spapr.c 95.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
P
Peter Maydell 已提交
27
#include "qemu/osdep.h"
28
#include "qapi/error.h"
29
#include "sysemu/sysemu.h"
30
#include "sysemu/numa.h"
31
#include "hw/hw.h"
32
#include "qemu/log.h"
33
#include "hw/fw-path-provider.h"
34
#include "elf.h"
P
Paolo Bonzini 已提交
35
#include "net/net.h"
A
Andrew Jones 已提交
36
#include "sysemu/device_tree.h"
37
#include "sysemu/block-backend.h"
38 39
#include "sysemu/cpus.h"
#include "sysemu/kvm.h"
40
#include "kvm_ppc.h"
41
#include "migration/migration.h"
42
#include "mmu-hash64.h"
43
#include "qom/cpu.h"
44 45

#include "hw/boards.h"
P
Paolo Bonzini 已提交
46
#include "hw/ppc/ppc.h"
47 48
#include "hw/loader.h"

49
#include "hw/ppc/fdt.h"
P
Paolo Bonzini 已提交
50 51 52 53
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
54
#include "hw/pci/msi.h"
55

56
#include "hw/pci/pci.h"
57 58
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
59

60
#include "exec/address-spaces.h"
61
#include "hw/usb.h"
62
#include "qemu/config-file.h"
63
#include "qemu/error-report.h"
64
#include "trace.h"
65
#include "hw/nmi.h"
A
Avi Kivity 已提交
66

67
#include "hw/compat.h"
68
#include "qemu/cutils.h"
69
#include "hw/ppc/spapr_cpu_core.h"
70
#include "qmp-commands.h"
71

72 73
#include <libfdt.h>

74 75 76 77 78 79 80 81 82 83
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
84
#define FDT_MAX_SIZE            0x100000
85
#define RTAS_MAX_SIZE           0x10000
86
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
87 88
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
89 90
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
91

92
#define MIN_RMA_SLOF            128UL
93

94 95
#define PHANDLE_XICP            0x00001111

96 97
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

98
static XICSState *try_create_xics(const char *type, int nr_servers,
99
                                  int nr_irqs, Error **errp)
100
{
101
    Error *err = NULL;
102 103 104 105 106
    DeviceState *dev;

    dev = qdev_create(NULL, type);
    qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
    qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
107 108 109 110
    object_property_set_bool(OBJECT(dev), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        object_unparent(OBJECT(dev));
111 112
        return NULL;
    }
113
    return XICS_COMMON(dev);
114 115
}

116
static XICSState *xics_system_init(MachineState *machine,
117
                                   int nr_servers, int nr_irqs, Error **errp)
118
{
119
    XICSState *xics = NULL;
120

121
    if (kvm_enabled()) {
122 123
        Error *err = NULL;

124
        if (machine_kernel_irqchip_allowed(machine)) {
125 126
            xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs,
                                   &err);
127
        }
128
        if (machine_kernel_irqchip_required(machine) && !xics) {
129 130 131 132
            error_reportf_err(err,
                              "kernel_irqchip requested but unavailable: ");
        } else {
            error_free(err);
133 134 135
        }
    }

136 137
    if (!xics) {
        xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp);
138 139
    }

140
    return xics;
141 142
}

143 144 145 146 147 148 149 150
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

151
    if (cpu->cpu_version) {
152
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
153 154 155 156 157
        if (ret < 0) {
            return ret;
        }
    }

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
{
    int ret = 0;
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t associativity[] = {cpu_to_be32(0x5),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(cs->numa_node),
                                cpu_to_be32(index)};

    /* Advertise NUMA via ibm,associativity */
    if (nb_numa_nodes > 1) {
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                          sizeof(associativity));
    }

    return ret;
}

197
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
198
{
199 200
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
201 202
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
203
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
204

205 206 207 208
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
209

210
        if ((index % smt) != 0) {
211 212 213
            continue;
        }

214
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
215

216 217 218 219 220 221 222 223 224
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
225
        if (offset < 0) {
226 227 228 229
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
230 231
        }

232 233
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
234 235 236
        if (ret < 0) {
            return ret;
        }
237

238 239 240 241 242
        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
        if (ret < 0) {
            return ret;
        }

243
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
244
                                     ppc_get_compat_smt_threads(cpu));
245 246 247
        if (ret < 0) {
            return ret;
        }
248 249 250 251
    }
    return ret;
}

252 253
static hwaddr spapr_node0_size(void)
{
254 255
    MachineState *machine = MACHINE(qdev_get_machine());

256 257 258 259
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
260 261
                return MIN(pow2floor(numa_info[i].node_mem),
                           machine->ram_size);
262 263 264
            }
        }
    }
265
    return machine->ram_size;
266 267
}

268 269 270 271
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
272

273
static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
274 275 276 277 278
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
279
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
296
    return off;
297 298
}

299
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
300
{
301
    MachineState *machine = MACHINE(spapr);
302 303 304 305 306 307 308 309
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
310
        ramnode.node_mem = machine->ram_size;
311
        nodes = &ramnode;
312
    }
313

314 315 316 317
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
318
        if (mem_start >= machine->ram_size) {
319 320
            node_size = 0;
        } else {
321
            node_size = nodes[i].node_mem;
322 323
            if (node_size > machine->ram_size - mem_start) {
                node_size = machine->ram_size - mem_start;
324 325
            }
        }
326 327
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
328
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
329 330 331
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
332 333 334 335 336 337 338 339 340 341 342 343
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
344 345 346 347 348
    }

    return 0;
}

349 350 351 352 353 354 355 356 357
/* Populate the "ibm,pa-features" property */
static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
{
    uint8_t pa_features_206[] = { 6, 0,
        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
    uint8_t pa_features_207[] = { 24, 0,
        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
358
        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
359 360 361
    uint8_t *pa_features;
    size_t pa_size;

362 363 364
    switch (env->mmu_model) {
    case POWERPC_MMU_2_06:
    case POWERPC_MMU_2_06a:
365 366
        pa_features = pa_features_206;
        pa_size = sizeof(pa_features_206);
367 368 369
        break;
    case POWERPC_MMU_2_07:
    case POWERPC_MMU_2_07a:
370 371
        pa_features = pa_features_207;
        pa_size = sizeof(pa_features_207);
372 373 374
        break;
    default:
        return;
375 376 377 378 379 380 381 382 383 384 385 386
    }

    if (env->ci_large_pages) {
        /*
         * Note: we keep CI large pages off by default because a 64K capable
         * guest provisioned with large pages might otherwise try to map a qemu
         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
         * even if that qemu runs on a 4k host.
         * We dd this bit back here if we are confident this is not an issue
         */
        pa_features[3] |= 0x20;
    }
387 388 389
    if (kvmppc_has_cap_htm() && pa_size > 24) {
        pa_features[24] |= 0x80;    /* Transactional memory support */
    }
390 391 392 393

    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
}

394 395 396 397 398 399 400 401 402
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
                                  sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                       0xffffffff, 0xffffffff};
403 404
    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
        : SPAPR_TIMEBASE_FREQ;
405 406 407
    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
    uint32_t page_sizes_prop[64];
    size_t page_sizes_prop_size;
408
    uint32_t vcpus_per_socket = smp_threads * smp_cores;
409
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
B
Bharata B Rao 已提交
410 411 412 413 414 415 416 417 418 419
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    int drc_index;

    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
    if (drc) {
        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drc_index = drck->get_index(drc);
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
    }
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));

    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
                           env->icache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
                           env->icache_line_size)));

    if (pcc->l1_dcache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
                               pcc->l1_dcache_size)));
    } else {
438
        error_report("Warning: Unknown L1 dcache size for cpu");
439 440 441 442 443
    }
    if (pcc->l1_icache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
                               pcc->l1_icache_size)));
    } else {
444
        error_report("Warning: Unknown L1 icache size for cpu");
445 446 447 448
    }

    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
449
    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));

    if (env->spr_cb[SPR_PURR].oea_read) {
        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
    }

    if (env->mmu_model & POWERPC_MMU_1TSEG) {
        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
                          segs, sizeof(segs))));
    }

    /* Advertise VMX/VSX (vector extensions) if available
     *   0 / no property == no vector extensions
     *   1               == VMX / Altivec available
     *   2               == VSX available */
    if (env->insns_flags & PPC_ALTIVEC) {
        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
    }

    /* Advertise DFP (Decimal Floating Point) if available
     *   0 / no property == no DFP
     *   1               == DFP available */
    if (env->insns_flags2 & PPC2_DFP) {
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
    }

