sched.c 27.9 KB
Newer Older
1 2 3 4 5
/* sched.c - SPU scheduler.
 *
 * Copyright (C) IBM 2005
 * Author: Mark Nutter <mnutter@us.ibm.com>
 *
6
 * 2006-03-31	NUMA domains added.
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27 28 29 30 31 32 33 34
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/completion.h>
#include <linux/vmalloc.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
35 36
#include <linux/numa.h>
#include <linux/mutex.h>
37
#include <linux/notifier.h>
38
#include <linux/kthread.h>
39 40 41
#include <linux/pid_namespace.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
42
#include <linux/marker.h>
43 44 45 46 47

#include <asm/io.h>
#include <asm/mmu_context.h>
#include <asm/spu.h>
#include <asm/spu_csa.h>
48
#include <asm/spu_priv1.h>
49 50 51
#include "spufs.h"

struct spu_prio_array {
52
	DECLARE_BITMAP(bitmap, MAX_PRIO);
53 54
	struct list_head runq[MAX_PRIO];
	spinlock_t runq_lock;
55
	int nr_waiting;
56 57
};

58
static unsigned long spu_avenrun[3];
59
static struct spu_prio_array *spu_prio;
60 61
static struct task_struct *spusched_task;
static struct timer_list spusched_timer;
62
static struct timer_list spuloadavg_timer;
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77
/*
 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
 */
#define NORMAL_PRIO		120

/*
 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
 * tick for every 10 CPU scheduler ticks.
 */
#define SPUSCHED_TICK		(10)

/*
 * These are the 'tuning knobs' of the scheduler:
 *
78 79
 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
80
 */
81 82
#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

#define MAX_USER_PRIO		(MAX_PRIO - MAX_RT_PRIO)
#define SCALE_PRIO(x, prio) \
	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)

/*
 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
 * [800ms ... 100ms ... 5ms]
 *
 * The higher a thread's priority, the bigger timeslices
 * it gets during one round of execution. But even the lowest
 * priority thread gets MIN_TIMESLICE worth of execution time.
 */
void spu_set_timeslice(struct spu_context *ctx)
{
	if (ctx->prio < NORMAL_PRIO)
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
	else
		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
}

104 105 106 107 108
/*
 * Update scheduling information from the owning thread.
 */
void __spu_update_sched_info(struct spu_context *ctx)
{
109 110 111 112 113 114
	/*
	 * assert that the context is not on the runqueue, so it is safe
	 * to change its scheduling parameters.
	 */
	BUG_ON(!list_empty(&ctx->rq));

115
	/*
116 117 118
	 * 32-Bit assignments are atomic on powerpc, and we don't care about
	 * memory ordering here because retrieving the controlling thread is
	 * per definition racy.
119 120 121
	 */
	ctx->tid = current->pid;

122 123
	/*
	 * We do our own priority calculations, so we normally want
124
	 * ->static_prio to start with. Unfortunately this field
125 126 127 128 129 130 131 132
	 * contains junk for threads with a realtime scheduling
	 * policy so we have to look at ->prio in this case.
	 */
	if (rt_prio(current->prio))
		ctx->prio = current->prio;
	else
		ctx->prio = current->static_prio;
	ctx->policy = current->policy;
133 134

	/*
135 136 137 138 139 140
	 * TO DO: the context may be loaded, so we may need to activate
	 * it again on a different node. But it shouldn't hurt anything
	 * to update its parameters, because we know that the scheduler
	 * is not actively looking at this field, since it is not on the
	 * runqueue. The context will be rescheduled on the proper node
	 * if it is timesliced or preempted.
141 142
	 */
	ctx->cpus_allowed = current->cpus_allowed;
143 144 145

	/* Save the current cpu id for spu interrupt routing. */
	ctx->last_ran = raw_smp_processor_id();
146 147 148 149
}

void spu_update_sched_info(struct spu_context *ctx)
{
150
	int node;
151

152 153
	if (ctx->state == SPU_STATE_RUNNABLE) {
		node = ctx->spu->node;
154 155 156 157

