helper.c 351.2 KB
Newer Older
P
Peter Maydell 已提交
1
#include "qemu/osdep.h"
2
#include "trace.h"
B
bellard 已提交
3
#include "cpu.h"
4
#include "internals.h"
5
#include "exec/gdbstub.h"
6
#include "exec/helper-proto.h"
7
#include "qemu/host-utils.h"
8
#include "sysemu/arch_init.h"
9
#include "sysemu/sysemu.h"
10
#include "qemu/bitops.h"
11
#include "qemu/crc32c.h"
12
#include "exec/exec-all.h"
P
Paolo Bonzini 已提交
13
#include "exec/cpu_ldst.h"
14
#include "arm_ldst.h"
15
#include <zlib.h> /* For crc32 */
16
#include "exec/semihost.h"
17
#include "sysemu/kvm.h"
P
Peter Maydell 已提交
18

19 20
#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */

21
#ifndef CONFIG_USER_ONLY
22 23 24
static bool get_phys_addr(CPUARMState *env, target_ulong address,
                          int access_type, ARMMMUIdx mmu_idx,
                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
25 26
                          target_ulong *page_size, uint32_t *fsr,
                          ARMMMUFaultInfo *fi);
27

28 29 30 31 32 33
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
                               int access_type, ARMMMUIdx mmu_idx,
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
                               target_ulong *page_size_ptr, uint32_t *fsr,
                               ARMMMUFaultInfo *fi);

34 35 36 37
/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1
38 39
#endif

40
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        stfq_le_p(buf, env->vfp.regs[reg]);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

67
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
        env->vfp.regs[reg] = ldfq_le_p(buf);
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
87
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
P
pbrook 已提交
88 89 90 91
    }
    return 0;
}

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        stfq_le_p(buf, env->vfp.regs[reg * 2]);
        stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
        return 16;
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
        env->vfp.regs[reg * 2] = ldfq_le_p(buf);
        env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
        return 16;
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

134
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
135
{
136
    assert(ri->fieldoffset);
137
    if (cpreg_field_is_64bit(ri)) {
138
        return CPREG_FIELD64(env, ri);
139
    } else {
140
        return CPREG_FIELD32(env, ri);
141
    }
142 143
}

144 145
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
146
{
147
    assert(ri->fieldoffset);
148
    if (cpreg_field_is_64bit(ri)) {
149 150 151 152
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
153 154
}

F
Fabian Aggeler 已提交
155 156 157 158 159
static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return (char *)env + ri->fieldoffset;
}

160
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
161
{
162
    /* Raw read of a coprocessor register (as needed for migration, etc). */
163
    if (ri->type & ARM_CP_CONST) {
164
        return ri->resetvalue;
165
    } else if (ri->raw_readfn) {
166
        return ri->raw_readfn(env, ri);
167
    } else if (ri->readfn) {
168
        return ri->readfn(env, ri);
169
    } else {
170
        return raw_read(env, ri);
171 172 173
    }
}

174
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
175
                             uint64_t v)
176 177 178 179 180 181 182
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
183
        return;
184
    } else if (ri->raw_writefn) {
185
        ri->raw_writefn(env, ri, v);
186
    } else if (ri->writefn) {
187
        ri->writefn(env, ri, v);
188
    } else {
189
        raw_write(env, ri, v);
190 191 192
    }
}

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
{
   /* Return true if the regdef would cause an assertion if you called
    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
    * program bug for it not to have the NO_RAW flag).
    * NB that returning false here doesn't necessarily mean that calling
    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
    * read/write access functions which are safe for raw use" from "has
    * read/write access functions which have side effects but has forgotten
    * to provide raw access functions".
    * The tests here line up with the conditions in read/write_raw_cp_reg()
    * and assertions in raw_read()/raw_write().
    */
    if ((ri->type & ARM_CP_CONST) ||
        ri->fieldoffset ||
        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
        return false;
    }
    return true;
}

214 215 216 217 218 219 220 221 222
bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
223

224
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
225 226 227 228
        if (!ri) {
            ok = false;
            continue;
        }
229
        if (ri->type & ARM_CP_NO_RAW) {
230 231
            continue;
        }
232
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
233 234 235 236 237 238 239 240 241 242 243 244 245 246
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

247
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
248 249 250 251
        if (!ri) {
            ok = false;
            continue;
        }
252
        if (ri->type & ARM_CP_NO_RAW) {
253 254 255 256 257 258
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
259 260
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
261 262 263 264 265 266 267 268 269 270 271 272 273
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
274
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
275

276
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
277 278 279 280 281 282 283 284 285 286 287 288 289
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
290
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
291

292
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
293 294 295 296 297 298
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
299 300
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
301

302 303 304 305 306 307 308
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
309 310 311 312 313 314 315
}

void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
316
    GList *keys;
317 318
    int arraylen;

319
    keys = g_hash_table_get_keys(cpu->cp_regs);
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

E
Edgar E. Iglesias 已提交
341 342 343 344 345 346 347 348
/*
 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
 *
 * access_el3_aa32ns: Used to check AArch32 register views.
 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
 */
static CPAccessResult access_el3_aa32ns(CPUARMState *env,
349 350
                                        const ARMCPRegInfo *ri,
                                        bool isread)
E
Edgar E. Iglesias 已提交
351 352 353 354 355 356 357 358 359 360 361
{
    bool secure = arm_is_secure_below_el3(env);

    assert(!arm_el_is_aa64(env, 3));
    if (secure) {
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
362 363
                                                const ARMCPRegInfo *ri,
                                                bool isread)
E
Edgar E. Iglesias 已提交
364 365
{
    if (!arm_el_is_aa64(env, 3)) {
366
        return access_el3_aa32ns(env, ri, isread);
E
Edgar E. Iglesias 已提交
367 368 369 370
    }
    return CP_ACCESS_OK;
}

371 372 373 374 375 376
/* Some secure-only AArch32 registers trap to EL3 if used from
 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 * We assume that the .access field is set to PL1_RW.
 */
static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
377 378
                                            const ARMCPRegInfo *ri,
                                            bool isread)
379 380 381 382 383 384 385 386 387 388 389
{
    if (arm_current_el(env) == 3) {
        return CP_ACCESS_OK;
    }
    if (arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL3;
    }
    /* This will be EL1 NS and EL2 NS, which just UNDEF */
    return CP_ACCESS_TRAP_UNCATEGORIZED;
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
/* Check for traps to "powerdown debug" registers, which are controlled
 * by MDCR.TDOSA
 */
static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/* Check for traps to "debug ROM" registers, which are controlled
 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
/* Check for traps to general debug registers, which are controlled
 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
/* Check for traps to performance monitor registers, which are controlled
 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 */
static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

462
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
463
{
464 465
    ARMCPU *cpu = arm_env_get_cpu(env);

466
    raw_write(env, ri, value);
467
    tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
468 469
}

470
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
471
{
472 473
    ARMCPU *cpu = arm_env_get_cpu(env);

474
    if (raw_read(env, ri) != value) {
475 476 477
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
478
        tlb_flush(CPU(cpu));
479
        raw_write(env, ri, value);
480 481
    }
}
482 483 484

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
485
{
486 487
    ARMCPU *cpu = arm_env_get_cpu(env);

488
    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
489
        && !extended_addresses_enabled(env)) {
490 491 492 493
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
494
        tlb_flush(CPU(cpu));
495
    }
496
    raw_write(env, ri, value);
497 498
}

499 500
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
501 502
{
    /* Invalidate all (TLBIALL) */
503 504
    ARMCPU *cpu = arm_env_get_cpu(env);

505
    tlb_flush(CPU(cpu));
506 507
}

508 509
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
510 511
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
512 513 514
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
515 516
}

517 518
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
519 520
{
    /* Invalidate by ASID (TLBIASID) */
521 522
    ARMCPU *cpu = arm_env_get_cpu(env);

523
    tlb_flush(CPU(cpu));
524 525
}

526 527
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
528 529
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
530 531 532
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
533 534
}

535 536 537 538
/* IS variants of TLB operations must affect all cores */
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
539
    CPUState *cs = ENV_GET_CPU(env);
540

541
    tlb_flush_all_cpus_synced(cs);
542 543 544 545 546
}

static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
547
    CPUState *cs = ENV_GET_CPU(env);
548

549
    tlb_flush_all_cpus_synced(cs);
550 551 552 553 554
}

static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
555
    CPUState *cs = ENV_GET_CPU(env);
556

557
    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
558 559 560 561 562
}

static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
563
    CPUState *cs = ENV_GET_CPU(env);
564

565
    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
566 567
}

568 569 570 571 572
static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    CPUState *cs = ENV_GET_CPU(env);

573 574 575 576
    tlb_flush_by_mmuidx(cs,
                        (1 << ARMMMUIdx_S12NSE1) |
                        (1 << ARMMMUIdx_S12NSE0) |
                        (1 << ARMMMUIdx_S2NS));
577 578 579 580 581
}

static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
582
    CPUState *cs = ENV_GET_CPU(env);
583

584 585 586 587
    tlb_flush_by_mmuidx_all_cpus_synced(cs,
                                        (1 << ARMMMUIdx_S12NSE1) |
                                        (1 << ARMMMUIdx_S12NSE0) |
                                        (1 << ARMMMUIdx_S2NS));
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
}

static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* Invalidate by IPA. This has to invalidate any structures that
     * contain only stage 2 translation information, but does not need
     * to apply to structures that contain combined stage 1 and stage 2
     * translation information.
     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
     */
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 40);

608
    tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S2NS));
609 610 611 612 613
}

static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
614
    CPUState *cs = ENV_GET_CPU(env);
615 616 617 618 619 620 621 622
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 40);

623 624
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
                                             (1 << ARMMMUIdx_S2NS));
625 626 627 628 629 630 631
}

static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    CPUState *cs = ENV_GET_CPU(env);

632
    tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E2));
633 634 635 636 637
}

static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
638
    CPUState *cs = ENV_GET_CPU(env);
639

640
    tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E2));
641 642 643 644 645 646 647 648
}

static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);

649
    tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E2));
650 651 652 653 654
}

static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
655
    CPUState *cs = ENV_GET_CPU(env);
656 657
    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);

658 659
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
                                             (1 << ARMMMUIdx_S1E2));
660 661
}

662
static const ARMCPRegInfo cp_reginfo[] = {
663 664 665 666 667 668 669 670 671 672 673 674 675 676
    /* Define the secure and non-secure FCSE identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated. There is also no
     * v8 EL1 version of the register so the non-secure instance stands alone.
     */
    { .name = "FCSEIDR(NS)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
    { .name = "FCSEIDR(S)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
677
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
678 679 680 681 682 683 684
    /* Define the secure and non-secure context identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated.  In the
     * non-secure case, the 32-bit register will have reset and migration
     * disabled during registration as it is handled by the 64-bit instance.
     */
    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
685
      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
686 687 688 689 690 691 692
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
    { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
693
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
694 695 696 697 698 699 700 701
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v8_cp_reginfo[] = {
    /* NB: Some of these registers exist in v8 but with more precise
     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
     */
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
702 703 704 705 706 707
    { .name = "DACR",
      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
708 709
    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
     * For v6 and v5, these mappings are overly broad.
710
     */
711 712 713 714 715 716 717
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
718
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
719 720 721 722
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
723 724 725
    REGINFO_SENTINEL
};

726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
741 742 743 744 745 746 747 748 749 750
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
751 752
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
753
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
754
      .resetvalue = 0 },
755 756 757 758 759 760 761
    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
     * implementing it as RAZ means the "debug architecture version" bits
     * will read as a reserved value, which should cause Linux to not try
     * to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
762 763 764 765 766
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
767
      .type = ARM_CP_NO_RAW },
768 769
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
770
      .type = ARM_CP_NO_RAW },
771 772
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
773
      .type = ARM_CP_NO_RAW },
774 775
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
776
      .type = ARM_CP_NO_RAW },
777 778 779 780
    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
781 782 783
    REGINFO_SENTINEL
};

784 785
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
786
{
787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
    uint32_t mask = 0;

    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
         */
        if (arm_feature(env, ARM_FEATURE_VFP)) {
            /* VFP coprocessor: cp10 & cp11 [23:20] */
            mask |= (1 << 31) | (1 << 30) | (0xf << 20);

            if (!arm_feature(env, ARM_FEATURE_NEON)) {
                /* ASEDIS [31] bit is RAO/WI */
                value |= (1 << 31);
            }

            /* VFPv3 and upwards with NEON implement 32 double precision
             * registers (D0-D31).
             */
            if (!arm_feature(env, ARM_FEATURE_NEON) ||
                    !arm_feature(env, ARM_FEATURE_VFP3)) {
                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
                value |= (1 << 30);
            }
        }
        value &= mask;
814
    }
815
    env->cp15.cpacr_el1 = value;
816 817
}

818 819
static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
{
    if (arm_feature(env, ARM_FEATURE_V8)) {
        /* Check if CPACR accesses are to be trapped to EL2 */
        if (arm_current_el(env) == 1 &&
            (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
            return CP_ACCESS_TRAP_EL2;
        /* Check if CPACR accesses are to be trapped to EL3 */
        } else if (arm_current_el(env) < 3 &&
                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
            return CP_ACCESS_TRAP_EL3;
        }
    }

    return CP_ACCESS_OK;
}

836 837
static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
838 839 840 841 842 843 844 845 846
{
    /* Check if CPTR accesses are set to trap to EL3 */
    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
        return CP_ACCESS_TRAP_EL3;
    }

    return CP_ACCESS_OK;
}

847 848 849 850 851
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
852 853 854 855
    /* We need to break the TB after ISB to execute self-modifying code
     * correctly and also to take any pending interrupts immediately.
     * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
     */
856
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
857
      .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
858
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
859
      .access = PL0_W, .type = ARM_CP_NOP },
860
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
861
      .access = PL0_W, .type = ARM_CP_NOP },
862
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
863
      .access = PL1_RW,
F
Fabian Aggeler 已提交
864 865
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
                             offsetof(CPUARMState, cp15.ifar_ns) },
866 867 868 869 870 871
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
872
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
873
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
874
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
875
      .resetvalue = 0, .writefn = cpacr_write },
876 877 878
    REGINFO_SENTINEL
};

879 880
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
881
{
S
Stefan Weil 已提交
882
    /* Performance monitor registers user accessibility is controlled
883 884
     * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
     * trapping to EL2 or EL3 for other accesses.
885
     */
886 887
    int el = arm_current_el(env);

888
    if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
889
        return CP_ACCESS_TRAP;
890
    }
891 892 893 894 895 896 897 898
    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
        return CP_ACCESS_TRAP_EL3;
    }

899
    return CP_ACCESS_OK;
900 901
}

902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931
static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
                                           const ARMCPRegInfo *ri,
                                           bool isread)
{
    /* ER: event counter read trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
        && isread) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

static CPAccessResult pmreg_access_swinc(CPUARMState *env,
                                         const ARMCPRegInfo *ri,
                                         bool isread)
{
    /* SW: software increment write trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
        && !isread) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

932
#ifndef CONFIG_USER_ONLY
933

934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
static CPAccessResult pmreg_access_selr(CPUARMState *env,
                                        const ARMCPRegInfo *ri,
                                        bool isread)
{
    /* ER: event counter read trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
                                         const ARMCPRegInfo *ri,
                                         bool isread)
{
    /* CR: cycle counter read trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
        && isread) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

963 964 965 966 967 968 969 970 971 972 973
static inline bool arm_ccnt_enabled(CPUARMState *env)
{
    /* This does not support checking PMCCFILTR_EL0 register */

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        return false;
    }

    return true;
}

974 975 976 977
void pmccntr_sync(CPUARMState *env)
{
    uint64_t temp_ticks;

978 979
    temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                          ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
980 981 982 983 984 985 986 987 988 989 990

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        temp_ticks /= 64;
    }

    if (arm_ccnt_enabled(env)) {
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

991 992
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
993
{
994
    pmccntr_sync(env);
995 996 997 998 999 1000

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

1001 1002 1003
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
1004

1005
    pmccntr_sync(env);
1006 1007 1008 1009
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
1010
    uint64_t total_ticks;
1011

1012
    if (!arm_ccnt_enabled(env)) {
1013 1014 1015 1016
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

1017 1018
    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1019 1020 1021 1022 1023 1024 1025 1026

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
     * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
     * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
     * accessed.
     */
    env->cp15.c9_pmselr = value & 0x1f;
}

1038 1039 1040
static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
1041
    uint64_t total_ticks;
1042

1043
    if (!arm_ccnt_enabled(env)) {
1044 1045 1046 1047 1048
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

1049 1050
    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1051 1052 1053 1054 1055 1056

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
1057
}
1058 1059 1060 1061 1062 1063 1064 1065 1066

static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    uint64_t cur_val = pmccntr_read(env, NULL);

    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
}

1067 1068 1069 1070 1071 1072
#else /* CONFIG_USER_ONLY */

void pmccntr_sync(CPUARMState *env)
{
}

1073
#endif
1074

1075 1076 1077 1078 1079 1080 1081 1082
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    pmccntr_sync(env);
    env->cp15.pmccfiltr_el0 = value & 0x7E000000;
    pmccntr_sync(env);
}

1083
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1084 1085 1086 1087 1088 1089
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
}

1090 1091
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1092 1093 1094 1095 1096
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
}

1097 1098
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
1099 1100 1101 1102
{
    env->cp15.c9_pmovsr &= ~value;
}

1103 1104
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1105
{
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
    /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
     * PMSELR value is equal to or greater than the number of implemented
     * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
     */
    if (env->cp15.c9_pmselr == 0x1f) {
        pmccfiltr_write(env, ri, value);
    }
}

static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
     * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
     */
    if (env->cp15.c9_pmselr == 0x1f) {
        return env->cp15.pmccfiltr_el0;
    } else {
        return 0;
    }
1125 1126
}

1127
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1128 1129
                            uint64_t value)
{
1130 1131 1132 1133 1134
    if (arm_feature(env, ARM_FEATURE_V8)) {
        env->cp15.c9_pmuserenr = value & 0xf;
    } else {
        env->cp15.c9_pmuserenr = value & 1;
    }
1135 1136
}

1137 1138
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1139 1140 1141 1142 1143 1144
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
}

1145 1146
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1147 1148 1149 1150 1151
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
}

1152 1153
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
N
Nathan Rossi 已提交
1154
{
1155 1156 1157 1158 1159 1160
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
1161
    raw_write(env, ri, value & ~0x1FULL);
N
Nathan Rossi 已提交
1162 1163
}

E
Edgar E. Iglesias 已提交
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    /* We only mask off bits that are RES0 both for AArch64 and AArch32.
     * For bits that vary between AArch32/64, code needs to check the
     * current execution mode before directly using the feature bit.
     */
    uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;

    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        valid_mask &= ~SCR_HCE;

        /* On ARMv7, SMD (or SCD as it is called in v7) is only
         * supported if EL2 exists. The bit is UNK/SBZP when
         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
         * when EL2 is unavailable.
G
Greg Bellows 已提交
1179
         * On ARMv8, this bit is always available.
E
Edgar E. Iglesias 已提交
1180
         */
G
Greg Bellows 已提交
1181 1182
        if (arm_feature(env, ARM_FEATURE_V7) &&
            !arm_feature(env, ARM_FEATURE_V8)) {
E
Edgar E. Iglesias 已提交
1183 1184 1185 1186 1187 1188 1189 1190 1191
            valid_mask &= ~SCR_SMD;
        }
    }

    /* Clear all-context RES0 bits.  */
    value &= valid_mask;
    raw_write(env, ri, value);
}

1192
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1193 1194
{
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
1195 1196 1197 1198 1199 1200 1201 1202

    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
     * bank
     */
    uint32_t index = A32_BANKED_REG_GET(env, csselr,
                                        ri->secure & ARM_CP_SECSTATE_S);

    return cpu->ccsidr[index];
1203 1204
}

1205 1206
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
1207
{
1208
    raw_write(env, ri, value & 0xf);
1209 1210
}

1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t ret = 0;

    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
        ret |= CPSR_I;
    }
    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
        ret |= CPSR_F;
    }
    /* External aborts are not possible in QEMU so A bit is always clear */
    return ret;
}

1226
static const ARMCPRegInfo v7_cp_reginfo[] = {
1227 1228 1229
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1242
      .access = PL0_RW, .type = ARM_CP_ALIAS,
1243
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1244 1245 1246
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
1247 1248 1249 1250 1251
    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
      .access = PL0_RW, .accessfn = pmreg_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
      .writefn = pmcntenset_write, .raw_writefn = raw_write },
1252
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1253 1254
      .access = PL0_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1255 1256
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
1257
      .type = ARM_CP_ALIAS },
1258 1259 1260
    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
      .access = PL0_RW, .accessfn = pmreg_access,
1261
      .type = ARM_CP_ALIAS,
1262 1263
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
      .writefn = pmcntenclr_write },
1264 1265
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1266 1267 1268
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
1269 1270 1271 1272 1273 1274 1275
    { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
1276
    /* Unimplemented so WI. */
1277
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1278
      .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1279
#ifndef CONFIG_USER_ONLY
1280 1281 1282
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
      .access = PL0_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1283
      .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1284 1285 1286
      .raw_writefn = raw_write},
    { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1287
      .access = PL0_RW, .accessfn = pmreg_access_selr,
1288 1289
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
      .writefn = pmselr_write, .raw_writefn = raw_write, },
1290
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1291
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1292
      .readfn = pmccntr_read, .writefn = pmccntr_write32,
1293
      .accessfn = pmreg_access_ccntr },
1294 1295
    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1296
      .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1297 1298
      .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write, },
1299
#endif
1300 1301
    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1302
      .writefn = pmccfiltr_write,
1303 1304 1305 1306
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
      .resetvalue = 0, },
1307
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1308 1309 1310 1311 1312 1313
      .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
    { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
      .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1314
    /* Unimplemented, RAZ/WI. */
1315
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1316
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1317
      .accessfn = pmreg_access_xevcntr },
1318
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1319
      .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1320 1321
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
1322
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
1323 1324
    { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1325
      .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1326 1327 1328
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
1329
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1330
      .access = PL1_RW, .accessfn = access_tpm,
1331 1332
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1333
      .resetvalue = 0,
1334
      .writefn = pmintenset_write, .raw_writefn = raw_write },
1335 1336 1337 1338 1339 1340 1341
    { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_tpm,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .writefn = pmintenset_write, .raw_writefn = raw_write,
      .resetvalue = 0x0 },
1342
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1343
      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1344
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1345
      .writefn = pmintenclr_write, },
1346 1347
    { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1348
      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1349 1350
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .writefn = pmintenclr_write },
1351 1352
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1353
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1354 1355
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
F
Fabian Aggeler 已提交
1356 1357 1358
      .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
                             offsetof(CPUARMState, cp15.csselr_ns) } },
1359 1360 1361
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
1362 1363
    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1364
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1365 1366 1367 1368 1369 1370 1371 1372 1373
    /* Auxiliary fault status registers: these also are IMPDEF, and we
     * choose to RAZ/WI for all cores.
     */
    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1374 1375 1376 1377 1378
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
G
Greg Bellows 已提交
1379
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1380
      .resetvalue = 0 },
1381 1382 1383 1384
    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
      .resetvalue = 0 },
1385 1386 1387
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     */
1388
     /* MAIR0/1 are defined separately from their 64-bit counterpart which
G
Greg Bellows 已提交
1389 1390 1391
      * allows them to assign the correct fieldoffset based on the endianness
      * handled in the field definitions.
      */
1392
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1393
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
G
Greg Bellows 已提交
1394 1395
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
                             offsetof(CPUARMState, cp15.mair0_ns) },
1396
      .resetfn = arm_cp_reset_ignore },
1397
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1398
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
G
Greg Bellows 已提交
1399 1400
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
                             offsetof(CPUARMState, cp15.mair1_ns) },
1401
      .resetfn = arm_cp_reset_ignore },
1402 1403
    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1404
      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1405 1406
    /* 32 bit ITLB invalidates */
    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1407
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1408
    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1409
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1410
    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1411
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1412 1413
    /* 32 bit DTLB invalidates */
    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1414
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1415
    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1416
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1417
    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1418
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1419 1420
    /* 32 bit TLB invalidates */
    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1421
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1422
    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1423
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1424
    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1425
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1426
    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1427
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1428 1429 1430 1431 1432 1433
    REGINFO_SENTINEL
};

static const ARMCPRegInfo v7mp_cp_reginfo[] = {
    /* 32 bit TLB invalidates, Inner Shareable */
    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1434
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1435
    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1436
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1437
    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1438
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1439
      .writefn = tlbiasid_is_write },
1440
    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1441
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1442
      .writefn = tlbimvaa_is_write },
1443 1444 1445
    REGINFO_SENTINEL
};