480
    page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
481 482 483 484 485 486
                                                  sizeof(page_sizes_prop));
    if (page_sizes_prop_size) {
        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
                          page_sizes_prop, page_sizes_prop_size)));
    }

487
    spapr_populate_pa_features(env, fdt, offset);
488

489
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
490
                           cs->cpu_index / vcpus_per_socket)));
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536

    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
                      pft_size_prop, sizeof(pft_size_prop))));

    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));

    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
                                ppc_get_compat_smt_threads(cpu)));
}

static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
{
    CPUState *cs;
    int cpus_offset;
    char *nodename;
    int smt = kvmppc_smt_threads();

    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
    _FDT(cpus_offset);
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));

    /*
     * We walk the CPUs in reverse order to ensure that CPU DT nodes
     * created by fdt_add_subnode() end up in the right order in FDT
     * for the guest kernel the enumerate the CPUs correctly.
     */
    CPU_FOREACH_REVERSE(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int offset;

        if ((index % smt) != 0) {
            continue;
        }

        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
        g_free(nodename);
        _FDT(offset);
        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    }

}

537 538 539 540 541 542 543 544 545 546 547
/*
 * Adds ibm,dynamic-reconfiguration-memory node.
 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 * of this device tree node.
 */
static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
{
    MachineState *machine = MACHINE(spapr);
    int ret, i, offset;
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
548 549 550 551
    uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
    uint32_t nr_lmbs = (spapr->hotplug_memory.base +
                       memory_region_size(&spapr->hotplug_memory.mr)) /
                       lmb_size;
552
    uint32_t *int_buf, *cur_index, buf_len;
553
    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
554

555
    /*
556
     * Don't create the node if there is no hotpluggable memory
557
     */
558
    if (machine->ram_size == machine->maxram_size) {
559 560 561
        return 0;
    }

562 563 564 565 566 567
    /*
     * Allocate enough buffer size to fit in ibm,dynamic-memory
     * or ibm,associativity-lookup-arrays
     */
    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
              * sizeof(uint32_t);
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
    cur_index = int_buf = g_malloc0(buf_len);

    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");

    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
                    sizeof(prop_lmb_size));
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
    if (ret < 0) {
        goto out;
    }

    /* ibm,dynamic-memory */
    int_buf[0] = cpu_to_be32(nr_lmbs);
    cur_index++;
    for (i = 0; i < nr_lmbs; i++) {
592
        uint64_t addr = i * lmb_size;
593 594
        uint32_t *dynamic_memory = cur_index;

595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
        if (i >= hotplug_lmb_start) {
            sPAPRDRConnector *drc;
            sPAPRDRConnectorClass *drck;

            drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
            g_assert(drc);
            drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

            dynamic_memory[0] = cpu_to_be32(addr >> 32);
            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
            dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
            dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
            if (memory_region_present(get_system_memory(), addr)) {
                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
            } else {
                dynamic_memory[5] = cpu_to_be32(0);
            }
613
        } else {
614 615 616 617 618 619 620 621 622 623 624 625
            /*
             * LMB information for RMA, boot time RAM and gap b/n RAM and
             * hotplug memory region -- all these are marked as reserved
             * and as having no valid DRC.
             */
            dynamic_memory[0] = cpu_to_be32(addr >> 32);
            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
            dynamic_memory[2] = cpu_to_be32(0);
            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
            dynamic_memory[4] = cpu_to_be32(-1);
            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
                                            SPAPR_LMB_FLAGS_DRC_INVALID);
626 627 628 629 630 631 632 633 634 635 636
        }

        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
    }
    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
    if (ret < 0) {
        goto out;
    }

    /* ibm,associativity-lookup-arrays */
    cur_index = int_buf;
637
    int_buf[0] = cpu_to_be32(nr_nodes);
638 639
    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
    cur_index += 2;
640
    for (i = 0; i < nr_nodes; i++) {
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
        uint32_t associativity[] = {
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(i)
        };
        memcpy(cur_index, associativity, sizeof(associativity));
        cur_index += 4;
    }
    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
            (cur_index - int_buf) * sizeof(uint32_t));
out:
    g_free(int_buf);
    return ret;
}

657 658 659 660
static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
                                sPAPROptionVector *ov5_updates)
{
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
661
    int ret = 0, offset;
662 663 664 665 666

    /* Generate ibm,dynamic-reconfiguration-memory node if required */
    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
        g_assert(smc->dr_lmb_enabled);
        ret = spapr_populate_drconf_memory(spapr, fdt);
667 668 669
        if (ret) {
            goto out;
        }
670 671
    }

672 673 674 675 676 677 678 679 680 681 682
    offset = fdt_path_offset(fdt, "/chosen");
    if (offset < 0) {
        offset = fdt_add_subnode(fdt, 0, "chosen");
        if (offset < 0) {
            return offset;
        }
    }
    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
                                 "ibm,architecture-vec-5");

out:
683 684 685
    return ret;
}

686 687
int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
                                 target_ulong addr, target_ulong size,
688 689
                                 bool cpu_update,
                                 sPAPROptionVector *ov5_updates)
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

    /* Fixup cpu nodes */
    if (cpu_update) {
        _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
    }

711 712
    if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
        return -1;
713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
    }

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799
static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
{
    int rtas;
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
    uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
        memory_region_size(&spapr->hotplug_memory.mr);
    uint32_t lrdr_capacity[] = {
        cpu_to_be32(max_hotplug_addr >> 32),
        cpu_to_be32(max_hotplug_addr & 0xffffffff),
        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
        cpu_to_be32(max_cpus / smp_threads),
    };

    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));

    /* hypertas */
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(hypertas, "hcall-sprg0");
    add_str(hypertas, "hcall-copy");
    add_str(hypertas, "hcall-debug");
    add_str(qemu_hypertas, "hcall-memop1");

    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
                     hypertas->str, hypertas->len));
    g_string_free(hypertas, TRUE);
    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
                     qemu_hypertas->str, qemu_hypertas->len));
    g_string_free(qemu_hypertas, TRUE);

    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
                     refpoints, sizeof(refpoints)));

    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
                          RTAS_ERROR_LOG_MAX));
    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
                          RTAS_EVENT_SCAN_RATE));

    if (msi_nonbroken) {
        _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
    }

    /*
     * According to PAPR, rtas ibm,os-term does not guarantee a return
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates
     * that rtas call return will always occur. Set this property.
     */
    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));

    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
                     lrdr_capacity, sizeof(lrdr_capacity)));

    spapr_dt_rtas_tokens(fdt, rtas);
}

800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
{
    MachineState *machine = MACHINE(spapr);
    int chosen;
    const char *boot_device = machine->boot_order;
    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
    size_t cb = 0;
    char *bootlist = get_boot_devices_list(&cb, true);

    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));

    _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
                          spapr->initrd_base));
    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
                          spapr->initrd_base + spapr->initrd_size));

    if (spapr->kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(spapr->kernel_size) };

        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
                         &kprop, sizeof(kprop)));
        if (spapr->kernel_le) {
            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
        }
    }
    if (boot_menu) {
        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
    }
    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));

    if (cb && bootlist) {
        int i;

        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }
        }
        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
    }

    if (boot_device && strlen(boot_device)) {
        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
    }

    if (!spapr->has_graphics && stdout_path) {
        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
    }

    g_free(stdout_path);
    g_free(bootlist);
}

857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
{
    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
     * KVM to work under pHyp with some guest co-operation */
    int hypervisor;
    uint8_t hypercall[16];

    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
    /* indicate KVM hypercall interface */
    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
    if (kvmppc_has_cap_fixup_hcalls()) {
        /*
         * Older KVM versions with older guest kernels were broken
         * with the magic page, don't allow the guest to map it.
         */
        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                  sizeof(hypercall))) {
            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
                             hypercall, sizeof(hypercall)));
        }
    }
}

880 881 882
static void *spapr_build_fdt(sPAPRMachineState *spapr,
                             hwaddr rtas_addr,
                             hwaddr rtas_size)
883
{
884
    MachineState *machine = MACHINE(qdev_get_machine());
885
    MachineClass *mc = MACHINE_GET_CLASS(machine);
B
Bharata B Rao 已提交
886
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
887
    int ret;
888
    void *fdt;
889
    sPAPRPHBState *phb;
890
    char *buf;
891

892 893
    fdt = g_malloc0(FDT_MAX_SIZE);
    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
894

895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927
    /* Root node */
    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));

    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
        g_free(buf);
    }

    buf = qemu_uuid_unparse_strdup(&qemu_uuid);