		/*
		 * Take list_mutex to sync with find_victim().
		 */
158 159 160 161 162 163
		mutex_lock(&cbe_spu_info[node].list_mutex);
		__spu_update_sched_info(ctx);
		mutex_unlock(&cbe_spu_info[node].list_mutex);
	} else {
		__spu_update_sched_info(ctx);
	}
164 165
}

166
static int __node_allowed(struct spu_context *ctx, int node)
167
{
168 169
	if (nr_cpus_node(node)) {
		cpumask_t mask = node_to_cpumask(node);
170

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
		if (cpus_intersects(mask, ctx->cpus_allowed))
			return 1;
	}

	return 0;
}

static int node_allowed(struct spu_context *ctx, int node)
{
	int rval;

	spin_lock(&spu_prio->runq_lock);
	rval = __node_allowed(ctx, node);
	spin_unlock(&spu_prio->runq_lock);

	return rval;
187 188
}

189
void do_notify_spus_active(void)
190 191 192 193 194 195 196
{
	int node;

	/*
	 * Wake up the active spu_contexts.
	 *
	 * When the awakened processes see their "notify_active" flag is set,
197
	 * they will call spu_switch_notify().
198 199 200
	 */
	for_each_online_node(node) {
		struct spu *spu;
201 202 203 204 205 206 207 208 209 210

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state != SPU_FREE) {
				struct spu_context *ctx = spu->ctx;
				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
					&ctx->sched_flags);
				mb();
				wake_up_all(&ctx->stop_wq);
			}
211
		}
212
		mutex_unlock(&cbe_spu_info[node].list_mutex);
213 214 215
	}
}

216 217 218 219 220 221
/**
 * spu_bind_context - bind spu context to physical spu
 * @spu:	physical spu to bind to
 * @ctx:	context to bind
 */
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
222
{
223 224
	spu_context_trace(spu_bind_context__enter, ctx, spu);

225
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
226

227 228 229
	if (ctx->flags & SPU_CREATE_NOSCHED)
		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);

230 231 232
	ctx->stats.slb_flt_base = spu->stats.slb_flt;
	ctx->stats.class2_intr_base = spu->stats.class2_intr;

233 234 235
	spu_associate_mm(spu, ctx->owner);

	spin_lock_irq(&spu->register_lock);
236 237 238 239 240
	spu->ctx = ctx;
	spu->flags = 0;
	ctx->spu = spu;
	ctx->ops = &spu_hw_ops;
	spu->pid = current->pid;
241
	spu->tgid = current->tgid;
242 243
	spu->ibox_callback = spufs_ibox_callback;
	spu->wbox_callback = spufs_wbox_callback;
244
	spu->stop_callback = spufs_stop_callback;
245
	spu->mfc_callback = spufs_mfc_callback;
246 247
	spin_unlock_irq(&spu->register_lock);

248
	spu_unmap_mappings(ctx);
249

250
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
251
	spu_restore(&ctx->csa, spu);
252
	spu->timestamp = jiffies;
253
	spu_switch_notify(spu, ctx);
254
	ctx->state = SPU_STATE_RUNNABLE;
255

256
	spuctx_switch_state(ctx, SPU_UTIL_USER);
257 258
}

259
/*
260
 * Must be used with the list_mutex held.
261 262 263
 */
static inline int sched_spu(struct spu *spu)
{
264 265
	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));

266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
}

static void aff_merge_remaining_ctxs(struct spu_gang *gang)
{
	struct spu_context *ctx;

	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
		if (list_empty(&ctx->aff_list))
			list_add(&ctx->aff_list, &gang->aff_list_head);
	}
	gang->aff_flags |= AFF_MERGED;
}

static void aff_set_offsets(struct spu_gang *gang)
{
	struct spu_context *ctx;
	int offset;

	offset = -1;
	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset--;
	}

	offset = 0;
	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		ctx->aff_offset = offset++;
	}

	gang->aff_flags |= AFF_OFFSETS_SET;
}

static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
		 int group_size, int lowest_offset)
{
	struct spu *spu;
	int node, n;