1446 1447
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1448 1449 1450 1451 1452
{
    value &= 1;
    env->teecr = value;
}

1453 1454
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                    bool isread)
1455
{
1456
    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1457
        return CP_ACCESS_TRAP;
1458
    }
1459
    return CP_ACCESS_OK;
1460 1461 1462 1463 1464 1465 1466 1467 1468
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1469
      .accessfn = teehbr_access, .resetvalue = 0 },
1470 1471 1472
    REGINFO_SENTINEL
};

1473
static const ARMCPRegInfo v6k_cp_reginfo[] = {
1474 1475 1476
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
1477
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1478 1479
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
1480 1481
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1482 1483 1484 1485
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
1486 1487
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
      .resetvalue = 0},
1488 1489
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
1490 1491
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1492
      .resetfn = arm_cp_reset_ignore },
1493
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1494
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1495
      .access = PL1_RW,
1496 1497 1498 1499 1500 1501
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
      .access = PL1_RW,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
      .resetvalue = 0 },
1502 1503 1504
    REGINFO_SENTINEL
};

1505 1506
#ifndef CONFIG_USER_ONLY

1507 1508
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
1509
{
1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
     * Writable only at the highest implemented exception level.
     */
    int el = arm_current_el(env);

    switch (el) {
    case 0:
        if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
            return CP_ACCESS_TRAP;
        }
        break;
    case 1:
        if (!isread && ri->state == ARM_CP_STATE_AA32 &&
            arm_is_secure_below_el3(env)) {
            /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
            return CP_ACCESS_TRAP_UNCATEGORIZED;
        }
        break;
    case 2:
    case 3:
        break;
1531
    }
1532 1533 1534 1535 1536

    if (!isread && el < arm_highest_el(env)) {
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }

1537 1538 1539
    return CP_ACCESS_OK;
}

1540 1541
static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
                                        bool isread)
1542
{
E
Edgar E. Iglesias 已提交
1543 1544 1545
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

1546
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
E
Edgar E. Iglesias 已提交
1547
    if (cur_el == 0 &&
1548 1549 1550
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
E
Edgar E. Iglesias 已提交
1551 1552 1553 1554 1555 1556

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 0, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
1557 1558 1559
    return CP_ACCESS_OK;
}

1560 1561
static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
                                      bool isread)
1562
{
E
Edgar E. Iglesias 已提交
1563 1564 1565
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

1566 1567 1568
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
E
Edgar E. Iglesias 已提交
1569
    if (cur_el == 0 &&
1570 1571 1572
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
E
Edgar E. Iglesias 已提交
1573 1574 1575 1576 1577 1578

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 1, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
1579 1580 1581 1582
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
1583 1584
                                    const ARMCPRegInfo *ri,
                                    bool isread)
1585
{
1586
    return gt_counter_access(env, GTIMER_PHYS, isread);
1587 1588 1589
}

static CPAccessResult gt_vct_access(CPUARMState *env,
1590 1591
                                    const ARMCPRegInfo *ri,
                                    bool isread)
1592
{
1593
    return gt_counter_access(env, GTIMER_VIRT, isread);
1594 1595
}

1596 1597
static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
1598
{
1599
    return gt_timer_access(env, GTIMER_PHYS, isread);
1600 1601
}

1602 1603
static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
1604
{
1605
    return gt_timer_access(env, GTIMER_VIRT, isread);
1606 1607
}

1608
static CPAccessResult gt_stimer_access(CPUARMState *env,
1609 1610
                                       const ARMCPRegInfo *ri,
                                       bool isread)
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
{
    /* The AArch64 register view of the secure physical timer is
     * always accessible from EL3, and configurably accessible from
     * Secure EL1.
     */
    switch (arm_current_el(env)) {
    case 1:
        if (!arm_is_secure(env)) {
            return CP_ACCESS_TRAP;
        }
        if (!(env->cp15.scr_el3 & SCR_ST)) {
            return CP_ACCESS_TRAP_EL3;
        }
        return CP_ACCESS_OK;
    case 0:
    case 2:
        return CP_ACCESS_TRAP;
    case 3:
        return CP_ACCESS_OK;
    default:
        g_assert_not_reached();
    }
}

1635 1636
static uint64_t gt_get_countervalue(CPUARMState *env)
{
1637
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
E
Edgar E. Iglesias 已提交
1648 1649
        uint64_t offset = timeridx == GTIMER_VIRT ?
                                      cpu->env.cp15.cntvoff_el2 : 0;
1650 1651
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
E
Edgar E. Iglesias 已提交
1652
        int istatus = count - offset >= gt->cval;
1653
        uint64_t nexttick;
1654
        int irqstate;
1655 1656

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1657 1658 1659 1660

        irqstate = (istatus && !(gt->ctl & 2));
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);

1661 1662 1663 1664 1665
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
E
Edgar E. Iglesias 已提交
1666
            nexttick = gt->cval + offset;
1667 1668 1669 1670 1671 1672 1673 1674 1675
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
1676
        timer_mod(cpu->gt_timer[timeridx], nexttick);
1677
        trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1678 1679 1680 1681
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1682
        timer_del(cpu->gt_timer[timeridx]);
1683
        trace_arm_gt_recalc_disabled(timeridx);
1684 1685 1686
    }
}

1687 1688
static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
                           int timeridx)
1689 1690 1691
{
    ARMCPU *cpu = arm_env_get_cpu(env);

1692
    timer_del(cpu->gt_timer[timeridx]);
1693 1694
}

1695
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1696
{
1697
    return gt_get_countervalue(env);
1698 1699
}

E
Edgar E. Iglesias 已提交
1700 1701 1702 1703 1704
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
}

1705
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1706
                          int timeridx,
1707
                          uint64_t value)
1708
{
1709
    trace_arm_gt_cval_write(timeridx, value);
1710 1711 1712
    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
1713

1714 1715
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
                             int timeridx)
1716
{
E
Edgar E. Iglesias 已提交
1717
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1718

1719
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
E
Edgar E. Iglesias 已提交
1720
                      (gt_get_countervalue(env) - offset));
1721 1722
}

1723
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1724
                          int timeridx,
1725
                          uint64_t value)
1726
{
E
Edgar E. Iglesias 已提交
1727
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1728

1729
    trace_arm_gt_tval_write(timeridx, value);
E
Edgar E. Iglesias 已提交
1730
    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1731
                                         sextract64(value, 0, 32);
1732 1733 1734
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

1735
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736
                         int timeridx,
1737
                         uint64_t value)
1738 1739 1740 1741
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

1742
    trace_arm_gt_ctl_write(timeridx, value);
1743
    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1744 1745 1746
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
1747
    } else if ((oldval ^ value) & 2) {
1748 1749 1750
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
1751 1752 1753 1754
        int irqstate = (oldval & 4) && !(value & 2);

        trace_arm_gt_imask_toggle(timeridx, irqstate);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1755 1756 1757
    }
}

1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_PHYS);
}

static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_PHYS, value);
}

static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_PHYS);
}

static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_PHYS, value);
}

static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_PHYS, value);
}

static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_VIRT);
}

static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_VIRT, value);
}

static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_VIRT);
}

static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_VIRT, value);
}

static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_VIRT, value);
}

E
Edgar E. Iglesias 已提交
1814 1815 1816 1817 1818
static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

1819
    trace_arm_gt_cntvoff_write(value);
E
Edgar E. Iglesias 已提交
1820 1821 1822 1823
    raw_write(env, ri, value);
    gt_recalc_timer(cpu, GTIMER_VIRT);
}

1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_HYP);
}

static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_HYP, value);
}

static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_HYP);
}

static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_HYP, value);
}

static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_HYP, value);
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879
static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_SEC);
}

static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_SEC, value);
}

static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_SEC);
}

static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_SEC, value);
}

static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_SEC, value);
}

1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893
void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

1894 1895 1896 1897 1898 1899 1900
void arm_gt_htimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_HYP);
}

1901 1902 1903 1904 1905 1906 1907
void arm_gt_stimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_SEC);
}

1908 1909 1910 1911 1912 1913
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1914
      .type = ARM_CP_ALIAS,
1915 1916 1917 1918 1919 1920
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1921 1922 1923 1924
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
1925 1926
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1927 1928 1929 1930 1931 1932
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1933
      .secure = ARM_CP_SECSTATE_NS,
1934
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1935 1936 1937
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
1938
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1939
    },
1940 1941 1942 1943 1944 1945 1946 1947 1948
    { .name = "CNTP_CTL(S)",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_SEC].ctl),
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
1949 1950
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1951
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1952
      .accessfn = gt_ptimer_access,
1953 1954
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
1955
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1956 1957
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1958
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1959 1960 1961
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
1962
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1963 1964 1965
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1966
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1967
      .accessfn = gt_vtimer_access,
1968 1969
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
1970
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1971 1972 1973
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
1974
      .secure = ARM_CP_SECSTATE_NS,
1975
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1976
      .accessfn = gt_ptimer_access,
1977
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1978
    },
1979 1980 1981 1982 1983 1984 1985
    { .name = "CNTP_TVAL(S)",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
    },
1986 1987
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
1988
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1989 1990
      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
1991
    },
1992
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
1993
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
1994
      .accessfn = gt_vtimer_access,
1995
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
1996
    },
1997 1998
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
1999
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2000 2001
      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2002
    },
2003 2004
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2005
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2006
      .accessfn = gt_pct_access,
2007 2008 2009 2010
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2011
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2012
      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2013 2014
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2015
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2016
      .accessfn = gt_vct_access,
E
Edgar E. Iglesias 已提交
2017
      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2018 2019 2020
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2021
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2022
      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2023 2024 2025
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2026
      .secure = ARM_CP_SECSTATE_NS,
2027
      .access = PL1_RW | PL0_R,
2028
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2029
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2030
      .accessfn = gt_ptimer_access,
2031
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2032
    },
2033 2034 2035 2036 2037 2038 2039 2040
    { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
      .secure = ARM_CP_SECSTATE_S,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .accessfn = gt_ptimer_access,
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
2041 2042 2043 2044 2045
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2046
      .resetvalue = 0, .accessfn = gt_ptimer_access,
2047
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2048 2049 2050
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
2051
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2052
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2053
      .accessfn = gt_vtimer_access,
2054
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2055 2056 2057 2058 2059 2060 2061
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
2062
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2063
    },
2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
    /* Secure timer -- this is actually restricted to only EL3
     * and configurably Secure-EL1 via the accessfn.
     */
    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .readfn = gt_sec_tval_read,
      .writefn = gt_sec_tval_write,
      .resetfn = gt_sec_timer_reset,
    },
    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
      .resetvalue = 0,
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
2090 2091 2092 2093 2094
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
2095
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2096 2097
 * so instead just don't register any of them.
 */
2098 2099 2100 2101
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

2102 2103
#endif

2104
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2105
{
2106
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
2107
        raw_write(env, ri, value);
2108
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
2109
        raw_write(env, ri, value & 0xfffff6ff);
2110
    } else {
2111
        raw_write(env, ri, value & 0xfffff1ff);
2112 2113 2114 2115 2116
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
2117

2118 2119
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
2120 2121
{
    if (ri->opc2 & 4) {
2122 2123 2124 2125
        /* The ATS12NSO* operations must trap to EL3 if executed in
         * Secure EL1 (which can only happen if EL3 is AArch64).
         * They are simply UNDEF if executed from NS EL1.
         * They function normally from EL2 or EL3.
2126
         */
2127 2128 2129 2130 2131 2132
        if (arm_current_el(env) == 1) {
            if (arm_is_secure_below_el3(env)) {
                return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
            }
            return CP_ACCESS_TRAP_UNCATEGORIZED;
        }
2133 2134 2135 2136
    }
    return CP_ACCESS_OK;
}

2137
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2138
                             int access_type, ARMMMUIdx mmu_idx)
2139
{
A
Avi Kivity 已提交
2140
    hwaddr phys_addr;
2141 2142
    target_ulong page_size;
    int prot;
2143 2144
    uint32_t fsr;
    bool ret;
F
Fabian Aggeler 已提交
2145
    uint64_t par64;
2146
    MemTxAttrs attrs = {};
2147
    ARMMMUFaultInfo fi = {};
2148

2149
    ret = get_phys_addr(env, value, access_type, mmu_idx,
2150
                        &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
2151
    if (extended_addresses_enabled(env)) {
2152
        /* fsr is a DFSR/IFSR value for the long descriptor
2153 2154 2155
         * translation table format, but with WnR always clear.
         * Convert it to a 64-bit PAR.
         */
F
Fabian Aggeler 已提交
2156
        par64 = (1 << 11); /* LPAE bit always set */
2157
        if (!ret) {
2158
            par64 |= phys_addr & ~0xfffULL;
2159 2160 2161
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
2162
            /* We don't set the ATTR or SH fields in the PAR. */
2163
        } else {
2164
            par64 |= 1; /* F */
2165
            par64 |= (fsr & 0x3f) << 1; /* FS */
2166 2167 2168 2169
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
2170 2171
        }
    } else {
2172
        /* fsr is a DFSR/IFSR value for the short descriptor
2173 2174 2175
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
2176
        if (!ret) {
2177 2178 2179
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
F
Fabian Aggeler 已提交
2180
                par64 = (phys_addr & 0xff000000) | (1 << 1);
2181
            } else {
F
Fabian Aggeler 已提交
2182
                par64 = phys_addr & 0xfffff000;
2183
            }
2184 2185 2186
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
2187
        } else {
2188 2189
            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
                    ((fsr & 0xf) << 1) | 1;
2190
        }
2191
    }
2192 2193 2194 2195 2196 2197 2198
    return par64;
}

static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    int access_type = ri->opc2 & 1;
    uint64_t par64;
2199 2200 2201
    ARMMMUIdx mmu_idx;
    int el = arm_current_el(env);
    bool secure = arm_is_secure_below_el3(env);
2202

2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248
    switch (ri->opc2 & 6) {
    case 0:
        /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE1;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2:
        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1SE0;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE0;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 4:
        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
        mmu_idx = ARMMMUIdx_S12NSE1;
        break;
    case 6:
        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
        mmu_idx = ARMMMUIdx_S12NSE0;
        break;
    default:
        g_assert_not_reached();
    }

    par64 = do_ats_write(env, value, access_type, mmu_idx);
F
Fabian Aggeler 已提交
2249 2250

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
2251
}
2252

2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263
static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    int access_type = ri->opc2 & 1;
    uint64_t par64;

    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
}

2264 2265
static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
2266 2267 2268 2269 2270 2271 2272
{
    if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2273 2274 2275 2276
static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    int access_type = ri->opc2 & 1;
2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299
    ARMMMUIdx mmu_idx;
    int secure = arm_is_secure_below_el3(env);

    switch (ri->opc2 & 6) {
    case 0:
        switch (ri->opc1) {
        case 0: /* AT S1E1R, AT S1E1W */
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        case 4: /* AT S1E2R, AT S1E2W */
            mmu_idx = ARMMMUIdx_S1E2;
            break;
        case 6: /* AT S1E3R, AT S1E3W */
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2: /* AT S1E0R, AT S1E0W */
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
        break;
    case 4: /* AT S12E1R, AT S12E1W */
2300
        mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2301 2302
        break;
    case 6: /* AT S12E0R, AT S12E0W */
2303
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2304 2305 2306 2307
        break;
    default:
        g_assert_not_reached();
    }
2308

2309
    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2310
}
2311 2312 2313 2314 2315
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
F
Fabian Aggeler 已提交
2316 2317
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
                             offsetoflow32(CPUARMState, cp15.par_ns) },
2318 2319
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
2320
    /* This underdecoding is safe because the reginfo is NO_RAW. */
2321
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2322
      .access = PL1_W, .accessfn = ats_access,
2323
      .writefn = ats_write, .type = ARM_CP_NO_RAW },
2324 2325 2326 2327
#endif
    REGINFO_SENTINEL
};

2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

2358 2359
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2360
{
2361
    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2362 2363
}

2364
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2365
{
2366
    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2367 2368
}

2369 2370
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2371
{
2372
    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2373 2374
}

2375
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2376
{
2377
    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2378 2379
}

2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return 0;
    }

    u32p += env->cp15.c6_rgnr;
    return *u32p;
}

static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return;
    }

    u32p += env->cp15.c6_rgnr;
2403
    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
    *u32p = value;
}

static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return;
    }

    memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
}

static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t nrgs = cpu->pmsav7_dregion;

    if (value >= nrgs) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
        return;
    }

    raw_write(env, ri, value);
}

static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
      .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
      .writefn = pmsav7_rgnr_write },
    REGINFO_SENTINEL
};

2455 2456
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2457
      .access = PL1_RW, .type = ARM_CP_ALIAS,
2458
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2459 2460
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2461
      .access = PL1_RW, .type = ARM_CP_ALIAS,
2462
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2463 2464 2465
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
2466 2467
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0, },
2468 2469
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
2470 2471
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0, },
2472 2473 2474 2475 2476 2477
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2478
    /* Protection region base and size registers */
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2503 2504 2505
    REGINFO_SENTINEL
};

2506 2507
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2508
{
F
Fabian Aggeler 已提交
2509
    TCR *tcr = raw_ptr(env, ri);
2510 2511
    int maskshift = extract32(value, 0, 3);

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
             * using Long-desciptor translation table format */
            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
            /* In an implementation that includes the Security Extensions
             * TTBCR has additional fields PD0 [4] and PD1 [5] for
             * Short-descriptor translation table format.
             */
            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
        } else {
            value &= TTBCR_N;
        }
2526
    }
2527

2528
    /* Update the masks corresponding to the TCR bank being written
F
Fabian Aggeler 已提交
2529
     * Note that we always calculate mask and base_mask, but
2530
     * they are only used for short-descriptor tables (ie if EAE is 0);
F
Fabian Aggeler 已提交
2531 2532
     * for long-descriptor tables the TCR fields are used differently
     * and the mask and base_mask values are meaningless.
2533
     */
F
Fabian Aggeler 已提交
2534 2535 2536
    tcr->raw_tcr = value;
    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2537 2538
}

2539 2540
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
2541
{
2542 2543
    ARMCPU *cpu = arm_env_get_cpu(env);

2544 2545 2546 2547
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
2548
        tlb_flush(CPU(cpu));
2549
    }
2550
    vmsa_ttbcr_raw_write(env, ri, value);
2551 2552
}

2553 2554
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
F
Fabian Aggeler 已提交
2555 2556 2557 2558 2559 2560 2561 2562
    TCR *tcr = raw_ptr(env, ri);

    /* Reset both the TCR as well as the masks corresponding to the bank of
     * the TCR being reset.
     */
    tcr->raw_tcr = 0;
    tcr->mask = 0;
    tcr->base_mask = 0xffffc000u;
2563 2564
}

2565 2566 2567
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
2568
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
2569
    TCR *tcr = raw_ptr(env, ri);
2570

2571
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2572
    tlb_flush(CPU(cpu));
F
Fabian Aggeler 已提交
2573
    tcr->raw_tcr = value;
2574 2575
}

2576 2577 2578 2579 2580 2581 2582
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
2583 2584
        ARMCPU *cpu = arm_env_get_cpu(env);

2585
        tlb_flush(CPU(cpu));
2586 2587 2588 2589
    }
    raw_write(env, ri, value);
}

E
Edgar E. Iglesias 已提交
2590 2591 2592 2593 2594 2595 2596 2597
static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
    if (raw_read(env, ri) != value) {
2598 2599 2600 2601
        tlb_flush_by_mmuidx(cs,
                            (1 << ARMMMUIdx_S12NSE1) |
                            (1 << ARMMMUIdx_S12NSE0) |
                            (1 << ARMMMUIdx_S2NS));
E
Edgar E. Iglesias 已提交
2602 2603 2604 2605
        raw_write(env, ri, value);
    }
}

2606
static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2607
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2608
      .access = PL1_RW, .type = ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2609
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2610
                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2611
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
F
Fabian Aggeler 已提交
2612 2613 2614
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626
    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
                             offsetof(CPUARMState, cp15.dfar_ns) } },
    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
      .resetvalue = 0, },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2627 2628 2629
    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
2630
      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2631
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
2632 2633 2634 2635
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
2636
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
2637 2638 2639 2640
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
2641 2642 2643 2644
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
F
Fabian Aggeler 已提交
2645
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2646
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2647
      .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2648
      .raw_writefn = vmsa_ttbcr_raw_write,
F
Fabian Aggeler 已提交
2649 2650
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2651 2652 2653
    REGINFO_SENTINEL
};

2654 2655
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
2656 2657 2658 2659 2660 2661 2662
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

2663 2664
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
2665 2666 2667 2668
{
    env->cp15.c15_threadid = value & 0xffff;
}

2669 2670
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
2671 2672
{
    /* Wait-for-interrupt (deprecated) */
2673
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2674 2675
}

2676 2677
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
2678 2679 2680 2681 2682 2683 2684 2685
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

2686 2687 2688
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2689
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2690
      .resetvalue = 0, },
2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2709
      .type = ARM_CP_NO_RAW,
2710 2711 2712 2713 2714 2715
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
2716
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2717
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2718
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2719
      .writefn = omap_cachemaint_write },
2720 2721 2722
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2723 2724 2725
    REGINFO_SENTINEL
};

2726 2727
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
2728
{
2729
    env->cp15.c15_cpar = value & 0x3fff;
2730 2731 2732 2733 2734 2735 2736
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
2737 2738 2739 2740
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
    /* XScale specific cache-lockdown: since we have no cache we NOP these
     * and hope the guest does not really rely on cache behaviour.
     */
    { .name = "XSCALE_LOCK_ICACHE_LINE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_ICACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_DCACHE_LOCK",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_DCACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2767
      .access = PL1_RW,
2768
      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2769
      .resetvalue = 0 },
2770 2771 2772
    REGINFO_SENTINEL
};

2773 2774 2775
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2776
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2777
      .resetvalue = 0 },
2778 2779 2780 2781 2782 2783
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2784
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2785
      .resetvalue = 0 },
2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2799 2800 2801 2802 2803 2804 2805 2806
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2807
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2808
      .resetvalue = (1 << 30) },
2809
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2810
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2811
      .resetvalue = (1 << 30) },
2812 2813 2814
    REGINFO_SENTINEL
};

2815 2816 2817 2818
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2819
      .access = PL1_RW, .resetvalue = 0,
2820
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2821 2822 2823
    REGINFO_SENTINEL
};

E
Edgar E. Iglesias 已提交
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
        return env->cp15.vpidr_el2;
    }
    return raw_read(env, ri);
}

2836
static uint64_t mpidr_read_val(CPUARMState *env)
P
Peter Maydell 已提交
2837
{
2838 2839 2840
    ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
    uint64_t mpidr = cpu->mp_affinity;

P
Peter Maydell 已提交
2841
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
2842
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
2843 2844
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
2845
         * bit 30. (For instance, Cortex-R5).
P
Peter Maydell 已提交
2846
         */
2847 2848 2849
        if (cpu->mp_is_up) {
            mpidr |= (1u << 30);
        }
P
Peter Maydell 已提交
2850
    }
2851
    return mpidr;
P
Peter Maydell 已提交
2852 2853
}

2854 2855
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
E
Edgar E. Iglesias 已提交
2856 2857 2858 2859 2860 2861
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
        return env->cp15.vmpidr_el2;
    }
2862 2863 2864
    return mpidr_read_val(env);
}

P
Peter Maydell 已提交
2865
static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2866 2867
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2868
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
P
Peter Maydell 已提交
2869 2870 2871
    REGINFO_SENTINEL
};

2872
static const ARMCPRegInfo lpae_cp_reginfo[] = {
2873
    /* NOP AMAIR0/1 */
2874 2875
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2876
      .access = PL1_RW, .type = ARM_CP_CONST,
2877
      .resetvalue = 0 },
2878
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2879
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2880
      .access = PL1_RW, .type = ARM_CP_CONST,
2881
      .resetvalue = 0 },
2882
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
F
Fabian Aggeler 已提交
2883 2884 2885
      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
                             offsetof(CPUARMState, cp15.par_ns)} },
2886
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2887
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2888 2889
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) },
2890
      .writefn = vmsa_ttbr_write, },
2891
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2892
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2893 2894
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) },
2895
      .writefn = vmsa_ttbr_write, },
2896 2897 2898
    REGINFO_SENTINEL
};

2899
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2900
{
2901
    return vfp_get_fpcr(env);
2902 2903
}