    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
    if (qemu_uuid_set) {
        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
    }
    g_free(buf);

    if (qemu_get_vm_name()) {
        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
                                qemu_get_vm_name()));
    }

    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
928

929 930 931
    /* /interrupt controller */
    spapr_dt_xics(spapr->xics, fdt, PHANDLE_XICP);

932 933
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
934
        error_report("couldn't setup memory nodes in fdt");
935
        exit(1);
936 937
    }

938 939
    /* /vdevice */
    spapr_dt_vdevice(spapr->vio_bus, fdt);
940

941 942 943
    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
        ret = spapr_rng_populate_dt(fdt);
        if (ret < 0) {
944
            error_report("could not set up rng device in the fdt");
945 946 947 948
            exit(1);
        }
    }

949
    QLIST_FOREACH(phb, &spapr->phbs, list) {
950
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
951 952 953 954
        if (ret < 0) {
            error_report("couldn't setup PCI devices in fdt");
            exit(1);
        }
955 956
    }

957 958
    /* cpus */
    spapr_populate_cpus_dt_node(fdt, spapr);
959

B
Bharata B Rao 已提交
960 961 962 963
    if (smc->dr_lmb_enabled) {
        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
    }

964
    if (mc->query_hotpluggable_cpus) {
B
Bharata B Rao 已提交
965 966 967 968 969 970 971 972 973
        int offset = fdt_path_offset(fdt, "/cpus");
        ret = spapr_drc_populate_dt(fdt, offset, NULL,
                                    SPAPR_DR_CONNECTOR_TYPE_CPU);
        if (ret < 0) {
            error_report("Couldn't set up CPU DR device tree properties");
            exit(1);
        }
    }

974
    /* /event-sources */
975
    spapr_dt_events(spapr, fdt);
976

977 978 979
    /* /rtas */
    spapr_dt_rtas(spapr, fdt);

980 981
    /* /chosen */
    spapr_dt_chosen(spapr, fdt);
982

983 984 985 986 987
    /* /hypervisor */
    if (kvm_enabled()) {
        spapr_dt_hypervisor(spapr, fdt);
    }

988 989 990 991 992 993 994 995
    /* Build memory reserve map */
    if (spapr->kernel_size) {
        _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
    }
    if (spapr->initrd_size) {
        _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
    }

996 997 998 999 1000 1001 1002
    /* ibm,client-architecture-support updates */
    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
    if (ret < 0) {
        error_report("couldn't setup CAS properties fdt");
        exit(1);
    }

1003
    return fdt;
1004 1005 1006 1007 1008 1009 1010
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

1011
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
1012
{
1013 1014
    CPUPPCState *env = &cpu->env;

1015 1016 1017 1018
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
1019
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1020
    }
1021 1022
}

1023 1024 1025 1026 1027 1028
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
/*
 * Get the fd to access the kernel htab, re-opening it if necessary
 */
static int get_htab_fd(sPAPRMachineState *spapr)
{
    if (spapr->htab_fd >= 0) {
        return spapr->htab_fd;
    }

    spapr->htab_fd = kvmppc_get_htab_fd(false);
    if (spapr->htab_fd < 0) {
        error_report("Unable to open fd for reading hash table from KVM: %s",
                     strerror(errno));
    }

    return spapr->htab_fd;
}

static void close_htab_fd(sPAPRMachineState *spapr)
{
    if (spapr->htab_fd >= 0) {
        close(spapr->htab_fd);
    }
    spapr->htab_fd = -1;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
{
    int shift;

    /* We aim for a hash table of size 1/128 the size of RAM (rounded
     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
     * that's much more than is needed for Linux guests */
    shift = ctz64(pow2ceil(ramsize)) - 7;
    shift = MAX(shift, 18); /* Minimum architected size */
    shift = MIN(shift, 46); /* Maximum architected size */
    return shift;
}

1068 1069
static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
                                 Error **errp)
1070
{
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    long rc;

    /* Clean up any HPT info from a previous boot */
    g_free(spapr->htab);
    spapr->htab = NULL;
    spapr->htab_shift = 0;
    close_htab_fd(spapr);

    rc = kvmppc_reset_htab(shift);
    if (rc < 0) {
        /* kernel-side HPT needed, but couldn't allocate one */
        error_setg_errno(errp, errno,
                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
                         shift);
        /* This is almost certainly fatal, but if the caller really
         * wants to carry on with shift == 0, it's welcome to try */
    } else if (rc > 0) {
        /* kernel-side HPT allocated */
        if (rc != shift) {
            error_setg(errp,
                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
                       shift, rc);
1093 1094
        }

1095
        spapr->htab_shift = shift;
1096
        spapr->htab = NULL;
1097
    } else {
1098 1099 1100
        /* kernel-side HPT not needed, allocate in userspace instead */
        size_t size = 1ULL << shift;
        int i;
1101

1102 1103 1104 1105 1106
        spapr->htab = qemu_memalign(size, size);
        if (!spapr->htab) {
            error_setg_errno(errp, errno,
                             "Could not allocate HPT of order %d", shift);
            return;
1107 1108
        }

1109 1110
        memset(spapr->htab, 0, size);
        spapr->htab_shift = shift;
1111

1112 1113
        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
            DIRTY_HPTE(HPTE(spapr->htab, i));
1114
        }
1115
    }
1116 1117
}

1118
static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }
}

1133
static void ppc_spapr_reset(void)
1134
{
1135 1136
    MachineState *machine = MACHINE(qdev_get_machine());
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1137
    PowerPCCPU *first_ppc_cpu;
1138
    uint32_t rtas_limit;
1139
    hwaddr rtas_addr, fdt_addr;
1140 1141
    void *fdt;
    int rc;
1142

1143 1144 1145
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
    /* Allocate and/or reset the hash page table */
    spapr_reallocate_hpt(spapr,
                         spapr_hpt_shift_for_ramsize(machine->maxram_size),
                         &error_fatal);

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
    }
1156

1157
    qemu_devices_reset();
1158

1159 1160 1161 1162 1163 1164
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1165 1166
    rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    fdt_addr = rtas_addr - FDT_MAX_SIZE;
1167

1168 1169 1170 1171 1172 1173 1174
    /* if this reset wasn't generated by CAS, we should reset our
     * negotiated options and start from scratch */
    if (!spapr->cas_reboot) {
        spapr_ovec_cleanup(spapr->ov5_cas);
        spapr->ov5_cas = spapr_ovec_new();
    }

1175
    fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1176

D
David Gibson 已提交
1177
    spapr_load_rtas(spapr, fdt, rtas_addr);
1178

1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    rc = fdt_pack(fdt);

    /* Should only fail if we've built a corrupted tree */
    assert(rc == 0);

    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
                     fdt_totalsize(fdt), FDT_MAX_SIZE);
        exit(1);
    }

    /* Load the fdt */
    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1192
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1193 1194
    g_free(fdt);

1195
    /* Set up the entry state */
1196
    first_ppc_cpu = POWERPC_CPU(first_cpu);
1197
    first_ppc_cpu->env.gpr[3] = fdt_addr;
1198 1199
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
1200
    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1201

1202
    spapr->cas_reboot = false;
1203 1204
}

1205
static void spapr_create_nvram(sPAPRMachineState *spapr)
D
David Gibson 已提交
1206
{
1207
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
1208
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
1209

P
Paolo Bonzini 已提交
1210
    if (dinfo) {
1211 1212
        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
                            &error_fatal);
D
David Gibson 已提交
1213 1214 1215 1216 1217 1218 1219
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

1220
static void spapr_rtc_create(sPAPRMachineState *spapr)
1221 1222 1223 1224 1225
{
    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);

    qdev_init_nofail(dev);
    spapr->rtc = dev;
D
David Gibson 已提交
1226 1227 1228

    object_property_add_alias(qdev_get_machine(), "rtc-time",
                              OBJECT(spapr->rtc), "date", NULL);
1229 1230
}

1231
/* Returns whether we want to use VGA or not */
1232
static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1233
{
1234 1235
    switch (vga_interface_type) {
    case VGA_NONE:
1236 1237 1238
        return false;
    case VGA_DEVICE:
        return true;
1239
    case VGA_STD:
1240
    case VGA_VIRTIO:
1241
        return pci_vga_init(pci_bus) != NULL;
1242
    default:
1243 1244 1245
        error_setg(errp,
                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
        return false;
1246 1247 1248
    }
}

1249 1250
static int spapr_post_load(void *opaque, int version_id)
{
1251
    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1252 1253
    int err = 0;

