helper.c 437.2 KB
Newer Older
P
Peter Maydell 已提交
1
#include "qemu/osdep.h"
2
#include "target/arm/idau.h"
3
#include "trace.h"
B
bellard 已提交
4
#include "cpu.h"
5
#include "internals.h"
6
#include "exec/gdbstub.h"
7
#include "exec/helper-proto.h"
8
#include "qemu/host-utils.h"
9
#include "sysemu/arch_init.h"
10
#include "sysemu/sysemu.h"
11
#include "qemu/bitops.h"
12
#include "qemu/crc32c.h"
13
#include "exec/exec-all.h"
P
Paolo Bonzini 已提交
14
#include "exec/cpu_ldst.h"
15
#include "arm_ldst.h"
16
#include <zlib.h> /* For crc32 */
17
#include "exec/semihost.h"
18
#include "sysemu/kvm.h"
19
#include "fpu/softfloat.h"
P
Peter Maydell 已提交
20

21 22
#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */

23
#ifndef CONFIG_USER_ONLY
24 25 26 27 28 29
/* Cacheability and shareability attributes for a memory access */
typedef struct ARMCacheAttrs {
    unsigned int attrs:8; /* as in the MAIR register encoding */
    unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
} ARMCacheAttrs;

30
static bool get_phys_addr(CPUARMState *env, target_ulong address,
31
                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
32
                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
33
                          target_ulong *page_size,
34
                          ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
35

36
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
37
                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
38
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
39
                               target_ulong *page_size_ptr,
40
                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
41

42 43 44 45 46 47 48 49 50 51
/* Security attributes for an address, as returned by v8m_security_lookup. */
typedef struct V8M_SAttributes {
    bool ns;
    bool nsc;
    uint8_t sregion;
    bool srvalid;
    uint8_t iregion;
    bool irvalid;
} V8M_SAttributes;

52 53 54 55
static void v8m_security_lookup(CPUARMState *env, uint32_t address,
                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                V8M_SAttributes *sattrs);

56 57 58 59
/* Definitions for the PMCCNTR and PMCR registers */
#define PMCRD   0x8
#define PMCRC   0x4
#define PMCRE   0x1
60 61
#endif

62
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
63 64 65 66 67 68
{
    int nregs;

    /* VFP data registers are always little-endian.  */
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
69
        stq_le_p(buf, *aa32_vfp_dreg(env, reg));
P
pbrook 已提交
70 71 72 73 74 75
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        /* Aliases for Q regs.  */
        nregs += 16;
        if (reg < nregs) {
76 77 78
            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
            stq_le_p(buf, q[0]);
            stq_le_p(buf + 8, q[1]);
P
pbrook 已提交
79 80 81 82 83 84 85 86 87 88 89
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
    }
    return 0;
}

90
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
P
pbrook 已提交
91 92 93 94 95
{
    int nregs;

    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
    if (reg < nregs) {
96
        *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
P
pbrook 已提交
97 98 99 100 101
        return 8;
    }
    if (arm_feature(env, ARM_FEATURE_NEON)) {
        nregs += 16;
        if (reg < nregs) {
102 103 104
            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
            q[0] = ldq_le_p(buf);
            q[1] = ldq_le_p(buf + 8);
P
pbrook 已提交
105 106 107 108 109 110
            return 16;
        }
    }
    switch (reg - nregs) {
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
111
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
P
pbrook 已提交
112 113 114 115
    }
    return 0;
}

116 117 118 119 120
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
121 122 123 124 125 126
        {
            uint64_t *q = aa64_vfp_qreg(env, reg);
            stq_le_p(buf, q[0]);
            stq_le_p(buf + 8, q[1]);
            return 16;
        }
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    case 32:
        /* FPSR */
        stl_p(buf, vfp_get_fpsr(env));
        return 4;
    case 33:
        /* FPCR */
        stl_p(buf, vfp_get_fpcr(env));
        return 4;
    default:
        return 0;
    }
}

static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
    switch (reg) {
    case 0 ... 31:
        /* 128 bit FP register */
145 146 147 148 149 150
        {
            uint64_t *q = aa64_vfp_qreg(env, reg);
            q[0] = ldq_le_p(buf);
            q[1] = ldq_le_p(buf + 8);
            return 16;
        }
151 152 153 154 155 156 157 158 159 160 161 162 163
    case 32:
        /* FPSR */
        vfp_set_fpsr(env, ldl_p(buf));
        return 4;
    case 33:
        /* FPCR */
        vfp_set_fpcr(env, ldl_p(buf));
        return 4;
    default:
        return 0;
    }
}

164
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
165
{
166
    assert(ri->fieldoffset);
167
    if (cpreg_field_is_64bit(ri)) {
168
        return CPREG_FIELD64(env, ri);
169
    } else {
170
        return CPREG_FIELD32(env, ri);
171
    }
172 173
}

174 175
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
176
{
177
    assert(ri->fieldoffset);
178
    if (cpreg_field_is_64bit(ri)) {
179 180 181 182
        CPREG_FIELD64(env, ri) = value;
    } else {
        CPREG_FIELD32(env, ri) = value;
    }
183 184
}

F
Fabian Aggeler 已提交
185 186 187 188 189
static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return (char *)env + ri->fieldoffset;
}

190
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
191
{
192
    /* Raw read of a coprocessor register (as needed for migration, etc). */
193
    if (ri->type & ARM_CP_CONST) {
194
        return ri->resetvalue;
195
    } else if (ri->raw_readfn) {
196
        return ri->raw_readfn(env, ri);
197
    } else if (ri->readfn) {
198
        return ri->readfn(env, ri);
199
    } else {
200
        return raw_read(env, ri);
201 202 203
    }
}

204
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
205
                             uint64_t v)
206 207 208 209 210 211 212
{
    /* Raw write of a coprocessor register (as needed for migration, etc).
     * Note that constant registers are treated as write-ignored; the
     * caller should check for success by whether a readback gives the
     * value written.
     */
    if (ri->type & ARM_CP_CONST) {
213
        return;
214
    } else if (ri->raw_writefn) {
215
        ri->raw_writefn(env, ri, v);
216
    } else if (ri->writefn) {
217
        ri->writefn(env, ri, v);
218
    } else {
219
        raw_write(env, ri, v);
220 221 222
    }
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
{
   /* Return true if the regdef would cause an assertion if you called
    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
    * program bug for it not to have the NO_RAW flag).
    * NB that returning false here doesn't necessarily mean that calling
    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
    * read/write access functions which are safe for raw use" from "has
    * read/write access functions which have side effects but has forgotten
    * to provide raw access functions".
    * The tests here line up with the conditions in read/write_raw_cp_reg()
    * and assertions in raw_read()/raw_write().
    */
    if ((ri->type & ARM_CP_CONST) ||
        ri->fieldoffset ||
        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
        return false;
    }
    return true;
}

244 245 246 247 248 249 250 251 252
bool write_cpustate_to_list(ARMCPU *cpu)
{
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        const ARMCPRegInfo *ri;
253

254
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
255 256 257 258
        if (!ri) {
            ok = false;
            continue;
        }
259
        if (ri->type & ARM_CP_NO_RAW) {
260 261
            continue;
        }
262
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
263 264 265 266 267 268 269 270 271 272 273 274 275 276
    }
    return ok;
}

bool write_list_to_cpustate(ARMCPU *cpu)
{
    int i;
    bool ok = true;

    for (i = 0; i < cpu->cpreg_array_len; i++) {
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
        uint64_t v = cpu->cpreg_values[i];
        const ARMCPRegInfo *ri;

277
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
278 279 280 281
        if (!ri) {
            ok = false;
            continue;
        }
282
        if (ri->type & ARM_CP_NO_RAW) {
283 284 285 286 287 288
            continue;
        }
        /* Write value and confirm it reads back as written
         * (to catch read-only registers and partially read-only
         * registers where the incoming migration value doesn't match)
         */
289 290
        write_raw_cp_reg(&cpu->env, ri, v);
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
291 292 293 294 295 296 297 298 299 300 301 302 303
            ok = false;
        }
    }
    return ok;
}

static void add_cpreg_to_list(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
304
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
305

306
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
307 308 309 310 311 312 313 314 315 316 317 318 319
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
        /* The value array need not be initialized at this point */
        cpu->cpreg_array_len++;
    }
}

static void count_cpreg(gpointer key, gpointer opaque)
{
    ARMCPU *cpu = opaque;
    uint64_t regidx;
    const ARMCPRegInfo *ri;

    regidx = *(uint32_t *)key;
320
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
321

322
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
323 324 325 326 327 328
        cpu->cpreg_array_len++;
    }
}

static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
{
329 330
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
331

332 333 334 335 336 337 338
    if (aidx > bidx) {
        return 1;
    }
    if (aidx < bidx) {
        return -1;
    }
    return 0;
339 340 341 342 343 344 345
}

void init_cpreg_list(ARMCPU *cpu)
{
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
     * Note that we require cpreg_tuples[] to be sorted by key ID.
     */
346
    GList *keys;
347 348
    int arraylen;

349
    keys = g_hash_table_get_keys(cpu->cp_regs);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
    keys = g_list_sort(keys, cpreg_key_compare);

    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, count_cpreg, cpu);

    arraylen = cpu->cpreg_array_len;
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
    cpu->cpreg_array_len = 0;

    g_list_foreach(keys, add_cpreg_to_list, cpu);

    assert(cpu->cpreg_array_len == arraylen);

    g_list_free(keys);
}

E
Edgar E. Iglesias 已提交
371 372 373 374 375 376 377 378
/*
 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
 *
 * access_el3_aa32ns: Used to check AArch32 register views.
 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
 */
static CPAccessResult access_el3_aa32ns(CPUARMState *env,
379 380
                                        const ARMCPRegInfo *ri,
                                        bool isread)
E
Edgar E. Iglesias 已提交
381 382 383 384 385 386 387 388 389 390 391
{
    bool secure = arm_is_secure_below_el3(env);

    assert(!arm_el_is_aa64(env, 3));
    if (secure) {
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
392 393
                                                const ARMCPRegInfo *ri,
                                                bool isread)
E
Edgar E. Iglesias 已提交
394 395
{
    if (!arm_el_is_aa64(env, 3)) {
396
        return access_el3_aa32ns(env, ri, isread);
E
Edgar E. Iglesias 已提交
397 398 399 400
    }
    return CP_ACCESS_OK;
}

401 402 403 404 405 406
/* Some secure-only AArch32 registers trap to EL3 if used from
 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 * We assume that the .access field is set to PL1_RW.
 */
static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
407 408
                                            const ARMCPRegInfo *ri,
                                            bool isread)
409 410 411 412 413 414 415 416 417 418 419
{
    if (arm_current_el(env) == 3) {
        return CP_ACCESS_OK;
    }
    if (arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL3;
    }
    /* This will be EL1 NS and EL2 NS, which just UNDEF */
    return CP_ACCESS_TRAP_UNCATEGORIZED;
}

420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
/* Check for traps to "powerdown debug" registers, which are controlled
 * by MDCR.TDOSA
 */
static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
/* Check for traps to "debug ROM" registers, which are controlled
 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
/* Check for traps to general debug registers, which are controlled
 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
/* Check for traps to performance monitor registers, which are controlled
 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 */
static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
{
    int el = arm_current_el(env);

    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

492
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
493
{
494 495
    ARMCPU *cpu = arm_env_get_cpu(env);

496
    raw_write(env, ri, value);
497
    tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
498 499
}

500
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
501
{
502 503
    ARMCPU *cpu = arm_env_get_cpu(env);

504
    if (raw_read(env, ri) != value) {
505 506 507
        /* Unlike real hardware the qemu TLB uses virtual addresses,
         * not modified virtual addresses, so this causes a TLB flush.
         */
508
        tlb_flush(CPU(cpu));
509
        raw_write(env, ri, value);
510 511
    }
}
512 513 514

static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
515
{
516 517
    ARMCPU *cpu = arm_env_get_cpu(env);

518
    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
519
        && !extended_addresses_enabled(env)) {
520 521 522 523
        /* For VMSA (when not using the LPAE long descriptor page table
         * format) this register includes the ASID, so do a TLB flush.
         * For PMSA it is purely a process ID and no action is needed.
         */
524
        tlb_flush(CPU(cpu));
525
    }
526
    raw_write(env, ri, value);
527 528
}

529 530
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
531 532
{
    /* Invalidate all (TLBIALL) */
533 534
    ARMCPU *cpu = arm_env_get_cpu(env);

535
    tlb_flush(CPU(cpu));
536 537
}

538 539
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
540 541
{
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
542 543 544
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
545 546
}

547 548
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
549 550
{
    /* Invalidate by ASID (TLBIASID) */
551 552
    ARMCPU *cpu = arm_env_get_cpu(env);

553
    tlb_flush(CPU(cpu));
554 555
}

556 557
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
558 559
{
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
560 561 562
    ARMCPU *cpu = arm_env_get_cpu(env);

    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
563 564
}

565 566 567 568
/* IS variants of TLB operations must affect all cores */
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
569
    CPUState *cs = ENV_GET_CPU(env);
570

571
    tlb_flush_all_cpus_synced(cs);
572 573 574 575 576
}

static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
577
    CPUState *cs = ENV_GET_CPU(env);
578

579
    tlb_flush_all_cpus_synced(cs);
580 581 582 583 584
}

static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
585
    CPUState *cs = ENV_GET_CPU(env);
586

587
    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
588 589 590 591 592
}

static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
593
    CPUState *cs = ENV_GET_CPU(env);
594

595
    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
596 597
}

598 599 600 601 602
static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    CPUState *cs = ENV_GET_CPU(env);

603
    tlb_flush_by_mmuidx(cs,
604 605 606
                        ARMMMUIdxBit_S12NSE1 |
                        ARMMMUIdxBit_S12NSE0 |
                        ARMMMUIdxBit_S2NS);
607 608 609 610 611
}

static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
612
    CPUState *cs = ENV_GET_CPU(env);
613

614
    tlb_flush_by_mmuidx_all_cpus_synced(cs,
615 616 617
                                        ARMMMUIdxBit_S12NSE1 |
                                        ARMMMUIdxBit_S12NSE0 |
                                        ARMMMUIdxBit_S2NS);
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637
}

static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* Invalidate by IPA. This has to invalidate any structures that
     * contain only stage 2 translation information, but does not need
     * to apply to structures that contain combined stage 1 and stage 2
     * translation information.
     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
     */
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 40);

638
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
639 640 641 642 643
}

static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
644
    CPUState *cs = ENV_GET_CPU(env);
645 646 647 648 649 650 651 652
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 40);

653
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
654
                                             ARMMMUIdxBit_S2NS);
655 656 657 658 659 660 661
}

static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    CPUState *cs = ENV_GET_CPU(env);

662
    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
663 664 665 666 667
}

static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
668
    CPUState *cs = ENV_GET_CPU(env);
669

670
    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
671 672 673 674 675 676 677 678
}

static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);

679
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
680 681 682 683 684
}

static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
685
    CPUState *cs = ENV_GET_CPU(env);
686 687
    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);

688
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
689
                                             ARMMMUIdxBit_S1E2);
690 691
}

692
static const ARMCPRegInfo cp_reginfo[] = {
693 694 695 696 697 698 699 700 701 702 703 704 705 706
    /* Define the secure and non-secure FCSE identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated. There is also no
     * v8 EL1 version of the register so the non-secure instance stands alone.
     */
    { .name = "FCSEIDR(NS)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
    { .name = "FCSEIDR(S)",
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
707
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
708 709 710 711 712 713 714
    /* Define the secure and non-secure context identifier CP registers
     * separately because there is no secure bank in V8 (no _EL3).  This allows
     * the secure register to be properly reset and migrated.  In the
     * non-secure case, the 32-bit register will have reset and migration
     * disabled during registration as it is handled by the 64-bit instance.
     */
    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
715
      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
716 717 718 719 720 721 722
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
    { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
723
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
724 725 726 727 728 729 730 731
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v8_cp_reginfo[] = {
    /* NB: Some of these registers exist in v8 but with more precise
     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
     */
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
732 733 734 735 736 737
    { .name = "DACR",
      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
738 739
    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
     * For v6 and v5, these mappings are overly broad.
740
     */
741 742 743 744 745 746 747
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
748
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
749 750 751 752
    /* Cache maintenance ops; some of this space may be overridden later. */
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
753 754 755
    REGINFO_SENTINEL
};

756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
     * over-broad.
     */
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_WFI },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo not_v7_cp_reginfo[] = {
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
     */
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_WFI },
771 772 773 774 775 776 777 778 779 780
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
     * OMAPCP will override this space.
     */
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
      .resetvalue = 0 },
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
      .resetvalue = 0 },
781 782
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
783
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
784
      .resetvalue = 0 },
785 786 787 788 789 790 791
    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
     * implementing it as RAZ means the "debug architecture version" bits
     * will read as a reserved value, which should cause Linux to not try
     * to use the debug hardware.
     */
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
792 793 794 795 796
    /* MMU TLB control. Note that the wildcarding means we cover not just
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
     */
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
797
      .type = ARM_CP_NO_RAW },
798 799
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
800
      .type = ARM_CP_NO_RAW },
801 802
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
803
      .type = ARM_CP_NO_RAW },
804 805
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
806
      .type = ARM_CP_NO_RAW },
807 808 809 810
    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
811 812 813
    REGINFO_SENTINEL
};

814 815
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
816
{
817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
    uint32_t mask = 0;

    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
         */
        if (arm_feature(env, ARM_FEATURE_VFP)) {
            /* VFP coprocessor: cp10 & cp11 [23:20] */
            mask |= (1 << 31) | (1 << 30) | (0xf << 20);

            if (!arm_feature(env, ARM_FEATURE_NEON)) {
                /* ASEDIS [31] bit is RAO/WI */
                value |= (1 << 31);
            }

            /* VFPv3 and upwards with NEON implement 32 double precision
             * registers (D0-D31).
             */
            if (!arm_feature(env, ARM_FEATURE_NEON) ||
                    !arm_feature(env, ARM_FEATURE_VFP3)) {
                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
                value |= (1 << 30);
            }
        }
        value &= mask;
844
    }
845
    env->cp15.cpacr_el1 = value;
846 847
}

848 849
static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
{
    if (arm_feature(env, ARM_FEATURE_V8)) {
        /* Check if CPACR accesses are to be trapped to EL2 */
        if (arm_current_el(env) == 1 &&
            (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
            return CP_ACCESS_TRAP_EL2;
        /* Check if CPACR accesses are to be trapped to EL3 */
        } else if (arm_current_el(env) < 3 &&
                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
            return CP_ACCESS_TRAP_EL3;
        }
    }

    return CP_ACCESS_OK;
}

866 867
static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
868 869 870 871 872 873 874 875 876
{
    /* Check if CPTR accesses are set to trap to EL3 */
    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
        return CP_ACCESS_TRAP_EL3;
    }

    return CP_ACCESS_OK;
}

877 878 879 880 881
static const ARMCPRegInfo v6_cp_reginfo[] = {
    /* prefetch by MVA in v6, NOP in v7 */
    { .name = "MVA_prefetch",
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
882 883 884 885
    /* We need to break the TB after ISB to execute self-modifying code
     * correctly and also to take any pending interrupts immediately.
     * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
     */
886
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
887
      .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
888
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
889
      .access = PL0_W, .type = ARM_CP_NOP },
890
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
891
      .access = PL0_W, .type = ARM_CP_NOP },
892
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
893
      .access = PL1_RW,
F
Fabian Aggeler 已提交
894 895
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
                             offsetof(CPUARMState, cp15.ifar_ns) },
896 897 898 899 900 901
      .resetvalue = 0, },
    /* Watchpoint Fault Address Register : should actually only be present
     * for 1136, 1176, 11MPCore.
     */
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
902
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
903
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
904
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
905
      .resetvalue = 0, .writefn = cpacr_write },
906 907 908
    REGINFO_SENTINEL
};

909 910
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
911
{
S
Stefan Weil 已提交
912
    /* Performance monitor registers user accessibility is controlled
913 914
     * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
     * trapping to EL2 or EL3 for other accesses.
915
     */
916 917
    int el = arm_current_el(env);

918
    if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
919
        return CP_ACCESS_TRAP;
920
    }
921 922 923 924 925 926 927 928
    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
        && !arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
        return CP_ACCESS_TRAP_EL3;
    }

929
    return CP_ACCESS_OK;
930 931
}

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
                                           const ARMCPRegInfo *ri,
                                           bool isread)
{
    /* ER: event counter read trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
        && isread) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

static CPAccessResult pmreg_access_swinc(CPUARMState *env,
                                         const ARMCPRegInfo *ri,
                                         bool isread)
{
    /* SW: software increment write trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
        && !isread) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

962
#ifndef CONFIG_USER_ONLY
963

964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
static CPAccessResult pmreg_access_selr(CPUARMState *env,
                                        const ARMCPRegInfo *ri,
                                        bool isread)
{
    /* ER: event counter read trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
                                         const ARMCPRegInfo *ri,
                                         bool isread)
{
    /* CR: cycle counter read trap control */
    if (arm_feature(env, ARM_FEATURE_V8)
        && arm_current_el(env) == 0
        && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
        && isread) {
        return CP_ACCESS_OK;
    }

    return pmreg_access(env, ri, isread);
}

993 994 995 996 997 998 999 1000 1001 1002 1003
static inline bool arm_ccnt_enabled(CPUARMState *env)
{
    /* This does not support checking PMCCFILTR_EL0 register */

    if (!(env->cp15.c9_pmcr & PMCRE)) {
        return false;
    }

    return true;
}

1004 1005 1006 1007
void pmccntr_sync(CPUARMState *env)
{
    uint64_t temp_ticks;

1008 1009
    temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                          ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        temp_ticks /= 64;
    }

    if (arm_ccnt_enabled(env)) {
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
    }
}

1021 1022
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
1023
{
1024
    pmccntr_sync(env);
1025 1026 1027 1028 1029 1030

    if (value & PMCRC) {
        /* The counter has been reset */
        env->cp15.c15_ccnt = 0;
    }

1031 1032 1033
    /* only the DP, X, D and E bits are writable */
    env->cp15.c9_pmcr &= ~0x39;
    env->cp15.c9_pmcr |= (value & 0x39);
1034

1035
    pmccntr_sync(env);
1036 1037 1038 1039
}

static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
1040
    uint64_t total_ticks;
1041

1042
    if (!arm_ccnt_enabled(env)) {
1043 1044 1045 1046
        /* Counter is disabled, do not change value */
        return env->cp15.c15_ccnt;
    }

1047 1048
    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1049 1050 1051 1052 1053 1054 1055 1056

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    return total_ticks - env->cp15.c15_ccnt;
}

1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
     * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
     * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
     * accessed.
     */
    env->cp15.c9_pmselr = value & 0x1f;
}

1068 1069 1070
static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
1071
    uint64_t total_ticks;
1072

1073
    if (!arm_ccnt_enabled(env)) {
1074 1075 1076 1077 1078
        /* Counter is disabled, set the absolute value */
        env->cp15.c15_ccnt = value;
        return;
    }

1079 1080
    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
1081 1082 1083 1084 1085 1086

    if (env->cp15.c9_pmcr & PMCRD) {
        /* Increment once every 64 processor clock cycles */
        total_ticks /= 64;
    }
    env->cp15.c15_ccnt = total_ticks - value;
1087
}
1088 1089 1090 1091 1092 1093 1094 1095 1096

static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    uint64_t cur_val = pmccntr_read(env, NULL);

    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
}

1097 1098 1099 1100 1101 1102
#else /* CONFIG_USER_ONLY */

void pmccntr_sync(CPUARMState *env)
{
}

1103
#endif
1104

1105 1106 1107 1108 1109 1110 1111 1112
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    pmccntr_sync(env);
    env->cp15.pmccfiltr_el0 = value & 0x7E000000;
    pmccntr_sync(env);
}

1113
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
1114 1115 1116 1117 1118 1119
                            uint64_t value)
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten |= value;
}

1120 1121
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1122 1123 1124 1125 1126
{
    value &= (1 << 31);
    env->cp15.c9_pmcnten &= ~value;
}

1127 1128
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
1129 1130 1131 1132
{
    env->cp15.c9_pmovsr &= ~value;
}

1133 1134
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1135
{
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
    /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
     * PMSELR value is equal to or greater than the number of implemented
     * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
     */
    if (env->cp15.c9_pmselr == 0x1f) {
        pmccfiltr_write(env, ri, value);
    }
}

static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
     * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
     */
    if (env->cp15.c9_pmselr == 0x1f) {
        return env->cp15.pmccfiltr_el0;
    } else {
        return 0;
    }
1155 1156
}

1157
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1158 1159
                            uint64_t value)
{
1160 1161 1162 1163 1164
    if (arm_feature(env, ARM_FEATURE_V8)) {
        env->cp15.c9_pmuserenr = value & 0xf;
    } else {
        env->cp15.c9_pmuserenr = value & 1;
    }
1165 1166
}

1167 1168
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1169 1170 1171 1172 1173 1174
{
    /* We have no event counters so only the C bit can be changed */
    value &= (1 << 31);
    env->cp15.c9_pminten |= value;
}

1175 1176
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
1177 1178 1179 1180 1181
{
    value &= (1 << 31);
    env->cp15.c9_pminten &= ~value;
}

1182 1183
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
N
Nathan Rossi 已提交
1184
{
1185 1186 1187 1188 1189 1190
    /* Note that even though the AArch64 view of this register has bits
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
     * architectural requirements for bits which are RES0 only in some
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
     */
1191
    raw_write(env, ri, value & ~0x1FULL);
N
Nathan Rossi 已提交
1192 1193
}

E
Edgar E. Iglesias 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    /* We only mask off bits that are RES0 both for AArch64 and AArch32.
     * For bits that vary between AArch32/64, code needs to check the
     * current execution mode before directly using the feature bit.
     */
    uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;

    if (!arm_feature(env, ARM_FEATURE_EL2)) {
        valid_mask &= ~SCR_HCE;

        /* On ARMv7, SMD (or SCD as it is called in v7) is only
         * supported if EL2 exists. The bit is UNK/SBZP when
         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
         * when EL2 is unavailable.
G
Greg Bellows 已提交
1209
         * On ARMv8, this bit is always available.
E
Edgar E. Iglesias 已提交
1210
         */
G
Greg Bellows 已提交
1211 1212
        if (arm_feature(env, ARM_FEATURE_V7) &&
            !arm_feature(env, ARM_FEATURE_V8)) {
E
Edgar E. Iglesias 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221
            valid_mask &= ~SCR_SMD;
        }
    }

    /* Clear all-context RES0 bits.  */
    value &= valid_mask;
    raw_write(env, ri, value);
}

1222
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1223 1224
{
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
1225 1226 1227 1228 1229 1230 1231 1232

    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
     * bank
     */
    uint32_t index = A32_BANKED_REG_GET(env, csselr,
                                        ri->secure & ARM_CP_SECSTATE_S);

    return cpu->ccsidr[index];
1233 1234
}

1235 1236
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
1237
{
1238
    raw_write(env, ri, value & 0xf);
1239 1240
}

1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    CPUState *cs = ENV_GET_CPU(env);
    uint64_t ret = 0;

    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
        ret |= CPSR_I;
    }
    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
        ret |= CPSR_F;
    }
    /* External aborts are not possible in QEMU so A bit is always clear */
    return ret;
}

1256
static const ARMCPRegInfo v7_cp_reginfo[] = {
1257 1258 1259
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NOP },
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
    /* Performance monitors are implementation defined in v7,
     * but with an ARM recommended set of registers, which we
     * follow (although we don't actually implement any counters)
     *
     * Performance registers fall into three categories:
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
     */
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
1272
      .access = PL0_RW, .type = ARM_CP_ALIAS,
1273
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1274 1275 1276
      .writefn = pmcntenset_write,
      .accessfn = pmreg_access,
      .raw_writefn = raw_write },
1277 1278 1279 1280 1281
    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
      .access = PL0_RW, .accessfn = pmreg_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
      .writefn = pmcntenset_write, .raw_writefn = raw_write },
1282
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
1283 1284
      .access = PL0_RW,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
1285 1286
      .accessfn = pmreg_access,
      .writefn = pmcntenclr_write,
1287
      .type = ARM_CP_ALIAS },
1288 1289 1290
    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
      .access = PL0_RW, .accessfn = pmreg_access,
1291
      .type = ARM_CP_ALIAS,
1292 1293
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
      .writefn = pmcntenclr_write },
1294 1295
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
1296 1297 1298
      .accessfn = pmreg_access,
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
1299 1300 1301 1302 1303 1304 1305
    { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
      .writefn = pmovsr_write,
      .raw_writefn = raw_write },
1306
    /* Unimplemented so WI. */
1307
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
1308
      .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
1309
#ifndef CONFIG_USER_ONLY
1310 1311 1312
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
      .access = PL0_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
1313
      .accessfn = pmreg_access_selr, .writefn = pmselr_write,
1314 1315 1316
      .raw_writefn = raw_write},
    { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
1317
      .access = PL0_RW, .accessfn = pmreg_access_selr,
1318 1319
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
      .writefn = pmselr_write, .raw_writefn = raw_write, },
1320
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
1321
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
1322
      .readfn = pmccntr_read, .writefn = pmccntr_write32,
1323
      .accessfn = pmreg_access_ccntr },
1324 1325
    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
1326
      .access = PL0_RW, .accessfn = pmreg_access_ccntr,
1327 1328
      .type = ARM_CP_IO,
      .readfn = pmccntr_read, .writefn = pmccntr_write, },
1329
#endif
1330 1331
    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
1332
      .writefn = pmccfiltr_write,
1333 1334 1335 1336
      .access = PL0_RW, .accessfn = pmreg_access,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
      .resetvalue = 0, },
1337
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
1338 1339 1340 1341 1342 1343
      .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
    { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
      .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
1344
    /* Unimplemented, RAZ/WI. */
1345
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
1346
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
1347
      .accessfn = pmreg_access_xevcntr },
1348
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
1349
      .access = PL0_R | PL1_RW, .accessfn = access_tpm,
1350 1351
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
1352
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
1353 1354
    { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
1355
      .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1356 1357 1358
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
      .resetvalue = 0,
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
1359
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
1360
      .access = PL1_RW, .accessfn = access_tpm,
1361 1362
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
1363
      .resetvalue = 0,
1364
      .writefn = pmintenset_write, .raw_writefn = raw_write },
1365 1366 1367 1368 1369 1370 1371
    { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_tpm,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .writefn = pmintenset_write, .raw_writefn = raw_write,
      .resetvalue = 0x0 },
1372
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
1373
      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1374
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
1375
      .writefn = pmintenclr_write, },
1376 1377
    { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
1378
      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
1379 1380
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
      .writefn = pmintenclr_write },
1381 1382
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
1383
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
1384 1385
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
F
Fabian Aggeler 已提交
1386 1387 1388
      .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
                             offsetof(CPUARMState, cp15.csselr_ns) } },
1389 1390 1391
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
     * just RAZ for all cores:
     */
1392 1393
    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
1394
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1395 1396 1397 1398 1399 1400 1401 1402 1403
    /* Auxiliary fault status registers: these also are IMPDEF, and we
     * choose to RAZ/WI for all cores.
     */
    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
1404 1405 1406 1407 1408
    /* MAIR can just read-as-written because we don't implement caches
     * and so don't need to care about memory attributes.
     */
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
G
Greg Bellows 已提交
1409
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
1410
      .resetvalue = 0 },
1411 1412 1413 1414
    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
      .resetvalue = 0 },
1415 1416 1417
    /* For non-long-descriptor page tables these are PRRR and NMRR;
     * regardless they still act as reads-as-written for QEMU.
     */
1418
     /* MAIR0/1 are defined separately from their 64-bit counterpart which
G
Greg Bellows 已提交
1419 1420 1421
      * allows them to assign the correct fieldoffset based on the endianness
      * handled in the field definitions.
      */
1422
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
1423
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
G
Greg Bellows 已提交
1424 1425
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
                             offsetof(CPUARMState, cp15.mair0_ns) },
1426
      .resetfn = arm_cp_reset_ignore },
1427
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
1428
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
G
Greg Bellows 已提交
1429 1430
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
                             offsetof(CPUARMState, cp15.mair1_ns) },
1431
      .resetfn = arm_cp_reset_ignore },
1432 1433
    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
1434
      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
1435 1436
    /* 32 bit ITLB invalidates */
    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
1437
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1438
    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
1439
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1440
    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
1441
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1442 1443
    /* 32 bit DTLB invalidates */
    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
1444
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1445
    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
1446
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1447
    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
1448
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1449 1450
    /* 32 bit TLB invalidates */
    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
1451
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
1452
    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
1453
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
1454
    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
1455
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
1456
    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
1457
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
1458 1459 1460 1461 1462 1463
    REGINFO_SENTINEL
};

static const ARMCPRegInfo v7mp_cp_reginfo[] = {
    /* 32 bit TLB invalidates, Inner Shareable */
    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
1464
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
1465
    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
1466
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
1467
    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
1468
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1469
      .writefn = tlbiasid_is_write },
1470
    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
1471
      .type = ARM_CP_NO_RAW, .access = PL1_W,
1472
      .writefn = tlbimvaa_is_write },
1473 1474 1475
    REGINFO_SENTINEL
};

1476 1477
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
1478 1479 1480 1481 1482
{
    value &= 1;
    env->teecr = value;
}

1483 1484
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                    bool isread)
1485
{
1486
    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
1487
        return CP_ACCESS_TRAP;
1488
    }
1489
    return CP_ACCESS_OK;
1490 1491 1492 1493 1494 1495 1496 1497 1498
}

static const ARMCPRegInfo t2ee_cp_reginfo[] = {
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
      .resetvalue = 0,
      .writefn = teecr_write },
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
1499
      .accessfn = teehbr_access, .resetvalue = 0 },
1500 1501 1502
    REGINFO_SENTINEL
};

1503
static const ARMCPRegInfo v6k_cp_reginfo[] = {
1504 1505 1506
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
      .access = PL0_RW,
1507
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
1508 1509
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL0_RW,
1510 1511
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
1512 1513 1514 1515
      .resetfn = arm_cp_reset_ignore },
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
      .access = PL0_R|PL1_W,
1516 1517
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
      .resetvalue = 0},
1518 1519
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL0_R|PL1_W,
1520 1521
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
1522
      .resetfn = arm_cp_reset_ignore },
1523
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
1524
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
1525
      .access = PL1_RW,
1526 1527 1528 1529 1530 1531
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
      .access = PL1_RW,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
      .resetvalue = 0 },
1532 1533 1534
    REGINFO_SENTINEL
};

1535 1536
#ifndef CONFIG_USER_ONLY

1537 1538
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
1539
{
1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
     * Writable only at the highest implemented exception level.
     */
    int el = arm_current_el(env);

    switch (el) {
    case 0:
        if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
            return CP_ACCESS_TRAP;
        }
        break;
    case 1:
        if (!isread && ri->state == ARM_CP_STATE_AA32 &&
            arm_is_secure_below_el3(env)) {
            /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
            return CP_ACCESS_TRAP_UNCATEGORIZED;
        }
        break;
    case 2:
    case 3:
        break;
1561
    }
1562 1563 1564 1565 1566

    if (!isread && el < arm_highest_el(env)) {
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }

1567 1568 1569
    return CP_ACCESS_OK;
}

1570 1571
static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
                                        bool isread)
1572
{
E
Edgar E. Iglesias 已提交
1573 1574 1575
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

1576
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
E
Edgar E. Iglesias 已提交
1577
    if (cur_el == 0 &&
1578 1579 1580
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
E
Edgar E. Iglesias 已提交
1581 1582 1583 1584 1585 1586

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 0, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
1587 1588 1589
    return CP_ACCESS_OK;
}

1590 1591
static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
                                      bool isread)
1592
{
E
Edgar E. Iglesias 已提交
1593 1594 1595
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

1596 1597 1598
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
     * EL0[PV]TEN is zero.
     */
E
Edgar E. Iglesias 已提交
1599
    if (cur_el == 0 &&
1600 1601 1602
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
        return CP_ACCESS_TRAP;
    }
E
Edgar E. Iglesias 已提交
1603 1604 1605 1606 1607 1608

    if (arm_feature(env, ARM_FEATURE_EL2) &&
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
        !extract32(env->cp15.cnthctl_el2, 1, 1)) {
        return CP_ACCESS_TRAP_EL2;
    }
1609 1610 1611 1612
    return CP_ACCESS_OK;
}

static CPAccessResult gt_pct_access(CPUARMState *env,
1613 1614
                                    const ARMCPRegInfo *ri,
                                    bool isread)
1615
{
1616
    return gt_counter_access(env, GTIMER_PHYS, isread);
1617 1618 1619
}

static CPAccessResult gt_vct_access(CPUARMState *env,
1620 1621
                                    const ARMCPRegInfo *ri,
                                    bool isread)
1622
{
1623
    return gt_counter_access(env, GTIMER_VIRT, isread);
1624 1625
}

1626 1627
static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
1628
{
1629
    return gt_timer_access(env, GTIMER_PHYS, isread);
1630 1631
}

1632 1633
static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
1634
{
1635
    return gt_timer_access(env, GTIMER_VIRT, isread);
1636 1637
}

1638
static CPAccessResult gt_stimer_access(CPUARMState *env,
1639 1640
                                       const ARMCPRegInfo *ri,
                                       bool isread)
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
{
    /* The AArch64 register view of the secure physical timer is
     * always accessible from EL3, and configurably accessible from
     * Secure EL1.
     */
    switch (arm_current_el(env)) {
    case 1:
        if (!arm_is_secure(env)) {
            return CP_ACCESS_TRAP;
        }
        if (!(env->cp15.scr_el3 & SCR_ST)) {
            return CP_ACCESS_TRAP_EL3;
        }
        return CP_ACCESS_OK;
    case 0:
    case 2:
        return CP_ACCESS_TRAP;
    case 3:
        return CP_ACCESS_OK;
    default:
        g_assert_not_reached();
    }
}

1665 1666
static uint64_t gt_get_countervalue(CPUARMState *env)
{
1667
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
}

static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
{
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];

    if (gt->ctl & 1) {
        /* Timer enabled: calculate and set current ISTATUS, irq, and
         * reset timer to when ISTATUS next has to change
         */
E
Edgar E. Iglesias 已提交
1678 1679
        uint64_t offset = timeridx == GTIMER_VIRT ?
                                      cpu->env.cp15.cntvoff_el2 : 0;
1680 1681
        uint64_t count = gt_get_countervalue(&cpu->env);
        /* Note that this must be unsigned 64 bit arithmetic: */
E
Edgar E. Iglesias 已提交
1682
        int istatus = count - offset >= gt->cval;
1683
        uint64_t nexttick;
1684
        int irqstate;
1685 1686

        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
1687 1688 1689 1690

        irqstate = (istatus && !(gt->ctl & 2));
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);

1691 1692 1693 1694 1695
        if (istatus) {
            /* Next transition is when count rolls back over to zero */
            nexttick = UINT64_MAX;
        } else {
            /* Next transition is when we hit cval */
E
Edgar E. Iglesias 已提交
1696
            nexttick = gt->cval + offset;
1697 1698 1699 1700 1701 1702 1703 1704 1705
        }
        /* Note that the desired next expiry time might be beyond the
         * signed-64-bit range of a QEMUTimer -- in this case we just
         * set the timer for as far in the future as possible. When the
         * timer expires we will reset the timer for any remaining period.
         */
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
            nexttick = INT64_MAX / GTIMER_SCALE;
        }
1706
        timer_mod(cpu->gt_timer[timeridx], nexttick);
1707
        trace_arm_gt_recalc(timeridx, irqstate, nexttick);
1708 1709 1710 1711
    } else {
        /* Timer disabled: ISTATUS and timer output always clear */
        gt->ctl &= ~4;
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
1712
        timer_del(cpu->gt_timer[timeridx]);
1713
        trace_arm_gt_recalc_disabled(timeridx);
1714 1715 1716
    }
}