2904 2905
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2906 2907 2908 2909
{
    vfp_set_fpcr(env, value);
}

2910
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2911
{
2912
    return vfp_get_fpsr(env);
2913 2914
}

2915 2916
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2917 2918 2919 2920
{
    vfp_set_fpsr(env, value);
}

2921 2922
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
2923
{
2924
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->daif = value & PSTATE_DAIF;
}

2936
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2937 2938
                                          const ARMCPRegInfo *ri,
                                          bool isread)
2939 2940 2941 2942
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
2943
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
2944 2945 2946 2947 2948
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2949 2950 2951 2952
/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 * Page D4-1736 (DDI0487A.b)
 */

2953 2954
static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
2955
{
2956
    CPUState *cs = ENV_GET_CPU(env);
2957

2958
    if (arm_is_secure_below_el3(env)) {
2959 2960 2961
        tlb_flush_by_mmuidx(cs,
                            (1 << ARMMMUIdx_S1SE1) |
                            (1 << ARMMMUIdx_S1SE0));
2962
    } else {
2963 2964 2965
        tlb_flush_by_mmuidx(cs,
                            (1 << ARMMMUIdx_S12NSE1) |
                            (1 << ARMMMUIdx_S12NSE0));
2966
    }
2967 2968
}

2969 2970
static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                      uint64_t value)
2971
{
2972
    CPUState *cs = ENV_GET_CPU(env);
2973
    bool sec = arm_is_secure_below_el3(env);
2974

2975 2976 2977 2978 2979 2980 2981 2982
    if (sec) {
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
                                            (1 << ARMMMUIdx_S1SE1) |
                                            (1 << ARMMMUIdx_S1SE0));
    } else {
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
                                            (1 << ARMMMUIdx_S12NSE1) |
                                            (1 << ARMMMUIdx_S12NSE0));
2983
    }
2984 2985
}

2986 2987
static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
2988
{
2989 2990 2991 2992
    /* Note that the 'ALL' scope must invalidate both stage 1 and
     * stage 2 translations, whereas most other scopes only invalidate
     * stage 1 translations.
     */
2993
    ARMCPU *cpu = arm_env_get_cpu(env);
2994 2995 2996
    CPUState *cs = CPU(cpu);

    if (arm_is_secure_below_el3(env)) {
2997 2998 2999
        tlb_flush_by_mmuidx(cs,
                            (1 << ARMMMUIdx_S1SE1) |
                            (1 << ARMMMUIdx_S1SE0));
3000 3001
    } else {
        if (arm_feature(env, ARM_FEATURE_EL2)) {
3002 3003 3004 3005
            tlb_flush_by_mmuidx(cs,
                                (1 << ARMMMUIdx_S12NSE1) |
                                (1 << ARMMMUIdx_S12NSE0) |
                                (1 << ARMMMUIdx_S2NS));
3006
        } else {
3007 3008 3009
            tlb_flush_by_mmuidx(cs,
                                (1 << ARMMMUIdx_S12NSE1) |
                                (1 << ARMMMUIdx_S12NSE0));
3010 3011
        }
    }
3012 3013
}

3014
static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3015 3016
                                  uint64_t value)
{
3017 3018 3019
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

3020
    tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E2));
3021 3022
}

3023 3024 3025 3026 3027 3028
static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

3029
    tlb_flush_by_mmuidx(cs, (1 << ARMMMUIdx_S1E3));
3030 3031
}

3032 3033 3034 3035 3036 3037 3038
static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    /* Note that the 'ALL' scope must invalidate both stage 1 and
     * stage 2 translations, whereas most other scopes only invalidate
     * stage 1 translations.
     */
3039
    CPUState *cs = ENV_GET_CPU(env);
3040 3041
    bool sec = arm_is_secure_below_el3(env);
    bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055

    if (sec) {
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
                                            (1 << ARMMMUIdx_S1SE1) |
                                            (1 << ARMMMUIdx_S1SE0));
    } else if (has_el2) {
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
                                            (1 << ARMMMUIdx_S12NSE1) |
                                            (1 << ARMMMUIdx_S12NSE0) |
                                            (1 << ARMMMUIdx_S2NS));
    } else {
          tlb_flush_by_mmuidx_all_cpus_synced(cs,
                                              (1 << ARMMMUIdx_S12NSE1) |
                                              (1 << ARMMMUIdx_S12NSE0));
3056 3057 3058
    }
}

3059 3060 3061
static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
3062
    CPUState *cs = ENV_GET_CPU(env);
3063

3064
    tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E2));
3065 3066
}

3067 3068 3069
static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
3070
    CPUState *cs = ENV_GET_CPU(env);
3071

3072
    tlb_flush_by_mmuidx_all_cpus_synced(cs, (1 << ARMMMUIdx_S1E3));
3073 3074
}

3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL1&0 (AArch64 version).
     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
     * since we don't support flush-for-specific-ASID-only or
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    if (arm_is_secure_below_el3(env)) {
3088 3089 3090
        tlb_flush_page_by_mmuidx(cs, pageaddr,
                                 (1 << ARMMMUIdx_S1SE1) |
                                 (1 << ARMMMUIdx_S1SE0));
3091
    } else {
3092 3093 3094
        tlb_flush_page_by_mmuidx(cs, pageaddr,
                                 (1 << ARMMMUIdx_S12NSE1) |
                                 (1 << ARMMMUIdx_S12NSE0));
3095 3096 3097 3098 3099
    }
}

static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
3100
{
3101 3102 3103 3104 3105 3106 3107 3108
    /* Invalidate by VA, EL2
     * Currently handles both VAE2 and VALE2, since we don't support
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

3109
    tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E2));
3110 3111
}

3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL3
     * Currently handles both VAE3 and VALE3, since we don't support
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

3123
    tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S1E3));
3124 3125
}

3126 3127 3128
static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
3129 3130
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
3131
    bool sec = arm_is_secure_below_el3(env);
3132 3133
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

3134 3135 3136 3137 3138 3139 3140 3141
    if (sec) {
        tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
                                                 (1 << ARMMMUIdx_S1SE1) |
                                                 (1 << ARMMMUIdx_S1SE0));
    } else {
        tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
                                                 (1 << ARMMMUIdx_S12NSE1) |
                                                 (1 << ARMMMUIdx_S12NSE0));
3142 3143 3144
    }
}

3145 3146
static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
3147
{
3148
    CPUState *cs = ENV_GET_CPU(env);
3149
    uint64_t pageaddr = sextract64(value << 12, 0, 56);
3150

3151 3152
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
                                             (1 << ARMMMUIdx_S1E2));
3153 3154
}

3155 3156 3157
static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
3158
    CPUState *cs = ENV_GET_CPU(env);
3159 3160
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

3161 3162
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
                                             (1 << ARMMMUIdx_S1E3));
3163 3164
}

3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    /* Invalidate by IPA. This has to invalidate any structures that
     * contain only stage 2 translation information, but does not need
     * to apply to structures that contain combined stage 1 and stage 2
     * translation information.
     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 48);

3184
    tlb_flush_page_by_mmuidx(cs, pageaddr, (1 << ARMMMUIdx_S2NS));
3185 3186 3187 3188 3189
}

static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                      uint64_t value)
{
3190
    CPUState *cs = ENV_GET_CPU(env);
3191 3192 3193 3194 3195 3196 3197 3198
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 48);

3199 3200
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
                                             (1 << ARMMMUIdx_S2NS));
3201 3202
}

3203 3204
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                      bool isread)
3205 3206 3207 3208
{
    /* We don't implement EL2, so the only control on DC ZVA is the
     * bit in the SCTLR which can prohibit access for EL0.
     */
3209
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int dzp_bit = 1 << 4;

    /* DZP indicates whether DC ZVA access is allowed */
3221
    if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3222 3223 3224 3225 3226
        dzp_bit = 0;
    }
    return cpu->dcz_blocksize | dzp_bit;
}

3227 3228
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                    bool isread)
3229
{
3230
    if (!(env->pstate & PSTATE_SP)) {
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
        /* Access to SP_EL0 is undefined if it's being used as
         * the stack pointer.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_SP;
}

static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
    update_spsel(env, val);
}

3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (raw_read(env, ri) == value) {
        /* Skip the TLB flush if nothing actually changed; Linux likes
         * to do a lot of pointless SCTLR writes.
         */
        return;
    }

    raw_write(env, ri, value);
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
3264
    tlb_flush(CPU(cpu));
3265 3266
}

3267 3268
static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
3269 3270
{
    if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3271
        return CP_ACCESS_TRAP_FP_EL2;
3272 3273
    }
    if (env->cp15.cptr_el[3] & CPTR_TFP) {
3274
        return CP_ACCESS_TRAP_FP_EL3;
3275 3276 3277 3278
    }
    return CP_ACCESS_OK;
}

3279 3280 3281 3282 3283 3284
static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
{
    env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
}

3285 3286 3287 3288 3289 3290 3291
static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
3292 3293
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3294
      .type = ARM_CP_NO_RAW,
3295 3296 3297
      .access = PL0_RW, .accessfn = aa64_daif_access,
      .fieldoffset = offsetof(CPUARMState, daif),
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3298 3299 3300 3301 3302 3303 3304 3305
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3306
      .access = PL0_R, .type = ARM_CP_NO_RAW,
3307 3308 3309 3310 3311 3312 3313 3314 3315
      .readfn = aa64_dczid_read },
    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_DC_ZVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
3316 3317 3318
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
3354 3355
    /* TLBI operations */
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3356
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3357
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3358
      .writefn = tlbi_aa64_vmalle1is_write },
3359
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3360
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3361
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3362
      .writefn = tlbi_aa64_vae1is_write },
3363
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3364
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3365
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3366
      .writefn = tlbi_aa64_vmalle1is_write },
3367
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3368
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3369
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3370
      .writefn = tlbi_aa64_vae1is_write },
3371
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3372
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3373
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3374
      .writefn = tlbi_aa64_vae1is_write },
3375
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3376
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3377
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3378
      .writefn = tlbi_aa64_vae1is_write },
3379
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3380
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3381
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3382
      .writefn = tlbi_aa64_vmalle1_write },
3383
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3384
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3385
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3386
      .writefn = tlbi_aa64_vae1_write },
3387
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3388
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3389
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3390
      .writefn = tlbi_aa64_vmalle1_write },
3391
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3392
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3393
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3394
      .writefn = tlbi_aa64_vae1_write },
3395
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3396
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3397
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3398
      .writefn = tlbi_aa64_vae1_write },
3399
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3400
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3401
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3402
      .writefn = tlbi_aa64_vae1_write },
3403 3404 3405 3406 3407 3408 3409 3410
    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1is_write },
    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1is_write },
3411 3412 3413
    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
3414
      .writefn = tlbi_aa64_alle1is_write },
3415 3416 3417 3418
    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
3419 3420 3421 3422 3423 3424 3425 3426
    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1_write },
    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1_write },
3427 3428 3429
    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
3430
      .writefn = tlbi_aa64_alle1_write },
3431 3432 3433 3434
    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
3435 3436 3437 3438
#ifndef CONFIG_USER_ONLY
    /* 64 bit address translation operations */
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3439
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3440 3441
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3442
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3443 3444
    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3445
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3446 3447
    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3448
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3449
    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3450
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3451 3452
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3453
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3454 3455
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3456
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3457 3458
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3459
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3460 3461 3462 3463 3464 3465 3466 3467
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3468 3469 3470 3471 3472 3473
    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
      .writefn = par_write },
3474
#endif
3475
    /* TLB invalidate last level of translation table walk */
3476
    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3477
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3478
    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3479
      .type = ARM_CP_NO_RAW, .access = PL1_W,
3480
      .writefn = tlbimvaa_is_write },
3481
    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3482
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3483
    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3484
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507
    { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_write },
    { .name = "TLBIMVALHIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_is_write },
    { .name = "TLBIIPAS2",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_write },
    { .name = "TLBIIPAS2IS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_is_write },
    { .name = "TLBIIPAS2L",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_write },
    { .name = "TLBIIPAS2LIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_is_write },
3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
    /* 32 bit cache operations */
    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
3536 3537 3538 3539 3540
    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3541
    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3542
      .type = ARM_CP_ALIAS,
3543
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3544 3545
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3546
    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3547
      .type = ARM_CP_ALIAS,
3548
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3549 3550
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3551 3552 3553 3554 3555 3556 3557
    /* We rely on the access checks not allowing the guest to write to the
     * state field when SPSel indicates that it's being used as the stack
     * pointer.
     */
    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = sp_el0_access,
3558
      .type = ARM_CP_ALIAS,
3559
      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3560 3561
    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3562
      .access = PL2_RW, .type = ARM_CP_ALIAS,
3563
      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3564 3565
    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3566
      .type = ARM_CP_NO_RAW,
3567
      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3568 3569 3570 3571 3572
    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
      .access = PL2_RW, .accessfn = fpexc32_access },
3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
    { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
    { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
    { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
    { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3602 3603 3604 3605 3606 3607 3608 3609 3610
    { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
      .resetvalue = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
    { .name = "SDCR", .type = ARM_CP_ALIAS,
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .writefn = sdcr_write,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3611 3612 3613
    REGINFO_SENTINEL
};

3614
/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3615
static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3616 3617 3618 3619
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
E
Edgar E. Iglesias 已提交
3620
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3621
      .type = ARM_CP_NO_RAW,
E
Edgar E. Iglesias 已提交
3622 3623 3624
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3625 3626 3627
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3628 3629 3630 3631 3632 3633 3634
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3635 3636 3637 3638 3639 3640 3641 3642
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3643 3644 3645 3646 3647 3648 3649 3650
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3651 3652 3653
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3654 3655 3656 3657
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
      .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3658 3659 3660 3661 3662 3663 3664
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 6, .crm = 2,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3665 3666 3667
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3668 3669 3670
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3671 3672 3673 3674 3675 3676
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3677 3678 3679
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3680 3681 3682 3683 3684 3685
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
S
Sergey Fedorov 已提交
3698 3699
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3700 3701
      .access = PL2_RW, .accessfn = access_tda,
      .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3702 3703 3704 3705
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
      .type = ARM_CP_CONST, .resetvalue = 0 },
3706 3707 3708
    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3709 3710 3711
    REGINFO_SENTINEL
};

E
Edgar E. Iglesias 已提交
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t valid_mask = HCR_MASK;

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        valid_mask &= ~HCR_HCD;
    } else {
        valid_mask &= ~HCR_TSC;
    }

    /* Clear RES0 bits.  */
    value &= valid_mask;

    /* These bits change the MMU setup:
     * HCR_VM enables stage 2 translation
     * HCR_PTW forbids certain page-table setups
     * HCR_DC Disables stage1 and enables stage2 translation
     */
    if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3732
        tlb_flush(CPU(cpu));
E
Edgar E. Iglesias 已提交
3733 3734 3735 3736
    }
    raw_write(env, ri, value);
}

3737
static const ARMCPRegInfo el2_cp_reginfo[] = {
E
Edgar E. Iglesias 已提交
3738 3739 3740 3741
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
      .writefn = hcr_write },
3742
    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3743
      .type = ARM_CP_ALIAS,
3744 3745 3746
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3747 3748 3749
    { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3750 3751 3752
    { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3753
    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3754
      .type = ARM_CP_ALIAS,
3755
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3756 3757
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3758 3759 3760 3761 3762
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
      .resetvalue = 0 },
3763 3764
    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3765
      .access = PL3_RW, .type = ARM_CP_ALIAS,
3766
      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3767 3768 3769 3770
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
E
Edgar E. Iglesias 已提交
3771 3772 3773 3774 3775 3776 3777 3778
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3779 3780 3781 3782 3783 3784 3785 3786 3787
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3788 3789 3790 3791 3792 3793 3794 3795
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3796 3797
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3798 3799 3800 3801
      .access = PL2_RW,
      /* no .writefn needed as this can't cause an ASID change;
       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
       */
E
Edgar E. Iglesias 已提交
3802
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
E
Edgar E. Iglesias 已提交
3803 3804
    { .name = "VTCR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3805
      .type = ARM_CP_ALIAS,
E
Edgar E. Iglesias 已提交
3806 3807 3808 3809
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3810 3811 3812 3813
      .access = PL2_RW,
      /* no .writefn needed as this can't cause an ASID change;
       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
       */
E
Edgar E. Iglesias 已提交
3814
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
E
Edgar E. Iglesias 已提交
3815 3816 3817 3818 3819 3820 3821 3822 3823 3824
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 6, .crm = 2,
      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
      .writefn = vttbr_write },
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .writefn = vttbr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
E
Edgar E. Iglesias 已提交
3825 3826 3827 3828
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
E
Edgar E. Iglesias 已提交
3829 3830 3831 3832
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
E
Edgar E. Iglesias 已提交
3833 3834 3835 3836 3837 3838 3839
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
    { .name = "TLBIALLNSNH",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_nsnh_write },
    { .name = "TLBIALLNSNHIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_nsnh_is_write },
    { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_hyp_write },
    { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_hyp_is_write },
    { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_write },
    { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_is_write },
E
Edgar E. Iglesias 已提交
3860 3861 3862
    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3863
      .writefn = tlbi_aa64_alle2_write },
3864 3865 3866
    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3867
      .writefn = tlbi_aa64_vae2_write },
3868 3869 3870 3871 3872 3873 3874 3875
    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2_write },
    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle2is_write },
3876 3877 3878
    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3879
      .writefn = tlbi_aa64_vae2is_write },
3880 3881 3882 3883
    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2is_write },
E
Edgar E. Iglesias 已提交
3884
#ifndef CONFIG_USER_ONLY
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
    /* Unlike the other EL2-related AT operations, these must
     * UNDEF from EL3 if EL2 is not implemented, which is why we
     * define them here rather than with the rest of the AT ops.
     */
    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907
    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
     * to behave as if SCR.NS was 1.
     */
    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
E
Edgar E. Iglesias 已提交
3908 3909 3910 3911 3912 3913 3914 3915
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
       * reset values as IMPDEF. We choose to reset to 3 to comply with
       * both ARMv7 and ARMv8.
       */
      .access = PL2_RW, .resetvalue = 3,
      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
E
Edgar E. Iglesias 已提交
3916 3917 3918 3919 3920 3921 3922 3923 3924
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .type = ARM_CP_IO, .access = PL2_RW,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
3936
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
3937 3938 3939 3940 3941 3942 3943 3944 3945
      .resetfn = gt_hyp_timer_reset,
      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .type = ARM_CP_IO,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
      .resetvalue = 0,
      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
E
Edgar E. Iglesias 已提交
3946
#endif
S
Sergey Fedorov 已提交
3947 3948 3949 3950 3951 3952 3953 3954 3955
    /* The only field of MDCR_EL2 that has a defined architectural reset value
     * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
     * don't impelment any PMU event counters, so using zero as a reset
     * value for MDCR_EL2 is okay
     */
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
E
Edgar E. Iglesias 已提交
3956 3957 3958 3959 3960 3961 3962 3963
    { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
3964 3965 3966 3967
    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
      .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
3968 3969 3970
    REGINFO_SENTINEL
};

3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
     * At Secure EL1 it traps to EL3.
     */
    if (arm_current_el(env) == 3) {
        return CP_ACCESS_OK;
    }
    if (arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL3;
    }
    /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
    if (isread) {
        return CP_ACCESS_OK;
    }
    return CP_ACCESS_TRAP_UNCATEGORIZED;
}

3990 3991 3992 3993 3994
static const ARMCPRegInfo el3_cp_reginfo[] = {
    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
      .resetvalue = 0, .writefn = scr_write },
3995
    { .name = "SCR",  .type = ARM_CP_ALIAS,
3996
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
3997 3998
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
3999
      .writefn = scr_write },
4000 4001 4002 4003 4004 4005 4006 4007 4008
    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
    { .name = "SDER",
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4009 4010
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .writefn = vbar_write, .resetvalue = 0,
4011
      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
F
Fabian Aggeler 已提交
4012 4013 4014 4015
    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
F
Fabian Aggeler 已提交
4016 4017
    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4018 4019
      .access = PL3_RW,
      /* no .writefn needed as this can't cause an ASID change;
4020 4021 4022
       * we must provide a .raw_writefn and .resetfn because we handle
       * reset and migration for the AArch32 TTBCR(S), which might be
       * using mask and base_mask.
4023
       */
4024
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
F
Fabian Aggeler 已提交
4025
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4026
    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4027
      .type = ARM_CP_ALIAS,
4028 4029 4030
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4031 4032 4033
    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4034 4035 4036
    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4037
    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4038
      .type = ARM_CP_ALIAS,
4039
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4040 4041
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4042 4043 4044 4045 4046
    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
      .resetvalue = 0 },
4047 4048 4049 4050
    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4051 4052 4053 4054
    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4055 4056 4057 4058
    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
4059 4060 4061 4062 4063 4064 4065 4066
    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3is_write },
    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3_write },
    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
4091 4092 4093
    REGINFO_SENTINEL
};

4094 4095
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
4096 4097 4098 4099
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
4100
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4101 4102 4103 4104 4105
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    /* Writes to OSLAR_EL1 may update the OS lock status, which can be
     * read via a bit in OSLSR_EL1.
     */
    int oslock;

    if (ri->state == ARM_CP_STATE_AA32) {
        oslock = (value == 0xC5ACCE55);
    } else {
        oslock = value & 1;
    }

    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
}

4123 4124
static const ARMCPRegInfo debug_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4125 4126 4127 4128
     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
     * unlike DBGDRAR it is never accessible from EL0.
     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
     * accessor.
4129 4130
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4131 4132
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
4133 4134
    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4135 4136
      .access = PL1_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
4137
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4138 4139
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
4140
    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4141 4142
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4143
      .access = PL1_RW, .accessfn = access_tda,
4144 4145
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetvalue = 0 },
4146 4147 4148 4149 4150
    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
     * We don't implement the configurable EL0 access.
     */
    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4151
      .type = ARM_CP_ALIAS,
4152
      .access = PL1_R, .accessfn = access_tda,
4153
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4154 4155
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4156
      .access = PL1_W, .type = ARM_CP_NO_RAW,
4157
      .accessfn = access_tdosa,
4158 4159 4160 4161
      .writefn = oslar_write },
    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
      .access = PL1_R, .resetvalue = 10,
4162
      .accessfn = access_tdosa,
4163
      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4164 4165 4166
    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4167 4168
      .access = PL1_RW, .accessfn = access_tdosa,
      .type = ARM_CP_NOP },
4169 4170 4171 4172 4173
    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
     * implement vector catch debug events yet.
     */
    { .name = "DBGVCR",
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4174 4175
      .access = PL1_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
4176 4177 4178 4179 4180 4181 4182
    /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
     * to save and restore a 32-bit guest's DBGVCR)
     */
    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL2_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
4183 4184 4185 4186 4187 4188 4189 4190
    /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
     * Channel but Linux may try to access this register. The 32-bit
     * alias is DBGDCCINT.
     */
    { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202
    REGINFO_SENTINEL
};

static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    REGINFO_SENTINEL
};

4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
void hw_watchpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    vaddr len = 0;
    vaddr wvr = env->cp15.dbgwvr[n];
    uint64_t wcr = env->cp15.dbgwcr[n];
    int mask;
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;

    if (env->cpu_watchpoint[n]) {
        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
        env->cpu_watchpoint[n] = NULL;
    }

    if (!extract64(wcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    switch (extract64(wcr, 3, 2)) {
    case 0:
        /* LSC 00 is reserved and must behave as if the wp is disabled */
        return;
    case 1:
        flags |= BP_MEM_READ;
        break;
    case 2:
        flags |= BP_MEM_WRITE;
        break;
    case 3:
        flags |= BP_MEM_ACCESS;
        break;
    }

    /* Attempts to use both MASK and BAS fields simultaneously are
     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
     * thus generating a watchpoint for every byte in the masked region.
     */
    mask = extract64(wcr, 24, 4);
    if (mask == 1 || mask == 2) {
        /* Reserved values of MASK; we must act as if the mask value was
         * some non-reserved value, or as if the watchpoint were disabled.
         * We choose the latter.
         */
        return;
    } else if (mask) {
        /* Watchpoint covers an aligned area up to 2GB in size */
        len = 1ULL << mask;
        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
         * whether the watchpoint fires when the unmasked bits match; we opt
         * to generate the exceptions.
         */
        wvr &= ~(len - 1);
    } else {
        /* Watchpoint covers bytes defined by the byte address select bits */
        int bas = extract64(wcr, 5, 8);
        int basstart;

        if (bas == 0) {
            /* This must act as if the watchpoint is disabled */
            return;
        }

        if (extract64(wvr, 2, 1)) {
            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
             * ignored, and BAS[3:0] define which bytes to watch.
             */
            bas &= 0xf;
        }
        /* The BAS bits are supposed to be programmed to indicate a contiguous
         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
         * we fire for each byte in the word/doubleword addressed by the WVR.
         * We choose to ignore any non-zero bits after the first range of 1s.
         */
        basstart = ctz32(bas);
        len = cto32(bas >> basstart);
        wvr += basstart;
    }