	/*
	 * TODO: A better algorithm could be used to find a good spu to be
	 *       used as reference location for the ctxs chain.
	 */
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
		if (!node_allowed(ctx, node))
			continue;
318
		mutex_lock(&cbe_spu_info[node].list_mutex);
319 320
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if ((!mem_aff || spu->has_mem_affinity) &&
321 322
							sched_spu(spu)) {
				mutex_unlock(&cbe_spu_info[node].list_mutex);
323
				return spu;
324
			}
325
		}
326
		mutex_unlock(&cbe_spu_info[node].list_mutex);
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
	}
	return NULL;
}

static void aff_set_ref_point_location(struct spu_gang *gang)
{
	int mem_aff, gs, lowest_offset;
	struct spu_context *ctx;
	struct spu *tmp;

	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
	lowest_offset = 0;
	gs = 0;

	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
		gs++;

	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
								aff_list) {
		if (&ctx->aff_list == &gang->aff_list_head)
			break;
		lowest_offset = ctx->aff_offset;
	}

351 352
	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
							lowest_offset);
353 354
}

355
static struct spu *ctx_location(struct spu *ref, int offset, int node)
356 357 358 359 360 361
{
	struct spu *spu;

	spu = NULL;
	if (offset >= 0) {
		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
362
			BUG_ON(spu->node != node);
363 364 365 366 367 368 369
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset--;
		}
	} else {
		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
370
			BUG_ON(spu->node != node);
371 372 373 374 375 376
			if (offset == 0)
				break;
			if (sched_spu(spu))
				offset++;
		}
	}
377

378 379 380 381 382 383 384
	return spu;
}

/*
 * affinity_check is called each time a context is going to be scheduled.
 * It returns the spu ptr on which the context must run.
 */
385
static int has_affinity(struct spu_context *ctx)
386
{
387
	struct spu_gang *gang = ctx->gang;
388 389

	if (list_empty(&ctx->aff_list))
390 391
		return 0;

392 393 394 395 396 397 398
	if (!gang->aff_ref_spu) {
		if (!(gang->aff_flags & AFF_MERGED))
			aff_merge_remaining_ctxs(gang);
		if (!(gang->aff_flags & AFF_OFFSETS_SET))
			aff_set_offsets(gang);
		aff_set_ref_point_location(gang);
	}
399 400

	return gang->aff_ref_spu != NULL;
401 402
}

403 404 405 406 407
/**
 * spu_unbind_context - unbind spu context from physical spu
 * @spu:	physical spu to unbind from
 * @ctx:	context to unbind
 */
408
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
409
{
410 411
	u32 status;

412 413
	spu_context_trace(spu_unbind_context__enter, ctx, spu);

414
	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
415

416 417
 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
418 419 420 421 422 423 424 425 426 427

	if (ctx->gang){
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
				ctx->gang->aff_ref_spu = NULL;
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}

428
	spu_switch_notify(spu, NULL);
429
	spu_unmap_mappings(ctx);
430
	spu_save(&ctx->csa, spu);
431
	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
432 433

	spin_lock_irq(&spu->register_lock);
434
	spu->timestamp = jiffies;
435 436 437
	ctx->state = SPU_STATE_SAVED;
	spu->ibox_callback = NULL;
	spu->wbox_callback = NULL;
438
	spu->stop_callback = NULL;
439
	spu->mfc_callback = NULL;
440
	spu->pid = 0;
441
	spu->tgid = 0;
442
	ctx->ops = &spu_backing_ops;
443
	spu->flags = 0;
444
	spu->ctx = NULL;
445 446 447
	spin_unlock_irq(&spu->register_lock);

	spu_associate_mm(spu, NULL);
448 449 450 451 452

	ctx->stats.slb_flt +=
		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
	ctx->stats.class2_intr +=
		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
453 454 455 456

	/* This maps the underlying spu state to idle */
	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
	ctx->spu = NULL;
457 458 459

	if (spu_stopped(ctx, &status))
		wake_up_all(&ctx->stop_wq);
460 461
}

462 463 464 465
/**
 * spu_add_to_rq - add a context to the runqueue
 * @ctx:       context to add
 */
466
static void __spu_add_to_rq(struct spu_context *ctx)
467
{
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
	/*
	 * Unfortunately this code path can be called from multiple threads
	 * on behalf of a single context due to the way the problem state
	 * mmap support works.
	 *
	 * Fortunately we need to wake up all these threads at the same time
	 * and can simply skip the runqueue addition for every but the first
	 * thread getting into this codepath.
	 *
	 * It's still quite hacky, and long-term we should proxy all other
	 * threads through the owner thread so that spu_run is in control
	 * of all the scheduling activity for a given context.
	 */
	if (list_empty(&ctx->rq)) {
		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
		set_bit(ctx->prio, spu_prio->bitmap);
		if (!spu_prio->nr_waiting++)
			__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	}
487
}
488