S
Stefan Weil 已提交
1254
    /* In earlier versions, there was no separate qdev for the PAPR
1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331
static bool spapr_ov5_cas_needed(void *opaque)
{
    sPAPRMachineState *spapr = opaque;
    sPAPROptionVector *ov5_mask = spapr_ovec_new();
    sPAPROptionVector *ov5_legacy = spapr_ovec_new();
    sPAPROptionVector *ov5_removed = spapr_ovec_new();
    bool cas_needed;

    /* Prior to the introduction of sPAPROptionVector, we had two option
     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
     * Both of these options encode machine topology into the device-tree
     * in such a way that the now-booted OS should still be able to interact
     * appropriately with QEMU regardless of what options were actually
     * negotiatied on the source side.
     *
     * As such, we can avoid migrating the CAS-negotiated options if these
     * are the only options available on the current machine/platform.
     * Since these are the only options available for pseries-2.7 and
     * earlier, this allows us to maintain old->new/new->old migration
     * compatibility.
     *
     * For QEMU 2.8+, there are additional CAS-negotiatable options available
     * via default pseries-2.8 machines and explicit command-line parameters.
     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
     * of the actual CAS-negotiated values to continue working properly. For
     * example, availability of memory unplug depends on knowing whether
     * OV5_HP_EVT was negotiated via CAS.
     *
     * Thus, for any cases where the set of available CAS-negotiatable
     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
     * include the CAS-negotiated options in the migration stream.
     */
    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);

    /* spapr_ovec_diff returns true if bits were removed. we avoid using
     * the mask itself since in the future it's possible "legacy" bits may be
     * removed via machine options, which could generate a false positive
     * that breaks migration.
     */
    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);

    spapr_ovec_cleanup(ov5_mask);
    spapr_ovec_cleanup(ov5_legacy);
    spapr_ovec_cleanup(ov5_removed);

    return cas_needed;
}

static const VMStateDescription vmstate_spapr_ov5_cas = {
    .name = "spapr_option_vector_ov5_cas",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = spapr_ov5_cas_needed,
    .fields = (VMStateField[]) {
        VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
                                 vmstate_spapr_ovec, sPAPROptionVector),
        VMSTATE_END_OF_LIST()
    },
};

1332 1333
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1334
    .version_id = 3,
1335
    .minimum_version_id = 1,
1336
    .post_load = spapr_post_load,
1337
    .fields = (VMStateField[]) {
1338 1339
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1340 1341

        /* RTC offset */
1342
        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1343

1344
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1345 1346
        VMSTATE_END_OF_LIST()
    },
1347 1348 1349 1350
    .subsections = (const VMStateDescription*[]) {
        &vmstate_spapr_ov5_cas,
        NULL
    }
1351 1352 1353 1354
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
1355
    sPAPRMachineState *spapr = opaque;
1356 1357 1358 1359

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1360 1361 1362 1363 1364 1365 1366 1367
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());
    }


1368 1369 1370
    return 0;
}

1371
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1372 1373
                                 int64_t max_ns)
{
1374
    bool has_timeout = max_ns != -1;
1375 1376
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1377
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1393
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1408 1409
            if (has_timeout &&
                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1423
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1424
                                int64_t max_ns)
1425 1426 1427 1428 1429
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1430
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1446
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1447 1448 1449 1450 1451 1452 1453 1454 1455
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1456
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1475
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1497
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1498 1499
}

1500 1501 1502
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1503 1504
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
1505
    sPAPRMachineState *spapr = opaque;
1506
    int fd;
1507
    int rc = 0;
1508 1509 1510 1511

    /* Iteration header */
    qemu_put_be32(f, 0);

1512 1513 1514
    if (!spapr->htab) {
        assert(kvm_enabled());

1515 1516 1517
        fd = get_htab_fd(spapr);
        if (fd < 0) {
            return fd;
1518 1519
        }

1520
        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1521 1522 1523 1524
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1525 1526
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1527
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1528 1529 1530 1531 1532 1533 1534
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1535
    return rc;
1536 1537 1538 1539
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
1540
    sPAPRMachineState *spapr = opaque;
1541
    int fd;
1542 1543 1544 1545

    /* Iteration header */
    qemu_put_be32(f, 0);

1546 1547 1548 1549 1550
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1551 1552 1553
        fd = get_htab_fd(spapr);
        if (fd < 0) {
            return fd;
1554 1555
        }

1556
        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1557 1558 1559 1560
        if (rc < 0) {
            return rc;
        }
    } else {
1561 1562 1563
        if (spapr->htab_first_pass) {
            htab_save_first_pass(f, spapr, -1);
        }
1564 1565
        htab_save_later_pass(f, spapr, -1);
    }
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
1577
    sPAPRMachineState *spapr = opaque;
1578
    uint32_t section_hdr;
1579
    int fd = -1;
1580 1581

    if (version_id < 1 || version_id > 1) {
1582
        error_report("htab_load() bad version");
1583 1584 1585 1586 1587 1588
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
1589
        Error *local_err = NULL;
1590 1591 1592 1593 1594

        /* First section gives the htab size */
        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
        if (local_err) {
            error_report_err(local_err);
1595 1596 1597 1598 1599
            return -EINVAL;
        }
        return 0;
    }

1600 1601 1602 1603 1604
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
1605 1606
            error_report("Unable to open fd to restore KVM hash table: %s",
                         strerror(errno));
1607 1608 1609
        }
    }

1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1623
        if ((index + n_valid + n_invalid) >
1624 1625
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
1626 1627 1628
            error_report(
                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
                index, n_valid, n_invalid, spapr->htab_shift);
1629 1630 1631
            return -EINVAL;
        }

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1650 1651 1652
        }
    }

1653 1654 1655 1656 1657
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1658 1659 1660
    return 0;
}

1661 1662 1663 1664 1665 1666 1667
static void htab_cleanup(void *opaque)
{
    sPAPRMachineState *spapr = opaque;

    close_htab_fd(spapr);
}

1668 1669 1670
static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
1671
    .save_live_complete_precopy = htab_save_complete,
1672
    .cleanup = htab_cleanup,
1673 1674 1675
    .load_state = htab_load,
};

1676 1677 1678 1679 1680 1681 1682
static void spapr_boot_set(void *opaque, const char *boot_device,
                           Error **errp)
{
    MachineState *machine = MACHINE(qdev_get_machine());
    machine->boot_order = g_strdup(boot_device);
}

D
David Gibson 已提交
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
/*
 * Reset routine for LMB DR devices.
 *
 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
 * routine. Reset for PCI DR devices will be handled by PHB reset routine
 * when it walks all its children devices. LMB devices reset occurs
 * as part of spapr_ppc_reset().
 */
static void spapr_drc_reset(void *opaque)
{
    sPAPRDRConnector *drc = opaque;
    DeviceState *d = DEVICE(drc);

    if (d) {
        device_reset(d);
    }
}

static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
{
    MachineState *machine = MACHINE(spapr);
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1705
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
D
David Gibson 已提交
1706 1707 1708 1709 1710 1711
    int i;

    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        uint64_t addr;

1712
        addr = i * lmb_size + spapr->hotplug_memory.base;
D
David Gibson 已提交
1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
        drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
                                     addr/lmb_size);
        qemu_register_reset(spapr_drc_reset, drc);
    }
}

/*
 * If RAM size, maxmem size and individual node mem sizes aren't aligned
 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
 * since we can't support such unaligned sizes with DRCONF_MEMORY.
 */
1724
static void spapr_validate_node_memory(MachineState *machine, Error **errp)
D
David Gibson 已提交
1725 1726 1727
{
    int i;

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
                   " is not aligned to %llu MiB",
                   machine->ram_size,
                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
        return;
    }

    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
                   " is not aligned to %llu MiB",
                   machine->ram_size,
                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
        return;
D
David Gibson 已提交
1742 1743 1744 1745
    }

    for (i = 0; i < nb_numa_nodes; i++) {
        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1746 1747 1748 1749 1750 1751
            error_setg(errp,
                       "Node %d memory size 0x%" PRIx64
                       " is not aligned to %llu MiB",
                       i, numa_info[i].node_mem,
                       SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
            return;
D
David Gibson 已提交
1752 1753 1754 1755
        }
    }
}