1717 1718
static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
                           int timeridx)
1719 1720 1721
{
    ARMCPU *cpu = arm_env_get_cpu(env);

1722
    timer_del(cpu->gt_timer[timeridx]);
1723 1724
}

1725
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
1726
{
1727
    return gt_get_countervalue(env);
1728 1729
}

E
Edgar E. Iglesias 已提交
1730 1731 1732 1733 1734
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
}

1735
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1736
                          int timeridx,
1737
                          uint64_t value)
1738
{
1739
    trace_arm_gt_cval_write(timeridx, value);
1740 1741 1742
    env->cp15.c14_timer[timeridx].cval = value;
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}
1743

1744 1745
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
                             int timeridx)
1746
{
E
Edgar E. Iglesias 已提交
1747
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1748

1749
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
E
Edgar E. Iglesias 已提交
1750
                      (gt_get_countervalue(env) - offset));
1751 1752
}

1753
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
1754
                          int timeridx,
1755
                          uint64_t value)
1756
{
E
Edgar E. Iglesias 已提交
1757
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
1758

1759
    trace_arm_gt_tval_write(timeridx, value);
E
Edgar E. Iglesias 已提交
1760
    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
1761
                                         sextract64(value, 0, 32);
1762 1763 1764
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
}

1765
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
1766
                         int timeridx,
1767
                         uint64_t value)
1768 1769 1770 1771
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;

1772
    trace_arm_gt_ctl_write(timeridx, value);
1773
    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
1774 1775 1776
    if ((oldval ^ value) & 1) {
        /* Enable toggled */
        gt_recalc_timer(cpu, timeridx);
1777
    } else if ((oldval ^ value) & 2) {
1778 1779 1780
        /* IMASK toggled: don't need to recalculate,
         * just set the interrupt line based on ISTATUS
         */
1781 1782 1783 1784
        int irqstate = (oldval & 4) && !(value & 2);

        trace_arm_gt_imask_toggle(timeridx, irqstate);
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
1785 1786 1787
    }
}

1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843
static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_PHYS);
}

static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_PHYS, value);
}

static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_PHYS);
}

static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_PHYS, value);
}

static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_PHYS, value);
}

static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_VIRT);
}

static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_VIRT, value);
}

static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_VIRT);
}

static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_VIRT, value);
}

static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_VIRT, value);
}

E
Edgar E. Iglesias 已提交
1844 1845 1846 1847 1848
static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

1849
    trace_arm_gt_cntvoff_write(value);
E
Edgar E. Iglesias 已提交
1850 1851 1852 1853
    raw_write(env, ri, value);
    gt_recalc_timer(cpu, GTIMER_VIRT);
}

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881
static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_HYP);
}

static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_HYP, value);
}

static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_HYP);
}

static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_HYP, value);
}

static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_HYP, value);
}

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    gt_timer_reset(env, ri, GTIMER_SEC);
}

static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_cval_write(env, ri, GTIMER_SEC, value);
}

static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return gt_tval_read(env, ri, GTIMER_SEC);
}

static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_tval_write(env, ri, GTIMER_SEC, value);
}

static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    gt_ctl_write(env, ri, GTIMER_SEC, value);
}

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
void arm_gt_ptimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_PHYS);
}

void arm_gt_vtimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_VIRT);
}

1924 1925 1926 1927 1928 1929 1930
void arm_gt_htimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_HYP);
}

1931 1932 1933 1934 1935 1936 1937
void arm_gt_stimer_cb(void *opaque)
{
    ARMCPU *cpu = opaque;

    gt_recalc_timer(cpu, GTIMER_SEC);
}

1938 1939 1940 1941 1942 1943
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    /* Note that CNTFRQ is purely reads-as-written for the benefit
     * of software; writing it doesn't actually change the timer frequency.
     * Our reset value matches the fixed frequency we implement the timer at.
     */
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
1944
      .type = ARM_CP_ALIAS,
1945 1946 1947 1948 1949 1950
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
    },
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
1951 1952 1953 1954
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
    },
    /* overall control: mostly access permissions */
1955 1956
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
1957 1958 1959 1960 1961 1962
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
      .resetvalue = 0,
    },
    /* per-timer control */
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
1963
      .secure = ARM_CP_SECSTATE_NS,
1964
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1965 1966 1967
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
1968
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1969
    },
1970 1971 1972 1973 1974 1975 1976 1977 1978
    { .name = "CNTP_CTL(S)",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_SEC].ctl),
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
1979 1980
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
1981
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1982
      .accessfn = gt_ptimer_access,
1983 1984
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
      .resetvalue = 0,
1985
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
1986 1987
    },
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
1988
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
1989 1990 1991
      .accessfn = gt_vtimer_access,
      .fieldoffset = offsetoflow32(CPUARMState,
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
1992
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
1993 1994 1995
    },
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
1996
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
1997
      .accessfn = gt_vtimer_access,
1998 1999
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
      .resetvalue = 0,
2000
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
2001 2002 2003
    },
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
2004
      .secure = ARM_CP_SECSTATE_NS,
2005
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2006
      .accessfn = gt_ptimer_access,
2007
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2008
    },
2009 2010 2011 2012 2013 2014 2015
    { .name = "CNTP_TVAL(S)",
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
      .secure = ARM_CP_SECSTATE_S,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
      .accessfn = gt_ptimer_access,
      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
    },
2016 2017
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
2018
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2019 2020
      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
2021
    },
2022
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
2023
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2024
      .accessfn = gt_vtimer_access,
2025
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2026
    },
2027 2028
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
2029
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
2030 2031
      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
2032
    },
2033 2034
    /* The counter itself */
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
2035
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2036
      .accessfn = gt_pct_access,
2037 2038 2039 2040
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
    },
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
2041
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2042
      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
2043 2044
    },
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
2045
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
2046
      .accessfn = gt_vct_access,
E
Edgar E. Iglesias 已提交
2047
      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
2048 2049 2050
    },
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
2051
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
2052
      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
2053 2054 2055
    },
    /* Comparison value, indicating when the timer goes off */
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
2056
      .secure = ARM_CP_SECSTATE_NS,
2057
      .access = PL1_RW | PL0_R,
2058
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2059
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2060
      .accessfn = gt_ptimer_access,
2061
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2062
    },
2063 2064 2065 2066 2067 2068 2069 2070
    { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
      .secure = ARM_CP_SECSTATE_S,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .accessfn = gt_ptimer_access,
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
2071 2072 2073 2074 2075
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
2076
      .resetvalue = 0, .accessfn = gt_ptimer_access,
2077
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
2078 2079 2080
    },
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
      .access = PL1_RW | PL0_R,
2081
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
2082
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
2083
      .accessfn = gt_vtimer_access,
2084
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2085 2086 2087 2088 2089 2090 2091
    },
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
      .access = PL1_RW | PL0_R,
      .type = ARM_CP_IO,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
      .resetvalue = 0, .accessfn = gt_vtimer_access,
2092
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
2093
    },
2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
    /* Secure timer -- this is actually restricted to only EL3
     * and configurably Secure-EL1 via the accessfn.
     */
    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .readfn = gt_sec_tval_read,
      .writefn = gt_sec_tval_write,
      .resetfn = gt_sec_timer_reset,
    },
    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
      .resetvalue = 0,
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
    },
    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
      .type = ARM_CP_IO, .access = PL1_RW,
      .accessfn = gt_stimer_access,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
    },
2120 2121 2122 2123 2124
    REGINFO_SENTINEL
};

#else
/* In user-mode none of the generic timer registers are accessible,
2125
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
2126 2127
 * so instead just don't register any of them.
 */
2128 2129 2130 2131
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
    REGINFO_SENTINEL
};

2132 2133
#endif

2134
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
2135
{
2136
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
2137
        raw_write(env, ri, value);
2138
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
2139
        raw_write(env, ri, value & 0xfffff6ff);
2140
    } else {
2141
        raw_write(env, ri, value & 0xfffff1ff);
2142 2143 2144 2145 2146
    }
}

#ifndef CONFIG_USER_ONLY
/* get_phys_addr() isn't present for user-mode-only targets */
2147

2148 2149
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                 bool isread)
2150 2151
{
    if (ri->opc2 & 4) {
2152 2153 2154 2155
        /* The ATS12NSO* operations must trap to EL3 if executed in
         * Secure EL1 (which can only happen if EL3 is AArch64).
         * They are simply UNDEF if executed from NS EL1.
         * They function normally from EL2 or EL3.
2156
         */
2157 2158 2159 2160 2161 2162
        if (arm_current_el(env) == 1) {
            if (arm_is_secure_below_el3(env)) {
                return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
            }
            return CP_ACCESS_TRAP_UNCATEGORIZED;
        }
2163 2164 2165 2166
    }
    return CP_ACCESS_OK;
}

2167
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
2168
                             MMUAccessType access_type, ARMMMUIdx mmu_idx)
2169
{
A
Avi Kivity 已提交
2170
    hwaddr phys_addr;
2171 2172
    target_ulong page_size;
    int prot;
2173
    bool ret;
F
Fabian Aggeler 已提交
2174
    uint64_t par64;
2175
    bool format64 = false;
2176
    MemTxAttrs attrs = {};
2177
    ARMMMUFaultInfo fi = {};
2178
    ARMCacheAttrs cacheattrs = {};
2179

2180
    ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
2181
                        &prot, &page_size, &fi, &cacheattrs);
2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209

    if (is_a64(env)) {
        format64 = true;
    } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /*
         * ATS1Cxx:
         * * TTBCR.EAE determines whether the result is returned using the
         *   32-bit or the 64-bit PAR format
         * * Instructions executed in Hyp mode always use the 64bit format
         *
         * ATS1S2NSOxx uses the 64bit format if any of the following is true:
         * * The Non-secure TTBCR.EAE bit is set to 1
         * * The implementation includes EL2, and the value of HCR.VM is 1
         *
         * ATS1Hx always uses the 64bit format (not supported yet).
         */
        format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);

        if (arm_feature(env, ARM_FEATURE_EL2)) {
            if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
                format64 |= env->cp15.hcr_el2 & HCR_VM;
            } else {
                format64 |= arm_current_el(env) == 2;
            }
        }
    }

    if (format64) {
2210
        /* Create a 64-bit PAR */
F
Fabian Aggeler 已提交
2211
        par64 = (1 << 11); /* LPAE bit always set */
2212
        if (!ret) {
2213
            par64 |= phys_addr & ~0xfffULL;
2214 2215 2216
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
2217 2218
            par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
            par64 |= cacheattrs.shareability << 7; /* SH */
2219
        } else {
2220 2221
            uint32_t fsr = arm_fi_to_lfsc(&fi);

2222
            par64 |= 1; /* F */
2223
            par64 |= (fsr & 0x3f) << 1; /* FS */
2224 2225 2226 2227
            /* Note that S2WLK and FSTAGE are always zero, because we don't
             * implement virtualization and therefore there can't be a stage 2
             * fault.
             */
2228 2229
        }
    } else {
2230
        /* fsr is a DFSR/IFSR value for the short descriptor
2231 2232 2233
         * translation table format (with WnR always clear).
         * Convert it to a 32-bit PAR.
         */
2234
        if (!ret) {
2235 2236 2237
            /* We do not set any attribute bits in the PAR */
            if (page_size == (1 << 24)
                && arm_feature(env, ARM_FEATURE_V7)) {
F
Fabian Aggeler 已提交
2238
                par64 = (phys_addr & 0xff000000) | (1 << 1);
2239
            } else {
F
Fabian Aggeler 已提交
2240
                par64 = phys_addr & 0xfffff000;
2241
            }
2242 2243 2244
            if (!attrs.secure) {
                par64 |= (1 << 9); /* NS */
            }
2245
        } else {
2246 2247
            uint32_t fsr = arm_fi_to_sfsc(&fi);

2248 2249
            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
                    ((fsr & 0xf) << 1) | 1;
2250
        }
2251
    }
2252 2253 2254 2255 2256
    return par64;
}

static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
2257
    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2258
    uint64_t par64;
2259 2260 2261
    ARMMMUIdx mmu_idx;
    int el = arm_current_el(env);
    bool secure = arm_is_secure_below_el3(env);
2262

2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
    switch (ri->opc2 & 6) {
    case 0:
        /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE1;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2:
        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
        switch (el) {
        case 3:
            mmu_idx = ARMMMUIdx_S1SE0;
            break;
        case 2:
            mmu_idx = ARMMMUIdx_S1NSE0;
            break;
        case 1:
            mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 4:
        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
        mmu_idx = ARMMMUIdx_S12NSE1;
        break;
    case 6:
        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
        mmu_idx = ARMMMUIdx_S12NSE0;
        break;
    default:
        g_assert_not_reached();
    }

    par64 = do_ats_write(env, value, access_type, mmu_idx);
F
Fabian Aggeler 已提交
2309 2310

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
2311
}
2312

2313 2314 2315
static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
2316
    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2317 2318 2319 2320 2321 2322 2323
    uint64_t par64;

    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);

    A32_BANKED_CURRENT_REG_SET(env, par, par64);
}

2324 2325
static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
2326 2327 2328 2329 2330 2331 2332
{
    if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

2333 2334 2335
static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
2336
    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359
    ARMMMUIdx mmu_idx;
    int secure = arm_is_secure_below_el3(env);

    switch (ri->opc2 & 6) {
    case 0:
        switch (ri->opc1) {
        case 0: /* AT S1E1R, AT S1E1W */
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
            break;
        case 4: /* AT S1E2R, AT S1E2W */
            mmu_idx = ARMMMUIdx_S1E2;
            break;
        case 6: /* AT S1E3R, AT S1E3W */
            mmu_idx = ARMMMUIdx_S1E3;
            break;
        default:
            g_assert_not_reached();
        }
        break;
    case 2: /* AT S1E0R, AT S1E0W */
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
        break;
    case 4: /* AT S12E1R, AT S12E1W */
2360
        mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
2361 2362
        break;
    case 6: /* AT S12E0R, AT S12E0W */
2363
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
2364 2365 2366 2367
        break;
    default:
        g_assert_not_reached();
    }
2368

2369
    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
2370
}
2371 2372 2373 2374 2375
#endif

static const ARMCPRegInfo vapa_cp_reginfo[] = {
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
F
Fabian Aggeler 已提交
2376 2377
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
                             offsetoflow32(CPUARMState, cp15.par_ns) },
2378 2379
      .writefn = par_write },
#ifndef CONFIG_USER_ONLY
2380
    /* This underdecoding is safe because the reginfo is NO_RAW. */
2381
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
2382
      .access = PL1_W, .accessfn = ats_access,
2383
      .writefn = ats_write, .type = ARM_CP_NO_RAW },
2384 2385 2386 2387
#endif
    REGINFO_SENTINEL
};

2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
/* Return basic MPU access permission bits.  */
static uint32_t simple_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val >> i) & mask;
        mask <<= 2;
    }
    return ret;
}

/* Pad basic MPU access permission bits to extended format.  */
static uint32_t extended_mpu_ap_bits(uint32_t val)
{
    uint32_t ret;
    uint32_t mask;
    int i;
    ret = 0;
    mask = 3;
    for (i = 0; i < 16; i += 2) {
        ret |= (val & mask) << i;
        mask <<= 2;
    }
    return ret;
}

2418 2419
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2420
{
2421
    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
2422 2423
}

2424
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2425
{
2426
    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
2427 2428
}

2429 2430
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2431
{
2432
    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
2433 2434
}

2435
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2436
{
2437
    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
2438 2439
}

2440 2441 2442 2443 2444 2445 2446 2447
static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return 0;
    }

2448
    u32p += env->pmsav7.rnr[M_REG_NS];
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461
    return *u32p;
}

static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);

    if (!u32p) {
        return;
    }

2462
    u32p += env->pmsav7.rnr[M_REG_NS];
2463
    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483
    *u32p = value;
}

static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint32_t nrgs = cpu->pmsav7_dregion;

    if (value >= nrgs) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
        return;
    }

    raw_write(env, ri, value);
}

static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
2484 2485 2486 2487
    /* Reset for all these registers is handled in arm_cpu_reset(),
     * because the PMSAv7 is also used by M-profile CPUs, which do
     * not register cpregs but still need the state to be reset.
     */
2488 2489 2490
    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
2491 2492
      .readfn = pmsav7_read, .writefn = pmsav7_write,
      .resetfn = arm_cp_reset_ignore },
2493 2494 2495
    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
2496 2497
      .readfn = pmsav7_read, .writefn = pmsav7_write,
      .resetfn = arm_cp_reset_ignore },
2498 2499 2500
    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
2501 2502
      .readfn = pmsav7_read, .writefn = pmsav7_write,
      .resetfn = arm_cp_reset_ignore },
2503 2504
    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW,
2505
      .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
2506 2507
      .writefn = pmsav7_rgnr_write,
      .resetfn = arm_cp_reset_ignore },
2508 2509 2510
    REGINFO_SENTINEL
};

2511 2512
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2513
      .access = PL1_RW, .type = ARM_CP_ALIAS,
2514
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
2515 2516
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
2517
      .access = PL1_RW, .type = ARM_CP_ALIAS,
2518
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
2519 2520 2521
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW,
2522 2523
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
      .resetvalue = 0, },
2524 2525
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
      .access = PL1_RW,
2526 2527
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
      .resetvalue = 0, },
2528 2529 2530 2531 2532 2533
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
2534
    /* Protection region base and size registers */
2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
2559 2560 2561
    REGINFO_SENTINEL
};

2562 2563
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
2564
{
F
Fabian Aggeler 已提交
2565
    TCR *tcr = raw_ptr(env, ri);
2566 2567
    int maskshift = extract32(value, 0, 3);

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
             * using Long-desciptor translation table format */
            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
            /* In an implementation that includes the Security Extensions
             * TTBCR has additional fields PD0 [4] and PD1 [5] for
             * Short-descriptor translation table format.
             */
            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
        } else {
            value &= TTBCR_N;
        }
2582
    }
2583

2584
    /* Update the masks corresponding to the TCR bank being written
F
Fabian Aggeler 已提交
2585
     * Note that we always calculate mask and base_mask, but
2586
     * they are only used for short-descriptor tables (ie if EAE is 0);
F
Fabian Aggeler 已提交
2587 2588
     * for long-descriptor tables the TCR fields are used differently
     * and the mask and base_mask values are meaningless.
2589
     */
F
Fabian Aggeler 已提交
2590 2591 2592
    tcr->raw_tcr = value;
    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
2593 2594
}

2595 2596
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
2597
{
2598 2599
    ARMCPU *cpu = arm_env_get_cpu(env);

2600 2601 2602 2603
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        /* With LPAE the TTBCR could result in a change of ASID
         * via the TTBCR.A1 bit, so do a TLB flush.
         */
2604
        tlb_flush(CPU(cpu));
2605
    }
2606
    vmsa_ttbcr_raw_write(env, ri, value);
2607 2608
}

2609 2610
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
F
Fabian Aggeler 已提交
2611 2612 2613 2614 2615 2616 2617 2618
    TCR *tcr = raw_ptr(env, ri);

    /* Reset both the TCR as well as the masks corresponding to the bank of
     * the TCR being reset.
     */
    tcr->raw_tcr = 0;
    tcr->mask = 0;
    tcr->base_mask = 0xffffc000u;
2619 2620
}

2621 2622 2623
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
2624
    ARMCPU *cpu = arm_env_get_cpu(env);
F
Fabian Aggeler 已提交
2625
    TCR *tcr = raw_ptr(env, ri);
2626

2627
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2628
    tlb_flush(CPU(cpu));
F
Fabian Aggeler 已提交
2629
    tcr->raw_tcr = value;
2630 2631
}

2632 2633 2634 2635 2636 2637 2638
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    /* 64 bit accesses to the TTBRs can change the ASID and so we
     * must flush the TLB.
     */
    if (cpreg_field_is_64bit(ri)) {
2639 2640
        ARMCPU *cpu = arm_env_get_cpu(env);

2641
        tlb_flush(CPU(cpu));
2642 2643 2644 2645
    }
    raw_write(env, ri, value);
}

E
Edgar E. Iglesias 已提交
2646 2647 2648 2649 2650 2651 2652 2653
static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

    /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
    if (raw_read(env, ri) != value) {
2654
        tlb_flush_by_mmuidx(cs,
2655 2656 2657
                            ARMMMUIdxBit_S12NSE1 |
                            ARMMMUIdxBit_S12NSE0 |
                            ARMMMUIdxBit_S2NS);
E
Edgar E. Iglesias 已提交
2658 2659 2660 2661
        raw_write(env, ri, value);
    }
}

2662
static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
2663
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
2664
      .access = PL1_RW, .type = ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2665
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
2666
                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
2667
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
F
Fabian Aggeler 已提交
2668 2669 2670
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
                             offsetof(CPUARMState, cp15.dfar_ns) } },
    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
      .resetvalue = 0, },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo vmsa_cp_reginfo[] = {
2683 2684 2685
    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
2686
      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
2687
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
2688 2689 2690 2691
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
2692
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
F
Fabian Aggeler 已提交
2693 2694 2695 2696
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
2697 2698 2699 2700
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
F
Fabian Aggeler 已提交
2701
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
2702
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
2703
      .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
2704
      .raw_writefn = vmsa_ttbcr_raw_write,
F
Fabian Aggeler 已提交
2705 2706
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
2707 2708 2709
    REGINFO_SENTINEL
};

2710 2711
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
2712 2713 2714 2715 2716 2717 2718
{
    env->cp15.c15_ticonfig = value & 0xe7;
    /* The OS_TYPE bit in this register changes the reported CPUID! */
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
}

2719 2720
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                uint64_t value)
2721 2722 2723 2724
{
    env->cp15.c15_threadid = value & 0xffff;
}

2725 2726
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
2727 2728
{
    /* Wait-for-interrupt (deprecated) */
2729
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
2730 2731
}

2732 2733
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
2734 2735 2736 2737 2738 2739 2740 2741
{
    /* On OMAP there are registers indicating the max/min index of dcache lines
     * containing a dirty line; cache flush operations have to reset these.
     */
    env->cp15.c15_i_max = 0x000;
    env->cp15.c15_i_min = 0xff0;
}

2742 2743 2744
static const ARMCPRegInfo omap_cp_reginfo[] = {
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
2745
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
2746
      .resetvalue = 0, },
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
      .writefn = omap_ticonfig_write },
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0xff0,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
      .writefn = omap_threadid_write },
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
2765
      .type = ARM_CP_NO_RAW,
2766 2767 2768 2769 2770 2771
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
    /* TODO: Peripheral port remap register:
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
     * when MMU is off.
     */
2772
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
2773
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
2774
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
2775
      .writefn = omap_cachemaint_write },
2776 2777 2778
    { .name = "C9", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
2779 2780 2781
    REGINFO_SENTINEL
};

2782 2783
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
2784
{
2785
    env->cp15.c15_cpar = value & 0x3fff;
2786 2787 2788 2789 2790 2791 2792
}

static const ARMCPRegInfo xscale_cp_reginfo[] = {
    { .name = "XSCALE_CPAR",
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
      .writefn = xscale_cpar_write, },
2793 2794 2795 2796
    { .name = "XSCALE_AUXCR",
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
      .resetvalue = 0, },
2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
    /* XScale specific cache-lockdown: since we have no cache we NOP these
     * and hope the guest does not really rely on cache behaviour.
     */
    { .name = "XSCALE_LOCK_ICACHE_LINE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_ICACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "XSCALE_DCACHE_LOCK",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .type = ARM_CP_NOP },
    { .name = "XSCALE_UNLOCK_DCACHE",
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822
    REGINFO_SENTINEL
};

static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
     * implementation of this implementation-defined space.
     * Ideally this should eventually disappear in favour of actually
     * implementing the correct behaviour for all cores.
     */
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2823
      .access = PL1_RW,
2824
      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
2825
      .resetvalue = 0 },
2826 2827 2828
    REGINFO_SENTINEL
};

2829 2830 2831
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
    /* Cache status: RAZ because we have no cache so it's always clean */
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
2832
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2833
      .resetvalue = 0 },
2834 2835 2836 2837 2838 2839
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
    /* We never have a a block transfer operation in progress */
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
2840
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2841
      .resetvalue = 0 },
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854
    /* The cache ops themselves: these all NOP for QEMU */
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
2855 2856 2857 2858 2859 2860 2861 2862
    REGINFO_SENTINEL
};

static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
    /* The cache test-and-clean instructions always return (1 << 30)
     * to indicate that there are no dirty cache lines.
     */
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
2863
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2864
      .resetvalue = (1 << 30) },
2865
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
2866
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
2867
      .resetvalue = (1 << 30) },
2868 2869 2870
    REGINFO_SENTINEL
};

2871 2872 2873 2874
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
    /* Ignore ReadBuffer accesses */
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
2875
      .access = PL1_RW, .resetvalue = 0,
2876
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
2877 2878 2879
    REGINFO_SENTINEL
};

E
Edgar E. Iglesias 已提交
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
        return env->cp15.vpidr_el2;
    }
    return raw_read(env, ri);
}

2892
static uint64_t mpidr_read_val(CPUARMState *env)
P
Peter Maydell 已提交
2893
{
2894 2895 2896
    ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
    uint64_t mpidr = cpu->mp_affinity;

P
Peter Maydell 已提交
2897
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
2898
        mpidr |= (1U << 31);
P
Peter Maydell 已提交
2899 2900
        /* Cores which are uniprocessor (non-coherent)
         * but still implement the MP extensions set
2901
         * bit 30. (For instance, Cortex-R5).
P
Peter Maydell 已提交
2902
         */
2903 2904 2905
        if (cpu->mp_is_up) {
            mpidr |= (1u << 30);
        }
P
Peter Maydell 已提交
2906
    }
2907
    return mpidr;
P
Peter Maydell 已提交
2908 2909
}

2910 2911
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
E
Edgar E. Iglesias 已提交
2912 2913 2914 2915 2916 2917
    unsigned int cur_el = arm_current_el(env);
    bool secure = arm_is_secure(env);

    if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
        return env->cp15.vmpidr_el2;
    }
2918 2919 2920
    return mpidr_read_val(env);
}

P
Peter Maydell 已提交
2921
static const ARMCPRegInfo mpidr_cp_reginfo[] = {
2922 2923
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
2924
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
P
Peter Maydell 已提交
2925 2926 2927
    REGINFO_SENTINEL
};

2928
static const ARMCPRegInfo lpae_cp_reginfo[] = {
2929
    /* NOP AMAIR0/1 */
2930 2931
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
2932
      .access = PL1_RW, .type = ARM_CP_CONST,
2933
      .resetvalue = 0 },
2934
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
2935
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
2936
      .access = PL1_RW, .type = ARM_CP_CONST,
2937
      .resetvalue = 0 },
2938
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
F
Fabian Aggeler 已提交
2939 2940 2941
      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
                             offsetof(CPUARMState, cp15.par_ns)} },
2942
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
2943
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2944 2945
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
                             offsetof(CPUARMState, cp15.ttbr0_ns) },
2946
      .writefn = vmsa_ttbr_write, },
2947
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
2948
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
F
Fabian Aggeler 已提交
2949 2950
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
                             offsetof(CPUARMState, cp15.ttbr1_ns) },
2951
      .writefn = vmsa_ttbr_write, },
2952 2953 2954
    REGINFO_SENTINEL
};

2955
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2956
{
2957
    return vfp_get_fpcr(env);
2958 2959
}

2960 2961
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2962 2963 2964 2965
{
    vfp_set_fpcr(env, value);
}

2966
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2967
{
2968
    return vfp_get_fpsr(env);
2969 2970
}

2971 2972
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
2973 2974 2975 2976
{
    vfp_set_fpsr(env, value);
}

2977 2978
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                       bool isread)
2979
{
2980
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
                            uint64_t value)
{
    env->daif = value & PSTATE_DAIF;
}

2992
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
2993 2994
                                          const ARMCPRegInfo *ri,
                                          bool isread)
2995 2996 2997 2998
{
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
     * SCTLR_EL1.UCI is set.
     */
2999
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
3000 3001 3002 3003 3004
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

3005 3006 3007 3008
/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 * Page D4-1736 (DDI0487A.b)
 */

3009 3010
static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
3011
{
3012
    CPUState *cs = ENV_GET_CPU(env);
3013

3014
    if (arm_is_secure_below_el3(env)) {
3015
        tlb_flush_by_mmuidx(cs,
3016 3017
                            ARMMMUIdxBit_S1SE1 |
                            ARMMMUIdxBit_S1SE0);
3018
    } else {
3019
        tlb_flush_by_mmuidx(cs,
3020 3021
                            ARMMMUIdxBit_S12NSE1 |
                            ARMMMUIdxBit_S12NSE0);
3022
    }
3023 3024
}

3025 3026
static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                      uint64_t value)
3027
{
3028
    CPUState *cs = ENV_GET_CPU(env);
3029
    bool sec = arm_is_secure_below_el3(env);
3030

3031 3032
    if (sec) {
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
3033 3034
                                            ARMMMUIdxBit_S1SE1 |
                                            ARMMMUIdxBit_S1SE0);
3035 3036
    } else {
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
3037 3038
                                            ARMMMUIdxBit_S12NSE1 |
                                            ARMMMUIdxBit_S12NSE0);
3039
    }
3040 3041
}

3042 3043
static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
3044
{
3045 3046 3047 3048
    /* Note that the 'ALL' scope must invalidate both stage 1 and
     * stage 2 translations, whereas most other scopes only invalidate
     * stage 1 translations.
     */
3049
    ARMCPU *cpu = arm_env_get_cpu(env);
3050 3051 3052
    CPUState *cs = CPU(cpu);

    if (arm_is_secure_below_el3(env)) {
3053
        tlb_flush_by_mmuidx(cs,
3054 3055
                            ARMMMUIdxBit_S1SE1 |
                            ARMMMUIdxBit_S1SE0);
3056 3057
    } else {
        if (arm_feature(env, ARM_FEATURE_EL2)) {
3058
            tlb_flush_by_mmuidx(cs,
3059 3060 3061
                                ARMMMUIdxBit_S12NSE1 |
                                ARMMMUIdxBit_S12NSE0 |
                                ARMMMUIdxBit_S2NS);
3062
        } else {
3063
            tlb_flush_by_mmuidx(cs,
3064 3065
                                ARMMMUIdxBit_S12NSE1 |
                                ARMMMUIdxBit_S12NSE0);
3066 3067
        }
    }
3068 3069
}

3070
static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
3071 3072
                                  uint64_t value)
{
3073 3074 3075
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

3076
    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
3077 3078
}

3079 3080 3081 3082 3083 3084
static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);

3085
    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
3086 3087
}

3088 3089 3090 3091 3092 3093 3094
static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    /* Note that the 'ALL' scope must invalidate both stage 1 and
     * stage 2 translations, whereas most other scopes only invalidate
     * stage 1 translations.
     */
3095
    CPUState *cs = ENV_GET_CPU(env);
3096 3097
    bool sec = arm_is_secure_below_el3(env);
    bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
3098 3099 3100

    if (sec) {
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
3101 3102
                                            ARMMMUIdxBit_S1SE1 |
                                            ARMMMUIdxBit_S1SE0);
3103 3104
    } else if (has_el2) {
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
3105 3106 3107
                                            ARMMMUIdxBit_S12NSE1 |
                                            ARMMMUIdxBit_S12NSE0 |
                                            ARMMMUIdxBit_S2NS);
3108 3109
    } else {
          tlb_flush_by_mmuidx_all_cpus_synced(cs,
3110 3111
                                              ARMMMUIdxBit_S12NSE1 |
                                              ARMMMUIdxBit_S12NSE0);
3112 3113 3114
    }
}

3115 3116 3117
static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
3118
    CPUState *cs = ENV_GET_CPU(env);
3119

3120
    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
3121 3122
}

3123 3124 3125
static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
3126
    CPUState *cs = ENV_GET_CPU(env);
3127

3128
    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
3129 3130
}

3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143
static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL1&0 (AArch64 version).
     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
     * since we don't support flush-for-specific-ASID-only or
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

    if (arm_is_secure_below_el3(env)) {
3144
        tlb_flush_page_by_mmuidx(cs, pageaddr,
3145 3146
                                 ARMMMUIdxBit_S1SE1 |
                                 ARMMMUIdxBit_S1SE0);
3147
    } else {
3148
        tlb_flush_page_by_mmuidx(cs, pageaddr,
3149 3150
                                 ARMMMUIdxBit_S12NSE1 |
                                 ARMMMUIdxBit_S12NSE0);
3151 3152 3153 3154 3155
    }
}

static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
3156
{
3157 3158 3159 3160 3161 3162 3163 3164
    /* Invalidate by VA, EL2
     * Currently handles both VAE2 and VALE2, since we don't support
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

3165
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
3166 3167
}

3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178
static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                 uint64_t value)
{
    /* Invalidate by VA, EL3
     * Currently handles both VAE3 and VALE3, since we don't support
     * flush-last-level-only.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

3179
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
3180 3181
}

3182 3183 3184
static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
3185 3186
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
3187
    bool sec = arm_is_secure_below_el3(env);
3188 3189
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

3190 3191
    if (sec) {
        tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3192 3193
                                                 ARMMMUIdxBit_S1SE1 |
                                                 ARMMMUIdxBit_S1SE0);
3194 3195
    } else {
        tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3196 3197
                                                 ARMMMUIdxBit_S12NSE1 |
                                                 ARMMMUIdxBit_S12NSE0);
3198 3199 3200
    }
}

3201 3202
static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
3203
{
3204
    CPUState *cs = ENV_GET_CPU(env);
3205
    uint64_t pageaddr = sextract64(value << 12, 0, 56);
3206

3207
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3208
                                             ARMMMUIdxBit_S1E2);
3209 3210
}

3211 3212 3213
static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                   uint64_t value)
{
3214
    CPUState *cs = ENV_GET_CPU(env);
3215 3216
    uint64_t pageaddr = sextract64(value << 12, 0, 56);

3217
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3218
                                             ARMMMUIdxBit_S1E3);
3219 3220
}

3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                    uint64_t value)
{
    /* Invalidate by IPA. This has to invalidate any structures that
     * contain only stage 2 translation information, but does not need
     * to apply to structures that contain combined stage 1 and stage 2
     * translation information.
     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 48);

3240
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
3241 3242 3243 3244 3245
}

static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                      uint64_t value)
{
3246
    CPUState *cs = ENV_GET_CPU(env);
3247 3248 3249 3250 3251 3252 3253 3254
    uint64_t pageaddr;

    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
        return;
    }

    pageaddr = sextract64(value << 12, 0, 48);

3255
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
3256
                                             ARMMMUIdxBit_S2NS);
3257 3258
}

3259 3260
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                      bool isread)
3261 3262 3263 3264
{
    /* We don't implement EL2, so the only control on DC ZVA is the
     * bit in the SCTLR which can prohibit access for EL0.
     */
3265
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int dzp_bit = 1 << 4;

    /* DZP indicates whether DC ZVA access is allowed */
3277
    if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
3278 3279 3280 3281 3282
        dzp_bit = 0;
    }
    return cpu->dcz_blocksize | dzp_bit;
}

3283 3284
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                    bool isread)
3285
{
3286
    if (!(env->pstate & PSTATE_SP)) {
3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
        /* Access to SP_EL0 is undefined if it's being used as
         * the stack pointer.
         */
        return CP_ACCESS_TRAP_UNCATEGORIZED;
    }
    return CP_ACCESS_OK;
}

static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    return env->pstate & PSTATE_SP;
}

static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
{
    update_spsel(env, val);
}

3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (raw_read(env, ri) == value) {
        /* Skip the TLB flush if nothing actually changed; Linux likes
         * to do a lot of pointless SCTLR writes.
         */
        return;
    }

3317 3318 3319 3320 3321
    if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
        /* M bit is RAZ/WI for PMSA with no MPU implemented */
        value &= ~SCTLR_M;
    }

3322 3323 3324
    raw_write(env, ri, value);
    /* ??? Lots of these bits are not implemented.  */
    /* This may enable/disable the MMU, so do a TLB flush.  */
3325
    tlb_flush(CPU(cpu));
3326 3327
}

3328 3329
static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
3330 3331
{
    if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
3332
        return CP_ACCESS_TRAP_FP_EL2;
3333 3334
    }
    if (env->cp15.cptr_el[3] & CPTR_TFP) {
3335
        return CP_ACCESS_TRAP_FP_EL3;
3336 3337 3338 3339
    }
    return CP_ACCESS_OK;
}

3340 3341 3342 3343 3344 3345
static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                       uint64_t value)
{
    env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
}