489 490 491 492 493 494 495
static void spu_add_to_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_add_to_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

496
static void __spu_del_from_rq(struct spu_context *ctx)
497
{
498 499
	int prio = ctx->prio;

500
	if (!list_empty(&ctx->rq)) {
501 502
		if (!--spu_prio->nr_waiting)
			del_timer(&spusched_timer);
503
		list_del_init(&ctx->rq);
504 505 506

		if (list_empty(&spu_prio->runq[prio]))
			clear_bit(prio, spu_prio->bitmap);
507
	}
508
}
509

510 511 512 513 514 515 516
void spu_del_from_rq(struct spu_context *ctx)
{
	spin_lock(&spu_prio->runq_lock);
	__spu_del_from_rq(ctx);
	spin_unlock(&spu_prio->runq_lock);
}

517
static void spu_prio_wait(struct spu_context *ctx)
518
{
519
	DEFINE_WAIT(wait);
520

521 522 523 524 525 526 527
	/*
	 * The caller must explicitly wait for a context to be loaded
	 * if the nosched flag is set.  If NOSCHED is not set, the caller
	 * queues the context and waits for an spu event or error.
	 */
	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));

528
	spin_lock(&spu_prio->runq_lock);
529
	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
530
	if (!signal_pending(current)) {
531 532
		__spu_add_to_rq(ctx);
		spin_unlock(&spu_prio->runq_lock);
533
		mutex_unlock(&ctx->state_mutex);
534
		schedule();
535
		mutex_lock(&ctx->state_mutex);
536 537
		spin_lock(&spu_prio->runq_lock);
		__spu_del_from_rq(ctx);
538
	}
539
	spin_unlock(&spu_prio->runq_lock);
540 541
	__set_current_state(TASK_RUNNING);
	remove_wait_queue(&ctx->stop_wq, &wait);
542 543
}

544
static struct spu *spu_get_idle(struct spu_context *ctx)
545
{
546
	struct spu *spu, *aff_ref_spu;
547 548
	int node, n;

549 550
	spu_context_nospu_trace(spu_get_idle__enter, ctx);

551 552 553 554 555 556 557 558 559 560 561 562 563
	if (ctx->gang) {
		mutex_lock(&ctx->gang->aff_mutex);
		if (has_affinity(ctx)) {
			aff_ref_spu = ctx->gang->aff_ref_spu;
			atomic_inc(&ctx->gang->aff_sched_count);
			mutex_unlock(&ctx->gang->aff_mutex);
			node = aff_ref_spu->node;

			mutex_lock(&cbe_spu_info[node].list_mutex);
			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
			if (spu && spu->alloc_state == SPU_FREE)
				goto found;
			mutex_unlock(&cbe_spu_info[node].list_mutex);
564

565 566 567 568
			mutex_lock(&ctx->gang->aff_mutex);
			if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
				ctx->gang->aff_ref_spu = NULL;
			mutex_unlock(&ctx->gang->aff_mutex);
569
			goto not_found;
570 571 572
		}
		mutex_unlock(&ctx->gang->aff_mutex);
	}
573
	node = cpu_to_node(raw_smp_processor_id());
574 575
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
576
		if (!node_allowed(ctx, node))
577
			continue;
578 579 580 581 582 583 584

		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
			if (spu->alloc_state == SPU_FREE)
				goto found;
		}
		mutex_unlock(&cbe_spu_info[node].list_mutex);
585
	}
586

587 588
 not_found:
	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
589 590 591 592 593
	return NULL;

 found:
	spu->alloc_state = SPU_USED;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
594
	spu_context_trace(spu_get_idle__found, ctx, spu);
595
	spu_init_channels(spu);
596 597
	return spu;
}
598