1756
/* pSeries LPAR / sPAPR hardware init */
1757
static void ppc_spapr_init(MachineState *machine)
1758
{
1759
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1760
    MachineClass *mc = MACHINE_GET_CLASS(machine);
D
David Gibson 已提交
1761
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1762 1763
    const char *kernel_filename = machine->kernel_filename;
    const char *initrd_filename = machine->initrd_filename;
1764
    PCIHostState *phb;
1765
    int i;
A
Avi Kivity 已提交
1766 1767
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
1768 1769
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
1770
    hwaddr rma_alloc_size;
1771
    hwaddr node0_size = spapr_node0_size();
1772
    long load_limit, fw_size;
1773
    char *filename;
1774 1775 1776 1777
    int smt = kvmppc_smt_threads();
    int spapr_cores = smp_cpus / smp_threads;
    int spapr_max_cores = max_cpus / smp_threads;

1778
    if (mc->query_hotpluggable_cpus) {
1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
        if (smp_cpus % smp_threads) {
            error_report("smp_cpus (%u) must be multiple of threads (%u)",
                         smp_cpus, smp_threads);
            exit(1);
        }
        if (max_cpus % smp_threads) {
            error_report("max_cpus (%u) must be multiple of threads (%u)",
                         max_cpus, smp_threads);
            exit(1);
        }
    }
1790

1791
    msi_nonbroken = true;
1792

1793 1794
    QLIST_INIT(&spapr->phbs);

1795 1796
    cpu_ppc_hypercall = emulate_spapr_hypercall;

1797
    /* Allocate RMA if necessary */
1798
    rma_alloc_size = kvmppc_alloc_rma(&rma);
1799 1800

    if (rma_alloc_size == -1) {
1801
        error_report("Unable to create RMA");
1802 1803
        exit(1);
    }
1804

1805
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1806
        spapr->rma_size = rma_alloc_size;
1807
    } else {
1808
        spapr->rma_size = node0_size;
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1823 1824 1825 1826 1827 1828 1829

        /* Actually we don't support unbounded RMA anymore since we
         * added proper emulation of HV mode. The max we can get is
         * 16G which also happens to be what we configure for PAPR
         * mode so make sure we don't do anything bigger than that
         */
        spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1830 1831
    }

1832
    if (spapr->rma_size > node0_size) {
1833 1834
        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
                     spapr->rma_size);
1835 1836 1837
        exit(1);
    }

1838 1839
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1840

1841
    /* Set up Interrupt Controller before we create the VCPUs */
1842 1843 1844
    spapr->xics = xics_system_init(machine,
                                   DIV_ROUND_UP(max_cpus * smt, smp_threads),
                                   XICS_IRQS_SPAPR, &error_fatal);
1845

1846 1847 1848 1849
    /* Set up containers for ibm,client-set-architecture negotiated options */
    spapr->ov5 = spapr_ovec_new();
    spapr->ov5_cas = spapr_ovec_new();

D
David Gibson 已提交
1850
    if (smc->dr_lmb_enabled) {
1851
        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
1852
        spapr_validate_node_memory(machine, &error_fatal);
D
David Gibson 已提交
1853 1854
    }

1855 1856
    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);

1857 1858 1859 1860 1861
    /* advertise support for dedicated HP event source to guests */
    if (spapr->use_hotplug_event_source) {
        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
    }

1862
    /* init CPUs */
1863
    if (machine->cpu_model == NULL) {
1864
        machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
1865
    }
1866

G
Greg Kurz 已提交
1867 1868
    ppc_cpu_parse_features(machine->cpu_model);

1869
    if (mc->query_hotpluggable_cpus) {
1870 1871
        char *type = spapr_get_cpu_core_type(machine->cpu_model);

1872
        if (type == NULL) {
1873 1874 1875 1876
            error_report("Unable to find sPAPR CPU Core definition");
            exit(1);
        }

1877
        spapr->cores = g_new0(Object *, spapr_max_cores);
B
Bharata B Rao 已提交
1878
        for (i = 0; i < spapr_max_cores; i++) {
1879
            int core_id = i * smp_threads;
B
Bharata B Rao 已提交
1880 1881
            sPAPRDRConnector *drc =
                spapr_dr_connector_new(OBJECT(spapr),
1882 1883
                                       SPAPR_DR_CONNECTOR_TYPE_CPU,
                                       (core_id / smp_threads) * smt);
B
Bharata B Rao 已提交
1884 1885 1886 1887

            qemu_register_reset(spapr_drc_reset, drc);

            if (i < spapr_cores) {
1888
                Object *core  = object_new(type);
B
Bharata B Rao 已提交
1889 1890
                object_property_set_int(core, smp_threads, "nr-threads",
                                        &error_fatal);
1891
                object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
B
Bharata B Rao 已提交
1892 1893
                                        &error_fatal);
                object_property_set_bool(core, true, "realized", &error_fatal);
1894
            }
1895
        }
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
        g_free(type);
    } else {
        for (i = 0; i < smp_cpus; i++) {
            PowerPCCPU *cpu = cpu_ppc_init(machine->cpu_model);
            if (cpu == NULL) {
                error_report("Unable to find PowerPC CPU definition");
                exit(1);
            }
            spapr_cpu_init(spapr, cpu, &error_fatal);
       }
1906 1907
    }

1908 1909 1910
    if (kvm_enabled()) {
        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
        kvmppc_enable_logical_ci_hcalls();
1911
        kvmppc_enable_set_mode_hcall();
1912 1913 1914

        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
        kvmppc_enable_clear_ref_mod_hcalls();
1915 1916
    }

1917
    /* allocate RAM */
1918
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1919
                                         machine->ram_size);
1920
    memory_region_add_subregion(sysmem, 0, ram);
1921

1922 1923 1924 1925 1926 1927 1928 1929
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

1930 1931 1932
    /* initialize hotplug memory address space */
    if (machine->ram_size < machine->maxram_size) {
        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1933 1934 1935 1936 1937 1938 1939
        /*
         * Limit the number of hotpluggable memory slots to half the number
         * slots that KVM supports, leaving the other half for PCI and other
         * devices. However ensure that number of slots doesn't drop below 32.
         */
        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
                           SPAPR_MAX_RAM_SLOTS;
1940

1941 1942 1943 1944
        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
            max_memslots = SPAPR_MAX_RAM_SLOTS;
        }
        if (machine->ram_slots > max_memslots) {
1945 1946
            error_report("Specified number of memory slots %"
                         PRIu64" exceeds max supported %d",
1947
                         machine->ram_slots, max_memslots);
1948
            exit(1);
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958
        }

        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
                                              SPAPR_HOTPLUG_MEM_ALIGN);
        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
                           "hotplug-memory", hotplug_mem_size);
        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
                                    &spapr->hotplug_memory.mr);
    }

D
David Gibson 已提交
1959 1960 1961 1962
    if (smc->dr_lmb_enabled) {
        spapr_create_lmb_dr_connectors(spapr);
    }

1963
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1964
    if (!filename) {
1965
        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1966 1967
        exit(1);
    }
1968
    spapr->rtas_size = get_image_size(filename);
1969 1970 1971 1972
    if (spapr->rtas_size < 0) {
        error_report("Could not get size of LPAR rtas '%s'", filename);
        exit(1);
    }
1973 1974
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1975
        error_report("Could not load LPAR rtas '%s'", filename);
1976 1977
        exit(1);
    }
1978
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
1979 1980
        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1981 1982
        exit(1);
    }
1983
    g_free(filename);
1984

1985
    /* Set up RTAS event infrastructure */
1986 1987
    spapr_events_init(spapr);

1988
    /* Set up the RTC RTAS interfaces */
1989
    spapr_rtc_create(spapr);
1990

1991
    /* Set up VIO bus */
1992 1993
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
1994
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1995
        if (serial_hds[i]) {
1996
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1997 1998
        }
    }
1999

D
David Gibson 已提交
2000 2001 2002
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

2003
    /* Set up PCI */
2004 2005
    spapr_pci_rtas_init();

2006
    phb = spapr_create_phb(spapr, 0);
2007

P
Paolo Bonzini 已提交
2008
    for (i = 0; i < nb_nics; i++) {
2009 2010 2011
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
2012
            nd->model = g_strdup("ibmveth");
2013 2014 2015
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
2016
            spapr_vlan_create(spapr->vio_bus, nd);
2017
        } else {
2018
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2019 2020 2021
        }
    }

2022
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2023
        spapr_vscsi_create(spapr->vio_bus);
2024 2025
    }

2026
    /* Graphics */
2027
    if (spapr_vga_init(phb->bus, &error_fatal)) {
2028
        spapr->has_graphics = true;
2029
        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2030 2031
    }

2032
    if (machine->usb) {
2033 2034 2035 2036 2037
        if (smc->use_ohci_by_default) {
            pci_create_simple(phb->bus, -1, "pci-ohci");
        } else {
            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
        }
2038