3346 3347 3348 3349 3350 3351 3352
static const ARMCPRegInfo v8_cp_reginfo[] = {
    /* Minimal set of EL0-visible registers. This will need to be expanded
     * significantly for system emulation of AArch64 CPUs.
     */
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
      .access = PL0_RW, .type = ARM_CP_NZCV },
3353 3354
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
3355
      .type = ARM_CP_NO_RAW,
3356 3357 3358
      .access = PL0_RW, .accessfn = aa64_daif_access,
      .fieldoffset = offsetof(CPUARMState, daif),
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
3359 3360
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
3361
      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3362
      .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
3363 3364
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
3365
      .access = PL0_RW, .type = ARM_CP_FPU | ARM_CP_SUPPRESS_TB_END,
3366
      .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
3367 3368
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
3369
      .access = PL0_R, .type = ARM_CP_NO_RAW,
3370 3371 3372 3373 3374 3375 3376 3377 3378
      .readfn = aa64_dczid_read },
    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_DC_ZVA,
#ifndef CONFIG_USER_ONLY
      /* Avoid overhead of an access check that always passes in user-mode */
      .accessfn = aa64_zva_access,
#endif
    },
3379 3380 3381
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416
    /* Cache ops: all NOPs since we don't emulate caches */
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
      .access = PL0_W, .type = ARM_CP_NOP,
      .accessfn = aa64_cacheop_access },
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .access = PL1_W, .type = ARM_CP_NOP },
3417 3418
    /* TLBI operations */
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
3419
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
3420
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3421
      .writefn = tlbi_aa64_vmalle1is_write },
3422
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
3423
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
3424
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3425
      .writefn = tlbi_aa64_vae1is_write },
3426
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
3427
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
3428
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3429
      .writefn = tlbi_aa64_vmalle1is_write },
3430
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
3431
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
3432
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3433
      .writefn = tlbi_aa64_vae1is_write },
3434
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
3435
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3436
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3437
      .writefn = tlbi_aa64_vae1is_write },
3438
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
3439
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3440
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3441
      .writefn = tlbi_aa64_vae1is_write },
3442
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
3443
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
3444
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3445
      .writefn = tlbi_aa64_vmalle1_write },
3446
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
3447
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
3448
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3449
      .writefn = tlbi_aa64_vae1_write },
3450
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
3451
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
3452
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3453
      .writefn = tlbi_aa64_vmalle1_write },
3454
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
3455
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
3456
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3457
      .writefn = tlbi_aa64_vae1_write },
3458
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
3459
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3460
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3461
      .writefn = tlbi_aa64_vae1_write },
3462
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
3463
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3464
      .access = PL1_W, .type = ARM_CP_NO_RAW,
3465
      .writefn = tlbi_aa64_vae1_write },
3466 3467 3468 3469 3470 3471 3472 3473
    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1is_write },
    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1is_write },
3474 3475 3476
    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
3477
      .writefn = tlbi_aa64_alle1is_write },
3478 3479 3480 3481
    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
3482 3483 3484 3485 3486 3487 3488 3489
    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1_write },
    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_ipas2e1_write },
3490 3491 3492
    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
3493
      .writefn = tlbi_aa64_alle1_write },
3494 3495 3496 3497
    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle1is_write },
3498 3499 3500 3501
#ifndef CONFIG_USER_ONLY
    /* 64 bit address translation operations */
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
3502
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3503 3504
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
3505
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3506 3507
    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
3508
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3509 3510
    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
3511
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3512
    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
3513
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
3514 3515
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
3516
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
3517 3518
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
3519
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
3520 3521
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
3522
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
3523 3524 3525 3526 3527 3528 3529 3530
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3531 3532 3533 3534 3535 3536
    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
      .writefn = par_write },
3537
#endif
3538
    /* TLB invalidate last level of translation table walk */
3539
    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
3540
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
3541
    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
3542
      .type = ARM_CP_NO_RAW, .access = PL1_W,
3543
      .writefn = tlbimvaa_is_write },
3544
    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
3545
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
3546
    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
3547
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
    { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_write },
    { .name = "TLBIMVALHIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_is_write },
    { .name = "TLBIIPAS2",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_write },
    { .name = "TLBIIPAS2IS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_is_write },
    { .name = "TLBIIPAS2L",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_write },
    { .name = "TLBIIPAS2LIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiipas2_is_write },
3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
    /* 32 bit cache operations */
    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
      .type = ARM_CP_NOP, .access = PL1_W },
    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
      .type = ARM_CP_NOP, .access = PL1_W },
    /* MMU Domain access control / MPU write buffer control */
F
Fabian Aggeler 已提交
3599 3600 3601 3602 3603
    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL1_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
3604
    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
3605
      .type = ARM_CP_ALIAS,
3606
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
3607 3608
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
3609
    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
3610
      .type = ARM_CP_ALIAS,
3611
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
3612 3613
      .access = PL1_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
3614 3615 3616 3617 3618 3619 3620
    /* We rely on the access checks not allowing the guest to write to the
     * state field when SPSel indicates that it's being used as the stack
     * pointer.
     */
    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
      .access = PL1_RW, .accessfn = sp_el0_access,
3621
      .type = ARM_CP_ALIAS,
3622
      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
3623 3624
    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
3625
      .access = PL2_RW, .type = ARM_CP_ALIAS,
3626
      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
3627 3628
    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
3629
      .type = ARM_CP_NO_RAW,
3630
      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
3631 3632 3633 3634 3635
    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
      .type = ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
      .access = PL2_RW, .accessfn = fpexc32_access },
3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664
    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .writefn = dacr_write, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
    { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
    { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
    { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
    { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
      .type = ARM_CP_ALIAS,
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
3665 3666 3667 3668 3669 3670 3671 3672 3673
    { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
      .resetvalue = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
    { .name = "SDCR", .type = ARM_CP_ALIAS,
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .writefn = sdcr_write,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
3674 3675 3676
    REGINFO_SENTINEL
};

3677
/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
3678
static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
3679 3680 3681 3682
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
E
Edgar E. Iglesias 已提交
3683
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
3684
      .type = ARM_CP_NO_RAW,
E
Edgar E. Iglesias 已提交
3685 3686 3687
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW,
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
3688 3689 3690
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3691 3692 3693 3694 3695 3696 3697
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3698 3699 3700 3701 3702 3703 3704 3705
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3706 3707 3708 3709 3710 3711 3712 3713
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3714 3715 3716
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3717 3718 3719 3720
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
      .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3721 3722 3723 3724 3725 3726 3727
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 6, .crm = 2,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3728 3729 3730
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3731 3732 3733
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3734 3735 3736 3737 3738 3739
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3740 3741 3742
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3743 3744 3745 3746 3747 3748
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
S
Sergey Fedorov 已提交
3761 3762
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
3763 3764
      .access = PL2_RW, .accessfn = access_tda,
      .type = ARM_CP_CONST, .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3765 3766 3767 3768
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
      .type = ARM_CP_CONST, .resetvalue = 0 },
3769 3770 3771
    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
3772 3773 3774
    REGINFO_SENTINEL
};

E
Edgar E. Iglesias 已提交
3775 3776 3777 3778 3779 3780 3781
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t valid_mask = HCR_MASK;

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        valid_mask &= ~HCR_HCD;
3782 3783 3784 3785 3786 3787 3788 3789
    } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
        /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
         * However, if we're using the SMC PSCI conduit then QEMU is
         * effectively acting like EL3 firmware and so the guest at
         * EL2 should retain the ability to prevent EL1 from being
         * able to make SMC calls into the ersatz firmware, so in
         * that case HCR.TSC should be read/write.
         */
E
Edgar E. Iglesias 已提交
3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801
        valid_mask &= ~HCR_TSC;
    }

    /* Clear RES0 bits.  */
    value &= valid_mask;

    /* These bits change the MMU setup:
     * HCR_VM enables stage 2 translation
     * HCR_PTW forbids certain page-table setups
     * HCR_DC Disables stage1 and enables stage2 translation
     */
    if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
3802
        tlb_flush(CPU(cpu));
E
Edgar E. Iglesias 已提交
3803 3804 3805 3806
    }
    raw_write(env, ri, value);
}

3807
static const ARMCPRegInfo el2_cp_reginfo[] = {
E
Edgar E. Iglesias 已提交
3808 3809 3810 3811
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
      .writefn = hcr_write },
3812
    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
3813
      .type = ARM_CP_ALIAS,
3814 3815 3816
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
3817 3818 3819
    { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
3820 3821 3822
    { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
3823
    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
3824
      .type = ARM_CP_ALIAS,
3825
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
3826 3827
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
3828 3829 3830 3831 3832
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
      .resetvalue = 0 },
3833 3834
    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
3835
      .access = PL3_RW, .type = ARM_CP_ALIAS,
3836
      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
3837 3838 3839 3840
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
E
Edgar E. Iglesias 已提交
3841 3842 3843 3844 3845 3846 3847 3848
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
      .resetvalue = 0 },
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_ALIAS,
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
3849 3850 3851 3852 3853 3854 3855 3856 3857
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
3858 3859 3860 3861 3862 3863 3864 3865
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
E
Edgar E. Iglesias 已提交
3866 3867
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
3868 3869 3870 3871
      .access = PL2_RW,
      /* no .writefn needed as this can't cause an ASID change;
       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
       */
E
Edgar E. Iglesias 已提交
3872
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
E
Edgar E. Iglesias 已提交
3873 3874
    { .name = "VTCR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3875
      .type = ARM_CP_ALIAS,
E
Edgar E. Iglesias 已提交
3876 3877 3878 3879
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
3880 3881 3882 3883
      .access = PL2_RW,
      /* no .writefn needed as this can't cause an ASID change;
       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
       */
E
Edgar E. Iglesias 已提交
3884
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
E
Edgar E. Iglesias 已提交
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 6, .crm = 2,
      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
      .writefn = vttbr_write },
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
      .access = PL2_RW, .writefn = vttbr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
E
Edgar E. Iglesias 已提交
3895 3896 3897 3898
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
E
Edgar E. Iglesias 已提交
3899 3900 3901 3902
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
E
Edgar E. Iglesias 已提交
3903 3904 3905 3906 3907 3908 3909
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
    { .name = "TLBIALLNSNH",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_nsnh_write },
    { .name = "TLBIALLNSNHIS",
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_nsnh_is_write },
    { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_hyp_write },
    { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbiall_hyp_is_write },
    { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_write },
    { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
      .writefn = tlbimva_hyp_is_write },
E
Edgar E. Iglesias 已提交
3930 3931 3932
    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3933
      .writefn = tlbi_aa64_alle2_write },
3934 3935 3936
    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3937
      .writefn = tlbi_aa64_vae2_write },
3938 3939 3940 3941 3942 3943 3944 3945
    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2_write },
    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle2is_write },
3946 3947 3948
    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
      .type = ARM_CP_NO_RAW, .access = PL2_W,
3949
      .writefn = tlbi_aa64_vae2is_write },
3950 3951 3952 3953
    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL2_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae2is_write },
E
Edgar E. Iglesias 已提交
3954
#ifndef CONFIG_USER_ONLY
3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
    /* Unlike the other EL2-related AT operations, these must
     * UNDEF from EL3 if EL2 is not implemented, which is why we
     * define them here rather than with the rest of the AT ops.
     */
    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W, .accessfn = at_s1e2_access,
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977
    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
     * to behave as if SCR.NS was 1.
     */
    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
      .access = PL2_W,
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
E
Edgar E. Iglesias 已提交
3978 3979 3980 3981 3982 3983 3984 3985
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
       * reset values as IMPDEF. We choose to reset to 3 to comply with
       * both ARMv7 and ARMv8.
       */
      .access = PL2_RW, .resetvalue = 3,
      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
E
Edgar E. Iglesias 已提交
3986 3987 3988 3989 3990 3991 3992 3993 3994
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
      .writefn = gt_cntvoff_write,
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .type = ARM_CP_IO, .access = PL2_RW,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
4006
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
4007 4008 4009 4010 4011 4012 4013 4014 4015
      .resetfn = gt_hyp_timer_reset,
      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
      .type = ARM_CP_IO,
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
      .resetvalue = 0,
      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
E
Edgar E. Iglesias 已提交
4016
#endif
S
Sergey Fedorov 已提交
4017 4018 4019 4020 4021 4022 4023 4024 4025
    /* The only field of MDCR_EL2 that has a defined architectural reset value
     * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
     * don't impelment any PMU event counters, so using zero as a reset
     * value for MDCR_EL2 is okay
     */
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL2_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
E
Edgar E. Iglesias 已提交
4026 4027 4028 4029 4030 4031 4032 4033
    { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
4034 4035 4036 4037
    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
      .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
      .access = PL2_RW,
      .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
4038 4039 4040
    REGINFO_SENTINEL
};

4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
     * At Secure EL1 it traps to EL3.
     */
    if (arm_current_el(env) == 3) {
        return CP_ACCESS_OK;
    }
    if (arm_is_secure_below_el3(env)) {
        return CP_ACCESS_TRAP_EL3;
    }
    /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
    if (isread) {
        return CP_ACCESS_OK;
    }
    return CP_ACCESS_TRAP_UNCATEGORIZED;
}

4060 4061 4062 4063 4064
static const ARMCPRegInfo el3_cp_reginfo[] = {
    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
      .resetvalue = 0, .writefn = scr_write },
4065
    { .name = "SCR",  .type = ARM_CP_ALIAS,
4066
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
4067 4068
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
4069
      .writefn = scr_write },
4070 4071 4072 4073 4074 4075 4076 4077 4078
    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
    { .name = "SDER",
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
4079 4080
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
      .writefn = vbar_write, .resetvalue = 0,
4081
      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
F
Fabian Aggeler 已提交
4082 4083 4084 4085
    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
F
Fabian Aggeler 已提交
4086 4087
    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
4088 4089
      .access = PL3_RW,
      /* no .writefn needed as this can't cause an ASID change;
4090 4091 4092
       * we must provide a .raw_writefn and .resetfn because we handle
       * reset and migration for the AArch32 TTBCR(S), which might be
       * using mask and base_mask.
4093
       */
4094
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
F
Fabian Aggeler 已提交
4095
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
4096
    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
4097
      .type = ARM_CP_ALIAS,
4098 4099 4100
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
4101 4102 4103
    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
4104 4105 4106
    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
4107
    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
4108
      .type = ARM_CP_ALIAS,
4109
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
4110 4111
      .access = PL3_RW,
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
4112 4113 4114 4115 4116
    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
      .access = PL3_RW, .writefn = vbar_write,
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
      .resetvalue = 0 },
4117 4118 4119 4120
    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
4121 4122 4123 4124
    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
      .access = PL3_RW, .resetvalue = 0,
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
4125 4126 4127 4128
    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
4129 4130 4131 4132 4133 4134 4135 4136
    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
      .access = PL3_RW, .type = ARM_CP_CONST,
      .resetvalue = 0 },
4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160
    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3is_write },
    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3is_write },
    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_alle3_write },
    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
      .access = PL3_W, .type = ARM_CP_NO_RAW,
      .writefn = tlbi_aa64_vae3_write },
4161 4162 4163
    REGINFO_SENTINEL
};

4164 4165
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
                                     bool isread)
4166 4167 4168 4169
{
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
     * but the AArch32 CTR has its own reginfo struct)
     */
4170
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
4171 4172 4173 4174 4175
        return CP_ACCESS_TRAP;
    }
    return CP_ACCESS_OK;
}

4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192
static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    /* Writes to OSLAR_EL1 may update the OS lock status, which can be
     * read via a bit in OSLSR_EL1.
     */
    int oslock;

    if (ri->state == ARM_CP_STATE_AA32) {
        oslock = (value == 0xC5ACCE55);
    } else {
        oslock = value & 1;
    }

    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
}

4193 4194
static const ARMCPRegInfo debug_cp_reginfo[] = {
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4195 4196 4197 4198
     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
     * unlike DBGDRAR it is never accessible from EL0.
     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
     * accessor.
4199 4200
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
4201 4202
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
4203 4204
    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
4205 4206
      .access = PL1_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
4207
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
4208 4209
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
4210
    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4211 4212
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
4213
      .access = PL1_RW, .accessfn = access_tda,
4214 4215
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetvalue = 0 },
4216 4217 4218 4219 4220
    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
     * We don't implement the configurable EL0 access.
     */
    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
4221
      .type = ARM_CP_ALIAS,
4222
      .access = PL1_R, .accessfn = access_tda,
4223
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
4224 4225
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
4226
      .access = PL1_W, .type = ARM_CP_NO_RAW,
4227
      .accessfn = access_tdosa,
4228 4229 4230 4231
      .writefn = oslar_write },
    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
      .access = PL1_R, .resetvalue = 10,
4232
      .accessfn = access_tdosa,
4233
      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
4234 4235 4236
    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
4237 4238
      .access = PL1_RW, .accessfn = access_tdosa,
      .type = ARM_CP_NOP },
4239 4240 4241 4242 4243
    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
     * implement vector catch debug events yet.
     */
    { .name = "DBGVCR",
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
4244 4245
      .access = PL1_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
4246 4247 4248 4249 4250 4251 4252
    /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
     * to save and restore a 32-bit guest's DBGVCR)
     */
    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL2_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
4253 4254 4255 4256 4257 4258 4259 4260
    /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
     * Channel but Linux may try to access this register. The 32-bit
     * alias is DBGDCCINT.
     */
    { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272
    REGINFO_SENTINEL
};

static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
    REGINFO_SENTINEL
};

R
Richard Henderson 已提交
4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349
/* Return the exception level to which SVE-disabled exceptions should
 * be taken, or 0 if SVE is enabled.
 */
static int sve_exception_el(CPUARMState *env)
{
#ifndef CONFIG_USER_ONLY
    unsigned current_el = arm_current_el(env);

    /* The CPACR.ZEN controls traps to EL1:
     * 0, 2 : trap EL0 and EL1 accesses
     * 1    : trap only EL0 accesses
     * 3    : trap no accesses
     */
    switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
    default:
        if (current_el <= 1) {
            /* Trap to PL1, which might be EL1 or EL3 */
            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
                return 3;
            }
            return 1;
        }
        break;
    case 1:
        if (current_el == 0) {
            return 1;
        }
        break;
    case 3:
        break;
    }

    /* Similarly for CPACR.FPEN, after having checked ZEN.  */
    switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
    default:
        if (current_el <= 1) {
            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
                return 3;
            }
            return 1;
        }
        break;
    case 1:
        if (current_el == 0) {
            return 1;
        }
        break;
    case 3:
        break;
    }

    /* CPTR_EL2.  Check both TZ and TFP.  */
    if (current_el <= 2
        && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ))
        && !arm_is_secure_below_el3(env)) {
        return 2;
    }

    /* CPTR_EL3.  Check both EZ and TFP.  */
    if (!(env->cp15.cptr_el[3] & CPTR_EZ)
        || (env->cp15.cptr_el[3] & CPTR_TFP)) {
        return 3;
    }
#endif
    return 0;
}

static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                      uint64_t value)
{
    /* Bits other than [3:0] are RAZ/WI.  */
    raw_write(env, ri, value & 0xf);
}

static const ARMCPRegInfo zcr_el1_reginfo = {
    .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
4350
    .access = PL1_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
R
Richard Henderson 已提交
4351 4352 4353 4354 4355 4356 4357
    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
    .writefn = zcr_write, .raw_writefn = raw_write
};

static const ARMCPRegInfo zcr_el2_reginfo = {
    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4358
    .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
R
Richard Henderson 已提交
4359 4360 4361 4362 4363 4364 4365
    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
    .writefn = zcr_write, .raw_writefn = raw_write
};

static const ARMCPRegInfo zcr_no_el2_reginfo = {
    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
4366
    .access = PL2_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
R
Richard Henderson 已提交
4367 4368 4369 4370 4371 4372
    .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
};

static const ARMCPRegInfo zcr_el3_reginfo = {
    .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
    .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
4373
    .access = PL3_RW, .type = ARM_CP_SVE | ARM_CP_FPU,
R
Richard Henderson 已提交
4374 4375 4376 4377
    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
    .writefn = zcr_write, .raw_writefn = raw_write
};

4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502
void hw_watchpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    vaddr len = 0;
    vaddr wvr = env->cp15.dbgwvr[n];
    uint64_t wcr = env->cp15.dbgwcr[n];
    int mask;
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;

    if (env->cpu_watchpoint[n]) {
        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
        env->cpu_watchpoint[n] = NULL;
    }

    if (!extract64(wcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    switch (extract64(wcr, 3, 2)) {
    case 0:
        /* LSC 00 is reserved and must behave as if the wp is disabled */
        return;
    case 1:
        flags |= BP_MEM_READ;
        break;
    case 2:
        flags |= BP_MEM_WRITE;
        break;
    case 3:
        flags |= BP_MEM_ACCESS;
        break;
    }

    /* Attempts to use both MASK and BAS fields simultaneously are
     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
     * thus generating a watchpoint for every byte in the masked region.
     */
    mask = extract64(wcr, 24, 4);
    if (mask == 1 || mask == 2) {
        /* Reserved values of MASK; we must act as if the mask value was
         * some non-reserved value, or as if the watchpoint were disabled.
         * We choose the latter.
         */
        return;
    } else if (mask) {
        /* Watchpoint covers an aligned area up to 2GB in size */
        len = 1ULL << mask;
        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
         * whether the watchpoint fires when the unmasked bits match; we opt
         * to generate the exceptions.
         */
        wvr &= ~(len - 1);
    } else {
        /* Watchpoint covers bytes defined by the byte address select bits */
        int bas = extract64(wcr, 5, 8);
        int basstart;

        if (bas == 0) {
            /* This must act as if the watchpoint is disabled */
            return;
        }

        if (extract64(wvr, 2, 1)) {
            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
             * ignored, and BAS[3:0] define which bytes to watch.
             */
            bas &= 0xf;
        }
        /* The BAS bits are supposed to be programmed to indicate a contiguous
         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
         * we fire for each byte in the word/doubleword addressed by the WVR.
         * We choose to ignore any non-zero bits after the first range of 1s.
         */
        basstart = ctz32(bas);
        len = cto32(bas >> basstart);
        wvr += basstart;
    }

    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
                          &env->cpu_watchpoint[n]);
}

void hw_watchpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU watchpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
        hw_watchpoint_update(cpu, i);
    }
}

static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
     * register reads and behaves as if values written are sign extended.
     * Bits [1:0] are RES0.
     */
    value = sextract64(value, 0, 49) & ~3ULL;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_watchpoint_update(cpu, i);
}

4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620
void hw_breakpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    uint64_t bvr = env->cp15.dbgbvr[n];
    uint64_t bcr = env->cp15.dbgbcr[n];
    vaddr addr;
    int bt;
    int flags = BP_CPU;

    if (env->cpu_breakpoint[n]) {
        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
        env->cpu_breakpoint[n] = NULL;
    }

    if (!extract64(bcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    bt = extract64(bcr, 20, 4);

    switch (bt) {
    case 4: /* unlinked address mismatch (reserved if AArch64) */
    case 5: /* linked address mismatch (reserved if AArch64) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: address mismatch breakpoint types not implemented");
        return;
    case 0: /* unlinked address match */
    case 1: /* linked address match */
    {
        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
         * we behave as if the register was sign extended. Bits [1:0] are
         * RES0. The BAS field is used to allow setting breakpoints on 16
         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
         * a bp will fire if the addresses covered by the bp and the addresses
         * covered by the insn overlap but the insn doesn't start at the
         * start of the bp address range. We choose to require the insn and
         * the bp to have the same address. The constraints on writing to
         * BAS enforced in dbgbcr_write mean we have only four cases:
         *  0b0000  => no breakpoint
         *  0b0011  => breakpoint on addr
         *  0b1100  => breakpoint on addr + 2
         *  0b1111  => breakpoint on addr
         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
         */
        int bas = extract64(bcr, 5, 4);
        addr = sextract64(bvr, 0, 49) & ~3ULL;
        if (bas == 0) {
            return;
        }
        if (bas == 0xc) {
            addr += 2;
        }
        break;
    }
    case 2: /* unlinked context ID match */
    case 8: /* unlinked VMID match (reserved if no EL2) */
    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: unlinked context breakpoint types not implemented");
        return;
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    case 3: /* linked context ID match */
    default:
        /* We must generate no events for Linked context matches (unless
         * they are linked to by some other bp/wp, which is handled in
         * updates for the linking bp/wp). We choose to also generate no events
         * for reserved values.
         */
        return;
    }

    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}

void hw_breakpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /* Completely clear out existing QEMU breakpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
        hw_breakpoint_update(cpu, i);
    }
}

static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int i = ri->crm;

    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
     * copy of BAS[0].
     */
    value = deposit64(value, 6, 1, extract64(value, 5, 1));
    value = deposit64(value, 8, 1, extract64(value, 7, 1));

    raw_write(env, ri, value);
    hw_breakpoint_update(cpu, i);
}

4621
static void define_debug_regs(ARMCPU *cpu)
4622
{
4623 4624
    /* Define v7 and v8 architectural debug registers.
     * These are just dummy implementations for now.
4625 4626
     */
    int i;
4627
    int wrps, brps, ctx_cmps;
4628 4629
    ARMCPRegInfo dbgdidr = {
        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
4630 4631
        .access = PL0_R, .accessfn = access_tda,
        .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
4632 4633
    };

4634
    /* Note that all these register fields hold "number of Xs minus 1". */
4635 4636
    brps = extract32(cpu->dbgdidr, 24, 4);
    wrps = extract32(cpu->dbgdidr, 28, 4);
4637 4638 4639
    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);

    assert(ctx_cmps <= brps);
4640 4641 4642 4643 4644 4645 4646 4647

    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
     * of the debug registers such as number of breakpoints;
     * check that if they both exist then they agree.
     */
    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
4648
        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
4649
    }
4650

4651
    define_one_arm_cp_reg(cpu, &dbgdidr);
4652 4653 4654 4655 4656 4657
    define_arm_cp_regs(cpu, debug_cp_reginfo);

    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
    }

4658
    for (i = 0; i < brps + 1; i++) {
4659
        ARMCPRegInfo dbgregs[] = {
4660 4661
            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
4662
              .access = PL1_RW, .accessfn = access_tda,
4663 4664 4665
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
              .writefn = dbgbvr_write, .raw_writefn = raw_write
            },
4666 4667
            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
4668
              .access = PL1_RW, .accessfn = access_tda,
4669 4670 4671
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
              .writefn = dbgbcr_write, .raw_writefn = raw_write
            },
4672 4673 4674 4675 4676 4677 4678
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, dbgregs);
    }

    for (i = 0; i < wrps + 1; i++) {
        ARMCPRegInfo dbgregs[] = {
4679 4680
            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
4681
              .access = PL1_RW, .accessfn = access_tda,
4682 4683 4684
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
              .writefn = dbgwvr_write, .raw_writefn = raw_write
            },
4685 4686
            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
4687
              .access = PL1_RW, .accessfn = access_tda,
4688 4689 4690 4691
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
              .writefn = dbgwcr_write, .raw_writefn = raw_write
            },
            REGINFO_SENTINEL
4692 4693 4694 4695 4696
        };
        define_arm_cp_regs(cpu, dbgregs);
    }
}

4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
/* We don't know until after realize whether there's a GICv3
 * attached, and that is what registers the gicv3 sysregs.
 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
 * at runtime.
 */
static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t pfr1 = cpu->id_pfr1;

    if (env->gicv3state) {
        pfr1 |= 1 << 28;
    }
    return pfr1;
}

static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t pfr0 = cpu->id_aa64pfr0;

    if (env->gicv3state) {
        pfr0 |= 1 << 24;
    }
    return pfr0;
}

4724 4725 4726 4727 4728 4729 4730 4731 4732
void register_cp_regs_for_features(ARMCPU *cpu)
{
    /* Register all the coprocessor registers based on feature bits */
    CPUARMState *env = &cpu->env;
    if (arm_feature(env, ARM_FEATURE_M)) {
        /* M profile has no coprocessor registers */
        return;
    }

4733
    define_arm_cp_regs(cpu, cp_reginfo);
4734 4735 4736 4737 4738 4739 4740
    if (!arm_feature(env, ARM_FEATURE_V8)) {
        /* Must go early as it is full of wildcards that may be
         * overridden by later definitions.
         */
        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
    }

4741
    if (arm_feature(env, ARM_FEATURE_V6)) {
4742 4743
        /* The ID registers all have impdef reset values */
        ARMCPRegInfo v6_idregs[] = {
4744 4745 4746
            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
4747
              .resetvalue = cpu->id_pfr0 },
4748 4749 4750
            /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
             * the value of the GIC field until after we define these regs.
             */
4751 4752
            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
4753 4754 4755
              .access = PL1_R, .type = ARM_CP_NO_RAW,
              .readfn = id_pfr1_read,
              .writefn = arm_cp_write_ignore },
4756 4757 4758
            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
4759
              .resetvalue = cpu->id_dfr0 },
4760 4761 4762
            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
4763
              .resetvalue = cpu->id_afr0 },
4764 4765 4766
            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
4767
              .resetvalue = cpu->id_mmfr0 },
4768 4769 4770
            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
4771
              .resetvalue = cpu->id_mmfr1 },
4772 4773 4774
            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
4775
              .resetvalue = cpu->id_mmfr2 },
4776 4777 4778
            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
4779
              .resetvalue = cpu->id_mmfr3 },
4780 4781 4782
            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
4783
              .resetvalue = cpu->id_isar0 },
4784 4785 4786
            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
4787
              .resetvalue = cpu->id_isar1 },
4788 4789 4790
            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
4791
              .resetvalue = cpu->id_isar2 },
4792 4793 4794
            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
4795
              .resetvalue = cpu->id_isar3 },
4796 4797 4798
            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
4799
              .resetvalue = cpu->id_isar4 },
4800 4801 4802
            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
4803
              .resetvalue = cpu->id_isar5 },
4804 4805 4806 4807 4808 4809 4810 4811
            { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_mmfr4 },
            /* 7 is as yet unallocated and must RAZ */
            { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
4812 4813 4814 4815
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, v6_idregs);
4816 4817 4818 4819
        define_arm_cp_regs(cpu, v6_cp_reginfo);
    } else {
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
    }
4820 4821 4822
    if (arm_feature(env, ARM_FEATURE_V6K)) {
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
    }
4823
    if (arm_feature(env, ARM_FEATURE_V7MP) &&
4824
        !arm_feature(env, ARM_FEATURE_PMSA)) {
4825 4826
        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
    }
4827
    if (arm_feature(env, ARM_FEATURE_V7)) {
4828
        /* v7 performance monitor control register: same implementor
4829 4830
         * field as main ID register, and we implement only the cycle
         * count register.
4831
         */
4832
#ifndef CONFIG_USER_ONLY
4833 4834
        ARMCPRegInfo pmcr = {
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
4835
            .access = PL0_RW,
4836
            .type = ARM_CP_IO | ARM_CP_ALIAS,
4837
            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
4838 4839
            .accessfn = pmreg_access, .writefn = pmcr_write,
            .raw_writefn = raw_write,
4840
        };
4841 4842 4843 4844 4845 4846 4847 4848 4849
        ARMCPRegInfo pmcr64 = {
            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
            .access = PL0_RW, .accessfn = pmreg_access,
            .type = ARM_CP_IO,
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
            .resetvalue = cpu->midr & 0xff000000,
            .writefn = pmcr_write, .raw_writefn = raw_write,
        };
4850
        define_one_arm_cp_reg(cpu, &pmcr);
4851
        define_one_arm_cp_reg(cpu, &pmcr64);
4852
#endif
4853
        ARMCPRegInfo clidr = {
4854 4855
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
4856 4857 4858
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
        };
        define_one_arm_cp_reg(cpu, &clidr);
4859
        define_arm_cp_regs(cpu, v7_cp_reginfo);
4860
        define_debug_regs(cpu);
4861 4862
    } else {
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
4863
    }
4864
    if (arm_feature(env, ARM_FEATURE_V8)) {
4865 4866 4867 4868 4869
        /* AArch64 ID registers, which all have impdef reset values.
         * Note that within the ID register ranges the unused slots
         * must all RAZ, not UNDEF; future architecture versions may
         * define new registers here.
         */
4870
        ARMCPRegInfo v8_idregs[] = {
4871 4872 4873 4874
            /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
             * know the right value for the GIC field until after we
             * define these regs.
             */
4875 4876
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
4877 4878 4879
              .access = PL1_R, .type = ARM_CP_NO_RAW,
              .readfn = id_aa64pfr0_read,
              .writefn = arm_cp_write_ignore },
4880 4881 4882 4883
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64pfr1},
4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907
            { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4908 4909 4910
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
4911
              .resetvalue = cpu->id_aa64dfr0 },
4912 4913 4914 4915
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64dfr1 },
4916 4917 4918 4919 4920 4921 4922 4923
            { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4924 4925 4926 4927 4928 4929 4930 4931
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr0 },
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64afr1 },
4932 4933 4934 4935 4936 4937 4938 4939
            { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4940 4941 4942 4943 4944 4945 4946 4947
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar0 },
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64isar1 },
4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
            { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
4972 4973 4974 4975 4976 4977 4978 4979
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr0 },
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->id_aa64mmfr1 },
4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003
            { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015
            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr0 },
            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr1 },
            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->mvfr2 },
5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
            { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = 0 },
5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051
            { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid0 },
            { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid0 },
            { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid1 },
            { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmceid1 },
5052 5053
            REGINFO_SENTINEL
        };
5054 5055 5056 5057 5058 5059 5060 5061 5062 5063
        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3) &&
            !arm_feature(env, ARM_FEATURE_EL2)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
5064
        define_arm_cp_regs(cpu, v8_idregs);
5065 5066
        define_arm_cp_regs(cpu, v8_cp_reginfo);
    }
5067
    if (arm_feature(env, ARM_FEATURE_EL2)) {
E
Edgar E. Iglesias 已提交
5068
        uint64_t vmpidr_def = mpidr_read_val(env);
E
Edgar E. Iglesias 已提交
5069 5070 5071 5072
        ARMCPRegInfo vpidr_regs[] = {
            { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
5073 5074
              .resetvalue = cpu->midr, .type = ARM_CP_ALIAS,
              .fieldoffset = offsetoflow32(CPUARMState, cp15.vpidr_el2) },
E
Edgar E. Iglesias 已提交
5075 5076 5077 5078
            { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
              .access = PL2_RW, .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
E
Edgar E. Iglesias 已提交
5079 5080 5081
            { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
5082 5083
              .resetvalue = vmpidr_def, .type = ARM_CP_ALIAS,
              .fieldoffset = offsetoflow32(CPUARMState, cp15.vmpidr_el2) },
E
Edgar E. Iglesias 已提交
5084 5085 5086 5087 5088
            { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
              .access = PL2_RW,
              .resetvalue = vmpidr_def,
              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
E
Edgar E. Iglesias 已提交
5089 5090 5091
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, vpidr_regs);
5092
        define_arm_cp_regs(cpu, el2_cp_reginfo);
5093 5094 5095 5096 5097 5098 5099 5100 5101
        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
        if (!arm_feature(env, ARM_FEATURE_EL3)) {
            ARMCPRegInfo rvbar = {
                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
            };
            define_one_arm_cp_reg(cpu, &rvbar);
        }
5102 5103 5104 5105 5106
    } else {
        /* If EL2 is missing but higher ELs are enabled, we need to
         * register the no_el2 reginfos.
         */
        if (arm_feature(env, ARM_FEATURE_EL3)) {
E
Edgar E. Iglesias 已提交
5107 5108
            /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
             * of MIDR_EL1 and MPIDR_EL1.
E
Edgar E. Iglesias 已提交
5109 5110 5111 5112 5113 5114 5115
             */
            ARMCPRegInfo vpidr_regs[] = {
                { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
                  .type = ARM_CP_CONST, .resetvalue = cpu->midr,
                  .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
E
Edgar E. Iglesias 已提交
5116 5117 5118 5119 5120
                { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
                  .type = ARM_CP_NO_RAW,
                  .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
E
Edgar E. Iglesias 已提交
5121 5122 5123
                REGINFO_SENTINEL
            };
            define_arm_cp_regs(cpu, vpidr_regs);
5124
            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
5125
        }
5126
    }
5127
    if (arm_feature(env, ARM_FEATURE_EL3)) {
5128
        define_arm_cp_regs(cpu, el3_cp_reginfo);
5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139
        ARMCPRegInfo el3_regs[] = {
            { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
              .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
            { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
              .access = PL3_RW,
              .raw_writefn = raw_write, .writefn = sctlr_write,
              .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
              .resetvalue = cpu->reset_sctlr },
            REGINFO_SENTINEL
5140
        };
5141 5142

        define_arm_cp_regs(cpu, el3_regs);
5143
    }
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
    /* The behaviour of NSACR is sufficiently various that we don't
     * try to describe it in a single reginfo:
     *  if EL3 is 64 bit, then trap to EL3 from S EL1,
     *     reads as constant 0xc00 from NS EL1 and NS EL2
     *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
     *  if v7 without EL3, register doesn't exist
     *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
     */
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            ARMCPRegInfo nsacr = {
                .name = "NSACR", .type = ARM_CP_CONST,
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL1_RW, .accessfn = nsacr_access,
                .resetvalue = 0xc00
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        } else {
            ARMCPRegInfo nsacr = {
                .name = "NSACR",
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL3_RW | PL1_R,
                .resetvalue = 0,
                .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        }
    } else {
        if (arm_feature(env, ARM_FEATURE_V8)) {
            ARMCPRegInfo nsacr = {
                .name = "NSACR", .type = ARM_CP_CONST,
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
                .access = PL1_R,
                .resetvalue = 0xc00
            };
            define_one_arm_cp_reg(cpu, &nsacr);
        }
    }

5183
    if (arm_feature(env, ARM_FEATURE_PMSA)) {
5184 5185 5186 5187 5188 5189 5190 5191
        if (arm_feature(env, ARM_FEATURE_V6)) {
            /* PMSAv6 not implemented */
            assert(arm_feature(env, ARM_FEATURE_V7));
            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
        }
5192
    } else {
5193
        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
5194 5195
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
    }
5196 5197 5198
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
    }
5199 5200 5201
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
    }
5202 5203 5204
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
    }
5205 5206 5207 5208 5209 5210 5211 5212 5213
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
    }
5214 5215 5216
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
        define_arm_cp_regs(cpu, omap_cp_reginfo);
    }
5217 5218 5219
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
    }
5220 5221 5222 5223 5224 5225
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
    }
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
    }
5226 5227 5228
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
    }
5229 5230 5231 5232 5233
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
     * be read-only (ie write causes UNDEF exception).
     */
    {
5234 5235 5236
        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
            /* Pre-v8 MIDR space.
             * Note that the MIDR isn't a simple constant register because
5237 5238
             * of the TI925 behaviour where writes to another register can
             * cause the MIDR value to change.
5239 5240 5241 5242
             *
             * Unimplemented registers in the c15 0 0 0 space default to
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
             * and friends override accordingly.
5243 5244
             */
            { .name = "MIDR",
5245
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
5246
              .access = PL1_R, .resetvalue = cpu->midr,
5247
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
E
Edgar E. Iglesias 已提交
5248
              .readfn = midr_read,
5249 5250
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .type = ARM_CP_OVERRIDE },
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            { .name = "DUMMY",
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
5269 5270 5271
        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
E
Edgar E. Iglesias 已提交
5272 5273 5274
              .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
              .readfn = midr_read },
5275 5276 5277 5278 5279 5280 5281
            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .resetvalue = cpu->midr },
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
              .access = PL1_R, .resetvalue = cpu->midr },
5282 5283
            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
5284
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
            REGINFO_SENTINEL
        };
        ARMCPRegInfo id_cp_reginfo[] = {
            /* These are common to v8 and pre-v8 */
            { .name = "CTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
              .access = PL0_R, .accessfn = ctr_el0_access,
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
            { .name = "TCMTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
            REGINFO_SENTINEL
        };
5302 5303 5304 5305 5306 5307
        /* TLBTR is specific to VMSA */
        ARMCPRegInfo id_tlbtr_reginfo = {
              .name = "TLBTR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
        };
5308 5309 5310 5311 5312 5313 5314
        /* MPUIR is specific to PMSA V6+ */
        ARMCPRegInfo id_mpuir_reginfo = {
              .name = "MPUIR",
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
              .access = PL1_R, .type = ARM_CP_CONST,
              .resetvalue = cpu->pmsav7_dregion << 8
        };
5315 5316 5317 5318 5319 5320 5321 5322 5323
        ARMCPRegInfo crn0_wi_reginfo = {
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
        };
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
            ARMCPRegInfo *r;
            /* Register the blanket "writes ignored" value first to cover the
5324 5325 5326
             * whole space. Then update the specific ID registers to allow write
             * access, so that they ignore writes rather than causing them to
             * UNDEF.
5327 5328
             */
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
5329 5330 5331 5332
            for (r = id_pre_v8_midr_cp_reginfo;
                 r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
5333 5334 5335
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
                r->access = PL1_RW;
            }
5336
            id_tlbtr_reginfo.access = PL1_RW;
5337
            id_tlbtr_reginfo.access = PL1_RW;
5338
        }
5339 5340 5341 5342 5343
        if (arm_feature(env, ARM_FEATURE_V8)) {
            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
        } else {
            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
        }
5344
        define_arm_cp_regs(cpu, id_cp_reginfo);
5345
        if (!arm_feature(env, ARM_FEATURE_PMSA)) {
5346
            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
5347 5348
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
5349
        }
5350 5351
    }

5352 5353 5354 5355
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
    }

5356
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370
        ARMCPRegInfo auxcr_reginfo[] = {
            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL1_RW, .type = ARM_CP_CONST,
              .resetvalue = cpu->reset_auxcr },
            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL2_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
              .access = PL3_RW, .type = ARM_CP_CONST,
              .resetvalue = 0 },
            REGINFO_SENTINEL
5371
        };
5372
        define_arm_cp_regs(cpu, auxcr_reginfo);
5373 5374
    }

