intel_dp.c 238.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

28
#include <linux/export.h>
29
#include <linux/i2c.h>
30 31
#include <linux/notifier.h>
#include <linux/reboot.h>
32 33
#include <linux/slab.h>
#include <linux/types.h>
34

35
#include <asm/byteorder.h>
36

37
#include <drm/drm_atomic_helper.h>
38
#include <drm/drm_crtc.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include <drm/drm_probe_helper.h>
43

44
#include "i915_debugfs.h"
45
#include "i915_drv.h"
46
#include "i915_trace.h"
47
#include "intel_atomic.h"
48
#include "intel_audio.h"
49
#include "intel_connector.h"
50
#include "intel_ddi.h"
51
#include "intel_display_types.h"
52
#include "intel_dp.h"
53
#include "intel_dp_link_training.h"
54
#include "intel_dp_mst.h"
55
#include "intel_dpio_phy.h"
56
#include "intel_fifo_underrun.h"
57
#include "intel_hdcp.h"
58
#include "intel_hdmi.h"
59
#include "intel_hotplug.h"
60
#include "intel_lspcon.h"
61
#include "intel_lvds.h"
62
#include "intel_panel.h"
63
#include "intel_psr.h"
64
#include "intel_sideband.h"
65
#include "intel_tc.h"
66
#include "intel_vdsc.h"
67

68
#define DP_DPRX_ESI_LEN 14
69

70 71 72 73 74
/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

75 76
/* DP DSC FEC Overhead factor = 1/(0.972261) */
#define DP_DSC_FEC_OVERHEAD_FACTOR		972261
77

78 79 80 81 82 83
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

84
struct dp_link_dpll {
85
	int clock;
86 87 88
	struct dpll dpll;
};

89
static const struct dp_link_dpll g4x_dpll[] = {
90
	{ 162000,
91
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
92
	{ 270000,
93 94 95 96
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
97
	{ 162000,
98
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
99
	{ 270000,
100 101 102
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

103
static const struct dp_link_dpll vlv_dpll[] = {
104
	{ 162000,
C
Chon Ming Lee 已提交
105
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
106
	{ 270000,
107 108 109
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

110 111 112 113 114 115 116 117 118 119
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
120
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
121
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
122
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
123 124
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
125

126 127 128 129 130 131 132 133
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

134
/**
135
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
136 137 138 139 140
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
141
bool intel_dp_is_edp(struct intel_dp *intel_dp)
142
{
143 144 145
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
146 147
}

148 149
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
150
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
151
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
152 153
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
154
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
155
				      enum pipe pipe);
156
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
157

158 159 160
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
161
	static const int dp_rates[] = {
162
		162000, 270000, 540000, 810000
163
	};
164
	int i, max_rate;
165

166 167 168 169 170 171 172 173 174 175 176
	if (drm_dp_has_quirk(&intel_dp->desc, 0,
			     DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
		/* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
		static const int quirk_rates[] = { 162000, 270000, 324000 };

		memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
		intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);

		return;
	}

177
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
178

179 180
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
181
			break;
182
		intel_dp->sink_rates[i] = dp_rates[i];
183
	}
184

185
	intel_dp->num_sink_rates = i;
186 187
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

210 211
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
212
{
213
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
214 215
}

216 217
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
218 219
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
220 221
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
222
	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
223

224
	return min3(source_max, sink_max, fia_max);
225 226
}

227
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
228 229 230 231
{
	return intel_dp->max_link_lane_count;
}

232
int
233
intel_dp_link_required(int pixel_clock, int bpp)
234
{
235 236
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
237 238
}

239
int
240 241
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
242 243 244 245 246 247 248
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
249 250
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

274
static int cnl_max_source_rate(struct intel_dp *intel_dp)
275 276 277 278 279
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

280
	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
281 282 283

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
284
		return 540000;
285 286 287

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
288
		return 810000;
289

290
	/* For other SKUs, max rate on ports A and D is 5.4G */
291
	if (port == PORT_A || port == PORT_D)
292
		return 540000;
293