    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
                          &env->cpu_watchpoint[n]);
}

void hw_watchpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU watchpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
        hw_watchpoint_update(cpu, i);
    }
}

static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
     * register reads and behaves as if values written are sign extended.
     * Bits [1:0] are RES0.
     */
    value = sextract64(value, 0, 49) & ~3ULL;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445
void hw_breakpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    uint64_t bvr = env->cp15.dbgbvr[n];
    uint64_t bcr = env->cp15.dbgbcr[n];
    vaddr addr;
    int bt;
    int flags = BP_CPU;

    if (env->cpu_breakpoint[n]) {
        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
        env->cpu_breakpoint[n] = NULL;
    }

    if (!extract64(bcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    bt = extract64(bcr, 20, 4);

    switch (bt) {
    case 4: /* unlinked address mismatch (reserved if AArch64) */
    case 5: /* linked address mismatch (reserved if AArch64) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: address mismatch breakpoint types not implemented");
        return;
    case 0: /* unlinked address match */
    case 1: /* linked address match */
    {
        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
         * we behave as if the register was sign extended. Bits [1:0] are
         * RES0. The BAS field is used to allow setting breakpoints on 16
         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
         * a bp will fire if the addresses covered by the bp and the addresses
         * covered by the insn overlap but the insn doesn't start at the
         * start of the bp address range. We choose to require the insn and
         * the bp to have the same address. The constraints on writing to
         * BAS enforced in dbgbcr_write mean we have only four cases:
         *  0b0000  => no breakpoint
         *  0b0011  => breakpoint on addr
         *  0b1100  => breakpoint on addr + 2
         *  0b1111  => breakpoint on addr
         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
         */
        int bas = extract64(bcr, 5, 4);
        addr = sextract64(bvr, 0, 49) & ~3ULL;
        if (bas == 0) {
            return;
        }
        if (bas == 0xc) {
            addr += 2;
        }
        break;
    }
    case 2: /* unlinked context ID match */
    case 8: /* unlinked VMID match (reserved if no EL2) */
    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: unlinked context breakpoint types not implemented");
        return;
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    case 3: /* linked context ID match */
    default:
        /* We must generate no events for Linked context matches (unless
         * they are linked to by some other bp/wp, which is handled in
         * updates for the linking bp/wp). We choose to also generate no events
         * for reserved values.
         */
        return;
    }

    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}

void hw_breakpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU breakpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
        hw_breakpoint_update(cpu, i);
    }
}

static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
     * copy of BAS[0].
     */
    value = deposit64(value, 6, 1, extract64(value, 5, 1));
    value = deposit64(value, 8, 1, extract64(value, 7, 1));

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

4446
static void define_debug_regs(ARMCPU *cpu)
4447
{
4448 4449
    /* Define v7 and v8 architectural debug registers.
     * These are just dummy implementations for now.
4450 4451
     */
    int i;
4452
    int wrps, brps, ctx_cmps;
4453 4454
    ARMCPRegInfo dbgdidr = {
        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4455 4456
        .access = PL0_R, .accessfn = access_tda,
        .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4457 4458
    };

4459
    /* Note that all these register fields hold "number of Xs minus 1". */
4460 4461
    brps = extract32(cpu->dbgdidr, 24, 4);
    wrps = extract32(cpu->dbgdidr, 28, 4);
4462 4463 4464
    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);

    assert(ctx_cmps <= brps);
4465 4466 4467 4468 4469 4470 4471 4472

    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
     * of the debug registers such as number of breakpoints;
     * check that if they both exist then they agree.
     */
    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4473
        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4474
    }
4475

4476
    define_one_arm_cp_reg(cpu, &dbgdidr);
4477 4478 4479 4480 4481 4482
    define_arm_cp_regs(cpu, debug_cp_reginfo);

    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
    }

4483
    for (i = 0; i < brps + 1; i++) {
4484
        ARMCPRegInfo dbgregs[] = {
4485 4486
            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4487
              .access = PL1_RW, .accessfn = access_tda,
4488 4489 4490
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
              .writefn = dbgbvr_write, .raw_writefn = raw_write
            },
4491 4492
            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4493
              .access = PL1_RW, .accessfn = access_tda,
4494 4495 4496
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
              .writefn = dbgbcr_write, .raw_writefn = raw_write
            },
4497 4498 4499 4500 4501 4502 4503
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }

    for (i = 0; i < wrps + 1; i++) {
        ARMCPRegInfo dbgregs[] = {
4504 4505
            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4506
              .access = PL1_RW, .accessfn = access_tda,
4507 4508 4509
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
              .writefn = dbgwvr_write, .raw_writefn = raw_write
            },
4510 4511
            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4512
              .access = PL1_RW, .accessfn = access_tda,
4513 4514 4515 4516
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
              .writefn = dbgwcr_write, .raw_writefn = raw_write
            },
            REGINFO_SENTINEL
4517 4518 4519 4520 4521
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

4522 4523 4524 4525 4526 4527 4528 4529 4530
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

4531
    define_arm_cp_regs(cpu, cp_reginfo);
4532 4533 4534 4535 4536 4537 4538
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* Must go early as it is full of wildcards that may be
         * overridden by later definitions.
         */
        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
    }

4539
    if (arm_feature(env, ARM_FEATURE_V6)) {
4540 4541
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
4542 4543 4544
            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
4545
              .resetvalue = cpu->id_pfr0 },
4546 4547 4548
            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
4549
              .resetvalue = cpu->id_pfr1 },
4550 4551 4552
            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
4553
              .resetvalue = cpu->id_dfr0 },
4554 4555 4556
            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
4557
              .resetvalue = cpu->id_afr0 },
4558 4559 4560
            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
4561
              .resetvalue = cpu->id_mmfr0 },
4562 4563 4564
            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
4565
              .resetvalue = cpu->id_mmfr1 },
4566 4567 4568
            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
4569
              .resetvalue = cpu->id_mmfr2 },
4570 4571 4572
            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
4573
              .resetvalue = cpu->id_mmfr3 },
4574 4575 4576
            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
4577
              .resetvalue = cpu->id_isar0 },
4578 4579 4580
            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
4581
              .resetvalue = cpu->id_isar1 },
4582 4583 4584
            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
4585
              .resetvalue = cpu->id_isar2 },
4586 4587 4588
            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
4589
              .resetvalue = cpu->id_isar3 },
4590 4591 4592
            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
4593
              .resetvalue = cpu->id_isar4 },
4594 4595 4596
            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
4597
              .resetvalue = cpu->id_isar5 },
4598 4599 4600 4601 4602 4603 4604 4605
            { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr4 },
            /* 7 is as yet unallocated and must RAZ */
            { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
4606 4607 4608 4609
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
4610 4611 4612 4613
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
4614 4615 4616
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
4617 4618
    if (arm_feature(env, ARM_FEATURE_V7MP) &&
        !arm_feature(env, ARM_FEATURE_MPU)) {
4619 4620
        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
    }
4621
    if (arm_feature(env, ARM_FEATURE_V7)) {
4622
        /* v7 performance monitor control register: same implementor
4623 4624
         * field as main ID register, and we implement only the cycle
         * count register.
4625
         */
4626
#ifndef CONFIG_USER_ONLY
4627 4628
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4629
            .access = PL0_RW,
4630
            .type = ARM_CP_IO | ARM_CP_ALIAS,
4631
            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4632 4633
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
4634
        };
4635 4636 4637 4638 4639 4640 4641 4642 4643
        ARMCPRegInfo pmcr64 = {
            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
            .access = PL0_RW, .accessfn = pmreg_access,
            .type = ARM_CP_IO,
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
            .resetvalue = cpu->midr & 0xff000000,
            .writefn = pmcr_write, .raw_writefn = raw_write,
        };
4644
        define_one_arm_cp_reg(cpu, &pmcr);
4645
        define_one_arm_cp_reg(cpu, &pmcr64);
4646
#endif
4647
        ARMCPRegInfo clidr = {
4648 4649
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4650 4651 4652
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
4653
        define_arm_cp_regs(cpu, v7_cp_reginfo);
4654
        define_debug_regs(cpu);
4655 4656
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4657
    }
4658
    if (arm_feature(env, ARM_FEATURE_V8)) {
4659 4660 4661 4662 4663
        /* AArch64 ID registers, which all have impdef reset values.
         * Note that within the ID register ranges the unused slots
         * must all RAZ, not UNDEF; future architecture versions may
         * define new registers here.
         */
4664 4665 4666 4667 4668 4669 4670 4671 4672
        ARMCPRegInfo v8_idregs[] = {
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr0 },
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696
            { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4697 4698 4699
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
4700
              .resetvalue = cpu->id_aa64dfr0 },
4701 4702 4703 4704
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
4705 4706 4707 4708 4709 4710 4711 4712
            { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4713 4714 4715 4716 4717 4718 4719 4720
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
4721 4722 4723 4724 4725 4726 4727 4728
            { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4729 4730 4731 4732 4733 4734 4735 4736
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
            { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4761 4762 4763 4764 4765 4766 4767 4768
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792
            { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804
            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr0 },
            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr1 },
            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr2 },
4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
            { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840
            { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid0 },
            { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid0 },
            { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid1 },
            { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid1 },
4841 4842
            REGINFO_SENTINEL
        };
4843 4844 4845 4846 4847 4848 4849 4850 4851 4852
        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3) &&
            !arm_feature(env, ARM_FEATURE_EL2)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
4853
        define_arm_cp_regs(cpu, v8_idregs);
4854 4855
        define_arm_cp_regs(cpu, v8_cp_reginfo);
    }
4856
    if (arm_feature(env, ARM_FEATURE_EL2)) {
E
Edgar E. Iglesias 已提交
4857
        uint64_t vmpidr_def = mpidr_read_val(env);
E
Edgar E. Iglesias 已提交
4858 4859 4860 4861 4862 4863 4864 4865 4866 4867
        ARMCPRegInfo vpidr_regs[] = {
            { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
              .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
            { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL2_RW, .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
E
Edgar E. Iglesias 已提交
4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
            { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
              .resetvalue = vmpidr_def,
              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
            { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
              .access = PL2_RW,
              .resetvalue = vmpidr_def,
              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
E
Edgar E. Iglesias 已提交
4878 4879 4880
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, vpidr_regs);
4881
        define_arm_cp_regs(cpu, el2_cp_reginfo);
4882 4883 4884 4885 4886 4887 4888 4889 4890
        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
4891 4892 4893 4894 4895
    } else {
        /* If EL2 is missing but higher ELs are enabled, we need to
         * register the no_el2 reginfos.
         */
        if (arm_feature(env, ARM_FEATURE_EL3)) {
E
Edgar E. Iglesias 已提交
4896 4897
            /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
             * of MIDR_EL1 and MPIDR_EL1.
E
Edgar E. Iglesias 已提交
4898 4899 4900 4901 4902 4903 4904
             */
            ARMCPRegInfo vpidr_regs[] = {
                { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
                  .type = ARM_CP_CONST, .resetvalue = cpu->midr,
                  .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
E
Edgar E. Iglesias 已提交
4905 4906 4907 4908 4909
                { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
                  .type = ARM_CP_NO_RAW,
                  .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
E
Edgar E. Iglesias 已提交
4910 4911 4912
                REGINFO_SENTINEL
            };
            define_arm_cp_regs(cpu, vpidr_regs);
4913
            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
4914
        }
4915
    }
4916
    if (arm_feature(env, ARM_FEATURE_EL3)) {
4917
        define_arm_cp_regs(cpu, el3_cp_reginfo);
4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
        ARMCPRegInfo el3_regs[] = {
            { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
              .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
            { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
              .access = PL3_RW,
              .raw_writefn = raw_write, .writefn = sctlr_write,
              .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
              .resetvalue = cpu->reset_sctlr },
            REGINFO_SENTINEL
4929
        };
4930 4931

        define_arm_cp_regs(cpu, el3_regs);
4932
    }
4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
    /* The behaviour of NSACR is sufficiently various that we don't
     * try to describe it in a single reginfo:
     *  if EL3 is 64 bit, then trap to EL3 from S EL1,
     *     reads as constant 0xc00 from NS EL1 and NS EL2
     *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
     *  if v7 without EL3, register doesn't exist
     *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
     */
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            ARMCPRegInfo nsacr = {
                .name = "NSACR", .type = ARM_CP_CONST,
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL1_RW, .accessfn = nsacr_access,
                .resetvalue = 0xc00
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        } else {
            ARMCPRegInfo nsacr = {
                .name = "NSACR",
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL3_RW | PL1_R,
                .resetvalue = 0,
                .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        }
    } else {
        if (arm_feature(env, ARM_FEATURE_V8)) {
            ARMCPRegInfo nsacr = {
                .name = "NSACR", .type = ARM_CP_CONST,
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL1_R,
                .resetvalue = 0xc00
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        }
    }

4972
    if (arm_feature(env, ARM_FEATURE_MPU)) {
4973 4974 4975 4976 4977 4978 4979 4980
        if (arm_feature(env, ARM_FEATURE_V6)) {
            /* PMSAv6 not implemented */
            assert(arm_feature(env, ARM_FEATURE_V7));
            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
        }
4981
    } else {
4982
        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
4983 4984
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
4985 4986 4987
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
4988 4989 4990
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
4991 4992 4993
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
4994 4995 4996 4997 4998 4999 5000 5001 5002
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
5003 5004 5005
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
5006 5007 5008
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
5009 5010 5011 5012 5013 5014
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
5015 5016 5017
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
5018 5019 5020 5021 5022
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
5023 5024 5025
        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
            /* Pre-v8 MIDR space.
             * Note that the MIDR isn't a simple constant register because
5026 5027
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
5028 5029 5030 5031
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
5032 5033
             */
            { .name = "MIDR",
5034
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5035
              .access = PL1_R, .resetvalue = cpu->midr,
5036
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
E
Edgar E. Iglesias 已提交
5037
              .readfn = midr_read,
5038 5039
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
5058 5059 5060
        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
E
Edgar E. Iglesias 已提交
5061 5062 5063
              .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .readfn = midr_read },
5064 5065 5066 5067 5068 5069 5070
            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .resetvalue = cpu->midr },
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
              .access = PL1_R, .resetvalue = cpu->midr },
5071 5072
            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5073
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_cp_reginfo[] = {
            /* These are common to v8 and pre-v8 */
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
5091 5092 5093 5094 5095 5096
        /* TLBTR is specific to VMSA */
        ARMCPRegInfo id_tlbtr_reginfo = {
              .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
        };
5097 5098 5099 5100 5101 5102 5103
        /* MPUIR is specific to PMSA V6+ */
        ARMCPRegInfo id_mpuir_reginfo = {
              .name = "MPUIR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmsav7_dregion << 8
        };
5104 5105 5106 5107 5108 5109 5110 5111 5112
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
5113 5114 5115
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
5116 5117
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5118 5119 5120 5121
            for (r = id_pre_v8_midr_cp_reginfo;
                 r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
5122 5123 5124
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
5125
            id_tlbtr_reginfo.access = PL1_RW;
5126
            id_tlbtr_reginfo.access = PL1_RW;
5127
        }
5128 5129 5130 5131 5132
        if (arm_feature(env, ARM_FEATURE_V8)) {
            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
        }
5133
        define_arm_cp_regs(cpu, id_cp_reginfo);
5134 5135
        if (!arm_feature(env, ARM_FEATURE_MPU)) {
            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5136 5137
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5138
        }
5139 5140
    }

5141 5142 5143 5144
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

5145
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159
        ARMCPRegInfo auxcr_reginfo[] = {
            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL1_RW, .type = ARM_CP_CONST,
              .resetvalue = cpu->reset_auxcr },
            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL2_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL3_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
5160
        };
5161
        define_arm_cp_regs(cpu, auxcr_reginfo);
5162 5163
    }

5164
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 32 bit view is [31:18] 0...0 [43:32]. */
            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
                | extract64(cpu->reset_cbar, 32, 12);
            ARMCPRegInfo cbar_reginfo[] = {
                { .name = "CBAR",
                  .type = ARM_CP_CONST,
                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
                  .type = ARM_CP_CONST,
                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cbar32 },
                REGINFO_SENTINEL
            };
            /* We don't implement a r/w 64 bit CBAR currently */
            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
            define_arm_cp_regs(cpu, cbar_reginfo);
        } else {
            ARMCPRegInfo cbar = {
                .name = "CBAR",
                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
                .fieldoffset = offsetof(CPUARMState,
                                        cp15.c15_config_base_address)
            };
            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
                cbar.access = PL1_R;
                cbar.fieldoffset = 0;
                cbar.type = ARM_CP_CONST;
            }
            define_one_arm_cp_reg(cpu, &cbar);
        }
5198 5199
    }

5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212
    if (arm_feature(env, ARM_FEATURE_VBAR)) {
        ARMCPRegInfo vbar_cp_reginfo[] = {
            { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
              .access = PL1_RW, .writefn = vbar_write,
              .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
                                     offsetof(CPUARMState, cp15.vbar_ns) },
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, vbar_cp_reginfo);
    }

5213 5214 5215
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
5216
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5217 5218 5219 5220
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
            .access = PL1_RW,
            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
                                   offsetof(CPUARMState, cp15.sctlr_ns) },
5221 5222
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
5223 5224 5225 5226 5227 5228 5229 5230 5231 5232
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
5233 5234
}

5235
ARMCPU *cpu_arm_init(const char *cpu_model)
P
pbrook 已提交
5236
{
5237
    return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
5238 5239 5240 5241
}

void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
5242
    CPUState *cs = CPU(cpu);
5243 5244
    CPUARMState *env = &cpu->env;

5245 5246 5247 5248 5249
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5250
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
5251 5252
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5253
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
5254 5255
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5256
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
5257 5258
                                 19, "arm-vfp.xml", 0);
    }
P
pbrook 已提交
5259 5260
}

5261 5262
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
5263
{
5264 5265 5266
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
5267

5268 5269
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
A
Andreas Färber 已提交
5270
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5271
        return 1;
A
Andreas Färber 已提交
5272
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5273 5274 5275
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
5276 5277 5278
    }
}

5279
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
5280
{
5281
    ObjectClass *oc = data;
5282
    CPUListState *s = user_data;
A
Andreas Färber 已提交
5283 5284
    const char *typename;
    char *name;
P
pbrook 已提交
5285

A
Andreas Färber 已提交
5286 5287
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5288
    (*s->cpu_fprintf)(s->file, "  %s\n",
A
Andreas Färber 已提交
5289 5290
                      name);
    g_free(name);
5291 5292 5293 5294
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
5295
    CPUListState s = {
5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
5306 5307 5308 5309 5310 5311
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
5312 5313
}

5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));
5326
    info->q_typename = g_strdup(typename);
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

5346
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5347
                                   void *opaque, int state, int secstate,
5348
                                   int crm, int opc1, int opc2)
5349 5350 5351 5352 5353 5354 5355
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366
    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;

    /* Reset the secure state to the specific incoming state.  This is
     * necessary as the register may have been defined with both states.
     */
    r2->secure = secstate;

    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
        /* Register is banked (using both entries in array).
         * Overwriting fieldoffset as the array is only used to define
         * banked registers but later only fieldoffset is used.
5367
         */
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
        r2->fieldoffset = r->bank_fieldoffsets[ns];
    }

    if (state == ARM_CP_STATE_AA32) {
        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
            /* If the register is banked then we don't need to migrate or
             * reset the 32-bit instance in certain cases:
             *
             * 1) If the register has both 32-bit and 64-bit instances then we
             *    can count on the 64-bit instance taking care of the
             *    non-secure bank.
             * 2) If ARMv8 is enabled then we can count on a 64-bit version
             *    taking care of the secure bank.  This requires that separate
             *    32 and 64-bit definitions are provided.
             */
            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5385
                r2->type |= ARM_CP_ALIAS;
5386 5387 5388 5389 5390
            }
        } else if ((secstate != r->secure) && !ns) {
            /* The register is not banked so we only want to allow migration of
             * the non-secure instance.
             */
5391
            r2->type |= ARM_CP_ALIAS;
5392
        }
5393 5394 5395 5396 5397 5398 5399 5400

        if (r->state == ARM_CP_STATE_BOTH) {
            /* We assume it is a cp15 register if the .cp field is left unset.
             */
            if (r2->cp == 0) {
                r2->cp = 15;
            }

5401
#ifdef HOST_WORDS_BIGENDIAN
5402 5403 5404
            if (r2->fieldoffset) {
                r2->fieldoffset += sizeof(uint32_t);
            }
5405
#endif
5406
        }
5407 5408 5409 5410 5411
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
5412 5413 5414
         * STATE_BOTH definitions are also always "standard
         * sysreg" in their AArch64 view (the .cp value may
         * be non-zero for the benefit of the AArch32 view).
5415
         */
5416
        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5417 5418 5419 5420 5421
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
5422
        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5423
    }
5424 5425 5426
    if (opaque) {
        r2->opaque = opaque;
    }
5427 5428 5429 5430
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
5431 5432 5433 5434 5435 5436 5437 5438
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
5439
     * ALIAS so we don't try to transfer the register
5440
     * multiple times. Special registers (ie NOP/WFI) are
5441
     * never migratable and not even raw-accessible.
5442
     */
5443 5444 5445 5446
    if ((r->type & ARM_CP_SPECIAL)) {
        r2->type |= ARM_CP_NO_RAW;
    }
    if (((r->crm == CP_ANY) && crm != 0) ||
5447 5448
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
5449
        r2->type |= ARM_CP_ALIAS;
5450 5451
    }

5452 5453 5454 5455 5456 5457 5458 5459
    /* Check that raw accesses are either forbidden or handled. Note that
     * we can't assert this earlier because the setup of fieldoffset for
     * banked registers has to be done first.
     */
    if (!(r2->type & ARM_CP_NO_RAW)) {
        assert(!raw_accessors_invalid(r2));
    }

5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
5504
     */
5505
    int crm, opc1, opc2, state;
5506 5507 5508 5509 5510 5511 5512 5513
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

5560 5561 5562 5563 5564
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
5565 5566 5567
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->readfn);
5568 5569
        }
        if (r->access & PL3_W) {
5570 5571 5572
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->writefn);
5573 5574 5575 5576 5577 5578 5579
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5580 5581 5582 5583 5584
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
                    if (state == ARM_CP_STATE_AA32) {
                        /* Under AArch32 CP registers can be common
                         * (same for secure and non-secure world) or banked.
                         */
                        switch (r->secure) {
                        case ARM_CP_SECSTATE_S:
                        case ARM_CP_SECSTATE_NS:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   r->secure, crm, opc1, opc2);
                            break;
                        default:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_S,
                                                   crm, opc1, opc2);
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_NS,
                                                   crm, opc1, opc2);
                            break;
                        }
                    } else {
                        /* AArch64 registers get mapped to non-secure instance
                         * of AArch32 */
                        add_cpreg_to_hashtable(cpu, r, opaque, state,
                                               ARM_CP_SECSTATE_NS,
                                               crm, opc1, opc2);
                    }
5611
                }
5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

5627
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5628
{
5629
    return g_hash_table_lookup(cpregs, &encoded_cp);
5630 5631
}

5632 5633
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
5634 5635 5636 5637
{
    /* Helper coprocessor write function for write-ignore registers */
}

5638
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5639 5640 5641 5642 5643
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

5644 5645 5646 5647 5648
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

5649
static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5650 5651 5652 5653 5654
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
5655 5656 5657 5658 5659 5660 5661 5662

    /* Changes to or from Hyp via MSR and CPS are illegal. */
    if (write_type == CPSRWriteByInstr &&
        ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
         mode == ARM_CPU_MODE_HYP)) {
        return 1;
    }

5663 5664
    switch (mode) {
    case ARM_CPU_MODE_USR:
5665
        return 0;
5666 5667 5668 5669 5670 5671
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
5672 5673 5674
        /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
         * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
         */
5675 5676 5677 5678 5679 5680 5681 5682 5683
        /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
         * and CPS are treated as illegal mode changes.
         */
        if (write_type == CPSRWriteByInstr &&
            (env->cp15.hcr_el2 & HCR_TGE) &&
            (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
            !arm_is_secure_below_el3(env)) {
            return 1;
        }
5684
        return 0;
5685 5686 5687
    case ARM_CPU_MODE_HYP:
        return !arm_feature(env, ARM_FEATURE_EL2)
            || arm_current_el(env) < 2 || arm_is_secure(env);
5688
    case ARM_CPU_MODE_MON:
5689
        return arm_current_el(env) < 3;
5690 5691 5692 5693 5694
    default:
        return 1;
    }
}

