target_core_transport.c 94.9 KB
Newer Older
1 2 3 4 5
/*******************************************************************************
 * Filename:  target_core_transport.c
 *
 * This file contains the Generic Target Engine Core.
 *
6
 * (c) Copyright 2002-2013 Datera, Inc.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * Nicholas A. Bellinger <nab@kernel.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 ******************************************************************************/

#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
35
#include <linux/module.h>
36
#include <linux/ratelimit.h>
37
#include <linux/vmalloc.h>
38 39 40
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
41
#include <scsi/scsi_proto.h>
42
#include <scsi/scsi_common.h>
43 44

#include <target/target_core_base.h>
45 46
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
47

C
Christoph Hellwig 已提交
48
#include "target_core_internal.h"
49 50 51 52
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/target.h>

56
static struct workqueue_struct *target_completion_wq;
57 58 59 60 61 62
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 64
struct kmem_cache *t10_alua_lba_map_cache;
struct kmem_cache *t10_alua_lba_map_mem_cache;
65 66

static void transport_complete_task_attr(struct se_cmd *cmd);
67
static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68
static void transport_handle_queue_full(struct se_cmd *cmd,
69
		struct se_device *dev, int err, bool write_pending);
70
static void target_complete_ok_work(struct work_struct *work);
71

72
int init_se_kmem_caches(void)
73 74 75 76
{
	se_sess_cache = kmem_cache_create("se_sess_cache",
			sizeof(struct se_session), __alignof__(struct se_session),
			0, NULL);
77 78
	if (!se_sess_cache) {
		pr_err("kmem_cache_create() for struct se_session"
79
				" failed\n");
80
		goto out;
81 82 83 84
	}
	se_ua_cache = kmem_cache_create("se_ua_cache",
			sizeof(struct se_ua), __alignof__(struct se_ua),
			0, NULL);
85 86
	if (!se_ua_cache) {
		pr_err("kmem_cache_create() for struct se_ua failed\n");
87
		goto out_free_sess_cache;
88 89 90 91
	}
	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
			sizeof(struct t10_pr_registration),
			__alignof__(struct t10_pr_registration), 0, NULL);
92 93
	if (!t10_pr_reg_cache) {
		pr_err("kmem_cache_create() for struct t10_pr_registration"
94
				" failed\n");
95
		goto out_free_ua_cache;
96 97 98 99
	}
	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
			0, NULL);
100 101
	if (!t10_alua_lu_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102
				" failed\n");
103
		goto out_free_pr_reg_cache;
104 105 106 107
	}
	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
			sizeof(struct t10_alua_lu_gp_member),
			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 109
	if (!t10_alua_lu_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110
				"cache failed\n");
111
		goto out_free_lu_gp_cache;
112 113 114 115
	}
	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
			sizeof(struct t10_alua_tg_pt_gp),
			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 117
	if (!t10_alua_tg_pt_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118
				"cache failed\n");
119
		goto out_free_lu_gp_mem_cache;
120
	}
121 122 123 124 125 126 127
	t10_alua_lba_map_cache = kmem_cache_create(
			"t10_alua_lba_map_cache",
			sizeof(struct t10_alua_lba_map),
			__alignof__(struct t10_alua_lba_map), 0, NULL);
	if (!t10_alua_lba_map_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_"
				"cache failed\n");
128
		goto out_free_tg_pt_gp_cache;
129 130 131 132 133 134 135 136 137 138
	}
	t10_alua_lba_map_mem_cache = kmem_cache_create(
			"t10_alua_lba_map_mem_cache",
			sizeof(struct t10_alua_lba_map_member),
			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
	if (!t10_alua_lba_map_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
				"cache failed\n");
		goto out_free_lba_map_cache;
	}
139

140 141 142
	target_completion_wq = alloc_workqueue("target_completion",
					       WQ_MEM_RECLAIM, 0);
	if (!target_completion_wq)
143
		goto out_free_lba_map_mem_cache;
144

145
	return 0;
146

147 148 149 150
out_free_lba_map_mem_cache:
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
out_free_lba_map_cache:
	kmem_cache_destroy(t10_alua_lba_map_cache);
151 152 153 154 155 156 157 158 159 160 161 162
out_free_tg_pt_gp_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
out_free_lu_gp_mem_cache:
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
out_free_lu_gp_cache:
	kmem_cache_destroy(t10_alua_lu_gp_cache);
out_free_pr_reg_cache:
	kmem_cache_destroy(t10_pr_reg_cache);
out_free_ua_cache:
	kmem_cache_destroy(se_ua_cache);
out_free_sess_cache:
	kmem_cache_destroy(se_sess_cache);
163
out:
164
	return -ENOMEM;
165 166
}

167
void release_se_kmem_caches(void)
168
{
169
	destroy_workqueue(target_completion_wq);
170 171 172 173 174 175
	kmem_cache_destroy(se_sess_cache);
	kmem_cache_destroy(se_ua_cache);
	kmem_cache_destroy(t10_pr_reg_cache);
	kmem_cache_destroy(t10_alua_lu_gp_cache);
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 177
	kmem_cache_destroy(t10_alua_lba_map_cache);
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 179
}

180 181 182
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183 184 185 186 187 188 189 190

/*
 * Allocate a new row index for the entry type specified
 */
u32 scsi_get_new_index(scsi_index_t type)
{
	u32 new_index;

191
	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192

193 194 195
	spin_lock(&scsi_mib_index_lock);
	new_index = ++scsi_mib_index[type];
	spin_unlock(&scsi_mib_index_lock);
196 197 198 199

	return new_index;
}

200
void transport_subsystem_check_init(void)
201 202
{
	int ret;
203
	static int sub_api_initialized;
204

205 206 207
	if (sub_api_initialized)
		return;

208 209
	ret = request_module("target_core_iblock");
	if (ret != 0)
210
		pr_err("Unable to load target_core_iblock\n");
211 212 213

	ret = request_module("target_core_file");
	if (ret != 0)
214
		pr_err("Unable to load target_core_file\n");
215 216 217

	ret = request_module("target_core_pscsi");
	if (ret != 0)
218
		pr_err("Unable to load target_core_pscsi\n");
219

220 221 222 223
	ret = request_module("target_core_user");
	if (ret != 0)
		pr_err("Unable to load target_core_user\n");

224
	sub_api_initialized = 1;
225 226
}

227 228 229 230 231 232 233 234 235 236 237 238
/**
 * transport_init_session - initialize a session object
 * @se_sess: Session object pointer.
 *
 * The caller must have zero-initialized @se_sess before calling this function.
 */
void transport_init_session(struct se_session *se_sess)
{
	INIT_LIST_HEAD(&se_sess->sess_list);
	INIT_LIST_HEAD(&se_sess->sess_acl_list);
	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
	spin_lock_init(&se_sess->sess_cmd_lock);
239
	init_waitqueue_head(&se_sess->cmd_list_wq);
240 241 242
}
EXPORT_SYMBOL(transport_init_session);

243 244 245 246 247
/**
 * transport_alloc_session - allocate a session object and initialize it
 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 */
struct se_session *transport_alloc_session(enum target_prot_op sup_prot_ops)
248 249 250 251
{
	struct se_session *se_sess;

	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
252 253
	if (!se_sess) {
		pr_err("Unable to allocate struct se_session from"
254 255 256
				" se_sess_cache\n");
		return ERR_PTR(-ENOMEM);
	}
257
	transport_init_session(se_sess);
258
	se_sess->sup_prot_ops = sup_prot_ops;
259 260 261

	return se_sess;
}
262 263 264 265 266 267 268 269 270
EXPORT_SYMBOL(transport_alloc_session);

/**
 * transport_alloc_session_tags - allocate target driver private data
 * @se_sess:  Session pointer.
 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 * @tag_size: Size in bytes of the private data a target driver associates with
 *	      each command.
 */
271 272 273 274 275
int transport_alloc_session_tags(struct se_session *se_sess,
			         unsigned int tag_num, unsigned int tag_size)
{
	int rc;

K
Kees Cook 已提交
276
	se_sess->sess_cmd_map = kcalloc(tag_size, tag_num,
277
					GFP_KERNEL | __GFP_NOWARN | __GFP_RETRY_MAYFAIL);
278
	if (!se_sess->sess_cmd_map) {
279
		se_sess->sess_cmd_map = vzalloc(array_size(tag_size, tag_num));
280 281 282 283
		if (!se_sess->sess_cmd_map) {
			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
			return -ENOMEM;
		}
284 285
	}

286 287
	rc = sbitmap_queue_init_node(&se_sess->sess_tag_pool, tag_num, -1,
			false, GFP_KERNEL, NUMA_NO_NODE);
288 289 290
	if (rc < 0) {
		pr_err("Unable to init se_sess->sess_tag_pool,"
			" tag_num: %u\n", tag_num);
291
		kvfree(se_sess->sess_cmd_map);
292 293 294 295 296 297 298 299
		se_sess->sess_cmd_map = NULL;
		return -ENOMEM;
	}

	return 0;
}
EXPORT_SYMBOL(transport_alloc_session_tags);

300 301 302 303 304 305 306
/**
 * transport_init_session_tags - allocate a session and target driver private data
 * @tag_num:  Maximum number of in-flight commands between initiator and target.
 * @tag_size: Size in bytes of the private data a target driver associates with
 *	      each command.
 * @sup_prot_ops: bitmask that defines which T10-PI modes are supported.
 */
307 308 309
static struct se_session *
transport_init_session_tags(unsigned int tag_num, unsigned int tag_size,
			    enum target_prot_op sup_prot_ops)
310 311 312 313
{
	struct se_session *se_sess;
	int rc;

314 315 316 317 318 319 320 321 322 323 324
	if (tag_num != 0 && !tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_num:"
		       " %u, but zero tag_size\n", tag_num);
		return ERR_PTR(-EINVAL);
	}
	if (!tag_num && tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_size:"
		       " %u, but zero tag_num\n", tag_size);
		return ERR_PTR(-EINVAL);
	}

325
	se_sess = transport_alloc_session(sup_prot_ops);
326 327 328 329 330 331 332 333 334 335 336 337
	if (IS_ERR(se_sess))
		return se_sess;

	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
	if (rc < 0) {
		transport_free_session(se_sess);
		return ERR_PTR(-ENOMEM);
	}

	return se_sess;
}

338
/*
339
 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
340 341 342 343 344 345 346
 */
void __transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
347
	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
348
	unsigned char buf[PR_REG_ISID_LEN];
349
	unsigned long flags;
350 351 352 353 354 355 356 357 358 359

	se_sess->se_tpg = se_tpg;
	se_sess->fabric_sess_ptr = fabric_sess_ptr;
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
	 *
	 * Only set for struct se_session's that will actually be moving I/O.
	 * eg: *NOT* discovery sessions.
	 */
	if (se_nacl) {
360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
		/*
		 *
		 * Determine if fabric allows for T10-PI feature bits exposed to
		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
		 *
		 * If so, then always save prot_type on a per se_node_acl node
		 * basis and re-instate the previous sess_prot_type to avoid
		 * disabling PI from below any previously initiator side
		 * registered LUNs.
		 */
		if (se_nacl->saved_prot_type)
			se_sess->sess_prot_type = se_nacl->saved_prot_type;
		else if (tfo->tpg_check_prot_fabric_only)
			se_sess->sess_prot_type = se_nacl->saved_prot_type =
					tfo->tpg_check_prot_fabric_only(se_tpg);
375 376 377 378
		/*
		 * If the fabric module supports an ISID based TransportID,
		 * save this value in binary from the fabric I_T Nexus now.
		 */
379
		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
380
			memset(&buf[0], 0, PR_REG_ISID_LEN);
381
			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
382 383 384
					&buf[0], PR_REG_ISID_LEN);
			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
		}
385

386
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
387 388 389 390 391 392 393 394
		/*
		 * The se_nacl->nacl_sess pointer will be set to the
		 * last active I_T Nexus for each struct se_node_acl.
		 */
		se_nacl->nacl_sess = se_sess;

		list_add_tail(&se_sess->sess_acl_list,
			      &se_nacl->acl_sess_list);
395
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
396 397 398
	}
	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);