294
	return 810000;
295 296
}

297 298 299
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
300
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
301
	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
302

303
	if (intel_phy_is_combo(dev_priv, phy) &&
304
	    !IS_ELKHARTLAKE(dev_priv) &&
305
	    !intel_dp_is_edp(intel_dp))
306 307 308 309 310
		return 540000;

	return 810000;
}

311 312
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
313
{
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
330
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331
	struct intel_encoder *encoder = &dig_port->base;
332
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
333
	const int *source_rates;
334
	int size, max_rate = 0, vbt_max_rate;
335

336
	/* This should only be done once */
337 338
	drm_WARN_ON(&dev_priv->drm,
		    intel_dp->source_rates || intel_dp->num_source_rates);
339

340
	if (INTEL_GEN(dev_priv) >= 10) {
341
		source_rates = cnl_rates;
342
		size = ARRAY_SIZE(cnl_rates);
343
		if (IS_GEN(dev_priv, 10))
344 345 346
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
347 348 349
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
350
	} else if (IS_GEN9_BC(dev_priv)) {
351
		source_rates = skl_rates;
352
		size = ARRAY_SIZE(skl_rates);
353 354
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
355 356
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
357
	} else {
358 359
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
360 361
	}

362
	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
363 364 365 366 367
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

368 369 370
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

371 372
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

398 399 400 401 402 403 404 405 406 407 408 409
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

410
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
411
{
412
	WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
413

414 415 416 417 418 419 420 421
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
	if (WARN_ON(intel_dp->num_common_rates == 0)) {
422
		intel_dp->common_rates[0] = 162000;
423 424 425 426
		intel_dp->num_common_rates = 1;
	}
}

427
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
428
				       u8 lane_count)
429 430 431 432 433 434
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
435 436
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
437 438
		return false;

439 440
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
441 442 443 444 445
		return false;

	return true;
}

446 447
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
448
						     u8 lane_count)
449 450 451 452 453 454 455 456 457 458 459 460 461
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

462
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
463
					    int link_rate, u8 lane_count)
464
{
465
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
466
	int index;
467

468 469 470 471
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
472 473 474 475
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
476 477
			drm_dbg_kms(&i915->drm,
				    "Retrying Link training for eDP with same parameters\n");
478 479
			return 0;
		}
480 481
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
482
	} else if (lane_count > 1) {
483 484 485 486
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
487 488
			drm_dbg_kms(&i915->drm,
				    "Retrying Link training for eDP with same parameters\n");
489 490
			return 0;
		}
491
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
492
		intel_dp->max_link_lane_count = lane_count >> 1;
493
	} else {
494
		drm_err(&i915->drm, "Link Training Unsuccessful\n");
495 496 497 498 499 500
		return -1;
	}

	return 0;
}

501 502 503 504 505 506
u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
{
	return div_u64(mul_u32_u32(mode_clock, 1000000U),
		       DP_DSC_FEC_OVERHEAD_FACTOR);
}

507 508 509 510 511 512 513 514 515 516 517
static int
small_joiner_ram_size_bits(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) >= 11)
		return 7680 * 8;
	else
		return 6144 * 8;
}

static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
				       u32 link_clock, u32 lane_count,
518 519 520 521 522 523 524 525 526 527 528 529 530
				       u32 mode_clock, u32 mode_hdisplay)
{
	u32 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
	 * for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8) /
			 intel_dp_mode_to_fec_clock(mode_clock);
531
	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
532 533

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
534 535
	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
		mode_hdisplay;
536 537
	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
		    max_bpp_small_joiner_ram);
538 539 540 541 542 543 544 545 546

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
547 548
		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
			    bits_per_pixel, valid_dsc_bpp[0]);
549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				       int mode_clock, int mode_hdisplay)
{
569
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
570 571 572 573 574 575 576 577 578 579 580 581
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
582 583 584
		drm_dbg_kms(&i915->drm,
			    "Unsupported slice width %d by DP DSC Sink device\n",
			    max_slice_width);
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
		return 0;
	}
	/* Also take into account max slice width */
	min_slice_count = min_t(u8, min_slice_count,
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