5375
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
            /* 32 bit view is [31:18] 0...0 [43:32]. */
            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
                | extract64(cpu->reset_cbar, 32, 12);
            ARMCPRegInfo cbar_reginfo[] = {
                { .name = "CBAR",
                  .type = ARM_CP_CONST,
                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
                  .type = ARM_CP_CONST,
                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
                  .access = PL1_R, .resetvalue = cbar32 },
                REGINFO_SENTINEL
            };
            /* We don't implement a r/w 64 bit CBAR currently */
            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
            define_arm_cp_regs(cpu, cbar_reginfo);
        } else {
            ARMCPRegInfo cbar = {
                .name = "CBAR",
                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
                .fieldoffset = offsetof(CPUARMState,
                                        cp15.c15_config_base_address)
            };
            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
                cbar.access = PL1_R;
                cbar.fieldoffset = 0;
                cbar.type = ARM_CP_CONST;
            }
            define_one_arm_cp_reg(cpu, &cbar);
        }
5409 5410
    }

5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
    if (arm_feature(env, ARM_FEATURE_VBAR)) {
        ARMCPRegInfo vbar_cp_reginfo[] = {
            { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
              .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
              .access = PL1_RW, .writefn = vbar_write,
              .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
                                     offsetof(CPUARMState, cp15.vbar_ns) },
              .resetvalue = 0 },
            REGINFO_SENTINEL
        };
        define_arm_cp_regs(cpu, vbar_cp_reginfo);
    }

5424 5425 5426
    /* Generic registers whose values depend on the implementation */
    {
        ARMCPRegInfo sctlr = {
5427
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
5428 5429 5430 5431
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
            .access = PL1_RW,
            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
                                   offsetof(CPUARMState, cp15.sctlr_ns) },
5432 5433
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
            .raw_writefn = raw_write,
5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
        };
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
            /* Normally we would always end the TB on an SCTLR write, but Linux
             * arch/arm/mach-pxa/sleep.S expects two instructions following
             * an MMU enable to execute from cache.  Imitate this behaviour.
             */
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
        }
        define_one_arm_cp_reg(cpu, &sctlr);
    }
R
Richard Henderson 已提交
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455

    if (arm_feature(env, ARM_FEATURE_SVE)) {
        define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
        if (arm_feature(env, ARM_FEATURE_EL2)) {
            define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
        } else {
            define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
        }
        if (arm_feature(env, ARM_FEATURE_EL3)) {
            define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
        }
    }
5456 5457
}

5458 5459
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
5460
    CPUState *cs = CPU(cpu);
5461 5462
    CPUARMState *env = &cpu->env;

5463 5464 5465 5466 5467
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
                                 aarch64_fpu_gdb_set_reg,
                                 34, "aarch64-fpu.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
5468
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
5469 5470
                                 51, "arm-neon.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
5471
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
5472 5473
                                 35, "arm-vfp3.xml", 0);
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
5474
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
P
pbrook 已提交
5475 5476
                                 19, "arm-vfp.xml", 0);
    }
P
pbrook 已提交
5477 5478
}

5479 5480
/* Sort alphabetically by type name, except for "any". */
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
P
pbrook 已提交
5481
{
5482 5483 5484
    ObjectClass *class_a = (ObjectClass *)a;
    ObjectClass *class_b = (ObjectClass *)b;
    const char *name_a, *name_b;
P
pbrook 已提交
5485

5486 5487
    name_a = object_class_get_name(class_a);
    name_b = object_class_get_name(class_b);
A
Andreas Färber 已提交
5488
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
5489
        return 1;
A
Andreas Färber 已提交
5490
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
5491 5492 5493
        return -1;
    } else {
        return strcmp(name_a, name_b);
P
pbrook 已提交
5494 5495 5496
    }
}

5497
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
P
pbrook 已提交
5498
{
5499
    ObjectClass *oc = data;
5500
    CPUListState *s = user_data;
A
Andreas Färber 已提交
5501 5502
    const char *typename;
    char *name;
P
pbrook 已提交
5503

A
Andreas Färber 已提交
5504 5505
    typename = object_class_get_name(oc);
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
5506
    (*s->cpu_fprintf)(s->file, "  %s\n",
A
Andreas Färber 已提交
5507 5508
                      name);
    g_free(name);
5509 5510 5511 5512
}

void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
{
5513
    CPUListState s = {
5514 5515 5516 5517 5518 5519 5520 5521 5522 5523
        .file = f,
        .cpu_fprintf = cpu_fprintf,
    };
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    list = g_slist_sort(list, arm_cpu_list_compare);
    (*cpu_fprintf)(f, "Available CPUs:\n");
    g_slist_foreach(list, arm_cpu_list_entry, &s);
    g_slist_free(list);
5524 5525 5526 5527 5528 5529
#ifdef CONFIG_KVM
    /* The 'host' CPU type is dynamically registered only if KVM is
     * enabled, so we have to special-case it here:
     */
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
#endif
P
pbrook 已提交
5530 5531
}

5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
{
    ObjectClass *oc = data;
    CpuDefinitionInfoList **cpu_list = user_data;
    CpuDefinitionInfoList *entry;
    CpuDefinitionInfo *info;
    const char *typename;

    typename = object_class_get_name(oc);
    info = g_malloc0(sizeof(*info));
    info->name = g_strndup(typename,
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));
5544
    info->q_typename = g_strdup(typename);
5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563

    entry = g_malloc0(sizeof(*entry));
    entry->value = info;
    entry->next = *cpu_list;
    *cpu_list = entry;
}

CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
{
    CpuDefinitionInfoList *cpu_list = NULL;
    GSList *list;

    list = object_class_get_list(TYPE_ARM_CPU, false);
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
    g_slist_free(list);

    return cpu_list;
}

5564
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
5565
                                   void *opaque, int state, int secstate,
5566
                                   int crm, int opc1, int opc2)
5567 5568 5569 5570 5571 5572 5573
{
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
     * add a single reginfo struct to the hash table.
     */
    uint32_t *key = g_new(uint32_t, 1);
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584
    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;

    /* Reset the secure state to the specific incoming state.  This is
     * necessary as the register may have been defined with both states.
     */
    r2->secure = secstate;

    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
        /* Register is banked (using both entries in array).
         * Overwriting fieldoffset as the array is only used to define
         * banked registers but later only fieldoffset is used.
5585
         */
5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
        r2->fieldoffset = r->bank_fieldoffsets[ns];
    }

    if (state == ARM_CP_STATE_AA32) {
        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
            /* If the register is banked then we don't need to migrate or
             * reset the 32-bit instance in certain cases:
             *
             * 1) If the register has both 32-bit and 64-bit instances then we
             *    can count on the 64-bit instance taking care of the
             *    non-secure bank.
             * 2) If ARMv8 is enabled then we can count on a 64-bit version
             *    taking care of the secure bank.  This requires that separate
             *    32 and 64-bit definitions are provided.
             */
            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
5603
                r2->type |= ARM_CP_ALIAS;
5604 5605 5606 5607 5608
            }
        } else if ((secstate != r->secure) && !ns) {
            /* The register is not banked so we only want to allow migration of
             * the non-secure instance.
             */
5609
            r2->type |= ARM_CP_ALIAS;
5610
        }
5611 5612 5613 5614 5615 5616 5617 5618

        if (r->state == ARM_CP_STATE_BOTH) {
            /* We assume it is a cp15 register if the .cp field is left unset.
             */
            if (r2->cp == 0) {
                r2->cp = 15;
            }

5619
#ifdef HOST_WORDS_BIGENDIAN
5620 5621 5622
            if (r2->fieldoffset) {
                r2->fieldoffset += sizeof(uint32_t);
            }
5623
#endif
5624
        }
5625 5626 5627 5628 5629
    }
    if (state == ARM_CP_STATE_AA64) {
        /* To allow abbreviation of ARMCPRegInfo
         * definitions, we treat cp == 0 as equivalent to
         * the value for "standard guest-visible sysreg".
5630 5631 5632
         * STATE_BOTH definitions are also always "standard
         * sysreg" in their AArch64 view (the .cp value may
         * be non-zero for the benefit of the AArch32 view).
5633
         */
5634
        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
5635 5636 5637 5638 5639
            r2->cp = CP_REG_ARM64_SYSREG_CP;
        }
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
                                  r2->opc0, opc1, opc2);
    } else {
5640
        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
5641
    }
5642 5643 5644
    if (opaque) {
        r2->opaque = opaque;
    }
5645 5646 5647 5648
    /* reginfo passed to helpers is correct for the actual access,
     * and is never ARM_CP_STATE_BOTH:
     */
    r2->state = state;
5649 5650 5651 5652 5653 5654 5655 5656
    /* Make sure reginfo passed to helpers for wildcarded regs
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
     */
    r2->crm = crm;
    r2->opc1 = opc1;
    r2->opc2 = opc2;
    /* By convention, for wildcarded registers only the first
     * entry is used for migration; the others are marked as
5657
     * ALIAS so we don't try to transfer the register
5658
     * multiple times. Special registers (ie NOP/WFI) are
5659
     * never migratable and not even raw-accessible.
5660
     */
5661 5662 5663 5664
    if ((r->type & ARM_CP_SPECIAL)) {
        r2->type |= ARM_CP_NO_RAW;
    }
    if (((r->crm == CP_ANY) && crm != 0) ||
5665 5666
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
5667
        r2->type |= ARM_CP_ALIAS;
5668 5669
    }

5670 5671 5672 5673 5674 5675 5676 5677
    /* Check that raw accesses are either forbidden or handled. Note that
     * we can't assert this earlier because the setup of fieldoffset for
     * banked registers has to be done first.
     */
    if (!(r2->type & ARM_CP_NO_RAW)) {
        assert(!raw_accessors_invalid(r2));
    }

5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696
    /* Overriding of an existing definition must be explicitly
     * requested.
     */
    if (!(r->type & ARM_CP_OVERRIDE)) {
        ARMCPRegInfo *oldreg;
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
            fprintf(stderr, "Register redefined: cp=%d %d bit "
                    "crn=%d crm=%d opc1=%d opc2=%d, "
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
                    oldreg->name, r2->name);
            g_assert_not_reached();
        }
    }
    g_hash_table_insert(cpu->cp_regs, key, r2);
}


5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
                                       const ARMCPRegInfo *r, void *opaque)
{
    /* Define implementations of coprocessor registers.
     * We store these in a hashtable because typically
     * there are less than 150 registers in a space which
     * is 16*16*16*8*8 = 262144 in size.
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
     * If a register is defined twice then the second definition is
     * used, so this can be used to define some generic registers and
     * then override them with implementation specific variations.
     * At least one of the original and the second definition should
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
     * against accidental use.
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721
     *
     * The state field defines whether the register is to be
     * visible in the AArch32 or AArch64 execution state. If the
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
     * reginfo structure for the AArch32 view, which sees the lower
     * 32 bits of the 64 bit register.
     *
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
     * be wildcarded. AArch64 registers are always considered to be 64
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
     * the register, if any.
5722
     */
5723
    int crm, opc1, opc2, state;
5724 5725 5726 5727 5728 5729 5730 5731
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
    /* 64 bit registers have only CRm and Opc1 fields */
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
    /* op0 only exists in the AArch64 encodings */
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
     * encodes a minimum access level for the register. We roll this
     * runtime check into our general permission check code, so check
     * here that the reginfo's specified permissions are strict enough
     * to encompass the generic architectural permission check.
     */
    if (r->state != ARM_CP_STATE_AA32) {
        int mask = 0;
        switch (r->opc1) {
        case 0: case 1: case 2:
            /* min_EL EL1 */
            mask = PL1_RW;
            break;
        case 3:
            /* min_EL EL0 */
            mask = PL0_RW;
            break;
        case 4:
            /* min_EL EL2 */
            mask = PL2_RW;
            break;
        case 5:
            /* unallocated encoding, so not possible */
            assert(false);
            break;
        case 6:
            /* min_EL EL3 */
            mask = PL3_RW;
            break;
        case 7:
            /* min_EL EL1, secure mode only (we don't check the latter) */
            mask = PL1_RW;
            break;
        default:
            /* broken reginfo with out-of-range opc1 */
            assert(false);
            break;
        }
        /* assert our permissions are not too lax (stricter is fine) */
        assert((r->access & ~mask) == 0);
    }

5778 5779 5780 5781 5782
    /* Check that the register definition has enough info to handle
     * reads and writes if they are permitted.
     */
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
        if (r->access & PL3_R) {
5783 5784 5785
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->readfn);
5786 5787
        }
        if (r->access & PL3_W) {
5788 5789 5790
            assert((r->fieldoffset ||
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
                   r->writefn);
5791 5792 5793 5794 5795 5796 5797
        }
    }
    /* Bad type field probably means missing sentinel at end of reg list */
    assert(cptype_valid(r->type));
    for (crm = crmmin; crm <= crmmax; crm++) {
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
5798 5799 5800 5801 5802
                for (state = ARM_CP_STATE_AA32;
                     state <= ARM_CP_STATE_AA64; state++) {
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
                        continue;
                    }
5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828
                    if (state == ARM_CP_STATE_AA32) {
                        /* Under AArch32 CP registers can be common
                         * (same for secure and non-secure world) or banked.
                         */
                        switch (r->secure) {
                        case ARM_CP_SECSTATE_S:
                        case ARM_CP_SECSTATE_NS:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   r->secure, crm, opc1, opc2);
                            break;
                        default:
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_S,
                                                   crm, opc1, opc2);
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
                                                   ARM_CP_SECSTATE_NS,
                                                   crm, opc1, opc2);
                            break;
                        }
                    } else {
                        /* AArch64 registers get mapped to non-secure instance
                         * of AArch32 */
                        add_cpreg_to_hashtable(cpu, r, opaque, state,
                                               ARM_CP_SECSTATE_NS,
                                               crm, opc1, opc2);
                    }
5829
                }
5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844
            }
        }
    }
}

void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
                                    const ARMCPRegInfo *regs, void *opaque)
{
    /* Define a whole list of registers */
    const ARMCPRegInfo *r;
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
    }
}

5845
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
5846
{
5847
    return g_hash_table_lookup(cpregs, &encoded_cp);
5848 5849
}

5850 5851
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
5852 5853 5854 5855
{
    /* Helper coprocessor write function for write-ignore registers */
}

5856
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
5857 5858 5859 5860 5861
{
    /* Helper coprocessor write function for read-as-zero registers */
    return 0;
}

5862 5863 5864 5865 5866
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
{
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
}

5867
static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
5868 5869 5870 5871 5872
{
    /* Return true if it is not valid for us to switch to
     * this CPU mode (ie all the UNPREDICTABLE cases in
     * the ARM ARM CPSRWriteByInstr pseudocode).
     */
5873 5874 5875 5876 5877 5878 5879 5880

    /* Changes to or from Hyp via MSR and CPS are illegal. */
    if (write_type == CPSRWriteByInstr &&
        ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
         mode == ARM_CPU_MODE_HYP)) {
        return 1;
    }

5881 5882
    switch (mode) {
    case ARM_CPU_MODE_USR:
5883
        return 0;
5884 5885 5886 5887 5888 5889
    case ARM_CPU_MODE_SYS:
    case ARM_CPU_MODE_SVC:
    case ARM_CPU_MODE_ABT:
    case ARM_CPU_MODE_UND:
    case ARM_CPU_MODE_IRQ:
    case ARM_CPU_MODE_FIQ:
5890 5891 5892
        /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
         * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
         */
5893 5894 5895 5896 5897 5898 5899 5900 5901
        /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
         * and CPS are treated as illegal mode changes.
         */
        if (write_type == CPSRWriteByInstr &&
            (env->cp15.hcr_el2 & HCR_TGE) &&
            (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
            !arm_is_secure_below_el3(env)) {
            return 1;
        }
5902
        return 0;
5903 5904 5905
    case ARM_CPU_MODE_HYP:
        return !arm_feature(env, ARM_FEATURE_EL2)
            || arm_current_el(env) < 2 || arm_is_secure(env);
5906
    case ARM_CPU_MODE_MON:
5907
        return arm_current_el(env) < 3;
5908 5909 5910 5911 5912
    default:
        return 1;
    }
}

5913 5914 5915
uint32_t cpsr_read(CPUARMState *env)
{
    int ZF;
P
pbrook 已提交
5916 5917
    ZF = (env->ZF == 0);
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
5918 5919 5920
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
        | ((env->condexec_bits & 0xfc) << 8)
5921
        | (env->GE << 16) | (env->daif & CPSR_AIF);
5922 5923
}

5924 5925
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
                CPSRWriteType write_type)
5926
{
5927 5928
    uint32_t changed_daif;

5929
    if (mask & CPSR_NZCV) {
P
pbrook 已提交
5930 5931
        env->ZF = (~val) & CPSR_Z;
        env->NF = val;
5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950
        env->CF = (val >> 29) & 1;
        env->VF = (val << 3) & 0x80000000;
    }
    if (mask & CPSR_Q)
        env->QF = ((val & CPSR_Q) != 0);
    if (mask & CPSR_T)
        env->thumb = ((val & CPSR_T) != 0);
    if (mask & CPSR_IT_0_1) {
        env->condexec_bits &= ~3;
        env->condexec_bits |= (val >> 25) & 3;
    }
    if (mask & CPSR_IT_2_7) {
        env->condexec_bits &= 3;
        env->condexec_bits |= (val >> 8) & 0xfc;
    }
    if (mask & CPSR_GE) {
        env->GE = (val >> 16) & 0xf;
    }

5951 5952 5953 5954 5955 5956 5957 5958
    /* In a V7 implementation that includes the security extensions but does
     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
     * bits respectively.
     *
     * In a V8 implementation, it is permitted for privileged software to
     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
     */
5959
    if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002
        arm_feature(env, ARM_FEATURE_EL3) &&
        !arm_feature(env, ARM_FEATURE_EL2) &&
        !arm_is_secure(env)) {

        changed_daif = (env->daif ^ val) & mask;

        if (changed_daif & CPSR_A) {
            /* Check to see if we are allowed to change the masking of async
             * abort exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_AW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_A flag from "
                              "non-secure world with SCR.AW bit clear\n");
                mask &= ~CPSR_A;
            }
        }

        if (changed_daif & CPSR_F) {
            /* Check to see if we are allowed to change the masking of FIQ
             * exceptions from a non-secure state.
             */
            if (!(env->cp15.scr_el3 & SCR_FW)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to switch CPSR_F flag from "
                              "non-secure world with SCR.FW bit clear\n");
                mask &= ~CPSR_F;
            }

            /* Check whether non-maskable FIQ (NMFI) support is enabled.
             * If this bit is set software is not allowed to mask
             * FIQs, but is allowed to set CPSR_F to 0.
             */
            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
                (val & CPSR_F)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "Ignoring attempt to enable CPSR_F flag "
                              "(non-maskable FIQ [NMFI] support enabled)\n");
                mask &= ~CPSR_F;
            }
        }
    }

6003 6004 6005
    env->daif &= ~(CPSR_AIF & mask);
    env->daif |= val & CPSR_AIF & mask;

6006 6007
    if (write_type != CPSRWriteRaw &&
        ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
6008 6009 6010 6011 6012 6013 6014 6015 6016
        if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
            /* Note that we can only get here in USR mode if this is a
             * gdb stub write; for this case we follow the architectural
             * behaviour for guest writes in USR mode of ignoring an attempt
             * to switch mode. (Those are caught by translate.c for writes
             * triggered by guest instructions.)
             */
            mask &= ~CPSR_M;
        } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
6017 6018 6019 6020 6021 6022 6023
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
             * v7, and has defined behaviour in v8:
             *  + leave CPSR.M untouched
             *  + allow changes to the other CPSR fields
             *  + set PSTATE.IL
             * For user changes via the GDB stub, we don't set PSTATE.IL,
             * as this would be unnecessarily harsh for a user error.
6024 6025
             */
            mask &= ~CPSR_M;
6026 6027 6028 6029 6030
            if (write_type != CPSRWriteByGDBStub &&
                arm_feature(env, ARM_FEATURE_V8)) {
                mask |= CPSR_IL;
                val |= CPSR_IL;
            }
6031 6032 6033
        } else {
            switch_mode(env, val & CPSR_M);
        }
6034 6035 6036 6037 6038
    }
    mask &= ~CACHED_CPSR_BITS;
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
}

P
pbrook 已提交
6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055
/* Sign/zero extend */
uint32_t HELPER(sxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(int8_t)x;
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
    return res;
}

uint32_t HELPER(uxtb16)(uint32_t x)
{
    uint32_t res;
    res = (uint16_t)(uint8_t)x;
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
    return res;
}

P
pbrook 已提交
6056 6057 6058 6059
int32_t HELPER(sdiv)(int32_t num, int32_t den)
{
    if (den == 0)
      return 0;
A
Aurelien Jarno 已提交
6060 6061
    if (num == INT_MIN && den == -1)
      return INT_MIN;
P
pbrook 已提交
6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073
    return num / den;
}

uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
{
    if (den == 0)
      return 0;
    return num / den;
}

uint32_t HELPER(rbit)(uint32_t x)
{
6074
    return revbit32(x);
P
pbrook 已提交
6075 6076
}

6077
#if defined(CONFIG_USER_ONLY)
B
bellard 已提交
6078

P
pbrook 已提交
6079
/* These should probably raise undefined insn exceptions.  */
6080
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
P
pbrook 已提交
6081
{
6082 6083 6084
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
P
pbrook 已提交
6085 6086
}

6087
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
6088
{
6089 6090 6091
    ARMCPU *cpu = arm_env_get_cpu(env);

    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
P
pbrook 已提交
6092 6093 6094
    return 0;
}

6095 6096 6097 6098 6099 6100
void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
{
    /* translate.c should never generate calls here in user-only mode */
    g_assert_not_reached();
}

P
Peter Maydell 已提交
6101 6102 6103 6104 6105 6106
void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
{
    /* translate.c should never generate calls here in user-only mode */
    g_assert_not_reached();
}

6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
{
    /* The TT instructions can be used by unprivileged code, but in
     * user-only emulation we don't have the MPU.
     * Luckily since we know we are NonSecure unprivileged (and that in
     * turn means that the A flag wasn't specified), all the bits in the
     * register must be zero:
     *  IREGION: 0 because IRVALID is 0
     *  IRVALID: 0 because NS
     *  S: 0 because NS
     *  NSRW: 0 because NS
     *  NSR: 0 because NS
     *  RW: 0 because unpriv and A flag not set
     *  R: 0 because unpriv and A flag not set
     *  SRVALID: 0 because NS
     *  MRVALID: 0 because unpriv and A flag not set
     *  SREGION: 0 becaus SRVALID is 0
     *  MREGION: 0 because MRVALID is 0
     */
    return 0;
}

6129
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
6130
{
6131 6132 6133 6134 6135
    ARMCPU *cpu = arm_env_get_cpu(env);

    if (mode != ARM_CPU_MODE_USR) {
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
    }
B
bellard 已提交
6136 6137
}

6138 6139
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
6140 6141 6142 6143
{
    return 1;
}

6144 6145 6146 6147 6148
void aarch64_sync_64_to_32(CPUARMState *env)
{
    g_assert_not_reached();
}

B
bellard 已提交
6149 6150
#else

6151
void switch_mode(CPUARMState *env, int mode)
B
bellard 已提交
6152 6153 6154 6155 6156 6157 6158 6159 6160 6161
{
    int old_mode;
    int i;

    old_mode = env->uncached_cpsr & CPSR_M;
    if (mode == old_mode)
        return;

    if (old_mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
6162
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
6163 6164
    } else if (mode == ARM_CPU_MODE_FIQ) {
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
P
pbrook 已提交
6165
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
B
bellard 已提交
6166 6167
    }

6168
    i = bank_number(old_mode);
B
bellard 已提交
6169 6170 6171 6172
    env->banked_r13[i] = env->regs[13];
    env->banked_r14[i] = env->regs[14];
    env->banked_spsr[i] = env->spsr;

6173
    i = bank_number(mode);
B
bellard 已提交
6174 6175 6176 6177 6178
    env->regs[13] = env->banked_r13[i];
    env->regs[14] = env->banked_r14[i];
    env->spsr = env->banked_spsr[i];
}

6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215
/* Physical Interrupt Target EL Lookup Table
 *
 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
 *
 * The below multi-dimensional table is used for looking up the target
 * exception level given numerous condition criteria.  Specifically, the
 * target EL is based on SCR and HCR routing controls as well as the
 * currently executing EL and secure state.
 *
 *    Dimensions:
 *    target_el_table[2][2][2][2][2][4]
 *                    |  |  |  |  |  +--- Current EL
 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
 *                    |  |  |  +--------- HCR mask override
 *                    |  |  +------------ SCR exec state control
 *                    |  +--------------- SCR mask override
 *                    +------------------ 32-bit(0)/64-bit(1) EL3
 *
 *    The table values are as such:
 *    0-3 = EL0-EL3
 *     -1 = Cannot occur
 *
 * The ARM ARM target EL table includes entries indicating that an "exception
 * is not taken".  The two cases where this is applicable are:
 *    1) An exception is taken from EL3 but the SCR does not have the exception
 *    routed to EL3.
 *    2) An exception is taken from EL2 but the HCR does not have the exception
 *    routed to EL2.
 * In these two cases, the below table contain a target of EL1.  This value is
 * returned as it is expected that the consumer of the table data will check
 * for "target EL >= current EL" to ensure the exception is not taken.
 *
 *            SCR     HCR
 *         64  EA     AMO                 From
 *        BIT IRQ     IMO      Non-secure         Secure
 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
 */
6216
static const int8_t target_el_table[2][2][2][2][2][4] = {
6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237
    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
};

/*
 * Determine the target EL for physical exceptions
 */
6238 6239
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
                                 uint32_t cur_el, bool secure)
6240 6241
{
    CPUARMState *env = cs->env_ptr;
6242
    int rw;
6243 6244 6245
    int scr;
    int hcr;
    int target_el;
6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257
    /* Is the highest EL AArch64? */
    int is64 = arm_feature(env, ARM_FEATURE_AARCH64);

    if (arm_feature(env, ARM_FEATURE_EL3)) {
        rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
    } else {
        /* Either EL2 is the highest EL (and so the EL2 register width
         * is given by is64); or there is no EL2 or EL3, in which case
         * the value of 'rw' does not affect the table lookup anyway.
         */
        rw = is64;
    }
6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284

    switch (excp_idx) {
    case EXCP_IRQ:
        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
        hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
        break;
    case EXCP_FIQ:
        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
        hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
        break;
    default:
        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
        hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
        break;
    };

    /* If HCR.TGE is set then HCR is treated as being 1 */
    hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);

    /* Perform a table-lookup for the target EL given the current state */
    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];

    assert(target_el > 0);

    return target_el;
}

6285 6286
static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
                            ARMMMUIdx mmu_idx, bool ignfault)
P
pbrook 已提交
6287
{
6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328
    CPUState *cs = CPU(cpu);
    CPUARMState *env = &cpu->env;
    MemTxAttrs attrs = {};
    MemTxResult txres;
    target_ulong page_size;
    hwaddr physaddr;
    int prot;
    ARMMMUFaultInfo fi;
    bool secure = mmu_idx & ARM_MMU_IDX_M_S;
    int exc;
    bool exc_secure;

    if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
                      &attrs, &prot, &page_size, &fi, NULL)) {
        /* MPU/SAU lookup failed */
        if (fi.type == ARMFault_QEMU_SFault) {
            qemu_log_mask(CPU_LOG_INT,
                          "...SecureFault with SFSR.AUVIOL during stacking\n");
            env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
            env->v7m.sfar = addr;
            exc = ARMV7M_EXCP_SECURE;
            exc_secure = false;
        } else {
            qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
            env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
            exc = ARMV7M_EXCP_MEM;
            exc_secure = secure;
        }
        goto pend_fault;
    }
    address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
                         attrs, &txres);
    if (txres != MEMTX_OK) {
        /* BusFault trying to write the data */
        qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
        env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
        exc = ARMV7M_EXCP_BUS;
        exc_secure = false;
        goto pend_fault;
    }
    return true;
6329

6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344
pend_fault:
    /* By pending the exception at this point we are making
     * the IMPDEF choice "overridden exceptions pended" (see the
     * MergeExcInfo() pseudocode). The other choice would be to not
     * pend them now and then make a choice about which to throw away
     * later if we have two derived exceptions.
     * The only case when we must not pend the exception but instead
     * throw it away is if we are doing the push of the callee registers
     * and we've already generated a derived exception. Even in this
     * case we will still update the fault status registers.
     */
    if (!ignfault) {
        armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
    }
    return false;
P
pbrook 已提交
6345 6346
}

6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407
static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
                           ARMMMUIdx mmu_idx)
{
    CPUState *cs = CPU(cpu);
    CPUARMState *env = &cpu->env;
    MemTxAttrs attrs = {};
    MemTxResult txres;
    target_ulong page_size;
    hwaddr physaddr;
    int prot;
    ARMMMUFaultInfo fi;
    bool secure = mmu_idx & ARM_MMU_IDX_M_S;
    int exc;
    bool exc_secure;
    uint32_t value;

    if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
                      &attrs, &prot, &page_size, &fi, NULL)) {
        /* MPU/SAU lookup failed */
        if (fi.type == ARMFault_QEMU_SFault) {
            qemu_log_mask(CPU_LOG_INT,
                          "...SecureFault with SFSR.AUVIOL during unstack\n");
            env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
            env->v7m.sfar = addr;
            exc = ARMV7M_EXCP_SECURE;
            exc_secure = false;
        } else {
            qemu_log_mask(CPU_LOG_INT,
                          "...MemManageFault with CFSR.MUNSTKERR\n");
            env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
            exc = ARMV7M_EXCP_MEM;
            exc_secure = secure;
        }
        goto pend_fault;
    }

    value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
                              attrs, &txres);
    if (txres != MEMTX_OK) {
        /* BusFault trying to read the data */
        qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
        env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
        exc = ARMV7M_EXCP_BUS;
        exc_secure = false;
        goto pend_fault;
    }

    *dest = value;
    return true;

pend_fault:
    /* By pending the exception at this point we are making
     * the IMPDEF choice "overridden exceptions pended" (see the
     * MergeExcInfo() pseudocode). The other choice would be to not
     * pend them now and then make a choice about which to throw away
     * later if we have two derived exceptions.
     */
    armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
    return false;
}

6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419
/* Return true if we're using the process stack pointer (not the MSP) */
static bool v7m_using_psp(CPUARMState *env)
{
    /* Handler mode always uses the main stack; for thread mode
     * the CONTROL.SPSEL bit determines the answer.
     * Note that in v7M it is not possible to be in Handler mode with
     * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
     */
    return !arm_v7m_is_handler_mode(env) &&
        env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
}

6420 6421 6422 6423
/* Write to v7M CONTROL.SPSEL bit for the specified security bank.
 * This may change the current stack pointer between Main and Process
 * stack pointers if it is done for the CONTROL register for the current
 * security state.
6424
 */
6425 6426 6427
static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
                                                 bool new_spsel,
                                                 bool secstate)
P
pbrook 已提交
6428
{
6429
    bool old_is_psp = v7m_using_psp(env);
6430

6431 6432
    env->v7m.control[secstate] =
        deposit32(env->v7m.control[secstate],
6433 6434 6435
                  R_V7M_CONTROL_SPSEL_SHIFT,
                  R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);

6436 6437 6438
    if (secstate == env->v7m.secure) {
        bool new_is_psp = v7m_using_psp(env);
        uint32_t tmp;
6439

6440 6441 6442 6443 6444
        if (old_is_psp != new_is_psp) {
            tmp = env->v7m.other_sp;
            env->v7m.other_sp = env->regs[13];
            env->regs[13] = tmp;
        }
6445 6446 6447
    }
}

6448 6449 6450 6451 6452 6453 6454 6455
/* Write to v7M CONTROL.SPSEL bit. This may change the current
 * stack pointer between Main and Process stack pointers.
 */
static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
{
    write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
}

6456 6457 6458 6459 6460 6461 6462
void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
{
    /* Write a new value to v7m.exception, thus transitioning into or out
     * of Handler mode; this may result in a change of active stack pointer.
     */
    bool new_is_psp, old_is_psp = v7m_using_psp(env);
    uint32_t tmp;
6463

6464 6465 6466 6467 6468 6469 6470 6471
    env->v7m.exception = new_exc;

    new_is_psp = v7m_using_psp(env);

    if (old_is_psp != new_is_psp) {
        tmp = env->v7m.other_sp;
        env->v7m.other_sp = env->regs[13];
        env->regs[13] = tmp;
P
pbrook 已提交
6472 6473 6474
    }
}

6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514
/* Switch M profile security state between NS and S */
static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
{
    uint32_t new_ss_msp, new_ss_psp;

    if (env->v7m.secure == new_secstate) {
        return;
    }

    /* All the banked state is accessed by looking at env->v7m.secure
     * except for the stack pointer; rearrange the SP appropriately.
     */
    new_ss_msp = env->v7m.other_ss_msp;
    new_ss_psp = env->v7m.other_ss_psp;

    if (v7m_using_psp(env)) {
        env->v7m.other_ss_psp = env->regs[13];
        env->v7m.other_ss_msp = env->v7m.other_sp;
    } else {
        env->v7m.other_ss_msp = env->regs[13];
        env->v7m.other_ss_psp = env->v7m.other_sp;
    }

    env->v7m.secure = new_secstate;

    if (v7m_using_psp(env)) {
        env->regs[13] = new_ss_psp;
        env->v7m.other_sp = new_ss_msp;
    } else {
        env->regs[13] = new_ss_msp;
        env->v7m.other_sp = new_ss_psp;
    }
}

void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
{
    /* Handle v7M BXNS:
     *  - if the return value is a magic value, do exception return (like BX)
     *  - otherwise bit 0 of the return value is the target security state
     */
6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525
    uint32_t min_magic;

    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        /* Covers FNC_RETURN and EXC_RETURN magic */
        min_magic = FNC_RETURN_MIN_MAGIC;
    } else {
        /* EXC_RETURN magic only */
        min_magic = EXC_RETURN_MIN_MAGIC;
    }

    if (dest >= min_magic) {
6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
        /* This is an exception return magic value; put it where
         * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
         * Note that if we ever add gen_ss_advance() singlestep support to
         * M profile this should count as an "instruction execution complete"
         * event (compare gen_bx_excret_final_code()).
         */
        env->regs[15] = dest & ~1;
        env->thumb = dest & 1;
        HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
        /* notreached */
    }

    /* translate.c should have made BXNS UNDEF unless we're secure */
    assert(env->v7m.secure);

    switch_v7m_security_state(env, dest & 1);
    env->thumb = 1;
    env->regs[15] = dest & ~1;
}

P
Peter Maydell 已提交
6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598
void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
{
    /* Handle v7M BLXNS:
     *  - bit 0 of the destination address is the target security state
     */

    /* At this point regs[15] is the address just after the BLXNS */
    uint32_t nextinst = env->regs[15] | 1;
    uint32_t sp = env->regs[13] - 8;
    uint32_t saved_psr;

    /* translate.c will have made BLXNS UNDEF unless we're secure */
    assert(env->v7m.secure);

    if (dest & 1) {
        /* target is Secure, so this is just a normal BLX,
         * except that the low bit doesn't indicate Thumb/not.
         */
        env->regs[14] = nextinst;
        env->thumb = 1;
        env->regs[15] = dest & ~1;
        return;
    }

    /* Target is non-secure: first push a stack frame */
    if (!QEMU_IS_ALIGNED(sp, 8)) {
        qemu_log_mask(LOG_GUEST_ERROR,
                      "BLXNS with misaligned SP is UNPREDICTABLE\n");
    }

    saved_psr = env->v7m.exception;
    if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
        saved_psr |= XPSR_SFPA;
    }

    /* Note that these stores can throw exceptions on MPU faults */
    cpu_stl_data(env, sp, nextinst);
    cpu_stl_data(env, sp + 4, saved_psr);

    env->regs[13] = sp;
    env->regs[14] = 0xfeffffff;
    if (arm_v7m_is_handler_mode(env)) {
        /* Write a dummy value to IPSR, to avoid leaking the current secure
         * exception number to non-secure code. This is guaranteed not
         * to cause write_v7m_exception() to actually change stacks.
         */
        write_v7m_exception(env, 1);
    }
    switch_v7m_security_state(env, 0);
    env->thumb = 1;
    env->regs[15] = dest;
}

6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
                                bool spsel)
{
    /* Return a pointer to the location where we currently store the
     * stack pointer for the requested security state and thread mode.
     * This pointer will become invalid if the CPU state is updated
     * such that the stack pointers are switched around (eg changing
     * the SPSEL control bit).
     * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
     * Unlike that pseudocode, we require the caller to pass us in the
     * SPSEL control bit value; this is because we also use this
     * function in handling of pushing of the callee-saves registers
     * part of the v8M stack frame (pseudocode PushCalleeStack()),
     * and in the tailchain codepath the SPSEL bit comes from the exception
     * return magic LR value from the previous exception. The pseudocode
     * opencodes the stack-selection in PushCalleeStack(), but we prefer
     * to make this utility function generic enough to do the job.
     */
    bool want_psp = threadmode && spsel;

    if (secure == env->v7m.secure) {
6620 6621 6622 6623 6624
        if (want_psp == v7m_using_psp(env)) {
            return &env->regs[13];
        } else {
            return &env->v7m.other_sp;
        }
6625 6626 6627 6628 6629 6630 6631 6632 6633
    } else {
        if (want_psp) {
            return &env->v7m.other_ss_psp;
        } else {
            return &env->v7m.other_ss_msp;
        }
    }
}

6634 6635
static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
                                uint32_t *pvec)
6636 6637 6638 6639
{
    CPUState *cs = CPU(cpu);
    CPUARMState *env = &cpu->env;
    MemTxResult result;
6640 6641 6642 6643 6644 6645 6646
    uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
    uint32_t vector_entry;
    MemTxAttrs attrs = {};
    ARMMMUIdx mmu_idx;
    bool exc_secure;

    mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
6647

6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671
    /* We don't do a get_phys_addr() here because the rules for vector
     * loads are special: they always use the default memory map, and
     * the default memory map permits reads from all addresses.
     * Since there's no easy way to pass through to pmsav8_mpu_lookup()
     * that we want this special case which would always say "yes",
     * we just do the SAU lookup here followed by a direct physical load.
     */
    attrs.secure = targets_secure;
    attrs.user = false;

    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        V8M_SAttributes sattrs = {};

        v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
        if (sattrs.ns) {
            attrs.secure = false;
        } else if (!targets_secure) {
            /* NS access to S memory */
            goto load_fail;
        }
    }

    vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
                                     attrs, &result);
6672
    if (result != MEMTX_OK) {
6673
        goto load_fail;
6674
    }
6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
    *pvec = vector_entry;
    return true;

load_fail:
    /* All vector table fetch fails are reported as HardFault, with
     * HFSR.VECTTBL and .FORCED set. (FORCED is set because
     * technically the underlying exception is a MemManage or BusFault
     * that is escalated to HardFault.) This is a terminal exception,
     * so we will either take the HardFault immediately or else enter
     * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
     */
    exc_secure = targets_secure ||
        !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
    env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
    armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
    return false;
6691 6692
}

