spapr.c 107.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
 *
 * Copyright (c) 2004-2007 Fabrice Bellard
 * Copyright (c) 2007 Jocelyn Mayer
 * Copyright (c) 2010 David Gibson, IBM Corporation.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 *
 */
P
Peter Maydell 已提交
27
#include "qemu/osdep.h"
28
#include "qapi/error.h"
29
#include "sysemu/sysemu.h"
30
#include "sysemu/numa.h"
31
#include "hw/hw.h"
32
#include "qemu/log.h"
33
#include "hw/fw-path-provider.h"
34
#include "elf.h"
P
Paolo Bonzini 已提交
35
#include "net/net.h"
A
Andrew Jones 已提交
36
#include "sysemu/device_tree.h"
37
#include "sysemu/block-backend.h"
38
#include "sysemu/cpus.h"
39
#include "sysemu/hw_accel.h"
40
#include "kvm_ppc.h"
41
#include "migration/migration.h"
42
#include "mmu-hash64.h"
43
#include "qom/cpu.h"
44 45

#include "hw/boards.h"
P
Paolo Bonzini 已提交
46
#include "hw/ppc/ppc.h"
47 48
#include "hw/loader.h"

49
#include "hw/ppc/fdt.h"
P
Paolo Bonzini 已提交
50 51 52 53
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "hw/pci-host/spapr.h"
#include "hw/ppc/xics.h"
54
#include "hw/pci/msi.h"
55

56
#include "hw/pci/pci.h"
57 58
#include "hw/scsi/scsi.h"
#include "hw/virtio/virtio-scsi.h"
59

60
#include "exec/address-spaces.h"
61
#include "hw/usb.h"
62
#include "qemu/config-file.h"
63
#include "qemu/error-report.h"
64
#include "trace.h"
65
#include "hw/nmi.h"
A
Avi Kivity 已提交
66

67
#include "hw/compat.h"
68
#include "qemu/cutils.h"
69
#include "hw/ppc/spapr_cpu_core.h"
70
#include "qmp-commands.h"
71

72 73
#include <libfdt.h>

74 75 76 77 78 79 80 81 82 83
/* SLOF memory layout:
 *
 * SLOF raw image loaded at 0, copies its romfs right below the flat
 * device-tree, then position SLOF itself 31M below that
 *
 * So we set FW_OVERHEAD to 40MB which should account for all of that
 * and more
 *
 * We load our kernel at 4M, leaving space for SLOF initial image
 */
84
#define FDT_MAX_SIZE            0x100000
85
#define RTAS_MAX_SIZE           0x10000
86
#define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
87 88
#define FW_MAX_SIZE             0x400000
#define FW_FILE_NAME            "slof.bin"
89 90
#define FW_OVERHEAD             0x2800000
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
91

92
#define MIN_RMA_SLOF            128UL
93

94 95
#define PHANDLE_XICP            0x00001111

96 97
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))

98 99
static XICSState *try_create_xics(sPAPRMachineState *spapr,
                                  const char *type, const char *type_ics,
100 101
                                  const char *type_icp, int nr_servers,
                                  int nr_irqs, Error **errp)
102
{
103
    XICSFabric *xi = XICS_FABRIC(spapr);
104 105 106
    Error *err = NULL, *local_err = NULL;
    XICSState *xics;
    ICSState *ics = NULL;
107
    int i;
108 109 110

    xics = XICS_COMMON(object_new(type));
    qdev_set_parent_bus(DEVICE(xics), sysbus_get_default());
111
    object_property_set_bool(OBJECT(xics), true, "realized", &err);
112
    if (err) {
113
        goto error;
114
    }
115 116

    ics = ICS_SIMPLE(object_new(type_ics));
117
    qdev_set_parent_bus(DEVICE(ics), sysbus_get_default());
118
    object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL);
119
    object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err);
120
    object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL);
121 122 123 124 125 126
    object_property_set_bool(OBJECT(ics), true, "realized", &local_err);
    error_propagate(&err, local_err);
    if (err) {
        goto error;
    }

127 128 129 130 131 132 133 134
    xics->ss = g_malloc0(nr_servers * sizeof(ICPState));
    xics->nr_servers = nr_servers;

    for (i = 0; i < nr_servers; i++) {
        ICPState *icp = &xics->ss[i];

        object_initialize(icp, sizeof(*icp), type_icp);
        object_property_add_child(OBJECT(xics), "icp[*]", OBJECT(icp), NULL);
135
        object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL);
136 137 138 139 140 141 142
        object_property_set_bool(OBJECT(icp), true, "realized", &err);
        if (err) {
            goto error;
        }
        object_unref(OBJECT(icp));
    }

143
    spapr->ics = ics;
144 145 146 147 148 149 150 151 152
    return xics;

error:
    error_propagate(errp, err);
    if (ics) {
        object_unparent(OBJECT(ics));
    }
    object_unparent(OBJECT(xics));
    return NULL;
153 154
}

155
static XICSState *xics_system_init(MachineState *machine,
156
                                   int nr_servers, int nr_irqs, Error **errp)
157
{
158
    XICSState *xics = NULL;
159

160
    if (kvm_enabled()) {
161 162
        Error *err = NULL;

163
        if (machine_kernel_irqchip_allowed(machine)) {
164 165
            xics = try_create_xics(SPAPR_MACHINE(machine),
                                   TYPE_XICS_SPAPR_KVM, TYPE_ICS_KVM,
166
                                   TYPE_KVM_ICP, nr_servers, nr_irqs, &err);
167
        }
168
        if (machine_kernel_irqchip_required(machine) && !xics) {
169 170 171 172
            error_reportf_err(err,
                              "kernel_irqchip requested but unavailable: ");
        } else {
            error_free(err);
173 174 175
        }
    }

176
    if (!xics) {
177 178 179
        xics = try_create_xics(SPAPR_MACHINE(machine),
                               TYPE_XICS_SPAPR, TYPE_ICS_SIMPLE,
                               TYPE_ICP, nr_servers, nr_irqs, errp);
180 181
    }

182
    return xics;
183 184
}

185 186 187 188 189 190 191 192
static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
                                  int smt_threads)
{
    int i, ret = 0;
    uint32_t servers_prop[smt_threads];
    uint32_t gservers_prop[smt_threads * 2];
    int index = ppc_get_vcpu_dt_id(cpu);

193 194
    if (cpu->compat_pvr) {
        ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
195 196 197 198 199
        if (ret < 0) {
            return ret;
        }
    }

200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
    /* Build interrupt servers and gservers properties */
    for (i = 0; i < smt_threads; i++) {
        servers_prop[i] = cpu_to_be32(index + i);
        /* Hack, direct the group queues back to cpu 0 */
        gservers_prop[i*2] = cpu_to_be32(index + i);
        gservers_prop[i*2 + 1] = 0;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
                      servers_prop, sizeof(servers_prop));
    if (ret < 0) {
        return ret;
    }
    ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
                      gservers_prop, sizeof(gservers_prop));

    return ret;
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
{
    int ret = 0;
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t associativity[] = {cpu_to_be32(0x5),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(0x0),
                                cpu_to_be32(cs->numa_node),
                                cpu_to_be32(index)};

    /* Advertise NUMA via ibm,associativity */
    if (nb_numa_nodes > 1) {
        ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
                          sizeof(associativity));
    }

    return ret;
}

239
static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
240
{
241 242
    int ret = 0, offset, cpus_offset;
    CPUState *cs;
243 244
    char cpu_model[32];
    int smt = kvmppc_smt_threads();
245
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
246

247 248 249 250
    CPU_FOREACH(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
251
        int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
252

253
        if ((index % smt) != 0) {
254 255 256
            continue;
        }

257
        snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
258

259 260 261 262 263 264 265 266 267
        cpus_offset = fdt_path_offset(fdt, "/cpus");
        if (cpus_offset < 0) {
            cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
                                          "cpus");
            if (cpus_offset < 0) {
                return cpus_offset;
            }
        }
        offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
268
        if (offset < 0) {
269 270 271 272
            offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
            if (offset < 0) {
                return offset;
            }
273 274
        }

275 276
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
                          pft_size_prop, sizeof(pft_size_prop));
277 278 279
        if (ret < 0) {
            return ret;
        }
280

281 282 283 284 285
        ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
        if (ret < 0) {
            return ret;
        }

286
        ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
287 288 289
        if (ret < 0) {
            return ret;
        }
290 291 292 293
    }
    return ret;
}

294 295
static hwaddr spapr_node0_size(void)
{
296 297
    MachineState *machine = MACHINE(qdev_get_machine());

298 299 300 301
    if (nb_numa_nodes) {
        int i;
        for (i = 0; i < nb_numa_nodes; ++i) {
            if (numa_info[i].node_mem) {
302 303
                return MIN(pow2floor(numa_info[i].node_mem),
                           machine->ram_size);
304 305 306
            }
        }
    }
307
    return machine->ram_size;
308 309
}

310 311 312 313
static void add_str(GString *s, const gchar *s1)
{
    g_string_append_len(s, s1, strlen(s1) + 1);
}
314

315
static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
316 317 318 319 320
                                       hwaddr size)
{
    uint32_t associativity[] = {
        cpu_to_be32(0x4), /* length */
        cpu_to_be32(0x0), cpu_to_be32(0x0),
321
        cpu_to_be32(0x0), cpu_to_be32(nodeid)
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    };
    char mem_name[32];
    uint64_t mem_reg_property[2];
    int off;

    mem_reg_property[0] = cpu_to_be64(start);
    mem_reg_property[1] = cpu_to_be64(size);

    sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
    off = fdt_add_subnode(fdt, 0, mem_name);
    _FDT(off);
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
                      sizeof(mem_reg_property))));
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
                      sizeof(associativity))));
338
    return off;
339 340
}

341
static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
342
{
343
    MachineState *machine = MACHINE(spapr);
344 345 346 347 348 349 350 351
    hwaddr mem_start, node_size;
    int i, nb_nodes = nb_numa_nodes;
    NodeInfo *nodes = numa_info;
    NodeInfo ramnode;

    /* No NUMA nodes, assume there is just one node with whole RAM */
    if (!nb_numa_nodes) {
        nb_nodes = 1;
352
        ramnode.node_mem = machine->ram_size;
353
        nodes = &ramnode;
354
    }
355

356 357 358 359
    for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
        if (!nodes[i].node_mem) {
            continue;
        }
360
        if (mem_start >= machine->ram_size) {
361 362
            node_size = 0;
        } else {
363
            node_size = nodes[i].node_mem;
364 365
            if (node_size > machine->ram_size - mem_start) {
                node_size = machine->ram_size - mem_start;
366 367
            }
        }
368 369
        if (!mem_start) {
            /* ppc_spapr_init() checks for rma_size <= node0_size already */
370
            spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
371 372 373
            mem_start += spapr->rma_size;
            node_size -= spapr->rma_size;
        }
374 375 376 377 378 379 380 381 382 383 384 385
        for ( ; node_size; ) {
            hwaddr sizetmp = pow2floor(node_size);

            /* mem_start != 0 here */
            if (ctzl(mem_start) < ctzl(sizetmp)) {
                sizetmp = 1ULL << ctzl(mem_start);
            }

            spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
            node_size -= sizetmp;
            mem_start += sizetmp;
        }
386 387 388 389 390
    }

    return 0;
}

391 392 393 394 395 396 397 398 399
/* Populate the "ibm,pa-features" property */
static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
{
    uint8_t pa_features_206[] = { 6, 0,
        0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
    uint8_t pa_features_207[] = { 24, 0,
        0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
        0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
400
        0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
401 402 403
    uint8_t *pa_features;
    size_t pa_size;

404 405 406
    switch (env->mmu_model) {
    case POWERPC_MMU_2_06:
    case POWERPC_MMU_2_06a:
407 408
        pa_features = pa_features_206;
        pa_size = sizeof(pa_features_206);
409 410 411
        break;
    case POWERPC_MMU_2_07:
    case POWERPC_MMU_2_07a:
412 413
        pa_features = pa_features_207;
        pa_size = sizeof(pa_features_207);
414 415 416
        break;
    default:
        return;
417 418 419 420 421 422 423 424 425 426 427 428
    }

    if (env->ci_large_pages) {
        /*
         * Note: we keep CI large pages off by default because a 64K capable
         * guest provisioned with large pages might otherwise try to map a qemu
         * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
         * even if that qemu runs on a 4k host.
         * We dd this bit back here if we are confident this is not an issue
         */
        pa_features[3] |= 0x20;
    }
429 430 431
    if (kvmppc_has_cap_htm() && pa_size > 24) {
        pa_features[24] |= 0x80;    /* Transactional memory support */
    }
432 433 434 435