5695 5696 5697
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
5698 5699
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5700 5701 5702
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
5703
        | (env->GE << 16) | (env->daif & CPSR_AIF);
5704 5705
}

5706 5707
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
                CPSRWriteType write_type)
5708
{
5709 5710
    uint32_t changed_daif;

5711
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
5712 5713
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

5733 5734 5735 5736 5737 5738 5739 5740
    /* In a V7 implementation that includes the security extensions but does
     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
     * bits respectively.
     *
     * In a V8 implementation, it is permitted for privileged software to
     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
     */
5741
    if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784
        arm_feature(env, ARM_FEATURE_EL3) &&
        !arm_feature(env, ARM_FEATURE_EL2) &&
        !arm_is_secure(env)) {

        changed_daif = (env->daif ^ val) & mask;

        if (changed_daif & CPSR_A) {
            /* Check to see if we are allowed to change the masking of async
             * abort exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_AW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_A flag from "
                              "non-secure world with SCR.AW bit clear\n");
                mask &= ~CPSR_A;
            }
        }

        if (changed_daif & CPSR_F) {
            /* Check to see if we are allowed to change the masking of FIQ
             * exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_FW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_F flag from "
                              "non-secure world with SCR.FW bit clear\n");
                mask &= ~CPSR_F;
            }

            /* Check whether non-maskable FIQ (NMFI) support is enabled.
             * If this bit is set software is not allowed to mask
             * FIQs, but is allowed to set CPSR_F to 0.
             */
            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
                (val & CPSR_F)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to enable CPSR_F flag "
                              "(non-maskable FIQ [NMFI] support enabled)\n");
                mask &= ~CPSR_F;
            }
        }
    }

5785 5786 5787
    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

5788 5789
    if (write_type != CPSRWriteRaw &&
        ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
5790 5791 5792 5793 5794 5795 5796 5797 5798
        if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
            /* Note that we can only get here in USR mode if this is a
             * gdb stub write; for this case we follow the architectural
             * behaviour for guest writes in USR mode of ignoring an attempt
             * to switch mode. (Those are caught by translate.c for writes
             * triggered by guest instructions.)
             */
            mask &= ~CPSR_M;
        } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
5799 5800 5801 5802 5803 5804 5805
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
             * v7, and has defined behaviour in v8:
             *  + leave CPSR.M untouched
             *  + allow changes to the other CPSR fields
             *  + set PSTATE.IL
             * For user changes via the GDB stub, we don't set PSTATE.IL,
             * as this would be unnecessarily harsh for a user error.
5806 5807
             */
            mask &= ~CPSR_M;
5808 5809 5810 5811 5812
            if (write_type != CPSRWriteByGDBStub &&
                arm_feature(env, ARM_FEATURE_V8)) {
                mask |= CPSR_IL;
                val |= CPSR_IL;
            }
5813 5814 5815
        } else {
            switch_mode(env, val & CPSR_M);
        }
5816 5817 5818 5819 5820
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
5838 5839 5840 5841
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
A
Aurelien Jarno 已提交
5842 5843
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
5856
    return revbit32(x);
P
pbrook 已提交
5857 5858
}

5859
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
5860

P
pbrook 已提交
5861
/* These should probably raise undefined insn exceptions.  */
5862
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
5863
{
5864 5865 5866
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
P
pbrook 已提交
5867 5868
}

5869
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
5870
{
5871 5872 5873
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
P
pbrook 已提交
5874 5875 5876
    return 0;
}

5877
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
5878
{
5879 5880 5881 5882 5883
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
B
bellard 已提交
5884 5885
}

5886 5887
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
5888 5889 5890 5891
{
    return 1;
}

5892 5893 5894 5895 5896
void aarch64_sync_64_to_32(CPUARMState *env)
{
    g_assert_not_reached();
}

B
bellard 已提交
5897 5898
#else

5899
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
5900 5901 5902 5903 5904 5905 5906 5907 5908 5909
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
5910
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
5911 5912
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
5913
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
5914 5915
    }

5916
    i = bank_number(old_mode);
B
bellard 已提交
5917 5918 5919 5920
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

5921
    i = bank_number(mode);
B
bellard 已提交
5922 5923 5924 5925 5926
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963
/* Physical Interrupt Target EL Lookup Table
 *
 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
 *
 * The below multi-dimensional table is used for looking up the target
 * exception level given numerous condition criteria.  Specifically, the
 * target EL is based on SCR and HCR routing controls as well as the
 * currently executing EL and secure state.
 *
 *    Dimensions:
 *    target_el_table[2][2][2][2][2][4]
 *                    |  |  |  |  |  +--- Current EL
 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
 *                    |  |  |  +--------- HCR mask override
 *                    |  |  +------------ SCR exec state control
 *                    |  +--------------- SCR mask override
 *                    +------------------ 32-bit(0)/64-bit(1) EL3
 *
 *    The table values are as such:
 *    0-3 = EL0-EL3
 *     -1 = Cannot occur
 *
 * The ARM ARM target EL table includes entries indicating that an "exception
 * is not taken".  The two cases where this is applicable are:
 *    1) An exception is taken from EL3 but the SCR does not have the exception
 *    routed to EL3.
 *    2) An exception is taken from EL2 but the HCR does not have the exception
 *    routed to EL2.
 * In these two cases, the below table contain a target of EL1.  This value is
 * returned as it is expected that the consumer of the table data will check
 * for "target EL >= current EL" to ensure the exception is not taken.
 *
 *            SCR     HCR
 *         64  EA     AMO                 From
 *        BIT IRQ     IMO      Non-secure         Secure
 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
 */
5964
static const int8_t target_el_table[2][2][2][2][2][4] = {
5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
};

/*
 * Determine the target EL for physical exceptions
 */
5986 5987
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
5988 5989
{
    CPUARMState *env = cs->env_ptr;
5990
    int rw;
5991 5992 5993
    int scr;
    int hcr;
    int target_el;
5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005
    /* Is the highest EL AArch64? */
    int is64 = arm_feature(env, ARM_FEATURE_AARCH64);

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
    } else {
        /* Either EL2 is the highest EL (and so the EL2 register width
         * is given by is64); or there is no EL2 or EL3, in which case
         * the value of 'rw' does not affect the table lookup anyway.
         */
        rw = is64;
    }
6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032

    switch (excp_idx) {
    case EXCP_IRQ:
        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
        hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
        break;
    case EXCP_FIQ:
        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
        hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
        break;
    default:
        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
        hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
        break;
    };

    /* If HCR.TGE is set then HCR is treated as being 1 */
    hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);

    /* Perform a table-lookup for the target EL given the current state */
    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];

    assert(target_el > 0);

    return target_el;
}

P
pbrook 已提交
6033 6034
static void v7m_push(CPUARMState *env, uint32_t val)
{
6035 6036
    CPUState *cs = CPU(arm_env_get_cpu(env));

P
pbrook 已提交
6037
    env->regs[13] -= 4;
6038
    stl_phys(cs->as, env->regs[13], val);
P
pbrook 已提交
6039 6040 6041 6042
}

static uint32_t v7m_pop(CPUARMState *env)
{
6043
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
6044
    uint32_t val;
6045

6046
    val = ldl_phys(cs->as, env->regs[13]);
P
pbrook 已提交
6047 6048 6049 6050 6051
    env->regs[13] += 4;
    return val;
}

/* Switch to V7M main or process stack pointer.  */
6052
static void switch_v7m_sp(CPUARMState *env, bool new_spsel)
P
pbrook 已提交
6053 6054
{
    uint32_t tmp;
6055 6056 6057
    bool old_spsel = env->v7m.control & R_V7M_CONTROL_SPSEL_MASK;

    if (old_spsel != new_spsel) {
P
pbrook 已提交
6058 6059 6060
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
6061 6062 6063 6064

        env->v7m.control = deposit32(env->v7m.control,
                                     R_V7M_CONTROL_SPSEL_SHIFT,
                                     R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
P
pbrook 已提交
6065 6066 6067
    }
}

6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133
static uint32_t arm_v7m_load_vector(ARMCPU *cpu)
{
    CPUState *cs = CPU(cpu);
    CPUARMState *env = &cpu->env;
    MemTxResult result;
    hwaddr vec = env->v7m.vecbase + env->v7m.exception * 4;
    uint32_t addr;

    addr = address_space_ldl(cs->as, vec,
                             MEMTXATTRS_UNSPECIFIED, &result);
    if (result != MEMTX_OK) {
        /* Architecturally this should cause a HardFault setting HSFR.VECTTBL,
         * which would then be immediately followed by our failing to load
         * the entry vector for that HardFault, which is a Lockup case.
         * Since we don't model Lockup, we just report this guest error
         * via cpu_abort().
         */
        cpu_abort(cs, "Failed to read from exception vector table "
                  "entry %08x\n", (unsigned)vec);
    }
    return addr;
}

static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr)
{
    /* Do the "take the exception" parts of exception entry,
     * but not the pushing of state to the stack. This is
     * similar to the pseudocode ExceptionTaken() function.
     */
    CPUARMState *env = &cpu->env;
    uint32_t addr;

    armv7m_nvic_acknowledge_irq(env->nvic);
    switch_v7m_sp(env, 0);
    /* Clear IT bits */
    env->condexec_bits = 0;
    env->regs[14] = lr;
    addr = arm_v7m_load_vector(cpu);
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

static void v7m_push_stack(ARMCPU *cpu)
{
    /* Do the "set up stack frame" part of exception entry,
     * similar to pseudocode PushStack().
     */
    CPUARMState *env = &cpu->env;
    uint32_t xpsr = xpsr_read(env);

    /* Align stack pointer if the guest wants that */
    if ((env->regs[13] & 4) && (env->v7m.ccr & R_V7M_CCR_STKALIGN_MASK)) {
        env->regs[13] -= 4;
        xpsr |= 0x200;
    }
    /* Switch to the handler mode.  */
    v7m_push(env, xpsr);
    v7m_push(env, env->regs[15]);
    v7m_push(env, env->regs[14]);
    v7m_push(env, env->regs[12]);
    v7m_push(env, env->regs[3]);
    v7m_push(env, env->regs[2]);
    v7m_push(env, env->regs[1]);
    v7m_push(env, env->regs[0]);
}

6134
static void do_v7m_exception_exit(ARMCPU *cpu)
P
pbrook 已提交
6135
{
6136
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
6137 6138
    uint32_t type;
    uint32_t xpsr;
6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157
    bool ufault = false;
    bool return_to_sp_process = false;
    bool return_to_handler = false;
    bool rettobase = false;

    /* We can only get here from an EXCP_EXCEPTION_EXIT, and
     * arm_v7m_do_unassigned_access() enforces the architectural rule
     * that jumps to magic addresses don't have magic behaviour unless
     * we're in Handler mode (compare pseudocode BXWritePC()).
     */
    assert(env->v7m.exception != 0);

    /* In the spec pseudocode ExceptionReturn() is called directly
     * from BXWritePC() and gets the full target PC value including
     * bit zero. In QEMU's implementation we treat it as a normal
     * jump-to-register (which is then caught later on), and so split
     * the target value up between env->regs[15] and env->thumb in
     * gen_bx(). Reconstitute it.
     */
P
pbrook 已提交
6158
    type = env->regs[15];
6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171
    if (env->thumb) {
        type |= 1;
    }

    qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
                  " previous exception %d\n",
                  type, env->v7m.exception);

    if (extract32(type, 5, 23) != extract32(-1, 5, 23)) {
        qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
                      "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n", type);
    }

6172 6173 6174 6175
    if (env->v7m.exception != ARMV7M_EXCP_NMI) {
        /* Auto-clear FAULTMASK on return from other than NMI */
        env->daif &= ~PSTATE_F;
    }
6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222

    switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception)) {
    case -1:
        /* attempt to exit an exception that isn't active */
        ufault = true;
        break;
    case 0:
        /* still an irq active now */
        break;
    case 1:
        /* we returned to base exception level, no nesting.
         * (In the pseudocode this is written using "NestedActivation != 1"
         * where we have 'rettobase == false'.)
         */
        rettobase = true;
        break;
    default:
        g_assert_not_reached();
    }

    switch (type & 0xf) {
    case 1: /* Return to Handler */
        return_to_handler = true;
        break;
    case 13: /* Return to Thread using Process stack */
        return_to_sp_process = true;
        /* fall through */
    case 9: /* Return to Thread using Main stack */
        if (!rettobase &&
            !(env->v7m.ccr & R_V7M_CCR_NONBASETHRDENA_MASK)) {
            ufault = true;
        }
        break;
    default:
        ufault = true;
    }

    if (ufault) {
        /* Bad exception return: instead of popping the exception
         * stack, directly take a usage fault on the current stack.
         */
        env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
        v7m_exception_taken(cpu, type | 0xf0000000);
        qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
                      "stackframe: failed exception return integrity check\n");
        return;
6223
    }
P
pbrook 已提交
6224 6225

    /* Switch to the target stack.  */
6226
    switch_v7m_sp(env, return_to_sp_process);
P
pbrook 已提交
6227 6228 6229 6230 6231 6232 6233 6234
    /* Pop registers.  */
    env->regs[0] = v7m_pop(env);
    env->regs[1] = v7m_pop(env);
    env->regs[2] = v7m_pop(env);
    env->regs[3] = v7m_pop(env);
    env->regs[12] = v7m_pop(env);
    env->regs[14] = v7m_pop(env);
    env->regs[15] = v7m_pop(env);
6235 6236 6237 6238 6239 6240 6241 6242 6243 6244
    if (env->regs[15] & 1) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "M profile return from interrupt with misaligned "
                      "PC is UNPREDICTABLE\n");
        /* Actual hardware seems to ignore the lsbit, and there are several
         * RTOSes out there which incorrectly assume the r15 in the stack
         * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
         */
        env->regs[15] &= ~1U;
    }
P
pbrook 已提交
6245 6246 6247 6248 6249
    xpsr = v7m_pop(env);
    xpsr_write(env, xpsr, 0xfffffdff);
    /* Undo stack alignment.  */
    if (xpsr & 0x200)
        env->regs[13] |= 4;
6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267

    /* The restored xPSR exception field will be zero if we're
     * resuming in Thread mode. If that doesn't match what the
     * exception return type specified then this is a UsageFault.
     */
    if (return_to_handler == (env->v7m.exception == 0)) {
        /* Take an INVPC UsageFault by pushing the stack again. */
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
        env->v7m.cfsr |= R_V7M_CFSR_INVPC_MASK;
        v7m_push_stack(cpu);
        v7m_exception_taken(cpu, type | 0xf0000000);
        qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
                      "failed exception return integrity check\n");
        return;
    }

    /* Otherwise, we have a successful exception exit. */
    qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
P
pbrook 已提交
6268 6269
}

6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284
static void arm_log_exception(int idx)
{
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
        const char *exc = NULL;

        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
            exc = excnames[idx];
        }
        if (!exc) {
            exc = "unknown";
        }
        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
    }
}

6285
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
6286
{
6287 6288
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
6289 6290
    uint32_t lr;

6291
    arm_log_exception(cs->exception_index);
6292

P
pbrook 已提交
6293
    lr = 0xfffffff1;
6294
    if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
P
pbrook 已提交
6295
        lr |= 4;
6296
    }
P
pbrook 已提交
6297 6298 6299 6300 6301
    if (env->v7m.exception == 0)
        lr |= 8;

    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
6302
    switch (cs->exception_index) {
P
pbrook 已提交
6303
    case EXCP_UDEF:
P
Paul Brook 已提交
6304
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
6305
        env->v7m.cfsr |= R_V7M_CFSR_UNDEFINSTR_MASK;
6306
        break;
6307 6308 6309
    case EXCP_NOCP:
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
        env->v7m.cfsr |= R_V7M_CFSR_NOCP_MASK;
6310
        break;
6311 6312 6313 6314
    case EXCP_INVSTATE:
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
        env->v7m.cfsr |= R_V7M_CFSR_INVSTATE_MASK;
        break;
P
pbrook 已提交
6315
    case EXCP_SWI:
6316
        /* The PC already points to the next instruction.  */
P
Paul Brook 已提交
6317
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
6318
        break;
P
pbrook 已提交
6319 6320
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
6321 6322 6323
        /* TODO: if we implemented the MPU registers, this is where we
         * should set the MMFAR, etc from exception.fsr and exception.vaddress.
         */
P
Paul Brook 已提交
6324
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
6325
        break;
P
pbrook 已提交
6326
    case EXCP_BKPT:
6327
        if (semihosting_enabled()) {
P
pbrook 已提交
6328
            int nr;
6329
            nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
P
pbrook 已提交
6330 6331
            if (nr == 0xab) {
                env->regs[15] += 2;
6332 6333 6334
                qemu_log_mask(CPU_LOG_INT,
                              "...handling as semihosting call 0x%x\n",
                              env->regs[0]);
P
pbrook 已提交
6335 6336 6337 6338
                env->regs[0] = do_arm_semihosting(env);
                return;
            }
        }
P
Paul Brook 已提交
6339
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
6340
        break;
P
pbrook 已提交
6341 6342 6343
    case EXCP_IRQ:
        break;
    case EXCP_EXCEPTION_EXIT:
6344
        do_v7m_exception_exit(cpu);
P
pbrook 已提交
6345 6346
        return;
    default:
6347
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
P
pbrook 已提交
6348 6349 6350
        return; /* Never happens.  Keep compiler happy.  */
    }

6351 6352
    v7m_push_stack(cpu);
    v7m_exception_taken(cpu, lr);
6353
    qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
P
pbrook 已提交
6354 6355
}

6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406
/* Function used to synchronize QEMU's AArch64 register set with AArch32
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_32_to_64(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy R[0:7] to X[0:7] */
    for (i = 0; i < 8; i++) {
        env->xregs[i] = env->regs[i];
    }

    /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
     * Otherwise, they come from the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->usr_regs[i - 8];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->regs[i];
        }
    }

    /* Registers x13-x23 are the various mode SP and FP registers. Registers
     * r13 and r14 are only copied if we are in that mode, otherwise we copy
     * from the mode banked register.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->xregs[13] = env->regs[13];
        env->xregs[14] = env->regs[14];
    } else {
        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
        /* HYP is an exception in that it is copied from r14 */
        if (mode == ARM_CPU_MODE_HYP) {
            env->xregs[14] = env->regs[14];
        } else {
            env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->xregs[15] = env->regs[13];
    } else {
        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
6407 6408
        env->xregs[16] = env->regs[14];
        env->xregs[17] = env->regs[13];
6409
    } else {
6410 6411
        env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
6412 6413 6414
    }

    if (mode == ARM_CPU_MODE_SVC) {
6415 6416
        env->xregs[18] = env->regs[14];
        env->xregs[19] = env->regs[13];
6417
    } else {
6418 6419
        env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
6420 6421 6422
    }

    if (mode == ARM_CPU_MODE_ABT) {
6423 6424
        env->xregs[20] = env->regs[14];
        env->xregs[21] = env->regs[13];
6425
    } else {
6426 6427
        env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
6428 6429 6430
    }

    if (mode == ARM_CPU_MODE_UND) {
6431 6432
        env->xregs[22] = env->regs[14];
        env->xregs[23] = env->regs[13];
6433
    } else {
6434 6435
        env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->xregs[i] = env->fiq_regs[i - 24];
        }
        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
        env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
    }

    env->pc = env->regs[15];
}

/* Function used to synchronize QEMU's AArch32 register set with AArch64
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_64_to_32(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy X[0:7] to R[0:7] */
    for (i = 0; i < 8; i++) {
        env->regs[i] = env->xregs[i];
    }

    /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
     * Otherwise, we copy x8-x12 into the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->usr_regs[i - 8] = env->xregs[i];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->regs[i] = env->xregs[i];
        }
    }

    /* Registers r13 & r14 depend on the current mode.
     * If we are in a given mode, we copy the corresponding x registers to r13
     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
     * for the mode.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->regs[13] = env->xregs[13];
        env->regs[14] = env->xregs[14];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];

        /* HYP is an exception in that it does not have its own banked r14 but
         * shares the USR r14
         */
        if (mode == ARM_CPU_MODE_HYP) {
            env->regs[14] = env->xregs[14];
        } else {
            env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->regs[13] = env->xregs[15];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
6512 6513
        env->regs[14] = env->xregs[16];
        env->regs[13] = env->xregs[17];
6514
    } else {
6515 6516
        env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
6517 6518 6519
    }

    if (mode == ARM_CPU_MODE_SVC) {
6520 6521
        env->regs[14] = env->xregs[18];
        env->regs[13] = env->xregs[19];
6522
    } else {
6523 6524
        env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
6525 6526 6527
    }

    if (mode == ARM_CPU_MODE_ABT) {
6528 6529
        env->regs[14] = env->xregs[20];
        env->regs[13] = env->xregs[21];
6530
    } else {
6531 6532
        env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
6533 6534 6535
    }

    if (mode == ARM_CPU_MODE_UND) {
6536 6537
        env->regs[14] = env->xregs[22];
        env->regs[13] = env->xregs[23];
6538
    } else {
6539 6540
        env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->fiq_regs[i - 24] = env->xregs[i];
        }
        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
        env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
    }

    env->regs[15] = env->pc;
}

6562
static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
B
bellard 已提交
6563
{
6564 6565
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
B
bellard 已提交
6566 6567 6568 6569
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;
6570
    uint32_t moe;
B
bellard 已提交
6571

6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596
    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
    switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
    case EC_BREAKPOINT:
    case EC_BREAKPOINT_SAME_EL:
        moe = 1;
        break;
    case EC_WATCHPOINT:
    case EC_WATCHPOINT_SAME_EL:
        moe = 10;
        break;
    case EC_AA32_BKPT:
        moe = 3;
        break;
    case EC_VECTORCATCH:
        moe = 5;
        break;
    default:
        moe = 0;
        break;
    }

    if (moe) {
        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
    }

B
bellard 已提交
6597
    /* TODO: Vectored interrupt controller.  */
6598
    switch (cs->exception_index) {
B
bellard 已提交
6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
6612
        /* The PC already points to the next instruction.  */
B
bellard 已提交
6613 6614
        offset = 0;
        break;
P
pbrook 已提交
6615
    case EXCP_BKPT:
6616
        env->exception.fsr = 2;
P
pbrook 已提交
6617 6618
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
F
Fabian Aggeler 已提交
6619
        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
F
Fabian Aggeler 已提交
6620
        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
6621
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
F
Fabian Aggeler 已提交
6622
                      env->exception.fsr, (uint32_t)env->exception.vaddress);
B
bellard 已提交
6623 6624 6625 6626 6627 6628
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
F
Fabian Aggeler 已提交
6629
        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
F
Fabian Aggeler 已提交
6630
        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
6631
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
F
Fabian Aggeler 已提交
6632
                      env->exception.fsr,
6633
                      (uint32_t)env->exception.vaddress);
B
bellard 已提交
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
6645 6646 6647 6648 6649
        if (env->cp15.scr_el3 & SCR_IRQ) {
            /* IRQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
            mask |= CPSR_F;
        }
B
bellard 已提交
6650 6651 6652 6653 6654 6655
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
6656 6657 6658 6659
        if (env->cp15.scr_el3 & SCR_FIQ) {
            /* FIQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
        }
B
bellard 已提交
6660 6661
        offset = 4;
        break;
6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675
    case EXCP_VIRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_VFIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 4;
        break;
6676 6677 6678 6679 6680 6681
    case EXCP_SMC:
        new_mode = ARM_CPU_MODE_MON;
        addr = 0x08;
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 0;
        break;
B
bellard 已提交
6682
    default:
6683
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
B
bellard 已提交
6684 6685
        return; /* Never happens.  Keep compiler happy.  */
    }
F
Fabian Aggeler 已提交
6686 6687 6688

    if (new_mode == ARM_CPU_MODE_MON) {
        addr += env->cp15.mvbar;
6689
    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
F
Fabian Aggeler 已提交
6690
        /* High vectors. When enabled, base address cannot be remapped. */
B
bellard 已提交
6691
        addr += 0xffff0000;
N
Nathan Rossi 已提交
6692 6693 6694
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
F
Fabian Aggeler 已提交
6695
         * This register is only followed in non-monitor mode, and is banked.
N
Nathan Rossi 已提交
6696 6697
         * Note: only bits 31:5 are valid.
         */
G
Greg Bellows 已提交
6698
        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
B
bellard 已提交
6699
    }
6700 6701 6702 6703 6704