399
	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
400
		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
401 402 403 404 405 406 407 408 409
}
EXPORT_SYMBOL(__transport_register_session);

void transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
410 411 412
	unsigned long flags;

	spin_lock_irqsave(&se_tpg->session_lock, flags);
413
	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
414
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
415 416 417
}
EXPORT_SYMBOL(transport_register_session);

418
struct se_session *
419
target_setup_session(struct se_portal_group *tpg,
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
		     unsigned int tag_num, unsigned int tag_size,
		     enum target_prot_op prot_op,
		     const char *initiatorname, void *private,
		     int (*callback)(struct se_portal_group *,
				     struct se_session *, void *))
{
	struct se_session *sess;

	/*
	 * If the fabric driver is using percpu-ida based pre allocation
	 * of I/O descriptor tags, go ahead and perform that setup now..
	 */
	if (tag_num != 0)
		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
	else
435
		sess = transport_alloc_session(prot_op);
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460

	if (IS_ERR(sess))
		return sess;

	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
					(unsigned char *)initiatorname);
	if (!sess->se_node_acl) {
		transport_free_session(sess);
		return ERR_PTR(-EACCES);
	}
	/*
	 * Go ahead and perform any remaining fabric setup that is
	 * required before transport_register_session().
	 */
	if (callback != NULL) {
		int rc = callback(tpg, sess, private);
		if (rc) {
			transport_free_session(sess);
			return ERR_PTR(rc);
		}
	}

	transport_register_session(tpg, sess->se_node_acl, sess, private);
	return sess;
}
461
EXPORT_SYMBOL(target_setup_session);
462

463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
{
	struct se_session *se_sess;
	ssize_t len = 0;

	spin_lock_bh(&se_tpg->session_lock);
	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
		if (!se_sess->se_node_acl)
			continue;
		if (!se_sess->se_node_acl->dynamic_node_acl)
			continue;
		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
			break;

		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
				se_sess->se_node_acl->initiatorname);
		len += 1; /* Include NULL terminator */
	}
	spin_unlock_bh(&se_tpg->session_lock);

	return len;
}
EXPORT_SYMBOL(target_show_dynamic_sessions);

487 488 489 490
static void target_complete_nacl(struct kref *kref)
{
	struct se_node_acl *nacl = container_of(kref,
				struct se_node_acl, acl_kref);
491
	struct se_portal_group *se_tpg = nacl->se_tpg;
492

493 494 495 496 497 498
	if (!nacl->dynamic_stop) {
		complete(&nacl->acl_free_comp);
		return;
	}

	mutex_lock(&se_tpg->acl_node_mutex);
499
	list_del_init(&nacl->acl_list);
500 501 502 503 504
	mutex_unlock(&se_tpg->acl_node_mutex);

	core_tpg_wait_for_nacl_pr_ref(nacl);
	core_free_device_list_for_node(nacl, se_tpg);
	kfree(nacl);
505 506 507 508 509 510
}

void target_put_nacl(struct se_node_acl *nacl)
{
	kref_put(&nacl->acl_kref, target_complete_nacl);
}
511
EXPORT_SYMBOL(target_put_nacl);
512

513 514 515
void transport_deregister_session_configfs(struct se_session *se_sess)
{
	struct se_node_acl *se_nacl;
516
	unsigned long flags;
517 518 519 520
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
	 */
	se_nacl = se_sess->se_node_acl;
521
	if (se_nacl) {
522
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
C
Christoph Hellwig 已提交
523 524
		if (!list_empty(&se_sess->sess_acl_list))
			list_del_init(&se_sess->sess_acl_list);
525 526 527 528 529 530 531 532 533 534 535 536
		/*
		 * If the session list is empty, then clear the pointer.
		 * Otherwise, set the struct se_session pointer from the tail
		 * element of the per struct se_node_acl active session list.
		 */
		if (list_empty(&se_nacl->acl_sess_list))
			se_nacl->nacl_sess = NULL;
		else {
			se_nacl->nacl_sess = container_of(
					se_nacl->acl_sess_list.prev,
					struct se_session, sess_acl_list);
		}
537
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
538 539 540 541 542 543
	}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);

void transport_free_session(struct se_session *se_sess)
{
544
	struct se_node_acl *se_nacl = se_sess->se_node_acl;
545

546 547 548 549 550
	/*
	 * Drop the se_node_acl->nacl_kref obtained from within
	 * core_tpg_get_initiator_node_acl().
	 */
	if (se_nacl) {
551 552 553 554
		struct se_portal_group *se_tpg = se_nacl->se_tpg;
		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
		unsigned long flags;

555
		se_sess->se_node_acl = NULL;
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

		/*
		 * Also determine if we need to drop the extra ->cmd_kref if
		 * it had been previously dynamically generated, and
		 * the endpoint is not caching dynamic ACLs.
		 */
		mutex_lock(&se_tpg->acl_node_mutex);
		if (se_nacl->dynamic_node_acl &&
		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
			if (list_empty(&se_nacl->acl_sess_list))
				se_nacl->dynamic_stop = true;
			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);

			if (se_nacl->dynamic_stop)
571
				list_del_init(&se_nacl->acl_list);
572 573 574 575 576 577
		}
		mutex_unlock(&se_tpg->acl_node_mutex);

		if (se_nacl->dynamic_stop)
			target_put_nacl(se_nacl);

578 579
		target_put_nacl(se_nacl);
	}
580
	if (se_sess->sess_cmd_map) {
581
		sbitmap_queue_free(&se_sess->sess_tag_pool);
582
		kvfree(se_sess->sess_cmd_map);
583
	}
584 585 586 587 588 589 590
	kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);

void transport_deregister_session(struct se_session *se_sess)
{
	struct se_portal_group *se_tpg = se_sess->se_tpg;
591
	unsigned long flags;
592

593
	if (!se_tpg) {
594 595 596 597
		transport_free_session(se_sess);
		return;
	}

598
	spin_lock_irqsave(&se_tpg->session_lock, flags);
599 600 601
	list_del(&se_sess->sess_list);
	se_sess->se_tpg = NULL;
	se_sess->fabric_sess_ptr = NULL;
602
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
603

604
	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
605
		se_tpg->se_tpg_tfo->get_fabric_name());
606
	/*
607
	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
608
	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
609
	 * removal context from within transport_free_session() code.
610 611 612
	 *
	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
	 * to release all remaining generate_node_acl=1 created ACL resources.
613 614
	 */

615
	transport_free_session(se_sess);
616 617 618
}
EXPORT_SYMBOL(transport_deregister_session);

619 620 621 622 623 624 625
void target_remove_session(struct se_session *se_sess)
{
	transport_deregister_session_configfs(se_sess);
	transport_deregister_session(se_sess);
}
EXPORT_SYMBOL(target_remove_session);

626
static void target_remove_from_state_list(struct se_cmd *cmd)
627
{
628
	struct se_device *dev = cmd->se_dev;
629 630
	unsigned long flags;

631 632
	if (!dev)
		return;
633

634 635 636 637
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (cmd->state_active) {
		list_del(&cmd->state_list);
		cmd->state_active = false;
638
	}
639
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
640 641
}

642 643 644 645 646 647 648
/*
 * This function is called by the target core after the target core has
 * finished processing a SCSI command or SCSI TMF. Both the regular command
 * processing code and the code for aborting commands can call this
 * function. CMD_T_STOP is set if and only if another thread is waiting
 * inside transport_wait_for_tasks() for t_transport_stop_comp.
 */
649
static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
650 651 652
{
	unsigned long flags;

653
	target_remove_from_state_list(cmd);
654

655 656 657 658
	/*
	 * Clear struct se_cmd->se_lun before the handoff to FE.
	 */
	cmd->se_lun = NULL;
659

660
	spin_lock_irqsave(&cmd->t_state_lock, flags);
661 662
	/*
	 * Determine if frontend context caller is requesting the stopping of
663
	 * this command for frontend exceptions.
664
	 */
665
	if (cmd->transport_state & CMD_T_STOP) {
666 667
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
668

669
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
670

671
		complete_all(&cmd->t_transport_stop_comp);
672 673
		return 1;
	}
674
	cmd->transport_state &= ~CMD_T_ACTIVE;
675
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
676

677 678 679 680 681 682 683
	/*
	 * Some fabric modules like tcm_loop can release their internally
	 * allocated I/O reference and struct se_cmd now.
	 *
	 * Fabric modules are expected to return '1' here if the se_cmd being
	 * passed is released at this point, or zero if not being released.
	 */
684
	return cmd->se_tfo->check_stop_free(cmd);
685 686 687 688
}

static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
689
	struct se_lun *lun = cmd->se_lun;
690

691
	if (!lun)
692 693
		return;

694 695
	if (cmpxchg(&cmd->lun_ref_active, true, false))
		percpu_ref_put(&lun->lun_ref);
696 697
}

698
int transport_cmd_finish_abort(struct se_cmd *cmd)
699
{
700
	bool send_tas = cmd->transport_state & CMD_T_TAS;
701
	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
702
	int ret = 0;
703

704 705 706
	if (send_tas)
		transport_send_task_abort(cmd);

707 708
	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
		transport_lun_remove_cmd(cmd);
709 710 711 712
	/*
	 * Allow the fabric driver to unmap any resources before
	 * releasing the descriptor via TFO->release_cmd()
	 */
713
	if (!send_tas)
714
		cmd->se_tfo->aborted_task(cmd);
715

716
	if (transport_cmd_check_stop_to_fabric(cmd))
717
		return 1;
718
	if (!send_tas && ack_kref)
719
		ret = target_put_sess_cmd(cmd);
720 721

	return ret;
722 723
}

724 725 726 727
static void target_complete_failure_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

728 729
	transport_generic_request_failure(cmd,
			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
730 731
}

732
/*
733 734
 * Used when asking transport to copy Sense Data from the underlying
 * Linux/SCSI struct scsi_cmnd
735
 */
736
static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
737 738 739 740 741 742
{
	struct se_device *dev = cmd->se_dev;

	WARN_ON(!cmd->se_lun);

	if (!dev)
743
		return NULL;
744

745 746
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
		return NULL;
747

748
	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
749

750
	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
751
		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
752
	return cmd->sense_buffer;
753 754
}

755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
{
	unsigned char *cmd_sense_buf;
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd_sense_buf = transport_get_sense_buffer(cmd);
	if (!cmd_sense_buf) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}

	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}
EXPORT_SYMBOL(transport_copy_sense_to_cmd);

773
void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
774
{
775
	struct se_device *dev = cmd->se_dev;
776
	int success;
777 778
	unsigned long flags;

779 780
	cmd->scsi_status = scsi_status;

781
	spin_lock_irqsave(&cmd->t_state_lock, flags);
782 783
	switch (cmd->scsi_status) {
	case SAM_STAT_CHECK_CONDITION:
784
		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
785
			success = 1;
786 787 788 789
		else
			success = 0;
		break;
	default:
790
		success = 1;
791
		break;
792 793
	}

794
	/*
795
	 * Check for case where an explicit ABORT_TASK has been received
796 797
	 * and transport_wait_for_tasks() will be waiting for completion..
	 */
798
	if (cmd->transport_state & CMD_T_ABORTED ||
799 800
	    cmd->transport_state & CMD_T_STOP) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
801 802 803 804 805 806 807 808 809
		/*
		 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
		 * release se_device->caw_sem obtained by sbc_compare_and_write()
		 * since target_complete_ok_work() or target_complete_failure_work()
		 * won't be called to invoke the normal CAW completion callbacks.
		 */
		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
			up(&dev->caw_sem);
		}
810
		complete_all(&cmd->t_transport_stop_comp);
811
		return;
812
	} else if (!success) {
813
		INIT_WORK(&cmd->work, target_complete_failure_work);
814
	} else {
815
		INIT_WORK(&cmd->work, target_complete_ok_work);
816
	}
817 818

	cmd->t_state = TRANSPORT_COMPLETE;
819
	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
820
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
821

822
	if (cmd->se_cmd_flags & SCF_USE_CPUID)
823
		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
824 825
	else
		queue_work(target_completion_wq, &cmd->work);
826
}
827 828
EXPORT_SYMBOL(target_complete_cmd);