2039
        if (spapr->has_graphics) {
2040 2041 2042 2043
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
2044 2045 2046
        }
    }

2047
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2048 2049 2050
        error_report(
            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
            MIN_RMA_SLOF);
2051 2052 2053
        exit(1);
    }

2054 2055 2056
    if (kernel_filename) {
        uint64_t lowaddr = 0;

2057 2058 2059 2060 2061 2062 2063 2064 2065
        spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
                                      NULL, NULL, &lowaddr, NULL, 1,
                                      PPC_ELF_MACHINE, 0, 0);
        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
            spapr->kernel_size = load_elf(kernel_filename,
                                          translate_kernel_address, NULL, NULL,
                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
                                          0, 0);
            spapr->kernel_le = spapr->kernel_size > 0;
2066
        }
2067 2068 2069
        if (spapr->kernel_size < 0) {
            error_report("error loading %s: %s", kernel_filename,
                         load_elf_strerror(spapr->kernel_size));
2070 2071 2072 2073 2074
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
2075 2076 2077
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
2078 2079 2080 2081 2082 2083 2084
            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
                                  + 0x1ffff) & ~0xffff;
            spapr->initrd_size = load_image_targphys(initrd_filename,
                                                     spapr->initrd_base,
                                                     load_limit
                                                     - spapr->initrd_base);
            if (spapr->initrd_size < 0) {
2085 2086
                error_report("could not load initial ram disk '%s'",
                             initrd_filename);
2087 2088 2089
                exit(1);
            }
        }
2090
    }
2091

2092 2093 2094 2095
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2096
    if (!filename) {
2097
        error_report("Could not find LPAR firmware '%s'", bios_name);
2098 2099
        exit(1);
    }
2100
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2101 2102
    if (fw_size <= 0) {
        error_report("Could not load LPAR firmware '%s'", filename);
2103 2104 2105 2106
        exit(1);
    }
    g_free(filename);

2107 2108 2109
    /* FIXME: Should register things through the MachineState's qdev
     * interface, this is a legacy from the sPAPREnvironment structure
     * which predated MachineState but had a similar function */
2110 2111 2112 2113
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

2114 2115 2116 2117
    /* used by RTAS */
    QTAILQ_INIT(&spapr->ccs_list);
    qemu_register_reset(spapr_ccs_reset_hook, spapr);

2118
    qemu_register_boot_set(spapr_boot_set, spapr);
2119 2120
}

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

2139
/*
2140
 * Implementation of an interface to adjust firmware path
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
2196 2197
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
2198
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2199

2200
    return g_strdup(spapr->kvm_type);
E
Eduardo Habkost 已提交
2201 2202 2203 2204
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
2205
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2206

2207 2208
    g_free(spapr->kvm_type);
    spapr->kvm_type = g_strdup(value);
E
Eduardo Habkost 已提交
2209 2210
}

2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225
static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    return spapr->use_hotplug_event_source;
}

static void spapr_set_modern_hotplug_events(Object *obj, bool value,
                                            Error **errp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    spapr->use_hotplug_event_source = value;
}

E
Eduardo Habkost 已提交
2226 2227
static void spapr_machine_initfn(Object *obj)
{
2228 2229 2230
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    spapr->htab_fd = -1;
2231
    spapr->use_hotplug_event_source = true;
E
Eduardo Habkost 已提交
2232 2233
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2234 2235 2236
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
2237 2238 2239 2240 2241 2242 2243 2244 2245
    object_property_add_bool(obj, "modern-hotplug-events",
                            spapr_get_modern_hotplug_events,
                            spapr_set_modern_hotplug_events,
                            NULL);
    object_property_set_description(obj, "modern-hotplug-events",
                                    "Use dedicated hotplug event mechanism in"
                                    " place of standard EPOW events when possible"
                                    " (required for memory hot-unplug support)",
                                    NULL);
E
Eduardo Habkost 已提交
2246 2247
}

2248 2249 2250 2251 2252 2253 2254
static void spapr_machine_finalizefn(Object *obj)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    g_free(spapr->kvm_type);
}

2255
static void ppc_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265
{
    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
2266
        async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
2267 2268 2269
    }
}

2270 2271 2272
static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
                           uint32_t node, bool dedicated_hp_event_source,
                           Error **errp)
B
Bharata B Rao 已提交
2273 2274 2275 2276 2277 2278
{
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
    int i, fdt_offset, fdt_size;
    void *fdt;
2279
    uint64_t addr = addr_start;
B
Bharata B Rao 已提交
2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293

    for (i = 0; i < nr_lmbs; i++) {
        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                addr/SPAPR_MEMORY_BLOCK_SIZE);
        g_assert(drc);

        fdt = create_device_tree(&fdt_size);
        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
                                                SPAPR_MEMORY_BLOCK_SIZE);

        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
        addr += SPAPR_MEMORY_BLOCK_SIZE;
    }
2294 2295 2296 2297
    /* send hotplug notification to the
     * guest only in case of hotplugged memory
     */
    if (dev->hotplugged) {
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
        if (dedicated_hp_event_source) {
            drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                    addr_start / SPAPR_MEMORY_BLOCK_SIZE);
            drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                                   nr_lmbs,
                                                   drck->get_index(drc));
        } else {
            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                           nr_lmbs);
        }
2309
    }
B
Bharata B Rao 已提交
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329
}

static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                              uint32_t node, Error **errp)
{
    Error *local_err = NULL;
    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);
    uint64_t align = memory_region_get_alignment(mr);
    uint64_t size = memory_region_size(mr);
    uint64_t addr;

    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(&local_err, "Hotplugged memory size must be a multiple of "
                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
        goto out;
    }

2330
    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
B
Bharata B Rao 已提交
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
    if (local_err) {
        goto out;
    }

    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
    if (local_err) {
        pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
        goto out;
    }

2341 2342 2343
    spapr_add_lmbs(dev, addr, size, node,
                   spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
                   &error_abort);
B
Bharata B Rao 已提交
2344 2345 2346 2347 2348

out:
    error_propagate(errp, local_err);
}

B
Bharata B Rao 已提交
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
typedef struct sPAPRDIMMState {
    uint32_t nr_lmbs;
} sPAPRDIMMState;

static void spapr_lmb_release(DeviceState *dev, void *opaque)
{
    sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
    HotplugHandler *hotplug_ctrl;

    if (--ds->nr_lmbs) {
        return;
    }

    g_free(ds);

    /*
     * Now that all the LMBs have been removed by the guest, call the
     * pc-dimm unplug handler to cleanup up the pc-dimm device.
     */
    hotplug_ctrl = qdev_get_hotplug_handler(dev);
    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
}

static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
                           Error **errp)
{
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
    int i;
    sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
    uint64_t addr = addr_start;

    ds->nr_lmbs = nr_lmbs;
    for (i = 0; i < nr_lmbs; i++) {
        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                addr / SPAPR_MEMORY_BLOCK_SIZE);
        g_assert(drc);

        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->detach(drc, dev, spapr_lmb_release, ds, errp);
        addr += SPAPR_MEMORY_BLOCK_SIZE;
    }

    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                              nr_lmbs,
                                              drck->get_index(drc));
}

static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
                                Error **errp)
{
    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);

    pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
    object_unparent(OBJECT(dev));
}

static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
                                        DeviceState *dev, Error **errp)
{
    Error *local_err = NULL;
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);
    uint64_t size = memory_region_size(mr);
    uint64_t addr;

    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
    if (local_err) {
        goto out;
    }

    spapr_del_lmbs(dev, addr, size, &error_abort);
out:
    error_propagate(errp, local_err);
}

B
Bharata B Rao 已提交
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
                                    sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    DeviceClass *dc = DEVICE_GET_CLASS(cs);
    int id = ppc_get_vcpu_dt_id(cpu);
    void *fdt;
    int offset, fdt_size;
    char *nodename;

    fdt = create_device_tree(&fdt_size);
    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
    offset = fdt_add_subnode(fdt, 0, nodename);

    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    g_free(nodename);

    *fdt_offset = offset;
    return fdt;
}

B
Bharata B Rao 已提交
2454 2455 2456 2457 2458 2459
static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2460
        int node;
B
Bharata B Rao 已提交
2461 2462 2463 2464 2465 2466 2467 2468 2469

        if (!smc->dr_lmb_enabled) {
            error_setg(errp, "Memory hotplug not supported for this machine");
            return;
        }
        node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
        if (*errp) {
            return;
        }
2470 2471 2472 2473
        if (node < 0 || node >= MAX_NODES) {
            error_setg(errp, "Invaild node %d", node);
            return;
        }
B
Bharata B Rao 已提交
2474