599 600 601 602 603 604 605 606 607 608 609 610
/**
 * find_victim - find a lower priority context to preempt
 * @ctx:	canidate context for running
 *
 * Returns the freed physical spu to run the new context on.
 */
static struct spu *find_victim(struct spu_context *ctx)
{
	struct spu_context *victim = NULL;
	struct spu *spu;
	int node, n;

611
	spu_context_nospu_trace(spu_find_victim__enter, ctx);
612

613 614 615
	/*
	 * Look for a possible preemption candidate on the local node first.
	 * If there is no candidate look at the other nodes.  This isn't
616
	 * exactly fair, but so far the whole spu scheduler tries to keep
617 618 619 620 621 622 623
	 * a strong node affinity.  We might want to fine-tune this in
	 * the future.
	 */
 restart:
	node = cpu_to_node(raw_smp_processor_id());
	for (n = 0; n < MAX_NUMNODES; n++, node++) {
		node = (node < MAX_NUMNODES) ? node : 0;
624
		if (!node_allowed(ctx, node))
625 626
			continue;

627 628
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
629 630
			struct spu_context *tmp = spu->ctx;

631
			if (tmp && tmp->prio > ctx->prio &&
632
			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
633
			    (!victim || tmp->prio > victim->prio))
634 635
				victim = spu->ctx;
		}
636
		mutex_unlock(&cbe_spu_info[node].list_mutex);
637 638 639 640 641 642 643

		if (victim) {
			/*
			 * This nests ctx->state_mutex, but we always lock
			 * higher priority contexts before lower priority
			 * ones, so this is safe until we introduce
			 * priority inheritance schemes.
644 645 646 647
			 *
			 * XXX if the highest priority context is locked,
			 * this can loop a long time.  Might be better to
			 * look at another context or give up after X retries.
648 649 650 651 652 653 654
			 */
			if (!mutex_trylock(&victim->state_mutex)) {
				victim = NULL;
				goto restart;
			}

			spu = victim->spu;
655
			if (!spu || victim->prio <= ctx->prio) {
656 657
				/*
				 * This race can happen because we've dropped
658
				 * the active list mutex.  Not a problem, just
659 660 661 662 663 664
				 * restart the search.
				 */
				mutex_unlock(&victim->state_mutex);
				victim = NULL;
				goto restart;
			}
665

666 667
			spu_context_trace(__spu_deactivate__unload, ctx, spu);

668 669
			mutex_lock(&cbe_spu_info[node].list_mutex);
			cbe_spu_info[node].nr_active--;
670
			spu_unbind_context(spu, victim);
671 672
			mutex_unlock(&cbe_spu_info[node].list_mutex);

673
			victim->stats.invol_ctx_switch++;
674
			spu->stats.invol_ctx_switch++;
675
			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
676
				spu_add_to_rq(victim);
677

678
			mutex_unlock(&victim->state_mutex);
679

680 681 682 683 684 685 686
			return spu;
		}
	}

	return NULL;
}

687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;
	int success = 0;

	spu_set_timeslice(ctx);

	mutex_lock(&cbe_spu_info[node].list_mutex);
	if (spu->ctx == NULL) {
		spu_bind_context(spu, ctx);
		cbe_spu_info[node].nr_active++;
		spu->alloc_state = SPU_USED;
		success = 1;
	}
	mutex_unlock(&cbe_spu_info[node].list_mutex);

	if (success)
		wake_up_all(&ctx->run_wq);
	else
		spu_add_to_rq(ctx);
}

static void spu_schedule(struct spu *spu, struct spu_context *ctx)
{
711 712 713
	/* not a candidate for interruptible because it's called either
	   from the scheduler thread or from spu_deactivate */
	mutex_lock(&ctx->state_mutex);
714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
	__spu_schedule(spu, ctx);
	spu_release(ctx);
}

static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
{
	int node = spu->node;

	mutex_lock(&cbe_spu_info[node].list_mutex);
	cbe_spu_info[node].nr_active--;
	spu->alloc_state = SPU_FREE;
	spu_unbind_context(spu, ctx);
	ctx->stats.invol_ctx_switch++;
	spu->stats.invol_ctx_switch++;
	mutex_unlock(&cbe_spu_info[node].list_mutex);
}