602 603
	drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
		    min_slice_count);
604 605 606
	return 0;
}

607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
				  int hdisplay)
{
	/*
	 * Older platforms don't like hdisplay==4096 with DP.
	 *
	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
	 * and frame counter increment), but we don't get vblank interrupts,
	 * and the pipe underruns immediately. The link also doesn't seem
	 * to get trained properly.
	 *
	 * On CHV the vblank interrupts don't seem to disappear but
	 * otherwise the symptoms are similar.
	 *
	 * TODO: confirm the behaviour on HSW+
	 */
	return hdisplay == 4096 && !HAS_DDI(dev_priv);
}

626
static enum drm_mode_status
627 628 629
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
630
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
631 632
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
633
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
634 635
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
636
	int max_dotclk;
637 638
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
639

640 641 642
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

643
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
644

645
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
646
		if (mode->hdisplay > fixed_mode->hdisplay)
647 648
			return MODE_PANEL;

649
		if (mode->vdisplay > fixed_mode->vdisplay)
650
			return MODE_PANEL;
651 652

		target_clock = fixed_mode->clock;
653 654
	}

655
	max_link_clock = intel_dp_max_link_rate(intel_dp);
656
	max_lanes = intel_dp_max_lane_count(intel_dp);
657 658 659 660

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

661 662 663
	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
		return MODE_H_ILLEGAL;

664 665 666 667 668 669 670 671 672 673 674 675
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
676
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
677
			dsc_max_output_bpp =
678 679
				intel_dp_dsc_get_output_bpp(dev_priv,
							    max_link_clock,
680 681 682 683 684 685 686 687 688 689 690 691
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
692
		return MODE_CLOCK_HIGH;
693 694 695 696

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

697 698 699
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

700
	return intel_mode_valid_max_plane_size(dev_priv, mode);
701 702
}

703
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
704
{
705 706
	int i;
	u32 v = 0;
707 708 709 710

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
711
		v |= ((u32)src[i]) << ((3 - i) * 8);
712 713 714
	return v;
}

715
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
716 717 718 719 720 721 722 723
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

724
static void
725
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
726
static void
727
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
728
					      bool force_disable_vdd);
729
static void
730
intel_dp_pps_init(struct intel_dp *intel_dp);
731

732 733
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
734
{
735
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
736
	intel_wakeref_t wakeref;
737 738

	/*
739
	 * See intel_power_sequencer_reset() why we need
740 741
	 * a power domain reference here.
	 */
742 743
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
744 745

	mutex_lock(&dev_priv->pps_mutex);
746 747

	return wakeref;
748 749
}

750 751
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
752
{
753
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
754 755

	mutex_unlock(&dev_priv->pps_mutex);
756 757 758 759
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
760 761
}

762 763 764
#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

765 766 767
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
768
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
769 770
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
771 772 773
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
774
	u32 DP;
775

776 777 778 779 780
	if (drm_WARN(&dev_priv->drm,
		     intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
		     "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
		     pipe_name(pipe), intel_dig_port->base.base.base.id,
		     intel_dig_port->base.base.name))
781 782
		return;

783 784 785 786
	drm_dbg_kms(&dev_priv->drm,
		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(pipe), intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
787 788 789 790

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
791
	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
792 793 794 795
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

796
	if (IS_CHERRYVIEW(dev_priv))
797 798 799
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
800

801
	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
802 803 804 805 806

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
807
	if (!pll_enabled) {
808
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
809 810
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

811
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
812
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
813 814 815
			drm_err(&dev_priv->drm,
				"Failed to force on pll for pipe %c!\n",
				pipe_name(pipe));
816 817
			return;
		}
818
	}
819

820 821 822
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
823
	 * to make this power sequencer lock onto the port.
824 825
	 * Otherwise even VDD force bit won't work.
	 */
826 827
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
828