829 830
void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
{
831 832 833
	if ((scsi_status == SAM_STAT_GOOD ||
	     cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    length < cmd->data_length) {
834 835 836 837 838 839 840 841 842 843 844 845 846 847
		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			cmd->residual_count += cmd->data_length - length;
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = cmd->data_length - length;
		}

		cmd->data_length = length;
	}

	target_complete_cmd(cmd, scsi_status);
}
EXPORT_SYMBOL(target_complete_cmd_with_length);

848
static void target_add_to_state_list(struct se_cmd *cmd)
849
{
850 851
	struct se_device *dev = cmd->se_dev;
	unsigned long flags;
852

853 854 855 856
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (!cmd->state_active) {
		list_add_tail(&cmd->state_list, &dev->state_list);
		cmd->state_active = true;
857
	}
858
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
859 860
}

861
/*
862
 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
863
 */
864 865
static void transport_write_pending_qf(struct se_cmd *cmd);
static void transport_complete_qf(struct se_cmd *cmd);
866

867
void target_qf_do_work(struct work_struct *work)
868 869 870
{
	struct se_device *dev = container_of(work, struct se_device,
					qf_work_queue);
871
	LIST_HEAD(qf_cmd_list);
872 873 874
	struct se_cmd *cmd, *cmd_tmp;

	spin_lock_irq(&dev->qf_cmd_lock);
875 876
	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
	spin_unlock_irq(&dev->qf_cmd_lock);
877

878
	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
879
		list_del(&cmd->se_qf_node);
880
		atomic_dec_mb(&dev->dev_qf_count);
881

882
		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
883
			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
884
			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
885 886
			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
			: "UNKNOWN");
887

888 889
		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
			transport_write_pending_qf(cmd);
890 891
		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
892
			transport_complete_qf(cmd);
893 894 895
	}
}

896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
	switch (cmd->data_direction) {
	case DMA_NONE:
		return "NONE";
	case DMA_FROM_DEVICE:
		return "READ";
	case DMA_TO_DEVICE:
		return "WRITE";
	case DMA_BIDIRECTIONAL:
		return "BIDI";
	default:
		break;
	}

	return "UNKNOWN";
}

void transport_dump_dev_state(
	struct se_device *dev,
	char *b,
	int *bl)
{
	*bl += sprintf(b + *bl, "Status: ");
920
	if (dev->export_count)
921
		*bl += sprintf(b + *bl, "ACTIVATED");
922
	else
923 924
		*bl += sprintf(b + *bl, "DEACTIVATED");

925
	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
926
	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
927 928
		dev->dev_attrib.block_size,
		dev->dev_attrib.hw_max_sectors);
929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
	*bl += sprintf(b + *bl, "        ");
}

void transport_dump_vpd_proto_id(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int len;

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Protocol Identifier: ");

	switch (vpd->protocol_identifier) {
	case 0x00:
		sprintf(buf+len, "Fibre Channel\n");
		break;
	case 0x10:
		sprintf(buf+len, "Parallel SCSI\n");
		break;
	case 0x20:
		sprintf(buf+len, "SSA\n");
		break;
	case 0x30:
		sprintf(buf+len, "IEEE 1394\n");
		break;
	case 0x40:
		sprintf(buf+len, "SCSI Remote Direct Memory Access"
				" Protocol\n");
		break;
	case 0x50:
		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
		break;
	case 0x60:
		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
		break;
	case 0x70:
		sprintf(buf+len, "Automation/Drive Interface Transport"
				" Protocol\n");
		break;
	case 0x80:
		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n",
				vpd->protocol_identifier);
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
982
		pr_debug("%s", buf);
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006
}

void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * Check if the Protocol Identifier Valid (PIV) bit is set..
	 *
	 * from spc3r23.pdf section 7.5.1
	 */
	 if (page_83[1] & 0x80) {
		vpd->protocol_identifier = (page_83[0] & 0xf0);
		vpd->protocol_identifier_set = 1;
		transport_dump_vpd_proto_id(vpd, NULL, 0);
	}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);

int transport_dump_vpd_assoc(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1007 1008
	int ret = 0;
	int len;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Association: ");

	switch (vpd->association) {
	case 0x00:
		sprintf(buf+len, "addressed logical unit\n");
		break;
	case 0x10:
		sprintf(buf+len, "target port\n");
		break;
	case 0x20:
		sprintf(buf+len, "SCSI target device\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1025
		ret = -EINVAL;
1026 1027 1028 1029 1030 1031
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1032
		pr_debug("%s", buf);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054

	return ret;
}

int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identification association..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 297
	 */
	vpd->association = (page_83[1] & 0x30);
	return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);

int transport_dump_vpd_ident_type(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1055 1056
	int ret = 0;
	int len;
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Type: ");

	switch (vpd->device_identifier_type) {
	case 0x00:
		sprintf(buf+len, "Vendor specific\n");
		break;
	case 0x01:
		sprintf(buf+len, "T10 Vendor ID based\n");
		break;
	case 0x02:
		sprintf(buf+len, "EUI-64 based\n");
		break;
	case 0x03:
		sprintf(buf+len, "NAA\n");
		break;
	case 0x04:
		sprintf(buf+len, "Relative target port identifier\n");
		break;
	case 0x08:
		sprintf(buf+len, "SCSI name string\n");
		break;
	default:
		sprintf(buf+len, "Unsupported: 0x%02x\n",
				vpd->device_identifier_type);
1083
		ret = -EINVAL;
1084 1085 1086
		break;
	}

1087 1088 1089
	if (p_buf) {
		if (p_buf_len < strlen(buf)+1)
			return -EINVAL;
1090
		strncpy(p_buf, buf, p_buf_len);
1091
	} else {
1092
		pr_debug("%s", buf);
1093
	}
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121

	return ret;
}

int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identifier type..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 298
	 */
	vpd->device_identifier_type = (page_83[1] & 0x0f);
	return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);

int transport_dump_vpd_ident(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int ret = 0;

	memset(buf, 0, VPD_TMP_BUF_SIZE);

	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
1122 1123
		snprintf(buf, sizeof(buf),
			"T10 VPD Binary Device Identifier: %s\n",
1124 1125 1126
			&vpd->device_identifier[0]);
		break;
	case 0x02: /* ASCII */
1127 1128
		snprintf(buf, sizeof(buf),
			"T10 VPD ASCII Device Identifier: %s\n",
1129 1130 1131
			&vpd->device_identifier[0]);
		break;
	case 0x03: /* UTF-8 */
1132 1133
		snprintf(buf, sizeof(buf),
			"T10 VPD UTF-8 Device Identifier: %s\n",
1134 1135 1136 1137 1138
			&vpd->device_identifier[0]);
		break;
	default:
		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
			" 0x%02x", vpd->device_identifier_code_set);
1139
		ret = -EINVAL;
1140 1141 1142 1143 1144 1145
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1146
		pr_debug("%s", buf);
1147 1148 1149 1150 1151 1152 1153 1154

	return ret;
}

int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
	static const char hex_str[] = "0123456789abcdef";
1155
	int j = 0, i = 4; /* offset to start of the identifier */
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187

	/*
	 * The VPD Code Set (encoding)
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 296
	 */
	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		vpd->device_identifier[j++] =
				hex_str[vpd->device_identifier_type];
		while (i < (4 + page_83[3])) {
			vpd->device_identifier[j++] =
				hex_str[(page_83[i] & 0xf0) >> 4];
			vpd->device_identifier[j++] =
				hex_str[page_83[i] & 0x0f];
			i++;
		}
		break;
	case 0x02: /* ASCII */
	case 0x03: /* UTF-8 */
		while (i < (4 + page_83[3]))
			vpd->device_identifier[j++] = page_83[i++];
		break;
	default:
		break;
	}

	return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);

1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
			       unsigned int size)
{
	u32 mtl;

	if (!cmd->se_tfo->max_data_sg_nents)
		return TCM_NO_SENSE;
	/*
	 * Check if fabric enforced maximum SGL entries per I/O descriptor
	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
	 * residual_count and reduce original cmd->data_length to maximum
	 * length based on single PAGE_SIZE entry scatter-lists.
	 */
	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
	if (cmd->data_length > mtl) {
		/*
		 * If an existing CDB overflow is present, calculate new residual
		 * based on CDB size minus fabric maximum transfer length.
		 *
		 * If an existing CDB underflow is present, calculate new residual
		 * based on original cmd->data_length minus fabric maximum transfer
		 * length.
		 *
		 * Otherwise, set the underflow residual based on cmd->data_length
		 * minus fabric maximum transfer length.
		 */
		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
			cmd->residual_count = (size - mtl);
		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			u32 orig_dl = size + cmd->residual_count;
			cmd->residual_count = (orig_dl - mtl);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - mtl);
		}
		cmd->data_length = mtl;
		/*
		 * Reset sbc_check_prot() calculated protection payload
		 * length based upon the new smaller MTL.
		 */
		if (cmd->prot_length) {
			u32 sectors = (mtl / dev->dev_attrib.block_size);
			cmd->prot_length = dev->prot_length * sectors;
		}
	}
	return TCM_NO_SENSE;
}

1237 1238
sense_reason_t
target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1239 1240 1241 1242 1243 1244
{
	struct se_device *dev = cmd->se_dev;

	if (cmd->unknown_data_length) {
		cmd->data_length = size;
	} else if (size != cmd->data_length) {
1245
		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1246 1247 1248 1249
			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
				cmd->data_length, size, cmd->t_task_cdb[0]);

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266
		if (cmd->data_direction == DMA_TO_DEVICE) {
			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
				pr_err_ratelimited("Rejecting underflow/overflow"
						   " for WRITE data CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
			/*
			 * Some fabric drivers like iscsi-target still expect to
			 * always reject overflow writes.  Reject this case until
			 * full fabric driver level support for overflow writes
			 * is introduced tree-wide.
			 */
			if (size > cmd->data_length) {
				pr_err_ratelimited("Rejecting overflow for"
						   " WRITE control CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
1267 1268 1269 1270 1271
		}
		/*
		 * Reject READ_* or WRITE_* with overflow/underflow for
		 * type SCF_SCSI_DATA_CDB.
		 */
1272
		if (dev->dev_attrib.block_size != 512)  {
1273 1274 1275 1276
			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
				" CDB on non 512-byte sector setup subsystem"
				" plugin: %s\n", dev->transport->name);
			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1277
			return TCM_INVALID_CDB_FIELD;
1278
		}
1279 1280 1281 1282 1283 1284
		/*
		 * For the overflow case keep the existing fabric provided
		 * ->data_length.  Otherwise for the underflow case, reset
		 * ->data_length to the smaller SCSI expected data transfer
		 * length.
		 */
1285 1286 1287 1288 1289 1290
		if (size > cmd->data_length) {
			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
			cmd->residual_count = (size - cmd->data_length);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - size);
1291
			cmd->data_length = size;
1292 1293 1294
		}
	}

1295
	return target_check_max_data_sg_nents(cmd, dev, size);
1296 1297 1298

}

1299 1300 1301
/*
 * Used by fabric modules containing a local struct se_cmd within their
 * fabric dependent per I/O descriptor.
1302 1303
 *
 * Preserves the value of @cmd->tag.
1304 1305 1306
 */
void transport_init_se_cmd(
	struct se_cmd *cmd,
1307
	const struct target_core_fabric_ops *tfo,
1308 1309 1310 1311 1312 1313
	struct se_session *se_sess,
	u32 data_length,
	int data_direction,
	int task_attr,
	unsigned char *sense_buffer)
{
1314
	INIT_LIST_HEAD(&cmd->se_delayed_node);
1315
	INIT_LIST_HEAD(&cmd->se_qf_node);
1316
	INIT_LIST_HEAD(&cmd->se_cmd_list);
1317
	INIT_LIST_HEAD(&cmd->state_list);
1318
	init_completion(&cmd->t_transport_stop_comp);
1319
	cmd->compl = NULL;
1320
	spin_lock_init(&cmd->t_state_lock);
1321
	INIT_WORK(&cmd->work, NULL);
1322
	kref_init(&cmd->cmd_kref);
1323 1324 1325 1326 1327 1328 1329

	cmd->se_tfo = tfo;
	cmd->se_sess = se_sess;
	cmd->data_length = data_length;
	cmd->data_direction = data_direction;
	cmd->sam_task_attr = task_attr;
	cmd->sense_buffer = sense_buffer;
1330 1331

	cmd->state_active = false;
1332 1333 1334
}
EXPORT_SYMBOL(transport_init_se_cmd);