2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
        /*
         * Currently PowerPC kernel doesn't allow hot-adding memory to
         * memory-less node, but instead will silently add the memory
         * to the first node that has some memory. This causes two
         * unexpected behaviours for the user.
         *
         * - Memory gets hotplugged to a different node than what the user
         *   specified.
         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
         *   to memory-less node, a reboot will set things accordingly
         *   and the previously hotplugged memory now ends in the right node.
         *   This appears as if some memory moved from one node to another.
         *
         * So until kernel starts supporting memory hotplug to memory-less
         * nodes, just prevent such attempts upfront in QEMU.
         */
        if (nb_numa_nodes && !numa_info[node].node_mem) {
            error_setg(errp, "Can't hotplug memory to memory-less node %d",
                       node);
            return;
        }

B
Bharata B Rao 已提交
2497
        spapr_memory_plug(hotplug_dev, dev, node, errp);
B
Bharata B Rao 已提交
2498 2499
    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
        spapr_core_plug(hotplug_dev, dev, errp);
B
Bharata B Rao 已提交
2500 2501 2502 2503 2504 2505
    }
}

static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
B
Bharata B Rao 已提交
2506
    sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2507
    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
B
Bharata B Rao 已提交
2508

B
Bharata B Rao 已提交
2509
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
B
Bharata B Rao 已提交
2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541
        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
            spapr_memory_unplug(hotplug_dev, dev, errp);
        } else {
            error_setg(errp, "Memory hot unplug not supported for this guest");
        }
    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
        if (!mc->query_hotpluggable_cpus) {
            error_setg(errp, "CPU hot unplug not supported on this machine");
            return;
        }
        spapr_core_unplug(hotplug_dev, dev, errp);
    }
}

static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
                                                DeviceState *dev, Error **errp)
{
    sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());

    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
            spapr_memory_unplug_request(hotplug_dev, dev, errp);
        } else {
            /* NOTE: this means there is a window after guest reset, prior to
             * CAS negotiation, where unplug requests will fail due to the
             * capability not being detected yet. This is a bit different than
             * the case with PCI unplug, where the events will be queued and
             * eventually handled by the guest after boot
             */
            error_setg(errp, "Memory hot unplug not supported for this guest");
        }
B
Bharata B Rao 已提交
2542
    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2543
        if (!mc->query_hotpluggable_cpus) {
B
Bharata B Rao 已提交
2544 2545 2546 2547
            error_setg(errp, "CPU hot unplug not supported on this machine");
            return;
        }
        spapr_core_unplug(hotplug_dev, dev, errp);
B
Bharata B Rao 已提交
2548 2549 2550
    }
}

2551 2552 2553 2554 2555 2556 2557 2558
static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
                                          DeviceState *dev, Error **errp)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
        spapr_core_pre_plug(hotplug_dev, dev, errp);
    }
}

2559 2560
static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
                                                 DeviceState *dev)
B
Bharata B Rao 已提交
2561
{
2562 2563
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
B
Bharata B Rao 已提交
2564 2565 2566 2567 2568
        return HOTPLUG_HANDLER(machine);
    }
    return NULL;
}

2569 2570 2571 2572 2573 2574 2575
static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
{
    /* Allocate to NUMA nodes on a "socket" basis (not that concept of
     * socket means much for the paravirtualized PAPR platform) */
    return cpu_index / smp_threads / smp_cores;
}

2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589
static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine)
{
    int i;
    HotpluggableCPUList *head = NULL;
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
    int spapr_max_cores = max_cpus / smp_threads;

    for (i = 0; i < spapr_max_cores; i++) {
        HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
        HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
        CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);

        cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model);
        cpu_item->vcpus_count = smp_threads;
2590
        cpu_props->has_core_id = true;
2591
        cpu_props->core_id = i * smp_threads;
2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
        /* TODO: add 'has_node/node' here to describe
           to which node core belongs */

        cpu_item->props = cpu_props;
        if (spapr->cores[i]) {
            cpu_item->has_qom_path = true;
            cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]);
        }
        list_item->value = cpu_item;
        list_item->next = head;
        head = list_item;
    }
    return head;
}

2607
static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
D
David Gibson 已提交
2608 2609
                                uint64_t *buid, hwaddr *pio,
                                hwaddr *mmio32, hwaddr *mmio64,
2610 2611
                                unsigned n_dma, uint32_t *liobns, Error **errp)
{
2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
    /*
     * New-style PHB window placement.
     *
     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
     * windows.
     *
     * Some guest kernels can't work with MMIO windows above 1<<46
     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
     *
     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
     * 1TiB 64-bit MMIO windows for each PHB.
     */
2627
    const uint64_t base_buid = 0x800000020000000ULL;
2628 2629
    const int max_phbs =
        (SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / SPAPR_PCI_MEM64_WIN_SIZE - 1;
2630 2631
    int i;

2632 2633 2634 2635 2636 2637 2638 2639
    /* Sanity check natural alignments */
    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
    /* Sanity check bounds */
    QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_IO_WIN_SIZE) > SPAPR_PCI_MEM32_WIN_SIZE);
    QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_MEM32_WIN_SIZE) > SPAPR_PCI_MEM64_WIN_SIZE);
2640

2641
    if (index >= max_phbs) {
2642
        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
2643
                   max_phbs - 1);
2644 2645 2646 2647 2648 2649 2650 2651
        return;
    }

    *buid = base_buid + index;
    for (i = 0; i < n_dma; ++i) {
        liobns[i] = SPAPR_PCI_LIOBN(index, i);
    }

2652 2653 2654
    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
2655 2656
}

2657 2658 2659
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
D
David Gibson 已提交
2660
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
2661
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
2662
    NMIClass *nc = NMI_CLASS(oc);
B
Bharata B Rao 已提交
2663
    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2664

2665
    mc->desc = "pSeries Logical Partition (PAPR compliant)";
2666 2667 2668 2669 2670 2671

    /*
     * We set up the default / latest behaviour here.  The class_init
     * functions for the specific versioned machine types can override
     * these details for backwards compatibility
     */
2672 2673 2674
    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
2675
    mc->max_cpus = 255;
2676
    mc->no_parallel = 1;
2677
    mc->default_boot_order = "";
2678
    mc->default_ram_size = 512 * M_BYTE;
2679
    mc->kvm_type = spapr_kvm_type;
2680
    mc->has_dynamic_sysbus = true;
2681
    mc->pci_allow_0_address = true;
2682
    mc->get_hotplug_handler = spapr_get_hotplug_handler;
2683
    hc->pre_plug = spapr_machine_device_pre_plug;
B
Bharata B Rao 已提交
2684 2685
    hc->plug = spapr_machine_device_plug;
    hc->unplug = spapr_machine_device_unplug;
2686
    mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
B
Bharata B Rao 已提交
2687
    hc->unplug_request = spapr_machine_device_unplug_request;
2688

2689
    smc->dr_lmb_enabled = true;
2690
    smc->tcg_default_cpu = "POWER8";
2691
    mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus;
2692
    fwc->get_dev_path = spapr_get_fw_dev_path;
2693
    nc->nmi_monitor_handler = spapr_nmi;
2694
    smc->phb_placement = spapr_phb_placement;
2695 2696 2697 2698 2699
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
2700
    .abstract      = true,
2701
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
2702
    .instance_init = spapr_machine_initfn,
2703
    .instance_finalize = spapr_machine_finalizefn,
D
David Gibson 已提交
2704
    .class_size    = sizeof(sPAPRMachineClass),
2705
    .class_init    = spapr_machine_class_init,
2706 2707
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
2708
        { TYPE_NMI },
B
Bharata B Rao 已提交
2709
        { TYPE_HOTPLUG_HANDLER },
2710 2711
        { }
    },
2712 2713
};

2714
#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
D
David Gibson 已提交
2715 2716 2717 2718 2719
    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
                                                    void *data)      \
    {                                                                \
        MachineClass *mc = MACHINE_CLASS(oc);                        \
        spapr_machine_##suffix##_class_options(mc);                  \
2720 2721 2722 2723
        if (latest) {                                                \
            mc->alias = "pseries";                                   \
            mc->is_default = 1;                                      \
        }                                                            \
D
David Gibson 已提交
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
    }                                                                \
    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
    {                                                                \
        MachineState *machine = MACHINE(obj);                        \
        spapr_machine_##suffix##_instance_options(machine);          \
    }                                                                \
    static const TypeInfo spapr_machine_##suffix##_info = {          \
        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
        .parent = TYPE_SPAPR_MACHINE,                                \
        .class_init = spapr_machine_##suffix##_class_init,           \
        .instance_init = spapr_machine_##suffix##_instance_init,     \
    };                                                               \
    static void spapr_machine_register_##suffix(void)                \
    {                                                                \
        type_register(&spapr_machine_##suffix##_info);               \
    }                                                                \
2740
    type_init(spapr_machine_register_##suffix)
D
David Gibson 已提交
2741