6693
static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
6694
                                  bool ignore_faults)
6695 6696 6697 6698 6699 6700 6701 6702
{
    /* For v8M, push the callee-saves register part of the stack frame.
     * Compare the v8M pseudocode PushCalleeStack().
     * In the tailchaining case this may not be the current stack.
     */
    CPUARMState *env = &cpu->env;
    uint32_t *frame_sp_p;
    uint32_t frameptr;
6703 6704
    ARMMMUIdx mmu_idx;
    bool stacked_ok;
6705 6706

    if (dotailchain) {
6707 6708 6709 6710 6711 6712
        bool mode = lr & R_V7M_EXCRET_MODE_MASK;
        bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
            !mode;

        mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
        frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
6713 6714
                                    lr & R_V7M_EXCRET_SPSEL_MASK);
    } else {
6715
        mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6716 6717 6718 6719 6720
        frame_sp_p = &env->regs[13];
    }

    frameptr = *frame_sp_p - 0x28;

6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746
    /* Write as much of the stack frame as we can. A write failure may
     * cause us to pend a derived exception.
     */
    stacked_ok =
        v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
                        ignore_faults) &&
        v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
                        ignore_faults);

    /* Update SP regardless of whether any of the stack accesses failed.
     * When we implement v8M stack limit checking then this attempt to
     * update SP might also fail and result in a derived exception.
     */
6747
    *frame_sp_p = frameptr;
6748 6749

    return !stacked_ok;
6750 6751
}

6752 6753
static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
                                bool ignore_stackfaults)
6754 6755 6756 6757 6758 6759 6760
{
    /* Do the "take the exception" parts of exception entry,
     * but not the pushing of state to the stack. This is
     * similar to the pseudocode ExceptionTaken() function.
     */
    CPUARMState *env = &cpu->env;
    uint32_t addr;
6761
    bool targets_secure;
6762
    int exc;
6763
    bool push_failed = false;
6764

6765
    armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790

    if (arm_feature(env, ARM_FEATURE_V8)) {
        if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
            (lr & R_V7M_EXCRET_S_MASK)) {
            /* The background code (the owner of the registers in the
             * exception frame) is Secure. This means it may either already
             * have or now needs to push callee-saves registers.
             */
            if (targets_secure) {
                if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
                    /* We took an exception from Secure to NonSecure
                     * (which means the callee-saved registers got stacked)
                     * and are now tailchaining to a Secure exception.
                     * Clear DCRS so eventual return from this Secure
                     * exception unstacks the callee-saved registers.
                     */
                    lr &= ~R_V7M_EXCRET_DCRS_MASK;
                }
            } else {
                /* We're going to a non-secure exception; push the
                 * callee-saves registers to the stack now, if they're
                 * not already saved.
                 */
                if (lr & R_V7M_EXCRET_DCRS_MASK &&
                    !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
6791 6792
                    push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
                                                        ignore_stackfaults);
6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832
                }
                lr |= R_V7M_EXCRET_DCRS_MASK;
            }
        }

        lr &= ~R_V7M_EXCRET_ES_MASK;
        if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
            lr |= R_V7M_EXCRET_ES_MASK;
        }
        lr &= ~R_V7M_EXCRET_SPSEL_MASK;
        if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
            lr |= R_V7M_EXCRET_SPSEL_MASK;
        }

        /* Clear registers if necessary to prevent non-secure exception
         * code being able to see register values from secure code.
         * Where register values become architecturally UNKNOWN we leave
         * them with their previous values.
         */
        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
            if (!targets_secure) {
                /* Always clear the caller-saved registers (they have been
                 * pushed to the stack earlier in v7m_push_stack()).
                 * Clear callee-saved registers if the background code is
                 * Secure (in which case these regs were saved in
                 * v7m_push_callee_stack()).
                 */
                int i;

                for (i = 0; i < 13; i++) {
                    /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
                    if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
                        env->regs[i] = 0;
                    }
                }
                /* Clear EAPSR */
                xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
            }
        }
    }
6833

6834 6835 6836 6837 6838 6839 6840 6841 6842
    if (push_failed && !ignore_stackfaults) {
        /* Derived exception on callee-saves register stacking:
         * we might now want to take a different exception which
         * targets a different security state, so try again from the top.
         */
        v7m_exception_taken(cpu, lr, true, true);
        return;
    }

6843 6844 6845 6846 6847
    if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
        /* Vector load failed: derived exception */
        v7m_exception_taken(cpu, lr, true, true);
        return;
    }
6848 6849 6850 6851 6852 6853 6854

    /* Now we've done everything that might cause a derived exception
     * we can go ahead and activate whichever exception we're going to
     * take (which might now be the derived exception).
     */
    armv7m_nvic_acknowledge_irq(env->nvic);

6855 6856
    /* Switch to target security state -- must do this before writing SPSEL */
    switch_v7m_security_state(env, targets_secure);
6857
    write_v7m_control_spsel(env, 0);
6858
    arm_clear_exclusive(env);
6859 6860 6861 6862 6863 6864 6865
    /* Clear IT bits */
    env->condexec_bits = 0;
    env->regs[14] = lr;
    env->regs[15] = addr & 0xfffffffe;
    env->thumb = addr & 1;
}

6866
static bool v7m_push_stack(ARMCPU *cpu)
6867 6868 6869
{
    /* Do the "set up stack frame" part of exception entry,
     * similar to pseudocode PushStack().
6870 6871 6872
     * Return true if we generate a derived exception (and so
     * should ignore further stack faults trying to process
     * that derived exception.)
6873
     */
6874
    bool stacked_ok;
6875 6876
    CPUARMState *env = &cpu->env;
    uint32_t xpsr = xpsr_read(env);
6877 6878
    uint32_t frameptr = env->regs[13];
    ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
6879 6880

    /* Align stack pointer if the guest wants that */
6881
    if ((frameptr & 4) &&
6882
        (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
6883
        frameptr -= 4;
6884
        xpsr |= XPSR_SPREALIGN;
6885
    }
6886

6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
    frameptr -= 0x20;

    /* Write as much of the stack frame as we can. If we fail a stack
     * write this will result in a derived exception being pended
     * (which may be taken in preference to the one we started with
     * if it has higher priority).
     */
    stacked_ok =
        v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
        v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);

    /* Update SP regardless of whether any of the stack accesses failed.
     * When we implement v8M stack limit checking then this attempt to
     * update SP might also fail and result in a derived exception.
     */
    env->regs[13] = frameptr;

    return !stacked_ok;
6911 6912
}

6913
static void do_v7m_exception_exit(ARMCPU *cpu)
P
pbrook 已提交
6914
{
6915
    CPUARMState *env = &cpu->env;
6916
    CPUState *cs = CPU(cpu);
6917
    uint32_t excret;
P
pbrook 已提交
6918
    uint32_t xpsr;
6919
    bool ufault = false;
6920 6921 6922
    bool sfault = false;
    bool return_to_sp_process;
    bool return_to_handler;
6923
    bool rettobase = false;
6924
    bool exc_secure = false;
6925
    bool return_to_secure;
6926

6927 6928 6929 6930 6931 6932 6933 6934 6935
    /* If we're not in Handler mode then jumps to magic exception-exit
     * addresses don't have magic behaviour. However for the v8M
     * security extensions the magic secure-function-return has to
     * work in thread mode too, so to avoid doing an extra check in
     * the generated code we allow exception-exit magic to also cause the
     * internal exception and bring us here in thread mode. Correct code
     * will never try to do this (the following insn fetch will always
     * fault) so we the overhead of having taken an unnecessary exception
     * doesn't matter.
6936
     */
6937 6938 6939
    if (!arm_v7m_is_handler_mode(env)) {
        return;
    }
6940 6941 6942 6943 6944 6945 6946 6947

    /* In the spec pseudocode ExceptionReturn() is called directly
     * from BXWritePC() and gets the full target PC value including
     * bit zero. In QEMU's implementation we treat it as a normal
     * jump-to-register (which is then caught later on), and so split
     * the target value up between env->regs[15] and env->thumb in
     * gen_bx(). Reconstitute it.
     */
6948
    excret = env->regs[15];
6949
    if (env->thumb) {
6950
        excret |= 1;
6951 6952 6953 6954
    }

    qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
                  " previous exception %d\n",
6955
                  excret, env->v7m.exception);
6956

6957
    if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
6958
        qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
6959 6960
                      "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
                      excret);
6961 6962
    }

6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
         * we pick which FAULTMASK to clear.
         */
        if (!env->v7m.secure &&
            ((excret & R_V7M_EXCRET_ES_MASK) ||
             !(excret & R_V7M_EXCRET_DCRS_MASK))) {
            sfault = 1;
            /* For all other purposes, treat ES as 0 (R_HXSR) */
            excret &= ~R_V7M_EXCRET_ES_MASK;
        }
    }

6976
    if (env->v7m.exception != ARMV7M_EXCP_NMI) {
6977 6978 6979 6980 6981 6982 6983
        /* Auto-clear FAULTMASK on return from other than NMI.
         * If the security extension is implemented then this only
         * happens if the raw execution priority is >= 0; the
         * value of the ES bit in the exception return value indicates
         * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
         */
        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
6984
            exc_secure = excret & R_V7M_EXCRET_ES_MASK;
6985
            if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
6986
                env->v7m.faultmask[exc_secure] = 0;
6987 6988 6989 6990
            }
        } else {
            env->v7m.faultmask[M_REG_NS] = 0;
        }
6991
    }
6992

6993 6994
    switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
                                     exc_secure)) {
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012
    case -1:
        /* attempt to exit an exception that isn't active */
        ufault = true;
        break;
    case 0:
        /* still an irq active now */
        break;
    case 1:
        /* we returned to base exception level, no nesting.
         * (In the pseudocode this is written using "NestedActivation != 1"
         * where we have 'rettobase == false'.)
         */
        rettobase = true;
        break;
    default:
        g_assert_not_reached();
    }

7013 7014
    return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
    return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
7015 7016 7017
    return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
        (excret & R_V7M_EXCRET_S_MASK);

7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029
    if (arm_feature(env, ARM_FEATURE_V8)) {
        if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
            /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
             * we choose to take the UsageFault.
             */
            if ((excret & R_V7M_EXCRET_S_MASK) ||
                (excret & R_V7M_EXCRET_ES_MASK) ||
                !(excret & R_V7M_EXCRET_DCRS_MASK)) {
                ufault = true;
            }
        }
        if (excret & R_V7M_EXCRET_RES0_MASK) {
7030 7031
            ufault = true;
        }
7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055
    } else {
        /* For v7M we only recognize certain combinations of the low bits */
        switch (excret & 0xf) {
        case 1: /* Return to Handler */
            break;
        case 13: /* Return to Thread using Process stack */
        case 9: /* Return to Thread using Main stack */
            /* We only need to check NONBASETHRDENA for v7M, because in
             * v8M this bit does not exist (it is RES1).
             */
            if (!rettobase &&
                !(env->v7m.ccr[env->v7m.secure] &
                  R_V7M_CCR_NONBASETHRDENA_MASK)) {
                ufault = true;
            }
            break;
        default:
            ufault = true;
        }
    }

    if (sfault) {
        env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7056
        v7m_exception_taken(cpu, excret, true, false);
7057 7058 7059
        qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
                      "stackframe: failed EXC_RETURN.ES validity check\n");
        return;
7060 7061 7062 7063 7064 7065
    }

    if (ufault) {
        /* Bad exception return: instead of popping the exception
         * stack, directly take a usage fault on the current stack.
         */
7066
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7067
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7068
        v7m_exception_taken(cpu, excret, true, false);
7069 7070 7071
        qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
                      "stackframe: failed exception return integrity check\n");
        return;
7072
    }
P
pbrook 已提交
7073

7074 7075 7076
    /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
     * Handler mode (and will be until we write the new XPSR.Interrupt
     * field) this does not switch around the current stack pointer.
7077
     */
7078
    write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
7079

7080 7081
    switch_v7m_security_state(env, return_to_secure);

7082 7083 7084 7085 7086 7087 7088 7089 7090
    {
        /* The stack pointer we should be reading the exception frame from
         * depends on bits in the magic exception return type value (and
         * for v8M isn't necessarily the stack pointer we will eventually
         * end up resuming execution with). Get a pointer to the location
         * in the CPU state struct where the SP we need is currently being
         * stored; we will use and modify it in place.
         * We use this limited C variable scope so we don't accidentally
         * use 'frame_sp_p' after we do something that makes it invalid.
7091
         */
7092 7093 7094 7095 7096
        uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
                                              return_to_secure,
                                              !return_to_handler,
                                              return_to_sp_process);
        uint32_t frameptr = *frame_sp_p;
7097 7098 7099 7100 7101
        bool pop_ok = true;
        ARMMMUIdx mmu_idx;

        mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
                                                        !return_to_handler);
7102

7103 7104 7105 7106 7107 7108 7109
        if (!QEMU_IS_ALIGNED(frameptr, 8) &&
            arm_feature(env, ARM_FEATURE_V8)) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "M profile exception return with non-8-aligned SP "
                          "for destination state is UNPREDICTABLE\n");
        }

7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120
        /* Do we need to pop callee-saved registers? */
        if (return_to_secure &&
            ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
             (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
            uint32_t expected_sig = 0xfefa125b;
            uint32_t actual_sig = ldl_phys(cs->as, frameptr);

            if (expected_sig != actual_sig) {
                /* Take a SecureFault on the current stack */
                env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
                armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
7121
                v7m_exception_taken(cpu, excret, true, false);
7122 7123 7124 7125 7126 7127
                qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
                              "stackframe: failed exception return integrity "
                              "signature check\n");
                return;
            }

7128 7129 7130 7131 7132 7133 7134 7135 7136 7137
            pop_ok =
                v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
                v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
7138 7139 7140 7141

            frameptr += 0x28;
        }

7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159
        /* Pop registers */
        pop_ok = pop_ok &&
            v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
            v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
            v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
            v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
            v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
            v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
            v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
            v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);

        if (!pop_ok) {
            /* v7m_stack_read() pended a fault, so take it (as a tail
             * chained exception on the same stack frame)
             */
            v7m_exception_taken(cpu, excret, true, false);
            return;
        }
7160 7161 7162 7163 7164 7165 7166 7167 7168

        /* Returning from an exception with a PC with bit 0 set is defined
         * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
         * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
         * the lsbit, and there are several RTOSes out there which incorrectly
         * assume the r15 in the stack frame should be a Thumb-style "lsbit
         * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
         * complain about the badly behaved guest.
         */
7169 7170
        if (env->regs[15] & 1) {
            env->regs[15] &= ~1U;
7171 7172 7173 7174 7175
            if (!arm_feature(env, ARM_FEATURE_V8)) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "M profile return from interrupt with misaligned "
                              "PC is UNPREDICTABLE on v7M\n");
            }
7176
        }
7177

7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192
        if (arm_feature(env, ARM_FEATURE_V8)) {
            /* For v8M we have to check whether the xPSR exception field
             * matches the EXCRET value for return to handler/thread
             * before we commit to changing the SP and xPSR.
             */
            bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
            if (return_to_handler != will_be_handler) {
                /* Take an INVPC UsageFault on the current stack.
                 * By this point we will have switched to the security state
                 * for the background state, so this UsageFault will target
                 * that state.
                 */
                armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
                                        env->v7m.secure);
                env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7193
                v7m_exception_taken(cpu, excret, true, false);
7194 7195 7196 7197 7198 7199 7200
                qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
                              "stackframe: failed exception return integrity "
                              "check\n");
                return;
            }
        }

7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212
        /* Commit to consuming the stack frame */
        frameptr += 0x20;
        /* Undo stack alignment (the SPREALIGN bit indicates that the original
         * pre-exception SP was not 8-aligned and we added a padding word to
         * align it, so we undo this by ORing in the bit that increases it
         * from the current 8-aligned value to the 8-unaligned value. (Adding 4
         * would work too but a logical OR is how the pseudocode specifies it.)
         */
        if (xpsr & XPSR_SPREALIGN) {
            frameptr |= 4;
        }
        *frame_sp_p = frameptr;
7213
    }
7214
    /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7215
    xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
7216 7217 7218

    /* The restored xPSR exception field will be zero if we're
     * resuming in Thread mode. If that doesn't match what the
7219
     * exception return excret specified then this is a UsageFault.
7220
     * v7M requires we make this check here; v8M did it earlier.
7221
     */
7222
    if (return_to_handler != arm_v7m_is_handler_mode(env)) {
7223 7224
        /* Take an INVPC UsageFault by pushing the stack again;
         * we know we're v7M so this is never a Secure UsageFault.
7225
         */
7226 7227
        bool ignore_stackfaults;

7228
        assert(!arm_feature(env, ARM_FEATURE_V8));
7229
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
7230
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
7231 7232
        ignore_stackfaults = v7m_push_stack(cpu);
        v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
7233 7234 7235 7236 7237 7238
        qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
                      "failed exception return integrity check\n");
        return;
    }

    /* Otherwise, we have a successful exception exit. */
7239
    arm_clear_exclusive(env);
7240
    qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
P
pbrook 已提交
7241 7242
}

7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314
static bool do_v7m_function_return(ARMCPU *cpu)
{
    /* v8M security extensions magic function return.
     * We may either:
     *  (1) throw an exception (longjump)
     *  (2) return true if we successfully handled the function return
     *  (3) return false if we failed a consistency check and have
     *      pended a UsageFault that needs to be taken now
     *
     * At this point the magic return value is split between env->regs[15]
     * and env->thumb. We don't bother to reconstitute it because we don't
     * need it (all values are handled the same way).
     */
    CPUARMState *env = &cpu->env;
    uint32_t newpc, newpsr, newpsr_exc;

    qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");

    {
        bool threadmode, spsel;
        TCGMemOpIdx oi;
        ARMMMUIdx mmu_idx;
        uint32_t *frame_sp_p;
        uint32_t frameptr;

        /* Pull the return address and IPSR from the Secure stack */
        threadmode = !arm_v7m_is_handler_mode(env);
        spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;

        frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
        frameptr = *frame_sp_p;

        /* These loads may throw an exception (for MPU faults). We want to
         * do them as secure, so work out what MMU index that is.
         */
        mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
        oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
        newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
        newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);

        /* Consistency checks on new IPSR */
        newpsr_exc = newpsr & XPSR_EXCP;
        if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
              (env->v7m.exception == 1 && newpsr_exc != 0))) {
            /* Pend the fault and tell our caller to take it */
            env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
            armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
                                    env->v7m.secure);
            qemu_log_mask(CPU_LOG_INT,
                          "...taking INVPC UsageFault: "
                          "IPSR consistency check failed\n");
            return false;
        }

        *frame_sp_p = frameptr + 8;
    }

    /* This invalidates frame_sp_p */
    switch_v7m_security_state(env, true);
    env->v7m.exception = newpsr_exc;
    env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
    if (newpsr & XPSR_SFPA) {
        env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
    }
    xpsr_write(env, 0, XPSR_IT);
    env->thumb = newpc & 1;
    env->regs[15] = newpc & ~1;

    qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
    return true;
}

7315 7316 7317 7318
static void arm_log_exception(int idx)
{
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
        const char *exc = NULL;
7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337
        static const char * const excnames[] = {
            [EXCP_UDEF] = "Undefined Instruction",
            [EXCP_SWI] = "SVC",
            [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
            [EXCP_DATA_ABORT] = "Data Abort",
            [EXCP_IRQ] = "IRQ",
            [EXCP_FIQ] = "FIQ",
            [EXCP_BKPT] = "Breakpoint",
            [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
            [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
            [EXCP_HVC] = "Hypervisor Call",
            [EXCP_HYP_TRAP] = "Hypervisor Trap",
            [EXCP_SMC] = "Secure Monitor Call",
            [EXCP_VIRQ] = "Virtual IRQ",
            [EXCP_VFIQ] = "Virtual FIQ",
            [EXCP_SEMIHOST] = "Semihosting call",
            [EXCP_NOCP] = "v7M NOCP UsageFault",
            [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
        };
7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348

        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
            exc = excnames[idx];
        }
        if (!exc) {
            exc = "unknown";
        }
        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
    }
}

7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384
static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
                               uint32_t addr, uint16_t *insn)
{
    /* Load a 16-bit portion of a v7M instruction, returning true on success,
     * or false on failure (in which case we will have pended the appropriate
     * exception).
     * We need to do the instruction fetch's MPU and SAU checks
     * like this because there is no MMU index that would allow
     * doing the load with a single function call. Instead we must
     * first check that the security attributes permit the load
     * and that they don't mismatch on the two halves of the instruction,
     * and then we do the load as a secure load (ie using the security
     * attributes of the address, not the CPU, as architecturally required).
     */
    CPUState *cs = CPU(cpu);
    CPUARMState *env = &cpu->env;
    V8M_SAttributes sattrs = {};
    MemTxAttrs attrs = {};
    ARMMMUFaultInfo fi = {};
    MemTxResult txres;
    target_ulong page_size;
    hwaddr physaddr;
    int prot;

    v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
    if (!sattrs.nsc || sattrs.ns) {
        /* This must be the second half of the insn, and it straddles a
         * region boundary with the second half not being S&NSC.
         */
        env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
        qemu_log_mask(CPU_LOG_INT,
                      "...really SecureFault with SFSR.INVEP\n");
        return false;
    }
    if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
7385
                      &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467
        /* the MPU lookup failed */
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
        qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
        return false;
    }
    *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
                                 attrs, &txres);
    if (txres != MEMTX_OK) {
        env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
        qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
        return false;
    }
    return true;
}

static bool v7m_handle_execute_nsc(ARMCPU *cpu)
{
    /* Check whether this attempt to execute code in a Secure & NS-Callable
     * memory region is for an SG instruction; if so, then emulate the
     * effect of the SG instruction and return true. Otherwise pend
     * the correct kind of exception and return false.
     */
    CPUARMState *env = &cpu->env;
    ARMMMUIdx mmu_idx;
    uint16_t insn;

    /* We should never get here unless get_phys_addr_pmsav8() caused
     * an exception for NS executing in S&NSC memory.
     */
    assert(!env->v7m.secure);
    assert(arm_feature(env, ARM_FEATURE_M_SECURITY));

    /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
    mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);

    if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
        return false;
    }

    if (!env->thumb) {
        goto gen_invep;
    }

    if (insn != 0xe97f) {
        /* Not an SG instruction first half (we choose the IMPDEF
         * early-SG-check option).
         */
        goto gen_invep;
    }

    if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
        return false;
    }

    if (insn != 0xe97f) {
        /* Not an SG instruction second half (yes, both halves of the SG
         * insn have the same hex value)
         */
        goto gen_invep;
    }

    /* OK, we have confirmed that we really have an SG instruction.
     * We know we're NS in S memory so don't need to repeat those checks.
     */
    qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
                  ", executing it\n", env->regs[15]);
    env->regs[14] &= ~1;
    switch_v7m_security_state(env, true);
    xpsr_write(env, 0, XPSR_IT);
    env->regs[15] += 4;
    return true;

gen_invep:
    env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
    armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
    qemu_log_mask(CPU_LOG_INT,
                  "...really SecureFault with SFSR.INVEP\n");
    return false;
}

7468
void arm_v7m_cpu_do_interrupt(CPUState *cs)
P
pbrook 已提交
7469
{
7470 7471
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
P
pbrook 已提交
7472
    uint32_t lr;
7473
    bool ignore_stackfaults;
P
pbrook 已提交
7474

7475
    arm_log_exception(cs->exception_index);
7476

P
pbrook 已提交
7477 7478
    /* For exceptions we just mark as pending on the NVIC, and let that
       handle it.  */
7479
    switch (cs->exception_index) {
P
pbrook 已提交
7480
    case EXCP_UDEF:
7481
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7482
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
7483
        break;
7484
    case EXCP_NOCP:
7485
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7486
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
7487
        break;
7488
    case EXCP_INVSTATE:
7489
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
7490
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
7491
        break;
P
pbrook 已提交
7492
    case EXCP_SWI:
7493
        /* The PC already points to the next instruction.  */
7494
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
7495
        break;
P
pbrook 已提交
7496 7497
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
7498 7499 7500
        /* Note that for M profile we don't have a guest facing FSR, but
         * the env->exception.fsr will be populated by the code that
         * raises the fault, in the A profile short-descriptor format.
7501
         */
7502
        switch (env->exception.fsr & 0xf) {
7503 7504 7505 7506 7507 7508 7509 7510 7511
        case M_FAKE_FSR_NSC_EXEC:
            /* Exception generated when we try to execute code at an address
             * which is marked as Secure & Non-Secure Callable and the CPU
             * is in the Non-Secure state. The only instruction which can
             * be executed like this is SG (and that only if both halves of
             * the SG instruction have the same security attributes.)
             * Everything else must generate an INVEP SecureFault, so we
             * emulate the SG instruction here.
             */
7512 7513 7514
            if (v7m_handle_execute_nsc(cpu)) {
                return;
            }
7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540
            break;
        case M_FAKE_FSR_SFAULT:
            /* Various flavours of SecureFault for attempts to execute or
             * access data in the wrong security state.
             */
            switch (cs->exception_index) {
            case EXCP_PREFETCH_ABORT:
                if (env->v7m.secure) {
                    env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
                    qemu_log_mask(CPU_LOG_INT,
                                  "...really SecureFault with SFSR.INVTRAN\n");
                } else {
                    env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
                    qemu_log_mask(CPU_LOG_INT,
                                  "...really SecureFault with SFSR.INVEP\n");
                }
                break;
            case EXCP_DATA_ABORT:
                /* This must be an NS access to S memory */
                env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
                qemu_log_mask(CPU_LOG_INT,
                              "...really SecureFault with SFSR.AUVIOL\n");
                break;
            }
            armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
            break;
7541 7542 7543
        case 0x8: /* External Abort */
            switch (cs->exception_index) {
            case EXCP_PREFETCH_ABORT:
7544 7545
                env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
                qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
7546 7547
                break;
            case EXCP_DATA_ABORT:
7548
                env->v7m.cfsr[M_REG_NS] |=
7549
                    (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
7550 7551
                env->v7m.bfar = env->exception.vaddress;
                qemu_log_mask(CPU_LOG_INT,
7552
                              "...with CFSR.PRECISERR and BFAR 0x%x\n",
7553 7554 7555
                              env->v7m.bfar);
                break;
            }
7556
            armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
7557 7558 7559 7560 7561 7562 7563
            break;
        default:
            /* All other FSR values are either MPU faults or "can't happen
             * for M profile" cases.
             */
            switch (cs->exception_index) {
            case EXCP_PREFETCH_ABORT:
7564
                env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
7565 7566 7567
                qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
                break;
            case EXCP_DATA_ABORT:
7568
                env->v7m.cfsr[env->v7m.secure] |=
7569
                    (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
7570
                env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
7571 7572
                qemu_log_mask(CPU_LOG_INT,
                              "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
7573
                              env->v7m.mmfar[env->v7m.secure]);
7574 7575
                break;
            }
7576 7577
            armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
                                    env->v7m.secure);
7578 7579
            break;
        }
7580
        break;
P
pbrook 已提交
7581
    case EXCP_BKPT:
7582
        if (semihosting_enabled()) {
P
pbrook 已提交
7583
            int nr;
7584
            nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
P
pbrook 已提交
7585 7586
            if (nr == 0xab) {
                env->regs[15] += 2;
7587 7588 7589
                qemu_log_mask(CPU_LOG_INT,
                              "...handling as semihosting call 0x%x\n",
                              env->regs[0]);
P
pbrook 已提交
7590 7591 7592 7593
                env->regs[0] = do_arm_semihosting(env);
                return;
            }
        }
7594
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
7595
        break;
P
pbrook 已提交
7596 7597 7598
    case EXCP_IRQ:
        break;
    case EXCP_EXCEPTION_EXIT:
7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610
        if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
            /* Must be v8M security extension function return */
            assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
            assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
            if (do_v7m_function_return(cpu)) {
                return;
            }
        } else {
            do_v7m_exception_exit(cpu);
            return;
        }
        break;
P
pbrook 已提交
7611
    default:
7612
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
P
pbrook 已提交
7613 7614 7615
        return; /* Never happens.  Keep compiler happy.  */
    }

7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642
    if (arm_feature(env, ARM_FEATURE_V8)) {
        lr = R_V7M_EXCRET_RES1_MASK |
            R_V7M_EXCRET_DCRS_MASK |
            R_V7M_EXCRET_FTYPE_MASK;
        /* The S bit indicates whether we should return to Secure
         * or NonSecure (ie our current state).
         * The ES bit indicates whether we're taking this exception
         * to Secure or NonSecure (ie our target state). We set it
         * later, in v7m_exception_taken().
         * The SPSEL bit is also set in v7m_exception_taken() for v8M.
         * This corresponds to the ARM ARM pseudocode for v8M setting
         * some LR bits in PushStack() and some in ExceptionTaken();
         * the distinction matters for the tailchain cases where we
         * can take an exception without pushing the stack.
         */
        if (env->v7m.secure) {
            lr |= R_V7M_EXCRET_S_MASK;
        }
    } else {
        lr = R_V7M_EXCRET_RES1_MASK |
            R_V7M_EXCRET_S_MASK |
            R_V7M_EXCRET_DCRS_MASK |
            R_V7M_EXCRET_FTYPE_MASK |
            R_V7M_EXCRET_ES_MASK;
        if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
            lr |= R_V7M_EXCRET_SPSEL_MASK;
        }
7643
    }
7644
    if (!arm_v7m_is_handler_mode(env)) {
7645
        lr |= R_V7M_EXCRET_MODE_MASK;
7646 7647
    }

7648 7649
    ignore_stackfaults = v7m_push_stack(cpu);
    v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
7650
    qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
P
pbrook 已提交
7651 7652
}

7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703
/* Function used to synchronize QEMU's AArch64 register set with AArch32
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_32_to_64(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy R[0:7] to X[0:7] */
    for (i = 0; i < 8; i++) {
        env->xregs[i] = env->regs[i];
    }

    /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
     * Otherwise, they come from the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->usr_regs[i - 8];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->xregs[i] = env->regs[i];
        }
    }

    /* Registers x13-x23 are the various mode SP and FP registers. Registers
     * r13 and r14 are only copied if we are in that mode, otherwise we copy
     * from the mode banked register.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->xregs[13] = env->regs[13];
        env->xregs[14] = env->regs[14];
    } else {
        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
        /* HYP is an exception in that it is copied from r14 */
        if (mode == ARM_CPU_MODE_HYP) {
            env->xregs[14] = env->regs[14];
        } else {
            env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->xregs[15] = env->regs[13];
    } else {
        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
7704 7705
        env->xregs[16] = env->regs[14];
        env->xregs[17] = env->regs[13];
7706
    } else {
7707 7708
        env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
7709 7710 7711
    }

    if (mode == ARM_CPU_MODE_SVC) {
7712 7713
        env->xregs[18] = env->regs[14];
        env->xregs[19] = env->regs[13];
7714
    } else {
7715 7716
        env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
7717 7718 7719
    }

    if (mode == ARM_CPU_MODE_ABT) {
7720 7721
        env->xregs[20] = env->regs[14];
        env->xregs[21] = env->regs[13];
7722
    } else {
7723 7724
        env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
7725 7726 7727
    }

    if (mode == ARM_CPU_MODE_UND) {
7728 7729
        env->xregs[22] = env->regs[14];
        env->xregs[23] = env->regs[13];
7730
    } else {
7731 7732
        env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->xregs[i] = env->fiq_regs[i - 24];
        }
        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
        env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
    }

    env->pc = env->regs[15];
}

/* Function used to synchronize QEMU's AArch32 register set with AArch64
 * register set.  This is necessary when switching between AArch32 and AArch64
 * execution state.
 */
void aarch64_sync_64_to_32(CPUARMState *env)
{
    int i;
    uint32_t mode = env->uncached_cpsr & CPSR_M;

    /* We can blanket copy X[0:7] to R[0:7] */
    for (i = 0; i < 8; i++) {
        env->regs[i] = env->xregs[i];
    }

    /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
     * Otherwise, we copy x8-x12 into the banked user regs.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 8; i < 13; i++) {
            env->usr_regs[i - 8] = env->xregs[i];
        }
    } else {
        for (i = 8; i < 13; i++) {
            env->regs[i] = env->xregs[i];
        }
    }

    /* Registers r13 & r14 depend on the current mode.
     * If we are in a given mode, we copy the corresponding x registers to r13
     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
     * for the mode.
     */
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
        env->regs[13] = env->xregs[13];
        env->regs[14] = env->xregs[14];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];

        /* HYP is an exception in that it does not have its own banked r14 but
         * shares the USR r14
         */
        if (mode == ARM_CPU_MODE_HYP) {
            env->regs[14] = env->xregs[14];
        } else {
            env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
        }
    }

    if (mode == ARM_CPU_MODE_HYP) {
        env->regs[13] = env->xregs[15];
    } else {
        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
    }

    if (mode == ARM_CPU_MODE_IRQ) {
7809 7810
        env->regs[14] = env->xregs[16];
        env->regs[13] = env->xregs[17];
7811
    } else {
7812 7813
        env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
7814 7815 7816
    }

    if (mode == ARM_CPU_MODE_SVC) {
7817 7818
        env->regs[14] = env->xregs[18];
        env->regs[13] = env->xregs[19];
7819
    } else {
7820 7821
        env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
7822 7823 7824
    }

    if (mode == ARM_CPU_MODE_ABT) {
7825 7826
        env->regs[14] = env->xregs[20];
        env->regs[13] = env->xregs[21];
7827
    } else {
7828 7829
        env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
7830 7831 7832
    }

    if (mode == ARM_CPU_MODE_UND) {
7833 7834
        env->regs[14] = env->xregs[22];
        env->regs[13] = env->xregs[23];
7835
    } else {
7836 7837
        env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858
    }

    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
     * FIQ bank for r8-r14.
     */
    if (mode == ARM_CPU_MODE_FIQ) {
        for (i = 24; i < 31; i++) {
            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
        }
    } else {
        for (i = 24; i < 29; i++) {
            env->fiq_regs[i - 24] = env->xregs[i];
        }
        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
        env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
    }

    env->regs[15] = env->pc;
}

7859
static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
B
bellard 已提交
7860
{
7861 7862
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
B
bellard 已提交
7863 7864 7865 7866
    uint32_t addr;
    uint32_t mask;
    int new_mode;
    uint32_t offset;
7867
    uint32_t moe;
B
bellard 已提交
7868

7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893
    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
    switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
    case EC_BREAKPOINT:
    case EC_BREAKPOINT_SAME_EL:
        moe = 1;
        break;
    case EC_WATCHPOINT:
    case EC_WATCHPOINT_SAME_EL:
        moe = 10;
        break;
    case EC_AA32_BKPT:
        moe = 3;
        break;
    case EC_VECTORCATCH:
        moe = 5;
        break;
    default:
        moe = 0;
        break;
    }

    if (moe) {
        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
    }

B
bellard 已提交
7894
    /* TODO: Vectored interrupt controller.  */
7895
    switch (cs->exception_index) {
B
bellard 已提交
7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908
    case EXCP_UDEF:
        new_mode = ARM_CPU_MODE_UND;
        addr = 0x04;
        mask = CPSR_I;
        if (env->thumb)
            offset = 2;
        else
            offset = 4;
        break;
    case EXCP_SWI:
        new_mode = ARM_CPU_MODE_SVC;
        addr = 0x08;
        mask = CPSR_I;
7909
        /* The PC already points to the next instruction.  */
B
bellard 已提交
7910 7911
        offset = 0;
        break;
P
pbrook 已提交
7912
    case EXCP_BKPT:
7913
        env->exception.fsr = 2;
P
pbrook 已提交
7914 7915
        /* Fall through to prefetch abort.  */
    case EXCP_PREFETCH_ABORT:
F
Fabian Aggeler 已提交
7916
        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
F
Fabian Aggeler 已提交
7917
        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
7918
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
F
Fabian Aggeler 已提交
7919
                      env->exception.fsr, (uint32_t)env->exception.vaddress);
B
bellard 已提交
7920 7921 7922 7923 7924 7925
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x0c;
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_DATA_ABORT:
F
Fabian Aggeler 已提交
7926
        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
F
Fabian Aggeler 已提交
7927
        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
7928
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
F
Fabian Aggeler 已提交
7929
                      env->exception.fsr,
7930
                      (uint32_t)env->exception.vaddress);
B
bellard 已提交
7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941
        new_mode = ARM_CPU_MODE_ABT;
        addr = 0x10;
        mask = CPSR_A | CPSR_I;
        offset = 8;
        break;
    case EXCP_IRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
7942 7943 7944 7945 7946
        if (env->cp15.scr_el3 & SCR_IRQ) {
            /* IRQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
            mask |= CPSR_F;
        }
B
bellard 已提交
7947 7948 7949 7950 7951 7952
        break;
    case EXCP_FIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
7953 7954 7955 7956
        if (env->cp15.scr_el3 & SCR_FIQ) {
            /* FIQ routed to monitor mode */
            new_mode = ARM_CPU_MODE_MON;
        }
B
bellard 已提交
7957 7958
        offset = 4;
        break;
7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972
    case EXCP_VIRQ:
        new_mode = ARM_CPU_MODE_IRQ;
        addr = 0x18;
        /* Disable IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I;
        offset = 4;
        break;
    case EXCP_VFIQ:
        new_mode = ARM_CPU_MODE_FIQ;
        addr = 0x1c;
        /* Disable FIQ, IRQ and imprecise data aborts.  */
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 4;
        break;
7973 7974 7975 7976 7977 7978
    case EXCP_SMC:
        new_mode = ARM_CPU_MODE_MON;
        addr = 0x08;
        mask = CPSR_A | CPSR_I | CPSR_F;
        offset = 0;
        break;
B
bellard 已提交
7979
    default:
7980
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
B
bellard 已提交
7981 7982
        return; /* Never happens.  Keep compiler happy.  */
    }
F
Fabian Aggeler 已提交
7983 7984 7985

    if (new_mode == ARM_CPU_MODE_MON) {
        addr += env->cp15.mvbar;
7986
    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
F
Fabian Aggeler 已提交
7987
        /* High vectors. When enabled, base address cannot be remapped. */
B
bellard 已提交
7988
        addr += 0xffff0000;
N
Nathan Rossi 已提交
7989 7990 7991
    } else {
        /* ARM v7 architectures provide a vector base address register to remap
         * the interrupt vector table.
F
Fabian Aggeler 已提交
7992
         * This register is only followed in non-monitor mode, and is banked.
N
Nathan Rossi 已提交
7993 7994
         * Note: only bits 31:5 are valid.
         */
G
Greg Bellows 已提交
7995
        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
B
bellard 已提交
7996
    }
7997 7998 7999 8000 8001

    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
        env->cp15.scr_el3 &= ~SCR_NS;
    }

B
bellard 已提交
8002
    switch_mode (env, new_mode);
8003 8004 8005 8006
    /* For exceptions taken to AArch32 we must clear the SS bit in both
     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
     */
    env->uncached_cpsr &= ~PSTATE_SS;
B
bellard 已提交
8007
    env->spsr = cpsr_read(env);
P
pbrook 已提交
8008 8009
    /* Clear IT bits.  */
    env->condexec_bits = 0;
8010
    /* Switch to the new mode, and to the correct instruction set.  */
8011
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
8012 8013 8014
    /* Set new mode endianness */
    env->uncached_cpsr &= ~CPSR_E;
    if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
8015
        env->uncached_cpsr |= CPSR_E;
8016
    }
8017
    env->daif |= mask;
8018 8019 8020
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
     * and we should just guard the thumb mode on V4 */
    if (arm_feature(env, ARM_FEATURE_V4T)) {
8021
        env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
8022
    }
B
bellard 已提交
8023 8024 8025 8026
    env->regs[14] = env->regs[15] + offset;
    env->regs[15] = addr;
}