    _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
}

436 437 438 439 440 441 442 443 444
static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
                                  sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    CPUPPCState *env = &cpu->env;
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
    int index = ppc_get_vcpu_dt_id(cpu);
    uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
                       0xffffffff, 0xffffffff};
445 446
    uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
        : SPAPR_TIMEBASE_FREQ;
447 448 449
    uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
    uint32_t page_sizes_prop[64];
    size_t page_sizes_prop_size;
450
    uint32_t vcpus_per_socket = smp_threads * smp_cores;
451
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
452
    int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
B
Bharata B Rao 已提交
453 454 455 456 457 458 459 460 461 462
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    int drc_index;

    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
    if (drc) {
        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drc_index = drck->get_index(drc);
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
    }
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

    _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
    _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));

    _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
                           env->dcache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
                           env->icache_line_size)));
    _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
                           env->icache_line_size)));

    if (pcc->l1_dcache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
                               pcc->l1_dcache_size)));
    } else {
481
        error_report("Warning: Unknown L1 dcache size for cpu");
482 483 484 485 486
    }
    if (pcc->l1_icache_size) {
        _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
                               pcc->l1_icache_size)));
    } else {
487
        error_report("Warning: Unknown L1 icache size for cpu");
488 489 490 491
    }

    _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
    _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
492
    _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
    _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
    _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));

    if (env->spr_cb[SPR_PURR].oea_read) {
        _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
    }

    if (env->mmu_model & POWERPC_MMU_1TSEG) {
        _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
                          segs, sizeof(segs))));
    }

    /* Advertise VMX/VSX (vector extensions) if available
     *   0 / no property == no vector extensions
     *   1               == VMX / Altivec available
     *   2               == VSX available */
    if (env->insns_flags & PPC_ALTIVEC) {
        uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;

        _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
    }

    /* Advertise DFP (Decimal Floating Point) if available
     *   0 / no property == no DFP
     *   1               == DFP available */
    if (env->insns_flags2 & PPC2_DFP) {
        _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
    }

523
    page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
524 525 526 527 528 529
                                                  sizeof(page_sizes_prop));
    if (page_sizes_prop_size) {
        _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
                          page_sizes_prop, page_sizes_prop_size)));
    }

530
    spapr_populate_pa_features(env, fdt, offset);
531

532
    _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
533
                           cs->cpu_index / vcpus_per_socket)));
534 535 536 537 538 539

    _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
                      pft_size_prop, sizeof(pft_size_prop))));

    _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));

540
    _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
}

static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
{
    CPUState *cs;
    int cpus_offset;
    char *nodename;
    int smt = kvmppc_smt_threads();

    cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
    _FDT(cpus_offset);
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
    _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));

    /*
     * We walk the CPUs in reverse order to ensure that CPU DT nodes
     * created by fdt_add_subnode() end up in the right order in FDT
     * for the guest kernel the enumerate the CPUs correctly.
     */
    CPU_FOREACH_REVERSE(cs) {
        PowerPCCPU *cpu = POWERPC_CPU(cs);
        int index = ppc_get_vcpu_dt_id(cpu);
        DeviceClass *dc = DEVICE_GET_CLASS(cs);
        int offset;

        if ((index % smt) != 0) {
            continue;
        }

        nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
        offset = fdt_add_subnode(fdt, cpus_offset, nodename);
        g_free(nodename);
        _FDT(offset);
        spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    }

}

579 580 581 582 583 584 585 586 587 588 589
/*
 * Adds ibm,dynamic-reconfiguration-memory node.
 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
 * of this device tree node.
 */
static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
{
    MachineState *machine = MACHINE(spapr);
    int ret, i, offset;
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
    uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
590 591 592 593
    uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
    uint32_t nr_lmbs = (spapr->hotplug_memory.base +
                       memory_region_size(&spapr->hotplug_memory.mr)) /
                       lmb_size;
594
    uint32_t *int_buf, *cur_index, buf_len;
595
    int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
596

597
    /*
598
     * Don't create the node if there is no hotpluggable memory
599
     */
600
    if (machine->ram_size == machine->maxram_size) {
601 602 603
        return 0;
    }

604 605 606 607 608 609
    /*
     * Allocate enough buffer size to fit in ibm,dynamic-memory
     * or ibm,associativity-lookup-arrays
     */
    buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
              * sizeof(uint32_t);
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    cur_index = int_buf = g_malloc0(buf_len);

    offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");

    ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
                    sizeof(prop_lmb_size));
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
    if (ret < 0) {
        goto out;
    }

    ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
    if (ret < 0) {
        goto out;
    }

    /* ibm,dynamic-memory */
    int_buf[0] = cpu_to_be32(nr_lmbs);
    cur_index++;
    for (i = 0; i < nr_lmbs; i++) {
634
        uint64_t addr = i * lmb_size;
635 636
        uint32_t *dynamic_memory = cur_index;

637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
        if (i >= hotplug_lmb_start) {
            sPAPRDRConnector *drc;
            sPAPRDRConnectorClass *drck;

            drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
            g_assert(drc);
            drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);

            dynamic_memory[0] = cpu_to_be32(addr >> 32);
            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
            dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
            dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
            if (memory_region_present(get_system_memory(), addr)) {
                dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
            } else {
                dynamic_memory[5] = cpu_to_be32(0);
            }
655
        } else {
656 657 658 659 660 661 662 663 664 665 666 667
            /*
             * LMB information for RMA, boot time RAM and gap b/n RAM and
             * hotplug memory region -- all these are marked as reserved
             * and as having no valid DRC.
             */
            dynamic_memory[0] = cpu_to_be32(addr >> 32);
            dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
            dynamic_memory[2] = cpu_to_be32(0);
            dynamic_memory[3] = cpu_to_be32(0); /* reserved */
            dynamic_memory[4] = cpu_to_be32(-1);
            dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
                                            SPAPR_LMB_FLAGS_DRC_INVALID);
668 669 670 671 672 673 674 675 676 677 678
        }

        cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
    }
    ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
    if (ret < 0) {
        goto out;
    }

    /* ibm,associativity-lookup-arrays */
    cur_index = int_buf;
679
    int_buf[0] = cpu_to_be32(nr_nodes);
680 681
    int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
    cur_index += 2;
682
    for (i = 0; i < nr_nodes; i++) {
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
        uint32_t associativity[] = {
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(0x0),
            cpu_to_be32(i)
        };
        memcpy(cur_index, associativity, sizeof(associativity));
        cur_index += 4;
    }
    ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
            (cur_index - int_buf) * sizeof(uint32_t));
out:
    g_free(int_buf);
    return ret;
}

699 700 701 702
static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
                                sPAPROptionVector *ov5_updates)
{
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
703
    int ret = 0, offset;
704 705 706 707 708

    /* Generate ibm,dynamic-reconfiguration-memory node if required */
    if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
        g_assert(smc->dr_lmb_enabled);
        ret = spapr_populate_drconf_memory(spapr, fdt);
709 710 711
        if (ret) {
            goto out;
        }
712 713
    }

714 715 716 717 718 719 720 721 722 723 724
    offset = fdt_path_offset(fdt, "/chosen");
    if (offset < 0) {
        offset = fdt_add_subnode(fdt, 0, "chosen");
        if (offset < 0) {
            return offset;
        }
    }
    ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
                                 "ibm,architecture-vec-5");

out:
725 726 727
    return ret;
}

728 729
int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
                                 target_ulong addr, target_ulong size,
730
                                 sPAPROptionVector *ov5_updates)
731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
{
    void *fdt, *fdt_skel;
    sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };

    size -= sizeof(hdr);

    /* Create sceleton */
    fdt_skel = g_malloc0(size);
    _FDT((fdt_create(fdt_skel, size)));
    _FDT((fdt_begin_node(fdt_skel, "")));
    _FDT((fdt_end_node(fdt_skel)));
    _FDT((fdt_finish(fdt_skel)));
    fdt = g_malloc0(size);
    _FDT((fdt_open_into(fdt_skel, fdt, size)));
    g_free(fdt_skel);

    /* Fixup cpu nodes */
748
    _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
749

750 751
    if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
        return -1;
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
    }

    /* Pack resulting tree */
    _FDT((fdt_pack(fdt)));

    if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
        trace_spapr_cas_failed(size);
        return -1;
    }

    cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
    cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
    trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
    g_free(fdt);

    return 0;
}

770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
{
    int rtas;
    GString *hypertas = g_string_sized_new(256);
    GString *qemu_hypertas = g_string_sized_new(256);
    uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
    uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
        memory_region_size(&spapr->hotplug_memory.mr);
    uint32_t lrdr_capacity[] = {
        cpu_to_be32(max_hotplug_addr >> 32),
        cpu_to_be32(max_hotplug_addr & 0xffffffff),
        0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
        cpu_to_be32(max_cpus / smp_threads),
    };

    _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));

    /* hypertas */
    add_str(hypertas, "hcall-pft");
    add_str(hypertas, "hcall-term");
    add_str(hypertas, "hcall-dabr");
    add_str(hypertas, "hcall-interrupt");
    add_str(hypertas, "hcall-tce");
    add_str(hypertas, "hcall-vio");
    add_str(hypertas, "hcall-splpar");
    add_str(hypertas, "hcall-bulk");
    add_str(hypertas, "hcall-set-mode");
    add_str(hypertas, "hcall-sprg0");
    add_str(hypertas, "hcall-copy");
    add_str(hypertas, "hcall-debug");
    add_str(qemu_hypertas, "hcall-memop1");

    if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
        add_str(hypertas, "hcall-multi-tce");
    }
    _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
                     hypertas->str, hypertas->len));
    g_string_free(hypertas, TRUE);
    _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
                     qemu_hypertas->str, qemu_hypertas->len));
    g_string_free(qemu_hypertas, TRUE);

    _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
                     refpoints, sizeof(refpoints)));

    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
                          RTAS_ERROR_LOG_MAX));
    _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
                          RTAS_EVENT_SCAN_RATE));

    if (msi_nonbroken) {
        _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
    }

    /*
     * According to PAPR, rtas ibm,os-term does not guarantee a return
     * back to the guest cpu.
     *
     * While an additional ibm,extended-os-term property indicates
     * that rtas call return will always occur. Set this property.
     */
    _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));

    _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
                     lrdr_capacity, sizeof(lrdr_capacity)));

    spapr_dt_rtas_tokens(fdt, rtas);
}

839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895
static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
{
    MachineState *machine = MACHINE(spapr);
    int chosen;
    const char *boot_device = machine->boot_order;
    char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
    size_t cb = 0;
    char *bootlist = get_boot_devices_list(&cb, true);

    _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));

    _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
                          spapr->initrd_base));
    _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
                          spapr->initrd_base + spapr->initrd_size));

    if (spapr->kernel_size) {
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
                              cpu_to_be64(spapr->kernel_size) };

        _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
                         &kprop, sizeof(kprop)));
        if (spapr->kernel_le) {
            _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
        }
    }
    if (boot_menu) {
        _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
    }
    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
    _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));

    if (cb && bootlist) {
        int i;

        for (i = 0; i < cb; i++) {
            if (bootlist[i] == '\n') {
                bootlist[i] = ' ';
            }
        }
        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
    }

    if (boot_device && strlen(boot_device)) {
        _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
    }

    if (!spapr->has_graphics && stdout_path) {
        _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
    }

    g_free(stdout_path);
    g_free(bootlist);
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918
static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
{
    /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
     * KVM to work under pHyp with some guest co-operation */
    int hypervisor;
    uint8_t hypercall[16];

    _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
    /* indicate KVM hypercall interface */
    _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
    if (kvmppc_has_cap_fixup_hcalls()) {
        /*
         * Older KVM versions with older guest kernels were broken
         * with the magic page, don't allow the guest to map it.
         */
        if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
                                  sizeof(hypercall))) {
            _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
                             hypercall, sizeof(hypercall)));
        }
    }
}