829 830
	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
831

832 833
	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
834

835
	if (!pll_enabled) {
836
		vlv_force_pll_off(dev_priv, pipe);
837 838 839 840

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
841 842
}

843 844 845 846 847 848 849 850 851
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
852
	for_each_intel_dp(&dev_priv->drm, encoder) {
853
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
854 855

		if (encoder->type == INTEL_OUTPUT_EDP) {
856 857 858 859
			drm_WARN_ON(&dev_priv->drm,
				    intel_dp->active_pipe != INVALID_PIPE &&
				    intel_dp->active_pipe !=
				    intel_dp->pps_pipe);
860 861 862 863

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
864 865
			drm_WARN_ON(&dev_priv->drm,
				    intel_dp->pps_pipe != INVALID_PIPE);
866 867 868 869 870 871 872 873 874 875 876 877

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

878 879 880
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
881
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
882
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
883
	enum pipe pipe;
884

V
Ville Syrjälä 已提交
885
	lockdep_assert_held(&dev_priv->pps_mutex);
886

887
	/* We should never land here with regular DP ports */
888
	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
889

890 891
	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
		    intel_dp->active_pipe != intel_dp->pps_pipe);
892

893 894 895
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

896
	pipe = vlv_find_free_pps(dev_priv);
897 898 899 900 901

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
902
	if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
903
		pipe = PIPE_A;
904

905
	vlv_steal_power_sequencer(dev_priv, pipe);
906
	intel_dp->pps_pipe = pipe;
907

908 909 910 911 912
	drm_dbg_kms(&dev_priv->drm,
		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(intel_dp->pps_pipe),
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
913 914

	/* init power sequencer on this pipe and port */
915 916
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
917

918 919 920 921 922
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
923 924 925 926

	return intel_dp->pps_pipe;
}

927 928 929
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
930
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
931
	int backlight_controller = dev_priv->vbt.backlight.controller;
932 933 934 935

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
936
	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
937 938

	if (!intel_dp->pps_reset)
939
		return backlight_controller;
940 941 942 943 944 945 946

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
947
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
948

949
	return backlight_controller;
950 951
}

952 953 954 955 956 957
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
958
	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
959 960 961 962 963
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
964
	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
965 966 967 968 969 970 971
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
972

973
static enum pipe
974 975 976
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
977 978
{
	enum pipe pipe;
979 980

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
981
		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
982
			PANEL_PORT_SELECT_MASK;
983 984 985 986

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

987 988 989
		if (!pipe_check(dev_priv, pipe))
			continue;

990
		return pipe;
991 992
	}

993 994 995 996 997 998
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
999
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1000
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1001
	enum port port = intel_dig_port->base.port;
1002 1003 1004 1005

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
1017 1018 1019

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
1020 1021 1022 1023
		drm_dbg_kms(&dev_priv->drm,
			    "no initial power sequencer for [ENCODER:%d:%s]\n",
			    intel_dig_port->base.base.base.id,
			    intel_dig_port->base.base.name);
1024
		return;
1025 1026
	}

1027 1028 1029 1030 1031
	drm_dbg_kms(&dev_priv->drm,
		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name,
		    pipe_name(intel_dp->pps_pipe));
1032

1033 1034
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1035 1036
}

1037
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1038 1039 1040
{
	struct intel_encoder *encoder;

1041 1042 1043 1044
	if (drm_WARN_ON(&dev_priv->drm,
			!(IS_VALLEYVIEW(dev_priv) ||
			  IS_CHERRYVIEW(dev_priv) ||
			  IS_GEN9_LP(dev_priv))))
1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

1057
	for_each_intel_dp(&dev_priv->drm, encoder) {
1058
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1059

1060 1061
		drm_WARN_ON(&dev_priv->drm,
			    intel_dp->active_pipe != INVALID_PIPE);
1062 1063 1064 1065

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

1066
		if (IS_GEN9_LP(dev_priv))
1067 1068 1069
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
1070
	}
1071 1072
}

