target_core_transport.c 93.4 KB
Newer Older
1 2 3 4 5
/*******************************************************************************
 * Filename:  target_core_transport.c
 *
 * This file contains the Generic Target Engine Core.
 *
6
 * (c) Copyright 2002-2013 Datera, Inc.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
 *
 * Nicholas A. Bellinger <nab@kernel.org>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 ******************************************************************************/

#include <linux/net.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/kthread.h>
#include <linux/in.h>
#include <linux/cdrom.h>
35
#include <linux/module.h>
36
#include <linux/ratelimit.h>
37
#include <linux/vmalloc.h>
38 39 40
#include <asm/unaligned.h>
#include <net/sock.h>
#include <net/tcp.h>
41
#include <scsi/scsi_proto.h>
42
#include <scsi/scsi_common.h>
43 44

#include <target/target_core_base.h>
45 46
#include <target/target_core_backend.h>
#include <target/target_core_fabric.h>
47

C
Christoph Hellwig 已提交
48
#include "target_core_internal.h"
49 50 51 52
#include "target_core_alua.h"
#include "target_core_pr.h"
#include "target_core_ua.h"

53 54 55
#define CREATE_TRACE_POINTS
#include <trace/events/target.h>

56
static struct workqueue_struct *target_completion_wq;
57 58 59 60 61 62
static struct kmem_cache *se_sess_cache;
struct kmem_cache *se_ua_cache;
struct kmem_cache *t10_pr_reg_cache;
struct kmem_cache *t10_alua_lu_gp_cache;
struct kmem_cache *t10_alua_lu_gp_mem_cache;
struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 64
struct kmem_cache *t10_alua_lba_map_cache;
struct kmem_cache *t10_alua_lba_map_mem_cache;
65 66

static void transport_complete_task_attr(struct se_cmd *cmd);
67
static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68
static void transport_handle_queue_full(struct se_cmd *cmd,
69
		struct se_device *dev, int err, bool write_pending);
70
static void target_complete_ok_work(struct work_struct *work);
71

72
int init_se_kmem_caches(void)
73 74 75 76
{
	se_sess_cache = kmem_cache_create("se_sess_cache",
			sizeof(struct se_session), __alignof__(struct se_session),
			0, NULL);
77 78
	if (!se_sess_cache) {
		pr_err("kmem_cache_create() for struct se_session"
79
				" failed\n");
80
		goto out;
81 82 83 84
	}
	se_ua_cache = kmem_cache_create("se_ua_cache",
			sizeof(struct se_ua), __alignof__(struct se_ua),
			0, NULL);
85 86
	if (!se_ua_cache) {
		pr_err("kmem_cache_create() for struct se_ua failed\n");
87
		goto out_free_sess_cache;
88 89 90 91
	}
	t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
			sizeof(struct t10_pr_registration),
			__alignof__(struct t10_pr_registration), 0, NULL);
92 93
	if (!t10_pr_reg_cache) {
		pr_err("kmem_cache_create() for struct t10_pr_registration"
94
				" failed\n");
95
		goto out_free_ua_cache;
96 97 98 99
	}
	t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
			sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
			0, NULL);
100 101
	if (!t10_alua_lu_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
102
				" failed\n");
103
		goto out_free_pr_reg_cache;
104 105 106 107
	}
	t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
			sizeof(struct t10_alua_lu_gp_member),
			__alignof__(struct t10_alua_lu_gp_member), 0, NULL);
108 109
	if (!t10_alua_lu_gp_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
110
				"cache failed\n");
111
		goto out_free_lu_gp_cache;
112 113 114 115
	}
	t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
			sizeof(struct t10_alua_tg_pt_gp),
			__alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
116 117
	if (!t10_alua_tg_pt_gp_cache) {
		pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
118
				"cache failed\n");
119
		goto out_free_lu_gp_mem_cache;
120
	}
121 122 123 124 125 126 127
	t10_alua_lba_map_cache = kmem_cache_create(
			"t10_alua_lba_map_cache",
			sizeof(struct t10_alua_lba_map),
			__alignof__(struct t10_alua_lba_map), 0, NULL);
	if (!t10_alua_lba_map_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_"
				"cache failed\n");
128
		goto out_free_tg_pt_gp_cache;
129 130 131 132 133 134 135 136 137 138
	}
	t10_alua_lba_map_mem_cache = kmem_cache_create(
			"t10_alua_lba_map_mem_cache",
			sizeof(struct t10_alua_lba_map_member),
			__alignof__(struct t10_alua_lba_map_member), 0, NULL);
	if (!t10_alua_lba_map_mem_cache) {
		pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
				"cache failed\n");
		goto out_free_lba_map_cache;
	}
139

140 141 142
	target_completion_wq = alloc_workqueue("target_completion",
					       WQ_MEM_RECLAIM, 0);
	if (!target_completion_wq)
143
		goto out_free_lba_map_mem_cache;
144

145
	return 0;
146

147 148 149 150
out_free_lba_map_mem_cache:
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
out_free_lba_map_cache:
	kmem_cache_destroy(t10_alua_lba_map_cache);
151 152 153 154 155 156 157 158 159 160 161 162
out_free_tg_pt_gp_cache:
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
out_free_lu_gp_mem_cache:
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
out_free_lu_gp_cache:
	kmem_cache_destroy(t10_alua_lu_gp_cache);
out_free_pr_reg_cache:
	kmem_cache_destroy(t10_pr_reg_cache);
out_free_ua_cache:
	kmem_cache_destroy(se_ua_cache);
out_free_sess_cache:
	kmem_cache_destroy(se_sess_cache);
163
out:
164
	return -ENOMEM;
165 166
}

167
void release_se_kmem_caches(void)
168
{
169
	destroy_workqueue(target_completion_wq);
170 171 172 173 174 175
	kmem_cache_destroy(se_sess_cache);
	kmem_cache_destroy(se_ua_cache);
	kmem_cache_destroy(t10_pr_reg_cache);
	kmem_cache_destroy(t10_alua_lu_gp_cache);
	kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
	kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
176 177
	kmem_cache_destroy(t10_alua_lba_map_cache);
	kmem_cache_destroy(t10_alua_lba_map_mem_cache);
178 179
}

180 181 182
/* This code ensures unique mib indexes are handed out. */
static DEFINE_SPINLOCK(scsi_mib_index_lock);
static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
183 184 185 186 187 188 189 190

/*
 * Allocate a new row index for the entry type specified
 */
u32 scsi_get_new_index(scsi_index_t type)
{
	u32 new_index;

191
	BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
192

193 194 195
	spin_lock(&scsi_mib_index_lock);
	new_index = ++scsi_mib_index[type];
	spin_unlock(&scsi_mib_index_lock);
196 197 198 199

	return new_index;
}

200
void transport_subsystem_check_init(void)
201 202
{
	int ret;
203
	static int sub_api_initialized;
204

205 206 207
	if (sub_api_initialized)
		return;

208 209
	ret = request_module("target_core_iblock");
	if (ret != 0)
210
		pr_err("Unable to load target_core_iblock\n");
211 212 213

	ret = request_module("target_core_file");
	if (ret != 0)
214
		pr_err("Unable to load target_core_file\n");
215 216 217

	ret = request_module("target_core_pscsi");
	if (ret != 0)
218
		pr_err("Unable to load target_core_pscsi\n");
219

220 221 222 223
	ret = request_module("target_core_user");
	if (ret != 0)
		pr_err("Unable to load target_core_user\n");

224
	sub_api_initialized = 1;
225 226
}

227
struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
228 229 230 231
{
	struct se_session *se_sess;

	se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
232 233
	if (!se_sess) {
		pr_err("Unable to allocate struct se_session from"
234 235 236 237 238
				" se_sess_cache\n");
		return ERR_PTR(-ENOMEM);
	}
	INIT_LIST_HEAD(&se_sess->sess_list);
	INIT_LIST_HEAD(&se_sess->sess_acl_list);
239
	INIT_LIST_HEAD(&se_sess->sess_cmd_list);
240
	INIT_LIST_HEAD(&se_sess->sess_wait_list);
241
	spin_lock_init(&se_sess->sess_cmd_lock);
242
	se_sess->sup_prot_ops = sup_prot_ops;
243 244 245 246 247

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session);

248 249 250 251 252
int transport_alloc_session_tags(struct se_session *se_sess,
			         unsigned int tag_num, unsigned int tag_size)
{
	int rc;

K
Kees Cook 已提交
253
	se_sess->sess_cmd_map = kcalloc(tag_size, tag_num,
254
					GFP_KERNEL | __GFP_NOWARN | __GFP_RETRY_MAYFAIL);
255
	if (!se_sess->sess_cmd_map) {
256 257 258 259 260
		se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
		if (!se_sess->sess_cmd_map) {
			pr_err("Unable to allocate se_sess->sess_cmd_map\n");
			return -ENOMEM;
		}
261 262 263 264 265 266
	}

	rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
	if (rc < 0) {
		pr_err("Unable to init se_sess->sess_tag_pool,"
			" tag_num: %u\n", tag_num);
267
		kvfree(se_sess->sess_cmd_map);
268 269 270 271 272 273 274 275 276
		se_sess->sess_cmd_map = NULL;
		return -ENOMEM;
	}

	return 0;
}
EXPORT_SYMBOL(transport_alloc_session_tags);

struct se_session *transport_init_session_tags(unsigned int tag_num,
277 278
					       unsigned int tag_size,
					       enum target_prot_op sup_prot_ops)
279 280 281 282
{
	struct se_session *se_sess;
	int rc;

283 284 285 286 287 288 289 290 291 292 293
	if (tag_num != 0 && !tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_num:"
		       " %u, but zero tag_size\n", tag_num);
		return ERR_PTR(-EINVAL);
	}
	if (!tag_num && tag_size) {
		pr_err("init_session_tags called with percpu-ida tag_size:"
		       " %u, but zero tag_num\n", tag_size);
		return ERR_PTR(-EINVAL);
	}

294
	se_sess = transport_init_session(sup_prot_ops);
295 296 297 298 299 300 301 302 303 304 305 306 307
	if (IS_ERR(se_sess))
		return se_sess;

	rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
	if (rc < 0) {
		transport_free_session(se_sess);
		return ERR_PTR(-ENOMEM);
	}

	return se_sess;
}
EXPORT_SYMBOL(transport_init_session_tags);

308
/*
309
 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
310 311 312 313 314 315 316
 */
void __transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
317
	const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
318 319 320 321 322 323 324 325 326 327 328
	unsigned char buf[PR_REG_ISID_LEN];

	se_sess->se_tpg = se_tpg;
	se_sess->fabric_sess_ptr = fabric_sess_ptr;
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
	 *
	 * Only set for struct se_session's that will actually be moving I/O.
	 * eg: *NOT* discovery sessions.
	 */
	if (se_nacl) {
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
		/*
		 *
		 * Determine if fabric allows for T10-PI feature bits exposed to
		 * initiators for device backends with !dev->dev_attrib.pi_prot_type.
		 *
		 * If so, then always save prot_type on a per se_node_acl node
		 * basis and re-instate the previous sess_prot_type to avoid
		 * disabling PI from below any previously initiator side
		 * registered LUNs.
		 */
		if (se_nacl->saved_prot_type)
			se_sess->sess_prot_type = se_nacl->saved_prot_type;
		else if (tfo->tpg_check_prot_fabric_only)
			se_sess->sess_prot_type = se_nacl->saved_prot_type =
					tfo->tpg_check_prot_fabric_only(se_tpg);
344 345 346 347
		/*
		 * If the fabric module supports an ISID based TransportID,
		 * save this value in binary from the fabric I_T Nexus now.
		 */
348
		if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
349
			memset(&buf[0], 0, PR_REG_ISID_LEN);
350
			se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
351 352 353
					&buf[0], PR_REG_ISID_LEN);
			se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
		}
354

355 356 357 358 359 360 361 362 363 364 365 366 367
		spin_lock_irq(&se_nacl->nacl_sess_lock);
		/*
		 * The se_nacl->nacl_sess pointer will be set to the
		 * last active I_T Nexus for each struct se_node_acl.
		 */
		se_nacl->nacl_sess = se_sess;

		list_add_tail(&se_sess->sess_acl_list,
			      &se_nacl->acl_sess_list);
		spin_unlock_irq(&se_nacl->nacl_sess_lock);
	}
	list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);

368
	pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
369
		se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
370 371 372 373 374 375 376 377 378
}
EXPORT_SYMBOL(__transport_register_session);

void transport_register_session(
	struct se_portal_group *se_tpg,
	struct se_node_acl *se_nacl,
	struct se_session *se_sess,
	void *fabric_sess_ptr)
{
379 380 381
	unsigned long flags;

	spin_lock_irqsave(&se_tpg->session_lock, flags);
382
	__transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
383
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
384 385 386
}
EXPORT_SYMBOL(transport_register_session);

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
struct se_session *
target_alloc_session(struct se_portal_group *tpg,
		     unsigned int tag_num, unsigned int tag_size,
		     enum target_prot_op prot_op,
		     const char *initiatorname, void *private,
		     int (*callback)(struct se_portal_group *,
				     struct se_session *, void *))
{
	struct se_session *sess;

