the paravirtualized PAPR platform) */
    return cpu_index / smp_threads / smp_cores;
}

2950 2951 2952 2953 2954 2955
static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
{
    int i;
    int spapr_max_cores = max_cpus / smp_threads;
    MachineClass *mc = MACHINE_GET_CLASS(machine);

2956
    if (!mc->has_hotpluggable_cpus) {
2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969
        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
    }
    if (machine->possible_cpus) {
        assert(machine->possible_cpus->len == spapr_max_cores);
        return machine->possible_cpus;
    }

    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
                             sizeof(CPUArchId) * spapr_max_cores);
    machine->possible_cpus->len = spapr_max_cores;
    for (i = 0; i < machine->possible_cpus->len; i++) {
        int core_id = i * smp_threads;

2970
        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
2971 2972 2973 2974 2975 2976 2977 2978 2979
        machine->possible_cpus->cpus[i].arch_id = core_id;
        machine->possible_cpus->cpus[i].props.has_core_id = true;
        machine->possible_cpus->cpus[i].props.core_id = core_id;
        /* TODO: add 'has_node/node' here to describe
           to which node core belongs */
    }
    return machine->possible_cpus;
}

2980
static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
D
David Gibson 已提交
2981 2982
                                uint64_t *buid, hwaddr *pio,
                                hwaddr *mmio32, hwaddr *mmio64,
2983 2984
                                unsigned n_dma, uint32_t *liobns, Error **errp)
{
2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999
    /*
     * New-style PHB window placement.
     *
     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
     * windows.
     *
     * Some guest kernels can't work with MMIO windows above 1<<46
     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
     *
     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
     * 1TiB 64-bit MMIO windows for each PHB.
     */
3000
    const uint64_t base_buid = 0x800000020000000ULL;
3001 3002
#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
                        SPAPR_PCI_MEM64_WIN_SIZE - 1)
3003 3004
    int i;

3005 3006 3007 3008 3009 3010
    /* Sanity check natural alignments */
    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
    /* Sanity check bounds */
3011 3012 3013 3014 3015 3016 3017 3018
    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
                      SPAPR_PCI_MEM32_WIN_SIZE);
    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
                      SPAPR_PCI_MEM64_WIN_SIZE);

    if (index >= SPAPR_MAX_PHBS) {
        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
                   SPAPR_MAX_PHBS - 1);
3019 3020 3021 3022 3023 3024 3025 3026
        return;
    }

    *buid = base_buid + index;
    for (i = 0; i < n_dma; ++i) {
        liobns[i] = SPAPR_PCI_LIOBN(index, i);
    }

3027 3028 3029
    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3030 3031
}

3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);

    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
}

static void spapr_ics_resend(XICSFabric *dev)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);

    ics_resend(spapr->ics);
}

3046 3047 3048 3049
static ICPState *spapr_icp_get(XICSFabric *xi, int server)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(xi);

3050
    return (server < spapr->nr_servers) ? &spapr->icps[server] : NULL;
3051 3052
}

3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
static void spapr_pic_print_info(InterruptStatsProvider *obj,
                                 Monitor *mon)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
    int i;

    for (i = 0; i < spapr->nr_servers; i++) {
        icp_pic_print_info(&spapr->icps[i], mon);
    }

    ics_pic_print_info(spapr->ics, mon);
}

3066 3067 3068
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
D
David Gibson 已提交
3069
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3070
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3071
    NMIClass *nc = NMI_CLASS(oc);
B
Bharata B Rao 已提交
3072
    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3073
    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3074
    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3075
    InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3076

3077
    mc->desc = "pSeries Logical Partition (PAPR compliant)";
3078 3079 3080 3081 3082 3083

    /*
     * We set up the default / latest behaviour here.  The class_init
     * functions for the specific versioned machine types can override
     * these details for backwards compatibility
     */
3084 3085 3086
    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
G
Greg Kurz 已提交
3087
    mc->max_cpus = 1024;
3088
    mc->no_parallel = 1;
3089
    mc->default_boot_order = "";
3090
    mc->default_ram_size = 512 * M_BYTE;
3091
    mc->kvm_type = spapr_kvm_type;
3092
    mc->has_dynamic_sysbus = true;
3093
    mc->pci_allow_0_address = true;
3094
    mc->get_hotplug_handler = spapr_get_hotplug_handler;
3095
    hc->pre_plug = spapr_machine_device_pre_plug;
B
Bharata B Rao 已提交
3096 3097
    hc->plug = spapr_machine_device_plug;
    hc->unplug = spapr_machine_device_unplug;
3098
    mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
3099
    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
B
Bharata B Rao 已提交
3100
    hc->unplug_request = spapr_machine_device_unplug_request;
3101