919 920 921
static void *spapr_build_fdt(sPAPRMachineState *spapr,
                             hwaddr rtas_addr,
                             hwaddr rtas_size)
922
{
923
    MachineState *machine = MACHINE(qdev_get_machine());
924
    MachineClass *mc = MACHINE_GET_CLASS(machine);
B
Bharata B Rao 已提交
925
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
926
    int ret;
927
    void *fdt;
928
    sPAPRPHBState *phb;
929
    char *buf;
930

931 932
    fdt = g_malloc0(FDT_MAX_SIZE);
    _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
933

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966
    /* Root node */
    _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
    _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
    _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));

    /*
     * Add info to guest to indentify which host is it being run on
     * and what is the uuid of the guest
     */
    if (kvmppc_get_host_model(&buf)) {
        _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
        g_free(buf);
    }
    if (kvmppc_get_host_serial(&buf)) {
        _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
        g_free(buf);
    }

    buf = qemu_uuid_unparse_strdup(&qemu_uuid);

    _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
    if (qemu_uuid_set) {
        _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
    }
    g_free(buf);

    if (qemu_get_vm_name()) {
        _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
                                qemu_get_vm_name()));
    }

    _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
    _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
967

968
    /* /interrupt controller */
969
    spapr_dt_xics(spapr->xics->nr_servers, fdt, PHANDLE_XICP);
970

971 972
    ret = spapr_populate_memory(spapr, fdt);
    if (ret < 0) {
973
        error_report("couldn't setup memory nodes in fdt");
974
        exit(1);
975 976
    }

977 978
    /* /vdevice */
    spapr_dt_vdevice(spapr->vio_bus, fdt);
979

980 981 982
    if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
        ret = spapr_rng_populate_dt(fdt);
        if (ret < 0) {
983
            error_report("could not set up rng device in the fdt");
984 985 986 987
            exit(1);
        }
    }

988
    QLIST_FOREACH(phb, &spapr->phbs, list) {
989
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
990 991 992 993
        if (ret < 0) {
            error_report("couldn't setup PCI devices in fdt");
            exit(1);
        }
994 995
    }

996 997
    /* cpus */
    spapr_populate_cpus_dt_node(fdt, spapr);
998

B
Bharata B Rao 已提交
999 1000 1001 1002
    if (smc->dr_lmb_enabled) {
        _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
    }

1003
    if (mc->has_hotpluggable_cpus) {
B
Bharata B Rao 已提交
1004 1005 1006 1007 1008 1009 1010 1011 1012
        int offset = fdt_path_offset(fdt, "/cpus");
        ret = spapr_drc_populate_dt(fdt, offset, NULL,
                                    SPAPR_DR_CONNECTOR_TYPE_CPU);
        if (ret < 0) {
            error_report("Couldn't set up CPU DR device tree properties");
            exit(1);
        }
    }

1013
    /* /event-sources */
1014
    spapr_dt_events(spapr, fdt);
1015

1016 1017 1018
    /* /rtas */
    spapr_dt_rtas(spapr, fdt);

1019 1020
    /* /chosen */
    spapr_dt_chosen(spapr, fdt);
1021

1022 1023 1024 1025 1026
    /* /hypervisor */
    if (kvm_enabled()) {
        spapr_dt_hypervisor(spapr, fdt);
    }

1027 1028 1029 1030 1031 1032 1033 1034
    /* Build memory reserve map */
    if (spapr->kernel_size) {
        _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
    }
    if (spapr->initrd_size) {
        _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
    }

1035 1036 1037 1038 1039 1040 1041
    /* ibm,client-architecture-support updates */
    ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
    if (ret < 0) {
        error_report("couldn't setup CAS properties fdt");
        exit(1);
    }

1042
    return fdt;
1043 1044 1045 1046 1047 1048 1049
}

static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
{
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
}

1050 1051
static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
                                    PowerPCCPU *cpu)
1052
{
1053 1054
    CPUPPCState *env = &cpu->env;

1055 1056 1057
    /* The TCG path should also be holding the BQL at this point */
    g_assert(qemu_mutex_iothread_locked());

1058 1059 1060 1061
    if (msr_pr) {
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
        env->gpr[3] = H_PRIVILEGE;
    } else {
1062
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1063
    }
1064 1065
}

1066 1067 1068 1069 1070 1071
#define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
#define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
#define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
#define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
#define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097
/*
 * Get the fd to access the kernel htab, re-opening it if necessary
 */
static int get_htab_fd(sPAPRMachineState *spapr)
{
    if (spapr->htab_fd >= 0) {
        return spapr->htab_fd;
    }

    spapr->htab_fd = kvmppc_get_htab_fd(false);
    if (spapr->htab_fd < 0) {
        error_report("Unable to open fd for reading hash table from KVM: %s",
                     strerror(errno));
    }

    return spapr->htab_fd;
}

static void close_htab_fd(sPAPRMachineState *spapr)
{
    if (spapr->htab_fd >= 0) {
        close(spapr->htab_fd);
    }
    spapr->htab_fd = -1;
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153
static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);

    return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
}

static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
                                                hwaddr ptex, int n)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
    hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;

    if (!spapr->htab) {
        /*
         * HTAB is controlled by KVM. Fetch into temporary buffer
         */
        ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
        kvmppc_read_hptes(hptes, ptex, n);
        return hptes;
    }

    /*
     * HTAB is controlled by QEMU. Just point to the internally
     * accessible PTEG.
     */
    return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
}

static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
                              const ppc_hash_pte64_t *hptes,
                              hwaddr ptex, int n)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);

    if (!spapr->htab) {
        g_free((void *)hptes);
    }

    /* Nothing to do for qemu managed HPT */
}

static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
                             uint64_t pte0, uint64_t pte1)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
    hwaddr offset = ptex * HASH_PTE_SIZE_64;

    if (!spapr->htab) {
        kvmppc_write_hpte(ptex, pte0, pte1);
    } else {
        stq_p(spapr->htab + offset, pte0);
        stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
    }
}

1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
{
    int shift;

    /* We aim for a hash table of size 1/128 the size of RAM (rounded
     * up).  The PAPR recommendation is actually 1/64 of RAM size, but
     * that's much more than is needed for Linux guests */
    shift = ctz64(pow2ceil(ramsize)) - 7;
    shift = MAX(shift, 18); /* Minimum architected size */
    shift = MIN(shift, 46); /* Maximum architected size */
    return shift;
}

1167 1168
static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
                                 Error **errp)
1169
{
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
    long rc;

    /* Clean up any HPT info from a previous boot */
    g_free(spapr->htab);
    spapr->htab = NULL;
    spapr->htab_shift = 0;
    close_htab_fd(spapr);

    rc = kvmppc_reset_htab(shift);
    if (rc < 0) {
        /* kernel-side HPT needed, but couldn't allocate one */
        error_setg_errno(errp, errno,
                         "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
                         shift);
        /* This is almost certainly fatal, but if the caller really
         * wants to carry on with shift == 0, it's welcome to try */
    } else if (rc > 0) {
        /* kernel-side HPT allocated */
        if (rc != shift) {
            error_setg(errp,
                       "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
                       shift, rc);
1192 1193
        }

1194
        spapr->htab_shift = shift;
1195
        spapr->htab = NULL;
1196
    } else {
1197 1198 1199
        /* kernel-side HPT not needed, allocate in userspace instead */
        size_t size = 1ULL << shift;
        int i;
1200

1201 1202 1203 1204 1205
        spapr->htab = qemu_memalign(size, size);
        if (!spapr->htab) {
            error_setg_errno(errp, errno,
                             "Could not allocate HPT of order %d", shift);
            return;
1206 1207
        }

1208 1209
        memset(spapr->htab, 0, size);
        spapr->htab_shift = shift;
1210

1211 1212
        for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
            DIRTY_HPTE(HPTE(spapr->htab, i));
1213
        }
1214
    }
1215 1216
}

1217
static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
{
    bool matched = false;

    if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
        matched = true;
    }

    if (!matched) {
        error_report("Device %s is not supported by this machine yet.",
                     qdev_fw_name(DEVICE(sbdev)));
        exit(1);
    }
}

1232
static void ppc_spapr_reset(void)
1233
{
1234 1235
    MachineState *machine = MACHINE(qdev_get_machine());
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1236
    PowerPCCPU *first_ppc_cpu;
1237
    uint32_t rtas_limit;
1238
    hwaddr rtas_addr, fdt_addr;
1239 1240
    void *fdt;
    int rc;
1241

1242 1243 1244
    /* Check for unknown sysbus devices */
    foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
    /* Allocate and/or reset the hash page table */
    spapr_reallocate_hpt(spapr,
                         spapr_hpt_shift_for_ramsize(machine->maxram_size),
                         &error_fatal);

    /* Update the RMA size if necessary */
    if (spapr->vrma_adjust) {
        spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
                                          spapr->htab_shift);
    }
1255

1256
    qemu_devices_reset();
1257

1258 1259 1260 1261 1262 1263
    /*
     * We place the device tree and RTAS just below either the top of the RMA,
     * or just below 2GB, whichever is lowere, so that it can be
     * processed with 32-bit real mode code if necessary
     */
    rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1264 1265
    rtas_addr = rtas_limit - RTAS_MAX_SIZE;
    fdt_addr = rtas_addr - FDT_MAX_SIZE;
1266

1267 1268 1269 1270 1271 1272 1273
    /* if this reset wasn't generated by CAS, we should reset our
     * negotiated options and start from scratch */
    if (!spapr->cas_reboot) {
        spapr_ovec_cleanup(spapr->ov5_cas);
        spapr->ov5_cas = spapr_ovec_new();
    }

1274
    fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1275

D
David Gibson 已提交
1276
    spapr_load_rtas(spapr, fdt, rtas_addr);
1277

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    rc = fdt_pack(fdt);

    /* Should only fail if we've built a corrupted tree */
    assert(rc == 0);

    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
        error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
                     fdt_totalsize(fdt), FDT_MAX_SIZE);
        exit(1);
    }

    /* Load the fdt */
    qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1291
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1292 1293
    g_free(fdt);

1294
    /* Set up the entry state */
1295
    first_ppc_cpu = POWERPC_CPU(first_cpu);
1296
    first_ppc_cpu->env.gpr[3] = fdt_addr;
1297 1298
    first_ppc_cpu->env.gpr[5] = 0;
    first_cpu->halted = 0;
1299
    first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1300

1301
    spapr->cas_reboot = false;
1302 1303
}

1304
static void spapr_create_nvram(sPAPRMachineState *spapr)
D
David Gibson 已提交
1305
{
1306
    DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
P
Paolo Bonzini 已提交
1307
    DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
D
David Gibson 已提交
1308

P
Paolo Bonzini 已提交
1309
    if (dinfo) {
1310 1311
        qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
                            &error_fatal);
D
David Gibson 已提交
1312 1313 1314 1315 1316 1317 1318
    }

    qdev_init_nofail(dev);

    spapr->nvram = (struct sPAPRNVRAM *)dev;
}

1319
static void spapr_rtc_create(sPAPRMachineState *spapr)
1320 1321 1322 1323 1324
{
    DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);

    qdev_init_nofail(dev);
    spapr->rtc = dev;
D
David Gibson 已提交
1325 1326 1327

    object_property_add_alias(qdev_get_machine(), "rtc-time",
                              OBJECT(spapr->rtc), "date", NULL);
1328 1329
}

1330
/* Returns whether we want to use VGA or not */
1331
static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1332
{
1333 1334
    switch (vga_interface_type) {
    case VGA_NONE:
1335 1336 1337
        return false;
    case VGA_DEVICE:
        return true;
1338
    case VGA_STD:
1339
    case VGA_VIRTIO:
1340
        return pci_vga_init(pci_bus) != NULL;
1341
    default:
1342 1343 1344
        error_setg(errp,
                   "Unsupported VGA mode, only -vga std or -vga virtio is supported");
        return false;
1345 1346 1347
    }
}

1348 1349
static int spapr_post_load(void *opaque, int version_id)
{
1350
    sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1351 1352
    int err = 0;