	/*
	 * If the fabric driver is using percpu-ida based pre allocation
	 * of I/O descriptor tags, go ahead and perform that setup now..
	 */
	if (tag_num != 0)
		sess = transport_init_session_tags(tag_num, tag_size, prot_op);
	else
		sess = transport_init_session(prot_op);

	if (IS_ERR(sess))
		return sess;

	sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
					(unsigned char *)initiatorname);
	if (!sess->se_node_acl) {
		transport_free_session(sess);
		return ERR_PTR(-EACCES);
	}
	/*
	 * Go ahead and perform any remaining fabric setup that is
	 * required before transport_register_session().
	 */
	if (callback != NULL) {
		int rc = callback(tpg, sess, private);
		if (rc) {
			transport_free_session(sess);
			return ERR_PTR(rc);
		}
	}

	transport_register_session(tpg, sess->se_node_acl, sess, private);
	return sess;
}
EXPORT_SYMBOL(target_alloc_session);

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455
ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
{
	struct se_session *se_sess;
	ssize_t len = 0;

	spin_lock_bh(&se_tpg->session_lock);
	list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
		if (!se_sess->se_node_acl)
			continue;
		if (!se_sess->se_node_acl->dynamic_node_acl)
			continue;
		if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
			break;

		len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
				se_sess->se_node_acl->initiatorname);
		len += 1; /* Include NULL terminator */
	}
	spin_unlock_bh(&se_tpg->session_lock);

	return len;
}
EXPORT_SYMBOL(target_show_dynamic_sessions);

456 457 458 459
static void target_complete_nacl(struct kref *kref)
{
	struct se_node_acl *nacl = container_of(kref,
				struct se_node_acl, acl_kref);
460
	struct se_portal_group *se_tpg = nacl->se_tpg;
461

462 463 464 465 466 467
	if (!nacl->dynamic_stop) {
		complete(&nacl->acl_free_comp);
		return;
	}

	mutex_lock(&se_tpg->acl_node_mutex);
468
	list_del_init(&nacl->acl_list);
469 470 471 472 473
	mutex_unlock(&se_tpg->acl_node_mutex);

	core_tpg_wait_for_nacl_pr_ref(nacl);
	core_free_device_list_for_node(nacl, se_tpg);
	kfree(nacl);
474 475 476 477 478 479
}

void target_put_nacl(struct se_node_acl *nacl)
{
	kref_put(&nacl->acl_kref, target_complete_nacl);
}
480
EXPORT_SYMBOL(target_put_nacl);
481

482 483 484
void transport_deregister_session_configfs(struct se_session *se_sess)
{
	struct se_node_acl *se_nacl;
485
	unsigned long flags;
486 487 488 489
	/*
	 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
	 */
	se_nacl = se_sess->se_node_acl;
490
	if (se_nacl) {
491
		spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
C
Christoph Hellwig 已提交
492 493
		if (!list_empty(&se_sess->sess_acl_list))
			list_del_init(&se_sess->sess_acl_list);
494 495 496 497 498 499 500 501 502 503 504 505
		/*
		 * If the session list is empty, then clear the pointer.
		 * Otherwise, set the struct se_session pointer from the tail
		 * element of the per struct se_node_acl active session list.
		 */
		if (list_empty(&se_nacl->acl_sess_list))
			se_nacl->nacl_sess = NULL;
		else {
			se_nacl->nacl_sess = container_of(
					se_nacl->acl_sess_list.prev,
					struct se_session, sess_acl_list);
		}
506
		spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
507 508 509 510 511 512
	}
}
EXPORT_SYMBOL(transport_deregister_session_configfs);

void transport_free_session(struct se_session *se_sess)
{
513
	struct se_node_acl *se_nacl = se_sess->se_node_acl;
514

515 516 517 518 519
	/*
	 * Drop the se_node_acl->nacl_kref obtained from within
	 * core_tpg_get_initiator_node_acl().
	 */
	if (se_nacl) {
520 521 522 523
		struct se_portal_group *se_tpg = se_nacl->se_tpg;
		const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
		unsigned long flags;

524
		se_sess->se_node_acl = NULL;
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

		/*
		 * Also determine if we need to drop the extra ->cmd_kref if
		 * it had been previously dynamically generated, and
		 * the endpoint is not caching dynamic ACLs.
		 */
		mutex_lock(&se_tpg->acl_node_mutex);
		if (se_nacl->dynamic_node_acl &&
		    !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
			spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
			if (list_empty(&se_nacl->acl_sess_list))
				se_nacl->dynamic_stop = true;
			spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);

			if (se_nacl->dynamic_stop)
540
				list_del_init(&se_nacl->acl_list);
541 542 543 544 545 546
		}
		mutex_unlock(&se_tpg->acl_node_mutex);

		if (se_nacl->dynamic_stop)
			target_put_nacl(se_nacl);

547 548
		target_put_nacl(se_nacl);
	}
549 550
	if (se_sess->sess_cmd_map) {
		percpu_ida_destroy(&se_sess->sess_tag_pool);
551
		kvfree(se_sess->sess_cmd_map);
552
	}
553 554 555 556 557 558 559
	kmem_cache_free(se_sess_cache, se_sess);
}
EXPORT_SYMBOL(transport_free_session);

void transport_deregister_session(struct se_session *se_sess)
{
	struct se_portal_group *se_tpg = se_sess->se_tpg;
560
	unsigned long flags;
561

562
	if (!se_tpg) {
563 564 565 566
		transport_free_session(se_sess);
		return;
	}

567
	spin_lock_irqsave(&se_tpg->session_lock, flags);
568 569 570
	list_del(&se_sess->sess_list);
	se_sess->se_tpg = NULL;
	se_sess->fabric_sess_ptr = NULL;
571
	spin_unlock_irqrestore(&se_tpg->session_lock, flags);
572

573
	pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
574
		se_tpg->se_tpg_tfo->get_fabric_name());
575
	/*
576
	 * If last kref is dropping now for an explicit NodeACL, awake sleeping
577
	 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
578
	 * removal context from within transport_free_session() code.
579 580 581
	 *
	 * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
	 * to release all remaining generate_node_acl=1 created ACL resources.
582 583
	 */

584
	transport_free_session(se_sess);
585 586 587
}
EXPORT_SYMBOL(transport_deregister_session);

588
static void target_remove_from_state_list(struct se_cmd *cmd)
589
{
590
	struct se_device *dev = cmd->se_dev;
591 592
	unsigned long flags;

593 594
	if (!dev)
		return;
595

596 597 598 599
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (cmd->state_active) {
		list_del(&cmd->state_list);
		cmd->state_active = false;
600
	}
601
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
602 603
}

604
static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
605 606 607
{
	unsigned long flags;

608
	target_remove_from_state_list(cmd);
609

610 611 612 613
	/*
	 * Clear struct se_cmd->se_lun before the handoff to FE.
	 */
	cmd->se_lun = NULL;
614

615
	spin_lock_irqsave(&cmd->t_state_lock, flags);
616 617
	/*
	 * Determine if frontend context caller is requesting the stopping of
618
	 * this command for frontend exceptions.
619
	 */
620
	if (cmd->transport_state & CMD_T_STOP) {
621 622
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
623

624
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
625

626
		complete_all(&cmd->t_transport_stop_comp);
627 628
		return 1;
	}
629
	cmd->transport_state &= ~CMD_T_ACTIVE;
630
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
631

632 633 634 635 636 637 638
	/*
	 * Some fabric modules like tcm_loop can release their internally
	 * allocated I/O reference and struct se_cmd now.
	 *
	 * Fabric modules are expected to return '1' here if the se_cmd being
	 * passed is released at this point, or zero if not being released.
	 */
639
	return cmd->se_tfo->check_stop_free(cmd);
640 641 642 643
}

static void transport_lun_remove_cmd(struct se_cmd *cmd)
{
644
	struct se_lun *lun = cmd->se_lun;
645

646
	if (!lun)
647 648
		return;

649 650
	if (cmpxchg(&cmd->lun_ref_active, true, false))
		percpu_ref_put(&lun->lun_ref);
651 652
}

653
int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
654
{
655
	bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
656
	int ret = 0;
657

658 659
	if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
		transport_lun_remove_cmd(cmd);
660 661 662 663 664 665
	/*
	 * Allow the fabric driver to unmap any resources before
	 * releasing the descriptor via TFO->release_cmd()
	 */
	if (remove)
		cmd->se_tfo->aborted_task(cmd);
666

667
	if (transport_cmd_check_stop_to_fabric(cmd))
668
		return 1;
669
	if (remove && ack_kref)
670
		ret = target_put_sess_cmd(cmd);
671 672

	return ret;
673 674
}

675 676 677 678
static void target_complete_failure_work(struct work_struct *work)
{
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);

679 680
	transport_generic_request_failure(cmd,
			TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
681 682
}

683
/*
684 685
 * Used when asking transport to copy Sense Data from the underlying
 * Linux/SCSI struct scsi_cmnd
686
 */
687
static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
688 689 690 691 692 693
{
	struct se_device *dev = cmd->se_dev;

	WARN_ON(!cmd->se_lun);

	if (!dev)
694
		return NULL;
695

696 697
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
		return NULL;
698

699
	cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
700

701
	pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
702
		dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
703
	return cmd->sense_buffer;
704 705
}

706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
{
	unsigned char *cmd_sense_buf;
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd_sense_buf = transport_get_sense_buffer(cmd);
	if (!cmd_sense_buf) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}

	cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
	memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}
EXPORT_SYMBOL(transport_copy_sense_to_cmd);

724
void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
725
{
726
	struct se_device *dev = cmd->se_dev;
727
	int success;
728 729
	unsigned long flags;

730 731
	cmd->scsi_status = scsi_status;

732
	spin_lock_irqsave(&cmd->t_state_lock, flags);
733 734
	switch (cmd->scsi_status) {
	case SAM_STAT_CHECK_CONDITION:
735
		if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
736
			success = 1;
737 738 739 740
		else
			success = 0;
		break;
	default:
741
		success = 1;
742
		break;
743 744
	}

745
	/*
746
	 * Check for case where an explicit ABORT_TASK has been received
747 748
	 * and transport_wait_for_tasks() will be waiting for completion..
	 */
749
	if (cmd->transport_state & CMD_T_ABORTED ||
750 751
	    cmd->transport_state & CMD_T_STOP) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
752 753 754 755 756 757 758 759 760
		/*
		 * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
		 * release se_device->caw_sem obtained by sbc_compare_and_write()
		 * since target_complete_ok_work() or target_complete_failure_work()
		 * won't be called to invoke the normal CAW completion callbacks.
		 */
		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
			up(&dev->caw_sem);
		}
761
		complete_all(&cmd->t_transport_stop_comp);
762
		return;
763
	} else if (!success) {
764
		INIT_WORK(&cmd->work, target_complete_failure_work);
765
	} else {
766
		INIT_WORK(&cmd->work, target_complete_ok_work);
767
	}
768 769

	cmd->t_state = TRANSPORT_COMPLETE;
770
	cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
771
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
772

773
	if (cmd->se_cmd_flags & SCF_USE_CPUID)
774
		queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
775 776
	else
		queue_work(target_completion_wq, &cmd->work);
777
}
778 779
EXPORT_SYMBOL(target_complete_cmd);

780 781
void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
{
782 783 784
	if ((scsi_status == SAM_STAT_GOOD ||
	     cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    length < cmd->data_length) {
785 786 787 788 789 790 791 792 793 794 795 796 797 798
		if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			cmd->residual_count += cmd->data_length - length;
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = cmd->data_length - length;
		}

		cmd->data_length = length;
	}

	target_complete_cmd(cmd, scsi_status);
}
EXPORT_SYMBOL(target_complete_cmd_with_length);

799
static void target_add_to_state_list(struct se_cmd *cmd)
800
{
801 802
	struct se_device *dev = cmd->se_dev;
	unsigned long flags;
803

804 805 806 807
	spin_lock_irqsave(&dev->execute_task_lock, flags);
	if (!cmd->state_active) {
		list_add_tail(&cmd->state_list, &dev->state_list);
		cmd->state_active = true;
808
	}
809
	spin_unlock_irqrestore(&dev->execute_task_lock, flags);
810 811
}

812
/*
813
 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
814
 */
815 816
static void transport_write_pending_qf(struct se_cmd *cmd);
static void transport_complete_qf(struct se_cmd *cmd);
817

818
void target_qf_do_work(struct work_struct *work)
819 820 821
{
	struct se_device *dev = container_of(work, struct se_device,
					qf_work_queue);
822
	LIST_HEAD(qf_cmd_list);
823 824 825
	struct se_cmd *cmd, *cmd_tmp;

	spin_lock_irq(&dev->qf_cmd_lock);
826 827
	list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
	spin_unlock_irq(&dev->qf_cmd_lock);
828

829
	list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
830
		list_del(&cmd->se_qf_node);
831
		atomic_dec_mb(&dev->dev_qf_count);
832

833
		pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
834
			" context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
835
			(cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
836 837
			(cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
			: "UNKNOWN");
838