    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
        env->cp15.scr_el3 &= ~SCR_NS;
    }

B
bellard 已提交
6705
    switch_mode (env, new_mode);
6706 6707 6708 6709
    /* For exceptions taken to AArch32 we must clear the SS bit in both
     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
     */
    env->uncached_cpsr &= ~PSTATE_SS;
B
bellard 已提交
6710
    env->spsr = cpsr_read(env);
P
pbrook 已提交
6711 6712
    /* Clear IT bits.  */
    env->condexec_bits = 0;
6713
    /* Switch to the new mode, and to the correct instruction set.  */
6714
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
6715 6716 6717
    /* Set new mode endianness */
    env->uncached_cpsr &= ~CPSR_E;
    if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
6718
        env->uncached_cpsr |= CPSR_E;
6719
    }
6720
    env->daif |= mask;
6721 6722 6723
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
6724
        env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
6725
    }
B
bellard 已提交
6726 6727 6728 6729
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
}

6730 6731
/* Handle exception entry to a target EL which is using AArch64 */
static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
6732 6733 6734 6735 6736 6737 6738 6739
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    unsigned int new_el = env->exception.target_el;
    target_ulong addr = env->cp15.vbar_el[new_el];
    unsigned int new_mode = aarch64_pstate_mode(new_el, true);

    if (arm_current_el(env) < new_el) {
6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759
        /* Entry vector offset depends on whether the implemented EL
         * immediately lower than the target level is using AArch32 or AArch64
         */
        bool is_aa64;

        switch (new_el) {
        case 3:
            is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
            break;
        case 2:
            is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
            break;
        case 1:
            is_aa64 = is_a64(env);
            break;
        default:
            g_assert_not_reached();
        }

        if (is_aa64) {
6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
            addr += 0x400;
        } else {
            addr += 0x600;
        }
    } else if (pstate_read(env) & PSTATE_SP) {
        addr += 0x200;
    }

    switch (cs->exception_index) {
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
        env->cp15.far_el[new_el] = env->exception.vaddress;
        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
                      env->cp15.far_el[new_el]);
        /* fall through */
    case EXCP_BKPT:
    case EXCP_UDEF:
    case EXCP_SWI:
    case EXCP_HVC:
    case EXCP_HYP_TRAP:
    case EXCP_SMC:
        env->cp15.esr_el[new_el] = env->exception.syndrome;
        break;
    case EXCP_IRQ:
    case EXCP_VIRQ:
        addr += 0x80;
        break;
    case EXCP_FIQ:
    case EXCP_VFIQ:
        addr += 0x100;
        break;
    case EXCP_SEMIHOST:
        qemu_log_mask(CPU_LOG_INT,
                      "...handling as semihosting call 0x%" PRIx64 "\n",
                      env->xregs[0]);
        env->xregs[0] = do_arm_semihosting(env);
        return;
    default:
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
    }

    if (is_a64(env)) {
        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
        aarch64_save_sp(env, arm_current_el(env));
        env->elr_el[new_el] = env->pc;
    } else {
        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
        env->elr_el[new_el] = env->regs[15];

        aarch64_sync_32_to_64(env);

        env->condexec_bits = 0;
    }
    qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
                  env->elr_el[new_el]);

    pstate_write(env, PSTATE_DAIF | new_mode);
    env->aarch64 = 1;
    aarch64_restore_sp(env, new_el);

    env->pc = addr;

    qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
                  new_el, env->pc, pstate_read(env));
6824 6825
}

6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852
static inline bool check_for_semihosting(CPUState *cs)
{
    /* Check whether this exception is a semihosting call; if so
     * then handle it and return true; otherwise return false.
     */
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    if (is_a64(env)) {
        if (cs->exception_index == EXCP_SEMIHOST) {
            /* This is always the 64-bit semihosting exception.
             * The "is this usermode" and "is semihosting enabled"
             * checks have been done at translate time.
             */
            qemu_log_mask(CPU_LOG_INT,
                          "...handling as semihosting call 0x%" PRIx64 "\n",
                          env->xregs[0]);
            env->xregs[0] = do_arm_semihosting(env);
            return true;
        }
        return false;
    } else {
        uint32_t imm;

        /* Only intercept calls from privileged modes, to provide some
         * semblance of security.
         */
6853 6854 6855
        if (cs->exception_index != EXCP_SEMIHOST &&
            (!semihosting_enabled() ||
             ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
6856 6857 6858 6859
            return false;
        }

        switch (cs->exception_index) {
6860 6861 6862 6863 6864 6865
        case EXCP_SEMIHOST:
            /* This is always a semihosting call; the "is this usermode"
             * and "is semihosting enabled" checks have been done at
             * translate time.
             */
            break;
6866 6867 6868
        case EXCP_SWI:
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
6869
                imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
6870 6871 6872 6873 6874
                    & 0xff;
                if (imm == 0xab) {
                    break;
                }
            } else {
6875
                imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
6876 6877 6878 6879 6880 6881 6882 6883 6884
                    & 0xffffff;
                if (imm == 0x123456) {
                    break;
                }
            }
            return false;
        case EXCP_BKPT:
            /* See if this is a semihosting syscall.  */
            if (env->thumb) {
6885
                imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
                    & 0xff;
                if (imm == 0xab) {
                    env->regs[15] += 2;
                    break;
                }
            }
            return false;
        default:
            return false;
        }

        qemu_log_mask(CPU_LOG_INT,
                      "...handling as semihosting call 0x%x\n",
                      env->regs[0]);
        env->regs[0] = do_arm_semihosting(env);
        return true;
    }
}

6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
/* Handle a CPU exception for A and R profile CPUs.
 * Do any appropriate logging, handle PSCI calls, and then hand off
 * to the AArch64-entry or AArch32-entry function depending on the
 * target exception level's register width.
 */
void arm_cpu_do_interrupt(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    unsigned int new_el = env->exception.target_el;

P
Peter Maydell 已提交
6916
    assert(!arm_feature(env, ARM_FEATURE_M));
6917 6918 6919 6920 6921 6922

    arm_log_exception(cs->exception_index);
    qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
                  new_el);
    if (qemu_loglevel_mask(CPU_LOG_INT)
        && !excp_is_internal(cs->exception_index)) {
6923
        qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
6924 6925 6926 6927 6928 6929 6930 6931 6932 6933
                      env->exception.syndrome >> ARM_EL_EC_SHIFT,
                      env->exception.syndrome);
    }

    if (arm_is_psci_call(cpu, cs->exception_index)) {
        arm_handle_psci_call(cpu);
        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
        return;
    }

6934 6935 6936
    /* Semihosting semantics depend on the register width of the
     * code that caused the exception, not the target exception level,
     * so must be handled here.
6937
     */
6938 6939 6940 6941 6942 6943
    if (check_for_semihosting(cs)) {
        return;
    }

    assert(!excp_is_internal(cs->exception_index));
    if (arm_el_is_aa64(env, new_el)) {
6944 6945 6946 6947
        arm_cpu_do_interrupt_aarch64(cs);
    } else {
        arm_cpu_do_interrupt_aarch32(cs);
    }
6948

6949 6950 6951 6952 6953 6954
    /* Hooks may change global state so BQL should be held, also the
     * BQL needs to be held for any modification of
     * cs->interrupt_request.
     */
    g_assert(qemu_mutex_iothread_locked());

6955 6956
    arm_call_el_change_hook(cpu);

6957 6958 6959 6960
    if (!kvm_enabled()) {
        cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
    }
}
6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981

/* Return the exception level which controls this address translation regime */
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S2NS:
    case ARMMMUIdx_S1E2:
        return 2;
    case ARMMMUIdx_S1E3:
        return 3;
    case ARMMMUIdx_S1SE0:
        return arm_el_is_aa64(env, 3) ? 1 : 3;
    case ARMMMUIdx_S1SE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
        return 1;
    default:
        g_assert_not_reached();
    }
}

6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001
/* Return true if this address translation regime is secure */
static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
    case ARMMMUIdx_S1E2:
    case ARMMMUIdx_S2NS:
        return false;
    case ARMMMUIdx_S1E3:
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1SE1:
        return true;
    default:
        g_assert_not_reached();
    }
}

7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017
/* Return the SCTLR value which controls this address translation regime */
static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}

/* Return true if the specified stage of address translation is disabled */
static inline bool regime_translation_disabled(CPUARMState *env,
                                               ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
        return (env->cp15.hcr_el2 & HCR_VM) == 0;
    }
    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}

7018 7019 7020 7021 7022 7023
static inline bool regime_translation_big_endian(CPUARMState *env,
                                                 ARMMMUIdx mmu_idx)
{
    return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
}

7024 7025 7026 7027
/* Return the TCR controlling this translation regime */
static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
E
Edgar E. Iglesias 已提交
7028
        return &env->cp15.vtcr_el2;
7029 7030 7031 7032
    }
    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
}

7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078
/* Returns TBI0 value for current regime el */
uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    TCR *tcr;
    uint32_t el;

    /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
       * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
       */
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        mmu_idx += ARMMMUIdx_S1NSE0;
    }

    tcr = regime_tcr(env, mmu_idx);
    el = regime_el(env, mmu_idx);

    if (el > 1) {
        return extract64(tcr->raw_tcr, 20, 1);
    } else {
        return extract64(tcr->raw_tcr, 37, 1);
    }
}

/* Returns TBI1 value for current regime el */
uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    TCR *tcr;
    uint32_t el;

    /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
       * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
       */
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        mmu_idx += ARMMMUIdx_S1NSE0;
    }

    tcr = regime_tcr(env, mmu_idx);
    el = regime_el(env, mmu_idx);

    if (el > 1) {
        return 0;
    } else {
        return extract64(tcr->raw_tcr, 38, 1);
    }
}

7079 7080 7081 7082 7083
/* Return the TTBR associated with this translation regime */
static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
                                   int ttbrn)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
E
Edgar E. Iglesias 已提交
7084
        return env->cp15.vttbr_el2;
7085 7086 7087 7088 7089 7090 7091 7092
    }
    if (ttbrn == 0) {
        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
    } else {
        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
    }
}

7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107
/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env,
                                            ARMMMUIdx mmu_idx)
{
    int el = regime_el(env, mmu_idx);
    if (el == 2 || arm_el_is_aa64(env, el)) {
        return true;
    }
    if (arm_feature(env, ARM_FEATURE_LPAE)
        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
        return true;
    }
    return false;
}

7108 7109 7110 7111
/* Returns true if the stage 1 translation regime is using LPAE format page
 * tables. Used when raising alignment exceptions, whose FSR changes depending
 * on whether the long or short descriptor format is in use. */
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
7112
{
7113 7114 7115 7116
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        mmu_idx += ARMMMUIdx_S1NSE0;
    }

7117 7118 7119
    return regime_using_lpae_format(env, mmu_idx);
}

7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133
static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1NSE0:
        return true;
    default:
        return false;
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
        g_assert_not_reached();
    }
}

7134 7135
/* Translate section/page access permissions to page
 * R/W protection flags
7136 7137 7138 7139 7140
 *
 * @env:         CPUARMState
 * @mmu_idx:     MMU index indicating required translation regime
 * @ap:          The 3-bit access permissions (AP[2:0])
 * @domain_prot: The 2-bit domain access permissions
7141 7142 7143 7144
 */
static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
                                int ap, int domain_prot)
{
7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166
    bool is_user = regime_is_user(env, mmu_idx);

    if (domain_prot == 3) {
        return PAGE_READ | PAGE_WRITE;
    }

    switch (ap) {
    case 0:
        if (arm_feature(env, ARM_FEATURE_V7)) {
            return 0;
        }
        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
        case SCTLR_S:
            return is_user ? 0 : PAGE_READ;
        case SCTLR_R:
            return PAGE_READ;
        default:
            return 0;
        }
    case 1:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 2:
7167
        if (is_user) {
7168
            return PAGE_READ;
7169
        } else {
7170
            return PAGE_READ | PAGE_WRITE;
7171
        }
7172 7173 7174 7175 7176
    case 3:
        return PAGE_READ | PAGE_WRITE;
    case 4: /* Reserved.  */
        return 0;
    case 5:
7177
        return is_user ? 0 : PAGE_READ;
7178
    case 6:
7179
        return PAGE_READ;
7180
    case 7:
7181
        if (!arm_feature(env, ARM_FEATURE_V6K)) {
7182
            return 0;
7183
        }
7184
        return PAGE_READ;
7185
    default:
7186
        g_assert_not_reached();
7187
    }
B
bellard 已提交
7188 7189
}

7190 7191 7192 7193
/* Translate section/page access permissions to page
 * R/W protection flags.
 *
 * @ap:      The 2-bit simple AP (AP[2:1])
7194
 * @is_user: TRUE if accessing from PL0
7195
 */
7196
static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211
{
    switch (ap) {
    case 0:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 1:
        return PAGE_READ | PAGE_WRITE;
    case 2:
        return is_user ? 0 : PAGE_READ;
    case 3:
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

7212 7213 7214 7215 7216 7217
static inline int
simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
{
    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
}

7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234
/* Translate S2 section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @s2ap:    The 2-bit stage2 access permissions (S2AP)
 * @xn:      XN (execute-never) bit
 */
static int get_S2prot(CPUARMState *env, int s2ap, int xn)
{
    int prot = 0;

    if (s2ap & 1) {
        prot |= PAGE_READ;
    }
    if (s2ap & 2) {
        prot |= PAGE_WRITE;
    }
    if (!xn) {
7235 7236 7237
        if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
            prot |= PAGE_EXEC;
        }
7238 7239 7240 7241
    }
    return prot;
}

7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322
/* Translate section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @mmu_idx: MMU index indicating required translation regime
 * @is_aa64: TRUE if AArch64
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @ns:      NS (non-secure) bit
 * @xn:      XN (execute-never) bit
 * @pxn:     PXN (privileged execute-never) bit
 */
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
                      int ap, int ns, int xn, int pxn)
{
    bool is_user = regime_is_user(env, mmu_idx);
    int prot_rw, user_rw;
    bool have_wxn;
    int wxn = 0;

    assert(mmu_idx != ARMMMUIdx_S2NS);

    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
    if (is_user) {
        prot_rw = user_rw;
    } else {
        prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
    }

    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
        return prot_rw;
    }

    /* TODO have_wxn should be replaced with
     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
     * compatible processors have EL2, which is required for [U]WXN.
     */
    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);

    if (have_wxn) {
        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
    }

    if (is_aa64) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
            if (!is_user) {
                xn = pxn || (user_rw & PAGE_WRITE);
            }
            break;
        case 2:
        case 3:
            break;
        }
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
        case 3:
            if (is_user) {
                xn = xn || !(user_rw & PAGE_READ);
            } else {
                int uwxn = 0;
                if (have_wxn) {
                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
                }
                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
                     (uwxn && (user_rw & PAGE_WRITE));
            }
            break;
        case 2:
            break;
        }
    } else {
        xn = wxn = 0;
    }

    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
        return prot_rw;
    }
    return prot_rw | PAGE_EXEC;
}

7323 7324
static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
                                     uint32_t *table, uint32_t address)
7325
{
7326 7327
    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
    TCR *tcr = regime_tcr(env, mmu_idx);
F
Fabian Aggeler 已提交
7328 7329 7330

    if (address & tcr->mask) {
        if (tcr->raw_tcr & TTBCR_PD1) {
7331 7332 7333
            /* Translation table walk disabled for TTBR1 */
            return false;
        }
7334
        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
7335
    } else {
F
Fabian Aggeler 已提交
7336
        if (tcr->raw_tcr & TTBCR_PD0) {
7337 7338 7339
            /* Translation table walk disabled for TTBR0 */
            return false;
        }
7340
        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
7341 7342 7343
    }
    *table |= (address >> 18) & 0x3ffc;
    return true;
7344 7345
}

7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371
/* Translate a S1 pagetable walk through S2 if needed.  */
static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
                               hwaddr addr, MemTxAttrs txattrs,
                               uint32_t *fsr,
                               ARMMMUFaultInfo *fi)
{
    if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
        !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
        target_ulong s2size;
        hwaddr s2pa;
        int s2prot;
        int ret;

        ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
                                 &txattrs, &s2prot, &s2size, fsr, fi);
        if (ret) {
            fi->s2addr = addr;
            fi->stage2 = true;
            fi->s1ptw = true;
            return ~0;
        }
        addr = s2pa;
    }
    return addr;
}

7372 7373 7374 7375 7376 7377 7378
/* All loads done in the course of a page table walk go through here.
 * TODO: rather than ignoring errors from physical memory reads (which
 * are external aborts in ARM terminology) we should propagate this
 * error out so that we can turn it into a Data Abort if this walk
 * was being done for a CPU load/store or an address translation instruction
 * (but not if it was for a debug access).
 */
7379 7380 7381
static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
                            ARMMMUIdx mmu_idx, uint32_t *fsr,
                            ARMMMUFaultInfo *fi)
7382
{
7383 7384
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
7385
    MemTxAttrs attrs = {};
7386
    AddressSpace *as;
7387 7388

    attrs.secure = is_secure;
7389
    as = arm_addressspace(cs, attrs);
7390 7391 7392 7393
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
    if (fi->s1ptw) {
        return 0;
    }
7394 7395 7396 7397 7398
    if (regime_translation_big_endian(env, mmu_idx)) {
        return address_space_ldl_be(as, addr, attrs, NULL);
    } else {
        return address_space_ldl_le(as, addr, attrs, NULL);
    }
7399 7400
}

7401 7402 7403
static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
                            ARMMMUIdx mmu_idx, uint32_t *fsr,
                            ARMMMUFaultInfo *fi)
7404
{
7405 7406
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
7407
    MemTxAttrs attrs = {};
7408
    AddressSpace *as;
7409 7410

    attrs.secure = is_secure;
7411
    as = arm_addressspace(cs, attrs);
7412 7413 7414 7415
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
    if (fi->s1ptw) {
        return 0;
    }
7416 7417 7418 7419 7420
    if (regime_translation_big_endian(env, mmu_idx)) {
        return address_space_ldq_be(as, addr, attrs, NULL);
    } else {
        return address_space_ldq_le(as, addr, attrs, NULL);
    }
7421 7422
}

7423 7424 7425
static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
                             int access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, int *prot,
7426 7427
                             target_ulong *page_size, uint32_t *fsr,
                             ARMMMUFaultInfo *fi)
B
bellard 已提交
7428
{
7429
    CPUState *cs = CPU(arm_env_get_cpu(env));
B
bellard 已提交
7430 7431 7432 7433 7434
    int code;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
7435
    int domain = 0;
7436
    int domain_prot;
A
Avi Kivity 已提交
7437
    hwaddr phys_addr;
7438
    uint32_t dacr;
B
bellard 已提交
7439

P
pbrook 已提交
7440 7441
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
7442
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7443 7444 7445 7446
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
7447 7448
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                       mmu_idx, fsr, fi);
P
pbrook 已提交
7449
    type = (desc & 3);
7450
    domain = (desc >> 5) & 0x0f;
7451 7452 7453 7454 7455 7456
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
P
pbrook 已提交
7457
    if (type == 0) {
7458
        /* Section translation fault.  */
P
pbrook 已提交
7459 7460 7461
        code = 5;
        goto do_fault;
    }
7462
    if (domain_prot == 0 || domain_prot == 2) {
P
pbrook 已提交
7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
        if (type == 2)
            code = 9; /* Section domain fault.  */
        else
            code = 11; /* Page domain fault.  */
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        code = 13;
P
Paul Brook 已提交
7474
        *page_size = 1024 * 1024;
P
pbrook 已提交
7475 7476
    } else {
        /* Lookup l2 entry.  */
7477 7478 7479 7480 7481 7482 7483
        if (type == 1) {
            /* Coarse pagetable.  */
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        } else {
            /* Fine pagetable.  */
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
        }
7484 7485
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                           mmu_idx, fsr, fi);
P
pbrook 已提交
7486 7487 7488 7489 7490 7491 7492
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
7493
            *page_size = 0x10000;
P
pbrook 已提交
7494
            break;
P
pbrook 已提交
7495 7496
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7497
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
P
Paul Brook 已提交
7498
            *page_size = 0x1000;
P
pbrook 已提交
7499
            break;
7500
        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
7501
            if (type == 1) {
7502 7503 7504
                /* ARMv6/XScale extended small page format */
                if (arm_feature(env, ARM_FEATURE_XSCALE)
                    || arm_feature(env, ARM_FEATURE_V6)) {
7505
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
7506
                    *page_size = 0x1000;
7507
                } else {
7508 7509 7510
                    /* UNPREDICTABLE in ARMv5; we choose to take a
                     * page translation fault.
                     */
7511 7512 7513 7514 7515
                    code = 7;
                    goto do_fault;
                }
            } else {
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
7516
                *page_size = 0x400;
7517
            }
P
pbrook 已提交
7518
            ap = (desc >> 4) & 3;
P
pbrook 已提交
7519 7520
            break;
        default:
P
pbrook 已提交
7521 7522
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
7523
        }
P
pbrook 已提交
7524 7525
        code = 15;
    }
7526 7527 7528
    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
    *prot |= *prot ? PAGE_EXEC : 0;
    if (!(*prot & (1 << access_type))) {
P
pbrook 已提交
7529 7530 7531 7532
        /* Access permission fault.  */
        goto do_fault;
    }
    *phys_ptr = phys_addr;
7533
    return false;
P
pbrook 已提交
7534
do_fault:
7535 7536
    *fsr = code | (domain << 4);
    return true;
P
pbrook 已提交
7537 7538
}

7539 7540 7541
static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
                             int access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
7542 7543
                             target_ulong *page_size, uint32_t *fsr,
                             ARMMMUFaultInfo *fi)
P
pbrook 已提交
7544
{
7545
    CPUState *cs = CPU(arm_env_get_cpu(env));
P
pbrook 已提交
7546 7547 7548 7549
    int code;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
7550
    uint32_t pxn = 0;
P
pbrook 已提交
7551 7552
    int type;
    int ap;
7553
    int domain = 0;
7554
    int domain_prot;
A
Avi Kivity 已提交
7555
    hwaddr phys_addr;
7556
    uint32_t dacr;
7557
    bool ns;
P
pbrook 已提交
7558 7559 7560

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
7561
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
7562 7563 7564 7565
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        code = 5;
        goto do_fault;
    }
7566 7567
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                       mmu_idx, fsr, fi);
P
pbrook 已提交
7568
    type = (desc & 3);
7569 7570 7571 7572
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
P
pbrook 已提交
7573 7574
        code = 5;
        goto do_fault;
7575 7576 7577
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
7578
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
7579
    }
7580 7581 7582 7583 7584 7585
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
7586
    if (domain_prot == 0 || domain_prot == 2) {
7587
        if (type != 1) {
P
pbrook 已提交
7588
            code = 9; /* Section domain fault.  */
7589
        } else {
P
pbrook 已提交
7590
            code = 11; /* Page domain fault.  */
7591
        }
P
pbrook 已提交
7592 7593
        goto do_fault;
    }
7594
    if (type != 1) {
P
pbrook 已提交
7595 7596 7597
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
7598 7599
            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
P
Paul Brook 已提交
7600
            *page_size = 0x1000000;
B
bellard 已提交
7601
        } else {
P
pbrook 已提交
7602 7603
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
7604
            *page_size = 0x100000;
B
bellard 已提交
7605
        }
P
pbrook 已提交
7606 7607
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
7608
        pxn = desc & 1;
P
pbrook 已提交
7609
        code = 13;
7610
        ns = extract32(desc, 19, 1);
P
pbrook 已提交
7611
    } else {
7612 7613 7614
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
7615
        ns = extract32(desc, 3, 1);
P
pbrook 已提交
7616 7617
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
7618 7619
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
                           mmu_idx, fsr, fi);
P
pbrook 已提交
7620 7621 7622 7623
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            code = 7;
B
bellard 已提交
7624
            goto do_fault;
P
pbrook 已提交
7625 7626 7627
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
7628
            *page_size = 0x10000;
P
pbrook 已提交
7629 7630 7631 7632
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
7633
            *page_size = 0x1000;
P
pbrook 已提交
7634 7635 7636 7637
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
B
bellard 已提交
7638
        }
P
pbrook 已提交
7639 7640
        code = 15;
    }
7641
    if (domain_prot == 3) {
7642 7643
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
7644
        if (pxn && !regime_is_user(env, mmu_idx)) {
7645 7646
            xn = 1;
        }
7647 7648
        if (xn && access_type == 2)
            goto do_fault;
P
pbrook 已提交
7649