731 732 733 734 735
/**
 * spu_activate - find a free spu for a context and execute it
 * @ctx:	spu context to schedule
 * @flags:	flags (currently ignored)
 *
736
 * Tries to find a free spu to run @ctx.  If no free spu is available
737 738 739
 * add the context to the runqueue so it gets woken up once an spu
 * is available.
 */
740
int spu_activate(struct spu_context *ctx, unsigned long flags)
741
{
742
	struct spu *spu;
743

744 745 746 747 748 749 750 751
	/*
	 * If there are multiple threads waiting for a single context
	 * only one actually binds the context while the others will
	 * only be able to acquire the state_mutex once the context
	 * already is in runnable state.
	 */
	if (ctx->spu)
		return 0;
752

753 754 755
spu_activate_top:
	if (signal_pending(current))
		return -ERESTARTSYS;
756

757 758 759 760 761 762 763 764 765 766 767 768 769 770
	spu = spu_get_idle(ctx);
	/*
	 * If this is a realtime thread we try to get it running by
	 * preempting a lower priority thread.
	 */
	if (!spu && rt_prio(ctx->prio))
		spu = find_victim(ctx);
	if (spu) {
		unsigned long runcntl;

		runcntl = ctx->ops->runcntl_read(ctx);
		__spu_schedule(spu, ctx);
		if (runcntl & SPU_RUNCNTL_RUNNABLE)
			spuctx_switch_state(ctx, SPU_UTIL_USER);
771

772 773 774 775
		return 0;
	}

	if (ctx->flags & SPU_CREATE_NOSCHED) {
776
		spu_prio_wait(ctx);
777 778 779 780
		goto spu_activate_top;
	}

	spu_add_to_rq(ctx);
781

782
	return 0;
783 784
}

785 786 787 788 789 790
/**
 * grab_runnable_context - try to find a runnable context
 *
 * Remove the highest priority context on the runqueue and return it
 * to the caller.  Returns %NULL if no runnable context was found.
 */
791
static struct spu_context *grab_runnable_context(int prio, int node)
792
{
793
	struct spu_context *ctx;
794 795 796
	int best;

	spin_lock(&spu_prio->runq_lock);
797
	best = find_first_bit(spu_prio->bitmap, prio);
798
	while (best < prio) {
799 800
		struct list_head *rq = &spu_prio->runq[best];

801 802 803 804 805 806 807 808
		list_for_each_entry(ctx, rq, rq) {
			/* XXX(hch): check for affinity here aswell */
			if (__node_allowed(ctx, node)) {
				__spu_del_from_rq(ctx);
				goto found;
			}
		}
		best++;
809
	}
810 811
	ctx = NULL;
 found:
812 813 814 815 816 817 818 819 820 821
	spin_unlock(&spu_prio->runq_lock);
	return ctx;
}

static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
{
	struct spu *spu = ctx->spu;
	struct spu_context *new = NULL;

	if (spu) {
822
		new = grab_runnable_context(max_prio, spu->node);
823
		if (new || force) {
824 825 826 827 828 829 830
			spu_unschedule(spu, ctx);
			if (new) {
				if (new->flags & SPU_CREATE_NOSCHED)
					wake_up(&new->stop_wq);
				else {
					spu_release(ctx);
					spu_schedule(spu, new);
831 832 833
					/* this one can't easily be made
					   interruptible */
					mutex_lock(&ctx->state_mutex);
834 835
				}
			}
836 837 838 839 840 841
		}
	}

	return new != NULL;
}

842 843 844 845 846 847 848
/**
 * spu_deactivate - unbind a context from it's physical spu
 * @ctx:	spu context to unbind
 *
 * Unbind @ctx from the physical spu it is running on and schedule
 * the highest priority context to run on the freed physical spu.
 */
849 850
void spu_deactivate(struct spu_context *ctx)
{
851
	spu_context_nospu_trace(spu_deactivate__enter, ctx);
852
	__spu_deactivate(ctx, 1, MAX_PRIO);
853 854
}