S
Stefan Weil 已提交
1353
    /* In earlier versions, there was no separate qdev for the PAPR
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368
     * RTC, so the RTC offset was stored directly in sPAPREnvironment.
     * So when migrating from those versions, poke the incoming offset
     * value into the RTC device */
    if (version_id < 3) {
        err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
    }

    return err;
}

static bool version_before_3(void *opaque, int version_id)
{
    return version_id < 3;
}

1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
static bool spapr_ov5_cas_needed(void *opaque)
{
    sPAPRMachineState *spapr = opaque;
    sPAPROptionVector *ov5_mask = spapr_ovec_new();
    sPAPROptionVector *ov5_legacy = spapr_ovec_new();
    sPAPROptionVector *ov5_removed = spapr_ovec_new();
    bool cas_needed;

    /* Prior to the introduction of sPAPROptionVector, we had two option
     * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
     * Both of these options encode machine topology into the device-tree
     * in such a way that the now-booted OS should still be able to interact
     * appropriately with QEMU regardless of what options were actually
     * negotiatied on the source side.
     *
     * As such, we can avoid migrating the CAS-negotiated options if these
     * are the only options available on the current machine/platform.
     * Since these are the only options available for pseries-2.7 and
     * earlier, this allows us to maintain old->new/new->old migration
     * compatibility.
     *
     * For QEMU 2.8+, there are additional CAS-negotiatable options available
     * via default pseries-2.8 machines and explicit command-line parameters.
     * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
     * of the actual CAS-negotiated values to continue working properly. For
     * example, availability of memory unplug depends on knowing whether
     * OV5_HP_EVT was negotiated via CAS.
     *
     * Thus, for any cases where the set of available CAS-negotiatable
     * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
     * include the CAS-negotiated options in the migration stream.
     */
    spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
    spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);

    /* spapr_ovec_diff returns true if bits were removed. we avoid using
     * the mask itself since in the future it's possible "legacy" bits may be
     * removed via machine options, which could generate a false positive
     * that breaks migration.
     */
    spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
    cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);

    spapr_ovec_cleanup(ov5_mask);
    spapr_ovec_cleanup(ov5_legacy);
    spapr_ovec_cleanup(ov5_removed);

    return cas_needed;
}

static const VMStateDescription vmstate_spapr_ov5_cas = {
    .name = "spapr_option_vector_ov5_cas",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = spapr_ov5_cas_needed,
    .fields = (VMStateField[]) {
        VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
                                 vmstate_spapr_ovec, sPAPROptionVector),
        VMSTATE_END_OF_LIST()
    },
};

1431 1432
static const VMStateDescription vmstate_spapr = {
    .name = "spapr",
1433
    .version_id = 3,
1434
    .minimum_version_id = 1,
1435
    .post_load = spapr_post_load,
1436
    .fields = (VMStateField[]) {
1437 1438
        /* used to be @next_irq */
        VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1439 1440

        /* RTC offset */
1441
        VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1442

1443
        VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1444 1445
        VMSTATE_END_OF_LIST()
    },
1446 1447 1448 1449
    .subsections = (const VMStateDescription*[]) {
        &vmstate_spapr_ov5_cas,
        NULL
    }
1450 1451 1452 1453
};

static int htab_save_setup(QEMUFile *f, void *opaque)
{
1454
    sPAPRMachineState *spapr = opaque;
1455 1456 1457 1458

    /* "Iteration" header */
    qemu_put_be32(f, spapr->htab_shift);

1459 1460 1461 1462 1463 1464 1465 1466
    if (spapr->htab) {
        spapr->htab_save_index = 0;
        spapr->htab_first_pass = true;
    } else {
        assert(kvm_enabled());
    }


1467 1468 1469
    return 0;
}

1470
static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1471 1472
                                 int64_t max_ns)
{
1473
    bool has_timeout = max_ns != -1;
1474 1475
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int index = spapr->htab_save_index;
1476
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

    assert(spapr->htab_first_pass);

    do {
        int chunkstart;

        /* Consume invalid HPTEs */
        while ((index < htabslots)
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        /* Consume valid HPTEs */
        chunkstart = index;
1492
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            index++;
            CLEAN_HPTE(HPTE(spapr->htab, index));
        }

        if (index > chunkstart) {
            int n_valid = index - chunkstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, 0);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);

1507 1508
            if (has_timeout &&
                (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521
                break;
            }
        }
    } while ((index < htabslots) && !qemu_file_rate_limit(f));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
        spapr->htab_first_pass = false;
    }
    spapr->htab_save_index = index;
}

1522
static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1523
                                int64_t max_ns)
1524 1525 1526 1527 1528
{
    bool final = max_ns < 0;
    int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
    int examined = 0, sent = 0;
    int index = spapr->htab_save_index;
1529
    int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544

    assert(!spapr->htab_first_pass);

    do {
        int chunkstart, invalidstart;

        /* Consume non-dirty HPTEs */
        while ((index < htabslots)
               && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
            index++;
            examined++;
        }

        chunkstart = index;
        /* Consume valid dirty HPTEs */
1545
        while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1546 1547 1548 1549 1550 1551 1552 1553 1554
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        invalidstart = index;
        /* Consume invalid dirty HPTEs */
1555
        while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
               && HPTE_DIRTY(HPTE(spapr->htab, index))
               && !HPTE_VALID(HPTE(spapr->htab, index))) {
            CLEAN_HPTE(HPTE(spapr->htab, index));
            index++;
            examined++;
        }

        if (index > chunkstart) {
            int n_valid = invalidstart - chunkstart;
            int n_invalid = index - invalidstart;

            qemu_put_be32(f, chunkstart);
            qemu_put_be16(f, n_valid);
            qemu_put_be16(f, n_invalid);
            qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
                            HASH_PTE_SIZE_64 * n_valid);
            sent += index - chunkstart;

1574
            if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
                break;
            }
        }

        if (examined >= htabslots) {
            break;
        }

        if (index >= htabslots) {
            assert(index == htabslots);
            index = 0;
        }
    } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));

    if (index >= htabslots) {
        assert(index == htabslots);
        index = 0;
    }

    spapr->htab_save_index = index;

1596
    return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1597 1598
}

1599 1600 1601
#define MAX_ITERATION_NS    5000000 /* 5 ms */
#define MAX_KVM_BUF_SIZE    2048

1602 1603
static int htab_save_iterate(QEMUFile *f, void *opaque)
{
1604
    sPAPRMachineState *spapr = opaque;
1605
    int fd;
1606
    int rc = 0;
1607 1608 1609 1610

    /* Iteration header */
    qemu_put_be32(f, 0);

1611 1612 1613
    if (!spapr->htab) {
        assert(kvm_enabled());

1614 1615 1616
        fd = get_htab_fd(spapr);
        if (fd < 0) {
            return fd;
1617 1618
        }

1619
        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1620 1621 1622 1623
        if (rc < 0) {
            return rc;
        }
    } else  if (spapr->htab_first_pass) {
1624 1625
        htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
    } else {
1626
        rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1627 1628 1629 1630 1631 1632 1633
    }

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

1634
    return rc;
1635 1636 1637 1638
}

static int htab_save_complete(QEMUFile *f, void *opaque)
{
1639
    sPAPRMachineState *spapr = opaque;
1640
    int fd;
1641 1642 1643 1644

    /* Iteration header */
    qemu_put_be32(f, 0);

1645 1646 1647 1648 1649
    if (!spapr->htab) {
        int rc;

        assert(kvm_enabled());

1650 1651 1652
        fd = get_htab_fd(spapr);
        if (fd < 0) {
            return fd;
1653 1654
        }

1655
        rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1656 1657 1658 1659
        if (rc < 0) {
            return rc;
        }
    } else {
1660 1661 1662
        if (spapr->htab_first_pass) {
            htab_save_first_pass(f, spapr, -1);
        }
1663 1664
        htab_save_later_pass(f, spapr, -1);
    }
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

    /* End marker */
    qemu_put_be32(f, 0);
    qemu_put_be16(f, 0);
    qemu_put_be16(f, 0);

    return 0;
}

static int htab_load(QEMUFile *f, void *opaque, int version_id)
{
1676
    sPAPRMachineState *spapr = opaque;
1677
    uint32_t section_hdr;
1678
    int fd = -1;
1679 1680

    if (version_id < 1 || version_id > 1) {
1681
        error_report("htab_load() bad version");
1682 1683 1684 1685 1686 1687
        return -EINVAL;
    }

    section_hdr = qemu_get_be32(f);

    if (section_hdr) {
1688
        Error *local_err = NULL;
1689 1690 1691 1692 1693

        /* First section gives the htab size */
        spapr_reallocate_hpt(spapr, section_hdr, &local_err);
        if (local_err) {
            error_report_err(local_err);
1694 1695 1696 1697 1698
            return -EINVAL;
        }
        return 0;
    }

1699 1700 1701 1702 1703
    if (!spapr->htab) {
        assert(kvm_enabled());

        fd = kvmppc_get_htab_fd(true);
        if (fd < 0) {
1704 1705
            error_report("Unable to open fd to restore KVM hash table: %s",
                         strerror(errno));
1706 1707 1708
        }
    }

1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
    while (true) {
        uint32_t index;
        uint16_t n_valid, n_invalid;

        index = qemu_get_be32(f);
        n_valid = qemu_get_be16(f);
        n_invalid = qemu_get_be16(f);

        if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
            /* End of Stream */
            break;
        }

1722
        if ((index + n_valid + n_invalid) >
1723 1724
            (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
            /* Bad index in stream */
1725 1726 1727
            error_report(
                "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
                index, n_valid, n_invalid, spapr->htab_shift);
1728 1729 1730
            return -EINVAL;
        }

1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
        if (spapr->htab) {
            if (n_valid) {
                qemu_get_buffer(f, HPTE(spapr->htab, index),
                                HASH_PTE_SIZE_64 * n_valid);
            }
            if (n_invalid) {
                memset(HPTE(spapr->htab, index + n_valid), 0,
                       HASH_PTE_SIZE_64 * n_invalid);
            }
        } else {
            int rc;

            assert(fd >= 0);

            rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
            if (rc < 0) {
                return rc;
            }
1749 1750 1751
        }
    }

1752 1753 1754 1755 1756
    if (!spapr->htab) {
        assert(fd >= 0);
        close(fd);
    }

1757 1758 1759
    return 0;
}

1760 1761 1762 1763 1764 1765 1766
static void htab_cleanup(void *opaque)
{
    sPAPRMachineState *spapr = opaque;

    close_htab_fd(spapr);
}

1767 1768 1769
static SaveVMHandlers savevm_htab_handlers = {
    .save_live_setup = htab_save_setup,
    .save_live_iterate = htab_save_iterate,
1770
    .save_live_complete_precopy = htab_save_complete,
1771
    .cleanup = htab_cleanup,
1772 1773 1774
    .load_state = htab_load,
};

1775 1776 1777 1778 1779 1780 1781
static void spapr_boot_set(void *opaque, const char *boot_device,
                           Error **errp)
{
    MachineState *machine = MACHINE(qdev_get_machine());
    machine->boot_order = g_strdup(boot_device);
}

D
David Gibson 已提交
1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803
/*
 * Reset routine for LMB DR devices.
 *
 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
 * routine. Reset for PCI DR devices will be handled by PHB reset routine
 * when it walks all its children devices. LMB devices reset occurs
 * as part of spapr_ppc_reset().
 */
static void spapr_drc_reset(void *opaque)
{
    sPAPRDRConnector *drc = opaque;
    DeviceState *d = DEVICE(drc);

    if (d) {
        device_reset(d);
    }
}

static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
{
    MachineState *machine = MACHINE(spapr);
    uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1804
    uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
D
David Gibson 已提交
1805 1806 1807 1808 1809 1810
    int i;

    for (i = 0; i < nr_lmbs; i++) {
        sPAPRDRConnector *drc;
        uint64_t addr;

1811
        addr = i * lmb_size + spapr->hotplug_memory.base;
D
David Gibson 已提交
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822
        drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
                                     addr/lmb_size);
        qemu_register_reset(spapr_drc_reset, drc);
    }
}

/*
 * If RAM size, maxmem size and individual node mem sizes aren't aligned
 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
 * since we can't support such unaligned sizes with DRCONF_MEMORY.
 */
1823
static void spapr_validate_node_memory(MachineState *machine, Error **errp)
D
David Gibson 已提交
1824 1825 1826
{
    int i;