839 840
		if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
			transport_write_pending_qf(cmd);
841 842
		else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
			 cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
843
			transport_complete_qf(cmd);
844 845 846
	}
}

847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
{
	switch (cmd->data_direction) {
	case DMA_NONE:
		return "NONE";
	case DMA_FROM_DEVICE:
		return "READ";
	case DMA_TO_DEVICE:
		return "WRITE";
	case DMA_BIDIRECTIONAL:
		return "BIDI";
	default:
		break;
	}

	return "UNKNOWN";
}

void transport_dump_dev_state(
	struct se_device *dev,
	char *b,
	int *bl)
{
	*bl += sprintf(b + *bl, "Status: ");
871
	if (dev->export_count)
872
		*bl += sprintf(b + *bl, "ACTIVATED");
873
	else
874 875
		*bl += sprintf(b + *bl, "DEACTIVATED");

876
	*bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
877
	*bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
878 879
		dev->dev_attrib.block_size,
		dev->dev_attrib.hw_max_sectors);
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
	*bl += sprintf(b + *bl, "        ");
}

void transport_dump_vpd_proto_id(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int len;

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Protocol Identifier: ");

	switch (vpd->protocol_identifier) {
	case 0x00:
		sprintf(buf+len, "Fibre Channel\n");
		break;
	case 0x10:
		sprintf(buf+len, "Parallel SCSI\n");
		break;
	case 0x20:
		sprintf(buf+len, "SSA\n");
		break;
	case 0x30:
		sprintf(buf+len, "IEEE 1394\n");
		break;
	case 0x40:
		sprintf(buf+len, "SCSI Remote Direct Memory Access"
				" Protocol\n");
		break;
	case 0x50:
		sprintf(buf+len, "Internet SCSI (iSCSI)\n");
		break;
	case 0x60:
		sprintf(buf+len, "SAS Serial SCSI Protocol\n");
		break;
	case 0x70:
		sprintf(buf+len, "Automation/Drive Interface Transport"
				" Protocol\n");
		break;
	case 0x80:
		sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n",
				vpd->protocol_identifier);
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
933
		pr_debug("%s", buf);
934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957
}

void
transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * Check if the Protocol Identifier Valid (PIV) bit is set..
	 *
	 * from spc3r23.pdf section 7.5.1
	 */
	 if (page_83[1] & 0x80) {
		vpd->protocol_identifier = (page_83[0] & 0xf0);
		vpd->protocol_identifier_set = 1;
		transport_dump_vpd_proto_id(vpd, NULL, 0);
	}
}
EXPORT_SYMBOL(transport_set_vpd_proto_id);

int transport_dump_vpd_assoc(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
958 959
	int ret = 0;
	int len;
960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Association: ");

	switch (vpd->association) {
	case 0x00:
		sprintf(buf+len, "addressed logical unit\n");
		break;
	case 0x10:
		sprintf(buf+len, "target port\n");
		break;
	case 0x20:
		sprintf(buf+len, "SCSI target device\n");
		break;
	default:
		sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
976
		ret = -EINVAL;
977 978 979 980 981 982
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
983
		pr_debug("%s", buf);
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005

	return ret;
}

int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identification association..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 297
	 */
	vpd->association = (page_83[1] & 0x30);
	return transport_dump_vpd_assoc(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_assoc);

int transport_dump_vpd_ident_type(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
1006 1007
	int ret = 0;
	int len;
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033

	memset(buf, 0, VPD_TMP_BUF_SIZE);
	len = sprintf(buf, "T10 VPD Identifier Type: ");

	switch (vpd->device_identifier_type) {
	case 0x00:
		sprintf(buf+len, "Vendor specific\n");
		break;
	case 0x01:
		sprintf(buf+len, "T10 Vendor ID based\n");
		break;
	case 0x02:
		sprintf(buf+len, "EUI-64 based\n");
		break;
	case 0x03:
		sprintf(buf+len, "NAA\n");
		break;
	case 0x04:
		sprintf(buf+len, "Relative target port identifier\n");
		break;
	case 0x08:
		sprintf(buf+len, "SCSI name string\n");
		break;
	default:
		sprintf(buf+len, "Unsupported: 0x%02x\n",
				vpd->device_identifier_type);
1034
		ret = -EINVAL;
1035 1036 1037
		break;
	}

1038 1039 1040
	if (p_buf) {
		if (p_buf_len < strlen(buf)+1)
			return -EINVAL;
1041
		strncpy(p_buf, buf, p_buf_len);
1042
	} else {
1043
		pr_debug("%s", buf);
1044
	}
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

	return ret;
}

int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
{
	/*
	 * The VPD identifier type..
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 298
	 */
	vpd->device_identifier_type = (page_83[1] & 0x0f);
	return transport_dump_vpd_ident_type(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident_type);

int transport_dump_vpd_ident(
	struct t10_vpd *vpd,
	unsigned char *p_buf,
	int p_buf_len)
{
	unsigned char buf[VPD_TMP_BUF_SIZE];
	int ret = 0;

	memset(buf, 0, VPD_TMP_BUF_SIZE);

	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
1073 1074
		snprintf(buf, sizeof(buf),
			"T10 VPD Binary Device Identifier: %s\n",
1075 1076 1077
			&vpd->device_identifier[0]);
		break;
	case 0x02: /* ASCII */
1078 1079
		snprintf(buf, sizeof(buf),
			"T10 VPD ASCII Device Identifier: %s\n",
1080 1081 1082
			&vpd->device_identifier[0]);
		break;
	case 0x03: /* UTF-8 */
1083 1084
		snprintf(buf, sizeof(buf),
			"T10 VPD UTF-8 Device Identifier: %s\n",
1085 1086 1087 1088 1089
			&vpd->device_identifier[0]);
		break;
	default:
		sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
			" 0x%02x", vpd->device_identifier_code_set);
1090
		ret = -EINVAL;
1091 1092 1093 1094 1095 1096
		break;
	}

	if (p_buf)
		strncpy(p_buf, buf, p_buf_len);
	else
1097
		pr_debug("%s", buf);
1098 1099 1100 1101 1102 1103 1104 1105

	return ret;
}

int
transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
{
	static const char hex_str[] = "0123456789abcdef";
1106
	int j = 0, i = 4; /* offset to start of the identifier */
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138

	/*
	 * The VPD Code Set (encoding)
	 *
	 * from spc3r23.pdf Section 7.6.3.1 Table 296
	 */
	vpd->device_identifier_code_set = (page_83[0] & 0x0f);
	switch (vpd->device_identifier_code_set) {
	case 0x01: /* Binary */
		vpd->device_identifier[j++] =
				hex_str[vpd->device_identifier_type];
		while (i < (4 + page_83[3])) {
			vpd->device_identifier[j++] =
				hex_str[(page_83[i] & 0xf0) >> 4];
			vpd->device_identifier[j++] =
				hex_str[page_83[i] & 0x0f];
			i++;
		}
		break;
	case 0x02: /* ASCII */
	case 0x03: /* UTF-8 */
		while (i < (4 + page_83[3]))
			vpd->device_identifier[j++] = page_83[i++];
		break;
	default:
		break;
	}

	return transport_dump_vpd_ident(vpd, NULL, 0);
}
EXPORT_SYMBOL(transport_set_vpd_ident);

1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
static sense_reason_t
target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
			       unsigned int size)
{
	u32 mtl;

	if (!cmd->se_tfo->max_data_sg_nents)
		return TCM_NO_SENSE;
	/*
	 * Check if fabric enforced maximum SGL entries per I/O descriptor
	 * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
	 * residual_count and reduce original cmd->data_length to maximum
	 * length based on single PAGE_SIZE entry scatter-lists.
	 */
	mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
	if (cmd->data_length > mtl) {
		/*
		 * If an existing CDB overflow is present, calculate new residual
		 * based on CDB size minus fabric maximum transfer length.
		 *
		 * If an existing CDB underflow is present, calculate new residual
		 * based on original cmd->data_length minus fabric maximum transfer
		 * length.
		 *
		 * Otherwise, set the underflow residual based on cmd->data_length
		 * minus fabric maximum transfer length.
		 */
		if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
			cmd->residual_count = (size - mtl);
		} else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
			u32 orig_dl = size + cmd->residual_count;
			cmd->residual_count = (orig_dl - mtl);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - mtl);
		}
		cmd->data_length = mtl;
		/*
		 * Reset sbc_check_prot() calculated protection payload
		 * length based upon the new smaller MTL.
		 */
		if (cmd->prot_length) {
			u32 sectors = (mtl / dev->dev_attrib.block_size);
			cmd->prot_length = dev->prot_length * sectors;
		}
	}
	return TCM_NO_SENSE;
}

1188 1189
sense_reason_t
target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1190 1191 1192 1193 1194 1195
{
	struct se_device *dev = cmd->se_dev;

	if (cmd->unknown_data_length) {
		cmd->data_length = size;
	} else if (size != cmd->data_length) {
1196
		pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1197 1198 1199 1200
			" %u does not match SCSI CDB Length: %u for SAM Opcode:"
			" 0x%02x\n", cmd->se_tfo->get_fabric_name(),
				cmd->data_length, size, cmd->t_task_cdb[0]);

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
		if (cmd->data_direction == DMA_TO_DEVICE) {
			if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
				pr_err_ratelimited("Rejecting underflow/overflow"
						   " for WRITE data CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
			/*
			 * Some fabric drivers like iscsi-target still expect to
			 * always reject overflow writes.  Reject this case until
			 * full fabric driver level support for overflow writes
			 * is introduced tree-wide.
			 */
			if (size > cmd->data_length) {
				pr_err_ratelimited("Rejecting overflow for"
						   " WRITE control CDB\n");
				return TCM_INVALID_CDB_FIELD;
			}
1218 1219 1220 1221 1222
		}
		/*
		 * Reject READ_* or WRITE_* with overflow/underflow for
		 * type SCF_SCSI_DATA_CDB.
		 */
1223
		if (dev->dev_attrib.block_size != 512)  {
1224 1225 1226 1227
			pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
				" CDB on non 512-byte sector setup subsystem"
				" plugin: %s\n", dev->transport->name);
			/* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1228
			return TCM_INVALID_CDB_FIELD;
1229
		}
1230 1231 1232 1233 1234 1235
		/*
		 * For the overflow case keep the existing fabric provided
		 * ->data_length.  Otherwise for the underflow case, reset
		 * ->data_length to the smaller SCSI expected data transfer
		 * length.
		 */
1236 1237 1238 1239 1240 1241
		if (size > cmd->data_length) {
			cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
			cmd->residual_count = (size - cmd->data_length);
		} else {
			cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
			cmd->residual_count = (cmd->data_length - size);
1242
			cmd->data_length = size;
1243 1244 1245
		}
	}

1246
	return target_check_max_data_sg_nents(cmd, dev, size);
1247 1248 1249

}

1250 1251 1252
/*
 * Used by fabric modules containing a local struct se_cmd within their
 * fabric dependent per I/O descriptor.
1253 1254
 *
 * Preserves the value of @cmd->tag.
1255 1256 1257
 */
void transport_init_se_cmd(
	struct se_cmd *cmd,
1258
	const struct target_core_fabric_ops *tfo,
1259 1260 1261 1262 1263 1264
	struct se_session *se_sess,
	u32 data_length,
	int data_direction,
	int task_attr,
	unsigned char *sense_buffer)
{
1265
	INIT_LIST_HEAD(&cmd->se_delayed_node);
1266
	INIT_LIST_HEAD(&cmd->se_qf_node);
1267
	INIT_LIST_HEAD(&cmd->se_cmd_list);
1268
	INIT_LIST_HEAD(&cmd->state_list);
1269
	init_completion(&cmd->t_transport_stop_comp);
1270
	init_completion(&cmd->cmd_wait_comp);
1271
	spin_lock_init(&cmd->t_state_lock);
1272
	INIT_WORK(&cmd->work, NULL);
1273
	kref_init(&cmd->cmd_kref);
1274 1275 1276 1277 1278 1279 1280

	cmd->se_tfo = tfo;
	cmd->se_sess = se_sess;
	cmd->data_length = data_length;
	cmd->data_direction = data_direction;
	cmd->sam_task_attr = task_attr;
	cmd->sense_buffer = sense_buffer;
1281 1282

	cmd->state_active = false;
1283 1284 1285
}
EXPORT_SYMBOL(transport_init_se_cmd);

1286 1287
static sense_reason_t
transport_check_alloc_task_attr(struct se_cmd *cmd)
1288
{
1289 1290
	struct se_device *dev = cmd->se_dev;

1291 1292 1293 1294
	/*
	 * Check if SAM Task Attribute emulation is enabled for this
	 * struct se_device storage object
	 */
1295
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1296 1297
		return 0;

C
Christoph Hellwig 已提交
1298
	if (cmd->sam_task_attr == TCM_ACA_TAG) {
1299
		pr_debug("SAM Task Attribute ACA"
1300
			" emulation is not supported\n");
1301
		return TCM_INVALID_CDB_FIELD;
1302
	}
1303

1304 1305 1306
	return 0;
}

1307 1308
sense_reason_t
target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1309
{
1310
	struct se_device *dev = cmd->se_dev;
1311
	sense_reason_t ret;
1312 1313 1314 1315 1316 1317