8027 8028
/* Handle exception entry to a target EL which is using AArch64 */
static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
8029 8030 8031 8032 8033 8034 8035 8036
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    unsigned int new_el = env->exception.target_el;
    target_ulong addr = env->cp15.vbar_el[new_el];
    unsigned int new_mode = aarch64_pstate_mode(new_el, true);

    if (arm_current_el(env) < new_el) {
8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056
        /* Entry vector offset depends on whether the implemented EL
         * immediately lower than the target level is using AArch32 or AArch64
         */
        bool is_aa64;

        switch (new_el) {
        case 3:
            is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
            break;
        case 2:
            is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
            break;
        case 1:
            is_aa64 = is_a64(env);
            break;
        default:
            g_assert_not_reached();
        }

        if (is_aa64) {
8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120
            addr += 0x400;
        } else {
            addr += 0x600;
        }
    } else if (pstate_read(env) & PSTATE_SP) {
        addr += 0x200;
    }

    switch (cs->exception_index) {
    case EXCP_PREFETCH_ABORT:
    case EXCP_DATA_ABORT:
        env->cp15.far_el[new_el] = env->exception.vaddress;
        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
                      env->cp15.far_el[new_el]);
        /* fall through */
    case EXCP_BKPT:
    case EXCP_UDEF:
    case EXCP_SWI:
    case EXCP_HVC:
    case EXCP_HYP_TRAP:
    case EXCP_SMC:
        env->cp15.esr_el[new_el] = env->exception.syndrome;
        break;
    case EXCP_IRQ:
    case EXCP_VIRQ:
        addr += 0x80;
        break;
    case EXCP_FIQ:
    case EXCP_VFIQ:
        addr += 0x100;
        break;
    case EXCP_SEMIHOST:
        qemu_log_mask(CPU_LOG_INT,
                      "...handling as semihosting call 0x%" PRIx64 "\n",
                      env->xregs[0]);
        env->xregs[0] = do_arm_semihosting(env);
        return;
    default:
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
    }

    if (is_a64(env)) {
        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
        aarch64_save_sp(env, arm_current_el(env));
        env->elr_el[new_el] = env->pc;
    } else {
        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
        env->elr_el[new_el] = env->regs[15];

        aarch64_sync_32_to_64(env);

        env->condexec_bits = 0;
    }
    qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
                  env->elr_el[new_el]);

    pstate_write(env, PSTATE_DAIF | new_mode);
    env->aarch64 = 1;
    aarch64_restore_sp(env, new_el);

    env->pc = addr;

    qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
                  new_el, env->pc, pstate_read(env));
8121 8122
}

8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149
static inline bool check_for_semihosting(CPUState *cs)
{
    /* Check whether this exception is a semihosting call; if so
     * then handle it and return true; otherwise return false.
     */
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    if (is_a64(env)) {
        if (cs->exception_index == EXCP_SEMIHOST) {
            /* This is always the 64-bit semihosting exception.
             * The "is this usermode" and "is semihosting enabled"
             * checks have been done at translate time.
             */
            qemu_log_mask(CPU_LOG_INT,
                          "...handling as semihosting call 0x%" PRIx64 "\n",
                          env->xregs[0]);
            env->xregs[0] = do_arm_semihosting(env);
            return true;
        }
        return false;
    } else {
        uint32_t imm;

        /* Only intercept calls from privileged modes, to provide some
         * semblance of security.
         */
8150 8151 8152
        if (cs->exception_index != EXCP_SEMIHOST &&
            (!semihosting_enabled() ||
             ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
8153 8154 8155 8156
            return false;
        }

        switch (cs->exception_index) {
8157 8158 8159 8160 8161 8162
        case EXCP_SEMIHOST:
            /* This is always a semihosting call; the "is this usermode"
             * and "is semihosting enabled" checks have been done at
             * translate time.
             */
            break;
8163 8164 8165
        case EXCP_SWI:
            /* Check for semihosting interrupt.  */
            if (env->thumb) {
8166
                imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
8167 8168 8169 8170 8171
                    & 0xff;
                if (imm == 0xab) {
                    break;
                }
            } else {
8172
                imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
8173 8174 8175 8176 8177 8178 8179 8180 8181
                    & 0xffffff;
                if (imm == 0x123456) {
                    break;
                }
            }
            return false;
        case EXCP_BKPT:
            /* See if this is a semihosting syscall.  */
            if (env->thumb) {
8182
                imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201
                    & 0xff;
                if (imm == 0xab) {
                    env->regs[15] += 2;
                    break;
                }
            }
            return false;
        default:
            return false;
        }

        qemu_log_mask(CPU_LOG_INT,
                      "...handling as semihosting call 0x%x\n",
                      env->regs[0]);
        env->regs[0] = do_arm_semihosting(env);
        return true;
    }
}

8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212
/* Handle a CPU exception for A and R profile CPUs.
 * Do any appropriate logging, handle PSCI calls, and then hand off
 * to the AArch64-entry or AArch32-entry function depending on the
 * target exception level's register width.
 */
void arm_cpu_do_interrupt(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    unsigned int new_el = env->exception.target_el;

P
Peter Maydell 已提交
8213
    assert(!arm_feature(env, ARM_FEATURE_M));
8214 8215 8216 8217 8218 8219

    arm_log_exception(cs->exception_index);
    qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
                  new_el);
    if (qemu_loglevel_mask(CPU_LOG_INT)
        && !excp_is_internal(cs->exception_index)) {
8220
        qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
8221 8222 8223 8224 8225 8226 8227 8228 8229 8230
                      env->exception.syndrome >> ARM_EL_EC_SHIFT,
                      env->exception.syndrome);
    }

    if (arm_is_psci_call(cpu, cs->exception_index)) {
        arm_handle_psci_call(cpu);
        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
        return;
    }

8231 8232 8233
    /* Semihosting semantics depend on the register width of the
     * code that caused the exception, not the target exception level,
     * so must be handled here.
8234
     */
8235 8236 8237 8238 8239 8240
    if (check_for_semihosting(cs)) {
        return;
    }

    assert(!excp_is_internal(cs->exception_index));
    if (arm_el_is_aa64(env, new_el)) {
8241 8242 8243 8244
        arm_cpu_do_interrupt_aarch64(cs);
    } else {
        arm_cpu_do_interrupt_aarch32(cs);
    }
8245

8246 8247 8248 8249 8250 8251
    /* Hooks may change global state so BQL should be held, also the
     * BQL needs to be held for any modification of
     * cs->interrupt_request.
     */
    g_assert(qemu_mutex_iothread_locked());

8252 8253
    arm_call_el_change_hook(cpu);

8254 8255 8256 8257
    if (!kvm_enabled()) {
        cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
    }
}
8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272

/* Return the exception level which controls this address translation regime */
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S2NS:
    case ARMMMUIdx_S1E2:
        return 2;
    case ARMMMUIdx_S1E3:
        return 3;
    case ARMMMUIdx_S1SE0:
        return arm_el_is_aa64(env, 3) ? 1 : 3;
    case ARMMMUIdx_S1SE1:
    case ARMMMUIdx_S1NSE0:
    case ARMMMUIdx_S1NSE1:
8273 8274
    case ARMMMUIdx_MPrivNegPri:
    case ARMMMUIdx_MUserNegPri:
8275 8276
    case ARMMMUIdx_MPriv:
    case ARMMMUIdx_MUser:
8277 8278
    case ARMMMUIdx_MSPrivNegPri:
    case ARMMMUIdx_MSUserNegPri:
8279 8280
    case ARMMMUIdx_MSPriv:
    case ARMMMUIdx_MSUser:
8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296
        return 1;
    default:
        g_assert_not_reached();
    }
}

/* Return the SCTLR value which controls this address translation regime */
static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}

/* Return true if the specified stage of address translation is disabled */
static inline bool regime_translation_disabled(CPUARMState *env,
                                               ARMMMUIdx mmu_idx)
{
8297
    if (arm_feature(env, ARM_FEATURE_M)) {
8298
        switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
8299 8300 8301
                (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
        case R_V7M_MPU_CTRL_ENABLE_MASK:
            /* Enabled, but not for HardFault and NMI */
8302
            return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
8303 8304 8305 8306 8307 8308 8309 8310 8311 8312
        case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
            /* Enabled for all cases */
            return false;
        case 0:
        default:
            /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
             * we warned about that in armv7m_nvic.c when the guest set it.
             */
            return true;
        }
8313 8314
    }

8315 8316 8317 8318 8319 8320
    if (mmu_idx == ARMMMUIdx_S2NS) {
        return (env->cp15.hcr_el2 & HCR_VM) == 0;
    }
    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}

8321 8322 8323 8324 8325 8326
static inline bool regime_translation_big_endian(CPUARMState *env,
                                                 ARMMMUIdx mmu_idx)
{
    return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
}

8327 8328 8329 8330
/* Return the TCR controlling this translation regime */
static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
E
Edgar E. Iglesias 已提交
8331
        return &env->cp15.vtcr_el2;
8332 8333 8334 8335
    }
    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
}

8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346
/* Convert a possible stage1+2 MMU index into the appropriate
 * stage 1 MMU index
 */
static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
{
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
        mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
    }
    return mmu_idx;
}

8347 8348 8349 8350 8351 8352 8353
/* Returns TBI0 value for current regime el */
uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    TCR *tcr;
    uint32_t el;

    /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8354 8355 8356
     * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
     */
    mmu_idx = stage_1_mmu_idx(mmu_idx);
8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374

    tcr = regime_tcr(env, mmu_idx);
    el = regime_el(env, mmu_idx);

    if (el > 1) {
        return extract64(tcr->raw_tcr, 20, 1);
    } else {
        return extract64(tcr->raw_tcr, 37, 1);
    }
}

/* Returns TBI1 value for current regime el */
uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    TCR *tcr;
    uint32_t el;

    /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8375 8376 8377
     * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
     */
    mmu_idx = stage_1_mmu_idx(mmu_idx);
8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388

    tcr = regime_tcr(env, mmu_idx);
    el = regime_el(env, mmu_idx);

    if (el > 1) {
        return 0;
    } else {
        return extract64(tcr->raw_tcr, 38, 1);
    }
}

8389 8390 8391 8392 8393
/* Return the TTBR associated with this translation regime */
static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
                                   int ttbrn)
{
    if (mmu_idx == ARMMMUIdx_S2NS) {
E
Edgar E. Iglesias 已提交
8394
        return env->cp15.vttbr_el2;
8395 8396 8397 8398 8399 8400 8401 8402
    }
    if (ttbrn == 0) {
        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
    } else {
        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
    }
}

8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417
/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env,
                                            ARMMMUIdx mmu_idx)
{
    int el = regime_el(env, mmu_idx);
    if (el == 2 || arm_el_is_aa64(env, el)) {
        return true;
    }
    if (arm_feature(env, ARM_FEATURE_LPAE)
        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
        return true;
    }
    return false;
}

8418 8419 8420 8421
/* Returns true if the stage 1 translation regime is using LPAE format page
 * tables. Used when raising alignment exceptions, whose FSR changes depending
 * on whether the long or short descriptor format is in use. */
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
8422
{
8423
    mmu_idx = stage_1_mmu_idx(mmu_idx);
8424

8425 8426 8427
    return regime_using_lpae_format(env, mmu_idx);
}

8428 8429 8430 8431 8432
static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_S1SE0:
    case ARMMMUIdx_S1NSE0:
8433
    case ARMMMUIdx_MUser:
8434
    case ARMMMUIdx_MSUser:
8435 8436
    case ARMMMUIdx_MUserNegPri:
    case ARMMMUIdx_MSUserNegPri:
8437 8438 8439 8440 8441 8442 8443 8444 8445
        return true;
    default:
        return false;
    case ARMMMUIdx_S12NSE0:
    case ARMMMUIdx_S12NSE1:
        g_assert_not_reached();
    }
}

8446 8447
/* Translate section/page access permissions to page
 * R/W protection flags
8448 8449 8450 8451 8452
 *
 * @env:         CPUARMState
 * @mmu_idx:     MMU index indicating required translation regime
 * @ap:          The 3-bit access permissions (AP[2:0])
 * @domain_prot: The 2-bit domain access permissions
8453 8454 8455 8456
 */
static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
                                int ap, int domain_prot)
{
8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478
    bool is_user = regime_is_user(env, mmu_idx);

    if (domain_prot == 3) {
        return PAGE_READ | PAGE_WRITE;
    }

    switch (ap) {
    case 0:
        if (arm_feature(env, ARM_FEATURE_V7)) {
            return 0;
        }
        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
        case SCTLR_S:
            return is_user ? 0 : PAGE_READ;
        case SCTLR_R:
            return PAGE_READ;
        default:
            return 0;
        }
    case 1:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 2:
8479
        if (is_user) {
8480
            return PAGE_READ;
8481
        } else {
8482
            return PAGE_READ | PAGE_WRITE;
8483
        }
8484 8485 8486 8487 8488
    case 3:
        return PAGE_READ | PAGE_WRITE;
    case 4: /* Reserved.  */
        return 0;
    case 5:
8489
        return is_user ? 0 : PAGE_READ;
8490
    case 6:
8491
        return PAGE_READ;
8492
    case 7:
8493
        if (!arm_feature(env, ARM_FEATURE_V6K)) {
8494
            return 0;
8495
        }
8496
        return PAGE_READ;
8497
    default:
8498
        g_assert_not_reached();
8499
    }
B
bellard 已提交
8500 8501
}

8502 8503 8504 8505
/* Translate section/page access permissions to page
 * R/W protection flags.
 *
 * @ap:      The 2-bit simple AP (AP[2:1])
8506
 * @is_user: TRUE if accessing from PL0
8507
 */
8508
static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523
{
    switch (ap) {
    case 0:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 1:
        return PAGE_READ | PAGE_WRITE;
    case 2:
        return is_user ? 0 : PAGE_READ;
    case 3:
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

8524 8525 8526 8527 8528 8529
static inline int
simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
{
    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
}

8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546
/* Translate S2 section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @s2ap:    The 2-bit stage2 access permissions (S2AP)
 * @xn:      XN (execute-never) bit
 */
static int get_S2prot(CPUARMState *env, int s2ap, int xn)
{
    int prot = 0;

    if (s2ap & 1) {
        prot |= PAGE_READ;
    }
    if (s2ap & 2) {
        prot |= PAGE_WRITE;
    }
    if (!xn) {
8547 8548 8549
        if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
            prot |= PAGE_EXEC;
        }
8550 8551 8552 8553
    }
    return prot;
}

8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634
/* Translate section/page access permissions to protection flags
 *
 * @env:     CPUARMState
 * @mmu_idx: MMU index indicating required translation regime
 * @is_aa64: TRUE if AArch64
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @ns:      NS (non-secure) bit
 * @xn:      XN (execute-never) bit
 * @pxn:     PXN (privileged execute-never) bit
 */
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
                      int ap, int ns, int xn, int pxn)
{
    bool is_user = regime_is_user(env, mmu_idx);
    int prot_rw, user_rw;
    bool have_wxn;
    int wxn = 0;

    assert(mmu_idx != ARMMMUIdx_S2NS);

    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
    if (is_user) {
        prot_rw = user_rw;
    } else {
        prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
    }

    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
        return prot_rw;
    }

    /* TODO have_wxn should be replaced with
     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
     * compatible processors have EL2, which is required for [U]WXN.
     */
    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);

    if (have_wxn) {
        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
    }

    if (is_aa64) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
            if (!is_user) {
                xn = pxn || (user_rw & PAGE_WRITE);
            }
            break;
        case 2:
        case 3:
            break;
        }
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
        case 3:
            if (is_user) {
                xn = xn || !(user_rw & PAGE_READ);
            } else {
                int uwxn = 0;
                if (have_wxn) {
                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
                }
                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
                     (uwxn && (user_rw & PAGE_WRITE));
            }
            break;
        case 2:
            break;
        }
    } else {
        xn = wxn = 0;
    }

    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
        return prot_rw;
    }
    return prot_rw | PAGE_EXEC;
}

8635 8636
static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
                                     uint32_t *table, uint32_t address)
8637
{
8638 8639
    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
    TCR *tcr = regime_tcr(env, mmu_idx);
F
Fabian Aggeler 已提交
8640 8641 8642

    if (address & tcr->mask) {
        if (tcr->raw_tcr & TTBCR_PD1) {
8643 8644 8645
            /* Translation table walk disabled for TTBR1 */
            return false;
        }
8646
        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
8647
    } else {
F
Fabian Aggeler 已提交
8648
        if (tcr->raw_tcr & TTBCR_PD0) {
8649 8650 8651
            /* Translation table walk disabled for TTBR0 */
            return false;
        }
8652
        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
8653 8654 8655
    }
    *table |= (address >> 18) & 0x3ffc;
    return true;
8656 8657
}

8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670
/* Translate a S1 pagetable walk through S2 if needed.  */
static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
                               hwaddr addr, MemTxAttrs txattrs,
                               ARMMMUFaultInfo *fi)
{
    if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
        !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
        target_ulong s2size;
        hwaddr s2pa;
        int s2prot;
        int ret;

        ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
8671
                                 &txattrs, &s2prot, &s2size, fi, NULL);
8672
        if (ret) {
8673
            assert(fi->type != ARMFault_None);
8674 8675 8676 8677 8678 8679 8680 8681 8682 8683
            fi->s2addr = addr;
            fi->stage2 = true;
            fi->s1ptw = true;
            return ~0;
        }
        addr = s2pa;
    }
    return addr;
}

8684 8685 8686 8687 8688 8689 8690
/* All loads done in the course of a page table walk go through here.
 * TODO: rather than ignoring errors from physical memory reads (which
 * are external aborts in ARM terminology) we should propagate this
 * error out so that we can turn it into a Data Abort if this walk
 * was being done for a CPU load/store or an address translation instruction
 * (but not if it was for a debug access).
 */
8691
static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8692
                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8693
{
8694 8695
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
8696
    MemTxAttrs attrs = {};
8697
    MemTxResult result = MEMTX_OK;
8698
    AddressSpace *as;
8699
    uint32_t data;
8700 8701

    attrs.secure = is_secure;
8702
    as = arm_addressspace(cs, attrs);
8703
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8704 8705 8706
    if (fi->s1ptw) {
        return 0;
    }
8707
    if (regime_translation_big_endian(env, mmu_idx)) {
8708
        data = address_space_ldl_be(as, addr, attrs, &result);
8709
    } else {
8710
        data = address_space_ldl_le(as, addr, attrs, &result);
8711
    }
8712 8713 8714 8715 8716 8717
    if (result == MEMTX_OK) {
        return data;
    }
    fi->type = ARMFault_SyncExternalOnWalk;
    fi->ea = arm_extabort_type(result);
    return 0;
8718 8719
}

8720
static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
8721
                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
8722
{
8723 8724
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
8725
    MemTxAttrs attrs = {};
8726
    MemTxResult result = MEMTX_OK;
8727
    AddressSpace *as;
8728
    uint64_t data;
8729 8730

    attrs.secure = is_secure;
8731
    as = arm_addressspace(cs, attrs);
8732
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
8733 8734 8735
    if (fi->s1ptw) {
        return 0;
    }
8736
    if (regime_translation_big_endian(env, mmu_idx)) {
8737
        data = address_space_ldq_be(as, addr, attrs, &result);
8738
    } else {
8739 8740 8741 8742
        data = address_space_ldq_le(as, addr, attrs, &result);
    }
    if (result == MEMTX_OK) {
        return data;
8743
    }
8744 8745 8746
    fi->type = ARMFault_SyncExternalOnWalk;
    fi->ea = arm_extabort_type(result);
    return 0;
8747 8748
}

8749
static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
8750
                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
8751
                             hwaddr *phys_ptr, int *prot,
8752
                             target_ulong *page_size,
8753
                             ARMMMUFaultInfo *fi)
B
bellard 已提交
8754
{
8755
    CPUState *cs = CPU(arm_env_get_cpu(env));
8756
    int level = 1;
B
bellard 已提交
8757 8758 8759 8760
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
8761
    int domain = 0;
8762
    int domain_prot;
A
Avi Kivity 已提交
8763
    hwaddr phys_addr;
8764
    uint32_t dacr;
B
bellard 已提交
8765

P
pbrook 已提交
8766 8767
    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
8768
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8769
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
8770
        fi->type = ARMFault_Translation;
8771 8772
        goto do_fault;
    }
8773
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8774
                       mmu_idx, fi);
8775 8776 8777
    if (fi->type != ARMFault_None) {
        goto do_fault;
    }
P
pbrook 已提交
8778
    type = (desc & 3);
8779
    domain = (desc >> 5) & 0x0f;
8780 8781 8782 8783 8784 8785
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
P
pbrook 已提交
8786
    if (type == 0) {
8787
        /* Section translation fault.  */
8788
        fi->type = ARMFault_Translation;
P
pbrook 已提交
8789 8790
        goto do_fault;
    }
8791 8792 8793
    if (type != 2) {
        level = 2;
    }
8794
    if (domain_prot == 0 || domain_prot == 2) {
8795
        fi->type = ARMFault_Domain;
P
pbrook 已提交
8796 8797 8798 8799 8800 8801
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
P
Paul Brook 已提交
8802
        *page_size = 1024 * 1024;
P
pbrook 已提交
8803 8804
    } else {
        /* Lookup l2 entry.  */
8805 8806 8807 8808 8809 8810 8811
        if (type == 1) {
            /* Coarse pagetable.  */
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        } else {
            /* Fine pagetable.  */
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
        }
8812
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8813
                           mmu_idx, fi);
8814 8815 8816
        if (fi->type != ARMFault_None) {
            goto do_fault;
        }
P
pbrook 已提交
8817 8818
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
8819
            fi->type = ARMFault_Translation;
P
pbrook 已提交
8820 8821 8822 8823
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
P
Paul Brook 已提交
8824
            *page_size = 0x10000;
P
pbrook 已提交
8825
            break;
P
pbrook 已提交
8826 8827
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8828
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
P
Paul Brook 已提交
8829
            *page_size = 0x1000;
P
pbrook 已提交
8830
            break;
8831
        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
8832
            if (type == 1) {
8833 8834 8835
                /* ARMv6/XScale extended small page format */
                if (arm_feature(env, ARM_FEATURE_XSCALE)
                    || arm_feature(env, ARM_FEATURE_V6)) {
8836
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
8837
                    *page_size = 0x1000;
8838
                } else {
8839 8840 8841
                    /* UNPREDICTABLE in ARMv5; we choose to take a
                     * page translation fault.
                     */
8842
                    fi->type = ARMFault_Translation;
8843 8844 8845 8846
                    goto do_fault;
                }
            } else {
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
8847
                *page_size = 0x400;
8848
            }
P
pbrook 已提交
8849
            ap = (desc >> 4) & 3;
P
pbrook 已提交
8850 8851
            break;
        default:
P
pbrook 已提交
8852 8853
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
P
pbrook 已提交
8854
        }
P
pbrook 已提交
8855
    }
8856 8857 8858
    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
    *prot |= *prot ? PAGE_EXEC : 0;
    if (!(*prot & (1 << access_type))) {
P
pbrook 已提交
8859
        /* Access permission fault.  */
8860
        fi->type = ARMFault_Permission;
P
pbrook 已提交
8861 8862 8863
        goto do_fault;
    }
    *phys_ptr = phys_addr;
8864
    return false;
P
pbrook 已提交
8865
do_fault:
8866 8867
    fi->domain = domain;
    fi->level = level;
8868
    return true;
P
pbrook 已提交
8869 8870
}

8871
static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
8872
                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
8873
                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
8874
                             target_ulong *page_size, ARMMMUFaultInfo *fi)
P
pbrook 已提交
8875
{
8876
    CPUState *cs = CPU(arm_env_get_cpu(env));
8877
    int level = 1;
P
pbrook 已提交
8878 8879 8880
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
8881
    uint32_t pxn = 0;
P
pbrook 已提交
8882 8883
    int type;
    int ap;
8884
    int domain = 0;
8885
    int domain_prot;
A
Avi Kivity 已提交
8886
    hwaddr phys_addr;
8887
    uint32_t dacr;
8888
    bool ns;
P
pbrook 已提交
8889 8890 8891

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
8892
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
8893
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
8894
        fi->type = ARMFault_Translation;
8895 8896
        goto do_fault;
    }
8897
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8898
                       mmu_idx, fi);
8899 8900 8901
    if (fi->type != ARMFault_None) {
        goto do_fault;
    }
P
pbrook 已提交
8902
    type = (desc & 3);
8903 8904 8905 8906
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
8907
        fi->type = ARMFault_Translation;
P
pbrook 已提交
8908
        goto do_fault;
8909 8910 8911
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
8912
        domain = (desc >> 5) & 0x0f;
P
pbrook 已提交
8913
    }
8914 8915 8916 8917 8918
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
8919 8920 8921
    if (type == 1) {
        level = 2;
    }
8922
    domain_prot = (dacr >> (domain * 2)) & 3;
8923
    if (domain_prot == 0 || domain_prot == 2) {
8924 8925
        /* Section or Page domain fault */
        fi->type = ARMFault_Domain;
P
pbrook 已提交
8926 8927
        goto do_fault;
    }
8928
    if (type != 1) {
P
pbrook 已提交
8929 8930 8931
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
8932 8933
            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
P
Paul Brook 已提交
8934
            *page_size = 0x1000000;
B
bellard 已提交
8935
        } else {
P
pbrook 已提交
8936 8937
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
P
Paul Brook 已提交
8938
            *page_size = 0x100000;
B
bellard 已提交
8939
        }
P
pbrook 已提交
8940 8941
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
8942
        pxn = desc & 1;
8943
        ns = extract32(desc, 19, 1);
P
pbrook 已提交
8944
    } else {
8945 8946 8947
        if (arm_feature(env, ARM_FEATURE_PXN)) {
            pxn = (desc >> 2) & 1;
        }
8948
        ns = extract32(desc, 3, 1);
P
pbrook 已提交
8949 8950
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
8951
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
8952
                           mmu_idx, fi);
8953 8954 8955
        if (fi->type != ARMFault_None) {
            goto do_fault;
        }
P
pbrook 已提交
8956 8957 8958
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
8959
            fi->type = ARMFault_Translation;
B
bellard 已提交
8960
            goto do_fault;
P
pbrook 已提交
8961 8962 8963
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
P
Paul Brook 已提交
8964
            *page_size = 0x10000;
P
pbrook 已提交
8965 8966 8967 8968
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
P
Paul Brook 已提交
8969
            *page_size = 0x1000;
P
pbrook 已提交
8970 8971 8972 8973
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            abort();
B
bellard 已提交
8974
        }
P
pbrook 已提交
8975
    }
8976
    if (domain_prot == 3) {
8977 8978
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
8979
        if (pxn && !regime_is_user(env, mmu_idx)) {
8980 8981
            xn = 1;
        }
8982 8983
        if (xn && access_type == MMU_INST_FETCH) {
            fi->type = ARMFault_Permission;
8984
            goto do_fault;
8985
        }
P
pbrook 已提交
8986

8987 8988 8989 8990 8991
        if (arm_feature(env, ARM_FEATURE_V6K) &&
                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
            /* The simplified model uses AP[0] as an access control bit.  */
            if ((ap & 1) == 0) {
                /* Access flag fault.  */
8992
                fi->type = ARMFault_AccessFlag;
8993 8994 8995 8996 8997
                goto do_fault;
            }
            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
        } else {
            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
8998
        }
8999 9000 9001 9002
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        if (!(*prot & (1 << access_type))) {
9003
            /* Access permission fault.  */
9004
            fi->type = ARMFault_Permission;
9005 9006
            goto do_fault;
        }
9007
    }
9008 9009 9010 9011 9012 9013 9014
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        attrs->secure = false;
    }
P
pbrook 已提交
9015
    *phys_ptr = phys_addr;
9016
    return false;
B
bellard 已提交
9017
do_fault:
9018 9019
    fi->domain = domain;
    fi->level = level;
9020
    return true;
B
bellard 已提交
9021 9022
}

9023
/*
9024
 * check_s2_mmu_setup
9025 9026 9027 9028 9029 9030
 * @cpu:        ARMCPU
 * @is_aa64:    True if the translation regime is in AArch64 state
 * @startlevel: Suggested starting level
 * @inputsize:  Bitsize of IPAs
 * @stride:     Page-table stride (See the ARM ARM)
 *
9031 9032
 * Returns true if the suggested S2 translation parameters are OK and
 * false otherwise.
9033
 */
9034 9035
static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
                               int inputsize, int stride)
9036
{
9037 9038 9039
    const int grainsize = stride + 3;
    int startsizecheck;

9040 9041 9042 9043 9044
    /* Negative levels are never allowed.  */
    if (level < 0) {
        return false;
    }

9045 9046 9047 9048 9049
    startsizecheck = inputsize - ((3 - level) * stride + grainsize);
    if (startsizecheck < 1 || startsizecheck > stride + 4) {
        return false;
    }

9050
    if (is_aa64) {
9051
        CPUARMState *env = &cpu->env;
9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072
        unsigned int pamax = arm_pamax(cpu);

        switch (stride) {
        case 13: /* 64KB Pages.  */
            if (level == 0 || (level == 1 && pamax <= 42)) {
                return false;
            }
            break;
        case 11: /* 16KB Pages.  */
            if (level == 0 || (level == 1 && pamax <= 40)) {
                return false;
            }
            break;
        case 9: /* 4KB Pages.  */
            if (level == 0 && pamax <= 42) {
                return false;
            }
            break;
        default:
            g_assert_not_reached();
        }
9073 9074 9075 9076 9077 9078 9079

        /* Inputsize checks.  */
        if (inputsize > pamax &&
            (arm_el_is_aa64(env, 1) || inputsize > 40)) {
            /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
            return false;
        }
9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090
    } else {
        /* AArch32 only supports 4KB pages. Assert on that.  */
        assert(stride == 9);

        if (level == 0) {
            return false;
        }
    }
    return true;
}

9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120
/* Translate from the 4-bit stage 2 representation of
 * memory attributes (without cache-allocation hints) to
 * the 8-bit representation of the stage 1 MAIR registers
 * (which includes allocation hints).
 *
 * ref: shared/translation/attrs/S2AttrDecode()
 *      .../S2ConvertAttrsHints()
 */
static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
{
    uint8_t hiattr = extract32(s2attrs, 2, 2);
    uint8_t loattr = extract32(s2attrs, 0, 2);
    uint8_t hihint = 0, lohint = 0;

    if (hiattr != 0) { /* normal memory */
        if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
            hiattr = loattr = 1; /* non-cacheable */
        } else {
            if (hiattr != 1) { /* Write-through or write-back */
                hihint = 3; /* RW allocate */
            }
            if (loattr != 1) { /* Write-through or write-back */
                lohint = 3; /* RW allocate */
            }
        }
    }

    return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
}

9121
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
9122
                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
9123
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
9124
                               target_ulong *page_size_ptr,
9125
                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
9126
{
9127 9128
    ARMCPU *cpu = arm_env_get_cpu(env);
    CPUState *cs = CPU(cpu);
9129
    /* Read an LPAE long-descriptor translation table. */
9130
    ARMFaultType fault_type = ARMFault_Translation;
9131
    uint32_t level;
9132
    uint32_t epd = 0;
9133
    int32_t t0sz, t1sz;
9134
    uint32_t tg;
9135 9136
    uint64_t ttbr;
    int ttbr_select;
9137
    hwaddr descaddr, indexmask, indexmask_grainsize;
9138 9139 9140
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
9141
    int32_t stride = 9;
9142
    int32_t addrsize;
9143
    int inputsize;
9144
    int32_t tbi = 0;
9145
    TCR *tcr = regime_tcr(env, mmu_idx);
9146
    int ap, ns, xn, pxn;
9147 9148
    uint32_t el = regime_el(env, mmu_idx);
    bool ttbr1_valid = true;
9149
    uint64_t descaddrmask;
9150
    bool aarch64 = arm_el_is_aa64(env, el);
9151 9152

    /* TODO:
9153 9154 9155 9156
     * This code does not handle the different format TCR for VTCR_EL2.
     * This code also does not support shareability levels.
     * Attribute and permission bit handling should also be checked when adding
     * support for those page table walks.
9157
     */
9158
    if (aarch64) {
9159
        level = 0;
9160
        addrsize = 64;
9161
        if (el > 1) {
9162 9163 9164
            if (mmu_idx != ARMMMUIdx_S2NS) {
                tbi = extract64(tcr->raw_tcr, 20, 1);
            }
9165 9166 9167 9168 9169 9170 9171
        } else {
            if (extract64(address, 55, 1)) {
                tbi = extract64(tcr->raw_tcr, 38, 1);
            } else {
                tbi = extract64(tcr->raw_tcr, 37, 1);
            }
        }
9172
        tbi *= 8;
9173 9174 9175 9176 9177 9178 9179

        /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
         * invalid.
         */
        if (el > 1) {
            ttbr1_valid = false;
        }
9180
    } else {
9181
        level = 1;
9182
        addrsize = 32;
9183 9184 9185 9186
        /* There is no TTBR1 for EL2 */
        if (el == 2) {
            ttbr1_valid = false;
        }
9187
    }
9188 9189 9190 9191 9192 9193

    /* Determine whether this address is in the region controlled by
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
     */
9194
    if (aarch64) {
9195 9196
        /* AArch64 translation.  */
        t0sz = extract32(tcr->raw_tcr, 0, 6);
9197 9198
        t0sz = MIN(t0sz, 39);
        t0sz = MAX(t0sz, 16);
9199 9200 9201 9202 9203 9204 9205
    } else if (mmu_idx != ARMMMUIdx_S2NS) {
        /* AArch32 stage 1 translation.  */
        t0sz = extract32(tcr->raw_tcr, 0, 3);
    } else {
        /* AArch32 stage 2 translation.  */
        bool sext = extract32(tcr->raw_tcr, 4, 1);
        bool sign = extract32(tcr->raw_tcr, 3, 1);
9206 9207 9208 9209 9210 9211
        /* Address size is 40-bit for a stage 2 translation,
         * and t0sz can be negative (from -8 to 7),
         * so we need to adjust it to use the TTBR selecting logic below.
         */
        addrsize = 40;
        t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
9212 9213 9214 9215 9216

        /* If the sign-extend bit is not the same as t0sz[3], the result
         * is unpredictable. Flag this as a guest error.  */
        if (sign != sext) {
            qemu_log_mask(LOG_GUEST_ERROR,
M
Michael Tokarev 已提交
9217
                          "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9218
        }
9219
    }
9220
    t1sz = extract32(tcr->raw_tcr, 16, 6);
9221
    if (aarch64) {
9222 9223 9224
        t1sz = MIN(t1sz, 39);
        t1sz = MAX(t1sz, 16);
    }
9225
    if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
9226 9227
        /* there is a ttbr0 region and we are in it (high bits all zero) */
        ttbr_select = 0;
9228
    } else if (ttbr1_valid && t1sz &&
9229
               !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
9230 9231 9232 9233 9234
        /* there is a ttbr1 region and we are in it (high bits all one) */
        ttbr_select = 1;
    } else if (!t0sz) {
        /* ttbr0 region is "everything not in the ttbr1 region" */
        ttbr_select = 0;
9235
    } else if (!t1sz && ttbr1_valid) {
9236 9237 9238 9239
        /* ttbr1 region is "everything not in the ttbr0 region" */
        ttbr_select = 1;
    } else {
        /* in the gap between the two regions, this is a Translation fault */
9240
        fault_type = ARMFault_Translation;
9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251
        goto do_fault;
    }

    /* Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    if (ttbr_select == 0) {
9252
        ttbr = regime_ttbr(env, mmu_idx, 0);
9253 9254 9255
        if (el < 2) {
            epd = extract32(tcr->raw_tcr, 7, 1);
        }
9256
        inputsize = addrsize - t0sz;
9257

F
Fabian Aggeler 已提交
9258
        tg = extract32(tcr->raw_tcr, 14, 2);
9259
        if (tg == 1) { /* 64KB pages */
9260
            stride = 13;
9261 9262
        }
        if (tg == 2) { /* 16KB pages */
9263
            stride = 11;
9264
        }
9265
    } else {
9266 9267 9268
        /* We should only be here if TTBR1 is valid */
        assert(ttbr1_valid);

9269
        ttbr = regime_ttbr(env, mmu_idx, 1);
F
Fabian Aggeler 已提交
9270
        epd = extract32(tcr->raw_tcr, 23, 1);
9271
        inputsize = addrsize - t1sz;
9272

F
Fabian Aggeler 已提交
9273
        tg = extract32(tcr->raw_tcr, 30, 2);
9274
        if (tg == 3)  { /* 64KB pages */
9275
            stride = 13;
9276 9277
        }
        if (tg == 1) { /* 16KB pages */
9278
            stride = 11;
9279
        }
9280 9281
    }

9282
    /* Here we should have set up all the parameters for the translation:
9283
     * inputsize, ttbr, epd, stride, tbi
9284 9285
     */

9286
    if (epd) {
9287 9288 9289
        /* Translation table walk disabled => Translation fault on TLB miss
         * Note: This is always 0 on 64-bit EL2 and EL3.
         */
9290 9291 9292
        goto do_fault;
    }

9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309
    if (mmu_idx != ARMMMUIdx_S2NS) {
        /* The starting level depends on the virtual address size (which can
         * be up to 48 bits) and the translation granule size. It indicates
         * the number of strides (stride bits at a time) needed to
         * consume the bits of the input address. In the pseudocode this is:
         *  level = 4 - RoundUp((inputsize - grainsize) / stride)
         * where their 'inputsize' is our 'inputsize', 'grainsize' is
         * our 'stride + 3' and 'stride' is our 'stride'.
         * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
         * = 4 - (inputsize - stride - 3 + stride - 1) / stride
         * = 4 - (inputsize - 4) / stride;
         */
        level = 4 - (inputsize - 4) / stride;
    } else {
        /* For stage 2 translations the starting level is specified by the
         * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
         */
9310 9311
        uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
        uint32_t startlevel;
9312 9313
        bool ok;

9314
        if (!aarch64 || stride == 9) {
9315
            /* AArch32 or 4KB pages */
9316
            startlevel = 2 - sl0;
9317 9318
        } else {
            /* 16KB or 64KB pages */
9319
            startlevel = 3 - sl0;
9320 9321 9322
        }

        /* Check that the starting level is valid. */
9323
        ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
9324
                                inputsize, stride);
9325
        if (!ok) {
9326
            fault_type = ARMFault_Translation;
9327 9328
            goto do_fault;
        }
9329
        level = startlevel;
9330
    }
9331

9332 9333
    indexmask_grainsize = (1ULL << (stride + 3)) - 1;
    indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
9334 9335

    /* Now we can extract the actual base address from the TTBR */
9336
    descaddr = extract64(ttbr, 0, 48);
9337
    descaddr &= ~indexmask;
9338

9339
    /* The address field in the descriptor goes up to bit 39 for ARMv7
9340 9341 9342
     * but up to bit 47 for ARMv8, but we use the descaddrmask
     * up to bit 39 for AArch32, because we don't need other bits in that case
     * to construct next descriptor address (anyway they should be all zeroes).
9343
     */
9344
    descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
9345
                   ~indexmask_grainsize;
9346