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
    if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
                   " is not aligned to %llu MiB",
                   machine->ram_size,
                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
        return;
    }

    if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
                   " is not aligned to %llu MiB",
                   machine->ram_size,
                   SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
        return;
D
David Gibson 已提交
1841 1842 1843 1844
    }

    for (i = 0; i < nb_numa_nodes; i++) {
        if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1845 1846 1847 1848 1849 1850
            error_setg(errp,
                       "Node %d memory size 0x%" PRIx64
                       " is not aligned to %llu MiB",
                       i, numa_info[i].node_mem,
                       SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
            return;
D
David Gibson 已提交
1851 1852 1853 1854
        }
    }
}

1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868
/* find cpu slot in machine->possible_cpus by core_id */
static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
{
    int index = id / smp_threads;

    if (index >= ms->possible_cpus->len) {
        return NULL;
    }
    if (idx) {
        *idx = index;
    }
    return &ms->possible_cpus->cpus[index];
}

1869 1870 1871 1872 1873 1874
static void spapr_init_cpus(sPAPRMachineState *spapr)
{
    MachineState *machine = MACHINE(spapr);
    MachineClass *mc = MACHINE_GET_CLASS(machine);
    char *type = spapr_get_cpu_core_type(machine->cpu_model);
    int smt = kvmppc_smt_threads();
1875 1876
    const CPUArchIdList *possible_cpus;
    int boot_cores_nr = smp_cpus / smp_threads;
1877 1878 1879 1880 1881 1882 1883
    int i;

    if (!type) {
        error_report("Unable to find sPAPR CPU Core definition");
        exit(1);
    }

1884
    possible_cpus = mc->possible_cpu_arch_ids(machine);
1885
    if (mc->has_hotpluggable_cpus) {
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
        if (smp_cpus % smp_threads) {
            error_report("smp_cpus (%u) must be multiple of threads (%u)",
                         smp_cpus, smp_threads);
            exit(1);
        }
        if (max_cpus % smp_threads) {
            error_report("max_cpus (%u) must be multiple of threads (%u)",
                         max_cpus, smp_threads);
            exit(1);
        }
    } else {
        if (max_cpus != smp_cpus) {
            error_report("This machine version does not support CPU hotplug");
            exit(1);
        }
1901
        boot_cores_nr = possible_cpus->len;
1902 1903
    }

1904
    for (i = 0; i < possible_cpus->len; i++) {
1905 1906
        int core_id = i * smp_threads;

1907
        if (mc->has_hotpluggable_cpus) {
1908 1909 1910 1911 1912 1913 1914 1915
            sPAPRDRConnector *drc =
                spapr_dr_connector_new(OBJECT(spapr),
                                       SPAPR_DR_CONNECTOR_TYPE_CPU,
                                       (core_id / smp_threads) * smt);

            qemu_register_reset(spapr_drc_reset, drc);
        }

1916
        if (i < boot_cores_nr) {
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934
            Object *core  = object_new(type);
            int nr_threads = smp_threads;

            /* Handle the partially filled core for older machine types */
            if ((i + 1) * smp_threads >= smp_cpus) {
                nr_threads = smp_cpus - i * smp_threads;
            }

            object_property_set_int(core, nr_threads, "nr-threads",
                                    &error_fatal);
            object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
                                    &error_fatal);
            object_property_set_bool(core, true, "realized", &error_fatal);
        }
    }
    g_free(type);
}

1935
/* pSeries LPAR / sPAPR hardware init */
1936
static void ppc_spapr_init(MachineState *machine)
1937
{
1938
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
D
David Gibson 已提交
1939
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1940 1941
    const char *kernel_filename = machine->kernel_filename;
    const char *initrd_filename = machine->initrd_filename;
1942
    PCIHostState *phb;
1943
    int i;
A
Avi Kivity 已提交
1944 1945
    MemoryRegion *sysmem = get_system_memory();
    MemoryRegion *ram = g_new(MemoryRegion, 1);
1946 1947
    MemoryRegion *rma_region;
    void *rma = NULL;
A
Avi Kivity 已提交
1948
    hwaddr rma_alloc_size;
1949
    hwaddr node0_size = spapr_node0_size();
1950
    long load_limit, fw_size;
1951
    char *filename;
1952
    int smt = kvmppc_smt_threads();
1953

1954
    msi_nonbroken = true;
1955

1956 1957
    QLIST_INIT(&spapr->phbs);

1958
    /* Allocate RMA if necessary */
1959
    rma_alloc_size = kvmppc_alloc_rma(&rma);
1960 1961

    if (rma_alloc_size == -1) {
1962
        error_report("Unable to create RMA");
1963 1964
        exit(1);
    }
1965

1966
    if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1967
        spapr->rma_size = rma_alloc_size;
1968
    } else {
1969
        spapr->rma_size = node0_size;
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

        /* With KVM, we don't actually know whether KVM supports an
         * unbounded RMA (PR KVM) or is limited by the hash table size
         * (HV KVM using VRMA), so we always assume the latter
         *
         * In that case, we also limit the initial allocations for RTAS
         * etc... to 256M since we have no way to know what the VRMA size
         * is going to be as it depends on the size of the hash table
         * isn't determined yet.
         */
        if (kvm_enabled()) {
            spapr->vrma_adjust = 1;
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
        }
1984 1985 1986 1987 1988 1989 1990

        /* Actually we don't support unbounded RMA anymore since we
         * added proper emulation of HV mode. The max we can get is
         * 16G which also happens to be what we configure for PAPR
         * mode so make sure we don't do anything bigger than that
         */
        spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
1991 1992
    }

1993
    if (spapr->rma_size > node0_size) {
1994 1995
        error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
                     spapr->rma_size);
1996 1997 1998
        exit(1);
    }

1999 2000
    /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
    load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2001

2002
    /* Set up Interrupt Controller before we create the VCPUs */
2003 2004 2005
    spapr->xics = xics_system_init(machine,
                                   DIV_ROUND_UP(max_cpus * smt, smp_threads),
                                   XICS_IRQS_SPAPR, &error_fatal);
2006

2007 2008 2009 2010
    /* Set up containers for ibm,client-set-architecture negotiated options */
    spapr->ov5 = spapr_ovec_new();
    spapr->ov5_cas = spapr_ovec_new();

D
David Gibson 已提交
2011
    if (smc->dr_lmb_enabled) {
2012
        spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2013
        spapr_validate_node_memory(machine, &error_fatal);
D
David Gibson 已提交
2014 2015
    }

2016 2017
    spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);

2018 2019 2020 2021 2022
    /* advertise support for dedicated HP event source to guests */
    if (spapr->use_hotplug_event_source) {
        spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
    }

2023
    /* init CPUs */
2024
    if (machine->cpu_model == NULL) {
2025
        machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2026
    }
2027

G
Greg Kurz 已提交
2028 2029
    ppc_cpu_parse_features(machine->cpu_model);

2030
    spapr_init_cpus(spapr);
2031

2032 2033 2034
    if (kvm_enabled()) {
        /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
        kvmppc_enable_logical_ci_hcalls();
2035
        kvmppc_enable_set_mode_hcall();
2036 2037 2038

        /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
        kvmppc_enable_clear_ref_mod_hcalls();
2039 2040
    }

2041
    /* allocate RAM */
2042
    memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2043
                                         machine->ram_size);
2044
    memory_region_add_subregion(sysmem, 0, ram);
2045

2046 2047 2048 2049 2050 2051 2052 2053
    if (rma_alloc_size && rma) {
        rma_region = g_new(MemoryRegion, 1);
        memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
                                   rma_alloc_size, rma);
        vmstate_register_ram_global(rma_region);
        memory_region_add_subregion(sysmem, 0, rma_region);
    }

2054 2055 2056
    /* initialize hotplug memory address space */
    if (machine->ram_size < machine->maxram_size) {
        ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2057 2058 2059 2060 2061 2062 2063
        /*
         * Limit the number of hotpluggable memory slots to half the number
         * slots that KVM supports, leaving the other half for PCI and other
         * devices. However ensure that number of slots doesn't drop below 32.
         */
        int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
                           SPAPR_MAX_RAM_SLOTS;
2064

2065 2066 2067 2068
        if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
            max_memslots = SPAPR_MAX_RAM_SLOTS;
        }
        if (machine->ram_slots > max_memslots) {
2069 2070
            error_report("Specified number of memory slots %"
                         PRIu64" exceeds max supported %d",
2071
                         machine->ram_slots, max_memslots);
2072
            exit(1);
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082
        }

        spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
                                              SPAPR_HOTPLUG_MEM_ALIGN);
        memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
                           "hotplug-memory", hotplug_mem_size);
        memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
                                    &spapr->hotplug_memory.mr);
    }

D
David Gibson 已提交
2083 2084 2085 2086
    if (smc->dr_lmb_enabled) {
        spapr_create_lmb_dr_connectors(spapr);
    }

2087
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2088
    if (!filename) {
2089
        error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2090 2091
        exit(1);
    }
2092
    spapr->rtas_size = get_image_size(filename);
2093 2094 2095 2096
    if (spapr->rtas_size < 0) {
        error_report("Could not get size of LPAR rtas '%s'", filename);
        exit(1);
    }
2097 2098
    spapr->rtas_blob = g_malloc(spapr->rtas_size);
    if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2099
        error_report("Could not load LPAR rtas '%s'", filename);
2100 2101
        exit(1);
    }
2102
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
2103 2104
        error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
                     (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2105 2106
        exit(1);
    }
2107
    g_free(filename);
2108

2109
    /* Set up RTAS event infrastructure */
2110 2111
    spapr_events_init(spapr);

2112
    /* Set up the RTC RTAS interfaces */
2113
    spapr_rtc_create(spapr);
2114

2115
    /* Set up VIO bus */
2116 2117
    spapr->vio_bus = spapr_vio_bus_init();

P
Paolo Bonzini 已提交
2118
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2119
        if (serial_hds[i]) {
2120
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2121 2122
        }
    }
2123

D
David Gibson 已提交
2124 2125 2126
    /* We always have at least the nvram device on VIO */
    spapr_create_nvram(spapr);

2127
    /* Set up PCI */
2128 2129
    spapr_pci_rtas_init();

2130
    phb = spapr_create_phb(spapr, 0);
2131

P
Paolo Bonzini 已提交
2132
    for (i = 0; i < nb_nics; i++) {
2133 2134 2135
        NICInfo *nd = &nd_table[i];

        if (!nd->model) {
2136
            nd->model = g_strdup("ibmveth");
2137 2138 2139
        }

        if (strcmp(nd->model, "ibmveth") == 0) {
2140
            spapr_vlan_create(spapr->vio_bus, nd);
2141
        } else {
2142
            pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2143 2144 2145
        }
    }

2146
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2147
        spapr_vscsi_create(spapr->vio_bus);
2148 2149
    }

2150
    /* Graphics */
2151
    if (spapr_vga_init(phb->bus, &error_fatal)) {
2152
        spapr->has_graphics = true;
2153
        machine->usb |= defaults_enabled() && !machine->usb_disabled;
2154 2155
    }

2156
    if (machine->usb) {
2157 2158 2159 2160 2161
        if (smc->use_ohci_by_default) {
            pci_create_simple(phb->bus, -1, "pci-ohci");
        } else {
            pci_create_simple(phb->bus, -1, "nec-usb-xhci");
        }
2162

2163
        if (spapr->has_graphics) {
2164 2165 2166 2167
            USBBus *usb_bus = usb_bus_find(-1);

            usb_create_simple(usb_bus, "usb-kbd");
            usb_create_simple(usb_bus, "usb-mouse");
2168 2169 2170
        }
    }

2171
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2172 2173 2174
        error_report(
            "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
            MIN_RMA_SLOF);
2175 2176 2177
        exit(1);
    }

2178 2179 2180
    if (kernel_filename) {
        uint64_t lowaddr = 0;

2181 2182 2183 2184 2185 2186 2187 2188 2189
        spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
                                      NULL, NULL, &lowaddr, NULL, 1,
                                      PPC_ELF_MACHINE, 0, 0);
        if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
            spapr->kernel_size = load_elf(kernel_filename,
                                          translate_kernel_address, NULL, NULL,
                                          &lowaddr, NULL, 0, PPC_ELF_MACHINE,
                                          0, 0);
            spapr->kernel_le = spapr->kernel_size > 0;
2190
        }
2191 2192 2193
        if (spapr->kernel_size < 0) {
            error_report("error loading %s: %s", kernel_filename,
                         load_elf_strerror(spapr->kernel_size));
2194 2195 2196 2197 2198
            exit(1);
        }