	/*
	 * Ensure that the received CDB is less than the max (252 + 8) bytes
	 * for VARIABLE_LENGTH_CMD
	 */
	if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1318
		pr_err("Received SCSI CDB with command_size: %d that"
1319 1320
			" exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
			scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1321
		return TCM_INVALID_CDB_FIELD;
1322 1323 1324 1325 1326 1327
	}
	/*
	 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
	 * allocate the additional extended CDB buffer now..  Otherwise
	 * setup the pointer from __t_task_cdb to t_task_cdb.
	 */
1328 1329
	if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
		cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1330
						GFP_KERNEL);
1331 1332
		if (!cmd->t_task_cdb) {
			pr_err("Unable to allocate cmd->t_task_cdb"
1333
				" %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1334
				scsi_command_size(cdb),
1335
				(unsigned long)sizeof(cmd->__t_task_cdb));
1336
			return TCM_OUT_OF_RESOURCES;
1337 1338
		}
	} else
1339
		cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1340
	/*
1341
	 * Copy the original CDB into cmd->
1342
	 */
1343
	memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1344

1345 1346
	trace_target_sequencer_start(cmd);

1347
	ret = dev->transport->parse_cdb(cmd);
1348 1349 1350 1351 1352
	if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
		pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
				    cmd->se_tfo->get_fabric_name(),
				    cmd->se_sess->se_node_acl->initiatorname,
				    cmd->t_task_cdb[0]);
1353 1354 1355 1356 1357
	if (ret)
		return ret;

	ret = transport_check_alloc_task_attr(cmd);
	if (ret)
1358
		return ret;
1359 1360

	cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1361
	atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1362 1363
	return 0;
}
1364
EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1365

1366 1367
/*
 * Used by fabric module frontends to queue tasks directly.
1368
 * May only be used from process context.
1369 1370 1371 1372
 */
int transport_handle_cdb_direct(
	struct se_cmd *cmd)
{
1373
	sense_reason_t ret;
1374

1375 1376
	if (!cmd->se_lun) {
		dump_stack();
1377
		pr_err("cmd->se_lun is NULL\n");
1378 1379 1380 1381
		return -EINVAL;
	}
	if (in_interrupt()) {
		dump_stack();
1382
		pr_err("transport_generic_handle_cdb cannot be called"
1383 1384 1385
				" from interrupt context\n");
		return -EINVAL;
	}
1386
	/*
1387 1388 1389
	 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
	 * outstanding descriptors are handled correctly during shutdown via
	 * transport_wait_for_tasks()
1390 1391 1392 1393 1394
	 *
	 * Also, we don't take cmd->t_state_lock here as we only expect
	 * this to be called for initial descriptor submission.
	 */
	cmd->t_state = TRANSPORT_NEW_CMD;
1395 1396
	cmd->transport_state |= CMD_T_ACTIVE;

1397 1398 1399 1400 1401 1402
	/*
	 * transport_generic_new_cmd() is already handling QUEUE_FULL,
	 * so follow TRANSPORT_NEW_CMD processing thread context usage
	 * and call transport_generic_request_failure() if necessary..
	 */
	ret = transport_generic_new_cmd(cmd);
1403 1404
	if (ret)
		transport_generic_request_failure(cmd, ret);
1405
	return 0;
1406 1407 1408
}
EXPORT_SYMBOL(transport_handle_cdb_direct);

1409
sense_reason_t
1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
		u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
{
	if (!sgl || !sgl_count)
		return 0;

	/*
	 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
	 * scatterlists already have been set to follow what the fabric
	 * passes for the original expected data transfer length.
	 */
	if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
		pr_warn("Rejecting SCSI DATA overflow for fabric using"
			" SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
		return TCM_INVALID_CDB_FIELD;
	}

	cmd->t_data_sg = sgl;
	cmd->t_data_nents = sgl_count;
1429 1430
	cmd->t_bidi_data_sg = sgl_bidi;
	cmd->t_bidi_data_nents = sgl_bidi_count;
1431 1432 1433 1434 1435

	cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
	return 0;
}

1436
/**
1437 1438
 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
 * 			 se_cmd + use pre-allocated SGL memory.
1439 1440 1441 1442 1443 1444 1445
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
1446
 * @task_attr: SAM task attribute
1447 1448
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
1449 1450 1451 1452
 * @sgl: struct scatterlist memory for unidirectional mapping
 * @sgl_count: scatterlist count for unidirectional mapping
 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1453 1454
 * @sgl_prot: struct scatterlist memory protection information
 * @sgl_prot_count: scatterlist count for protection information
1455
 *
1456 1457
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1458 1459 1460 1461
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
1462 1463
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
1464 1465
 */
int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1466
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1467 1468
		u32 data_length, int task_attr, int data_dir, int flags,
		struct scatterlist *sgl, u32 sgl_count,
1469 1470
		struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
		struct scatterlist *sgl_prot, u32 sgl_prot_count)
1471 1472
{
	struct se_portal_group *se_tpg;
1473 1474
	sense_reason_t rc;
	int ret;
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);
	BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
	BUG_ON(in_interrupt());
	/*
	 * Initialize se_cmd for target operation.  From this point
	 * exceptions are handled by sending exception status via
	 * target_core_fabric_ops->queue_status() callback
	 */
	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
				data_length, data_dir, task_attr, sense);
1487 1488 1489 1490 1491 1492

	if (flags & TARGET_SCF_USE_CPUID)
		se_cmd->se_cmd_flags |= SCF_USE_CPUID;
	else
		se_cmd->cpuid = WORK_CPU_UNBOUND;

1493 1494
	if (flags & TARGET_SCF_UNKNOWN_SIZE)
		se_cmd->unknown_data_length = 1;
1495 1496 1497 1498 1499 1500
	/*
	 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
	 * se_sess->sess_cmd_list.  A second kref_get here is necessary
	 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
	 * kref_put() to happen during fabric packet acknowledgement.
	 */
1501
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1502 1503
	if (ret)
		return ret;
1504 1505 1506 1507 1508 1509 1510 1511
	/*
	 * Signal bidirectional data payloads to target-core
	 */
	if (flags & TARGET_SCF_BIDI_OP)
		se_cmd->se_cmd_flags |= SCF_BIDI;
	/*
	 * Locate se_lun pointer and attach it to struct se_cmd
	 */
1512 1513 1514
	rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
	if (rc) {
		transport_send_check_condition_and_sense(se_cmd, rc, 0);
1515
		target_put_sess_cmd(se_cmd);
1516
		return 0;
1517
	}
1518 1519 1520 1521 1522 1523 1524

	rc = target_setup_cmd_from_cdb(se_cmd, cdb);
	if (rc != 0) {
		transport_generic_request_failure(se_cmd, rc);
		return 0;
	}

1525 1526 1527 1528 1529 1530 1531
	/*
	 * Save pointers for SGLs containing protection information,
	 * if present.
	 */
	if (sgl_prot_count) {
		se_cmd->t_prot_sg = sgl_prot;
		se_cmd->t_prot_nents = sgl_prot_count;
1532
		se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1533
	}
1534

1535 1536 1537 1538 1539 1540 1541 1542
	/*
	 * When a non zero sgl_count has been passed perform SGL passthrough
	 * mapping for pre-allocated fabric memory instead of having target
	 * core perform an internal SGL allocation..
	 */
	if (sgl_count != 0) {
		BUG_ON(!sgl);

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563
		/*
		 * A work-around for tcm_loop as some userspace code via
		 * scsi-generic do not memset their associated read buffers,
		 * so go ahead and do that here for type non-data CDBs.  Also
		 * note that this is currently guaranteed to be a single SGL
		 * for this case by target core in target_setup_cmd_from_cdb()
		 * -> transport_generic_cmd_sequencer().
		 */
		if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
		     se_cmd->data_direction == DMA_FROM_DEVICE) {
			unsigned char *buf = NULL;

			if (sgl)
				buf = kmap(sg_page(sgl)) + sgl->offset;

			if (buf) {
				memset(buf, 0, sgl->length);
				kunmap(sg_page(sgl));
			}
		}

1564 1565 1566
		rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
				sgl_bidi, sgl_bidi_count);
		if (rc != 0) {
1567
			transport_generic_request_failure(se_cmd, rc);
1568 1569 1570
			return 0;
		}
	}
1571

1572 1573 1574 1575 1576 1577
	/*
	 * Check if we need to delay processing because of ALUA
	 * Active/NonOptimized primary access state..
	 */
	core_alua_check_nonop_delay(se_cmd);

1578
	transport_handle_cdb_direct(se_cmd);
1579
	return 0;
1580
}
1581 1582
EXPORT_SYMBOL(target_submit_cmd_map_sgls);

1583
/**
1584 1585 1586 1587 1588 1589 1590 1591
 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @cdb: pointer to SCSI CDB
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
 * @data_length: fabric expected data transfer length
1592
 * @task_attr: SAM task attribute
1593 1594 1595
 * @data_dir: DMA data direction
 * @flags: flags for command submission from target_sc_flags_tables
 *
1596 1597
 * Task tags are supported if the caller has set @se_cmd->tag.
 *
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
 * Returns non zero to signal active I/O shutdown failure.  All other
 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
 * but still return zero here.
 *
 * This may only be called from process context, and also currently
 * assumes internal allocation of fabric payload buffer by target-core.
 *
 * It also assumes interal target core SGL memory allocation.
 */
int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1608
		unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1609 1610 1611 1612
		u32 data_length, int task_attr, int data_dir, int flags)
{
	return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
			unpacked_lun, data_length, task_attr, data_dir,
1613
			flags, NULL, 0, NULL, 0, NULL, 0);
1614
}
1615 1616
EXPORT_SYMBOL(target_submit_cmd);

1617 1618 1619 1620 1621 1622
static void target_complete_tmr_failure(struct work_struct *work)
{
	struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);

	se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
	se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1623

1624
	transport_lun_remove_cmd(se_cmd);
1625
	transport_cmd_check_stop_to_fabric(se_cmd);
1626 1627
}

1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
				       u64 *unpacked_lun)
{
	struct se_cmd *se_cmd;
	unsigned long flags;
	bool ret = false;

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
		if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
			continue;

		if (se_cmd->tag == tag) {
			*unpacked_lun = se_cmd->orig_fe_lun;
			ret = true;
			break;
		}
	}
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

	return ret;
}

1651 1652 1653 1654 1655 1656 1657 1658
/**
 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
 *                     for TMR CDBs
 *
 * @se_cmd: command descriptor to submit
 * @se_sess: associated se_sess for endpoint
 * @sense: pointer to SCSI sense buffer
 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1659
 * @fabric_tmr_ptr: fabric context for TMR req
1660
 * @tm_type: Type of TM request
1661 1662
 * @gfp: gfp type for caller
 * @tag: referenced task tag for TMR_ABORT_TASK
1663
 * @flags: submit cmd flags
1664 1665 1666 1667
 *
 * Callable from all contexts.
 **/

1668
int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
H
Hannes Reinecke 已提交
1669
		unsigned char *sense, u64 unpacked_lun,
1670
		void *fabric_tmr_ptr, unsigned char tm_type,
1671
		gfp_t gfp, u64 tag, int flags)
1672 1673 1674 1675 1676 1677 1678 1679
{
	struct se_portal_group *se_tpg;
	int ret;

	se_tpg = se_sess->se_tpg;
	BUG_ON(!se_tpg);

	transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
C
Christoph Hellwig 已提交
1680
			      0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1681 1682 1683 1684
	/*
	 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
	 * allocation failure.
	 */
1685
	ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1686 1687
	if (ret < 0)
		return -ENOMEM;
1688

1689 1690 1691
	if (tm_type == TMR_ABORT_TASK)
		se_cmd->se_tmr_req->ref_task_tag = tag;

1692
	/* See target_submit_cmd for commentary */
1693
	ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1694 1695 1696 1697
	if (ret) {
		core_tmr_release_req(se_cmd->se_tmr_req);
		return ret;
	}
1698 1699 1700 1701 1702 1703 1704 1705 1706
	/*
	 * If this is ABORT_TASK with no explicit fabric provided LUN,
	 * go ahead and search active session tags for a match to figure
	 * out unpacked_lun for the original se_cmd.
	 */
	if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
		if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
			goto failure;
	}
1707 1708

	ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1709 1710 1711
	if (ret)
		goto failure;

1712
	transport_generic_handle_tmr(se_cmd);
1713
	return 0;
1714 1715 1716 1717 1718 1719 1720 1721 1722

	/*
	 * For callback during failure handling, push this work off
	 * to process context with TMR_LUN_DOES_NOT_EXIST status.
	 */
failure:
	INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
	schedule_work(&se_cmd->work);
	return 0;
1723 1724 1725
}
EXPORT_SYMBOL(target_submit_tmr);

1726 1727 1728
/*
 * Handle SAM-esque emulation for generic transport request failures.
 */
1729 1730
void transport_generic_request_failure(struct se_cmd *cmd,
		sense_reason_t sense_reason)
1731
{
1732
	int ret = 0, post_ret = 0;
1733