855
/**
856
 * spu_yield -	yield a physical spu if others are waiting
857 858 859 860 861 862
 * @ctx:	spu context to yield
 *
 * Check if there is a higher priority context waiting and if yes
 * unbind @ctx from the physical spu and schedule the highest
 * priority context to run on the freed physical spu instead.
 */
863 864
void spu_yield(struct spu_context *ctx)
{
865
	spu_context_nospu_trace(spu_yield__enter, ctx);
866 867
	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
		mutex_lock(&ctx->state_mutex);
868
		__spu_deactivate(ctx, 0, MAX_PRIO);
869 870
		mutex_unlock(&ctx->state_mutex);
	}
871
}
872

873
static noinline void spusched_tick(struct spu_context *ctx)
874
{
875 876 877
	struct spu_context *new = NULL;
	struct spu *spu = NULL;

878 879
	if (spu_acquire(ctx))
		BUG();	/* a kernel thread never has signals pending */
880 881 882

	if (ctx->state != SPU_STATE_RUNNABLE)
		goto out;
883
	if (ctx->flags & SPU_CREATE_NOSCHED)
884
		goto out;
885
	if (ctx->policy == SCHED_FIFO)
886
		goto out;
887

888
	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
889
		goto out;
890

891
	spu = ctx->spu;
892 893 894

	spu_context_trace(spusched_tick__preempt, ctx, spu);

895 896 897
	new = grab_runnable_context(ctx->prio + 1, spu->node);
	if (new) {
		spu_unschedule(spu, ctx);
898
		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
899
			spu_add_to_rq(ctx);
900
	} else {
901
		spu_context_nospu_trace(spusched_tick__newslice, ctx);
902 903
		if (!ctx->time_slice)
			ctx->time_slice++;
904
	}
905 906 907 908 909
out:
	spu_release(ctx);

	if (new)
		spu_schedule(spu, new);
910 911
}

912 913 914 915 916
/**
 * count_active_contexts - count nr of active tasks
 *
 * Return the number of tasks currently running or waiting to run.
 *
917
 * Note that we don't take runq_lock / list_mutex here.  Reading
918 919 920 921 922 923 924 925
 * a single 32bit value is atomic on powerpc, and we don't care
 * about memory ordering issues here.
 */
static unsigned long count_active_contexts(void)
{
	int nr_active = 0, node;

	for (node = 0; node < MAX_NUMNODES; node++)
926
		nr_active += cbe_spu_info[node].nr_active;
927 928 929 930 931 932
	nr_active += spu_prio->nr_waiting;

	return nr_active;
}

/**
933
 * spu_calc_load - update the avenrun load estimates.
934 935 936 937
 *
 * No locking against reading these values from userspace, as for
 * the CPU loadavg code.
 */
938
static void spu_calc_load(void)
939 940
{
	unsigned long active_tasks; /* fixed-point */
941 942 943 944 945

	active_tasks = count_active_contexts() * FIXED_1;
	CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
	CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
	CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
946 947
}

948 949 950 951
static void spusched_wake(unsigned long data)
{
	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
	wake_up_process(spusched_task);
952 953 954 955 956 957
}

static void spuloadavg_wake(unsigned long data)
{
	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
	spu_calc_load();
958 959 960 961
}

static int spusched_thread(void *unused)
{
962
	struct spu *spu;
963 964 965 966 967 968
	int node;

	while (!kthread_should_stop()) {
		set_current_state(TASK_INTERRUPTIBLE);
		schedule();
		for (node = 0; node < MAX_NUMNODES; node++) {
969 970 971 972 973 974 975 976 977 978 979 980 981 982
			struct mutex *mtx = &cbe_spu_info[node].list_mutex;

			mutex_lock(mtx);
			list_for_each_entry(spu, &cbe_spu_info[node].spus,
					cbe_list) {
				struct spu_context *ctx = spu->ctx;

				if (ctx) {
					mutex_unlock(mtx);
					spusched_tick(ctx);
					mutex_lock(mtx);
				}
			}
			mutex_unlock(mtx);
983 984 985 986 987 988
		}
	}

	return 0;
}

989 990 991 992 993 994 995 996
void spuctx_switch_state(struct spu_context *ctx,
		enum spu_utilization_state new_state)
{
	unsigned long long curtime;
	signed long long delta;
	struct timespec ts;
	struct spu *spu;
	enum spu_utilization_state old_state;
997
	int node;
998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

	ktime_get_ts(&ts);
	curtime = timespec_to_ns(&ts);
	delta = curtime - ctx->stats.tstamp;