        /* load initrd */
        if (initrd_filename) {
2199 2200 2201
            /* Try to locate the initrd in the gap between the kernel
             * and the firmware. Add a bit of space just in case
             */
2202 2203 2204 2205 2206 2207 2208
            spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
                                  + 0x1ffff) & ~0xffff;
            spapr->initrd_size = load_image_targphys(initrd_filename,
                                                     spapr->initrd_base,
                                                     load_limit
                                                     - spapr->initrd_base);
            if (spapr->initrd_size < 0) {
2209 2210
                error_report("could not load initial ram disk '%s'",
                             initrd_filename);
2211 2212 2213
                exit(1);
            }
        }
2214
    }
2215

2216 2217 2218 2219
    if (bios_name == NULL) {
        bios_name = FW_FILE_NAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2220
    if (!filename) {
2221
        error_report("Could not find LPAR firmware '%s'", bios_name);
2222 2223
        exit(1);
    }
2224
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2225 2226
    if (fw_size <= 0) {
        error_report("Could not load LPAR firmware '%s'", filename);
2227 2228 2229 2230
        exit(1);
    }
    g_free(filename);

2231 2232 2233
    /* FIXME: Should register things through the MachineState's qdev
     * interface, this is a legacy from the sPAPREnvironment structure
     * which predated MachineState but had a similar function */
2234 2235 2236 2237
    vmstate_register(NULL, 0, &vmstate_spapr, spapr);
    register_savevm_live(NULL, "spapr/htab", -1, 1,
                         &savevm_htab_handlers, spapr);

2238 2239 2240 2241
    /* used by RTAS */
    QTAILQ_INIT(&spapr->ccs_list);
    qemu_register_reset(spapr_ccs_reset_hook, spapr);

2242
    qemu_register_boot_set(spapr_boot_set, spapr);
2243 2244 2245 2246 2247 2248

    /* to stop and start vmclock */
    if (kvm_enabled()) {
        qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
                                         &spapr->tb);
    }
2249 2250
}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
static int spapr_kvm_type(const char *vm_type)
{
    if (!vm_type) {
        return 0;
    }

    if (!strcmp(vm_type, "HV")) {
        return 1;
    }

    if (!strcmp(vm_type, "PR")) {
        return 2;
    }

    error_report("Unknown kvm-type specified '%s'", vm_type);
    exit(1);
}

2269
/*
2270
 * Implementation of an interface to adjust firmware path
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
 * for the bootindex property handling.
 */
static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
                                   DeviceState *dev)
{
#define CAST(type, obj, name) \
    ((type *)object_dynamic_cast(OBJECT(obj), (name)))
    SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
    sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);

    if (d) {
        void *spapr = CAST(void, bus->parent, "spapr-vscsi");
        VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
        USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);

        if (spapr) {
            /*
             * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
             * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
             * in the top 16 bits of the 64-bit LUN
             */
            unsigned id = 0x8000 | (d->id << 8) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 48);
        } else if (virtio) {
            /*
             * We use SRP luns of the form 01000000 | (target << 8) | lun
             * in the top 32 bits of the 64-bit LUN
             * Note: the quote above is from SLOF and it is wrong,
             * the actual binding is:
             * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
             */
            unsigned id = 0x1000000 | (d->id << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        } else if (usb) {
            /*
             * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
             * in the top 32 bits of the 64-bit LUN
             */
            unsigned usb_port = atoi(usb->port->path);
            unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
            return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
                                   (uint64_t)id << 32);
        }
    }

2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
    /*
     * SLOF probes the USB devices, and if it recognizes that the device is a
     * storage device, it changes its name to "storage" instead of "usb-host",
     * and additionally adds a child node for the SCSI LUN, so the correct
     * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
     */
    if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
        USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
        if (usb_host_dev_is_scsi_storage(usbdev)) {
            return g_strdup_printf("storage@%s/disk", usbdev->port->path);
        }
    }

2331 2332 2333 2334 2335 2336 2337 2338
    if (phb) {
        /* Replace "pci" with "pci@800000020000000" */
        return g_strdup_printf("pci@%"PRIX64, phb->buid);
    }

    return NULL;
}

E
Eduardo Habkost 已提交
2339 2340
static char *spapr_get_kvm_type(Object *obj, Error **errp)
{
2341
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2342

2343
    return g_strdup(spapr->kvm_type);
E
Eduardo Habkost 已提交
2344 2345 2346 2347
}

static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
{
2348
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
E
Eduardo Habkost 已提交
2349

2350 2351
    g_free(spapr->kvm_type);
    spapr->kvm_type = g_strdup(value);
E
Eduardo Habkost 已提交
2352 2353
}

2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368
static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    return spapr->use_hotplug_event_source;
}

static void spapr_set_modern_hotplug_events(Object *obj, bool value,
                                            Error **errp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    spapr->use_hotplug_event_source = value;
}

E
Eduardo Habkost 已提交
2369 2370
static void spapr_machine_initfn(Object *obj)
{
2371 2372 2373
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    spapr->htab_fd = -1;
2374
    spapr->use_hotplug_event_source = true;
E
Eduardo Habkost 已提交
2375 2376
    object_property_add_str(obj, "kvm-type",
                            spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2377 2378 2379
    object_property_set_description(obj, "kvm-type",
                                    "Specifies the KVM virtualization mode (HV, PR)",
                                    NULL);
2380 2381 2382 2383 2384 2385 2386 2387 2388
    object_property_add_bool(obj, "modern-hotplug-events",
                            spapr_get_modern_hotplug_events,
                            spapr_set_modern_hotplug_events,
                            NULL);
    object_property_set_description(obj, "modern-hotplug-events",
                                    "Use dedicated hotplug event mechanism in"
                                    " place of standard EPOW events when possible"
                                    " (required for memory hot-unplug support)",
                                    NULL);
E
Eduardo Habkost 已提交
2389 2390
}

2391 2392 2393 2394 2395 2396 2397
static void spapr_machine_finalizefn(Object *obj)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(obj);

    g_free(spapr->kvm_type);
}

2398
void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2399 2400 2401 2402 2403 2404 2405 2406 2407 2408
{
    cpu_synchronize_state(cs);
    ppc_cpu_do_system_reset(cs);
}

static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
{
    CPUState *cs;

    CPU_FOREACH(cs) {
2409
        async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2410 2411 2412
    }
}

2413 2414 2415
static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
                           uint32_t node, bool dedicated_hp_event_source,
                           Error **errp)
B
Bharata B Rao 已提交
2416 2417 2418 2419 2420 2421
{
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
    int i, fdt_offset, fdt_size;
    void *fdt;
2422
    uint64_t addr = addr_start;
B
Bharata B Rao 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435

    for (i = 0; i < nr_lmbs; i++) {
        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                addr/SPAPR_MEMORY_BLOCK_SIZE);
        g_assert(drc);

        fdt = create_device_tree(&fdt_size);
        fdt_offset = spapr_populate_memory_node(fdt, node, addr,
                                                SPAPR_MEMORY_BLOCK_SIZE);

        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
        addr += SPAPR_MEMORY_BLOCK_SIZE;
2436 2437 2438 2439 2440
        if (!dev->hotplugged) {
            /* guests expect coldplugged LMBs to be pre-allocated */
            drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
            drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
        }
B
Bharata B Rao 已提交
2441
    }
2442 2443 2444 2445
    /* send hotplug notification to the
     * guest only in case of hotplugged memory
     */
    if (dev->hotplugged) {
2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456
        if (dedicated_hp_event_source) {
            drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                    addr_start / SPAPR_MEMORY_BLOCK_SIZE);
            drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
            spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                                   nr_lmbs,
                                                   drck->get_index(drc));
        } else {
            spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                           nr_lmbs);
        }
2457
    }
B
Bharata B Rao 已提交
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470
}

static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                              uint32_t node, Error **errp)
{
    Error *local_err = NULL;
    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);
    uint64_t align = memory_region_get_alignment(mr);
    uint64_t size = memory_region_size(mr);
    uint64_t addr;
2471
    char *mem_dev;
B
Bharata B Rao 已提交
2472 2473 2474 2475 2476 2477 2478

    if (size % SPAPR_MEMORY_BLOCK_SIZE) {
        error_setg(&local_err, "Hotplugged memory size must be a multiple of "
                      "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
        goto out;
    }

2479 2480 2481 2482 2483 2484 2485
    mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
    if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
        error_setg(&local_err, "Memory backend has bad page size. "
                   "Use 'memory-backend-file' with correct mem-path.");
        goto out;
    }

2486
    pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
B
Bharata B Rao 已提交
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
    if (local_err) {
        goto out;
    }

    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
    if (local_err) {
        pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
        goto out;
    }

2497 2498 2499
    spapr_add_lmbs(dev, addr, size, node,
                   spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
                   &error_abort);
B
Bharata B Rao 已提交
2500 2501 2502 2503 2504

out:
    error_propagate(errp, local_err);
}

B
Bharata B Rao 已提交
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
typedef struct sPAPRDIMMState {
    uint32_t nr_lmbs;
} sPAPRDIMMState;

static void spapr_lmb_release(DeviceState *dev, void *opaque)
{
    sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
    HotplugHandler *hotplug_ctrl;

    if (--ds->nr_lmbs) {
        return;
    }

    g_free(ds);

    /*
     * Now that all the LMBs have been removed by the guest, call the
     * pc-dimm unplug handler to cleanup up the pc-dimm device.
     */
    hotplug_ctrl = qdev_get_hotplug_handler(dev);
    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
}

static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
                           Error **errp)
{
    sPAPRDRConnector *drc;
    sPAPRDRConnectorClass *drck;
    uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
    int i;
    sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
    uint64_t addr = addr_start;

    ds->nr_lmbs = nr_lmbs;
    for (i = 0; i < nr_lmbs; i++) {
        drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                addr / SPAPR_MEMORY_BLOCK_SIZE);
        g_assert(drc);

        drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->detach(drc, dev, spapr_lmb_release, ds, errp);
        addr += SPAPR_MEMORY_BLOCK_SIZE;
    }

    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
    spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
                                              nr_lmbs,
                                              drck->get_index(drc));
}

static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
                                Error **errp)
{
    sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);

    pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
    object_unparent(OBJECT(dev));
}

static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
                                        DeviceState *dev, Error **errp)
{
    Error *local_err = NULL;
    PCDIMMDevice *dimm = PC_DIMM(dev);
    PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
    MemoryRegion *mr = ddc->get_memory_region(dimm);
    uint64_t size = memory_region_size(mr);
    uint64_t addr;

    addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
    if (local_err) {
        goto out;
    }

    spapr_del_lmbs(dev, addr, size, &error_abort);
out:
    error_propagate(errp, local_err);
}

B
Bharata B Rao 已提交
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
                                    sPAPRMachineState *spapr)
{
    PowerPCCPU *cpu = POWERPC_CPU(cs);
    DeviceClass *dc = DEVICE_GET_CLASS(cs);
    int id = ppc_get_vcpu_dt_id(cpu);
    void *fdt;
    int offset, fdt_size;
    char *nodename;

    fdt = create_device_tree(&fdt_size);
    nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
    offset = fdt_add_subnode(fdt, 0, nodename);

    spapr_populate_cpu_dt(cs, fdt, offset, spapr);
    g_free(nodename);

    *fdt_offset = offset;
    return fdt;
}

2610 2611
static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
                              Error **errp)
2612
{
2613
    MachineState *ms = MACHINE(qdev_get_machine());
2614
    CPUCore *cc = CPU_CORE(dev);
2615
    CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
2616

2617
    core_slot->cpu = NULL;
2618 2619 2620
    object_unparent(OBJECT(dev));
}