9347 9348 9349 9350 9351 9352
    /* Secure accesses start with the page table in secure memory and
     * can be downgraded to non-secure at any step. Non-secure accesses
     * remain non-secure. We implement this by just ORing in the NSTable/NS
     * bits at each step.
     */
    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
9353 9354
    for (;;) {
        uint64_t descriptor;
9355
        bool nstable;
9356

9357
        descaddr |= (address >> (stride * (4 - level))) & indexmask;
9358
        descaddr &= ~7ULL;
9359
        nstable = extract32(tableattrs, 4, 1);
9360
        descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
9361
        if (fi->type != ARMFault_None) {
9362 9363 9364
            goto do_fault;
        }

9365 9366 9367 9368 9369
        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }
9370
        descaddr = descriptor & descaddrmask;
9371 9372 9373 9374 9375 9376 9377 9378 9379

        if ((descriptor & 2) && (level < 3)) {
            /* Table entry. The top five bits are attributes which  may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
9380
            indexmask = indexmask_grainsize;
9381 9382 9383 9384 9385 9386
            continue;
        }
        /* Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies.
         */
9387
        page_size = (1ULL << ((stride * (4 - level)) + 3));
9388
        descaddr |= (address & (page_size - 1));
9389
        /* Extract attributes from the descriptor */
9390 9391
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);
9392 9393 9394 9395 9396 9397

        if (mmu_idx == ARMMMUIdx_S2NS) {
            /* Stage 2 table descriptors do not include any attribute fields */
            break;
        }
        /* Merge in attributes from table descriptors */
9398 9399 9400 9401 9402 9403 9404 9405
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        if (extract32(tableattrs, 2, 1)) {
            attrs &= ~(1 << 4);
        }
9406
        attrs |= nstable << 3; /* NS */
9407 9408 9409 9410 9411
        break;
    }
    /* Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
9412
    fault_type = ARMFault_AccessFlag;
9413 9414 9415 9416
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }
9417 9418 9419 9420

    ap = extract32(attrs, 4, 2);
    xn = extract32(attrs, 12, 1);

9421 9422 9423 9424 9425 9426
    if (mmu_idx == ARMMMUIdx_S2NS) {
        ns = true;
        *prot = get_S2prot(env, ap, xn);
    } else {
        ns = extract32(attrs, 3, 1);
        pxn = extract32(attrs, 11, 1);
9427
        *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
9428
    }
9429

9430
    fault_type = ARMFault_Permission;
9431
    if (!(*prot & (1 << access_type))) {
9432 9433 9434
        goto do_fault;
    }

9435 9436 9437 9438 9439 9440 9441
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        txattrs->secure = false;
    }
9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456

    if (cacheattrs != NULL) {
        if (mmu_idx == ARMMMUIdx_S2NS) {
            cacheattrs->attrs = convert_stage2_attrs(env,
                                                     extract32(attrs, 0, 4));
        } else {
            /* Index into MAIR registers for cache attributes */
            uint8_t attrindx = extract32(attrs, 0, 3);
            uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
            assert(attrindx <= 7);
            cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
        }
        cacheattrs->shareability = extract32(attrs, 6, 2);
    }

9457 9458
    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
9459
    return false;
9460 9461

do_fault:
9462 9463
    fi->type = fault_type;
    fi->level = level;
9464 9465
    /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
    fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
9466
    return true;
9467 9468
}

9469 9470 9471 9472
static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
                                                ARMMMUIdx mmu_idx,
                                                int32_t address, int *prot)
{
9473 9474 9475 9476 9477 9478 9479 9480 9481 9482
    if (!arm_feature(env, ARM_FEATURE_M)) {
        *prot = PAGE_READ | PAGE_WRITE;
        switch (address) {
        case 0xF0000000 ... 0xFFFFFFFF:
            if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
                /* hivecs execing is ok */
                *prot |= PAGE_EXEC;
            }
            break;
        case 0x00000000 ... 0x7FFFFFFF:
9483
            *prot |= PAGE_EXEC;
9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505
            break;
        }
    } else {
        /* Default system address map for M profile cores.
         * The architecture specifies which regions are execute-never;
         * at the MPU level no other checks are defined.
         */
        switch (address) {
        case 0x00000000 ... 0x1fffffff: /* ROM */
        case 0x20000000 ... 0x3fffffff: /* SRAM */
        case 0x60000000 ... 0x7fffffff: /* RAM */
        case 0x80000000 ... 0x9fffffff: /* RAM */
            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
            break;
        case 0x40000000 ... 0x5fffffff: /* Peripheral */
        case 0xa0000000 ... 0xbfffffff: /* Device */
        case 0xc0000000 ... 0xdfffffff: /* Device */
        case 0xe0000000 ... 0xffffffff: /* System */
            *prot = PAGE_READ | PAGE_WRITE;
            break;
        default:
            g_assert_not_reached();
9506 9507 9508 9509
        }
    }
}

9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522
static bool pmsav7_use_background_region(ARMCPU *cpu,
                                         ARMMMUIdx mmu_idx, bool is_user)
{
    /* Return true if we should use the default memory map as a
     * "background" region if there are no hits against any MPU regions.
     */
    CPUARMState *env = &cpu->env;

    if (is_user) {
        return false;
    }

    if (arm_feature(env, ARM_FEATURE_M)) {
9523 9524
        return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
            & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
9525 9526 9527 9528 9529
    } else {
        return regime_sctlr(env, mmu_idx) & SCTLR_BR;
    }
}

9530 9531 9532 9533 9534 9535 9536
static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
{
    /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
    return arm_feature(env, ARM_FEATURE_M) &&
        extract32(address, 20, 12) == 0xe00;
}

9537 9538 9539 9540 9541 9542 9543 9544
static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
{
    /* True if address is in the M profile system region
     * 0xe0000000 - 0xffffffff
     */
    return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
}

9545
static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
9546
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
9547 9548
                                 hwaddr *phys_ptr, int *prot,
                                 ARMMMUFaultInfo *fi)
9549 9550 9551 9552 9553 9554 9555 9556
{
    ARMCPU *cpu = arm_env_get_cpu(env);
    int n;
    bool is_user = regime_is_user(env, mmu_idx);

    *phys_ptr = address;
    *prot = 0;

9557 9558 9559 9560 9561 9562 9563 9564 9565
    if (regime_translation_disabled(env, mmu_idx) ||
        m_is_ppb_region(env, address)) {
        /* MPU disabled or M profile PPB access: use default memory map.
         * The other case which uses the default memory map in the
         * v7M ARM ARM pseudocode is exception vector reads from the vector
         * table. In QEMU those accesses are done in arm_v7m_load_vector(),
         * which always does a direct read using address_space_ldl(), rather
         * than going via this function, so we don't need to check that here.
         */
9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
    } else { /* MPU enabled */
        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
            /* region search */
            uint32_t base = env->pmsav7.drbar[n];
            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
            uint32_t rmask;
            bool srdis = false;

            if (!(env->pmsav7.drsr[n] & 0x1)) {
                continue;
            }

            if (!rsize) {
9580 9581
                qemu_log_mask(LOG_GUEST_ERROR,
                              "DRSR[%d]: Rsize field cannot be 0\n", n);
9582 9583 9584 9585 9586 9587
                continue;
            }
            rsize++;
            rmask = (1ull << rsize) - 1;

            if (base & rmask) {
9588 9589 9590 9591
                qemu_log_mask(LOG_GUEST_ERROR,
                              "DRBAR[%d]: 0x%" PRIx32 " misaligned "
                              "to DRSR region size, mask = 0x%" PRIx32 "\n",
                              n, base, rmask);
9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627
                continue;
            }

            if (address < base || address > base + rmask) {
                continue;
            }

            /* Region matched */

            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
                int i, snd;
                uint32_t srdis_mask;

                rsize -= 3; /* sub region size (power of 2) */
                snd = ((address - base) >> rsize) & 0x7;
                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);

                srdis_mask = srdis ? 0x3 : 0x0;
                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
                    /* This will check in groups of 2, 4 and then 8, whether
                     * the subregion bits are consistent. rsize is incremented
                     * back up to give the region size, considering consistent
                     * adjacent subregions as one region. Stop testing if rsize
                     * is already big enough for an entire QEMU page.
                     */
                    int snd_rounded = snd & ~(i - 1);
                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
                                                     snd_rounded + 8, i);
                    if (srdis_mask ^ srdis_multi) {
                        break;
                    }
                    srdis_mask = (srdis_mask << i) | srdis_mask;
                    rsize++;
                }
            }
            if (rsize < TARGET_PAGE_BITS) {
9628 9629
                qemu_log_mask(LOG_UNIMP,
                              "DRSR[%d]: No support for MPU (sub)region "
9630
                              "alignment of %" PRIu32 " bits. Minimum is %d\n",
9631
                              n, rsize, TARGET_PAGE_BITS);
9632 9633 9634 9635 9636 9637 9638 9639 9640
                continue;
            }
            if (srdis) {
                continue;
            }
            break;
        }

        if (n == -1) { /* no hits */
9641
            if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
9642
                /* background fault */
9643
                fi->type = ARMFault_Background;
9644 9645 9646 9647 9648
                return true;
            }
            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
        } else { /* a MPU hit! */
            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
9649 9650 9651 9652 9653 9654
            uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);

            if (m_is_system_region(env, address)) {
                /* System space is always execute never */
                xn = 1;
            }
9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668

            if (is_user) { /* User mode AP bit decoding */
                switch (ap) {
                case 0:
                case 1:
                case 5:
                    break; /* no access */
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 2:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
9669 9670 9671 9672 9673 9674 9675
                case 7:
                    /* for v7M, same as 6; for R profile a reserved value */
                    if (arm_feature(env, ARM_FEATURE_M)) {
                        *prot |= PAGE_READ | PAGE_EXEC;
                        break;
                    }
                    /* fall through */
9676 9677
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
9678 9679
                                  "DRACR[%d]: Bad value for AP bits: 0x%"
                                  PRIx32 "\n", n, ap);
9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693
                }
            } else { /* Priv. mode AP bits decoding */
                switch (ap) {
                case 0:
                    break; /* no access */
                case 1:
                case 2:
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 5:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
9694 9695 9696 9697 9698 9699 9700
                case 7:
                    /* for v7M, same as 6; for R profile a reserved value */
                    if (arm_feature(env, ARM_FEATURE_M)) {
                        *prot |= PAGE_READ | PAGE_EXEC;
                        break;
                    }
                    /* fall through */
9701 9702
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
9703 9704
                                  "DRACR[%d]: Bad value for AP bits: 0x%"
                                  PRIx32 "\n", n, ap);
9705 9706 9707 9708
                }
            }

            /* execute never */
9709
            if (xn) {
9710 9711 9712 9713 9714
                *prot &= ~PAGE_EXEC;
            }
        }
    }

9715 9716
    fi->type = ARMFault_Permission;
    fi->level = 1;
9717 9718 9719
    return !(*prot & (1 << access_type));
}

9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744
static bool v8m_is_sau_exempt(CPUARMState *env,
                              uint32_t address, MMUAccessType access_type)
{
    /* The architecture specifies that certain address ranges are
     * exempt from v8M SAU/IDAU checks.
     */
    return
        (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
        (address >= 0xe0000000 && address <= 0xe0002fff) ||
        (address >= 0xe000e000 && address <= 0xe000efff) ||
        (address >= 0xe002e000 && address <= 0xe002efff) ||
        (address >= 0xe0040000 && address <= 0xe0041fff) ||
        (address >= 0xe00ff000 && address <= 0xe00fffff);
}

static void v8m_security_lookup(CPUARMState *env, uint32_t address,
                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                V8M_SAttributes *sattrs)
{
    /* Look up the security attributes for this address. Compare the
     * pseudocode SecurityCheck() function.
     * We assume the caller has zero-initialized *sattrs.
     */
    ARMCPU *cpu = arm_env_get_cpu(env);
    int r;
9745 9746
    bool idau_exempt = false, idau_ns = true, idau_nsc = true;
    int idau_region = IREGION_NOTVALID;
9747

9748 9749 9750 9751 9752 9753 9754
    if (cpu->idau) {
        IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
        IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);

        iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
                   &idau_nsc);
    }
9755 9756 9757 9758 9759 9760

    if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
        /* 0xf0000000..0xffffffff is always S for insn fetches */
        return;
    }

9761
    if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
9762 9763 9764 9765
        sattrs->ns = !regime_is_secure(env, mmu_idx);
        return;
    }

9766 9767 9768 9769 9770
    if (idau_region != IREGION_NOTVALID) {
        sattrs->irvalid = true;
        sattrs->iregion = idau_region;
    }

9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806
    switch (env->sau.ctrl & 3) {
    case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
        break;
    case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
        sattrs->ns = true;
        break;
    default: /* SAU.ENABLE == 1 */
        for (r = 0; r < cpu->sau_sregion; r++) {
            if (env->sau.rlar[r] & 1) {
                uint32_t base = env->sau.rbar[r] & ~0x1f;
                uint32_t limit = env->sau.rlar[r] | 0x1f;

                if (base <= address && limit >= address) {
                    if (sattrs->srvalid) {
                        /* If we hit in more than one region then we must report
                         * as Secure, not NS-Callable, with no valid region
                         * number info.
                         */
                        sattrs->ns = false;
                        sattrs->nsc = false;
                        sattrs->sregion = 0;
                        sattrs->srvalid = false;
                        break;
                    } else {
                        if (env->sau.rlar[r] & 2) {
                            sattrs->nsc = true;
                        } else {
                            sattrs->ns = true;
                        }
                        sattrs->srvalid = true;
                        sattrs->sregion = r;
                    }
                }
            }
        }

9807 9808 9809 9810 9811 9812 9813 9814 9815
        /* The IDAU will override the SAU lookup results if it specifies
         * higher security than the SAU does.
         */
        if (!idau_ns) {
            if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
                sattrs->ns = false;
                sattrs->nsc = idau_nsc;
            }
        }
9816 9817 9818 9819
        break;
    }
}

9820 9821 9822
static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
                              hwaddr *phys_ptr, MemTxAttrs *txattrs,
9823
                              int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion)
9824 9825 9826 9827 9828 9829 9830
{
    /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
     * that a full phys-to-virt translation does).
     * mregion is (if not NULL) set to the region number which matched,
     * or -1 if no region number is returned (MPU off, address did not
     * hit a region, address hit in multiple regions).
     */
9831 9832
    ARMCPU *cpu = arm_env_get_cpu(env);
    bool is_user = regime_is_user(env, mmu_idx);
9833
    uint32_t secure = regime_is_secure(env, mmu_idx);
9834 9835 9836 9837 9838 9839
    int n;
    int matchregion = -1;
    bool hit = false;

    *phys_ptr = address;
    *prot = 0;
9840 9841
    if (mregion) {
        *mregion = -1;
9842 9843
    }

9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862
    /* Unlike the ARM ARM pseudocode, we don't need to check whether this
     * was an exception vector read from the vector table (which is always
     * done using the default system address map), because those accesses
     * are done in arm_v7m_load_vector(), which always does a direct
     * read using address_space_ldl(), rather than going via this function.
     */
    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
        hit = true;
    } else if (m_is_ppb_region(env, address)) {
        hit = true;
    } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
        hit = true;
    } else {
        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
            /* region search */
            /* Note that the base address is bits [31:5] from the register
             * with bits [4:0] all zeroes, but the limit address is bits
             * [31:5] from the register with bits [4:0] all ones.
             */
9863 9864
            uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
            uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
9865

9866
            if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878
                /* Region disabled */
                continue;
            }

            if (address < base || address > limit) {
                continue;
            }

            if (hit) {
                /* Multiple regions match -- always a failure (unlike
                 * PMSAv7 where highest-numbered-region wins)
                 */
9879 9880
                fi->type = ARMFault_Permission;
                fi->level = 1;
9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907
                return true;
            }

            matchregion = n;
            hit = true;

            if (base & ~TARGET_PAGE_MASK) {
                qemu_log_mask(LOG_UNIMP,
                              "MPU_RBAR[%d]: No support for MPU region base"
                              "address of 0x%" PRIx32 ". Minimum alignment is "
                              "%d\n",
                              n, base, TARGET_PAGE_BITS);
                continue;
            }
            if ((limit + 1) & ~TARGET_PAGE_MASK) {
                qemu_log_mask(LOG_UNIMP,
                              "MPU_RBAR[%d]: No support for MPU region limit"
                              "address of 0x%" PRIx32 ". Minimum alignment is "
                              "%d\n",
                              n, limit, TARGET_PAGE_BITS);
                continue;
            }
        }
    }

    if (!hit) {
        /* background fault */
9908
        fi->type = ARMFault_Background;
9909 9910 9911 9912 9913 9914 9915
        return true;
    }

    if (matchregion == -1) {
        /* hit using the background region */
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
    } else {
9916 9917
        uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
        uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930

        if (m_is_system_region(env, address)) {
            /* System space is always execute never */
            xn = 1;
        }

        *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        /* We don't need to look the attribute up in the MAIR0/MAIR1
         * registers because that only tells us about cacheability.
         */
9931 9932 9933
        if (mregion) {
            *mregion = matchregion;
        }
9934 9935
    }

9936 9937
    fi->type = ARMFault_Permission;
    fi->level = 1;
9938 9939 9940
    return !(*prot & (1 << access_type));
}

9941 9942 9943 9944

static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, MemTxAttrs *txattrs,
9945
                                 int *prot, ARMMMUFaultInfo *fi)
9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970
{
    uint32_t secure = regime_is_secure(env, mmu_idx);
    V8M_SAttributes sattrs = {};

    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
        if (access_type == MMU_INST_FETCH) {
            /* Instruction fetches always use the MMU bank and the
             * transaction attribute determined by the fetch address,
             * regardless of CPU state. This is painful for QEMU
             * to handle, because it would mean we need to encode
             * into the mmu_idx not just the (user, negpri) information
             * for the current security state but also that for the
             * other security state, which would balloon the number
             * of mmu_idx values needed alarmingly.
             * Fortunately we can avoid this because it's not actually
             * possible to arbitrarily execute code from memory with
             * the wrong security attribute: it will always generate
             * an exception of some kind or another, apart from the
             * special case of an NS CPU executing an SG instruction
             * in S&NSC memory. So we always just fail the translation
             * here and sort things out in the exception handler
             * (including possibly emulating an SG instruction).
             */
            if (sattrs.ns != !secure) {
9971 9972 9973 9974 9975
                if (sattrs.nsc) {
                    fi->type = ARMFault_QEMU_NSCExec;
                } else {
                    fi->type = ARMFault_QEMU_SFault;
                }
9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996
                *phys_ptr = address;
                *prot = 0;
                return true;
            }
        } else {
            /* For data accesses we always use the MMU bank indicated
             * by the current CPU state, but the security attributes
             * might downgrade a secure access to nonsecure.
             */
            if (sattrs.ns) {
                txattrs->secure = false;
            } else if (!secure) {
                /* NS access to S memory must fault.
                 * Architecturally we should first check whether the
                 * MPU information for this address indicates that we
                 * are doing an unaligned access to Device memory, which
                 * should generate a UsageFault instead. QEMU does not
                 * currently check for that kind of unaligned access though.
                 * If we added it we would need to do so as a special case
                 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
                 */
9997
                fi->type = ARMFault_QEMU_SFault;
9998 9999 10000 10001 10002 10003 10004 10005
                *phys_ptr = address;
                *prot = 0;
                return true;
            }
        }
    }

    return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
10006
                             txattrs, prot, fi, NULL);
10007 10008
}

10009
static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
10010
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
10011 10012
                                 hwaddr *phys_ptr, int *prot,
                                 ARMMMUFaultInfo *fi)
P
pbrook 已提交
10013 10014 10015 10016
{
    int n;
    uint32_t mask;
    uint32_t base;
10017
    bool is_user = regime_is_user(env, mmu_idx);
P
pbrook 已提交
10018

10019 10020 10021 10022 10023 10024 10025
    if (regime_translation_disabled(env, mmu_idx)) {
        /* MPU disabled.  */
        *phys_ptr = address;
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        return false;
    }

P
pbrook 已提交
10026 10027
    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
10028
        base = env->cp15.c6_region[n];
10029
        if ((base & 1) == 0) {
10030
            continue;
10031
        }
10032 10033 10034 10035
        mask = 1 << ((base >> 1) & 0x1f);
        /* Keep this shift separate from the above to avoid an
           (undefined) << 32.  */
        mask = (mask << 1) - 1;
10036
        if (((base ^ address) & ~mask) == 0) {
10037
            break;
10038
        }
P
pbrook 已提交
10039
    }
10040
    if (n < 0) {
10041
        fi->type = ARMFault_Background;
10042
        return true;
10043
    }
P
pbrook 已提交
10044

10045
    if (access_type == MMU_INST_FETCH) {
10046
        mask = env->cp15.pmsav5_insn_ap;
P
pbrook 已提交
10047
    } else {
10048
        mask = env->cp15.pmsav5_data_ap;
P
pbrook 已提交
10049 10050 10051 10052
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
10053 10054
        fi->type = ARMFault_Permission;
        fi->level = 1;
10055
        return true;
P
pbrook 已提交
10056
    case 1:
10057
        if (is_user) {
10058 10059
            fi->type = ARMFault_Permission;
            fi->level = 1;
10060
            return true;
10061
        }
10062 10063
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
10064
    case 2:
10065
        *prot = PAGE_READ;
10066
        if (!is_user) {
10067
            *prot |= PAGE_WRITE;
10068
        }
10069
        break;
P
pbrook 已提交
10070
    case 3:
10071 10072
        *prot = PAGE_READ | PAGE_WRITE;
        break;
P
pbrook 已提交
10073
    case 5:
10074
        if (is_user) {
10075 10076
            fi->type = ARMFault_Permission;
            fi->level = 1;
10077
            return true;
10078
        }
10079 10080
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
10081
    case 6:
10082 10083
        *prot = PAGE_READ;
        break;
P
pbrook 已提交
10084
    default:
10085
        /* Bad permission.  */
10086 10087
        fi->type = ARMFault_Permission;
        fi->level = 1;
10088
        return true;
P
pbrook 已提交
10089
    }
10090
    *prot |= PAGE_EXEC;
10091
    return false;
P
pbrook 已提交
10092 10093
}

10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180
/* Combine either inner or outer cacheability attributes for normal
 * memory, according to table D4-42 and pseudocode procedure
 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
 *
 * NB: only stage 1 includes allocation hints (RW bits), leading to
 * some asymmetry.
 */
static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
{
    if (s1 == 4 || s2 == 4) {
        /* non-cacheable has precedence */
        return 4;
    } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
        /* stage 1 write-through takes precedence */
        return s1;
    } else if (extract32(s2, 2, 2) == 2) {
        /* stage 2 write-through takes precedence, but the allocation hint
         * is still taken from stage 1
         */
        return (2 << 2) | extract32(s1, 0, 2);
    } else { /* write-back */
        return s1;
    }
}

/* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
 * and CombineS1S2Desc()
 *
 * @s1:      Attributes from stage 1 walk
 * @s2:      Attributes from stage 2 walk
 */
static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
{
    uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
    uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
    ARMCacheAttrs ret;

    /* Combine shareability attributes (table D4-43) */
    if (s1.shareability == 2 || s2.shareability == 2) {
        /* if either are outer-shareable, the result is outer-shareable */
        ret.shareability = 2;
    } else if (s1.shareability == 3 || s2.shareability == 3) {
        /* if either are inner-shareable, the result is inner-shareable */
        ret.shareability = 3;
    } else {
        /* both non-shareable */
        ret.shareability = 0;
    }

    /* Combine memory type and cacheability attributes */
    if (s1hi == 0 || s2hi == 0) {
        /* Device has precedence over normal */
        if (s1lo == 0 || s2lo == 0) {
            /* nGnRnE has precedence over anything */
            ret.attrs = 0;
        } else if (s1lo == 4 || s2lo == 4) {
            /* non-Reordering has precedence over Reordering */
            ret.attrs = 4;  /* nGnRE */
        } else if (s1lo == 8 || s2lo == 8) {
            /* non-Gathering has precedence over Gathering */
            ret.attrs = 8;  /* nGRE */
        } else {
            ret.attrs = 0xc; /* GRE */
        }

        /* Any location for which the resultant memory type is any
         * type of Device memory is always treated as Outer Shareable.
         */
        ret.shareability = 2;
    } else { /* Normal memory */
        /* Outer/inner cacheability combine independently */
        ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
                  | combine_cacheattr_nibble(s1lo, s2lo);

        if (ret.attrs == 0x44) {
            /* Any location for which the resultant memory type is Normal
             * Inner Non-cacheable, Outer Non-cacheable is always treated
             * as Outer Shareable.
             */
            ret.shareability = 2;
        }
    }

    return ret;
}


10181 10182 10183 10184 10185 10186
/* get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
10187 10188
 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 * prot and page_size may not be filled in, and the populated fsr value provides
10189 10190 10191 10192
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
10193
 *  * for PSMAv5 based systems we don't bother to return a full FSR format
10194 10195 10196 10197 10198
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
10199
 * @mmu_idx: MMU index indicating required translation regime
10200
 * @phys_ptr: set to the physical address corresponding to the virtual address
10201
 * @attrs: set to the memory transaction attributes to use
10202 10203
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
10204 10205
 * @fi: set to fault info if the translation fails
 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10206
 */
10207
static bool get_phys_addr(CPUARMState *env, target_ulong address,
10208
                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
10209
                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
10210
                          target_ulong *page_size,
10211
                          ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
P
pbrook 已提交
10212
{
10213
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
10214 10215
        /* Call ourselves recursively to do the stage 1 and then stage 2
         * translations.
10216
         */
10217 10218 10219 10220
        if (arm_feature(env, ARM_FEATURE_EL2)) {
            hwaddr ipa;
            int s2_prot;
            int ret;
10221
            ARMCacheAttrs cacheattrs2 = {};
10222 10223

            ret = get_phys_addr(env, address, access_type,
10224
                                stage_1_mmu_idx(mmu_idx), &ipa, attrs,
10225
                                prot, page_size, fi, cacheattrs);
10226 10227 10228 10229 10230 10231 10232 10233 10234 10235

            /* If S1 fails or S2 is disabled, return early.  */
            if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
                *phys_ptr = ipa;
                return ret;
            }

            /* S1 is done. Now do S2 translation.  */
            ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
                                     phys_ptr, attrs, &s2_prot,
10236
                                     page_size, fi,
10237
                                     cacheattrs != NULL ? &cacheattrs2 : NULL);
10238 10239 10240
            fi->s2addr = ipa;
            /* Combine the S1 and S2 perms.  */
            *prot &= s2_prot;
10241 10242 10243 10244 10245 10246

            /* Combine the S1 and S2 cache attributes, if needed */
            if (!ret && cacheattrs != NULL) {
                *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
            }

10247 10248 10249 10250 10251
            return ret;
        } else {
            /*
             * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
             */
10252
            mmu_idx = stage_1_mmu_idx(mmu_idx);
10253
        }
10254
    }
10255

10256 10257 10258 10259 10260
    /* The page table entries may downgrade secure to non-secure, but
     * cannot upgrade an non-secure translation regime's attributes
     * to secure.
     */
    attrs->secure = regime_is_secure(env, mmu_idx);
10261
    attrs->user = regime_is_user(env, mmu_idx);
10262

10263 10264 10265 10266 10267 10268 10269 10270 10271 10272
    /* Fast Context Switch Extension. This doesn't exist at all in v8.
     * In v7 and earlier it affects all stage 1 translations.
     */
    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
        && !arm_feature(env, ARM_FEATURE_V8)) {
        if (regime_el(env, mmu_idx) == 3) {
            address += env->cp15.fcseidr_s;
        } else {
            address += env->cp15.fcseidr_ns;
        }
10273
    }
P
pbrook 已提交
10274

10275
    if (arm_feature(env, ARM_FEATURE_PMSA)) {
10276
        bool ret;
10277
        *page_size = TARGET_PAGE_SIZE;
10278

10279 10280 10281
        if (arm_feature(env, ARM_FEATURE_V8)) {
            /* PMSAv8 */
            ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
10282
                                       phys_ptr, attrs, prot, fi);
10283
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
10284 10285
            /* PMSAv7 */
            ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
10286
                                       phys_ptr, prot, fi);
10287 10288 10289
        } else {
            /* Pre-v7 MPU */
            ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
10290
                                       phys_ptr, prot, fi);
10291 10292
        }
        qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
10293
                      " mmu_idx %u -> %s (prot %c%c%c)\n",
10294 10295
                      access_type == MMU_DATA_LOAD ? "reading" :
                      (access_type == MMU_DATA_STORE ? "writing" : "execute"),
10296 10297 10298 10299 10300 10301 10302
                      (uint32_t)address, mmu_idx,
                      ret ? "Miss" : "Hit",
                      *prot & PAGE_READ ? 'r' : '-',
                      *prot & PAGE_WRITE ? 'w' : '-',
                      *prot & PAGE_EXEC ? 'x' : '-');

        return ret;
10303 10304
    }

10305 10306
    /* Definitely a real MMU, not an MPU */

10307
    if (regime_translation_disabled(env, mmu_idx)) {
10308
        /* MMU disabled. */
P
pbrook 已提交
10309
        *phys_ptr = address;
10310
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
P
Paul Brook 已提交
10311
        *page_size = TARGET_PAGE_SIZE;
P
pbrook 已提交
10312
        return 0;
10313 10314 10315
    }

    if (regime_using_lpae_format(env, mmu_idx)) {
10316 10317 10318
        return get_phys_addr_lpae(env, address, access_type, mmu_idx,
                                  phys_ptr, attrs, prot, page_size,
                                  fi, cacheattrs);
10319
    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
10320 10321
        return get_phys_addr_v6(env, address, access_type, mmu_idx,
                                phys_ptr, attrs, prot, page_size, fi);
P
pbrook 已提交
10322
    } else {
10323
        return get_phys_addr_v5(env, address, access_type, mmu_idx,
10324
                                    phys_ptr, prot, page_size, fi);
P
pbrook 已提交
10325 10326 10327
    }
}

10328
/* Walk the page table and (if the mapping exists) add the page
10329 10330
 * to the TLB. Return false on success, or true on failure. Populate
 * fsr with ARM DFSR/IFSR fault register format value on failure.
10331
 */
10332
bool arm_tlb_fill(CPUState *cs, vaddr address,
10333
                  MMUAccessType access_type, int mmu_idx,
10334
                  ARMMMUFaultInfo *fi)
B
bellard 已提交
10335
{
10336 10337
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
10338
    hwaddr phys_addr;
P
Paul Brook 已提交
10339
    target_ulong page_size;
B
bellard 已提交
10340
    int prot;
10341
    int ret;
10342
    MemTxAttrs attrs = {};
B
bellard 已提交
10343

10344 10345
    ret = get_phys_addr(env, address, access_type,
                        core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
10346
                        &attrs, &prot, &page_size, fi, NULL);
10347
    if (!ret) {
B
bellard 已提交
10348
        /* Map a single [sub]page.  */
10349 10350
        phys_addr &= TARGET_PAGE_MASK;
        address &= TARGET_PAGE_MASK;
10351 10352
        tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
                                prot, mmu_idx, page_size);
P
Paul Brook 已提交
10353
        return 0;
B
bellard 已提交
10354 10355
    }

10356
    return ret;
B
bellard 已提交
10357 10358
}

10359 10360
hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
                                         MemTxAttrs *attrs)
B
bellard 已提交
10361
{
10362
    ARMCPU *cpu = ARM_CPU(cs);
10363
    CPUARMState *env = &cpu->env;
A
Avi Kivity 已提交
10364
    hwaddr phys_addr;
P
Paul Brook 已提交
10365
    target_ulong page_size;
B
bellard 已提交
10366
    int prot;
10367
    bool ret;
10368
    ARMMMUFaultInfo fi = {};
10369
    ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
B
bellard 已提交
10370

10371 10372
    *attrs = (MemTxAttrs) {};

10373
    ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
10374
                        attrs, &prot, &page_size, &fi, NULL);
B
bellard 已提交
10375

10376
    if (ret) {
B
bellard 已提交
10377
        return -1;
10378
    }
B
bellard 已提交
10379 10380 10381
    return phys_addr;
}

10382
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
P
pbrook 已提交
10383
{
10384 10385 10386 10387 10388 10389 10390 10391 10392
    uint32_t mask;
    unsigned el = arm_current_el(env);

    /* First handle registers which unprivileged can read */

    switch (reg) {
    case 0 ... 7: /* xPSR sub-fields */
        mask = 0;
        if ((reg & 1) && el) {
10393
            mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
10394 10395
        }
        if (!(reg & 4)) {
10396
            mask |= XPSR_NZCV | XPSR_Q; /* APSR */
10397 10398 10399 10400 10401
        }
        /* EPSR reads as zero */
        return xpsr_read(env) & mask;
        break;
    case 20: /* CONTROL */
10402
        return env->v7m.control[env->v7m.secure];
10403 10404 10405 10406 10407 10408 10409 10410
    case 0x94: /* CONTROL_NS */
        /* We have to handle this here because unprivileged Secure code
         * can read the NS CONTROL register.
         */
        if (!env->v7m.secure) {
            return 0;
        }
        return env->v7m.control[M_REG_NS];
10411 10412 10413 10414 10415
    }

    if (el == 0) {
        return 0; /* unprivileged reads others as zero */
    }
10416

10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428
    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        switch (reg) {
        case 0x88: /* MSP_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.other_ss_msp;
        case 0x89: /* PSP_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.other_ss_psp;
10429 10430 10431 10432 10433 10434 10435 10436 10437 10438
        case 0x8a: /* MSPLIM_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.msplim[M_REG_NS];
        case 0x8b: /* PSPLIM_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.psplim[M_REG_NS];
10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474
        case 0x90: /* PRIMASK_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.primask[M_REG_NS];
        case 0x91: /* BASEPRI_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.basepri[M_REG_NS];
        case 0x93: /* FAULTMASK_NS */
            if (!env->v7m.secure) {
                return 0;
            }
            return env->v7m.faultmask[M_REG_NS];
        case 0x98: /* SP_NS */
        {
            /* This gives the non-secure SP selected based on whether we're
             * currently in handler mode or not, using the NS CONTROL.SPSEL.
             */
            bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;

            if (!env->v7m.secure) {
                return 0;
            }
            if (!arm_v7m_is_handler_mode(env) && spsel) {
                return env->v7m.other_ss_psp;
            } else {
                return env->v7m.other_ss_msp;
            }
        }
        default:
            break;
        }
    }

P
pbrook 已提交
10475 10476
    switch (reg) {
    case 8: /* MSP */
10477
        return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
P
pbrook 已提交
10478
    case 9: /* PSP */
10479
        return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
10480 10481 10482 10483 10484 10485 10486 10487 10488 10489
    case 10: /* MSPLIM */
        if (!arm_feature(env, ARM_FEATURE_V8)) {
            goto bad_reg;
        }
        return env->v7m.msplim[env->v7m.secure];
    case 11: /* PSPLIM */
        if (!arm_feature(env, ARM_FEATURE_V8)) {
            goto bad_reg;
        }
        return env->v7m.psplim[env->v7m.secure];
P
pbrook 已提交
10490
    case 16: /* PRIMASK */
10491
        return env->v7m.primask[env->v7m.secure];
10492 10493
    case 17: /* BASEPRI */
    case 18: /* BASEPRI_MAX */
10494
        return env->v7m.basepri[env->v7m.secure];
10495
    case 19: /* FAULTMASK */
10496
        return env->v7m.faultmask[env->v7m.secure];
P
pbrook 已提交
10497
    default:
10498
    bad_reg:
10499 10500
        qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
                                       " register %d\n", reg);
P
pbrook 已提交
10501 10502 10503 10504
        return 0;
    }
}

10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516
void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
{
    /* We're passed bits [11..0] of the instruction; extract
     * SYSm and the mask bits.
     * Invalid combinations of SYSm and mask are UNPREDICTABLE;
     * we choose to treat them as if the mask bits were valid.
     * NB that the pseudocode 'mask' variable is bits [11..10],
     * whereas ours is [11..8].
     */
    uint32_t mask = extract32(maskreg, 8, 4);
    uint32_t reg = extract32(maskreg, 0, 8);

10517 10518 10519 10520
    if (arm_current_el(env) == 0 && reg > 7) {
        /* only xPSR sub-fields may be written by unprivileged */
        return;
    }
10521

10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535
    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        switch (reg) {
        case 0x88: /* MSP_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.other_ss_msp = val;
            return;
        case 0x89: /* PSP_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.other_ss_psp = val;
            return;
10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547
        case 0x8a: /* MSPLIM_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.msplim[M_REG_NS] = val & ~7;
            return;
        case 0x8b: /* PSPLIM_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.psplim[M_REG_NS] = val & ~7;
            return;
10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565
        case 0x90: /* PRIMASK_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.primask[M_REG_NS] = val & 1;
            return;
        case 0x91: /* BASEPRI_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.basepri[M_REG_NS] = val & 0xff;
            return;
        case 0x93: /* FAULTMASK_NS */
            if (!env->v7m.secure) {
                return;
            }
            env->v7m.faultmask[M_REG_NS] = val & 1;
            return;
10566 10567 10568 10569 10570 10571 10572 10573 10574 10575
        case 0x94: /* CONTROL_NS */
            if (!env->v7m.secure) {
                return;
            }
            write_v7m_control_spsel_for_secstate(env,
                                                 val & R_V7M_CONTROL_SPSEL_MASK,
                                                 M_REG_NS);
            env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
            env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
            return;
10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597
        case 0x98: /* SP_NS */
        {
            /* This gives the non-secure SP selected based on whether we're
             * currently in handler mode or not, using the NS CONTROL.SPSEL.
             */
            bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;

            if (!env->v7m.secure) {
                return;
            }
            if (!arm_v7m_is_handler_mode(env) && spsel) {
                env->v7m.other_ss_psp = val;
            } else {
                env->v7m.other_ss_msp = val;
            }
            return;
        }
        default:
            break;
        }
    }