1734 1735 1736
	pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
		 sense_reason);
	target_show_cmd("-----[ ", cmd);
1737 1738 1739 1740

	/*
	 * For SAM Task Attribute emulation for failed struct se_cmd
	 */
1741
	transport_complete_task_attr(cmd);
1742

1743 1744
	/*
	 * Handle special case for COMPARE_AND_WRITE failure, where the
1745
	 * callback is expected to drop the per device ->caw_sem.
1746 1747 1748
	 */
	if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
	     cmd->transport_complete_callback)
1749
		cmd->transport_complete_callback(cmd, false, &post_ret);
1750

1751 1752 1753
	if (transport_check_aborted_status(cmd, 1))
		return;

1754
	switch (sense_reason) {
1755 1756 1757 1758
	case TCM_NON_EXISTENT_LUN:
	case TCM_UNSUPPORTED_SCSI_OPCODE:
	case TCM_INVALID_CDB_FIELD:
	case TCM_INVALID_PARAMETER_LIST:
1759
	case TCM_PARAMETER_LIST_LENGTH_ERROR:
1760 1761 1762
	case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
	case TCM_UNKNOWN_MODE_PAGE:
	case TCM_WRITE_PROTECTED:
1763
	case TCM_ADDRESS_OUT_OF_RANGE:
1764 1765 1766
	case TCM_CHECK_CONDITION_ABORT_CMD:
	case TCM_CHECK_CONDITION_UNIT_ATTENTION:
	case TCM_CHECK_CONDITION_NOT_READY:
1767 1768 1769
	case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
	case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1770
	case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1771 1772 1773 1774
	case TCM_TOO_MANY_TARGET_DESCS:
	case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
	case TCM_TOO_MANY_SEGMENT_DESCS:
	case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1775
		break;
1776
	case TCM_OUT_OF_RESOURCES:
1777 1778
		cmd->scsi_status = SAM_STAT_TASK_SET_FULL;
		goto queue_status;
1779 1780 1781
	case TCM_LUN_BUSY:
		cmd->scsi_status = SAM_STAT_BUSY;
		goto queue_status;
1782
	case TCM_RESERVATION_CONFLICT:
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
		/*
		 * No SENSE Data payload for this case, set SCSI Status
		 * and queue the response to $FABRIC_MOD.
		 *
		 * Uses linux/include/scsi/scsi.h SAM status codes defs
		 */
		cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
		/*
		 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
		 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
		 * CONFLICT STATUS.
		 *
		 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
		 */
1797
		if (cmd->se_sess &&
1798 1799 1800 1801 1802
		    cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x2C,
					ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
		}
1803 1804

		goto queue_status;
1805
	default:
1806
		pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1807 1808
			cmd->t_task_cdb[0], sense_reason);
		sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1809 1810
		break;
	}
1811

1812
	ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1813
	if (ret)
1814
		goto queue_full;
1815

1816 1817
check_stop:
	transport_lun_remove_cmd(cmd);
A
Andy Grover 已提交
1818
	transport_cmd_check_stop_to_fabric(cmd);
1819 1820
	return;

1821 1822 1823 1824 1825
queue_status:
	trace_target_cmd_complete(cmd);
	ret = cmd->se_tfo->queue_status(cmd);
	if (!ret)
		goto check_stop;
1826
queue_full:
1827
	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1828
}
1829
EXPORT_SYMBOL(transport_generic_request_failure);
1830

1831
void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1832
{
1833
	sense_reason_t ret;
1834

1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
	if (!cmd->execute_cmd) {
		ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		goto err;
	}
	if (do_checks) {
		/*
		 * Check for an existing UNIT ATTENTION condition after
		 * target_handle_task_attr() has done SAM task attr
		 * checking, and possibly have already defered execution
		 * out to target_restart_delayed_cmds() context.
		 */
		ret = target_scsi3_ua_check(cmd);
		if (ret)
			goto err;

		ret = target_alua_state_check(cmd);
		if (ret)
			goto err;
1853

1854 1855 1856 1857
		ret = target_check_reservation(cmd);
		if (ret) {
			cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
			goto err;
1858
		}
1859
	}
1860 1861 1862 1863 1864 1865

	ret = cmd->execute_cmd(cmd);
	if (!ret)
		return;
err:
	spin_lock_irq(&cmd->t_state_lock);
1866
	cmd->transport_state &= ~CMD_T_SENT;
1867 1868 1869
	spin_unlock_irq(&cmd->t_state_lock);

	transport_generic_request_failure(cmd, ret);
1870 1871
}

1872 1873
static int target_write_prot_action(struct se_cmd *cmd)
{
1874
	u32 sectors;
1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
	/*
	 * Perform WRITE_INSERT of PI using software emulation when backend
	 * device has PI enabled, if the transport has not already generated
	 * PI using hardware WRITE_INSERT offload.
	 */
	switch (cmd->prot_op) {
	case TARGET_PROT_DOUT_INSERT:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
			sbc_dif_generate(cmd);
		break;
1885 1886 1887 1888 1889
	case TARGET_PROT_DOUT_STRIP:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
			break;

		sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1890 1891
		cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
					     sectors, 0, cmd->t_prot_sg, 0);
1892 1893
		if (unlikely(cmd->pi_err)) {
			spin_lock_irq(&cmd->t_state_lock);
1894
			cmd->transport_state &= ~CMD_T_SENT;
1895 1896 1897 1898 1899
			spin_unlock_irq(&cmd->t_state_lock);
			transport_generic_request_failure(cmd, cmd->pi_err);
			return -1;
		}
		break;
1900 1901 1902 1903 1904 1905 1906
	default:
		break;
	}

	return 0;
}

1907
static bool target_handle_task_attr(struct se_cmd *cmd)
1908 1909 1910
{
	struct se_device *dev = cmd->se_dev;

1911
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1912
		return false;
1913

1914 1915
	cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;

1916
	/*
L
Lucas De Marchi 已提交
1917
	 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1918 1919
	 * to allow the passed struct se_cmd list of tasks to the front of the list.
	 */
1920
	switch (cmd->sam_task_attr) {
C
Christoph Hellwig 已提交
1921
	case TCM_HEAD_TAG:
1922 1923
		pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
			 cmd->t_task_cdb[0]);
1924
		return false;
C
Christoph Hellwig 已提交
1925
	case TCM_ORDERED_TAG:
1926
		atomic_inc_mb(&dev->dev_ordered_sync);
1927

1928 1929
		pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
			 cmd->t_task_cdb[0]);
1930

1931
		/*
1932 1933
		 * Execute an ORDERED command if no other older commands
		 * exist that need to be completed first.
1934
		 */
1935
		if (!atomic_read(&dev->simple_cmds))
1936
			return false;
1937 1938
		break;
	default:
1939 1940 1941
		/*
		 * For SIMPLE and UNTAGGED Task Attribute commands
		 */
1942
		atomic_inc_mb(&dev->simple_cmds);
1943
		break;
1944
	}
1945

1946 1947
	if (atomic_read(&dev->dev_ordered_sync) == 0)
		return false;
1948

1949 1950 1951 1952
	spin_lock(&dev->delayed_cmd_lock);
	list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
	spin_unlock(&dev->delayed_cmd_lock);

1953 1954
	pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
		cmd->t_task_cdb[0], cmd->sam_task_attr);
1955 1956 1957
	return true;
}

1958 1959
static int __transport_check_aborted_status(struct se_cmd *, int);

1960 1961 1962 1963 1964
void target_execute_cmd(struct se_cmd *cmd)
{
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
1965 1966
	 *
	 * If the received CDB has aleady been aborted stop processing it here.
1967
	 */
1968
	spin_lock_irq(&cmd->t_state_lock);
1969 1970 1971 1972
	if (__transport_check_aborted_status(cmd, 1)) {
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}
1973
	if (cmd->transport_state & CMD_T_STOP) {
1974 1975
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
1976 1977

		spin_unlock_irq(&cmd->t_state_lock);
1978
		complete_all(&cmd->t_transport_stop_comp);
1979 1980 1981 1982
		return;
	}

	cmd->t_state = TRANSPORT_PROCESSING;
1983
	cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
1984
	cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
1985
	spin_unlock_irq(&cmd->t_state_lock);
1986 1987 1988

	if (target_write_prot_action(cmd))
		return;
1989

1990 1991
	if (target_handle_task_attr(cmd)) {
		spin_lock_irq(&cmd->t_state_lock);
1992
		cmd->transport_state &= ~CMD_T_SENT;
1993 1994 1995 1996
		spin_unlock_irq(&cmd->t_state_lock);
		return;
	}

1997
	__target_execute_cmd(cmd, true);
1998
}
1999
EXPORT_SYMBOL(target_execute_cmd);
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
/*
 * Process all commands up to the last received ORDERED task attribute which
 * requires another blocking boundary
 */
static void target_restart_delayed_cmds(struct se_device *dev)
{
	for (;;) {
		struct se_cmd *cmd;

		spin_lock(&dev->delayed_cmd_lock);
		if (list_empty(&dev->delayed_cmd_list)) {
			spin_unlock(&dev->delayed_cmd_lock);
			break;
		}

		cmd = list_entry(dev->delayed_cmd_list.next,
				 struct se_cmd, se_delayed_node);
		list_del(&cmd->se_delayed_node);
		spin_unlock(&dev->delayed_cmd_lock);

2021 2022
		cmd->transport_state |= CMD_T_SENT;

2023
		__target_execute_cmd(cmd, true);
2024

C
Christoph Hellwig 已提交
2025
		if (cmd->sam_task_attr == TCM_ORDERED_TAG)
2026 2027 2028 2029
			break;
	}
}

2030
/*
2031
 * Called from I/O completion to determine which dormant/delayed
2032 2033 2034 2035
 * and ordered cmds need to have their tasks added to the execution queue.
 */
static void transport_complete_task_attr(struct se_cmd *cmd)
{
2036
	struct se_device *dev = cmd->se_dev;
2037

2038
	if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2039 2040
		return;

2041 2042 2043
	if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
		goto restart;

C
Christoph Hellwig 已提交
2044
	if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2045
		atomic_dec_mb(&dev->simple_cmds);
2046
		dev->dev_cur_ordered_id++;
C
Christoph Hellwig 已提交
2047
	} else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2048
		dev->dev_cur_ordered_id++;
2049 2050
		pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
			 dev->dev_cur_ordered_id);
C
Christoph Hellwig 已提交
2051
	} else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2052
		atomic_dec_mb(&dev->dev_ordered_sync);
2053 2054

		dev->dev_cur_ordered_id++;
2055 2056
		pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
			 dev->dev_cur_ordered_id);
2057
	}
2058 2059
	cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;

2060
restart:
2061
	target_restart_delayed_cmds(dev);
2062 2063
}

2064
static void transport_complete_qf(struct se_cmd *cmd)
2065 2066 2067
{
	int ret = 0;

2068
	transport_complete_task_attr(cmd);
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080
	/*
	 * If a fabric driver ->write_pending() or ->queue_data_in() callback
	 * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
	 * the same callbacks should not be retried.  Return CHECK_CONDITION
	 * if a scsi_status is not already set.
	 *
	 * If a fabric driver ->queue_status() has returned non zero, always
	 * keep retrying no matter what..
	 */
	if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
		if (cmd->scsi_status)
			goto queue_status;
2081

2082 2083 2084 2085 2086
		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
		translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
		goto queue_status;
2087
	}
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	/*
	 * Check if we need to send a sense buffer from
	 * the struct se_cmd in question. We do NOT want
	 * to take this path of the IO has been marked as
	 * needing to be treated like a "normal read". This
	 * is the case if it's a tape read, and either the
	 * FM, EOM, or ILI bits are set, but there is no
	 * sense data.
	 */
	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2100 2101
		goto queue_status;

2102 2103
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2104 2105 2106
		/* queue status if not treating this as a normal read */
		if (cmd->scsi_status &&
		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2107 2108
			goto queue_status;

2109
		trace_target_cmd_complete(cmd);
2110 2111 2112
		ret = cmd->se_tfo->queue_data_in(cmd);
		break;
	case DMA_TO_DEVICE:
2113
		if (cmd->se_cmd_flags & SCF_BIDI) {
2114
			ret = cmd->se_tfo->queue_data_in(cmd);
2115
			break;
2116
		}
2117
		/* fall through */
2118
	case DMA_NONE:
2119
queue_status:
2120
		trace_target_cmd_complete(cmd);
2121 2122 2123 2124 2125 2126
		ret = cmd->se_tfo->queue_status(cmd);
		break;
	default:
		break;
	}

2127
	if (ret < 0) {
2128
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2129 2130 2131 2132
		return;
	}
	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2133 2134
}

2135 2136
static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
					int err, bool write_pending)
2137
{
2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153
	/*
	 * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
	 * ->queue_data_in() callbacks from new process context.
	 *
	 * Otherwise for other errors, transport_complete_qf() will send
	 * CHECK_CONDITION via ->queue_status() instead of attempting to
	 * retry associated fabric driver data-transfer callbacks.
	 */
	if (err == -EAGAIN || err == -ENOMEM) {
		cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
						 TRANSPORT_COMPLETE_QF_OK;
	} else {
		pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
		cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
	}