2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631
static void spapr_core_release(DeviceState *dev, void *opaque)
{
    HotplugHandler *hotplug_ctrl;

    hotplug_ctrl = qdev_get_hotplug_handler(dev);
    hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
}

static
void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
                               Error **errp)
2632
{
2633 2634
    int index;
    sPAPRDRConnector *drc;
2635 2636
    sPAPRDRConnectorClass *drck;
    Error *local_err = NULL;
2637 2638
    CPUCore *cc = CPU_CORE(dev);
    int smt = kvmppc_smt_threads();
2639

2640 2641 2642 2643 2644
    if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
        error_setg(errp, "Unable to find CPU core with core-id: %d",
                   cc->core_id);
        return;
    }
2645 2646 2647 2648 2649
    if (index == 0) {
        error_setg(errp, "Boot CPU core may not be unplugged");
        return;
    }

2650
    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675
    g_assert(drc);

    drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
    drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
    if (local_err) {
        error_propagate(errp, local_err);
        return;
    }

    spapr_hotplug_req_remove_by_index(drc);
}

static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                            Error **errp)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
    MachineClass *mc = MACHINE_GET_CLASS(spapr);
    sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
    CPUCore *cc = CPU_CORE(dev);
    CPUState *cs = CPU(core->threads);
    sPAPRDRConnector *drc;
    Error *local_err = NULL;
    void *fdt = NULL;
    int fdt_offset = 0;
    int smt = kvmppc_smt_threads();
2676 2677
    CPUArchId *core_slot;
    int index;
2678

2679 2680 2681 2682 2683 2684
    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
    if (!core_slot) {
        error_setg(errp, "Unable to find CPU core with core-id: %d",
                   cc->core_id);
        return;
    }
2685 2686
    drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);

2687
    g_assert(drc || !mc->has_hotpluggable_cpus);
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722

    /*
     * Setup CPU DT entries only for hotplugged CPUs. For boot time or
     * coldplugged CPUs DT entries are setup in spapr_build_fdt().
     */
    if (dev->hotplugged) {
        fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
    }

    if (drc) {
        sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
        drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
        if (local_err) {
            g_free(fdt);
            error_propagate(errp, local_err);
            return;
        }
    }

    if (dev->hotplugged) {
        /*
         * Send hotplug notification interrupt to the guest only in case
         * of hotplugged CPUs.
         */
        spapr_hotplug_req_add_by_index(drc);
    } else {
        /*
         * Set the right DRC states for cold plugged CPU.
         */
        if (drc) {
            sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
            drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
            drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
        }
    }
2723
    core_slot->cpu = OBJECT(dev);
2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
}

static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
                                Error **errp)
{
    MachineState *machine = MACHINE(OBJECT(hotplug_dev));
    MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
    Error *local_err = NULL;
    CPUCore *cc = CPU_CORE(dev);
    char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
    const char *type = object_get_typename(OBJECT(dev));
2735 2736
    CPUArchId *core_slot;
    int index;
2737

2738
    if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
        error_setg(&local_err, "CPU hotplug not supported for this machine");
        goto out;
    }

    if (strcmp(base_core_type, type)) {
        error_setg(&local_err, "CPU core type should be %s", base_core_type);
        goto out;
    }

    if (cc->core_id % smp_threads) {
        error_setg(&local_err, "invalid core id %d", cc->core_id);
        goto out;
    }

2753 2754
    core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
    if (!core_slot) {
2755 2756 2757 2758
        error_setg(&local_err, "core id %d out of range", cc->core_id);
        goto out;
    }

2759
    if (core_slot->cpu) {
2760 2761 2762 2763 2764 2765 2766 2767 2768
        error_setg(&local_err, "core %d already populated", cc->core_id);
        goto out;
    }

out:
    g_free(base_core_type);
    error_propagate(errp, local_err);
}

B
Bharata B Rao 已提交
2769 2770 2771 2772 2773 2774
static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
    sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());

    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2775
        int node;
B
Bharata B Rao 已提交
2776 2777 2778 2779 2780 2781 2782 2783 2784

        if (!smc->dr_lmb_enabled) {
            error_setg(errp, "Memory hotplug not supported for this machine");
            return;
        }
        node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
        if (*errp) {
            return;
        }
2785 2786 2787 2788
        if (node < 0 || node >= MAX_NODES) {
            error_setg(errp, "Invaild node %d", node);
            return;
        }
B
Bharata B Rao 已提交
2789

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
        /*
         * Currently PowerPC kernel doesn't allow hot-adding memory to
         * memory-less node, but instead will silently add the memory
         * to the first node that has some memory. This causes two
         * unexpected behaviours for the user.
         *
         * - Memory gets hotplugged to a different node than what the user
         *   specified.
         * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
         *   to memory-less node, a reboot will set things accordingly
         *   and the previously hotplugged memory now ends in the right node.
         *   This appears as if some memory moved from one node to another.
         *
         * So until kernel starts supporting memory hotplug to memory-less
         * nodes, just prevent such attempts upfront in QEMU.
         */
        if (nb_numa_nodes && !numa_info[node].node_mem) {
            error_setg(errp, "Can't hotplug memory to memory-less node %d",
                       node);
            return;
        }

B
Bharata B Rao 已提交
2812
        spapr_memory_plug(hotplug_dev, dev, node, errp);
B
Bharata B Rao 已提交
2813 2814
    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
        spapr_core_plug(hotplug_dev, dev, errp);
B
Bharata B Rao 已提交
2815 2816 2817 2818 2819 2820
    }
}

static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
                                      DeviceState *dev, Error **errp)
{
B
Bharata B Rao 已提交
2821
    sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2822
    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
B
Bharata B Rao 已提交
2823

B
Bharata B Rao 已提交
2824
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
B
Bharata B Rao 已提交
2825 2826 2827 2828 2829 2830
        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
            spapr_memory_unplug(hotplug_dev, dev, errp);
        } else {
            error_setg(errp, "Memory hot unplug not supported for this guest");
        }
    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2831
        if (!mc->has_hotpluggable_cpus) {
B
Bharata B Rao 已提交
2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856
            error_setg(errp, "CPU hot unplug not supported on this machine");
            return;
        }
        spapr_core_unplug(hotplug_dev, dev, errp);
    }
}

static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
                                                DeviceState *dev, Error **errp)
{
    sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
    MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());

    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
        if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
            spapr_memory_unplug_request(hotplug_dev, dev, errp);
        } else {
            /* NOTE: this means there is a window after guest reset, prior to
             * CAS negotiation, where unplug requests will fail due to the
             * capability not being detected yet. This is a bit different than
             * the case with PCI unplug, where the events will be queued and
             * eventually handled by the guest after boot
             */
            error_setg(errp, "Memory hot unplug not supported for this guest");
        }
B
Bharata B Rao 已提交
2857
    } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2858
        if (!mc->has_hotpluggable_cpus) {
B
Bharata B Rao 已提交
2859 2860 2861
            error_setg(errp, "CPU hot unplug not supported on this machine");
            return;
        }
2862
        spapr_core_unplug_request(hotplug_dev, dev, errp);
B
Bharata B Rao 已提交
2863 2864 2865
    }
}

2866 2867 2868 2869 2870 2871 2872 2873
static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
                                          DeviceState *dev, Error **errp)
{
    if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
        spapr_core_pre_plug(hotplug_dev, dev, errp);
    }
}

2874 2875
static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
                                                 DeviceState *dev)
B
Bharata B Rao 已提交
2876
{
2877 2878
    if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
        object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
B
Bharata B Rao 已提交
2879 2880 2881 2882 2883
        return HOTPLUG_HANDLER(machine);
    }
    return NULL;
}

2884 2885 2886 2887 2888 2889 2890
static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
{
    /* Allocate to NUMA nodes on a "socket" basis (not that concept of
     * socket means much for the paravirtualized PAPR platform) */
    return cpu_index / smp_threads / smp_cores;
}

2891 2892 2893 2894 2895 2896
static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
{
    int i;
    int spapr_max_cores = max_cpus / smp_threads;
    MachineClass *mc = MACHINE_GET_CLASS(machine);

2897
    if (!mc->has_hotpluggable_cpus) {
2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
        spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
    }
    if (machine->possible_cpus) {
        assert(machine->possible_cpus->len == spapr_max_cores);
        return machine->possible_cpus;
    }

    machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
                             sizeof(CPUArchId) * spapr_max_cores);
    machine->possible_cpus->len = spapr_max_cores;
    for (i = 0; i < machine->possible_cpus->len; i++) {
        int core_id = i * smp_threads;

2911
        machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
2912 2913 2914 2915 2916 2917 2918 2919 2920
        machine->possible_cpus->cpus[i].arch_id = core_id;
        machine->possible_cpus->cpus[i].props.has_core_id = true;
        machine->possible_cpus->cpus[i].props.core_id = core_id;
        /* TODO: add 'has_node/node' here to describe
           to which node core belongs */
    }
    return machine->possible_cpus;
}

2921
static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
D
David Gibson 已提交
2922 2923
                                uint64_t *buid, hwaddr *pio,
                                hwaddr *mmio32, hwaddr *mmio64,
2924 2925
                                unsigned n_dma, uint32_t *liobns, Error **errp)
{
2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
    /*
     * New-style PHB window placement.
     *
     * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
     * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
     * windows.
     *
     * Some guest kernels can't work with MMIO windows above 1<<46
     * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
     *
     * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
     * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
     * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
     * 1TiB 64-bit MMIO windows for each PHB.
     */
2941
    const uint64_t base_buid = 0x800000020000000ULL;
2942 2943
#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
                        SPAPR_PCI_MEM64_WIN_SIZE - 1)
2944 2945
    int i;

2946 2947 2948 2949 2950 2951
    /* Sanity check natural alignments */
    QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
    QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
    QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
    /* Sanity check bounds */
2952 2953 2954 2955 2956 2957 2958 2959
    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
                      SPAPR_PCI_MEM32_WIN_SIZE);
    QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
                      SPAPR_PCI_MEM64_WIN_SIZE);

    if (index >= SPAPR_MAX_PHBS) {
        error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
                   SPAPR_MAX_PHBS - 1);
2960 2961 2962 2963 2964 2965 2966 2967
        return;
    }

    *buid = base_buid + index;
    for (i = 0; i < n_dma; ++i) {
        liobns[i] = SPAPR_PCI_LIOBN(index, i);
    }

2968 2969 2970
    *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
    *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
    *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
2971 2972
}

2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986
static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);

    return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
}

static void spapr_ics_resend(XICSFabric *dev)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(dev);

    ics_resend(spapr->ics);
}

2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
static ICPState *spapr_icp_get(XICSFabric *xi, int server)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(xi);

    return (server < spapr->xics->nr_servers) ? &spapr->xics->ss[server] :
        NULL;
}

static void spapr_icp_resend(XICSFabric *xi)
{
    sPAPRMachineState *spapr = SPAPR_MACHINE(xi);
    int i;

    for (i = 0; i < spapr->xics->nr_servers; i++) {
        icp_resend(&spapr->xics->ss[i]);
    }
}

3005 3006 3007
static void spapr_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
D
David Gibson 已提交
3008
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3009
    FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3010
    NMIClass *nc = NMI_CLASS(oc);
B
Bharata B Rao 已提交
3011
    HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3012
    PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3013
    XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3014

3015
    mc->desc = "pSeries Logical Partition (PAPR compliant)";
3016 3017 3018 3019 3020 3021

    /*
     * We set up the default / latest behaviour here.  The class_init
     * functions for the specific versioned machine types can override
     * these details for backwards compatibility
     */
3022 3023 3024
    mc->init = ppc_spapr_init;
    mc->reset = ppc_spapr_reset;
    mc->block_default_type = IF_SCSI;
G
Greg Kurz 已提交
3025
    mc->max_cpus = 1024;
3026
    mc->no_parallel = 1;
3027
    mc->default_boot_order = "";
3028
    mc->default_ram_size = 512 * M_BYTE;
3029
    mc->kvm_type = spapr_kvm_type;
3030
    mc->has_dynamic_sysbus = true;
3031
    mc->pci_allow_0_address = true;
3032
    mc->get_hotplug_handler = spapr_get_hotplug_handler;
3033
    hc->pre_plug = spapr_machine_device_pre_plug;
B
Bharata B Rao 已提交
3034 3035
    hc->plug = spapr_machine_device_plug;
    hc->unplug = spapr_machine_device_unplug;
3036
    mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
3037
    mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
B
Bharata B Rao 已提交
3038
    hc->unplug_request = spapr_machine_device_unplug_request;
3039