P
pbrook 已提交
10598
    switch (reg) {
10599 10600
    case 0 ... 7: /* xPSR sub-fields */
        /* only APSR is actually writable */
10601 10602 10603 10604
        if (!(reg & 4)) {
            uint32_t apsrmask = 0;

            if (mask & 8) {
10605
                apsrmask |= XPSR_NZCV | XPSR_Q;
10606 10607
            }
            if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
10608
                apsrmask |= XPSR_GE;
10609 10610
            }
            xpsr_write(env, val, apsrmask);
10611
        }
P
pbrook 已提交
10612 10613
        break;
    case 8: /* MSP */
10614
        if (v7m_using_psp(env)) {
P
pbrook 已提交
10615
            env->v7m.other_sp = val;
10616
        } else {
P
pbrook 已提交
10617
            env->regs[13] = val;
10618
        }
P
pbrook 已提交
10619 10620
        break;
    case 9: /* PSP */
10621
        if (v7m_using_psp(env)) {
P
pbrook 已提交
10622
            env->regs[13] = val;
10623
        } else {
P
pbrook 已提交
10624
            env->v7m.other_sp = val;
10625
        }
P
pbrook 已提交
10626
        break;
10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638
    case 10: /* MSPLIM */
        if (!arm_feature(env, ARM_FEATURE_V8)) {
            goto bad_reg;
        }
        env->v7m.msplim[env->v7m.secure] = val & ~7;
        break;
    case 11: /* PSPLIM */
        if (!arm_feature(env, ARM_FEATURE_V8)) {
            goto bad_reg;
        }
        env->v7m.psplim[env->v7m.secure] = val & ~7;
        break;
P
pbrook 已提交
10639
    case 16: /* PRIMASK */
10640
        env->v7m.primask[env->v7m.secure] = val & 1;
P
pbrook 已提交
10641
        break;
10642
    case 17: /* BASEPRI */
10643
        env->v7m.basepri[env->v7m.secure] = val & 0xff;
P
pbrook 已提交
10644
        break;
10645
    case 18: /* BASEPRI_MAX */
P
pbrook 已提交
10646
        val &= 0xff;
10647 10648 10649 10650
        if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
                         || env->v7m.basepri[env->v7m.secure] == 0)) {
            env->v7m.basepri[env->v7m.secure] = val;
        }
P
pbrook 已提交
10651
        break;
10652
    case 19: /* FAULTMASK */
10653
        env->v7m.faultmask[env->v7m.secure] = val & 1;
10654
        break;
P
pbrook 已提交
10655
    case 20: /* CONTROL */
10656 10657
        /* Writing to the SPSEL bit only has an effect if we are in
         * thread mode; other bits can be updated by any privileged code.
10658
         * write_v7m_control_spsel() deals with updating the SPSEL bit in
10659
         * env->v7m.control, so we only need update the others.
10660 10661
         * For v7M, we must just ignore explicit writes to SPSEL in handler
         * mode; for v8M the write is permitted but will have no effect.
10662
         */
10663 10664
        if (arm_feature(env, ARM_FEATURE_V8) ||
            !arm_v7m_is_handler_mode(env)) {
10665
            write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
10666
        }
10667 10668
        env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
        env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
P
pbrook 已提交
10669 10670
        break;
    default:
10671
    bad_reg:
10672 10673
        qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
                                       " register %d\n", reg);
P
pbrook 已提交
10674 10675 10676 10677
        return;
    }
}

10678 10679 10680 10681 10682 10683 10684 10685 10686
uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
{
    /* Implement the TT instruction. op is bits [7:6] of the insn. */
    bool forceunpriv = op & 1;
    bool alt = op & 2;
    V8M_SAttributes sattrs = {};
    uint32_t tt_resp;
    bool r, rw, nsr, nsrw, mrvalid;
    int prot;
10687
    ARMMMUFaultInfo fi = {};
10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722
    MemTxAttrs attrs = {};
    hwaddr phys_addr;
    ARMMMUIdx mmu_idx;
    uint32_t mregion;
    bool targetpriv;
    bool targetsec = env->v7m.secure;

    /* Work out what the security state and privilege level we're
     * interested in is...
     */
    if (alt) {
        targetsec = !targetsec;
    }

    if (forceunpriv) {
        targetpriv = false;
    } else {
        targetpriv = arm_v7m_is_handler_mode(env) ||
            !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
    }

    /* ...and then figure out which MMU index this is */
    mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);

    /* We know that the MPU and SAU don't care about the access type
     * for our purposes beyond that we don't want to claim to be
     * an insn fetch, so we arbitrarily call this a read.
     */

    /* MPU region info only available for privileged or if
     * inspecting the other MPU state.
     */
    if (arm_current_el(env) != 0 || alt) {
        /* We can ignore the return value as prot is always set */
        pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
10723
                          &phys_addr, &attrs, &prot, &fi, &mregion);
10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763
        if (mregion == -1) {
            mrvalid = false;
            mregion = 0;
        } else {
            mrvalid = true;
        }
        r = prot & PAGE_READ;
        rw = prot & PAGE_WRITE;
    } else {
        r = false;
        rw = false;
        mrvalid = false;
        mregion = 0;
    }

    if (env->v7m.secure) {
        v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
        nsr = sattrs.ns && r;
        nsrw = sattrs.ns && rw;
    } else {
        sattrs.ns = true;
        nsr = false;
        nsrw = false;
    }

    tt_resp = (sattrs.iregion << 24) |
        (sattrs.irvalid << 23) |
        ((!sattrs.ns) << 22) |
        (nsrw << 21) |
        (nsr << 20) |
        (rw << 19) |
        (r << 18) |
        (sattrs.srvalid << 17) |
        (mrvalid << 16) |
        (sattrs.sregion << 8) |
        mregion;

    return tt_resp;
}

B
bellard 已提交
10764
#endif
P
pbrook 已提交
10765

10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
{
    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
     * Note that we do not implement the (architecturally mandated)
     * alignment fault for attempts to use this on Device memory
     * (which matches the usual QEMU behaviour of not implementing either
     * alignment faults or any memory attribute handling).
     */

    ARMCPU *cpu = arm_env_get_cpu(env);
    uint64_t blocklen = 4 << cpu->dcz_blocksize;
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);

#ifndef CONFIG_USER_ONLY
    {
        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
         * the block size so we might have to do more than one TLB lookup.
         * We know that in fact for any v8 CPU the page size is at least 4K
         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
         * 1K as an artefact of legacy v5 subpage support being present in the
         * same QEMU executable.
         */
        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
        void *hostaddr[maxidx];
        int try, i;
10791
        unsigned mmu_idx = cpu_mmu_index(env, false);
10792
        TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
10793 10794 10795 10796 10797 10798

        for (try = 0; try < 2; try++) {

            for (i = 0; i < maxidx; i++) {
                hostaddr[i] = tlb_vaddr_to_host(env,
                                                vaddr + TARGET_PAGE_SIZE * i,
10799
                                                1, mmu_idx);
10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819
                if (!hostaddr[i]) {
                    break;
                }
            }
            if (i == maxidx) {
                /* If it's all in the TLB it's fair game for just writing to;
                 * we know we don't need to update dirty status, etc.
                 */
                for (i = 0; i < maxidx - 1; i++) {
                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
                }
                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
                return;
            }
            /* OK, try a store and see if we can populate the tlb. This
             * might cause an exception if the memory isn't writable,
             * in which case we will longjmp out of here. We must for
             * this purpose use the actual register value passed to us
             * so that we get the fault address right.
             */
R
Richard Henderson 已提交
10820
            helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
10821 10822 10823 10824
            /* Now we can populate the other TLB entries, if any */
            for (i = 0; i < maxidx; i++) {
                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
R
Richard Henderson 已提交
10825
                    helper_ret_stb_mmu(env, va, 0, oi, GETPC());
10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841
                }
            }
        }

        /* Slow path (probably attempt to do this to an I/O device or
         * similar, or clearing of a block of code we have translations
         * cached for). Just do a series of byte writes as the architecture
         * demands. It's not worth trying to use a cpu_physical_memory_map(),
         * memset(), unmap() sequence here because:
         *  + we'd need to account for the blocksize being larger than a page
         *  + the direct-RAM access case is almost always going to be dealt
         *    with in the fastpath code above, so there's no speed benefit
         *  + we would have to deal with the map returning NULL because the
         *    bounce buffer was in use
         */
        for (i = 0; i < blocklen; i++) {
R
Richard Henderson 已提交
10842
            helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
10843 10844 10845 10846 10847 10848 10849
        }
    }
#else
    memset(g2h(vaddr), 0, blocklen);
#endif
}

P
pbrook 已提交
10850 10851 10852 10853 10854 10855
/* Note that signed overflow is undefined in C.  The following routines are
   careful to use unsigned types where modulo arithmetic is required.
   Failure to do so _will_ break on newer gcc.  */

/* Signed saturating arithmetic.  */

A
aurel32 已提交
10856
/* Perform 16-bit signed saturating addition.  */
P
pbrook 已提交
10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a + b;
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
10871
/* Perform 8-bit signed saturating addition.  */
P
pbrook 已提交
10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a + b;
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

A
aurel32 已提交
10886
/* Perform 16-bit signed saturating subtraction.  */
P
pbrook 已提交
10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
    uint16_t res;

    res = a - b;
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
        if (a & 0x8000)
            res = 0x8000;
        else
            res = 0x7fff;
    }
    return res;
}

A
aurel32 已提交
10901
/* Perform 8-bit signed saturating subtraction.  */
P
pbrook 已提交
10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
    uint8_t res;

    res = a - b;
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
        if (a & 0x80)
            res = 0x80;
        else
            res = 0x7f;
    }
    return res;
}

#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
#define PFX q

#include "op_addsub.h"

/* Unsigned saturating arithmetic.  */
P
pbrook 已提交
10925
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
10926 10927 10928 10929 10930 10931 10932 10933
{
    uint16_t res;
    res = a + b;
    if (res < a)
        res = 0xffff;
    return res;
}

P
pbrook 已提交
10934
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
P
pbrook 已提交
10935
{
10936
    if (a > b)
P
pbrook 已提交
10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952
        return a - b;
    else
        return 0;
}

static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
    uint8_t res;
    res = a + b;
    if (res < a)
        res = 0xff;
    return res;
}

static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
10953
    if (a > b)
P
pbrook 已提交
10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969
        return a - b;
    else
        return 0;
}

#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
#define PFX uq

#include "op_addsub.h"

/* Signed modulo arithmetic.  */
#define SARITH16(a, b, n, op) do { \
    int32_t sum; \
10970
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
P
pbrook 已提交
10971 10972 10973 10974 10975 10976 10977
    RESULT(sum, n, 16); \
    if (sum >= 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SARITH8(a, b, n, op) do { \
    int32_t sum; \
10978
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
P
pbrook 已提交
10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998
    RESULT(sum, n, 8); \
    if (sum >= 0) \
        ge |= 1 << n; \
    } while(0)


#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE

#include "op_addsub.h"

/* Unsigned modulo arithmetic.  */
#define ADD16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
10999
    if ((sum >> 16) == 1) \
P
pbrook 已提交
11000 11001 11002 11003 11004 11005 11006
        ge |= 3 << (n * 2); \
    } while(0)

#define ADD8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
11007 11008
    if ((sum >> 8) == 1) \
        ge |= 1 << n; \
P
pbrook 已提交
11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023
    } while(0)

#define SUB16(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
    RESULT(sum, n, 16); \
    if ((sum >> 16) == 0) \
        ge |= 3 << (n * 2); \
    } while(0)

#define SUB8(a, b, n) do { \
    uint32_t sum; \
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
    RESULT(sum, n, 8); \
    if ((sum >> 8) == 0) \
11024
        ge |= 1 << n; \
P
pbrook 已提交
11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093
    } while(0)

#define PFX u
#define ARITH_GE

#include "op_addsub.h"

/* Halved signed arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh

#include "op_addsub.h"

/* Halved unsigned arithmetic.  */
#define ADD16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh

#include "op_addsub.h"

static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
    if (a > b)
        return a - b;
    else
        return b - a;
}

/* Unsigned sum of absolute byte differences.  */
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
{
    uint32_t sum;
    sum = do_usad(a, b);
    sum += do_usad(a >> 8, b >> 8);
    sum += do_usad(a >> 16, b >>16);
    sum += do_usad(a >> 24, b >> 24);
    return sum;
}

/* For ARMv6 SEL instruction.  */
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
{
    uint32_t mask;

    mask = 0;
    if (flags & 1)
        mask |= 0xff;
    if (flags & 2)
        mask |= 0xff00;
    if (flags & 4)
        mask |= 0xff0000;
    if (flags & 8)
        mask |= 0xff000000;
    return (a & mask) | (b & ~mask);
}

11094 11095
/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
P
pbrook 已提交
11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
11109
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
P
pbrook 已提交
11110 11111 11112
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
11113 11114
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
P
pbrook 已提交
11115 11116 11117
    return target_bits;
}

11118
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
P
pbrook 已提交
11119 11120 11121 11122 11123 11124 11125 11126
{
    int i;
    uint32_t fpscr;

    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);
    i = get_float_exception_flags(&env->vfp.fp_status);
11127
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
11128
    i |= get_float_exception_flags(&env->vfp.fp_status_f16);
P
pbrook 已提交
11129 11130 11131 11132
    fpscr |= vfp_exceptbits_from_host(i);
    return fpscr;
}

11133
uint32_t vfp_get_fpscr(CPUARMState *env)
11134 11135 11136 11137
{
    return HELPER(vfp_get_fpscr)(env);
}

P
pbrook 已提交
11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152
/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
11153 11154
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
P
pbrook 已提交
11155 11156 11157
    return host_bits;
}

11158
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
P
pbrook 已提交
11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171
{
    int i;
    uint32_t changed;

    changed = env->vfp.xregs[ARM_VFP_FPSCR];
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
11172
        case FPROUNDING_TIEEVEN:
P
pbrook 已提交
11173 11174
            i = float_round_nearest_even;
            break;
11175
        case FPROUNDING_POSINF:
P
pbrook 已提交
11176 11177
            i = float_round_up;
            break;
11178
        case FPROUNDING_NEGINF:
P
pbrook 已提交
11179 11180
            i = float_round_down;
            break;
11181
        case FPROUNDING_ZERO:
P
pbrook 已提交
11182 11183 11184 11185
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
11186
        set_float_rounding_mode(i, &env->vfp.fp_status_f16);
P
pbrook 已提交
11187
    }
11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201
    if (changed & FPCR_FZ16) {
        bool ftz_enabled = val & FPCR_FZ16;
        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
    }
    if (changed & FPCR_FZ) {
        bool ftz_enabled = val & FPCR_FZ;
        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
    }
    if (changed & FPCR_DN) {
        bool dnan_enabled = val & FPCR_DN;
        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
11202
    }
P
pbrook 已提交
11203

11204 11205 11206 11207
    /* The exception flags are ORed together when we read fpscr so we
     * only need to preserve the current state in one of our
     * float_status values.
     */
11208
    i = vfp_exceptbits_to_host(val);
P
pbrook 已提交
11209
    set_float_exception_flags(i, &env->vfp.fp_status);
11210
    set_float_exception_flags(0, &env->vfp.fp_status_f16);
11211
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
P
pbrook 已提交
11212 11213
}

11214
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
11215 11216 11217 11218
{
    HELPER(vfp_set_fpscr)(env, val);
}

P
pbrook 已提交
11219 11220 11221
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
11222
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
P
pbrook 已提交
11223
{ \
11224 11225
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
P
pbrook 已提交
11226
} \
11227
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
P
pbrook 已提交
11228
{ \
11229 11230
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
P
pbrook 已提交
11231 11232 11233 11234 11235
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
11236 11237 11238 11239
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
P
pbrook 已提交
11240 11241 11242 11243 11244 11245 11246 11247 11248
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
11249
    return float64_chs(a);
P
pbrook 已提交
11250 11251 11252 11253 11254 11255 11256 11257 11258
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
11259
    return float64_abs(a);
P
pbrook 已提交
11260 11261
}

11262
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
P
pbrook 已提交
11263 11264 11265 11266
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

11267
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
P
pbrook 已提交
11268 11269 11270 11271 11272 11273
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
11274
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
P
pbrook 已提交
11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285
{ \
    uint32_t flags; \
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
} \
11286
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
P
pbrook 已提交
11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301
{ \
    uint32_t flags; \
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
    case 0: flags = 0x6; break; \
    case -1: flags = 0x8; break; \
    case 1: flags = 0x2; break; \
    default: case 2: flags = 0x3; break; \
    } \
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

11302
/* Integer to float and float to integer conversions */
P
pbrook 已提交
11303

11304 11305 11306 11307
#define CONV_ITOF(name, fsz, sign) \
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
11308
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
P
pbrook 已提交
11309 11310
}

11311 11312 11313 11314 11315 11316 11317 11318 11319
#define CONV_FTOI(name, fsz, sign, round) \
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    if (float##fsz##_is_any_nan(x)) { \
        float_raise(float_flag_invalid, fpst); \
        return 0; \
    } \
    return float##fsz##_to_##sign##int32##round(x, fpst); \
P
pbrook 已提交
11320 11321
}

11322 11323 11324 11325
#define FLOAT_CONVS(name, p, fsz, sign) \
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
P
pbrook 已提交
11326

11327
FLOAT_CONVS(si, h, 16, )
11328 11329
FLOAT_CONVS(si, s, 32, )
FLOAT_CONVS(si, d, 64, )
11330
FLOAT_CONVS(ui, h, 16, u)
11331 11332
FLOAT_CONVS(ui, s, 32, u)
FLOAT_CONVS(ui, d, 64, u)
P
pbrook 已提交
11333

11334 11335 11336
#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS
P
pbrook 已提交
11337 11338

/* floating point conversion */
11339
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
P
pbrook 已提交
11340
{
11341 11342 11343 11344
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
11345
    return float64_maybe_silence_nan(r, &env->vfp.fp_status);
P
pbrook 已提交
11346 11347
}

11348
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
P
pbrook 已提交
11349
{
11350 11351 11352 11353
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
    /* ARM requires that S<->D conversion of any kind of NaN generates
     * a quiet NaN by forcing the most significant frac bit to 1.
     */
11354
    return float32_maybe_silence_nan(r, &env->vfp.fp_status);
P
pbrook 已提交
11355 11356 11357
}

/* VFP3 fixed point conversion.  */
11358
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
11359 11360
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
P
pbrook 已提交
11361
{ \
11362
    float_status *fpst = fpstp; \
11363
    float##fsz tmp; \
11364
    tmp = itype##_to_##float##fsz(x, fpst); \
11365
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
11366 11367
}

11368 11369 11370 11371 11372
/* Notice that we want only input-denormal exception flags from the
 * scalbn operation: the other possible flags (overflow+inexact if
 * we overflow to infinity, output-denormal) aren't correct for the
 * complete scale-and-convert operation.
 */
11373 11374 11375 11376
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
                                             uint32_t shift, \
                                             void *fpstp) \
P
pbrook 已提交
11377
{ \
11378
    float_status *fpst = fpstp; \
11379
    int old_exc_flags = get_float_exception_flags(fpst); \
11380 11381
    float##fsz tmp; \
    if (float##fsz##_is_any_nan(x)) { \
11382
        float_raise(float_flag_invalid, fpst); \
11383
        return 0; \
11384
    } \
11385
    tmp = float##fsz##_scalbn(x, shift, fpst); \
11386 11387 11388
    old_exc_flags |= get_float_exception_flags(fpst) \
        & float_flag_input_denormal; \
    set_float_exception_flags(old_exc_flags, fpst); \
11389
    return float##fsz##_to_##itype##round(tmp, fpst); \
11390 11391
}

11392 11393
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
11394 11395 11396 11397 11398 11399
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
11400

11401 11402
VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
11403
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
11404 11405
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
11406
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
11407 11408
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
11409
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
11410 11411
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
11412
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
11413 11414
VFP_CONV_FIX_A64(sl, h, 16, 32, int32)
VFP_CONV_FIX_A64(ul, h, 16, 32, uint32)
P
pbrook 已提交
11415
#undef VFP_CONV_FIX
11416 11417
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
P
pbrook 已提交
11418

11419 11420 11421
/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
11422
uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
11423
{
11424
    float_status *fp_status = fpstp;
11425 11426 11427 11428 11429 11430 11431

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448
/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

P
Paul Brook 已提交
11449
/* Half precision conversions.  */
11450
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
11451 11452
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11453 11454
    float32 r = float16_to_float32(make_float16(a), ieee, s);
    if (ieee) {
11455
        return float32_maybe_silence_nan(r, s);
11456 11457
    }
    return r;
P
Paul Brook 已提交
11458 11459
}

11460
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
P
Paul Brook 已提交
11461 11462
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
11463 11464
    float16 r = float32_to_float16(a, ieee, s);
    if (ieee) {
11465
        r = float16_maybe_silence_nan(r, s);
11466 11467
    }
    return float16_val(r);
P
Paul Brook 已提交
11468 11469
}

11470
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
11471 11472 11473 11474
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
}

11475
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
11476 11477 11478 11479
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
}

11480
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
11481 11482 11483 11484
{
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
}

11485
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
11486 11487 11488 11489
{
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
}

11490 11491 11492 11493 11494
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
    if (ieee) {
11495
        return float64_maybe_silence_nan(r, &env->vfp.fp_status);
11496 11497 11498 11499 11500 11501 11502 11503 11504
    }
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
{
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
    if (ieee) {
11505
        r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
11506 11507 11508 11509
    }
    return float16_val(r);
}

11510
#define float32_two make_float32(0x40000000)
11511 11512
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)
11513

11514
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
11515
{
11516 11517 11518
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11519 11520 11521
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
11522 11523 11524
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
P
pbrook 已提交
11525 11526
}

11527
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
P
pbrook 已提交
11528
{
11529
    float_status *s = &env->vfp.standard_fp_status;
11530 11531 11532
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
11533 11534 11535
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
11536
        return float32_one_point_five;
11537
    }
11538 11539
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
P
pbrook 已提交
11540 11541
}

P
pbrook 已提交
11542 11543
/* NEON helpers.  */

11544 11545 11546 11547
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
11548
#define float16_maxnorm make_float16(0x7bff)
11549 11550
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
11551

11552 11553 11554
/* Reciprocal functions
 *
 * The algorithm that must be used to calculate the estimate
11555
 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
11556
 */
11557

11558 11559 11560 11561 11562 11563
/* See RecipEstimate()
 *
 * input is a 9 bit fixed point number
 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
 * result range 256 .. 511 for a number from 1.0 to 511/256.
 */
11564

11565 11566 11567 11568 11569 11570 11571 11572 11573
static int recip_estimate(int input)
{
    int a, b, r;
    assert(256 <= input && input < 512);
    a = (input * 2) + 1;
    b = (1 << 19) / a;
    r = (b + 1) >> 1;
    assert(256 <= r && r < 512);
    return r;
11574 11575
}

11576 11577 11578 11579 11580 11581 11582 11583 11584 11585
/*
 * Common wrapper to call recip_estimate
 *
 * The parameters are exponent and 64 bit fraction (without implicit
 * bit) where the binary point is nominally at bit 52. Returns a
 * float64 which can then be rounded to the appropriate size by the
 * callee.
 */

static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
P
pbrook 已提交
11586
{
11587 11588 11589
    uint32_t scaled, estimate;
    uint64_t result_frac;
    int result_exp;
11590

11591 11592
    /* Handle sub-normals */
    if (*exp == 0) {
11593
        if (extract64(frac, 51, 1) == 0) {
11594 11595
            *exp = -1;
            frac <<= 2;
11596
        } else {
11597
            frac <<= 1;
11598 11599
        }
    }
11600

11601 11602 11603
    /* scaled = UInt('1':fraction<51:44>) */
    scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
    estimate = recip_estimate(scaled);
11604

11605 11606 11607 11608 11609 11610 11611
    result_exp = exp_off - *exp;
    result_frac = deposit64(0, 44, 8, estimate);
    if (result_exp == 0) {
        result_frac = deposit64(result_frac >> 1, 51, 1, 1);
    } else if (result_exp == -1) {
        result_frac = deposit64(result_frac >> 2, 50, 2, 1);
        result_exp = 0;
11612 11613
    }

11614 11615 11616
    *exp = result_exp;

    return result_frac;
11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634
}

static bool round_to_inf(float_status *fpst, bool sign_bit)
{
    switch (fpst->float_rounding_mode) {
    case float_round_nearest_even: /* Round to Nearest */
        return true;
    case float_round_up: /* Round to +Inf */
        return !sign_bit;
    case float_round_down: /* Round to -Inf */
        return sign_bit;
    case float_round_to_zero: /* Round to Zero */
        return false;
    }

    g_assert_not_reached();
}

11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682
float16 HELPER(recpe_f16)(float16 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float16 f16 = float16_squash_input_denormal(input, fpst);
    uint32_t f16_val = float16_val(f16);
    uint32_t f16_sign = float16_is_neg(f16);
    int f16_exp = extract32(f16_val, 10, 5);
    uint32_t f16_frac = extract32(f16_val, 0, 10);
    uint64_t f64_frac;

    if (float16_is_any_nan(f16)) {
        float16 nan = f16;
        if (float16_is_signaling_nan(f16, fpst)) {
            float_raise(float_flag_invalid, fpst);
            nan = float16_maybe_silence_nan(f16, fpst);
        }
        if (fpst->default_nan_mode) {
            nan =  float16_default_nan(fpst);
        }
        return nan;
    } else if (float16_is_infinity(f16)) {
        return float16_set_sign(float16_zero, float16_is_neg(f16));
    } else if (float16_is_zero(f16)) {
        float_raise(float_flag_divbyzero, fpst);
        return float16_set_sign(float16_infinity, float16_is_neg(f16));
    } else if (float16_abs(f16) < (1 << 8)) {
        /* Abs(value) < 2.0^-16 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f16_sign)) {
            return float16_set_sign(float16_infinity, f16_sign);
        } else {
            return float16_set_sign(float16_maxnorm, f16_sign);
        }
    } else if (f16_exp >= 29 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float16_set_sign(float16_zero, float16_is_neg(f16));
    }

    f64_frac = call_recip_estimate(&f16_exp, 29,
                                   ((uint64_t) f16_frac) << (52 - 10));

    /* result = sign : result_exp<4:0> : fraction<51:42> */
    f16_val = deposit32(0, 15, 1, f16_sign);
    f16_val = deposit32(f16_val, 10, 5, f16_exp);
    f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
    return make_float16(f16_val);
}

11683 11684 11685 11686 11687
float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float32 f32 = float32_squash_input_denormal(input, fpst);
    uint32_t f32_val = float32_val(f32);
11688 11689
    bool f32_sign = float32_is_neg(f32);
    int f32_exp = extract32(f32_val, 23, 8);
11690
    uint32_t f32_frac = extract32(f32_val, 0, 23);
11691
    uint64_t f64_frac;
11692 11693 11694

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
11695
        if (float32_is_signaling_nan(f32, fpst)) {
11696
            float_raise(float_flag_invalid, fpst);
11697
            nan = float32_maybe_silence_nan(f32, fpst);
11698
        }
11699
        if (fpst->default_nan_mode) {
11700
            nan =  float32_default_nan(fpst);
11701
        }
11702 11703 11704 11705 11706 11707
        return nan;
    } else if (float32_is_infinity(f32)) {
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, fpst);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
11708
    } else if (float32_abs(f32) < (1ULL << 21)) {
11709 11710
        /* Abs(value) < 2.0^-128 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
11711 11712
        if (round_to_inf(fpst, f32_sign)) {
            return float32_set_sign(float32_infinity, f32_sign);
11713
        } else {
11714
            return float32_set_sign(float32_maxnorm, f32_sign);
11715 11716 11717 11718
        }
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float32_set_sign(float32_zero, float32_is_neg(f32));
11719 11720
    }

11721 11722
    f64_frac = call_recip_estimate(&f32_exp, 253,
                                   ((uint64_t) f32_frac) << (52 - 23));
11723

11724 11725 11726 11727 11728
    /* result = sign : result_exp<7:0> : fraction<51:29> */
    f32_val = deposit32(0, 31, 1, f32_sign);
    f32_val = deposit32(f32_val, 23, 8, f32_exp);
    f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
    return make_float32(f32_val);
11729 11730 11731 11732 11733 11734 11735
}

float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64 = float64_squash_input_denormal(input, fpst);
    uint64_t f64_val = float64_val(f64);
11736 11737 11738
    bool f64_sign = float64_is_neg(f64);
    int f64_exp = extract64(f64_val, 52, 11);
    uint64_t f64_frac = extract64(f64_val, 0, 52);
11739 11740 11741 11742

    /* Deal with any special cases */
    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
11743
        if (float64_is_signaling_nan(f64, fpst)) {
11744
            float_raise(float_flag_invalid, fpst);
11745
            nan = float64_maybe_silence_nan(f64, fpst);
11746 11747
        }
        if (fpst->default_nan_mode) {
11748
            nan =  float64_default_nan(fpst);
11749 11750 11751 11752 11753 11754 11755 11756 11757 11758
        }
        return nan;
    } else if (float64_is_infinity(f64)) {
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, fpst);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
        /* Abs(value) < 2.0^-1024 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
11759 11760
        if (round_to_inf(fpst, f64_sign)) {
            return float64_set_sign(float64_infinity, f64_sign);
11761
        } else {
11762
            return float64_set_sign(float64_maxnorm, f64_sign);
11763
        }
11764
    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
11765 11766 11767
        float_raise(float_flag_underflow, fpst);
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    }
11768

11769
    f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);
11770

11771 11772 11773 11774 11775
    /* result = sign : result_exp<10:0> : fraction<51:0>; */
    f64_val = deposit64(0, 63, 1, f64_sign);
    f64_val = deposit64(f64_val, 52, 11, f64_exp);
    f64_val = deposit64(f64_val, 0, 52, f64_frac);
    return make_float64(f64_val);
P
pbrook 已提交
11776 11777
}

11778 11779 11780
/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */
11781 11782 11783 11784 11785 11786 11787 11788

static int do_recip_sqrt_estimate(int a)
{
    int b, estimate;

    assert(128 <= a && a < 512);
    if (a < 256) {
        a = a * 2 + 1;
11789
    } else {
11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802
        a = (a >> 1) << 1;
        a = (a + 1) * 2;
    }
    b = 512;
    while (a * (b + 1) * (b + 1) < (1 << 28)) {
        b += 1;
    }
    estimate = (b + 1) / 2;
    assert(256 <= estimate && estimate < 512);

    return estimate;
}

11803

11804 11805 11806 11807
static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
{
    int estimate;
    uint32_t scaled;
11808

11809 11810 11811 11812 11813 11814
    if (*exp == 0) {
        while (extract64(frac, 51, 1) == 0) {
            frac = frac << 1;
            *exp -= 1;
        }
        frac = extract64(frac, 0, 51) << 1;
11815 11816
    }

11817 11818 11819 11820 11821 11822 11823 11824
    if (*exp & 1) {
        /* scaled = UInt('01':fraction<51:45>) */
        scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
    } else {
        /* scaled = UInt('1':fraction<51:44>) */
        scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
    }
    estimate = do_recip_sqrt_estimate(scaled);
11825

11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871
    *exp = (exp_off - *exp) / 2;
    return extract64(estimate, 0, 8) << 44;
}

float16 HELPER(rsqrte_f16)(float16 input, void *fpstp)
{
    float_status *s = fpstp;
    float16 f16 = float16_squash_input_denormal(input, s);
    uint16_t val = float16_val(f16);
    bool f16_sign = float16_is_neg(f16);
    int f16_exp = extract32(val, 10, 5);
    uint16_t f16_frac = extract32(val, 0, 10);
    uint64_t f64_frac;

    if (float16_is_any_nan(f16)) {
        float16 nan = f16;
        if (float16_is_signaling_nan(f16, s)) {
            float_raise(float_flag_invalid, s);
            nan = float16_maybe_silence_nan(f16, s);
        }
        if (s->default_nan_mode) {
            nan =  float16_default_nan(s);
        }
        return nan;
    } else if (float16_is_zero(f16)) {
        float_raise(float_flag_divbyzero, s);
        return float16_set_sign(float16_infinity, f16_sign);
    } else if (f16_sign) {
        float_raise(float_flag_invalid, s);
        return float16_default_nan(s);
    } else if (float16_is_infinity(f16)) {
        return float16_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    f64_frac = ((uint64_t) f16_frac) << (52 - 10);

    f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);

    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
    val = deposit32(0, 15, 1, f16_sign);
    val = deposit32(val, 10, 5, f16_exp);
    val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
    return make_float16(val);
11872 11873
}

11874
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
P
pbrook 已提交
11875
{
11876 11877 11878
    float_status *s = fpstp;
    float32 f32 = float32_squash_input_denormal(input, s);
    uint32_t val = float32_val(f32);
11879 11880
    uint32_t f32_sign = float32_is_neg(f32);
    int f32_exp = extract32(val, 23, 8);
11881 11882
    uint32_t f32_frac = extract32(val, 0, 23);
    uint64_t f64_frac;
11883

11884 11885
    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
11886
        if (float32_is_signaling_nan(f32, s)) {
11887
            float_raise(float_flag_invalid, s);
11888
            nan = float32_maybe_silence_nan(f32, s);
11889
        }
11890
        if (s->default_nan_mode) {
11891
            nan =  float32_default_nan(s);
11892
        }
11893 11894
        return nan;
    } else if (float32_is_zero(f32)) {
11895
        float_raise(float_flag_divbyzero, s);
11896 11897
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_is_neg(f32)) {
11898
        float_raise(float_flag_invalid, s);
11899
        return float32_default_nan(s);
11900
    } else if (float32_is_infinity(f32)) {
11901 11902 11903
        return float32_zero;
    }

11904
    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
11905
     * preserving the parity of the exponent.  */
11906 11907

    f64_frac = ((uint64_t) f32_frac) << 29;
11908

11909
    f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);
11910

11911 11912 11913 11914
    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
    val = deposit32(0, 31, 1, f32_sign);
    val = deposit32(val, 23, 8, f32_exp);
    val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
11915
    return make_float32(val);
P
pbrook 已提交
11916 11917
}

11918 11919 11920 11921 11922
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64 = float64_squash_input_denormal(input, s);
    uint64_t val = float64_val(f64);
11923 11924
    bool f64_sign = float64_is_neg(f64);
    int f64_exp = extract64(val, 52, 11);
11925 11926 11927 11928
    uint64_t f64_frac = extract64(val, 0, 52);

    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
11929
        if (float64_is_signaling_nan(f64, s)) {
11930
            float_raise(float_flag_invalid, s);
11931
            nan = float64_maybe_silence_nan(f64, s);
11932 11933
        }
        if (s->default_nan_mode) {
11934
            nan =  float64_default_nan(s);
11935 11936 11937 11938 11939 11940 11941
        }
        return nan;
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, s);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if (float64_is_neg(f64)) {
        float_raise(float_flag_invalid, s);
11942
        return float64_default_nan(s);
11943 11944 11945 11946
    } else if (float64_is_infinity(f64)) {
        return float64_zero;
    }

11947
    f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);
11948

11949 11950 11951 11952 11953
    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
    val = deposit64(0, 61, 1, f64_sign);
    val = deposit64(val, 52, 11, f64_exp);
    val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
    return make_float64(val);
11954 11955
}

11956
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
11957
{
11958 11959
    /* float_status *s = fpstp; */
    int input, estimate;
11960 11961 11962 11963 11964

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

11965 11966
    input = extract32(a, 23, 9);
    estimate = recip_estimate(input);
11967

11968
    return deposit32(0, (32 - 9), 9, estimate);
P
pbrook 已提交
11969 11970
}

11971
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
P
pbrook 已提交
11972
{
11973
    int estimate;
11974 11975 11976 11977 11978

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

11979
    estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
11980

11981
    return deposit32(0, 23, 9, estimate);
P
pbrook 已提交
11982
}
11983

11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995
/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}
11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}
12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}
12069

12070 12071 12072 12073
/* CRC helpers.
 * The upper bytes of val (above the number specified by 'bytes') must have
 * been zeroed out by the caller.
 */
12074 12075 12076 12077
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

12078
    stl_le_p(buf, val);
12079 12080 12081 12082 12083 12084 12085 12086 12087

    /* zlib crc32 converts the accumulator and output to one's complement.  */
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
}

uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
{
    uint8_t buf[4];

12088
    stl_le_p(buf, val);
12089 12090 12091 12092

    /* Linux crc32c converts the output to one's complement.  */
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
}
12093 12094 12095 12096 12097 12098

/* Return the exception level to which FP-disabled exceptions should
 * be taken, or 0 if FP is enabled.
 */
static inline int fp_exception_el(CPUARMState *env)
{
12099
#ifndef CONFIG_USER_ONLY
12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155
    int fpen;
    int cur_el = arm_current_el(env);

    /* CPACR and the CPTR registers don't exist before v6, so FP is
     * always accessible
     */
    if (!arm_feature(env, ARM_FEATURE_V6)) {
        return 0;
    }

    /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
     * 0, 2 : trap EL0 and EL1/PL1 accesses
     * 1    : trap only EL0 accesses
     * 3    : trap no accesses
     */
    fpen = extract32(env->cp15.cpacr_el1, 20, 2);
    switch (fpen) {
    case 0:
    case 2:
        if (cur_el == 0 || cur_el == 1) {
            /* Trap to PL1, which might be EL1 or EL3 */
            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
                return 3;
            }
            return 1;
        }
        if (cur_el == 3 && !is_a64(env)) {
            /* Secure PL1 running at EL3 */
            return 3;
        }
        break;
    case 1:
        if (cur_el == 0) {
            return 1;
        }
        break;
    case 3:
        break;
    }

    /* For the CPTR registers we don't need to guard with an ARM_FEATURE
     * check because zero bits in the registers mean "don't trap".
     */

    /* CPTR_EL2 : present in v7VE or v8 */
    if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
        && !arm_is_secure_below_el3(env)) {
        /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
        return 2;
    }

    /* CPTR_EL3 : present in v8 */
    if (extract32(env->cp15.cptr_el[3], 10, 1)) {
        /* Trap all FP ops to EL3 */
        return 3;
    }
12156
#endif
12157 12158 12159 12160
    return 0;
}

void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
12161
                          target_ulong *cs_base, uint32_t *pflags)
12162 12163
{
    ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
12164
    int fp_el = fp_exception_el(env);
12165 12166
    uint32_t flags;

12167
    if (is_a64(env)) {
12168 12169 12170
        int sve_el = sve_exception_el(env);
        uint32_t zcr_len;

12171
        *pc = env->pc;
12172
        flags = ARM_TBFLAG_AARCH64_STATE_MASK;
12173
        /* Get control bits for tagged addresses */
12174 12175
        flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
        flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194
        flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;

        /* If SVE is disabled, but FP is enabled,
           then the effective len is 0.  */
        if (sve_el != 0 && fp_el == 0) {
            zcr_len = 0;
        } else {
            int current_el = arm_current_el(env);

            zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el];
            zcr_len &= 0xf;
            if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
                zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
            }
            if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
                zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
            }
        }
        flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
12195 12196
    } else {
        *pc = env->regs[15];
12197
        flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
12198 12199 12200 12201 12202
            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
            | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
        if (!(access_secure_reg(env))) {
12203
            flags |= ARM_TBFLAG_NS_MASK;
12204 12205 12206
        }
        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
            || arm_el_is_aa64(env, 1)) {
12207
            flags |= ARM_TBFLAG_VFPEN_MASK;
12208
        }
12209 12210
        flags |= (extract32(env->cp15.c15_cpar, 0, 2)
                  << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
12211 12212
    }

12213
    flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
12214 12215 12216 12217 12218 12219 12220 12221 12222

    /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
     * states defined in the ARM ARM for software singlestep:
     *  SS_ACTIVE   PSTATE.SS   State
     *     0            x       Inactive (the TB flag for SS is always 0)
     *     1            0       Active-pending
     *     1            1       Active-not-pending
     */
    if (arm_singlestep_active(env)) {
12223
        flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
12224 12225
        if (is_a64(env)) {
            if (env->pstate & PSTATE_SS) {
12226
                flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12227 12228 12229
            }
        } else {
            if (env->uncached_cpsr & PSTATE_SS) {
12230
                flags |= ARM_TBFLAG_PSTATE_SS_MASK;
12231 12232 12233 12234
            }
        }
    }
    if (arm_cpu_data_is_big_endian(env)) {
12235
        flags |= ARM_TBFLAG_BE_DATA_MASK;
12236
    }
12237
    flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
12238 12239

    if (arm_v7m_is_handler_mode(env)) {
12240
        flags |= ARM_TBFLAG_HANDLER_MASK;
12241 12242
    }

12243
    *pflags = flags;
12244 12245
    *cs_base = 0;
}