1335 1336
static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd *cmd)
1337
{
1338 1339
	struct se_device *dev = cmd->se_dev;

1340 1341 1342 1343
	/*
	 * Check if SAM Task Attribute emulation is enabled for this
	 * struct se_device storage object
	 */
1344
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1345 1346
		return 0;

C
Christoph Hellwig 已提交
1347
	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1348
		pr_debug("SAM Task Attribute ACA"
1349
			" emulation is not supported\n");
1350
		return TCM_INVALID_CDB_FIELD;
1351
	}
1352

1353 1354 1355
	return 0;
}

1356 1357
sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1358
{
1359
	struct se_device *dev = cmd->se_dev;
1360
	sense_reason_t ret;
1361 1362 1363 1364 1365 1366

	/*
	 * Ensure that the received CDB is less than the max (252 + 8) bytes
	 * for VARIABLE_LENGTH_CMD
	 */
	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1367
		pr_err("Received SCSI CDB with command_size: %d that"
1368 1369
			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1370
		return TCM_INVALID_CDB_FIELD;
1371 1372 1373 1374 1375 1376
	}
	/*
	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
	 * allocate the additional extended CDB buffer now..  Otherwise
	 * setup the pointer from __t_task_cdb to t_task_cdb.
	 */
1377 1378
	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1379
						GFP_KERNEL);
1380 1381
		if (!cmd->t_task_cdb) {
			pr_err("Unable to allocate cmd->t_task_cdb"
1382
				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1383
				scsi_command_size(cdb),
1384
				(unsigned long)sizeof(cmd->__t_task_cdb));
1385
			return TCM_OUT_OF_RESOURCES;
1386 1387
		}
	} else
1388
		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1389
	/*
1390
	 * Copy the original CDB into cmd->
1391
	 */
1392
	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1393

1394 1395
	trace_target_sequencer_start(cmd);

1396
	ret = dev->transport->parse_cdb(cmd);
1397 1398 1399 1400 1401
	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
				    cmd->se_tfo->get_fabric_name(),
				    cmd->se_sess->se_node_acl->initiatorname,
				    cmd->t_task_cdb[0]);
1402 1403 1404 1405 1406
	if (ret)
		return ret;

	ret = transport_check_alloc_task_attr(cmd);
	if (ret)
1407
		return ret;
1408 1409

	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1410
	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1411 1412
	return 0;
}
1413
EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1414

1415 1416
/*
 * Used by fabric module frontends to queue tasks directly.
1417
 * May only be used from process context.
1418 1419 1420 1421
 */
int transport_handle_cdb_direct(
	struct se_cmd *cmd)
{
1422
	sense_reason_t ret;
1423

1424 1425
	if (!cmd->se_lun) {
		dump_stack();
1426
		pr_err("cmd->se_lun is NULL\n");
1427 1428 1429 1430
		return -EINVAL;
	}
	if (in_interrupt()) {
		dump_stack();
1431
		pr_err("transport_generic_handle_cdb cannot be called"
1432 1433 1434
				" from interrupt context\n");
		return -EINVAL;
	}
1435
	/*
1436 1437 1438
	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
	 * outstanding descriptors are handled correctly during shutdown via
	 * transport_wait_for_tasks()
1439 1440 1441 1442 1443
	 *
	 * Also, we don't take cmd->t_state_lock here as we only expect
	 * this to be called for initial descriptor submission.
	 */
	cmd->t_state = TRANSPORT_NEW_CMD;
1444 1445
	cmd->transport_state |= CMD_T_ACTIVE;

1446 1447 1448 1449 1450 1451
	/*
	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
	 * so follow TRANSPORT_NEW_CMD processing thread context usage
	 * and call transport_generic_request_failure() if necessary..
	 */
	ret = transport_generic_new_cmd(cmd);
1452 1453
	if (ret)
		transport_generic_request_failure(cmd, ret);
1454
	return 0;
1455 1456 1457
}
EXPORT_SYMBOL(transport_handle_cdb_direct);

1458
sense_reason_t
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
{
	if (!sgl || !sgl_count)
		return 0;

	/*
	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
	 * scatterlists already have been set to follow what the fabric
	 * passes for the original expected data transfer length.
	 */
	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
		pr_warn("Rejecting SCSI DATA overflow for fabric using"
			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
		return TCM_INVALID_CDB_FIELD;
	}

	cmd->t_data_sg = sgl;
	cmd->t_data_nents = sgl_count;
1478 1479
	cmd->t_bidi_data_sg = sgl_bidi;
	cmd->t_bidi_data_nents = sgl_bidi_count;
1480 1481 1482 1483 1484

	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
	return 0;
}

1485
/**
1486 1487
 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
 * 			 se_cmd + use pre-allocated SGL memory.
1488 1489 1490 1491 1492 1493 1494
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
1495
 * @task_attr: SAM task attribute
1496 1497
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
1498 1499 1500 1501
 * @sgl: struct scatterlist memory for unidirectional mapping
 * @sgl_count: scatterlist count for unidirectional mapping
 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1502 1503
 * @sgl_prot: struct scatterlist memory protection information
 * @sgl_prot_count: scatterlist count for protection information
1504
 *
1505 1506
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1507 1508 1509 1510
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
1511 1512
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
1513 1514
 */
int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1515
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1516 1517
		u32 data_length, int task_attr, int data_dir, int flags,
		struct scatterlist *sgl, u32 sgl_count,
1518 1519
		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1520 1521
{
	struct se_portal_group *se_tpg;
1522 1523
	sense_reason_t rc;
	int ret;
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);
	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
	BUG_ON(in_interrupt());
	/*
	 * Initialize se_cmd for target operation.  From this point
	 * exceptions are handled by sending exception status via
	 * target_core_fabric_ops->queue_status() callback
	 */
	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
				data_length, data_dir, task_attr, sense);
1536 1537 1538 1539 1540 1541

	if (flags & TARGET_SCF_USE_CPUID)
		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
	else
		se_cmd->cpuid = WORK_CPU_UNBOUND;

1542 1543
	if (flags & TARGET_SCF_UNKNOWN_SIZE)
		se_cmd->unknown_data_length = 1;
1544 1545 1546 1547 1548 1549
	/*
	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
	 * kref_put() to happen during fabric packet acknowledgement.
	 */
1550
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1551 1552
	if (ret)
		return ret;
1553 1554 1555 1556 1557 1558 1559 1560
	/*
	 * Signal bidirectional data payloads to target-core
	 */
	if (flags & TARGET_SCF_BIDI_OP)
		se_cmd->se_cmd_flags |= SCF_BIDI;
	/*
	 * Locate se_lun pointer and attach it to struct se_cmd
	 */
1561 1562 1563
	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1564
		target_put_sess_cmd(se_cmd);
1565
		return 0;
1566
	}
1567 1568 1569 1570 1571 1572 1573

	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
	if (rc != 0) {
		transport_generic_request_failure(se_cmd, rc);
		return 0;
	}

1574 1575 1576 1577 1578 1579 1580
	/*
	 * Save pointers for SGLs containing protection information,
	 * if present.
	 */
	if (sgl_prot_count) {
		se_cmd->t_prot_sg = sgl_prot;
		se_cmd->t_prot_nents = sgl_prot_count;
1581
		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1582
	}
1583

1584 1585 1586 1587 1588 1589 1590 1591
	/*
	 * When a non zero sgl_count has been passed perform SGL passthrough
	 * mapping for pre-allocated fabric memory instead of having target
	 * core perform an internal SGL allocation..
	 */
	if (sgl_count != 0) {
		BUG_ON(!sgl);

1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		/*
		 * A work-around for tcm_loop as some userspace code via
		 * scsi-generic do not memset their associated read buffers,
		 * so go ahead and do that here for type non-data CDBs.  Also
		 * note that this is currently guaranteed to be a single SGL
		 * for this case by target core in target_setup_cmd_from_cdb()
		 * -> transport_generic_cmd_sequencer().
		 */
		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
		     se_cmd->data_direction == DMA_FROM_DEVICE) {
			unsigned char *buf = NULL;

			if (sgl)
				buf = kmap(sg_page(sgl)) + sgl->offset;

			if (buf) {
				memset(buf, 0, sgl->length);
				kunmap(sg_page(sgl));
			}
		}

1613 1614 1615
		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
				sgl_bidi, sgl_bidi_count);
		if (rc != 0) {
1616
			transport_generic_request_failure(se_cmd, rc);
1617 1618 1619
			return 0;
		}
	}
1620

1621 1622 1623 1624 1625 1626
	/*
	 * Check if we need to delay processing because of ALUA
	 * Active/NonOptimized primary access state..
	 */
	core_alua_check_nonop_delay(se_cmd);

1627
	transport_handle_cdb_direct(se_cmd);
1628
	return 0;
1629
}
1630 1631
EXPORT_SYMBOL(target_submit_cmd_map_sgls);

1632
/**
1633 1634 1635 1636 1637 1638 1639 1640
 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
1641
 * @task_attr: SAM task attribute
1642 1643 1644
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
 *
1645 1646
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
 *
 * It also assumes interal target core SGL memory allocation.
 */
int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1657
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1658 1659 1660 1661
		u32 data_length, int task_attr, int data_dir, int flags)
{
	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
			unpacked_lun, data_length, task_attr, data_dir,
1662
			flags, NULL, 0, NULL, 0, NULL, 0);
1663
}
1664 1665
EXPORT_SYMBOL(target_submit_cmd);

1666 1667 1668 1669 1670 1671
static void target_complete_tmr_failure(struct work_struct *work)
{
	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);

	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1672

1673
	transport_lun_remove_cmd(se_cmd);
1674
	transport_cmd_check_stop_to_fabric(se_cmd);
1675 1676
}

1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
				       u64 *unpacked_lun)
{
	struct se_cmd *se_cmd;
	unsigned long flags;
	bool ret = false;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
		if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
			continue;

		if (se_cmd->tag == tag) {
			*unpacked_lun = se_cmd->orig_fe_lun;
			ret = true;
			break;
		}
	}
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

	return ret;
}

1700 1701 1702 1703 1704 1705 1706 1707
/**
 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
 *                     for TMR CDBs
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1708
 * @fabric_tmr_ptr: fabric context for TMR req
1709
 * @tm_type: Type of TM request
1710 1711
 * @gfp: gfp type for caller
 * @tag: referenced task tag for TMR_ABORT_TASK
1712
 * @flags: submit cmd flags
1713 1714 1715 1716
 *
 * Callable from all contexts.
 **/

1717
int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1718
		unsigned char *sense, u64 unpacked_lun,
1719
		void *fabric_tmr_ptr, unsigned char tm_type,
1720
		gfp_t gfp, u64 tag, int flags)
1721 1722 1723 1724 1725 1726 1727 1728
{
	struct se_portal_group *se_tpg;
	int ret;

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);

	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
C
Christoph Hellwig 已提交
1729
			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1730 1731 1732 1733
	/*
	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
	 * allocation failure.
	 */
1734
	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1735 1736
	if (ret < 0)
		return -ENOMEM;
1737

1738 1739 1740
	if (tm_type == TMR_ABORT_TASK)
		se_cmd->se_tmr_req->ref_task_tag = tag;

1741
	/* See target_submit_cmd for commentary */
1742
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1743 1744 1745 1746
	if (ret) {
		core_tmr_release_req(se_cmd->se_tmr_req);
		return ret;
	}
1747 1748 1749 1750 1751 1752 1753 1754 1755
	/*
	 * If this is ABORT_TASK with no explicit fabric provided LUN,
	 * go ahead and search active session tags for a match to figure
	 * out unpacked_lun for the original se_cmd.
	 */
	if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
		if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
			goto failure;
	}
1756 1757