2154 2155
	spin_lock_irq(&dev->qf_cmd_lock);
	list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2156
	atomic_inc_mb(&dev->dev_qf_count);
2157 2158 2159 2160 2161
	spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);

	schedule_work(&cmd->se_dev->qf_work_queue);
}

2162
static bool target_read_prot_action(struct se_cmd *cmd)
2163
{
2164 2165 2166
	switch (cmd->prot_op) {
	case TARGET_PROT_DIN_STRIP:
		if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2167 2168 2169 2170 2171 2172 2173
			u32 sectors = cmd->data_length >>
				  ilog2(cmd->se_dev->dev_attrib.block_size);

			cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
						     sectors, 0, cmd->t_prot_sg,
						     0);
			if (cmd->pi_err)
2174
				return true;
2175
		}
2176
		break;
2177 2178 2179 2180 2181 2182
	case TARGET_PROT_DIN_INSERT:
		if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
			break;

		sbc_dif_generate(cmd);
		break;
2183 2184
	default:
		break;
2185 2186 2187 2188 2189
	}

	return false;
}

2190
static void target_complete_ok_work(struct work_struct *work)
2191
{
2192
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2193
	int ret;
2194

2195 2196 2197 2198 2199
	/*
	 * Check if we need to move delayed/dormant tasks from cmds on the
	 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
	 * Attribute.
	 */
2200 2201
	transport_complete_task_attr(cmd);

2202 2203 2204 2205 2206 2207 2208
	/*
	 * Check to schedule QUEUE_FULL work, or execute an existing
	 * cmd->transport_qf_callback()
	 */
	if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
		schedule_work(&cmd->se_dev->qf_work_queue);

2209
	/*
2210
	 * Check if we need to send a sense buffer from
2211 2212 2213 2214 2215 2216
	 * the struct se_cmd in question. We do NOT want
	 * to take this path of the IO has been marked as
	 * needing to be treated like a "normal read". This
	 * is the case if it's a tape read, and either the
	 * FM, EOM, or ILI bits are set, but there is no
	 * sense data.
2217
	 */
2218 2219
	if (!(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL) &&
	    cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2220 2221 2222
		WARN_ON(!cmd->scsi_status);
		ret = transport_send_check_condition_and_sense(
					cmd, 0, 1);
2223
		if (ret)
2224 2225 2226 2227 2228
			goto queue_full;

		transport_lun_remove_cmd(cmd);
		transport_cmd_check_stop_to_fabric(cmd);
		return;
2229 2230
	}
	/*
L
Lucas De Marchi 已提交
2231
	 * Check for a callback, used by amongst other things
2232
	 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2233
	 */
2234 2235
	if (cmd->transport_complete_callback) {
		sense_reason_t rc;
2236 2237 2238
		bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
		bool zero_dl = !(cmd->data_length);
		int post_ret = 0;
2239

2240 2241 2242
		rc = cmd->transport_complete_callback(cmd, true, &post_ret);
		if (!rc && !post_ret) {
			if (caw && zero_dl)
2243 2244
				goto queue_rsp;

2245
			return;
2246 2247 2248
		} else if (rc) {
			ret = transport_send_check_condition_and_sense(cmd,
						rc, 0);
2249
			if (ret)
2250
				goto queue_full;
2251

2252 2253 2254 2255
			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2256
	}
2257

2258
queue_rsp:
2259 2260
	switch (cmd->data_direction) {
	case DMA_FROM_DEVICE:
2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
		/*
		 * if this is a READ-type IO, but SCSI status
		 * is set, then skip returning data and just
		 * return the status -- unless this IO is marked
		 * as needing to be treated as a normal read,
		 * in which case we want to go ahead and return
		 * the data. This happens, for example, for tape
		 * reads with the FM, EOM, or ILI bits set, with
		 * no sense data.
		 */
		if (cmd->scsi_status &&
		    !(cmd->se_cmd_flags & SCF_TREAT_READ_AS_NORMAL))
2273 2274
			goto queue_status;

2275 2276
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.tx_data_octets);
2277 2278 2279 2280 2281
		/*
		 * Perform READ_STRIP of PI using software emulation when
		 * backend had PI enabled, if the transport will not be
		 * performing hardware READ_STRIP offload.
		 */
2282
		if (target_read_prot_action(cmd)) {
2283 2284
			ret = transport_send_check_condition_and_sense(cmd,
						cmd->pi_err, 0);
2285
			if (ret)
2286 2287 2288 2289 2290 2291
				goto queue_full;

			transport_lun_remove_cmd(cmd);
			transport_cmd_check_stop_to_fabric(cmd);
			return;
		}
2292

2293
		trace_target_cmd_complete(cmd);
2294
		ret = cmd->se_tfo->queue_data_in(cmd);
2295
		if (ret)
2296
			goto queue_full;
2297 2298
		break;
	case DMA_TO_DEVICE:
2299 2300
		atomic_long_add(cmd->data_length,
				&cmd->se_lun->lun_stats.rx_data_octets);
2301 2302 2303
		/*
		 * Check if we need to send READ payload for BIDI-COMMAND
		 */
2304
		if (cmd->se_cmd_flags & SCF_BIDI) {
2305 2306
			atomic_long_add(cmd->data_length,
					&cmd->se_lun->lun_stats.tx_data_octets);
2307
			ret = cmd->se_tfo->queue_data_in(cmd);
2308
			if (ret)
2309
				goto queue_full;
2310 2311
			break;
		}
2312
		/* fall through */
2313
	case DMA_NONE:
2314
queue_status:
2315
		trace_target_cmd_complete(cmd);
2316
		ret = cmd->se_tfo->queue_status(cmd);
2317
		if (ret)
2318
			goto queue_full;
2319 2320 2321 2322 2323 2324 2325
		break;
	default:
		break;
	}

	transport_lun_remove_cmd(cmd);
	transport_cmd_check_stop_to_fabric(cmd);
2326 2327 2328
	return;

queue_full:
2329
	pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2330
		" data_direction: %d\n", cmd, cmd->data_direction);
2331 2332

	transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2333 2334
}

2335
void target_free_sgl(struct scatterlist *sgl, int nents)
2336
{
2337
	sgl_free_n_order(sgl, nents, 0);
2338
}
2339
EXPORT_SYMBOL(target_free_sgl);
2340

2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
{
	/*
	 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
	 * emulation, and free + reset pointers if necessary..
	 */
	if (!cmd->t_data_sg_orig)
		return;

	kfree(cmd->t_data_sg);
	cmd->t_data_sg = cmd->t_data_sg_orig;
	cmd->t_data_sg_orig = NULL;
	cmd->t_data_nents = cmd->t_data_nents_orig;
	cmd->t_data_nents_orig = 0;
}

2357 2358
static inline void transport_free_pages(struct se_cmd *cmd)
{
2359
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2360
		target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2361 2362 2363 2364
		cmd->t_prot_sg = NULL;
		cmd->t_prot_nents = 0;
	}

2365
	if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2366 2367 2368 2369 2370
		/*
		 * Release special case READ buffer payload required for
		 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
		 */
		if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2371
			target_free_sgl(cmd->t_bidi_data_sg,
2372 2373 2374 2375
					   cmd->t_bidi_data_nents);
			cmd->t_bidi_data_sg = NULL;
			cmd->t_bidi_data_nents = 0;
		}
2376
		transport_reset_sgl_orig(cmd);
2377
		return;
2378 2379
	}
	transport_reset_sgl_orig(cmd);
2380

2381
	target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2382 2383
	cmd->t_data_sg = NULL;
	cmd->t_data_nents = 0;
2384

2385
	target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2386 2387
	cmd->t_bidi_data_sg = NULL;
	cmd->t_bidi_data_nents = 0;
2388 2389
}

2390
void *transport_kmap_data_sg(struct se_cmd *cmd)
2391
{
2392
	struct scatterlist *sg = cmd->t_data_sg;
2393 2394
	struct page **pages;
	int i;
2395 2396

	/*
2397 2398 2399
	 * We need to take into account a possible offset here for fabrics like
	 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
	 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2400
	 */
2401 2402
	if (!cmd->t_data_nents)
		return NULL;
2403 2404 2405

	BUG_ON(!sg);
	if (cmd->t_data_nents == 1)
2406 2407 2408
		return kmap(sg_page(sg)) + sg->offset;

	/* >1 page. use vmap */
2409
	pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2410
	if (!pages)
2411 2412 2413 2414 2415 2416 2417 2418 2419
		return NULL;

	/* convert sg[] to pages[] */
	for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
		pages[i] = sg_page(sg);
	}

	cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
	kfree(pages);
2420
	if (!cmd->t_data_vmap)
2421 2422 2423
		return NULL;

	return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2424
}
2425
EXPORT_SYMBOL(transport_kmap_data_sg);
2426

2427
void transport_kunmap_data_sg(struct se_cmd *cmd)
2428
{
2429
	if (!cmd->t_data_nents) {
2430
		return;
2431
	} else if (cmd->t_data_nents == 1) {
2432
		kunmap(sg_page(cmd->t_data_sg));
2433 2434
		return;
	}
2435 2436 2437

	vunmap(cmd->t_data_vmap);
	cmd->t_data_vmap = NULL;
2438
}
2439
EXPORT_SYMBOL(transport_kunmap_data_sg);
2440

2441
int
2442
target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2443
		 bool zero_page, bool chainable)
2444
{
2445
	gfp_t gfp = GFP_KERNEL | (zero_page ? __GFP_ZERO : 0);
2446

2447 2448
	*sgl = sgl_alloc_order(length, 0, chainable, gfp, nents);
	return *sgl ? 0 : -ENOMEM;
2449
}
2450
EXPORT_SYMBOL(target_alloc_sgl);
2451

2452
/*
2453 2454 2455
 * Allocate any required resources to execute the command.  For writes we
 * might not have the payload yet, so notify the fabric via a call to
 * ->write_pending instead. Otherwise place it on the execution queue.
2456
 */
2457 2458
sense_reason_t
transport_generic_new_cmd(struct se_cmd *cmd)
2459
{
2460
	unsigned long flags;
2461
	int ret = 0;
2462
	bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2463

2464 2465 2466
	if (cmd->prot_op != TARGET_PROT_NORMAL &&
	    !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
		ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2467
				       cmd->prot_length, true, false);
2468 2469 2470 2471
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
	}

2472 2473 2474
	/*
	 * Determine is the TCM fabric module has already allocated physical
	 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2475
	 * beforehand.
2476
	 */
2477 2478
	if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
	    cmd->data_length) {
2479

2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491
		if ((cmd->se_cmd_flags & SCF_BIDI) ||
		    (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
			u32 bidi_length;

			if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
				bidi_length = cmd->t_task_nolb *
					      cmd->se_dev->dev_attrib.block_size;
			else
				bidi_length = cmd->data_length;

			ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
					       &cmd->t_bidi_data_nents,
2492
					       bidi_length, zero_flag, false);
2493 2494 2495 2496
			if (ret < 0)
				return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
		}

2497
		ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2498
				       cmd->data_length, zero_flag, false);
2499
		if (ret < 0)
2500
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
	} else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
		    cmd->data_length) {
		/*
		 * Special case for COMPARE_AND_WRITE with fabrics
		 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
		 */
		u32 caw_length = cmd->t_task_nolb *
				 cmd->se_dev->dev_attrib.block_size;

		ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
				       &cmd->t_bidi_data_nents,
2512
				       caw_length, zero_flag, false);
2513 2514
		if (ret < 0)
			return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2515 2516
	}
	/*
2517 2518 2519
	 * If this command is not a write we can execute it right here,
	 * for write buffers we need to notify the fabric driver first
	 * and let it call back once the write buffers are ready.
2520
	 */
2521
	target_add_to_state_list(cmd);
2522
	if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2523 2524 2525
		target_execute_cmd(cmd);
		return 0;
	}
2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	cmd->t_state = TRANSPORT_WRITE_PENDING;
	/*
	 * Determine if frontend context caller is requesting the stopping of
	 * this command for frontend exceptions.
	 */
	if (cmd->transport_state & CMD_T_STOP) {
		pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
			 __func__, __LINE__, cmd->tag);

		spin_unlock_irqrestore(&cmd->t_state_lock, flags);

		complete_all(&cmd->t_transport_stop_comp);
2540
		return 0;
2541 2542 2543
	}
	cmd->transport_state &= ~CMD_T_ACTIVE;
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2544 2545

	ret = cmd->se_tfo->write_pending(cmd);
2546
	if (ret)
2547 2548
		goto queue_full;

2549
	return 0;
2550

2551 2552
queue_full:
	pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2553
	transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2554
	return 0;
2555
}
2556
EXPORT_SYMBOL(transport_generic_new_cmd);
2557

2558
static void transport_write_pending_qf(struct se_cmd *cmd)
2559
{
2560
	unsigned long flags;
2561
	int ret;
2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573
	bool stop;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

	if (stop) {
		pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
			__func__, __LINE__, cmd->tag);
		complete_all(&cmd->t_transport_stop_comp);
		return;
	}
2574 2575

	ret = cmd->se_tfo->write_pending(cmd);
2576
	if (ret) {
2577 2578
		pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
			 cmd);
2579
		transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2580
	}
2581 2582
}