	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
	WARN_ON(delta < 0);

	spu = ctx->spu;
	old_state = ctx->stats.util_state;
	ctx->stats.util_state = new_state;
	ctx->stats.tstamp = curtime;

	/*
	 * Update the physical SPU utilization statistics.
	 */
	if (spu) {
		ctx->stats.times[old_state] += delta;
		spu->stats.times[old_state] += delta;
		spu->stats.util_state = new_state;
		spu->stats.tstamp = curtime;
1019 1020 1021 1022 1023
		node = spu->node;
		if (old_state == SPU_UTIL_USER)
			atomic_dec(&cbe_spu_info[node].busy_spus);
		if (new_state == SPU_UTIL_USER);
			atomic_inc(&cbe_spu_info[node].busy_spus);
1024 1025 1026
	}
}

1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
#define LOAD_INT(x) ((x) >> FSHIFT)
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)

static int show_spu_loadavg(struct seq_file *s, void *private)
{
	int a, b, c;

	a = spu_avenrun[0] + (FIXED_1/200);
	b = spu_avenrun[1] + (FIXED_1/200);
	c = spu_avenrun[2] + (FIXED_1/200);

	/*
	 * Note that last_pid doesn't really make much sense for the
1040
	 * SPU loadavg (it even seems very odd on the CPU side...),
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
	 * but we include it here to have a 100% compatible interface.
	 */
	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
		LOAD_INT(a), LOAD_FRAC(a),
		LOAD_INT(b), LOAD_FRAC(b),
		LOAD_INT(c), LOAD_FRAC(c),
		count_active_contexts(),
		atomic_read(&nr_spu_contexts),
		current->nsproxy->pid_ns->last_pid);
	return 0;
}

static int spu_loadavg_open(struct inode *inode, struct file *file)
{
	return single_open(file, show_spu_loadavg, NULL);
}

static const struct file_operations spu_loadavg_fops = {
	.open		= spu_loadavg_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1065 1066
int __init spu_sched_init(void)
{
1067 1068
	struct proc_dir_entry *entry;
	int err = -ENOMEM, i;
1069

1070
	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1071
	if (!spu_prio)
1072
		goto out;
1073

1074
	for (i = 0; i < MAX_PRIO; i++) {
1075
		INIT_LIST_HEAD(&spu_prio->runq[i]);
1076
		__clear_bit(i, spu_prio->bitmap);
1077
	}
1078
	spin_lock_init(&spu_prio->runq_lock);
1079

1080
	setup_timer(&spusched_timer, spusched_wake, 0);
1081
	setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
1082

1083 1084
	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
	if (IS_ERR(spusched_task)) {
1085 1086
		err = PTR_ERR(spusched_task);
		goto out_free_spu_prio;
1087
	}
1088

1089 1090
	mod_timer(&spuloadavg_timer, 0);

1091
	entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
1092 1093 1094
	if (!entry)
		goto out_stop_kthread;

1095 1096
	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1097
	return 0;
1098

1099 1100 1101 1102 1103 1104
 out_stop_kthread:
	kthread_stop(spusched_task);
 out_free_spu_prio:
	kfree(spu_prio);
 out:
	return err;
1105 1106
}

1107
void spu_sched_exit(void)
1108
{
1109
	struct spu *spu;
1110 1111
	int node;

1112 1113
	remove_proc_entry("spu_loadavg", NULL);

1114
	del_timer_sync(&spusched_timer);
1115
	del_timer_sync(&spuloadavg_timer);
1116 1117
	kthread_stop(spusched_task);

1118
	for (node = 0; node < MAX_NUMNODES; node++) {
1119 1120 1121 1122 1123
		mutex_lock(&cbe_spu_info[node].list_mutex);
		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
			if (spu->alloc_state != SPU_FREE)
				spu->alloc_state = SPU_FREE;
		mutex_unlock(&cbe_spu_info[node].list_mutex);
1124
	}
1125
	kfree(spu_prio);
1126
}