	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1758 1759 1760
	if (ret)
		goto failure;

1761
	transport_generic_handle_tmr(se_cmd);
1762
	return 0;
1763 1764 1765 1766 1767 1768 1769 1770 1771

	/*
	 * For callback during failure handling, push this work off
	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
	 */
failure:
	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
	schedule_work(&se_cmd->work);
	return 0;
1772 1773 1774
}
EXPORT_SYMBOL(target_submit_tmr);

1775 1776 1777
/*
 * Handle SAM-esque emulation for generic transport request failures.
 */
1778 1779
void transport_generic_request_failure(struct se_cmd *cmd,
		sense_reason_t sense_reason)
1780
{
1781
	int ret = 0, post_ret = 0;
1782

1783 1784 1785
	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
		 sense_reason);
	target_show_cmd("-----[ ", cmd);
1786 1787 1788 1789

	/*
	 * For SAM Task Attribute emulation for failed struct se_cmd
	 */
1790
	transport_complete_task_attr(cmd);
1791

1792 1793
	/*
	 * Handle special case for COMPARE_AND_WRITE failure, where the
1794
	 * callback is expected to drop the per device ->caw_sem.
1795 1796 1797
	 */
	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
	     cmd->transport_complete_callback)
1798
		cmd->transport_complete_callback(cmd, false, &post_ret);
1799

1800 1801 1802
	if (transport_check_aborted_status(cmd, 1))
		return;

1803
	switch (sense_reason) {
1804 1805 1806 1807
	case TCM_NON_EXISTENT_LUN:
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_INVALID_CDB_FIELD:
	case TCM_INVALID_PARAMETER_LIST:
1808
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1809 1810 1811
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	case TCM_UNKNOWN_MODE_PAGE:
	case TCM_WRITE_PROTECTED:
1812
	case TCM_ADDRESS_OUT_OF_RANGE:
1813 1814 1815
	case TCM_CHECK_CONDITION_ABORT_CMD:
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
	case TCM_CHECK_CONDITION_NOT_READY:
1816 1817 1818
	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1819
	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1820 1821 1822 1823
	case TCM_TOO_MANY_TARGET_DESCS:
	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
	case TCM_TOO_MANY_SEGMENT_DESCS:
	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1824
		break;
1825
	case TCM_OUT_OF_RESOURCES:
1826 1827
		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
		goto queue_status;
1828 1829 1830
	case TCM_LUN_BUSY:
		cmd->scsi_status = SAM_STAT_BUSY;
		goto queue_status;
1831
	case TCM_RESERVATION_CONFLICT:
1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
		/*
		 * No SENSE Data payload for this case, set SCSI Status
		 * and queue the response to $FABRIC_MOD.
		 *
		 * Uses linux/include/scsi/scsi.h SAM status codes defs
		 */
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
		/*
		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
		 * CONFLICT STATUS.
		 *
		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
		 */
1846
		if (cmd->se_sess &&
1847 1848 1849 1850 1851
		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x2C,
					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
		}
1852 1853

		goto queue_status;
1854
	default:
1855
		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1856 1857
			cmd->t_task_cdb[0], sense_reason);
		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1858 1859
		break;
	}
1860

1861
	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1862
	if (ret)
1863
		goto queue_full;
1864

1865 1866
check_stop:
	transport_lun_remove_cmd(cmd);
A
Andy Grover 已提交
1867
	transport_cmd_check_stop_to_fabric(cmd);
1868 1869
	return;

1870 1871 1872 1873 1874
queue_status:
	trace_target_cmd_complete(cmd);
	ret = cmd->se_tfo->queue_status(cmd);
	if (!ret)
		goto check_stop;
1875
queue_full:
1876
	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1877
}
1878
EXPORT_SYMBOL(transport_generic_request_failure);
1879

1880
void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1881
{
1882
	sense_reason_t ret;
1883

1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901
	if (!cmd->execute_cmd) {
		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		goto err;
	}
	if (do_checks) {
		/*
		 * Check for an existing UNIT ATTENTION condition after
		 * target_handle_task_attr() has done SAM task attr
		 * checking, and possibly have already defered execution
		 * out to target_restart_delayed_cmds() context.
		 */
		ret = target_scsi3_ua_check(cmd);
		if (ret)
			goto err;

		ret = target_alua_state_check(cmd);
		if (ret)
			goto err;
1902

1903 1904 1905 1906
		ret = target_check_reservation(cmd);
		if (ret) {
			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
			goto err;
1907
		}
1908
	}
1909 1910 1911 1912 1913 1914

	ret = cmd->execute_cmd(cmd);
	if (!ret)
		return;
err:
	spin_lock_irq(&cmd->t_state_lock);
1915
	cmd->transport_state &= ~CMD_T_SENT;
1916 1917 1918
	spin_unlock_irq(&cmd->t_state_lock);

	transport_generic_request_failure(cmd, ret);
1919 1920
}

1921 1922
static int target_write_prot_action(struct se_cmd *cmd)
{
1923
	u32 sectors;
1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
	/*
	 * Perform WRITE_INSERT of PI using software emulation when backend
	 * device has PI enabled, if the transport has not already generated
	 * PI using hardware WRITE_INSERT offload.
	 */
	switch (cmd->prot_op) {
	case TARGET_PROT_DOUT_INSERT:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
			sbc_dif_generate(cmd);
		break;
1934 1935 1936 1937 1938
	case TARGET_PROT_DOUT_STRIP:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
			break;

		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1939 1940
		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
					     sectors, 0, cmd->t_prot_sg, 0);
1941 1942
		if (unlikely(cmd->pi_err)) {
			spin_lock_irq(&cmd->t_state_lock);
1943
			cmd->transport_state &= ~CMD_T_SENT;
1944 1945 1946 1947 1948
			spin_unlock_irq(&cmd->t_state_lock);
			transport_generic_request_failure(cmd, cmd->pi_err);
			return -1;
		}
		break;
1949 1950 1951 1952 1953 1954 1955
	default:
		break;
	}

	return 0;
}

1956
static bool target_handle_task_attr(struct se_cmd *cmd)
1957 1958 1959
{
	struct se_device *dev = cmd->se_dev;

1960
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1961
		return false;
1962

1963 1964
	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;

1965
	/*
L
Lucas De Marchi 已提交
1966
	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1967 1968
	 * to allow the passed struct se_cmd list of tasks to the front of the list.
	 */
1969
	switch (cmd->sam_task_attr) {
C
Christoph Hellwig 已提交
1970
	case TCM_HEAD_TAG:
1971 1972
		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
			 cmd->t_task_cdb[0]);
1973
		return false;
C
Christoph Hellwig 已提交
1974
	case TCM_ORDERED_TAG:
1975
		atomic_inc_mb(&dev->dev_ordered_sync);
1976

1977 1978
		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
			 cmd->t_task_cdb[0]);
1979

1980
		/*
1981 1982
		 * Execute an ORDERED command if no other older commands
		 * exist that need to be completed first.
1983
		 */
1984
		if (!atomic_read(&dev->simple_cmds))
1985
			return false;
1986 1987
		break;
	default:
1988 1989 1990
		/*
		 * For SIMPLE and UNTAGGED Task Attribute commands
		 */
1991
		atomic_inc_mb(&dev->simple_cmds);
1992
		break;
1993
	}
1994

1995 1996
	if (atomic_read(&dev->dev_ordered_sync) == 0)
		return false;
1997

1998 1999 2000 2001
	spin_lock(&dev->delayed_cmd_lock);
	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
	spin_unlock(&dev->delayed_cmd_lock);

2002 2003
	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
		cmd->t_task_cdb[0], cmd->sam_task_attr);
2004 2005 2006
	return true;
}

2007 2008
static int __transport_check_aborted_status(struct se_cmd *, int);

2009 2010 2011 2012 2013
void target_execute_cmd(struct se_cmd *cmd)
{
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
2014 2015
	 *
	 * If the received CDB has aleady been aborted stop processing it here.
2016
	 */
2017
	spin_lock_irq(&cmd->t_state_lock);
2018 2019 2020 2021
	if (__transport_check_aborted_status(cmd, 1)) {
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}
2022
	if (cmd->transport_state & CMD_T_STOP) {
2023 2024
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
2025 2026

		spin_unlock_irq(&cmd->t_state_lock);
2027
		complete_all(&cmd->t_transport_stop_comp);
2028 2029 2030 2031
		return;
	}

	cmd->t_state = TRANSPORT_PROCESSING;
2032
	cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
2033
	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
2034
	spin_unlock_irq(&cmd->t_state_lock);
2035 2036 2037

	if (target_write_prot_action(cmd))
		return;
2038

2039 2040
	if (target_handle_task_attr(cmd)) {
		spin_lock_irq(&cmd->t_state_lock);
2041
		cmd->transport_state &= ~CMD_T_SENT;
2042 2043 2044 2045
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}

2046
	__target_execute_cmd(cmd, true);
2047
}
2048
EXPORT_SYMBOL(target_execute_cmd);
2049

2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069
/*
 * Process all commands up to the last received ORDERED task attribute which
 * requires another blocking boundary
 */
static void target_restart_delayed_cmds(struct se_device *dev)
{
	for (;;) {
		struct se_cmd *cmd;

		spin_lock(&dev->delayed_cmd_lock);
		if (list_empty(&dev->delayed_cmd_list)) {
			spin_unlock(&dev->delayed_cmd_lock);
			break;
		}

		cmd = list_entry(dev->delayed_cmd_list.next,
				 struct se_cmd, se_delayed_node);
		list_del(&cmd->se_delayed_node);
		spin_unlock(&dev->delayed_cmd_lock);

2070 2071
		cmd->transport_state |= CMD_T_SENT;

2072
		__target_execute_cmd(cmd, true);
2073

C
Christoph Hellwig 已提交
2074
		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2075 2076 2077 2078
			break;
	}
}

2079
/*
2080
 * Called from I/O completion to determine which dormant/delayed
2081 2082 2083 2084
 * and ordered cmds need to have their tasks added to the execution queue.
 */
static void transport_complete_task_attr(struct se_cmd *cmd)
{
2085
	struct se_device *dev = cmd->se_dev;
2086

2087
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2088 2089
		return;

2090 2091 2092
	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
		goto restart;

C
Christoph Hellwig 已提交
2093
	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2094
		atomic_dec_mb(&dev->simple_cmds);
2095
		dev->dev_cur_ordered_id++;
C
Christoph Hellwig 已提交
2096
	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2097
		dev->dev_cur_ordered_id++;
2098 2099
		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
			 dev->dev_cur_ordered_id);
C
Christoph Hellwig 已提交
2100
	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2101
		atomic_dec_mb(&dev->dev_ordered_sync);
2102 2103

		dev->dev_cur_ordered_id++;
2104 2105
		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
			 dev->dev_cur_ordered_id);
2106
	}
2107 2108
	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;

2109
restart:
2110
	target_restart_delayed_cmds(dev);
2111 2112
}

2113
static void transport_complete_qf(struct se_cmd *cmd)
2114 2115 2116
{
	int ret = 0;

2117
	transport_complete_task_attr(cmd);
2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
	/*
	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
	 * the same callbacks should not be retried.  Return CHECK_CONDITION
	 * if a scsi_status is not already set.
	 *
	 * If a fabric driver ->queue_status() has returned non zero, always
	 * keep retrying no matter what..
	 */
	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
		if (cmd->scsi_status)
			goto queue_status;
2130

2131 2132
		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
		goto queue_status;
2133
	}
2134

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
	/*
	 * Check if we need to send a sense buffer from
	 * the struct se_cmd in question. We do NOT want
	 * to take this path of the IO has been marked as
	 * needing to be treated like a "normal read". This
	 * is the case if it's a tape read, and either the
	 * FM, EOM, or ILI bits are set, but there is no
	 * sense data.
	 */
	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2146 2147
		goto queue_status;

2148 2149
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2150 2151 2152
		/* queue status if not treating this as a normal read */
		if (cmd->scsi_status &&
		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2153 2154
			goto queue_status;