3040
    smc->dr_lmb_enabled = true;
3041
    smc->tcg_default_cpu = "POWER8";
3042
    mc->has_hotpluggable_cpus = true;
3043
    fwc->get_dev_path = spapr_get_fw_dev_path;
3044
    nc->nmi_monitor_handler = spapr_nmi;
3045
    smc->phb_placement = spapr_phb_placement;
3046
    vhc->hypercall = emulate_spapr_hypercall;
3047 3048 3049 3050
    vhc->hpt_mask = spapr_hpt_mask;
    vhc->map_hptes = spapr_map_hptes;
    vhc->unmap_hptes = spapr_unmap_hptes;
    vhc->store_hpte = spapr_store_hpte;
3051 3052
    xic->ics_get = spapr_ics_get;
    xic->ics_resend = spapr_ics_resend;
3053 3054
    xic->icp_get = spapr_icp_get;
    xic->icp_resend = spapr_icp_resend;
3055 3056 3057 3058 3059
}

static const TypeInfo spapr_machine_info = {
    .name          = TYPE_SPAPR_MACHINE,
    .parent        = TYPE_MACHINE,
3060
    .abstract      = true,
3061
    .instance_size = sizeof(sPAPRMachineState),
E
Eduardo Habkost 已提交
3062
    .instance_init = spapr_machine_initfn,
3063
    .instance_finalize = spapr_machine_finalizefn,
D
David Gibson 已提交
3064
    .class_size    = sizeof(sPAPRMachineClass),
3065
    .class_init    = spapr_machine_class_init,
3066 3067
    .interfaces = (InterfaceInfo[]) {
        { TYPE_FW_PATH_PROVIDER },
3068
        { TYPE_NMI },
B
Bharata B Rao 已提交
3069
        { TYPE_HOTPLUG_HANDLER },
3070
        { TYPE_PPC_VIRTUAL_HYPERVISOR },
3071
        { TYPE_XICS_FABRIC },
3072 3073
        { }
    },
3074 3075
};

3076
#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
D
David Gibson 已提交
3077 3078 3079 3080 3081
    static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
                                                    void *data)      \
    {                                                                \
        MachineClass *mc = MACHINE_CLASS(oc);                        \
        spapr_machine_##suffix##_class_options(mc);                  \
3082 3083 3084 3085
        if (latest) {                                                \
            mc->alias = "pseries";                                   \
            mc->is_default = 1;                                      \
        }                                                            \
D
David Gibson 已提交
3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
    }                                                                \
    static void spapr_machine_##suffix##_instance_init(Object *obj)  \
    {                                                                \
        MachineState *machine = MACHINE(obj);                        \
        spapr_machine_##suffix##_instance_options(machine);          \
    }                                                                \
    static const TypeInfo spapr_machine_##suffix##_info = {          \
        .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
        .parent = TYPE_SPAPR_MACHINE,                                \
        .class_init = spapr_machine_##suffix##_class_init,           \
        .instance_init = spapr_machine_##suffix##_instance_init,     \
    };                                                               \
    static void spapr_machine_register_##suffix(void)                \
    {                                                                \
        type_register(&spapr_machine_##suffix##_info);               \
    }                                                                \
3102
    type_init(spapr_machine_register_##suffix)
D
David Gibson 已提交
3103

3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117
/*
 * pseries-2.9
 */
static void spapr_machine_2_9_instance_options(MachineState *machine)
{
}

static void spapr_machine_2_9_class_options(MachineClass *mc)
{
    /* Defaults for the latest behaviour inherited from the base class */
}

DEFINE_SPAPR_MACHINE(2_9, "2.9", true);

3118 3119 3120
/*
 * pseries-2.8
 */
3121 3122 3123
#define SPAPR_COMPAT_2_8                            \
    HW_COMPAT_2_8

3124 3125
static void spapr_machine_2_8_instance_options(MachineState *machine)
{
3126
    spapr_machine_2_9_instance_options(machine);
3127 3128 3129 3130
}

static void spapr_machine_2_8_class_options(MachineClass *mc)
{
3131 3132
    spapr_machine_2_9_class_options(mc);
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3133 3134
}

3135
DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3136

3137 3138 3139
/*
 * pseries-2.7
 */
3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150
#define SPAPR_COMPAT_2_7                            \
    HW_COMPAT_2_7                                   \
    {                                               \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
        .property = "mem_win_size",                 \
        .value    = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
    },                                              \
    {                                               \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,     \
        .property = "mem64_win_size",               \
        .value    = "0",                            \
3151 3152 3153 3154 3155
    },                                              \
    {                                               \
        .driver = TYPE_POWERPC_CPU,                 \
        .property = "pre-2.8-migration",            \
        .value    = "on",                           \
3156 3157 3158 3159 3160
    },                                              \
    {                                               \
        .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,       \
        .property = "pre-2.8-migration",            \
        .value    = "on",                           \
3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
    },

static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
                              uint64_t *buid, hwaddr *pio,
                              hwaddr *mmio32, hwaddr *mmio64,
                              unsigned n_dma, uint32_t *liobns, Error **errp)
{
    /* Legacy PHB placement for pseries-2.7 and earlier machine types */
    const uint64_t base_buid = 0x800000020000000ULL;
    const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
    const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
    const hwaddr pio_offset = 0x80000000; /* 2 GiB */
    const uint32_t max_index = 255;
    const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */

    uint64_t ram_top = MACHINE(spapr)->ram_size;
    hwaddr phb0_base, phb_base;
    int i;

    /* Do we have hotpluggable memory? */
    if (MACHINE(spapr)->maxram_size > ram_top) {
        /* Can't just use maxram_size, because there may be an
         * alignment gap between normal and hotpluggable memory
         * regions */
        ram_top = spapr->hotplug_memory.base +
            memory_region_size(&spapr->hotplug_memory.mr);
    }

    phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);

    if (index > max_index) {
        error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
                   max_index);
        return;
    }

    *buid = base_buid + index;
    for (i = 0; i < n_dma; ++i) {
        liobns[i] = SPAPR_PCI_LIOBN(index, i);
    }

    phb_base = phb0_base + index * phb_spacing;
    *pio = phb_base + pio_offset;
    *mmio32 = phb_base + mmio_offset;
    /*
     * We don't set the 64-bit MMIO window, relying on the PHB's
     * fallback behaviour of automatically splitting a large "32-bit"
     * window into contiguous 32-bit and 64-bit windows
     */
}
3211

3212 3213
static void spapr_machine_2_7_instance_options(MachineState *machine)
{
3214 3215
    sPAPRMachineState *spapr = SPAPR_MACHINE(machine);

3216
    spapr_machine_2_8_instance_options(machine);
3217
    spapr->use_hotplug_event_source = false;
3218 3219 3220 3221
}

static void spapr_machine_2_7_class_options(MachineClass *mc)
{
3222 3223
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

3224
    spapr_machine_2_8_class_options(mc);
3225
    smc->tcg_default_cpu = "POWER7";
3226
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3227
    smc->phb_placement = phb_placement_2_7;
3228 3229
}

3230
DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3231

3232 3233 3234
/*
 * pseries-2.6
 */
3235
#define SPAPR_COMPAT_2_6 \
3236 3237 3238 3239 3240 3241
    HW_COMPAT_2_6 \
    { \
        .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
        .property = "ddw",\
        .value    = stringify(off),\
    },
3242

3243 3244
static void spapr_machine_2_6_instance_options(MachineState *machine)
{
3245
    spapr_machine_2_7_instance_options(machine);
3246 3247 3248 3249
}

static void spapr_machine_2_6_class_options(MachineClass *mc)
{
3250
    spapr_machine_2_7_class_options(mc);
3251
    mc->has_hotpluggable_cpus = false;
3252
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3253 3254
}

3255
DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3256

3257 3258 3259
/*
 * pseries-2.5
 */
3260
#define SPAPR_COMPAT_2_5 \
3261 3262 3263 3264 3265 3266
    HW_COMPAT_2_5 \
    { \
        .driver   = "spapr-vlan", \
        .property = "use-rx-buffer-pools", \
        .value    = "off", \
    },
3267

D
David Gibson 已提交
3268
static void spapr_machine_2_5_instance_options(MachineState *machine)
3269
{
3270
    spapr_machine_2_6_instance_options(machine);
D
David Gibson 已提交
3271 3272 3273 3274
}

static void spapr_machine_2_5_class_options(MachineClass *mc)
{
3275 3276
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

3277
    spapr_machine_2_6_class_options(mc);
3278
    smc->use_ohci_by_default = true;
3279
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3280 3281
}

3282
DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3283 3284 3285 3286

/*
 * pseries-2.4
 */
C
Cornelia Huck 已提交
3287 3288 3289
#define SPAPR_COMPAT_2_4 \
        HW_COMPAT_2_4

D
David Gibson 已提交
3290
static void spapr_machine_2_4_instance_options(MachineState *machine)
3291
{
D
David Gibson 已提交
3292 3293
    spapr_machine_2_5_instance_options(machine);
}
3294

D
David Gibson 已提交
3295 3296
static void spapr_machine_2_4_class_options(MachineClass *mc)
{
3297 3298 3299 3300
    sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);

    spapr_machine_2_5_class_options(mc);
    smc->dr_lmb_enabled = false;
D
David Gibson 已提交
3301
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3302 3303
}

3304
DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3305 3306 3307 3308

/*
 * pseries-2.3
 */
E
Eduardo Habkost 已提交
3309
#define SPAPR_COMPAT_2_3 \
3310 3311 3312 3313 3314 3315
        HW_COMPAT_2_3 \
        {\
            .driver   = "spapr-pci-host-bridge",\
            .property = "dynamic-reconfiguration",\
            .value    = "off",\
        },
E
Eduardo Habkost 已提交
3316

D
David Gibson 已提交
3317
static void spapr_machine_2_3_instance_options(MachineState *machine)
J
Jason Wang 已提交
3318
{
D
David Gibson 已提交
3319
    spapr_machine_2_4_instance_options(machine);
3320
    savevm_skip_section_footers();
3321
    global_state_set_optional();
3322
    savevm_skip_configuration();
J
Jason Wang 已提交
3323 3324
}

D
David Gibson 已提交
3325
static void spapr_machine_2_3_class_options(MachineClass *mc)
3326
{
3327
    spapr_machine_2_4_class_options(mc);
D
David Gibson 已提交
3328
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3329
}
3330
DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3331

3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
/*
 * pseries-2.2
 */

#define SPAPR_COMPAT_2_2 \
        HW_COMPAT_2_2 \
        {\
            .driver   = TYPE_SPAPR_PCI_HOST_BRIDGE,\
            .property = "mem_win_size",\
            .value    = "0x20000000",\
        },

D
David Gibson 已提交
3344
static void spapr_machine_2_2_instance_options(MachineState *machine)
3345
{
D
David Gibson 已提交
3346
    spapr_machine_2_3_instance_options(machine);
3347
    machine->suppress_vmdesc = true;
3348 3349
}

D
David Gibson 已提交
3350
static void spapr_machine_2_2_class_options(MachineClass *mc)
3351
{
3352
    spapr_machine_2_3_class_options(mc);
D
David Gibson 已提交
3353
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3354
}
3355
DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3356

3357 3358 3359 3360 3361
/*
 * pseries-2.1
 */
#define SPAPR_COMPAT_2_1 \
        HW_COMPAT_2_1
3362

D
David Gibson 已提交
3363
static void spapr_machine_2_1_instance_options(MachineState *machine)
3364
{
D
David Gibson 已提交
3365
    spapr_machine_2_2_instance_options(machine);
3366
}
J
Jason Wang 已提交
3367

D
David Gibson 已提交
3368
static void spapr_machine_2_1_class_options(MachineClass *mc)
J
Jason Wang 已提交
3369
{
3370
    spapr_machine_2_2_class_options(mc);
D
David Gibson 已提交
3371
    SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
J
Jason Wang 已提交
3372
}
3373
DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
D
David Gibson 已提交
3374

3375
static void spapr_machine_register_types(void)
3376
{
3377
    type_register_static(&spapr_machine_info);
3378 3379
}

3380
type_init(spapr_machine_register_types)