7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660
        if (arm_feature(env, ARM_FEATURE_V6K) &&
                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
            /* The simplified model uses AP[0] as an access control bit.  */
            if ((ap & 1) == 0) {
                /* Access flag fault.  */
                code = (code == 15) ? 6 : 3;
                goto do_fault;
            }
            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
        } else {
            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
7661
        }
7662 7663 7664 7665
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        if (!(*prot & (1 << access_type))) {
7666 7667 7668
            /* Access permission fault.  */
            goto do_fault;
        }
7669
    }
7670 7671 7672 7673 7674 7675 7676
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        attrs->secure = false;
    }
P
pbrook 已提交
7677
    *phys_ptr = phys_addr;
7678
    return false;
B
bellard 已提交
7679
do_fault:
7680 7681
    *fsr = code | (domain << 4);
    return true;
B
bellard 已提交
7682 7683
}

7684 7685 7686 7687 7688 7689 7690 7691 7692
/* Fault type for long-descriptor MMU fault reporting; this corresponds
 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 */
typedef enum {
    translation_fault = 1,
    access_fault = 2,
    permission_fault = 3,
} MMUFaultType;

7693
/*
7694
 * check_s2_mmu_setup
7695 7696 7697 7698 7699 7700
 * @cpu:        ARMCPU
 * @is_aa64:    True if the translation regime is in AArch64 state
 * @startlevel: Suggested starting level
 * @inputsize:  Bitsize of IPAs
 * @stride:     Page-table stride (See the ARM ARM)
 *
7701 7702
 * Returns true if the suggested S2 translation parameters are OK and
 * false otherwise.
7703
 */
7704 7705
static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
                               int inputsize, int stride)
7706
{
7707 7708 7709
    const int grainsize = stride + 3;
    int startsizecheck;

7710 7711 7712 7713 7714
    /* Negative levels are never allowed.  */
    if (level < 0) {
        return false;
    }

7715 7716 7717 7718 7719
    startsizecheck = inputsize - ((3 - level) * stride + grainsize);
    if (startsizecheck < 1 || startsizecheck > stride + 4) {
        return false;
    }

7720
    if (is_aa64) {
7721
        CPUARMState *env = &cpu->env;
7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742
        unsigned int pamax = arm_pamax(cpu);

        switch (stride) {
        case 13: /* 64KB Pages.  */
            if (level == 0 || (level == 1 && pamax <= 42)) {
                return false;
            }
            break;
        case 11: /* 16KB Pages.  */
            if (level == 0 || (level == 1 && pamax <= 40)) {
                return false;
            }
            break;
        case 9: /* 4KB Pages.  */
            if (level == 0 && pamax <= 42) {
                return false;
            }
            break;
        default:
            g_assert_not_reached();
        }
7743 7744 7745 7746 7747 7748 7749

        /* Inputsize checks.  */
        if (inputsize > pamax &&
            (arm_el_is_aa64(env, 1) || inputsize > 40)) {
            /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
            return false;
        }
7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760
    } else {
        /* AArch32 only supports 4KB pages. Assert on that.  */
        assert(stride == 9);

        if (level == 0) {
            return false;
        }
    }
    return true;
}

7761 7762 7763
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
                               int access_type, ARMMMUIdx mmu_idx,
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
7764 7765
                               target_ulong *page_size_ptr, uint32_t *fsr,
                               ARMMMUFaultInfo *fi)
7766
{
7767 7768
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
7769 7770
    /* Read an LPAE long-descriptor translation table. */
    MMUFaultType fault_type = translation_fault;
7771
    uint32_t level;
7772
    uint32_t epd = 0;
7773
    int32_t t0sz, t1sz;
7774
    uint32_t tg;
7775 7776
    uint64_t ttbr;
    int ttbr_select;
7777
    hwaddr descaddr, indexmask, indexmask_grainsize;
7778 7779 7780
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
7781
    int32_t stride = 9;
7782
    int32_t addrsize;
7783
    int inputsize;
7784
    int32_t tbi = 0;
7785
    TCR *tcr = regime_tcr(env, mmu_idx);
7786
    int ap, ns, xn, pxn;
7787 7788
    uint32_t el = regime_el(env, mmu_idx);
    bool ttbr1_valid = true;
7789
    uint64_t descaddrmask;
7790
    bool aarch64 = arm_el_is_aa64(env, el);
7791 7792

    /* TODO:
7793 7794 7795 7796
     * This code does not handle the different format TCR for VTCR_EL2.
     * This code also does not support shareability levels.
     * Attribute and permission bit handling should also be checked when adding
     * support for those page table walks.
7797
     */
7798
    if (aarch64) {
7799
        level = 0;
7800
        addrsize = 64;
7801
        if (el > 1) {
7802 7803 7804
            if (mmu_idx != ARMMMUIdx_S2NS) {
                tbi = extract64(tcr->raw_tcr, 20, 1);
            }
7805 7806 7807 7808 7809 7810 7811
        } else {
            if (extract64(address, 55, 1)) {
                tbi = extract64(tcr->raw_tcr, 38, 1);
            } else {
                tbi = extract64(tcr->raw_tcr, 37, 1);
            }
        }
7812
        tbi *= 8;
7813 7814 7815 7816 7817 7818 7819

        /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
         * invalid.
         */
        if (el > 1) {
            ttbr1_valid = false;
        }
7820
    } else {
7821
        level = 1;
7822
        addrsize = 32;
7823 7824 7825 7826
        /* There is no TTBR1 for EL2 */
        if (el == 2) {
            ttbr1_valid = false;
        }
7827
    }
7828 7829 7830 7831 7832 7833

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
7834
    if (aarch64) {
7835 7836
        /* AArch64 translation.  */
        t0sz = extract32(tcr->raw_tcr, 0, 6);
7837 7838
        t0sz = MIN(t0sz, 39);
        t0sz = MAX(t0sz, 16);
7839 7840 7841 7842 7843 7844 7845
    } else if (mmu_idx != ARMMMUIdx_S2NS) {
        /* AArch32 stage 1 translation.  */
        t0sz = extract32(tcr->raw_tcr, 0, 3);
    } else {
        /* AArch32 stage 2 translation.  */
        bool sext = extract32(tcr->raw_tcr, 4, 1);
        bool sign = extract32(tcr->raw_tcr, 3, 1);
7846 7847 7848 7849 7850 7851
        /* Address size is 40-bit for a stage 2 translation,
         * and t0sz can be negative (from -8 to 7),
         * so we need to adjust it to use the TTBR selecting logic below.
         */
        addrsize = 40;
        t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
7852 7853 7854 7855 7856

        /* If the sign-extend bit is not the same as t0sz[3], the result
         * is unpredictable. Flag this as a guest error.  */
        if (sign != sext) {
            qemu_log_mask(LOG_GUEST_ERROR,
M
Michael Tokarev 已提交
7857
                          "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
7858
        }
7859
    }
7860
    t1sz = extract32(tcr->raw_tcr, 16, 6);
7861
    if (aarch64) {
7862 7863 7864
        t1sz = MIN(t1sz, 39);
        t1sz = MAX(t1sz, 16);
    }
7865
    if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
7866 7867
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
7868
    } else if (ttbr1_valid && t1sz &&
7869
               !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
7870 7871 7872 7873 7874
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
7875
    } else if (!t1sz && ttbr1_valid) {
7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
        fault_type = translation_fault;
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
7892
        ttbr = regime_ttbr(env, mmu_idx, 0);
7893 7894 7895
        if (el < 2) {
            epd = extract32(tcr->raw_tcr, 7, 1);
        }
7896
        inputsize = addrsize - t0sz;
7897

F
Fabian Aggeler 已提交
7898
        tg = extract32(tcr->raw_tcr, 14, 2);
7899
        if (tg == 1) { /* 64KB pages */
7900
            stride = 13;
7901 7902
        }
        if (tg == 2) { /* 16KB pages */
7903
            stride = 11;
7904
        }
7905
    } else {
7906 7907 7908
        /* We should only be here if TTBR1 is valid */
        assert(ttbr1_valid);

7909
        ttbr = regime_ttbr(env, mmu_idx, 1);
F
Fabian Aggeler 已提交
7910
        epd = extract32(tcr->raw_tcr, 23, 1);
7911
        inputsize = addrsize - t1sz;
7912

F
Fabian Aggeler 已提交
7913
        tg = extract32(tcr->raw_tcr, 30, 2);
7914
        if (tg == 3)  { /* 64KB pages */
7915
            stride = 13;
7916 7917
        }
        if (tg == 1) { /* 16KB pages */
7918
            stride = 11;
7919
        }
7920 7921
    }

7922
    /* Here we should have set up all the parameters for the translation:
7923
     * inputsize, ttbr, epd, stride, tbi
7924 7925
     */

7926
    if (epd) {
7927 7928 7929
        /* Translation table walk disabled => Translation fault on TLB miss
         * Note: This is always 0 on 64-bit EL2 and EL3.
         */
7930 7931 7932
        goto do_fault;
    }

7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949
    if (mmu_idx != ARMMMUIdx_S2NS) {
        /* The starting level depends on the virtual address size (which can
         * be up to 48 bits) and the translation granule size. It indicates
         * the number of strides (stride bits at a time) needed to
         * consume the bits of the input address. In the pseudocode this is:
         *  level = 4 - RoundUp((inputsize - grainsize) / stride)
         * where their 'inputsize' is our 'inputsize', 'grainsize' is
         * our 'stride + 3' and 'stride' is our 'stride'.
         * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
         * = 4 - (inputsize - stride - 3 + stride - 1) / stride
         * = 4 - (inputsize - 4) / stride;
         */
        level = 4 - (inputsize - 4) / stride;
    } else {
        /* For stage 2 translations the starting level is specified by the
         * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
         */
7950 7951
        uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
        uint32_t startlevel;
7952 7953
        bool ok;

7954
        if (!aarch64 || stride == 9) {
7955
            /* AArch32 or 4KB pages */
7956
            startlevel = 2 - sl0;
7957 7958
        } else {
            /* 16KB or 64KB pages */
7959
            startlevel = 3 - sl0;
7960 7961 7962
        }

        /* Check that the starting level is valid. */
7963
        ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
7964
                                inputsize, stride);
7965 7966 7967 7968
        if (!ok) {
            fault_type = translation_fault;
            goto do_fault;
        }
7969
        level = startlevel;
7970
    }
7971

7972 7973
    indexmask_grainsize = (1ULL << (stride + 3)) - 1;
    indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
7974 7975

    /* Now we can extract the actual base address from the TTBR */
7976
    descaddr = extract64(ttbr, 0, 48);
7977
    descaddr &= ~indexmask;
7978

7979
    /* The address field in the descriptor goes up to bit 39 for ARMv7
7980 7981 7982
     * but up to bit 47 for ARMv8, but we use the descaddrmask
     * up to bit 39 for AArch32, because we don't need other bits in that case
     * to construct next descriptor address (anyway they should be all zeroes).
7983
     */
7984
    descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
7985
                   ~indexmask_grainsize;
7986

7987 7988 7989 7990 7991 7992
    /* Secure accesses start with the page table in secure memory and
     * can be downgraded to non-secure at any step. Non-secure accesses
     * remain non-secure. We implement this by just ORing in the NSTable/NS
     * bits at each step.
     */
    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
7993 7994
    for (;;) {
        uint64_t descriptor;
7995
        bool nstable;
7996

7997
        descaddr |= (address >> (stride * (4 - level))) & indexmask;
7998
        descaddr &= ~7ULL;
7999
        nstable = extract32(tableattrs, 4, 1);
8000 8001 8002 8003 8004
        descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
        if (fi->s1ptw) {
            goto do_fault;
        }

8005 8006 8007 8008 8009
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
8010
        descaddr = descriptor & descaddrmask;
8011 8012 8013 8014 8015 8016 8017 8018 8019

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
8020
            indexmask = indexmask_grainsize;
8021 8022 8023 8024 8025 8026
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
8027
        page_size = (1ULL << ((stride * (4 - level)) + 3));
8028
        descaddr |= (address & (page_size - 1));
8029
        /* Extract attributes from the descriptor */
8030 8031
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);
8032 8033 8034 8035 8036 8037

        if (mmu_idx == ARMMMUIdx_S2NS) {
            /* Stage 2 table descriptors do not include any attribute fields */
            break;
        }
        /* Merge in attributes from table descriptors */
8038 8039 8040 8041 8042 8043 8044 8045
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
8046
        attrs |= nstable << 3; /* NS */
8047 8048 8049 8050 8051 8052 8053 8054 8055 8056
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = access_fault;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
8057 8058 8059 8060

    ap = extract32(attrs, 4, 2);
    xn = extract32(attrs, 12, 1);

8061 8062 8063 8064 8065 8066
    if (mmu_idx == ARMMMUIdx_S2NS) {
        ns = true;
        *prot = get_S2prot(env, ap, xn);
    } else {
        ns = extract32(attrs, 3, 1);
        pxn = extract32(attrs, 11, 1);
8067
        *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
8068
    }
8069

8070
    fault_type = permission_fault;
8071
    if (!(*prot & (1 << access_type))) {
8072 8073 8074
        goto do_fault;
    }

8075 8076 8077 8078 8079 8080 8081
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        txattrs->secure = false;
    }
8082 8083
    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
8084
    return false;
8085 8086 8087

do_fault:
    /* Long-descriptor format IFSR/DFSR value */
8088
    *fsr = (1 << 9) | (fault_type << 2) | level;
8089 8090
    /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
    fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
8091
    return true;
8092 8093
}

8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254
static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
                                                ARMMMUIdx mmu_idx,
                                                int32_t address, int *prot)
{
    *prot = PAGE_READ | PAGE_WRITE;
    switch (address) {
    case 0xF0000000 ... 0xFFFFFFFF:
        if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
            *prot |= PAGE_EXEC;
        }
        break;
    case 0x00000000 ... 0x7FFFFFFF:
        *prot |= PAGE_EXEC;
        break;
    }

}

static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int n;
    bool is_user = regime_is_user(env, mmu_idx);

    *phys_ptr = address;
    *prot = 0;

    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
    } else { /* MPU enabled */
        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
            /* region search */
            uint32_t base = env->pmsav7.drbar[n];
            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
            uint32_t rmask;
            bool srdis = false;

            if (!(env->pmsav7.drsr[n] & 0x1)) {
                continue;
            }

            if (!rsize) {
                qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
                continue;
            }
            rsize++;
            rmask = (1ull << rsize) - 1;

            if (base & rmask) {
                qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
                              "to DRSR region size, mask = %" PRIx32,
                              base, rmask);
                continue;
            }

            if (address < base || address > base + rmask) {
                continue;
            }

            /* Region matched */

            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
                int i, snd;
                uint32_t srdis_mask;

                rsize -= 3; /* sub region size (power of 2) */
                snd = ((address - base) >> rsize) & 0x7;
                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);

                srdis_mask = srdis ? 0x3 : 0x0;
                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
                    /* This will check in groups of 2, 4 and then 8, whether
                     * the subregion bits are consistent. rsize is incremented
                     * back up to give the region size, considering consistent
                     * adjacent subregions as one region. Stop testing if rsize
                     * is already big enough for an entire QEMU page.
                     */
                    int snd_rounded = snd & ~(i - 1);
                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
                                                     snd_rounded + 8, i);
                    if (srdis_mask ^ srdis_multi) {
                        break;
                    }
                    srdis_mask = (srdis_mask << i) | srdis_mask;
                    rsize++;
                }
            }
            if (rsize < TARGET_PAGE_BITS) {
                qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
                              "alignment of %" PRIu32 " bits. Minimum is %d\n",
                              rsize, TARGET_PAGE_BITS);
                continue;
            }
            if (srdis) {
                continue;
            }
            break;
        }

        if (n == -1) { /* no hits */
            if (cpu->pmsav7_dregion &&
                (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
                /* background fault */
                *fsr = 0;
                return true;
            }
            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
        } else { /* a MPU hit! */
            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);

            if (is_user) { /* User mode AP bit decoding */
                switch (ap) {
                case 0:
                case 1:
                case 5:
                    break; /* no access */
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 2:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "Bad value for AP bits in DRACR %"
                                  PRIx32 "\n", ap);
                }
            } else { /* Priv. mode AP bits decoding */
                switch (ap) {
                case 0:
                    break; /* no access */
                case 1:
                case 2:
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 5:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "Bad value for AP bits in DRACR %"
                                  PRIx32 "\n", ap);
                }
            }

            /* execute never */
            if (env->pmsav7.dracr[n] & (1 << 12)) {
                *prot &= ~PAGE_EXEC;
            }
        }
    }

    *fsr = 0x00d; /* Permission fault */
    return !(*prot & (1 << access_type));
}

8255 8256 8257
static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
                                 int access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot, uint32_t *fsr)
P
pbrook 已提交
8258 8259 8260 8261
{
    int n;
    uint32_t mask;
    uint32_t base;
8262
    bool is_user = regime_is_user(env, mmu_idx);
P
pbrook 已提交
8263 8264 8265

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
8266
        base = env->cp15.c6_region[n];
8267
        if ((base & 1) == 0) {
8268
            continue;
8269
        }
8270 8271 8272 8273
        mask = 1 << ((base >> 1) & 0x1f);
        /* Keep this shift separate from the above to avoid an
           (undefined) << 32.  */
        mask = (mask << 1) - 1;
8274
        if (((base ^ address) & ~mask) == 0) {
8275
            break;
8276
        }
P
pbrook 已提交
8277
    }
8278
    if (n < 0) {
8279 8280
        *fsr = 2;
        return true;
8281
    }
P
pbrook 已提交
8282 8283

    if (access_type == 2) {
8284
        mask = env->cp15.pmsav5_insn_ap;
P
pbrook 已提交
8285
    } else {
8286
        mask = env->cp15.pmsav5_data_ap;
P
pbrook 已提交
8287 8288 8289 8290
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
8291 8292
        *fsr = 1;
        return true;
P
pbrook 已提交
8293
    case 1:
8294
        if (is_user) {
8295 8296
            *fsr = 1;
            return true;
8297
        }
8298 8299
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
8300
    case 2:
8301
        *prot = PAGE_READ;
8302
        if (!is_user) {
8303
            *prot |= PAGE_WRITE;
8304
        }
8305
        break;
P
pbrook 已提交
8306
    case 3:
8307 8308
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
8309
    case 5:
8310
        if (is_user) {
8311 8312
            *fsr = 1;
            return true;
8313
        }
8314 8315
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
8316
    case 6:
8317 8318
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
8319
    default:
8320
        /* Bad permission.  */
8321 8322
        *fsr = 1;
        return true;
P
pbrook 已提交
8323
    }
8324
    *prot |= PAGE_EXEC;
8325
    return false;
P
pbrook 已提交
8326 8327
}

8328 8329 8330 8331 8332 8333
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
8334 8335
 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 * prot and page_size may not be filled in, and the populated fsr value provides
8336 8337 8338 8339
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
8340
 *  * for PSMAv5 based systems we don't bother to return a full FSR format
8341 8342 8343 8344 8345
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
8346
 * @mmu_idx: MMU index indicating required translation regime
8347
 * @phys_ptr: set to the physical address corresponding to the virtual address
8348
 * @attrs: set to the memory transaction attributes to use
8349 8350
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
8351
 * @fsr: set to the DFSR/IFSR value on failure
8352
 */
8353 8354 8355
static bool get_phys_addr(CPUARMState *env, target_ulong address,
                          int access_type, ARMMMUIdx mmu_idx,
                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8356 8357
                          target_ulong *page_size, uint32_t *fsr,
                          ARMMMUFaultInfo *fi)
P
pbrook 已提交
8358
{
8359
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
8360 8361
        /* Call ourselves recursively to do the stage 1 and then stage 2
         * translations.
8362
         */
8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391
        if (arm_feature(env, ARM_FEATURE_EL2)) {
            hwaddr ipa;
            int s2_prot;
            int ret;

            ret = get_phys_addr(env, address, access_type,
                                mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
                                prot, page_size, fsr, fi);

            /* If S1 fails or S2 is disabled, return early.  */
            if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
                *phys_ptr = ipa;
                return ret;
            }

            /* S1 is done. Now do S2 translation.  */
            ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
                                     phys_ptr, attrs, &s2_prot,
                                     page_size, fsr, fi);
            fi->s2addr = ipa;
            /* Combine the S1 and S2 perms.  */
            *prot &= s2_prot;
            return ret;
        } else {
            /*
             * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
             */
            mmu_idx += ARMMMUIdx_S1NSE0;
        }
8392
    }
8393

8394 8395 8396 8397 8398
    /* The page table entries may downgrade secure to non-secure, but
     * cannot upgrade an non-secure translation regime's attributes
     * to secure.
     */
    attrs->secure = regime_is_secure(env, mmu_idx);
8399
    attrs->user = regime_is_user(env, mmu_idx);
8400

8401 8402 8403 8404 8405 8406 8407 8408 8409 8410
    /* Fast Context Switch Extension. This doesn't exist at all in v8.
     * In v7 and earlier it affects all stage 1 translations.
     */
    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
        && !arm_feature(env, ARM_FEATURE_V8)) {
        if (regime_el(env, mmu_idx) == 3) {
            address += env->cp15.fcseidr_s;
        } else {
            address += env->cp15.fcseidr_ns;
        }
8411
    }
P
pbrook 已提交
8412

8413 8414 8415 8416 8417 8418 8419 8420 8421 8422
    /* pmsav7 has special handling for when MPU is disabled so call it before
     * the common MMU/MPU disabled check below.
     */
    if (arm_feature(env, ARM_FEATURE_MPU) &&
        arm_feature(env, ARM_FEATURE_V7)) {
        *page_size = TARGET_PAGE_SIZE;
        return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
                                    phys_ptr, prot, fsr);
    }

8423
    if (regime_translation_disabled(env, mmu_idx)) {
P
pbrook 已提交
8424 8425
        /* MMU/MPU disabled.  */
        *phys_ptr = address;
8426
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
8427
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
8428
        return 0;
8429 8430 8431
    }

    if (arm_feature(env, ARM_FEATURE_MPU)) {
8432
        /* Pre-v7 MPU */
P
Paul Brook 已提交
8433
        *page_size = TARGET_PAGE_SIZE;
8434 8435
        return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
                                    phys_ptr, prot, fsr);
8436 8437 8438 8439
    }

    if (regime_using_lpae_format(env, mmu_idx)) {
        return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
8440
                                  attrs, prot, page_size, fsr, fi);
8441 8442
    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
        return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
8443
                                attrs, prot, page_size, fsr, fi);
P
pbrook 已提交
8444
    } else {
8445
        return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
8446
                                prot, page_size, fsr, fi);
P
pbrook 已提交
8447 8448 8449
    }
}

8450
/* Walk the page table and (if the mapping exists) add the page
8451 8452
 * to the TLB. Return false on success, or true on failure. Populate
 * fsr with ARM DFSR/IFSR fault register format value on failure.
8453
 */
8454
bool arm_tlb_fill(CPUState *cs, vaddr address,
8455 8456
                  int access_type, int mmu_idx, uint32_t *fsr,
                  ARMMMUFaultInfo *fi)
B
bellard 已提交
8457
{
8458 8459
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
8460
    hwaddr phys_addr;
P
Paul Brook 已提交
8461
    target_ulong page_size;
B
bellard 已提交
8462
    int prot;
8463
    int ret;
8464
    MemTxAttrs attrs = {};
B
bellard 已提交
8465

8466
    ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
8467
                        &attrs, &prot, &page_size, fsr, fi);
8468
    if (!ret) {
B
bellard 已提交
8469
        /* Map a single [sub]page.  */
8470 8471
        phys_addr &= TARGET_PAGE_MASK;
        address &= TARGET_PAGE_MASK;
8472 8473
        tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
                                prot, mmu_idx, page_size);
P
Paul Brook 已提交
8474
        return 0;
B
bellard 已提交
8475 8476
    }

8477
    return ret;
B
bellard 已提交
8478 8479
}

8480 8481
hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
                                         MemTxAttrs *attrs)
B
bellard 已提交
8482
{
8483
    ARMCPU *cpu = ARM_CPU(cs);
8484
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
8485
    hwaddr phys_addr;
P
Paul Brook 已提交
8486
    target_ulong page_size;
B
bellard 已提交
8487
    int prot;
8488 8489
    bool ret;
    uint32_t fsr;
8490
    ARMMMUFaultInfo fi = {};
B
bellard 已提交
8491

8492 8493
    *attrs = (MemTxAttrs) {};

8494
    ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
8495
                        attrs, &prot, &page_size, &fsr, &fi);
B
bellard 已提交
8496