2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
/*
 * pseries-2.8
 */
static void spapr_machine_2_8_instance_options(MachineState *machine)
{
}

static void spapr_machine_2_8_class_options(MachineClass *mc)
{
    /* Defaults for the latest behaviour inherited from the base class */
}

DEFINE_SPAPR_MACHINE(2_8, "2.8", true);

2756 2757 2758
/*
 * pseries-2.7
 */
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
#define SPAPR_COMPAT_2_7                            \
    HW_COMPAT_2_7                                   \
    {                                               \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
        .property = "mem_win_size",                 \
        .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
    },                                              \
    {                                               \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
        .property = "mem64_win_size",               \
        .value    = "0",                            \
2770 2771 2772 2773 2774
    },                                              \
    {                                               \
        .driver = TYPE_POWERPC_CPU,                 \
        .property = "pre-2.8-migration",            \
        .value    = "on",                           \
2775 2776 2777 2778 2779
    },                                              \
    {                                               \
        .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
        .property = "pre-2.8-migration",            \
        .value    = "on",                           \
2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829
    },

static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
                              uint64_t *buid, hwaddr *pio,
                              hwaddr *mmio32, hwaddr *mmio64,
                              unsigned n_dma, uint32_t *liobns, Error **errp)
{
    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
    const uint64_t base_buid = 0x800000020000000ULL;
    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
    const uint32_t max_index = 255;
    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */

    uint64_t ram_top = MACHINE(spapr)->ram_size;
    hwaddr phb0_base, phb_base;
    int i;

    /* Do we have hotpluggable memory? */
    if (MACHINE(spapr)->maxram_size > ram_top) {
        /* Can't just use maxram_size, because there may be an
         * alignment gap between normal and hotpluggable memory
         * regions */
        ram_top = spapr->hotplug_memory.base +
            memory_region_size(&spapr->hotplug_memory.mr);
    }

    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);

    if (index > max_index) {
        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
                   max_index);
        return;
    }

    *buid = base_buid + index;
    for (i = 0; i < n_dma; ++i) {
        liobns[i] = SPAPR_PCI_LIOBN(index, i);
    }

    phb_base = phb0_base + index * phb_spacing;
    *pio = phb_base + pio_offset;
    *mmio32 = phb_base + mmio_offset;
    /*
     * We don't set the 64-bit MMIO window, relying on the PHB's
     * fallback behaviour of automatically splitting a large "32-bit"
     * window into contiguous 32-bit and 64-bit windows
     */
}
2830

2831 2832
static void spapr_machine_2_7_instance_options(MachineState *machine)
{
2833 2834
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);

2835
    spapr_machine_2_8_instance_options(machine);
2836
    spapr->use_hotplug_event_source = false;
2837 2838 2839 2840
}

static void spapr_machine_2_7_class_options(MachineClass *mc)
{
2841 2842
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

2843
    spapr_machine_2_8_class_options(mc);
2844
    smc->tcg_default_cpu = "POWER7";
2845
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
2846
    smc->phb_placement = phb_placement_2_7;
2847 2848
}

2849
DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
2850

2851 2852 2853
/*
 * pseries-2.6
 */
2854
#define SPAPR_COMPAT_2_6 \
2855 2856 2857 2858 2859 2860
    HW_COMPAT_2_6 \
    { \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
        .property = "ddw",\
        .value    = stringify(off),\
    },
2861

2862 2863
static void spapr_machine_2_6_instance_options(MachineState *machine)
{
2864
    spapr_machine_2_7_instance_options(machine);
2865 2866 2867 2868
}

static void spapr_machine_2_6_class_options(MachineClass *mc)
{
2869
    spapr_machine_2_7_class_options(mc);
2870
    mc->query_hotpluggable_cpus = NULL;
2871
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
2872 2873
}

2874
DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
2875

2876 2877 2878
/*
 * pseries-2.5
 */
2879
#define SPAPR_COMPAT_2_5 \
2880 2881 2882 2883 2884 2885
    HW_COMPAT_2_5 \
    { \
        .driver   = "spapr-vlan", \
        .property = "use-rx-buffer-pools", \
        .value    = "off", \
    },
2886

D
David Gibson 已提交
2887
static void spapr_machine_2_5_instance_options(MachineState *machine)
2888
{
2889
    spapr_machine_2_6_instance_options(machine);
D
David Gibson 已提交
2890 2891 2892 2893
}

static void spapr_machine_2_5_class_options(MachineClass *mc)
{
2894 2895
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

2896
    spapr_machine_2_6_class_options(mc);
2897
    smc->use_ohci_by_default = true;
2898
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
2899 2900
}

2901
DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
2902 2903 2904 2905

/*
 * pseries-2.4
 */
C
Cornelia Huck 已提交
2906 2907 2908
#define SPAPR_COMPAT_2_4 \
        HW_COMPAT_2_4

D
David Gibson 已提交
2909
static void spapr_machine_2_4_instance_options(MachineState *machine)
2910
{
D
David Gibson 已提交
2911 2912
    spapr_machine_2_5_instance_options(machine);
}
2913

D
David Gibson 已提交
2914 2915
static void spapr_machine_2_4_class_options(MachineClass *mc)
{
2916 2917 2918 2919
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

    spapr_machine_2_5_class_options(mc);
    smc->dr_lmb_enabled = false;
D
David Gibson 已提交
2920
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
2921 2922
}

2923
DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
2924 2925 2926 2927

/*
 * pseries-2.3
 */
E
Eduardo Habkost 已提交
2928
#define SPAPR_COMPAT_2_3 \
2929 2930 2931 2932 2933 2934
        HW_COMPAT_2_3 \
        {\
            .driver   = "spapr-pci-host-bridge",\
            .property = "dynamic-reconfiguration",\
            .value    = "off",\
        },
E
Eduardo Habkost 已提交
2935

D
David Gibson 已提交
2936
static void spapr_machine_2_3_instance_options(MachineState *machine)
J
Jason Wang 已提交
2937
{
D
David Gibson 已提交
2938
    spapr_machine_2_4_instance_options(machine);
2939
    savevm_skip_section_footers();
2940
    global_state_set_optional();
2941
    savevm_skip_configuration();
J
Jason Wang 已提交
2942 2943
}

D
David Gibson 已提交
2944
static void spapr_machine_2_3_class_options(MachineClass *mc)
2945
{
2946
    spapr_machine_2_4_class_options(mc);
D
David Gibson 已提交
2947
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
2948
}
2949
DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
2950

2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962
/*
 * pseries-2.2
 */

#define SPAPR_COMPAT_2_2 \
        HW_COMPAT_2_2 \
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
        },

D
David Gibson 已提交
2963
static void spapr_machine_2_2_instance_options(MachineState *machine)
2964
{
D
David Gibson 已提交
2965
    spapr_machine_2_3_instance_options(machine);
2966
    machine->suppress_vmdesc = true;
2967 2968
}

D
David Gibson 已提交
2969
static void spapr_machine_2_2_class_options(MachineClass *mc)
2970
{
2971
    spapr_machine_2_3_class_options(mc);
D
David Gibson 已提交
2972
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
2973
}
2974
DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
2975

2976 2977 2978 2979 2980
/*
 * pseries-2.1
 */
#define SPAPR_COMPAT_2_1 \
        HW_COMPAT_2_1
2981

D
David Gibson 已提交
2982
static void spapr_machine_2_1_instance_options(MachineState *machine)
2983
{
D
David Gibson 已提交
2984
    spapr_machine_2_2_instance_options(machine);
2985
}
J
Jason Wang 已提交
2986

D
David Gibson 已提交
2987
static void spapr_machine_2_1_class_options(MachineClass *mc)
J
Jason Wang 已提交
2988
{
2989
    spapr_machine_2_2_class_options(mc);
D
David Gibson 已提交
2990
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
J
Jason Wang 已提交
2991
}
2992
DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
D
David Gibson 已提交
2993

2994
static void spapr_machine_register_types(void)
2995
{
2996
    type_register_static(&spapr_machine_info);
2997 2998
}

2999
type_init(spapr_machine_register_types)