2155
		trace_target_cmd_complete(cmd);
2156 2157 2158
		ret = cmd->se_tfo->queue_data_in(cmd);
		break;
	case DMA_TO_DEVICE:
2159
		if (cmd->se_cmd_flags & SCF_BIDI) {
2160
			ret = cmd->se_tfo->queue_data_in(cmd);
2161
			break;
2162
		}
2163
		/* fall through */
2164
	case DMA_NONE:
2165
queue_status:
2166
		trace_target_cmd_complete(cmd);
2167 2168 2169 2170 2171 2172
		ret = cmd->se_tfo->queue_status(cmd);
		break;
	default:
		break;
	}

2173
	if (ret < 0) {
2174
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2175 2176 2177 2178
		return;
	}
	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2179 2180
}

2181 2182
static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
					int err, bool write_pending)
2183
{
2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
	/*
	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
	 * ->queue_data_in() callbacks from new process context.
	 *
	 * Otherwise for other errors, transport_complete_qf() will send
	 * CHECK_CONDITION via ->queue_status() instead of attempting to
	 * retry associated fabric driver data-transfer callbacks.
	 */
	if (err == -EAGAIN || err == -ENOMEM) {
		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
						 TRANSPORT_COMPLETE_QF_OK;
	} else {
		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
	}

2200 2201
	spin_lock_irq(&dev->qf_cmd_lock);
	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2202
	atomic_inc_mb(&dev->dev_qf_count);
2203 2204 2205 2206 2207
	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);

	schedule_work(&cmd->se_dev->qf_work_queue);
}

2208
static bool target_read_prot_action(struct se_cmd *cmd)
2209
{
2210 2211 2212
	switch (cmd->prot_op) {
	case TARGET_PROT_DIN_STRIP:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2213 2214 2215 2216 2217 2218 2219
			u32 sectors = cmd->data_length >>
				  ilog2(cmd->se_dev->dev_attrib.block_size);

			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
						     sectors, 0, cmd->t_prot_sg,
						     0);
			if (cmd->pi_err)
2220
				return true;
2221
		}
2222
		break;
2223 2224 2225 2226 2227 2228
	case TARGET_PROT_DIN_INSERT:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
			break;

		sbc_dif_generate(cmd);
		break;
2229 2230
	default:
		break;
2231 2232 2233 2234 2235
	}

	return false;
}

2236
static void target_complete_ok_work(struct work_struct *work)
2237
{
2238
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2239
	int ret;
2240

2241 2242 2243 2244 2245
	/*
	 * Check if we need to move delayed/dormant tasks from cmds on the
	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
	 * Attribute.
	 */
2246 2247
	transport_complete_task_attr(cmd);

2248 2249 2250 2251 2252 2253 2254
	/*
	 * Check to schedule QUEUE_FULL work, or execute an existing
	 * cmd->transport_qf_callback()
	 */
	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
		schedule_work(&cmd->se_dev->qf_work_queue);

2255
	/*
2256
	 * Check if we need to send a sense buffer from
2257 2258 2259 2260 2261 2262
	 * the struct se_cmd in question. We do NOT want
	 * to take this path of the IO has been marked as
	 * needing to be treated like a "normal read". This
	 * is the case if it's a tape read, and either the
	 * FM, EOM, or ILI bits are set, but there is no
	 * sense data.
2263
	 */
2264 2265
	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2266 2267 2268
		WARN_ON(!cmd->scsi_status);
		ret = transport_send_check_condition_and_sense(
					cmd, 0, 1);
2269
		if (ret)
2270 2271 2272 2273 2274
			goto queue_full;

		transport_lun_remove_cmd(cmd);
		transport_cmd_check_stop_to_fabric(cmd);
		return;
2275 2276
	}
	/*
L
Lucas De Marchi 已提交
2277
	 * Check for a callback, used by amongst other things
2278
	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2279
	 */
2280 2281
	if (cmd->transport_complete_callback) {
		sense_reason_t rc;
2282 2283 2284
		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
		bool zero_dl = !(cmd->data_length);
		int post_ret = 0;
2285

2286 2287 2288
		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
		if (!rc && !post_ret) {
			if (caw && zero_dl)
2289 2290
				goto queue_rsp;

2291
			return;
2292 2293 2294
		} else if (rc) {
			ret = transport_send_check_condition_and_sense(cmd,
						rc, 0);
2295
			if (ret)
2296
				goto queue_full;
2297

2298 2299 2300 2301
			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2302
	}
2303

2304
queue_rsp:
2305 2306
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
		/*
		 * if this is a READ-type IO, but SCSI status
		 * is set, then skip returning data and just
		 * return the status -- unless this IO is marked
		 * as needing to be treated as a normal read,
		 * in which case we want to go ahead and return
		 * the data. This happens, for example, for tape
		 * reads with the FM, EOM, or ILI bits set, with
		 * no sense data.
		 */
		if (cmd->scsi_status &&
		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2319 2320
			goto queue_status;

2321 2322
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.tx_data_octets);
2323 2324 2325 2326 2327
		/*
		 * Perform READ_STRIP of PI using software emulation when
		 * backend had PI enabled, if the transport will not be
		 * performing hardware READ_STRIP offload.
		 */
2328
		if (target_read_prot_action(cmd)) {
2329 2330
			ret = transport_send_check_condition_and_sense(cmd,
						cmd->pi_err, 0);
2331
			if (ret)
2332 2333 2334 2335 2336 2337
				goto queue_full;

			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2338

2339
		trace_target_cmd_complete(cmd);
2340
		ret = cmd->se_tfo->queue_data_in(cmd);
2341
		if (ret)
2342
			goto queue_full;
2343 2344
		break;
	case DMA_TO_DEVICE:
2345 2346
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.rx_data_octets);
2347 2348 2349
		/*
		 * Check if we need to send READ payload for BIDI-COMMAND
		 */
2350
		if (cmd->se_cmd_flags & SCF_BIDI) {
2351 2352
			atomic_long_add(cmd->data_length,
					&cmd->se_lun->lun_stats.tx_data_octets);
2353
			ret = cmd->se_tfo->queue_data_in(cmd);
2354
			if (ret)
2355
				goto queue_full;
2356 2357
			break;
		}
2358
		/* fall through */
2359
	case DMA_NONE:
2360
queue_status:
2361
		trace_target_cmd_complete(cmd);
2362
		ret = cmd->se_tfo->queue_status(cmd);
2363
		if (ret)
2364
			goto queue_full;
2365 2366 2367 2368 2369 2370 2371
		break;
	default:
		break;
	}

	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2372 2373 2374
	return;

queue_full:
2375
	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2376
		" data_direction: %d\n", cmd, cmd->data_direction);
2377 2378

	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2379 2380
}

2381
void target_free_sgl(struct scatterlist *sgl, int nents)
2382
{
2383
	sgl_free_n_order(sgl, nents, 0);
2384
}
2385
EXPORT_SYMBOL(target_free_sgl);
2386

2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
{
	/*
	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
	 * emulation, and free + reset pointers if necessary..
	 */
	if (!cmd->t_data_sg_orig)
		return;

	kfree(cmd->t_data_sg);
	cmd->t_data_sg = cmd->t_data_sg_orig;
	cmd->t_data_sg_orig = NULL;
	cmd->t_data_nents = cmd->t_data_nents_orig;
	cmd->t_data_nents_orig = 0;
}

2403 2404
static inline void transport_free_pages(struct se_cmd *cmd)
{
2405
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2406
		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2407 2408 2409 2410
		cmd->t_prot_sg = NULL;
		cmd->t_prot_nents = 0;
	}

2411
	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2412 2413 2414 2415 2416
		/*
		 * Release special case READ buffer payload required for
		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
		 */
		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2417
			target_free_sgl(cmd->t_bidi_data_sg,
2418 2419 2420 2421
					   cmd->t_bidi_data_nents);
			cmd->t_bidi_data_sg = NULL;
			cmd->t_bidi_data_nents = 0;
		}
2422
		transport_reset_sgl_orig(cmd);
2423
		return;
2424 2425
	}
	transport_reset_sgl_orig(cmd);
2426

2427
	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2428 2429
	cmd->t_data_sg = NULL;
	cmd->t_data_nents = 0;
2430

2431
	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2432 2433
	cmd->t_bidi_data_sg = NULL;
	cmd->t_bidi_data_nents = 0;
2434 2435
}

2436
void *transport_kmap_data_sg(struct se_cmd *cmd)
2437
{
2438
	struct scatterlist *sg = cmd->t_data_sg;
2439 2440
	struct page **pages;
	int i;
2441 2442

	/*
2443 2444 2445
	 * We need to take into account a possible offset here for fabrics like
	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2446
	 */
2447 2448
	if (!cmd->t_data_nents)
		return NULL;
2449 2450 2451

	BUG_ON(!sg);
	if (cmd->t_data_nents == 1)
2452 2453 2454
		return kmap(sg_page(sg)) + sg->offset;

	/* >1 page. use vmap */
2455
	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2456
	if (!pages)
2457 2458 2459 2460 2461 2462 2463 2464 2465
		return NULL;

	/* convert sg[] to pages[] */
	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
		pages[i] = sg_page(sg);
	}

	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
	kfree(pages);
2466
	if (!cmd->t_data_vmap)
2467 2468 2469
		return NULL;

	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2470
}
2471
EXPORT_SYMBOL(transport_kmap_data_sg);
2472

2473
void transport_kunmap_data_sg(struct se_cmd *cmd)
2474
{
2475
	if (!cmd->t_data_nents) {
2476
		return;
2477
	} else if (cmd->t_data_nents == 1) {
2478
		kunmap(sg_page(cmd->t_data_sg));
2479 2480
		return;
	}
2481 2482 2483

	vunmap(cmd->t_data_vmap);
	cmd->t_data_vmap = NULL;
2484
}
2485
EXPORT_SYMBOL(transport_kunmap_data_sg);
2486

2487
int
2488
target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2489
		 bool zero_page, bool chainable)
2490
{
2491
	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2492

2493 2494
	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
	return *sgl ? 0 : -ENOMEM;
2495
}
2496
EXPORT_SYMBOL(target_alloc_sgl);
2497

2498
/*
2499 2500 2501
 * Allocate any required resources to execute the command.  For writes we
 * might not have the payload yet, so notify the fabric via a call to
 * ->write_pending instead. Otherwise place it on the execution queue.
2502
 */
2503 2504
sense_reason_t
transport_generic_new_cmd(struct se_cmd *cmd)
2505
{
2506
	unsigned long flags;
2507
	int ret = 0;
2508
	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2509

2510 2511 2512
	if (cmd->prot_op != TARGET_PROT_NORMAL &&
	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2513
				       cmd->prot_length, true, false);
2514 2515 2516 2517
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
	}

2518 2519 2520
	/*
	 * Determine is the TCM fabric module has already allocated physical
	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2521
	 * beforehand.
2522
	 */
2523 2524
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
	    cmd->data_length) {
2525

2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
		if ((cmd->se_cmd_flags & SCF_BIDI) ||
		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
			u32 bidi_length;

			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
				bidi_length = cmd->t_task_nolb *
					      cmd->se_dev->dev_attrib.block_size;
			else
				bidi_length = cmd->data_length;

			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
					       &cmd->t_bidi_data_nents,
2538
					       bidi_length, zero_flag, false);
2539 2540 2541 2542
			if (ret < 0)
				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		}

2543
		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2544
				       cmd->data_length, zero_flag, false);
2545
		if (ret < 0)
2546
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
		    cmd->data_length) {
		/*
		 * Special case for COMPARE_AND_WRITE with fabrics
		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
		 */
		u32 caw_length = cmd->t_task_nolb *
				 cmd->se_dev->dev_attrib.block_size;