2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595
static bool
__transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
			   unsigned long *flags);

static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
{
	unsigned long flags;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	__transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
}

2596
int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2597
{
2598
	int ret = 0;
2599
	bool aborted = false, tas = false;
2600

2601
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2602
		if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2603
			target_wait_free_cmd(cmd, &aborted, &tas);
2604

2605
		if (!aborted || tas)
2606
			ret = target_put_sess_cmd(cmd);
2607 2608
	} else {
		if (wait_for_tasks)
2609
			target_wait_free_cmd(cmd, &aborted, &tas);
2610 2611 2612 2613 2614
		/*
		 * Handle WRITE failure case where transport_generic_new_cmd()
		 * has already added se_cmd to state_list, but fabric has
		 * failed command before I/O submission.
		 */
2615
		if (cmd->state_active)
2616
			target_remove_from_state_list(cmd);
2617

2618
		if (cmd->se_lun)
2619 2620
			transport_lun_remove_cmd(cmd);

2621
		if (!aborted || tas)
2622
			ret = target_put_sess_cmd(cmd);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	}
	/*
	 * If the task has been internally aborted due to TMR ABORT_TASK
	 * or LUN_RESET, target_core_tmr.c is responsible for performing
	 * the remaining calls to target_put_sess_cmd(), and not the
	 * callers of this function.
	 */
	if (aborted) {
		pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
		wait_for_completion(&cmd->cmd_wait_comp);
		cmd->se_tfo->release_cmd(cmd);
		ret = 1;
2635
	}
2636
	return ret;
2637 2638 2639
}
EXPORT_SYMBOL(transport_generic_free_cmd);

2640 2641
/**
 * target_get_sess_cmd - Add command to active ->sess_cmd_list
2642
 * @se_cmd:	command descriptor to add
2643
 * @ack_kref:	Signal that fabric will perform an ack target_put_sess_cmd()
2644
 */
2645
int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2646
{
2647
	struct se_session *se_sess = se_cmd->se_sess;
2648
	unsigned long flags;
2649
	int ret = 0;
2650

2651 2652 2653 2654 2655
	/*
	 * Add a second kref if the fabric caller is expecting to handle
	 * fabric acknowledgement that requires two target_put_sess_cmd()
	 * invocations before se_cmd descriptor release.
	 */
2656
	if (ack_kref) {
2657 2658 2659
		if (!kref_get_unless_zero(&se_cmd->cmd_kref))
			return -EINVAL;

2660 2661
		se_cmd->se_cmd_flags |= SCF_ACK_KREF;
	}
2662

2663
	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2664 2665 2666 2667
	if (se_sess->sess_tearing_down) {
		ret = -ESHUTDOWN;
		goto out;
	}
2668
	se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2669
	list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2670
out:
2671
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2672 2673

	if (ret && ack_kref)
2674
		target_put_sess_cmd(se_cmd);
2675

2676
	return ret;
2677
}
2678
EXPORT_SYMBOL(target_get_sess_cmd);
2679

2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
static void target_free_cmd_mem(struct se_cmd *cmd)
{
	transport_free_pages(cmd);

	if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
		core_tmr_release_req(cmd->se_tmr_req);
	if (cmd->t_task_cdb != cmd->__t_task_cdb)
		kfree(cmd->t_task_cdb);
}

2690
static void target_release_cmd_kref(struct kref *kref)
2691
{
2692 2693
	struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
	struct se_session *se_sess = se_cmd->se_sess;
2694
	unsigned long flags;
2695
	bool fabric_stop;
2696

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711
	if (se_sess) {
		spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);

		spin_lock(&se_cmd->t_state_lock);
		fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
			      (se_cmd->transport_state & CMD_T_ABORTED);
		spin_unlock(&se_cmd->t_state_lock);

		if (se_cmd->cmd_wait_set || fabric_stop) {
			list_del_init(&se_cmd->se_cmd_list);
			spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
			target_free_cmd_mem(se_cmd);
			complete(&se_cmd->cmd_wait_comp);
			return;
		}
2712
		list_del_init(&se_cmd->se_cmd_list);
2713
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2714 2715
	}

2716
	target_free_cmd_mem(se_cmd);
2717 2718 2719
	se_cmd->se_tfo->release_cmd(se_cmd);
}

2720 2721 2722 2723 2724 2725
/**
 * target_put_sess_cmd - decrease the command reference count
 * @se_cmd:	command to drop a reference from
 *
 * Returns 1 if and only if this target_put_sess_cmd() call caused the
 * refcount to drop to zero. Returns zero otherwise.
2726
 */
2727
int target_put_sess_cmd(struct se_cmd *se_cmd)
2728
{
2729
	return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2730 2731 2732
}
EXPORT_SYMBOL(target_put_sess_cmd);

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
static const char *data_dir_name(enum dma_data_direction d)
{
	switch (d) {
	case DMA_BIDIRECTIONAL:	return "BIDI";
	case DMA_TO_DEVICE:	return "WRITE";
	case DMA_FROM_DEVICE:	return "READ";
	case DMA_NONE:		return "NONE";
	}

	return "(?)";
}

static const char *cmd_state_name(enum transport_state_table t)
{
	switch (t) {
	case TRANSPORT_NO_STATE:	return "NO_STATE";
	case TRANSPORT_NEW_CMD:		return "NEW_CMD";
	case TRANSPORT_WRITE_PENDING:	return "WRITE_PENDING";
	case TRANSPORT_PROCESSING:	return "PROCESSING";
	case TRANSPORT_COMPLETE:	return "COMPLETE";
	case TRANSPORT_ISTATE_PROCESSING:
					return "ISTATE_PROCESSING";
	case TRANSPORT_COMPLETE_QF_WP:	return "COMPLETE_QF_WP";
	case TRANSPORT_COMPLETE_QF_OK:	return "COMPLETE_QF_OK";
	case TRANSPORT_COMPLETE_QF_ERR:	return "COMPLETE_QF_ERR";
	}

	return "(?)";
}

static void target_append_str(char **str, const char *txt)
{
	char *prev = *str;

	*str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
		kstrdup(txt, GFP_ATOMIC);
	kfree(prev);
}

/*
 * Convert a transport state bitmask into a string. The caller is
 * responsible for freeing the returned pointer.
 */
static char *target_ts_to_str(u32 ts)
{
	char *str = NULL;

	if (ts & CMD_T_ABORTED)
		target_append_str(&str, "aborted");
	if (ts & CMD_T_ACTIVE)
		target_append_str(&str, "active");
	if (ts & CMD_T_COMPLETE)
		target_append_str(&str, "complete");
	if (ts & CMD_T_SENT)
		target_append_str(&str, "sent");
	if (ts & CMD_T_STOP)
		target_append_str(&str, "stop");
	if (ts & CMD_T_FABRIC_STOP)
		target_append_str(&str, "fabric_stop");

	return str;
}

static const char *target_tmf_name(enum tcm_tmreq_table tmf)
{
	switch (tmf) {
	case TMR_ABORT_TASK:		return "ABORT_TASK";
	case TMR_ABORT_TASK_SET:	return "ABORT_TASK_SET";
	case TMR_CLEAR_ACA:		return "CLEAR_ACA";
	case TMR_CLEAR_TASK_SET:	return "CLEAR_TASK_SET";
	case TMR_LUN_RESET:		return "LUN_RESET";
	case TMR_TARGET_WARM_RESET:	return "TARGET_WARM_RESET";
	case TMR_TARGET_COLD_RESET:	return "TARGET_COLD_RESET";
	case TMR_UNKNOWN:		break;
	}
	return "(?)";
}

void target_show_cmd(const char *pfx, struct se_cmd *cmd)
{
	char *ts_str = target_ts_to_str(cmd->transport_state);
	const u8 *cdb = cmd->t_task_cdb;
	struct se_tmr_req *tmf = cmd->se_tmr_req;

	if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
		pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
			 pfx, cdb[0], cdb[1], cmd->tag,
			 data_dir_name(cmd->data_direction),
			 cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state), cmd->data_length,
			 kref_read(&cmd->cmd_kref), ts_str);
	} else {
		pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
			 pfx, target_tmf_name(tmf->function), cmd->tag,
			 tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
			 cmd_state_name(cmd->t_state),
			 kref_read(&cmd->cmd_kref), ts_str);
	}
	kfree(ts_str);
}
EXPORT_SYMBOL(target_show_cmd);

2835 2836
/**
 * target_sess_cmd_list_set_waiting - Flag all commands in
2837 2838 2839
 *         sess_cmd_list to complete cmd_wait_comp.  Set
 *         sess_tearing_down so no more commands are queued.
 * @se_sess:	session to flag
2840
 */
2841
void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2842
{
2843
	struct se_cmd *se_cmd, *tmp_cmd;
2844
	unsigned long flags;
2845
	int rc;
2846 2847

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2848 2849 2850 2851
	if (se_sess->sess_tearing_down) {
		spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
		return;
	}
2852
	se_sess->sess_tearing_down = 1;
2853
	list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2854

2855 2856
	list_for_each_entry_safe(se_cmd, tmp_cmd,
				 &se_sess->sess_wait_list, se_cmd_list) {
2857 2858 2859 2860 2861 2862
		rc = kref_get_unless_zero(&se_cmd->cmd_kref);
		if (rc) {
			se_cmd->cmd_wait_set = 1;
			spin_lock(&se_cmd->t_state_lock);
			se_cmd->transport_state |= CMD_T_FABRIC_STOP;
			spin_unlock(&se_cmd->t_state_lock);
2863 2864
		} else
			list_del_init(&se_cmd->se_cmd_list);
2865
	}
2866 2867 2868

	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
}
2869
EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2870

2871 2872
/**
 * target_wait_for_sess_cmds - Wait for outstanding descriptors
2873 2874
 * @se_sess:    session to wait for active I/O
 */
2875
void target_wait_for_sess_cmds(struct se_session *se_sess)
2876 2877
{
	struct se_cmd *se_cmd, *tmp_cmd;
2878
	unsigned long flags;
2879
	bool tas;
2880 2881

	list_for_each_entry_safe(se_cmd, tmp_cmd,
2882
				&se_sess->sess_wait_list, se_cmd_list) {
2883 2884 2885 2886
		pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
			" %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));

2887 2888 2889 2890 2891 2892 2893 2894 2895
		spin_lock_irqsave(&se_cmd->t_state_lock, flags);
		tas = (se_cmd->transport_state & CMD_T_TAS);
		spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);

		if (!target_put_sess_cmd(se_cmd)) {
			if (tas)
				target_put_sess_cmd(se_cmd);
		}

2896 2897 2898 2899
		wait_for_completion(&se_cmd->cmd_wait_comp);
		pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
			" fabric state: %d\n", se_cmd, se_cmd->t_state,
			se_cmd->se_tfo->get_cmd_state(se_cmd));
2900 2901 2902

		se_cmd->se_tfo->release_cmd(se_cmd);
	}
2903 2904 2905 2906 2907

	spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
	WARN_ON(!list_empty(&se_sess->sess_cmd_list));
	spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);

2908 2909 2910
}
EXPORT_SYMBOL(target_wait_for_sess_cmds);

2911 2912 2913 2914 2915 2916 2917
static void target_lun_confirm(struct percpu_ref *ref)
{
	struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);

	complete(&lun->lun_ref_comp);
}

2918
void transport_clear_lun_ref(struct se_lun *lun)
2919
{
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932
	/*
	 * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
	 * the initial reference and schedule confirm kill to be
	 * executed after one full RCU grace period has completed.
	 */
	percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
	/*
	 * The first completion waits for percpu_ref_switch_to_atomic_rcu()
	 * to call target_lun_confirm after lun->lun_ref has been marked
	 * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
	 * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
	 * fails for all new incoming I/O.
	 */
2933
	wait_for_completion(&lun->lun_ref_comp);
2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
	/*
	 * The second completion waits for percpu_ref_put_many() to
	 * invoke ->release() after lun->lun_ref has switched to
	 * atomic_t mode, and lun->lun_ref.count has reached zero.
	 *
	 * At this point all target-core lun->lun_ref references have
	 * been dropped via transport_lun_remove_cmd(), and it's safe
	 * to proceed with the remaining LUN shutdown.
	 */
	wait_for_completion(&lun->lun_shutdown_comp);
2944 2945
}

2946 2947 2948 2949 2950
static bool
__transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
			   bool *aborted, bool *tas, unsigned long *flags)
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
2951 2952
{

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964
	assert_spin_locked(&cmd->t_state_lock);
	WARN_ON_ONCE(!irqs_disabled());

	if (fabric_stop)
		cmd->transport_state |= CMD_T_FABRIC_STOP;

	if (cmd->transport_state & CMD_T_ABORTED)
		*aborted = true;

	if (cmd->transport_state & CMD_T_TAS)
		*tas = true;

2965
	if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2966
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2967
		return false;
2968

2969
	if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2970
	    !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2971
		return false;
2972