1073 1074 1075 1076 1077 1078 1079 1080
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

1081
static void intel_pps_get_registers(struct intel_dp *intel_dp,
1082 1083
				    struct pps_registers *regs)
{
1084
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1085 1086
	int pps_idx = 0;

1087 1088
	memset(regs, 0, sizeof(*regs));

1089
	if (IS_GEN9_LP(dev_priv))
1090 1091 1092
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1093

1094 1095 1096 1097
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1098 1099

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1100
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1101 1102
		regs->pp_div = INVALID_MMIO_REG;
	else
1103
		regs->pp_div = PP_DIVISOR(pps_idx);
1104 1105
}

1106 1107
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
1108
{
1109
	struct pps_registers regs;
1110

1111
	intel_pps_get_registers(intel_dp, &regs);
1112 1113

	return regs.pp_ctrl;
1114 1115
}

1116 1117
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
1118
{
1119
	struct pps_registers regs;
1120

1121
	intel_pps_get_registers(intel_dp, &regs);
1122 1123

	return regs.pp_stat;
1124 1125
}

1126 1127 1128 1129 1130 1131 1132
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1133
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1134
	intel_wakeref_t wakeref;
1135

1136
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1137 1138
		return 0;

1139 1140 1141 1142 1143 1144 1145 1146
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
1147
			pp_div = intel_de_read(dev_priv, pp_div_reg);
1148 1149 1150
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1151 1152 1153
			intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
			intel_de_write(dev_priv, pp_ctrl_reg,
				       PANEL_UNLOCK_REGS);
1154 1155
			msleep(intel_dp->panel_power_cycle_delay);
		}
1156 1157 1158 1159 1160
	}

	return 0;
}

1161
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1162
{
1163
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1164

V
Ville Syrjälä 已提交
1165 1166
	lockdep_assert_held(&dev_priv->pps_mutex);

1167
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1168 1169 1170
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1171
	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1172 1173
}

1174
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1175
{
1176
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1177

V
Ville Syrjälä 已提交
1178 1179
	lockdep_assert_held(&dev_priv->pps_mutex);

1180
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1181 1182 1183
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1184
	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1185 1186
}

1187 1188 1189
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1190
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1191

1192
	if (!intel_dp_is_edp(intel_dp))
1193
		return;
1194

1195
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1196 1197
		drm_WARN(&dev_priv->drm, 1,
			 "eDP powered off while attempting aux channel communication.\n");
1198
		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1199 1200
			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1201 1202 1203
	}
}

1204
static u32
1205
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1206
{
1207
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1208
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1209
	const unsigned int timeout_ms = 10;
1210
	u32 status;
1211 1212
	bool done;

1213 1214
#define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1215
				  msecs_to_jiffies_timeout(timeout_ms));
1216 1217 1218 1219

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

1220
	if (!done)
1221
		drm_err(&i915->drm,
1222
			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1223
			intel_dp->aux.name, timeout_ms, status);
1224 1225 1226 1227 1228
#undef C

	return status;
}

1229
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1230
{
1231
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1232

1233 1234 1235
	if (index)
		return 0;

1236 1237
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1238
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1239
	 */
1240
	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1241 1242
}

1243
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1244
{
1245
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1246
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1247
	u32 freq;
1248 1249 1250 1251

	if (index)
		return 0;

1252 1253 1254 1255 1256
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1257
	if (dig_port->aux_ch == AUX_CH_A)
1258
		freq = dev_priv->cdclk.hw.cdclk;
1259
	else
1260 1261
		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
	return DIV_ROUND_CLOSEST(freq, 2000);
1262 1263
}

1264
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1265
{
1266
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1267
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1268

1269
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1270
		/* Workaround for non-ULT HSW */
1271 1272 1273 1274 1275
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1276
	}
1277 1278

	return ilk_get_aux_clock_divider(intel_dp, index);
1279 1280
}

1281
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1282 1283 1284 1285 1286 1287 1288 1289 1290
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1291 1292 1293
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
1294 1295
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296 1297
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1298
	u32 precharge, timeout;
1299