		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
				       &cmd->t_bidi_data_nents,
2558
				       caw_length, zero_flag, false);
2559 2560
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2561 2562
	}
	/*
2563 2564 2565
	 * If this command is not a write we can execute it right here,
	 * for write buffers we need to notify the fabric driver first
	 * and let it call back once the write buffers are ready.
2566
	 */
2567
	target_add_to_state_list(cmd);
2568
	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2569 2570 2571
		target_execute_cmd(cmd);
		return 0;
	}
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd->t_state = TRANSPORT_WRITE_PENDING;
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
	 */
	if (cmd->transport_state & CMD_T_STOP) {
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			 __func__, __LINE__, cmd->tag);

		spin_unlock_irqrestore(&cmd->t_state_lock, flags);

		complete_all(&cmd->t_transport_stop_comp);
2586
		return 0;
2587 2588 2589
	}
	cmd->transport_state &= ~CMD_T_ACTIVE;
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2590 2591

	ret = cmd->se_tfo->write_pending(cmd);
2592
	if (ret)
2593 2594
		goto queue_full;

2595
	return 0;
2596

2597 2598
queue_full:
	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2599
	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2600
	return 0;
2601
}
2602
EXPORT_SYMBOL(transport_generic_new_cmd);
2603

2604
static void transport_write_pending_qf(struct se_cmd *cmd)
2605
{
2606
	unsigned long flags;
2607
	int ret;
2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619
	bool stop;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

	if (stop) {
		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
		complete_all(&cmd->t_transport_stop_comp);
		return;
	}
2620 2621

	ret = cmd->se_tfo->write_pending(cmd);
2622
	if (ret) {
2623 2624
		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
			 cmd);
2625
		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2626
	}
2627 2628
}

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641
static bool
__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
			   unsigned long *flags);

static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
{
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}

2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662
/*
 * This function is called by frontend drivers after processing of a command
 * has finished.
 *
 * The protocol for ensuring that either the regular flow or the TMF
 * code drops one reference is as follows:
 * - Calling .queue_data_in(), .queue_status() or queue_tm_rsp() will cause
 *   the frontend driver to drop one reference, synchronously or asynchronously.
 * - During regular command processing the target core sets CMD_T_COMPLETE
 *   before invoking one of the .queue_*() functions.
 * - The code that aborts commands skips commands and TMFs for which
 *   CMD_T_COMPLETE has been set.
 * - CMD_T_ABORTED is set atomically after the CMD_T_COMPLETE check for
 *   commands that will be aborted.
 * - If the CMD_T_ABORTED flag is set but CMD_T_TAS has not been set
 *   transport_generic_free_cmd() skips its call to target_put_sess_cmd().
 * - For aborted commands for which CMD_T_TAS has been set .queue_status() will
 *   be called and will drop a reference.
 * - For aborted commands for which CMD_T_TAS has not been set .aborted_task()
 *   will be called. transport_cmd_finish_abort() will drop the final reference.
 */
2663
int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2664
{
2665
	DECLARE_COMPLETION_ONSTACK(compl);
2666
	int ret = 0;
2667
	bool aborted = false, tas = false;
2668

2669 2670 2671 2672
	if (wait_for_tasks)
		target_wait_free_cmd(cmd, &aborted, &tas);

	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD) {
2673 2674 2675 2676 2677
		/*
		 * Handle WRITE failure case where transport_generic_new_cmd()
		 * has already added se_cmd to state_list, but fabric has
		 * failed command before I/O submission.
		 */
2678
		if (cmd->state_active)
2679
			target_remove_from_state_list(cmd);
2680

2681
		if (cmd->se_lun)
2682
			transport_lun_remove_cmd(cmd);
2683
	}
2684 2685
	if (aborted)
		cmd->compl = &compl;
2686 2687
	if (!aborted || tas)
		ret = target_put_sess_cmd(cmd);
2688 2689
	if (aborted) {
		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2690
		wait_for_completion(&compl);
2691
		ret = 1;
2692
	}
2693
	return ret;
2694 2695 2696
}
EXPORT_SYMBOL(transport_generic_free_cmd);

2697 2698
/**
 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2699
 * @se_cmd:	command descriptor to add
2700
 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2701
 */
2702
int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2703
{
2704
	struct se_session *se_sess = se_cmd->se_sess;
2705
	unsigned long flags;
2706
	int ret = 0;
2707

2708 2709 2710 2711 2712
	/*
	 * Add a second kref if the fabric caller is expecting to handle
	 * fabric acknowledgement that requires two target_put_sess_cmd()
	 * invocations before se_cmd descriptor release.
	 */
2713
	if (ack_kref) {
2714 2715 2716
		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
			return -EINVAL;

2717 2718
		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
	}
2719

2720
	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2721 2722 2723 2724
	if (se_sess->sess_tearing_down) {
		ret = -ESHUTDOWN;
		goto out;
	}
2725
	se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2726
	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2727
out:
2728
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2729 2730

	if (ret && ack_kref)
2731
		target_put_sess_cmd(se_cmd);
2732

2733
	return ret;
2734
}
2735
EXPORT_SYMBOL(target_get_sess_cmd);
2736

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
static void target_free_cmd_mem(struct se_cmd *cmd)
{
	transport_free_pages(cmd);

	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
		core_tmr_release_req(cmd->se_tmr_req);
	if (cmd->t_task_cdb != cmd->__t_task_cdb)
		kfree(cmd->t_task_cdb);
}

2747
static void target_release_cmd_kref(struct kref *kref)
2748
{
2749 2750
	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
	struct se_session *se_sess = se_cmd->se_sess;
2751
	struct completion *compl = se_cmd->compl;
2752
	unsigned long flags;
2753

2754 2755
	if (se_sess) {
		spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2756
		list_del_init(&se_cmd->se_cmd_list);
2757 2758
		if (list_empty(&se_sess->sess_cmd_list))
			wake_up(&se_sess->cmd_list_wq);
2759
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2760 2761
	}

2762
	target_free_cmd_mem(se_cmd);
2763
	se_cmd->se_tfo->release_cmd(se_cmd);
2764 2765
	if (compl)
		complete(compl);
2766 2767
}

2768 2769 2770 2771 2772 2773
/**
 * target_put_sess_cmd - decrease the command reference count
 * @se_cmd:	command to drop a reference from
 *
 * Returns 1 if and only if this target_put_sess_cmd() call caused the
 * refcount to drop to zero. Returns zero otherwise.
2774
 */
2775
int target_put_sess_cmd(struct se_cmd *se_cmd)
2776
{
2777
	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2778 2779 2780
}
EXPORT_SYMBOL(target_put_sess_cmd);

2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882
static const char *data_dir_name(enum dma_data_direction d)
{
	switch (d) {
	case DMA_BIDIRECTIONAL:	return "BIDI";
	case DMA_TO_DEVICE:	return "WRITE";
	case DMA_FROM_DEVICE:	return "READ";
	case DMA_NONE:		return "NONE";
	}

	return "(?)";
}

static const char *cmd_state_name(enum transport_state_table t)
{
	switch (t) {
	case TRANSPORT_NO_STATE:	return "NO_STATE";
	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
	case TRANSPORT_PROCESSING:	return "PROCESSING";
	case TRANSPORT_COMPLETE:	return "COMPLETE";
	case TRANSPORT_ISTATE_PROCESSING:
					return "ISTATE_PROCESSING";
	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
	}

	return "(?)";
}

static void target_append_str(char **str, const char *txt)
{
	char *prev = *str;

	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
		kstrdup(txt, GFP_ATOMIC);
	kfree(prev);
}

/*
 * Convert a transport state bitmask into a string. The caller is
 * responsible for freeing the returned pointer.
 */
static char *target_ts_to_str(u32 ts)
{
	char *str = NULL;

	if (ts & CMD_T_ABORTED)
		target_append_str(&str, "aborted");
	if (ts & CMD_T_ACTIVE)
		target_append_str(&str, "active");
	if (ts & CMD_T_COMPLETE)
		target_append_str(&str, "complete");
	if (ts & CMD_T_SENT)
		target_append_str(&str, "sent");
	if (ts & CMD_T_STOP)
		target_append_str(&str, "stop");
	if (ts & CMD_T_FABRIC_STOP)
		target_append_str(&str, "fabric_stop");

	return str;
}

static const char *target_tmf_name(enum tcm_tmreq_table tmf)
{
	switch (tmf) {
	case TMR_ABORT_TASK:		return "ABORT_TASK";
	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
	case TMR_LUN_RESET:		return "LUN_RESET";
	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
	case TMR_UNKNOWN:		break;
	}
	return "(?)";
}

void target_show_cmd(const char *pfx, struct se_cmd *cmd)
{
	char *ts_str = target_ts_to_str(cmd->transport_state);
	const u8 *cdb = cmd->t_task_cdb;
	struct se_tmr_req *tmf = cmd->se_tmr_req;

	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
			 pfx, cdb[0], cdb[1], cmd->tag,
			 data_dir_name(cmd->data_direction),
			 cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state), cmd->data_length,
			 kref_read(&cmd->cmd_kref), ts_str);
	} else {
		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
			 pfx, target_tmf_name(tmf->function), cmd->tag,
			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state),
			 kref_read(&cmd->cmd_kref), ts_str);
	}
	kfree(ts_str);
}
EXPORT_SYMBOL(target_show_cmd);

2883
/**
2884
 * target_sess_cmd_list_set_waiting - Set sess_tearing_down so no new commands are queued.
2885
 * @se_sess:	session to flag
2886
 */
2887
void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2888 2889 2890 2891
{
	unsigned long flags;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2892
	se_sess->sess_tearing_down = 1;
2893 2894
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
}
2895
EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2896

2897
/**
2898
 * target_wait_for_sess_cmds - Wait for outstanding commands
2899 2900
 * @se_sess:    session to wait for active I/O
 */
2901
void target_wait_for_sess_cmds(struct se_session *se_sess)
2902
{
2903 2904
	struct se_cmd *cmd;
	int ret;
2905

2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918
	WARN_ON_ONCE(!se_sess->sess_tearing_down);

	spin_lock_irq(&se_sess->sess_cmd_lock);
	do {
		ret = wait_event_interruptible_lock_irq_timeout(
				se_sess->cmd_list_wq,
				list_empty(&se_sess->sess_cmd_list),
				se_sess->sess_cmd_lock, 180 * HZ);
		list_for_each_entry(cmd, &se_sess->sess_cmd_list, se_cmd_list)
			target_show_cmd("session shutdown: still waiting for ",
					cmd);
	} while (ret <= 0);
	spin_unlock_irq(&se_sess->sess_cmd_lock);
2919 2920 2921
}
EXPORT_SYMBOL(target_wait_for_sess_cmds);

2922 2923 2924 2925 2926 2927 2928
static void target_lun_confirm(struct percpu_ref *ref)
{
	struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);

	complete(&lun->lun_ref_comp);
}

2929
void transport_clear_lun_ref(struct se_lun *lun)
2930
{
2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	/*
	 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
	 * the initial reference and schedule confirm kill to be
	 * executed after one full RCU grace period has completed.
	 */
	percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
	/*
	 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
	 * to call target_lun_confirm after lun->lun_ref has been marked
	 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
	 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
	 * fails for all new incoming I/O.
	 */
2944
	wait_for_completion(&lun->lun_ref_comp);
2945 2946 2947 2948 2949 2950 2951 2952 2953 2954
	/*
	 * The second completion waits for percpu_ref_put_many() to
	 * invoke ->release() after lun->lun_ref has switched to
	 * atomic_t mode, and lun->lun_ref.count has reached zero.
	 *
	 * At this point all target-core lun->lun_ref references have
	 * been dropped via transport_lun_remove_cmd(), and it's safe
	 * to proceed with the remaining LUN shutdown.
	 */
	wait_for_completion(&lun->lun_shutdown_comp);
2955 2956
}

2957 2958 2959 2960 2961
static bool
__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
			   bool *aborted, bool *tas, unsigned long *flags)
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
2962 2963
{

2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
	assert_spin_locked(&cmd->t_state_lock);
	WARN_ON_ONCE(!irqs_disabled());

	if (fabric_stop)
		cmd->transport_state |= CMD_T_FABRIC_STOP;

	if (cmd->transport_state & CMD_T_ABORTED)
		*aborted = true;

	if (cmd->transport_state & CMD_T_TAS)
		*tas = true;

2976
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2977
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2978
		return false;
2979

2980
	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2981
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2982
		return false;
2983