2973 2974 2975 2976
	if (!(cmd->transport_state & CMD_T_ACTIVE))
		return false;

	if (fabric_stop && *aborted)
2977
		return false;
2978

2979
	cmd->transport_state |= CMD_T_STOP;
2980

2981
	target_show_cmd("wait_for_tasks: Stopping ", cmd);
2982

2983
	spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
2984

2985 2986 2987
	while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
					    180 * HZ))
		target_show_cmd("wait for tasks: ", cmd);
2988

2989
	spin_lock_irqsave(&cmd->t_state_lock, *flags);
2990
	cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2991

2992 2993
	pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
		 "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
2994

2995 2996 2997 2998
	return true;
}

/**
2999 3000
 * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
 * @cmd: command to wait on
3001 3002 3003 3004 3005 3006 3007 3008
 */
bool transport_wait_for_tasks(struct se_cmd *cmd)
{
	unsigned long flags;
	bool ret, aborted = false, tas = false;

	spin_lock_irqsave(&cmd->t_state_lock, flags);
	ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3009
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3010

3011
	return ret;
3012
}
3013
EXPORT_SYMBOL(transport_wait_for_tasks);
3014

3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
struct sense_info {
	u8 key;
	u8 asc;
	u8 ascq;
	bool add_sector_info;
};

static const struct sense_info sense_info_table[] = {
	[TCM_NO_SENSE] = {
		.key = NOT_READY
	},
	[TCM_NON_EXISTENT_LUN] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
	},
	[TCM_UNSUPPORTED_SCSI_OPCODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_SECTOR_COUNT_TOO_MANY] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x20, /* INVALID COMMAND OPERATION CODE */
	},
	[TCM_UNKNOWN_MODE_PAGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_CHECK_CONDITION_ABORT_CMD] = {
		.key = ABORTED_COMMAND,
		.asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
		.ascq = 0x03,
	},
	[TCM_INCORRECT_AMOUNT_OF_DATA] = {
		.key = ABORTED_COMMAND,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
	},
	[TCM_INVALID_CDB_FIELD] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x24, /* INVALID FIELD IN CDB */
	},
	[TCM_INVALID_PARAMETER_LIST] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
	},
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079
	[TCM_TOO_MANY_TARGET_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
	},
	[TCM_TOO_MANY_SEGMENT_DESCS] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
	},
	[TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x26,
		.ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
	},
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118
	[TCM_PARAMETER_LIST_LENGTH_ERROR] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
	},
	[TCM_UNEXPECTED_UNSOLICITED_DATA] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x0c, /* WRITE ERROR */
		.ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
	},
	[TCM_SERVICE_CRC_ERROR] = {
		.key = ABORTED_COMMAND,
		.asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
		.ascq = 0x05, /* N/A */
	},
	[TCM_SNACK_REJECTED] = {
		.key = ABORTED_COMMAND,
		.asc = 0x11, /* READ ERROR */
		.ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
	},
	[TCM_WRITE_PROTECTED] = {
		.key = DATA_PROTECT,
		.asc = 0x27, /* WRITE PROTECTED */
	},
	[TCM_ADDRESS_OUT_OF_RANGE] = {
		.key = ILLEGAL_REQUEST,
		.asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
	},
	[TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
		.key = UNIT_ATTENTION,
	},
	[TCM_CHECK_CONDITION_NOT_READY] = {
		.key = NOT_READY,
	},
	[TCM_MISCOMPARE_VERIFY] = {
		.key = MISCOMPARE,
		.asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
		.ascq = 0x00,
	},
	[TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3119
		.key = ABORTED_COMMAND,
3120 3121 3122 3123 3124
		.asc = 0x10,
		.ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3125
		.key = ABORTED_COMMAND,
3126 3127 3128 3129 3130
		.asc = 0x10,
		.ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
		.add_sector_info = true,
	},
	[TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3131
		.key = ABORTED_COMMAND,
3132 3133 3134 3135
		.asc = 0x10,
		.ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
		.add_sector_info = true,
	},
3136 3137 3138 3139 3140 3141
	[TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
		.key = COPY_ABORTED,
		.asc = 0x0d,
		.ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */

	},
3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
	[TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
		/*
		 * Returning ILLEGAL REQUEST would cause immediate IO errors on
		 * Solaris initiators.  Returning NOT READY instead means the
		 * operations will be retried a finite number of times and we
		 * can survive intermittent errors.
		 */
		.key = NOT_READY,
		.asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
	},
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166
	[TCM_INSUFFICIENT_REGISTRATION_RESOURCES] = {
		/*
		 * From spc4r22 section5.7.7,5.7.8
		 * If a PERSISTENT RESERVE OUT command with a REGISTER service action
		 * or a REGISTER AND IGNORE EXISTING KEY service action or
		 * REGISTER AND MOVE service actionis attempted,
		 * but there are insufficient device server resources to complete the
		 * operation, then the command shall be terminated with CHECK CONDITION
		 * status, with the sense key set to ILLEGAL REQUEST,and the additonal
		 * sense code set to INSUFFICIENT REGISTRATION RESOURCES.
		 */
		.key = ILLEGAL_REQUEST,
		.asc = 0x55,
		.ascq = 0x04, /* INSUFFICIENT REGISTRATION RESOURCES */
	},
3167 3168
};

3169
static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3170 3171 3172 3173 3174
{
	const struct sense_info *si;
	u8 *buffer = cmd->sense_buffer;
	int r = (__force int)reason;
	u8 asc, ascq;
3175
	bool desc_format = target_sense_desc_format(cmd->se_dev);
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193

	if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
		si = &sense_info_table[r];
	else
		si = &sense_info_table[(__force int)
				       TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];

	if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
		core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
		WARN_ON_ONCE(asc == 0);
	} else if (si->asc == 0) {
		WARN_ON_ONCE(cmd->scsi_asc == 0);
		asc = cmd->scsi_asc;
		ascq = cmd->scsi_ascq;
	} else {
		asc = si->asc;
		ascq = si->ascq;
	}
3194

3195
	scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3196
	if (si->add_sector_info)
3197 3198 3199 3200 3201
		return scsi_set_sense_information(buffer,
						  cmd->scsi_sense_length,
						  cmd->bad_sector);

	return 0;
3202 3203
}

3204 3205 3206
int
transport_send_check_condition_and_sense(struct se_cmd *cmd,
		sense_reason_t reason, int from_transport)
3207 3208 3209
{
	unsigned long flags;

3210
	spin_lock_irqsave(&cmd->t_state_lock, flags);
3211
	if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3212
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3213 3214 3215
		return 0;
	}
	cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3216
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3217

3218
	if (!from_transport) {
3219 3220
		int rc;

3221
		cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3222 3223
		cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
		cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3224 3225 3226
		rc = translate_sense_reason(cmd, reason);
		if (rc)
			return rc;
3227 3228
	}

3229
	trace_target_cmd_complete(cmd);
3230
	return cmd->se_tfo->queue_status(cmd);
3231 3232 3233
}
EXPORT_SYMBOL(transport_send_check_condition_and_sense);

3234 3235 3236
static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
	__releases(&cmd->t_state_lock)
	__acquires(&cmd->t_state_lock)
3237
{
3238 3239
	int ret;

3240 3241 3242
	assert_spin_locked(&cmd->t_state_lock);
	WARN_ON_ONCE(!irqs_disabled());

3243 3244
	if (!(cmd->transport_state & CMD_T_ABORTED))
		return 0;
3245 3246 3247 3248
	/*
	 * If cmd has been aborted but either no status is to be sent or it has
	 * already been sent, just return
	 */
3249 3250 3251
	if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
		if (send_status)
			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3252
		return 1;
3253
	}
3254

3255 3256
	pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
		" 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3257

3258
	cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3259
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3260
	trace_target_cmd_complete(cmd);
3261 3262

	spin_unlock_irq(&cmd->t_state_lock);
3263 3264 3265
	ret = cmd->se_tfo->queue_status(cmd);
	if (ret)
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3266
	spin_lock_irq(&cmd->t_state_lock);
3267 3268

	return 1;
3269
}
3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280

int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
{
	int ret;

	spin_lock_irq(&cmd->t_state_lock);
	ret = __transport_check_aborted_status(cmd, send_status);
	spin_unlock_irq(&cmd->t_state_lock);

	return ret;
}
3281 3282 3283 3284
EXPORT_SYMBOL(transport_check_aborted_status);

void transport_send_task_abort(struct se_cmd *cmd)
{
3285
	unsigned long flags;
3286
	int ret;
3287 3288

	spin_lock_irqsave(&cmd->t_state_lock, flags);
3289
	if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3290 3291 3292 3293 3294
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		return;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3295 3296 3297 3298 3299 3300 3301
	/*
	 * If there are still expected incoming fabric WRITEs, we wait
	 * until until they have completed before sending a TASK_ABORTED
	 * response.  This response with TASK_ABORTED status will be
	 * queued back to fabric module by transport_check_aborted_status().
	 */
	if (cmd->data_direction == DMA_TO_DEVICE) {
3302
		if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3303 3304 3305 3306 3307
			spin_lock_irqsave(&cmd->t_state_lock, flags);
			if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
				spin_unlock_irqrestore(&cmd->t_state_lock, flags);
				goto send_abort;
			}
3308
			cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3309
			spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3310
			return;
3311 3312
		}
	}
3313
send_abort:
3314
	cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3315

3316 3317
	transport_lun_remove_cmd(cmd);

3318 3319
	pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
		 cmd->t_task_cdb[0], cmd->tag);
3320

3321
	trace_target_cmd_complete(cmd);
3322 3323 3324
	ret = cmd->se_tfo->queue_status(cmd);
	if (ret)
		transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3325 3326
}

3327
static void target_tmr_work(struct work_struct *work)
3328
{
3329
	struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3330
	struct se_device *dev = cmd->se_dev;
3331
	struct se_tmr_req *tmr = cmd->se_tmr_req;
3332
	unsigned long flags;
3333 3334
	int ret;

3335 3336 3337 3338 3339 3340 3341 3342
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if (cmd->transport_state & CMD_T_ABORTED) {
		tmr->response = TMR_FUNCTION_REJECTED;
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		goto check_stop;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3343
	switch (tmr->function) {
3344
	case TMR_ABORT_TASK:
3345
		core_tmr_abort_task(dev, tmr, cmd->se_sess);
3346
		break;
3347 3348 3349
	case TMR_ABORT_TASK_SET:
	case TMR_CLEAR_ACA:
	case TMR_CLEAR_TASK_SET:
3350 3351
		tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
		break;
3352
	case TMR_LUN_RESET:
3353 3354 3355
		ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
		tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
					 TMR_FUNCTION_REJECTED;
3356 3357 3358 3359 3360
		if (tmr->response == TMR_FUNCTION_COMPLETE) {
			target_ua_allocate_lun(cmd->se_sess->se_node_acl,
					       cmd->orig_fe_lun, 0x29,
					       ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
		}
3361
		break;
3362
	case TMR_TARGET_WARM_RESET:
3363 3364
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
3365
	case TMR_TARGET_COLD_RESET:
3366 3367 3368
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	default:
3369
		pr_err("Unknown TMR function: 0x%02x.\n",
3370 3371 3372 3373 3374
				tmr->function);
		tmr->response = TMR_FUNCTION_REJECTED;
		break;
	}

3375 3376 3377 3378 3379 3380 3381
	spin_lock_irqsave(&cmd->t_state_lock, flags);
	if (cmd->transport_state & CMD_T_ABORTED) {
		spin_unlock_irqrestore(&cmd->t_state_lock, flags);
		goto check_stop;
	}
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3382
	cmd->se_tfo->queue_tm_rsp(cmd);
3383

3384
check_stop:
3385
	transport_lun_remove_cmd(cmd);
3386
	transport_cmd_check_stop_to_fabric(cmd);
3387 3388
}

3389 3390
int transport_generic_handle_tmr(
	struct se_cmd *cmd)
3391
{
3392
	unsigned long flags;
3393
	bool aborted = false;
3394 3395

	spin_lock_irqsave(&cmd->t_state_lock, flags);
3396 3397 3398 3399 3400 3401
	if (cmd->transport_state & CMD_T_ABORTED) {
		aborted = true;
	} else {
		cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
		cmd->transport_state |= CMD_T_ACTIVE;
	}
3402 3403
	spin_unlock_irqrestore(&cmd->t_state_lock, flags);

3404 3405 3406 3407
	if (aborted) {
		pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
			"ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
			cmd->se_tmr_req->ref_task_tag, cmd->tag);
3408
		transport_lun_remove_cmd(cmd);
3409 3410 3411 3412
		transport_cmd_check_stop_to_fabric(cmd);
		return 0;
	}

3413 3414
	INIT_WORK(&cmd->work, target_tmr_work);
	queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3415 3416
	return 0;
}
3417
EXPORT_SYMBOL(transport_generic_handle_tmr);
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436

bool
target_check_wce(struct se_device *dev)
{
	bool wce = false;

	if (dev->transport->get_write_cache)
		wce = dev->transport->get_write_cache(dev);
	else if (dev->dev_attrib.emulate_write_cache > 0)
		wce = true;

	return wce;
}

bool
target_check_fua(struct se_device *dev)
{
	return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
}