1300
	if (IS_GEN(dev_priv, 6))
1301 1302 1303 1304
		precharge = 3;
	else
		precharge = 5;

1305
	if (IS_BROADWELL(dev_priv))
1306 1307 1308 1309 1310
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1311
	       DP_AUX_CH_CTL_DONE |
1312
	       DP_AUX_CH_CTL_INTERRUPT |
1313
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1314
	       timeout |
1315
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1316 1317
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1318
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1319 1320
}

1321 1322 1323
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
1324
{
1325
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1326 1327 1328
	struct drm_i915_private *i915 =
			to_i915(intel_dig_port->base.base.dev);
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329
	u32 ret;
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

1341 1342
	if (intel_phy_is_tc(i915, phy) &&
	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1343 1344 1345
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1346 1347
}

1348
static int
1349
intel_dp_aux_xfer(struct intel_dp *intel_dp,
1350 1351
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
1352
		  u32 aux_send_ctl_flags)
1353 1354
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1355
	struct drm_i915_private *i915 =
1356
			to_i915(intel_dig_port->base.base.dev);
1357
	struct intel_uncore *uncore = &i915->uncore;
1358 1359
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
	bool is_tc_port = intel_phy_is_tc(i915, phy);
1360
	i915_reg_t ch_ctl, ch_data[5];
1361
	u32 aux_clock_divider;
1362 1363 1364 1365
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(intel_dig_port);
	intel_wakeref_t aux_wakeref;
	intel_wakeref_t pps_wakeref;
1366
	int i, ret, recv_bytes;
1367
	int try, clock = 0;
1368
	u32 status;
1369 1370
	bool vdd;

1371 1372 1373 1374
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1375 1376 1377
	if (is_tc_port)
		intel_tc_port_lock(intel_dig_port);

1378
	aux_wakeref = intel_display_power_get(i915, aux_domain);
1379
	pps_wakeref = pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1380

1381 1382 1383 1384 1385 1386
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1387
	vdd = edp_panel_vdd_on(intel_dp);
1388 1389 1390 1391 1392

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
1393
	cpu_latency_qos_update_request(&i915->pm_qos, 0);
1394 1395

	intel_dp_check_edp(intel_dp);
1396

1397 1398
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1399
		status = intel_uncore_read_notrace(uncore, ch_ctl);
1400 1401 1402 1403
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
1404 1405
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1406 1407

	if (try == 3) {
1408
		const u32 status = intel_uncore_read(uncore, ch_ctl);
1409

1410
		if (status != intel_dp->aux_busy_last_status) {
1411 1412 1413
			drm_WARN(&i915->drm, 1,
				 "%s: not started (status 0x%08x)\n",
				 intel_dp->aux.name, status);
1414
			intel_dp->aux_busy_last_status = status;
1415 1416
		}

1417 1418
		ret = -EBUSY;
		goto out;
1419 1420
	}

1421
	/* Only 5 data registers! */
1422
	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1423 1424 1425 1426
		ret = -E2BIG;
		goto out;
	}

1427
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1428 1429 1430 1431 1432
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1433

1434 1435 1436 1437
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1438 1439 1440 1441
				intel_uncore_write(uncore,
						   ch_data[i >> 2],
						   intel_dp_pack_aux(send + i,
								     send_bytes - i));
1442 1443

			/* Send the command and wait for it to complete */
1444
			intel_uncore_write(uncore, ch_ctl, send_ctl);
1445

1446
			status = intel_dp_aux_wait_done(intel_dp);
1447 1448

			/* Clear done status and any errors */
1449 1450 1451 1452 1453 1454
			intel_uncore_write(uncore,
					   ch_ctl,
					   status |
					   DP_AUX_CH_CTL_DONE |
					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1455