2984 2985 2986 2987
	if (!(cmd->transport_state & CMD_T_ACTIVE))
		return false;

	if (fabric_stop && *aborted)
2988
		return false;
2989

2990
	cmd->transport_state |= CMD_T_STOP;
2991

2992
	target_show_cmd("wait_for_tasks: Stopping ", cmd);
2993

2994
	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2995

2996 2997 2998
	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
					    180 * HZ))
		target_show_cmd("wait for tasks: ", cmd);
2999

3000
	spin_lock_irqsave(&cmd->t_state_lock, *flags);
3001
	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3002

3003 3004
	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3005

3006 3007 3008 3009
	return true;
}

/**
3010 3011
 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
 * @cmd: command to wait on
3012 3013 3014 3015 3016 3017 3018 3019
 */
bool transport_wait_for_tasks(struct se_cmd *cmd)
{
	unsigned long flags;
	bool ret, aborted = false, tas = false;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3020
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3021

3022
	return ret;
3023
}
3024
EXPORT_SYMBOL(transport_wait_for_tasks);
3025

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070
struct sense_info {
	u8 key;
	u8 asc;
	u8 ascq;
	bool add_sector_info;
};

static const struct sense_info sense_info_table[] = {
	[TCM_NO_SENSE] = {
		.key = NOT_READY
	},
	[TCM_NON_EXISTENT_LUN] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
	},
	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_SECTOR_COUNT_TOO_MANY] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_UNKNOWN_MODE_PAGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_CHECK_CONDITION_ABORT_CMD] = {
		.key = ABORTED_COMMAND,
		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
		.ascq = 0x03,
	},
	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
		.key = ABORTED_COMMAND,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
	},
	[TCM_INVALID_CDB_FIELD] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_INVALID_PARAMETER_LIST] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
	},
3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
	[TCM_TOO_MANY_TARGET_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
	},
	[TCM_TOO_MANY_SEGMENT_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
	},
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129
	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
	},
	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
	},
	[TCM_SERVICE_CRC_ERROR] = {
		.key = ABORTED_COMMAND,
		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
		.ascq = 0x05, /* N/A */
	},
	[TCM_SNACK_REJECTED] = {
		.key = ABORTED_COMMAND,
		.asc = 0x11, /* READ ERROR */
		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
	},
	[TCM_WRITE_PROTECTED] = {
		.key = DATA_PROTECT,
		.asc = 0x27, /* WRITE PROTECTED */
	},
	[TCM_ADDRESS_OUT_OF_RANGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
	},
	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
		.key = UNIT_ATTENTION,
	},
	[TCM_CHECK_CONDITION_NOT_READY] = {
		.key = NOT_READY,
	},
	[TCM_MISCOMPARE_VERIFY] = {
		.key = MISCOMPARE,
		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
		.ascq = 0x00,
	},
	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3130
		.key = ABORTED_COMMAND,
3131 3132 3133 3134 3135
		.asc = 0x10,
		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3136
		.key = ABORTED_COMMAND,
3137 3138 3139 3140 3141
		.asc = 0x10,
		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3142
		.key = ABORTED_COMMAND,
3143 3144 3145 3146
		.asc = 0x10,
		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
		.add_sector_info = true,
	},
3147 3148 3149 3150 3151 3152
	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
		.key = COPY_ABORTED,
		.asc = 0x0d,
		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */

	},
3153 3154 3155 3156 3157 3158 3159 3160 3161 3162
	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
		/*
		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
		 * Solaris initiators.  Returning NOT READY instead means the
		 * operations will be retried a finite number of times and we
		 * can survive intermittent errors.
		 */
		.key = NOT_READY,
		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
	},
3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177
	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
		/*
		 * From spc4r22 section5.7.7,5.7.8
		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
		 * or a REGISTER AND IGNORE EXISTING KEY service action or
		 * REGISTER AND MOVE service actionis attempted,
		 * but there are insufficient device server resources to complete the
		 * operation, then the command shall be terminated with CHECK CONDITION
		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
		 */
		.key = ILLEGAL_REQUEST,
		.asc = 0x55,
		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
	},
3178 3179
};

3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190
/**
 * translate_sense_reason - translate a sense reason into T10 key, asc and ascq
 * @cmd: SCSI command in which the resulting sense buffer or SCSI status will
 *   be stored.
 * @reason: LIO sense reason code. If this argument has the value
 *   TCM_CHECK_CONDITION_UNIT_ATTENTION, try to dequeue a unit attention. If
 *   dequeuing a unit attention fails due to multiple commands being processed
 *   concurrently, set the command status to BUSY.
 *
 * Return: 0 upon success or -EINVAL if the sense buffer is too small.
 */
3191
static void translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3192 3193 3194 3195
{
	const struct sense_info *si;
	u8 *buffer = cmd->sense_buffer;
	int r = (__force int)reason;
3196
	u8 key, asc, ascq;
3197
	bool desc_format = target_sense_desc_format(cmd->se_dev);
3198 3199 3200 3201 3202 3203 3204

	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
		si = &sense_info_table[r];
	else
		si = &sense_info_table[(__force int)
				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];

3205
	key = si->key;
3206
	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3207 3208 3209 3210 3211
		if (!core_scsi3_ua_for_check_condition(cmd, &key, &asc,
						       &ascq)) {
			cmd->scsi_status = SAM_STAT_BUSY;
			return;
		}
3212 3213 3214 3215 3216 3217 3218 3219
	} else if (si->asc == 0) {
		WARN_ON_ONCE(cmd->scsi_asc == 0);
		asc = cmd->scsi_asc;
		ascq = cmd->scsi_ascq;
	} else {
		asc = si->asc;
		ascq = si->ascq;
	}
3220

3221 3222 3223
	cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
	cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
	cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3224
	scsi_build_sense_buffer(desc_format, buffer, key, asc, ascq);
3225
	if (si->add_sector_info)
3226 3227 3228
		WARN_ON_ONCE(scsi_set_sense_information(buffer,
							cmd->scsi_sense_length,
							cmd->bad_sector) < 0);
3229 3230
}

3231 3232 3233
int
transport_send_check_condition_and_sense(struct se_cmd *cmd,
		sense_reason_t reason, int from_transport)
3234 3235 3236
{
	unsigned long flags;

3237
	spin_lock_irqsave(&cmd->t_state_lock, flags);
3238
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3239
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3240 3241 3242
		return 0;
	}
	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3243
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3244

3245 3246
	if (!from_transport)
		translate_sense_reason(cmd, reason);
3247

3248
	trace_target_cmd_complete(cmd);
3249
	return cmd->se_tfo->queue_status(cmd);
3250 3251 3252
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);

3253 3254 3255
static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
3256
{
3257 3258
	int ret;

3259 3260 3261
	assert_spin_locked(&cmd->t_state_lock);
	WARN_ON_ONCE(!irqs_disabled());

3262 3263
	if (!(cmd->transport_state & CMD_T_ABORTED))
		return 0;
3264 3265 3266 3267
	/*
	 * If cmd has been aborted but either no status is to be sent or it has
	 * already been sent, just return
	 */
3268 3269 3270
	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
		if (send_status)
			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3271
		return 1;
3272
	}
3273

3274 3275
	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
		" 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3276

3277
	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3278
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3279
	trace_target_cmd_complete(cmd);
3280 3281

	spin_unlock_irq(&cmd->t_state_lock);
3282 3283 3284
	ret = cmd->se_tfo->queue_status(cmd);
	if (ret)
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3285
	spin_lock_irq(&cmd->t_state_lock);
3286 3287

	return 1;
3288
}
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299

int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
{
	int ret;

	spin_lock_irq(&cmd->t_state_lock);
	ret = __transport_check_aborted_status(cmd, send_status);
	spin_unlock_irq(&cmd->t_state_lock);

	return ret;
}
3300 3301 3302 3303
EXPORT_SYMBOL(transport_check_aborted_status);

void transport_send_task_abort(struct se_cmd *cmd)
{
3304
	unsigned long flags;
3305
	int ret;
3306 3307

	spin_lock_irqsave(&cmd->t_state_lock, flags);
3308
	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3309 3310 3311 3312 3313
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3314 3315 3316 3317 3318 3319 3320
	/*
	 * If there are still expected incoming fabric WRITEs, we wait
	 * until until they have completed before sending a TASK_ABORTED
	 * response.  This response with TASK_ABORTED status will be
	 * queued back to fabric module by transport_check_aborted_status().
	 */
	if (cmd->data_direction == DMA_TO_DEVICE) {
3321
		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3322 3323 3324 3325 3326
			spin_lock_irqsave(&cmd->t_state_lock, flags);
			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
				goto send_abort;
			}
3327
			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3328
			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3329
			return;
3330 3331
		}
	}
3332
send_abort:
3333
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3334

3335 3336
	transport_lun_remove_cmd(cmd);

3337 3338
	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
		 cmd->t_task_cdb[0], cmd->tag);
3339

3340
	trace_target_cmd_complete(cmd);
3341 3342 3343
	ret = cmd->se_tfo->queue_status(cmd);
	if (ret)
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3344 3345
}

3346
static void target_tmr_work(struct work_struct *work)
3347
{
3348
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3349
	struct se_device *dev = cmd->se_dev;
3350
	struct se_tmr_req *tmr = cmd->se_tmr_req;
3351
	unsigned long flags;
3352 3353
	int ret;

3354 3355 3356 3357 3358 3359 3360 3361
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if (cmd->transport_state & CMD_T_ABORTED) {
		tmr->response = TMR_FUNCTION_REJECTED;
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		goto check_stop;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3362
	switch (tmr->function) {
3363
	case TMR_ABORT_TASK:
3364
		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3365
		break;
3366 3367 3368
	case TMR_ABORT_TASK_SET:
	case TMR_CLEAR_ACA:
	case TMR_CLEAR_TASK_SET:
3369 3370
		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
		break;
3371
	case TMR_LUN_RESET:
3372 3373 3374
		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
					 TMR_FUNCTION_REJECTED;
3375 3376 3377 3378 3379
		if (tmr->response == TMR_FUNCTION_COMPLETE) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x29,
					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
		}
3380
		break;
3381
	case TMR_TARGET_WARM_RESET:
3382 3383
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
3384
	case TMR_TARGET_COLD_RESET:
3385 3386 3387
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	default:
3388
		pr_err("Unknown TMR function: 0x%02x.\n",
3389 3390 3391 3392 3393
				tmr->function);
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	}

3394 3395 3396 3397 3398 3399 3400
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if (cmd->transport_state & CMD_T_ABORTED) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		goto check_stop;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3401
	cmd->se_tfo->queue_tm_rsp(cmd);
3402

3403
check_stop:
3404
	transport_lun_remove_cmd(cmd);
3405
	transport_cmd_check_stop_to_fabric(cmd);
3406 3407
}

3408 3409
int transport_generic_handle_tmr(
	struct se_cmd *cmd)
3410
{
3411
	unsigned long flags;
3412
	bool aborted = false;
3413 3414

	spin_lock_irqsave(&cmd->t_state_lock, flags);
3415 3416 3417 3418 3419 3420
	if (cmd->transport_state & CMD_T_ABORTED) {
		aborted = true;
	} else {
		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
		cmd->transport_state |= CMD_T_ACTIVE;
	}
3421 3422
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3423 3424 3425 3426
	if (aborted) {
		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
			"ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
			cmd->se_tmr_req->ref_task_tag, cmd->tag);
3427
		transport_lun_remove_cmd(cmd);
3428 3429 3430 3431
		transport_cmd_check_stop_to_fabric(cmd);
		return 0;
	}

3432 3433
	INIT_WORK(&cmd->work, target_tmr_work);
	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3434 3435
	return 0;
}
3436
EXPORT_SYMBOL(transport_generic_handle_tmr);
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

bool
target_check_wce(struct se_device *dev)
{
	bool wce = false;

	if (dev->transport->get_write_cache)
		wce = dev->transport->get_write_cache(dev);
	else if (dev->dev_attrib.emulate_write_cache > 0)
		wce = true;

	return wce;
}

bool
target_check_fua(struct se_device *dev)
{
	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
}