3102
    smc->dr_lmb_enabled = true;
3103
    smc->tcg_default_cpu = "POWER8";
3104
    mc->has_hotpluggable_cpus = true;
3105
    fwc->get_dev_path = spapr_get_fw_dev_path;
3106
    nc->nmi_monitor_handler = spapr_nmi;
3107
    smc->phb_placement = spapr_phb_placement;
3108
    vhc->hypercall = emulate_spapr_hypercall;
3109 3110 3111 3112
    vhc->hpt_mask = spapr_hpt_mask;
    vhc->map_hptes = spapr_map_hptes;
    vhc->unmap_hptes = spapr_unmap_hptes;
    vhc->store_hpte = spapr_store_hpte;
3113
    vhc->get_patbe = spapr_get_patbe;
3114 3115
    xic->ics_get = spapr_ics_get;
    xic->ics_resend = spapr_ics_resend;
3116
    xic->icp_get = spapr_icp_get;
3117
    ispc->print_info = spapr_pic_print_info;
3118 3119 3120 3121 3122
    /* Force NUMA node memory size to be a multiple of
     * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
     * in which LMBs are represented and hot-added
     */
    mc->numa_mem_align_shift = 28;
3123 3124 3125 3126 3127
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
3128
    .abstract      = true,
3129
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
3130
    .instance_init = spapr_machine_initfn,
3131
    .instance_finalize = spapr_machine_finalizefn,
D
David Gibson 已提交
3132
    .class_size    = sizeof(sPAPRMachineClass),
3133
    .class_init    = spapr_machine_class_init,
3134 3135
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
3136
        { TYPE_NMI },
B
Bharata B Rao 已提交
3137
        { TYPE_HOTPLUG_HANDLER },
3138
        { TYPE_PPC_VIRTUAL_HYPERVISOR },
3139
        { TYPE_XICS_FABRIC },
3140
        { TYPE_INTERRUPT_STATS_PROVIDER },
3141 3142
        { }
    },
3143 3144
};

3145
#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
D
David Gibson 已提交
3146 3147 3148 3149 3150
    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
                                                    void *data)      \
    {                                                                \
        MachineClass *mc = MACHINE_CLASS(oc);                        \
        spapr_machine_##suffix##_class_options(mc);                  \
3151 3152 3153 3154
        if (latest) {                                                \
            mc->alias = "pseries";                                   \
            mc->is_default = 1;                                      \
        }                                                            \
D
David Gibson 已提交
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170
    }                                                                \
    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
    {                                                                \
        MachineState *machine = MACHINE(obj);                        \
        spapr_machine_##suffix##_instance_options(machine);          \
    }                                                                \
    static const TypeInfo spapr_machine_##suffix##_info = {          \
        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
        .parent = TYPE_SPAPR_MACHINE,                                \
        .class_init = spapr_machine_##suffix##_class_init,           \
        .instance_init = spapr_machine_##suffix##_instance_init,     \
    };                                                               \
    static void spapr_machine_register_##suffix(void)                \
    {                                                                \
        type_register(&spapr_machine_##suffix##_info);               \
    }                                                                \
3171
    type_init(spapr_machine_register_##suffix)
D
David Gibson 已提交
3172

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186
/*
 * pseries-2.10
 */
static void spapr_machine_2_10_instance_options(MachineState *machine)
{
}

static void spapr_machine_2_10_class_options(MachineClass *mc)
{
    /* Defaults for the latest behaviour inherited from the base class */
}

DEFINE_SPAPR_MACHINE(2_10, "2.10", true);

3187 3188 3189
/*
 * pseries-2.9
 */
3190 3191 3192
#define SPAPR_COMPAT_2_9                                               \
    HW_COMPAT_2_9

3193 3194
static void spapr_machine_2_9_instance_options(MachineState *machine)
{
3195
    spapr_machine_2_10_instance_options(machine);
3196 3197 3198 3199
}

static void spapr_machine_2_9_class_options(MachineClass *mc)
{
3200 3201
    spapr_machine_2_10_class_options(mc);
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3202 3203
}