8497
    if (ret) {
B
bellard 已提交
8498
        return -1;
8499
    }
B
bellard 已提交
8500 8501 8502
    return phys_addr;
}

8503
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
8504
{
8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528
    uint32_t mask;
    unsigned el = arm_current_el(env);

    /* First handle registers which unprivileged can read */

    switch (reg) {
    case 0 ... 7: /* xPSR sub-fields */
        mask = 0;
        if ((reg & 1) && el) {
            mask |= 0x000001ff; /* IPSR (unpriv. reads as zero) */
        }
        if (!(reg & 4)) {
            mask |= 0xf8000000; /* APSR */
        }
        /* EPSR reads as zero */
        return xpsr_read(env) & mask;
        break;
    case 20: /* CONTROL */
        return env->v7m.control;
    }

    if (el == 0) {
        return 0; /* unprivileged reads others as zero */
    }
8529

P
pbrook 已提交
8530 8531
    switch (reg) {
    case 8: /* MSP */
8532 8533
        return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
            env->v7m.other_sp : env->regs[13];
P
pbrook 已提交
8534
    case 9: /* PSP */
8535 8536
        return (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) ?
            env->regs[13] : env->v7m.other_sp;
P
pbrook 已提交
8537
    case 16: /* PRIMASK */
8538
        return (env->daif & PSTATE_I) != 0;
8539 8540
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
8541
        return env->v7m.basepri;
8542
    case 19: /* FAULTMASK */
8543
        return (env->daif & PSTATE_F) != 0;
P
pbrook 已提交
8544
    default:
8545 8546
        qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
                                       " register %d\n", reg);
P
pbrook 已提交
8547 8548 8549 8550
        return 0;
    }
}

8551
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
8552
{
8553 8554 8555 8556
    if (arm_current_el(env) == 0 && reg > 7) {
        /* only xPSR sub-fields may be written by unprivileged */
        return;
    }
8557

P
pbrook 已提交
8558
    switch (reg) {
8559 8560 8561 8562 8563
    case 0 ... 7: /* xPSR sub-fields */
        /* only APSR is actually writable */
        if (reg & 4) {
            xpsr_write(env, val, 0xf8000000); /* APSR */
        }
P
pbrook 已提交
8564 8565
        break;
    case 8: /* MSP */
8566
        if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
P
pbrook 已提交
8567
            env->v7m.other_sp = val;
8568
        } else {
P
pbrook 已提交
8569
            env->regs[13] = val;
8570
        }
P
pbrook 已提交
8571 8572
        break;
    case 9: /* PSP */
8573
        if (env->v7m.control & R_V7M_CONTROL_SPSEL_MASK) {
P
pbrook 已提交
8574
            env->regs[13] = val;
8575
        } else {
P
pbrook 已提交
8576
            env->v7m.other_sp = val;
8577
        }
P
pbrook 已提交
8578 8579
        break;
    case 16: /* PRIMASK */
8580 8581 8582 8583 8584
        if (val & 1) {
            env->daif |= PSTATE_I;
        } else {
            env->daif &= ~PSTATE_I;
        }
P
pbrook 已提交
8585
        break;
8586
    case 17: /* BASEPRI */
P
pbrook 已提交
8587 8588
        env->v7m.basepri = val & 0xff;
        break;
8589
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
8590 8591 8592 8593
        val &= 0xff;
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
            env->v7m.basepri = val;
        break;
8594
    case 19: /* FAULTMASK */
8595 8596 8597 8598 8599
        if (val & 1) {
            env->daif |= PSTATE_F;
        } else {
            env->daif &= ~PSTATE_F;
        }
8600
        break;
P
pbrook 已提交
8601
    case 20: /* CONTROL */
8602 8603 8604
        switch_v7m_sp(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
        env->v7m.control = val & (R_V7M_CONTROL_SPSEL_MASK |
                                  R_V7M_CONTROL_NPRIV_MASK);
P
pbrook 已提交
8605 8606
        break;
    default:
8607 8608
        qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
                                       " register %d\n", reg);
P
pbrook 已提交
8609 8610 8611 8612
        return;
    }
}

B
bellard 已提交
8613
#endif
P
pbrook 已提交
8614

8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */

    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t blocklen = 4 << cpu->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);

#ifndef CONFIG_USER_ONLY
    {
        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
         * the block size so we might have to do more than one TLB lookup.
         * We know that in fact for any v8 CPU the page size is at least 4K
         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
         * 1K as an artefact of legacy v5 subpage support being present in the
         * same QEMU executable.
         */
        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
        void *hostaddr[maxidx];
        int try, i;
8640
        unsigned mmu_idx = cpu_mmu_index(env, false);
8641
        TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
8642 8643 8644 8645 8646 8647

        for (try = 0; try < 2; try++) {

            for (i = 0; i < maxidx; i++) {
                hostaddr[i] = tlb_vaddr_to_host(env,
                                                vaddr + TARGET_PAGE_SIZE * i,
8648
                                                1, mmu_idx);
8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668
                if (!hostaddr[i]) {
                    break;
                }
            }
            if (i == maxidx) {
                /* If it's all in the TLB it's fair game for just writing to;
                 * we know we don't need to update dirty status, etc.
                 */
                for (i = 0; i < maxidx - 1; i++) {
                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
                }
                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
                return;
            }
            /* OK, try a store and see if we can populate the tlb. This
             * might cause an exception if the memory isn't writable,
             * in which case we will longjmp out of here. We must for
             * this purpose use the actual register value passed to us
             * so that we get the fault address right.
             */
R
Richard Henderson 已提交
8669
            helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
8670 8671 8672 8673
            /* Now we can populate the other TLB entries, if any */
            for (i = 0; i < maxidx; i++) {
                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
R
Richard Henderson 已提交
8674
                    helper_ret_stb_mmu(env, va, 0, oi, GETPC());
8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690
                }
            }
        }

        /* Slow path (probably attempt to do this to an I/O device or
         * similar, or clearing of a block of code we have translations
         * cached for). Just do a series of byte writes as the architecture
         * demands. It's not worth trying to use a cpu_physical_memory_map(),
         * memset(), unmap() sequence here because:
         *  + we'd need to account for the blocksize being larger than a page
         *  + the direct-RAM access case is almost always going to be dealt
         *    with in the fastpath code above, so there's no speed benefit
         *  + we would have to deal with the map returning NULL because the
         *    bounce buffer was in use
         */
        for (i = 0; i < blocklen; i++) {
R
Richard Henderson 已提交
8691
            helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
8692 8693 8694 8695 8696 8697 8698
        }
    }
#else
    memset(g2h(vaddr), 0, blocklen);
#endif
}

P
pbrook 已提交
8699 8700 8701 8702 8703 8704
/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

A
aurel32 已提交
8705
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
8720
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

A
aurel32 已提交
8735
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
8750
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
8774
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
8775 8776 8777 8778 8779 8780 8781 8782
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
8783
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
8784
{
8785
    if (a > b)
P
pbrook 已提交
8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
8802
    if (a > b)
P
pbrook 已提交
8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
8819
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
8820 8821 8822 8823 8824 8825 8826
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
8827
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
8848
    if ((sum >> 16) == 1) \
P
pbrook 已提交
8849 8850 8851 8852 8853 8854 8855
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
8856 8857
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
8873
        ge |= 1 << n; \
P
pbrook 已提交
8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

8943 8944
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
8958
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
8959 8960 8961
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
8962 8963
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
8964 8965 8966
    return target_bits;
}

8967
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
8968 8969 8970 8971 8972 8973 8974 8975
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
8976
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
P
pbrook 已提交
8977 8978 8979 8980
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

8981
uint32_t vfp_get_fpscr(CPUARMState *env)
8982 8983 8984 8985
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
9001 9002
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
9003 9004 9005
    return host_bits;
}

9006
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
9020
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
9021 9022
            i = float_round_nearest_even;
            break;
9023
        case FPROUNDING_POSINF:
P
pbrook 已提交
9024 9025
            i = float_round_up;
            break;
9026
        case FPROUNDING_NEGINF:
P
pbrook 已提交
9027 9028
            i = float_round_down;
            break;
9029
        case FPROUNDING_ZERO:
P
pbrook 已提交
9030 9031 9032 9033 9034
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
    }
9035
    if (changed & (1 << 24)) {
9036
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
9037 9038
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
    }
P
pbrook 已提交
9039 9040
    if (changed & (1 << 25))
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
P
pbrook 已提交
9041

9042
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
9043
    set_float_exception_flags(i, &env->vfp.fp_status);
9044
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
9045 9046
}

9047
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
9048 9049 9050 9051
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
9052 9053 9054
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
9055
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
9056
{ \
9057 9058
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
9059
} \
9060
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
9061
{ \
9062 9063
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
9064 9065 9066 9067 9068
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
9069 9070 9071 9072
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
9073 9074 9075 9076 9077 9078 9079 9080 9081
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
9082
    return float64_chs(a);
P
pbrook 已提交
9083 9084 9085 9086 9087 9088 9089 9090 9091
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
9092
    return float64_abs(a);
P
pbrook 已提交
9093 9094
}

9095
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
9096 9097 9098 9099
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

9100
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
9101 9102 9103 9104 9105 9106
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
9107
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
9119
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

9135
/* Integer to float and float to integer conversions */
P
pbrook 已提交
9136

9137 9138 9139 9140
#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
9141
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
P
pbrook 已提交
9142 9143
}

9144 9145 9146 9147 9148 9149 9150 9151 9152
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
P
pbrook 已提交
9153 9154
}

9155 9156 9157 9158
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
P
pbrook 已提交
9159

9160 9161 9162 9163
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
P
pbrook 已提交
9164

9165 9166 9167
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
9168 9169

/* floating point conversion */
9170
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
9171
{
9172 9173 9174 9175
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
9176
    return float64_maybe_silence_nan(r, &env->vfp.fp_status);
P
pbrook 已提交
9177 9178
}

9179
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
9180
{
9181 9182 9183 9184
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
9185
    return float32_maybe_silence_nan(r, &env->vfp.fp_status);
P
pbrook 已提交
9186 9187 9188
}

/* VFP3 fixed point conversion.  */
9189
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
9190 9191
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
9192
{ \
9193
    float_status *fpst = fpstp; \
9194
    float##fsz tmp; \
9195
    tmp = itype##_to_##float##fsz(x, fpst); \
9196
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
9197 9198
}

9199 9200 9201 9202 9203
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
9204 9205 9206 9207
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
9208
{ \
9209
    float_status *fpst = fpstp; \
9210
    int old_exc_flags = get_float_exception_flags(fpst); \
9211 9212
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
9213
        float_raise(float_flag_invalid, fpst); \
9214
        return 0; \
9215
    } \
9216
    tmp = float##fsz##_scalbn(x, shift, fpst); \
9217 9218 9219
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
9220
    return float##fsz##_to_##itype##round(tmp, fpst); \
9221 9222
}

9223 9224
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
9225 9226 9227 9228 9229 9230
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
9231

9232 9233
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
9234
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
9235 9236
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
9237
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
9238 9239
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
9240
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
9241 9242
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
9243
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
P
pbrook 已提交
9244
#undef VFP_CONV_FIX
9245 9246
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
P
pbrook 已提交
9247

9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
9278
/* Half precision conversions.  */
9279
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
9280 9281
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9282 9283
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
9284
        return float32_maybe_silence_nan(r, s);
9285 9286
    }
    return r;
P
Paul Brook 已提交
9287 9288
}

9289
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
9290 9291
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
9292 9293
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
9294
        r = float16_maybe_silence_nan(r, s);
9295 9296
    }
    return float16_val(r);
P
Paul Brook 已提交
9297 9298
}

9299
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9300 9301 9302 9303
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

9304
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9305 9306 9307 9308
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

9309
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
9310 9311 9312 9313
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

9314
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
9315 9316 9317 9318
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

9319 9320 9321 9322 9323
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
9324
        return float64_maybe_silence_nan(r, &env->vfp.fp_status);
9325 9326 9327 9328 9329 9330 9331 9332 9333
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
9334
        r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
9335 9336 9337 9338
    }
    return float16_val(r);
}

9339
#define float32_two make_float32(0x40000000)
9340 9341
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
9342

9343
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
9344
{
9345 9346 9347
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9348 9349 9350
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
9351 9352 9353
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
9354 9355
}

9356
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
9357
{
9358
    float_status *s = &env->vfp.standard_fp_status;
9359 9360 9361
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
9362 9363 9364
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
9365
        return float32_one_point_five;
9366
    }
9367 9368
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
9369 9370
}

P
pbrook 已提交
9371 9372
/* NEON helpers.  */

9373 9374 9375 9376
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
9377 9378
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
9379

9380 9381 9382 9383
/* Reciprocal functions
 *
 * The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM, see FPRecipEstimate()
9384
 */
9385 9386

static float64 recip_estimate(float64 a, float_status *real_fp_status)
9387
{
9388 9389 9390
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
9391
    float_status dummy_status = *real_fp_status;
9392
    float_status *s = &dummy_status;
9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411
    /* q = (int)(a * 512.0) */
    float64 q = float64_mul(float64_512, a, s);
    int64_t q_int = float64_to_int64_round_to_zero(q, s);

    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
    q = int64_to_float64(q_int, s);
    q = float64_add(q, float64_half, s);
    q = float64_div(q, float64_512, s);
    q = float64_div(float64_one, q, s);

    /* s = (int)(256.0 * r + 0.5) */
    q = float64_mul(q, float64_256, s);
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0 */
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

9412 9413
/* Common wrapper to call recip_estimate */
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
P
pbrook 已提交
9414
{
9415 9416 9417 9418 9419
    uint64_t val64 = float64_val(num);
    uint64_t frac = extract64(val64, 0, 52);
    int64_t exp = extract64(val64, 52, 11);
    uint64_t sbit;
    float64 scaled, estimate;
9420

9421 9422 9423 9424 9425 9426 9427 9428 9429
    /* Generate the scaled number for the estimate function */
    if (exp == 0) {
        if (extract64(frac, 51, 1) == 0) {
            exp = -1;
            frac = extract64(frac, 0, 50) << 2;
        } else {
            frac = extract64(frac, 0, 51) << 1;
        }
    }
9430

9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483
    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
    scaled = make_float64((0x3feULL << 52)
                          | extract64(frac, 44, 8) << 44);

    estimate = recip_estimate(scaled, fpst);

    /* Build new result */
    val64 = float64_val(estimate);
    sbit = 0x8000000000000000ULL & val64;
    exp = off - exp;
    frac = extract64(val64, 0, 52);

    if (exp == 0) {
        frac = 1ULL << 51 | extract64(frac, 1, 51);
    } else if (exp == -1) {
        frac = 1ULL << 50 | extract64(frac, 2, 50);
        exp = 0;
    }

    return make_float64(sbit | (exp << 52) | frac);
}

static bool round_to_inf(float_status *fpst, bool sign_bit)
{
    switch (fpst->float_rounding_mode) {
    case float_round_nearest_even: /* Round to Nearest */
        return true;
    case float_round_up: /* Round to +Inf */
        return !sign_bit;
    case float_round_down: /* Round to -Inf */
        return sign_bit;
    case float_round_to_zero: /* Round to Zero */
        return false;
    }

    g_assert_not_reached();
}

float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float32 f32 = float32_squash_input_denormal(input, fpst);
    uint32_t f32_val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000ULL & f32_val;
    int32_t f32_exp = extract32(f32_val, 23, 8);
    uint32_t f32_frac = extract32(f32_val, 0, 23);
    float64 f64, r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
9484
        if (float32_is_signaling_nan(f32, fpst)) {
9485
            float_raise(float_flag_invalid, fpst);
9486
            nan = float32_maybe_silence_nan(f32, fpst);
9487
        }
9488
        if (fpst->default_nan_mode) {
9489
            nan =  float32_default_nan(fpst);
9490
        }
9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507
        return nan;
    } else if (float32_is_infinity(f32)) {
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, fpst);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
        /* Abs(value) < 2.0^-128 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f32_sbit)) {
            return float32_set_sign(float32_infinity, float32_is_neg(f32));
        } else {
            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
        }
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float32_set_sign(float32_zero, float32_is_neg(f32));
9508 9509 9510
    }


9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537
    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
    r64 = call_recip_estimate(f64, 253, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);

    /* result = sign : result_exp<7:0> : fraction<51:29>; */
    return make_float32(f32_sbit |
                        (r64_exp & 0xff) << 23 |
                        extract64(r64_frac, 29, 24));
}

float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64 = float64_squash_input_denormal(input, fpst);
    uint64_t f64_val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
    int64_t f64_exp = extract64(f64_val, 52, 11);
    float64 r64;
    uint64_t r64_val;
    int64_t r64_exp;
    uint64_t r64_frac;

    /* Deal with any special cases */
    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
9538
        if (float64_is_signaling_nan(f64, fpst)) {
9539
            float_raise(float_flag_invalid, fpst);
9540
            nan = float64_maybe_silence_nan(f64, fpst);
9541 9542
        }
        if (fpst->default_nan_mode) {
9543
            nan =  float64_default_nan(fpst);
9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558
        }
        return nan;
    } else if (float64_is_infinity(f64)) {
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, fpst);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
        /* Abs(value) < 2.0^-1024 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f64_sbit)) {
            return float64_set_sign(float64_infinity, float64_is_neg(f64));
        } else {
            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
        }
9559
    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
9560 9561 9562
        float_raise(float_flag_underflow, fpst);
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    }
9563

9564 9565 9566 9567
    r64 = call_recip_estimate(f64, 2045, fpst);
    r64_val = float64_val(r64);
    r64_exp = extract64(r64_val, 52, 11);
    r64_frac = extract64(r64_val, 0, 52);
9568

9569 9570 9571 9572
    /* result = sign : result_exp<10:0> : fraction<51:0> */
    return make_float64(f64_sbit |
                        ((r64_exp & 0x7ff) << 52) |
                        r64_frac);
P
pbrook 已提交
9573 9574
}

9575 9576 9577
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
9578
static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
9579
{
9580 9581 9582
    /* These calculations mustn't set any fp exception flags,
     * so we use a local copy of the fp_status.
     */
9583
    float_status dummy_status = *real_fp_status;
9584
    float_status *s = &dummy_status;
9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629
    float64 q;
    int64_t q_int;

    if (float64_lt(a, float64_half, s)) {
        /* range 0.25 <= a < 0.5 */

        /* a in units of 1/512 rounded down */
        /* q0 = (int)(a * 512.0);  */
        q = float64_mul(float64_512, a, s);
        q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_512, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    } else {
        /* range 0.5 <= a < 1.0 */

        /* a in units of 1/256 rounded down */
        /* q1 = (int)(a * 256.0); */
        q = float64_mul(float64_256, a, s);
        int64_t q_int = float64_to_int64_round_to_zero(q, s);

        /* reciprocal root r */
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
        q = int64_to_float64(q_int, s);
        q = float64_add(q, float64_half, s);
        q = float64_div(q, float64_256, s);
        q = float64_sqrt(q, s);
        q = float64_div(float64_one, q, s);
    }
    /* r in units of 1/256 rounded to nearest */
    /* s = (int)(256.0 * r + 0.5); */

    q = float64_mul(q, float64_256,s );
    q = float64_add(q, float64_half, s);
    q_int = float64_to_int64_round_to_zero(q, s);

    /* return (double)s / 256.0;*/
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
}

9630
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
P
pbrook 已提交
9631
{
9632 9633 9634 9635 9636 9637 9638 9639
    float_status *s = fpstp;
    float32 f32 = float32_squash_input_denormal(input, s);
    uint32_t val = float32_val(f32);
    uint32_t f32_sbit = 0x80000000 & val;
    int32_t f32_exp = extract32(val, 23, 8);
    uint32_t f32_frac = extract32(val, 0, 23);
    uint64_t f64_frac;
    uint64_t val64;
9640 9641 9642
    int result_exp;
    float64 f64;

9643 9644
    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
9645
        if (float32_is_signaling_nan(f32, s)) {
9646
            float_raise(float_flag_invalid, s);
9647
            nan = float32_maybe_silence_nan(f32, s);
9648
        }
9649
        if (s->default_nan_mode) {
9650
            nan =  float32_default_nan(s);
9651
        }
9652 9653
        return nan;
    } else if (float32_is_zero(f32)) {
9654
        float_raise(float_flag_divbyzero, s);
9655 9656
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_is_neg(f32)) {
9657
        float_raise(float_flag_invalid, s);
9658
        return float32_default_nan(s);
9659
    } else if (float32_is_infinity(f32)) {
9660 9661 9662
        return float32_zero;
    }

9663
    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
9664
     * preserving the parity of the exponent.  */
9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676

    f64_frac = ((uint64_t) f32_frac) << 29;
    if (f32_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f32_exp = f32_exp-1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f32_exp, 0, 1) == 0) {
        f64 = make_float64(((uint64_t) f32_sbit) << 32
9677
                           | (0x3feULL << 52)
9678
                           | f64_frac);
9679
    } else {
9680
        f64 = make_float64(((uint64_t) f32_sbit) << 32
9681
                           | (0x3fdULL << 52)
9682
                           | f64_frac);
9683 9684
    }

9685
    result_exp = (380 - f32_exp) / 2;
9686

9687
    f64 = recip_sqrt_estimate(f64, s);
9688 9689 9690

    val64 = float64_val(f64);

9691
    val = ((result_exp & 0xff) << 23)
9692 9693
        | ((val64 >> 29)  & 0x7fffff);
    return make_float32(val);
P
pbrook 已提交
9694 9695
}

9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64 = float64_squash_input_denormal(input, s);
    uint64_t val = float64_val(f64);
    uint64_t f64_sbit = 0x8000000000000000ULL & val;
    int64_t f64_exp = extract64(val, 52, 11);
    uint64_t f64_frac = extract64(val, 0, 52);
    int64_t result_exp;
    uint64_t result_frac;

    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
9709
        if (float64_is_signaling_nan(f64, s)) {
9710
            float_raise(float_flag_invalid, s);
9711
            nan = float64_maybe_silence_nan(f64, s);
9712 9713
        }
        if (s->default_nan_mode) {
9714
            nan =  float64_default_nan(s);
9715 9716 9717 9718 9719 9720 9721
        }
        return nan;
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, s);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if (float64_is_neg(f64)) {
        float_raise(float_flag_invalid, s);
9722
        return float64_default_nan(s);
9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758
    } else if (float64_is_infinity(f64)) {
        return float64_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    if (f64_exp == 0) {
        while (extract64(f64_frac, 51, 1) == 0) {
            f64_frac = f64_frac << 1;
            f64_exp = f64_exp - 1;
        }
        f64_frac = extract64(f64_frac, 0, 51) << 1;
    }

    if (extract64(f64_exp, 0, 1) == 0) {
        f64 = make_float64(f64_sbit
                           | (0x3feULL << 52)
                           | f64_frac);
    } else {
        f64 = make_float64(f64_sbit
                           | (0x3fdULL << 52)
                           | f64_frac);
    }

    result_exp = (3068 - f64_exp) / 2;

    f64 = recip_sqrt_estimate(f64, s);

    result_frac = extract64(float64_val(f64), 0, 52);

    return make_float64(f64_sbit |
                        ((result_exp & 0x7ff) << 52) |
                        result_frac);
}

9759
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
9760
{
9761
    float_status *s = fpstp;
9762 9763 9764 9765 9766 9767 9768 9769 9770
    float64 f64;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    f64 = make_float64((0x3feULL << 52)
                       | ((int64_t)(a & 0x7fffffff) << 21));

9771
    f64 = recip_estimate(f64, s);
9772 9773

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
9774 9775
}

9776
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
9777
{
9778
    float_status *fpst = fpstp;
9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792
    float64 f64;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    if (a & 0x80000000) {
        f64 = make_float64((0x3feULL << 52)
                           | ((uint64_t)(a & 0x7fffffff) << 21));
    } else { /* bits 31-30 == '01' */
        f64 = make_float64((0x3fdULL << 52)
                           | ((uint64_t)(a & 0x3fffffff) << 22));
    }

9793
    f64 = recip_sqrt_estimate(f64, fpst);
9794 9795

    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
P
pbrook 已提交
9796
}
9797

9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}
9883

9884 9885 9886 9887
/* CRC helpers.
 * The upper bytes of val (above the number specified by 'bytes') must have
 * been zeroed out by the caller.
 */
9888 9889 9890 9891
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

9892
    stl_le_p(buf, val);
9893 9894 9895 9896 9897 9898 9899 9900 9901

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

9902
    stl_le_p(buf, val);
9903 9904 9905 9906

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}