3204
DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3205

3206 3207 3208
/*
 * pseries-2.8
 */
3209 3210 3211 3212 3213 3214 3215
#define SPAPR_COMPAT_2_8                                        \
    HW_COMPAT_2_8                                               \
    {                                                           \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,                 \
        .property = "pcie-extended-configuration-space",        \
        .value    = "off",                                      \
    },
3216

3217 3218
static void spapr_machine_2_8_instance_options(MachineState *machine)
{
3219
    spapr_machine_2_9_instance_options(machine);
3220 3221 3222 3223
}

static void spapr_machine_2_8_class_options(MachineClass *mc)
{
3224 3225
    spapr_machine_2_9_class_options(mc);
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3226
    mc->numa_mem_align_shift = 23;
3227 3228
}

3229
DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3230

3231 3232 3233
/*
 * pseries-2.7
 */
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
#define SPAPR_COMPAT_2_7                            \
    HW_COMPAT_2_7                                   \
    {                                               \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
        .property = "mem_win_size",                 \
        .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
    },                                              \
    {                                               \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
        .property = "mem64_win_size",               \
        .value    = "0",                            \
3245 3246 3247 3248 3249
    },                                              \
    {                                               \
        .driver = TYPE_POWERPC_CPU,                 \
        .property = "pre-2.8-migration",            \
        .value    = "on",                           \
3250 3251 3252 3253 3254
    },                                              \
    {                                               \
        .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
        .property = "pre-2.8-migration",            \
        .value    = "on",                           \
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
    },

static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
                              uint64_t *buid, hwaddr *pio,
                              hwaddr *mmio32, hwaddr *mmio64,
                              unsigned n_dma, uint32_t *liobns, Error **errp)
{
    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
    const uint64_t base_buid = 0x800000020000000ULL;
    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
    const uint32_t max_index = 255;
    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */

    uint64_t ram_top = MACHINE(spapr)->ram_size;
    hwaddr phb0_base, phb_base;
    int i;

    /* Do we have hotpluggable memory? */
    if (MACHINE(spapr)->maxram_size > ram_top) {
        /* Can't just use maxram_size, because there may be an
         * alignment gap between normal and hotpluggable memory
         * regions */
        ram_top = spapr->hotplug_memory.base +
            memory_region_size(&spapr->hotplug_memory.mr);
    }

    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);

    if (index > max_index) {
        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
                   max_index);
        return;
    }

    *buid = base_buid + index;
    for (i = 0; i < n_dma; ++i) {
        liobns[i] = SPAPR_PCI_LIOBN(index, i);
    }

    phb_base = phb0_base + index * phb_spacing;
    *pio = phb_base + pio_offset;
    *mmio32 = phb_base + mmio_offset;
    /*
     * We don't set the 64-bit MMIO window, relying on the PHB's
     * fallback behaviour of automatically splitting a large "32-bit"
     * window into contiguous 32-bit and 64-bit windows
     */
}
3305

3306 3307
static void spapr_machine_2_7_instance_options(MachineState *machine)
{
3308 3309
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);

3310
    spapr_machine_2_8_instance_options(machine);
3311
    spapr->use_hotplug_event_source = false;
3312 3313 3314 3315
}

static void spapr_machine_2_7_class_options(MachineClass *mc)
{
3316 3317
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

3318
    spapr_machine_2_8_class_options(mc);
3319
    smc->tcg_default_cpu = "POWER7";
3320
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3321
    smc->phb_placement = phb_placement_2_7;
3322 3323
}

3324
DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3325

3326 3327 3328
/*
 * pseries-2.6
 */
3329
#define SPAPR_COMPAT_2_6 \
3330 3331 3332 3333 3334 3335
    HW_COMPAT_2_6 \
    { \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
        .property = "ddw",\
        .value    = stringify(off),\
    },
3336

3337 3338
static void spapr_machine_2_6_instance_options(MachineState *machine)
{
3339
    spapr_machine_2_7_instance_options(machine);
3340 3341 3342 3343
}

static void spapr_machine_2_6_class_options(MachineClass *mc)
{
3344
    spapr_machine_2_7_class_options(mc);
3345
    mc->has_hotpluggable_cpus = false;
3346
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3347 3348
}

3349
DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3350

3351 3352 3353
/*
 * pseries-2.5
 */
3354
#define SPAPR_COMPAT_2_5 \
3355 3356 3357 3358 3359 3360
    HW_COMPAT_2_5 \
    { \
        .driver   = "spapr-vlan", \
        .property = "use-rx-buffer-pools", \
        .value    = "off", \
    },
3361

D
David Gibson 已提交
3362
static void spapr_machine_2_5_instance_options(MachineState *machine)
3363
{
3364
    spapr_machine_2_6_instance_options(machine);
D
David Gibson 已提交
3365 3366 3367 3368
}

static void spapr_machine_2_5_class_options(MachineClass *mc)
{
3369 3370
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

3371
    spapr_machine_2_6_class_options(mc);
3372
    smc->use_ohci_by_default = true;
3373
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3374 3375
}

3376
DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3377 3378 3379 3380

/*
 * pseries-2.4
 */
C
Cornelia Huck 已提交
3381 3382 3383
#define SPAPR_COMPAT_2_4 \
        HW_COMPAT_2_4

D
David Gibson 已提交
3384
static void spapr_machine_2_4_instance_options(MachineState *machine)
3385
{
D
David Gibson 已提交
3386 3387
    spapr_machine_2_5_instance_options(machine);
}
3388

D
David Gibson 已提交
3389 3390
static void spapr_machine_2_4_class_options(MachineClass *mc)
{
3391 3392 3393 3394
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

    spapr_machine_2_5_class_options(mc);
    smc->dr_lmb_enabled = false;
D
David Gibson 已提交
3395
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3396 3397
}

3398
DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3399 3400 3401 3402

/*
 * pseries-2.3
 */
E
Eduardo Habkost 已提交
3403
#define SPAPR_COMPAT_2_3 \
3404 3405 3406 3407 3408 3409
        HW_COMPAT_2_3 \
        {\
            .driver   = "spapr-pci-host-bridge",\
            .property = "dynamic-reconfiguration",\
            .value    = "off",\
        },
E
Eduardo Habkost 已提交
3410

D
David Gibson 已提交
3411
static void spapr_machine_2_3_instance_options(MachineState *machine)
J
Jason Wang 已提交
3412
{
D
David Gibson 已提交
3413
    spapr_machine_2_4_instance_options(machine);
3414
    savevm_skip_section_footers();
3415
    global_state_set_optional();
3416
    savevm_skip_configuration();
J
Jason Wang 已提交
3417 3418
}

D
David Gibson 已提交
3419
static void spapr_machine_2_3_class_options(MachineClass *mc)
3420
{
3421
    spapr_machine_2_4_class_options(mc);
D
David Gibson 已提交
3422
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3423
}
3424
DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3425

3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
/*
 * pseries-2.2
 */

#define SPAPR_COMPAT_2_2 \
        HW_COMPAT_2_2 \
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
        },

D
David Gibson 已提交
3438
static void spapr_machine_2_2_instance_options(MachineState *machine)
3439
{
D
David Gibson 已提交
3440
    spapr_machine_2_3_instance_options(machine);
3441
    machine->suppress_vmdesc = true;
3442 3443
}

D
David Gibson 已提交
3444
static void spapr_machine_2_2_class_options(MachineClass *mc)
3445
{
3446
    spapr_machine_2_3_class_options(mc);
D
David Gibson 已提交
3447
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3448
}
3449
DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3450

3451 3452 3453 3454 3455
/*
 * pseries-2.1
 */
#define SPAPR_COMPAT_2_1 \
        HW_COMPAT_2_1
3456

D
David Gibson 已提交
3457
static void spapr_machine_2_1_instance_options(MachineState *machine)
3458
{
D
David Gibson 已提交
3459
    spapr_machine_2_2_instance_options(machine);
3460
}
J
Jason Wang 已提交
3461

D
David Gibson 已提交
3462
static void spapr_machine_2_1_class_options(MachineClass *mc)
J
Jason Wang 已提交
3463
{
3464
    spapr_machine_2_2_class_options(mc);
D
David Gibson 已提交
3465
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
J
Jason Wang 已提交
3466
}
3467
DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
D
David Gibson 已提交
3468

3469
static void spapr_machine_register_types(void)
3470
{
3471
    type_register_static(&spapr_machine_info);
3472 3473
}

3474
type_init(spapr_machine_register_types)