1456 1457 1458 1459 1460
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1461 1462 1463
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1464 1465
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1466
				continue;
1467
			}
1468
			if (status & DP_AUX_CH_CTL_DONE)
1469
				goto done;
1470
		}
1471 1472 1473
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1474 1475
		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
			intel_dp->aux.name, status);
1476 1477
		ret = -EBUSY;
		goto out;
1478 1479
	}

1480
done:
1481 1482 1483
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1484
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1485 1486
		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
			intel_dp->aux.name, status);
1487 1488
		ret = -EIO;
		goto out;
1489
	}
1490 1491 1492

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1493
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1494 1495
		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
			    intel_dp->aux.name, status);
1496 1497
		ret = -ETIMEDOUT;
		goto out;
1498 1499 1500 1501 1502
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1503 1504 1505 1506 1507 1508 1509

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
1510
		drm_dbg_kms(&i915->drm,
1511 1512
			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
			    intel_dp->aux.name, recv_bytes);
1513 1514 1515 1516
		ret = -EBUSY;
		goto out;
	}

1517 1518
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1519

1520
	for (i = 0; i < recv_bytes; i += 4)
1521
		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1522
				    recv + i, recv_bytes - i);
1523

1524 1525
	ret = recv_bytes;
out:
1526
	cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1527

1528 1529 1530
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1531
	pps_unlock(intel_dp, pps_wakeref);
1532
	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
V
Ville Syrjälä 已提交
1533

1534 1535 1536
	if (is_tc_port)
		intel_tc_port_unlock(intel_dig_port);

1537
	return ret;
1538 1539
}

1540 1541
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1553 1554
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1555
{
1556
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1557
	u8 txbuf[20], rxbuf[20];
1558
	size_t txsize, rxsize;
1559 1560
	int ret;

1561
	intel_dp_aux_header(txbuf, msg);
1562

1563 1564 1565
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1566
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1567
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1568
		rxsize = 2; /* 0 or 1 data bytes */
1569

1570 1571
		if (WARN_ON(txsize > 20))
			return -E2BIG;
1572

1573 1574
		WARN_ON(!msg->buffer != !msg->size);

1575 1576
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1577

1578
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1579
					rxbuf, rxsize, 0);
1580 1581
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1582

1583 1584 1585 1586 1587 1588 1589
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1590 1591
		}
		break;
1592

1593 1594
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1595
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1596
		rxsize = msg->size + 1;
1597

1598 1599
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
1600

1601
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1602
					rxbuf, rxsize, 0);
1603 1604 1605 1606 1607 1608 1609 1610 1611 1612
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1613
		}
1614 1615 1616 1617 1618
		break;

	default:
		ret = -EINVAL;
		break;
1619
	}
1620

1621
	return ret;
1622 1623
}

1624

1625
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1626
{
1627
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1628 1629
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1630

1631 1632 1633 1634 1635
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1636
	default:
1637 1638
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1639 1640 1641
	}
}

1642
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1643
{
1644
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1645 1646
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1647

1648 1649 1650 1651 1652
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1653
	default:
1654 1655
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1656 1657 1658
	}
}

1659
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1660
{
1661
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1662 1663
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1664

1665 1666 1667 1668 1669 1670 1671
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1672
	default:
1673 1674
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1675 1676 1677
	}
}

1678
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1679
{
1680
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1681 1682
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1683

1684 1685 1686 1687 1688 1689 1690
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1691
	default:
1692 1693
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1694 1695 1696
	}
}

1697
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1698
{
1699
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1700 1701
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1702

1703 1704 1705 1706 1707
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1708
	case AUX_CH_E:
1709
	case AUX_CH_F:
1710
	case AUX_CH_G:
1711
		return DP_AUX_CH_CTL(aux_ch);
1712
	default:
1713 1714
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1715 1716 1717
	}
}

1718
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1719
{
1720
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1721 1722
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1723

1724 1725 1726 1727 1728
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1729
	case AUX_CH_E:
1730
	case AUX_CH_F:
1731
	case AUX_CH_G:
1732
		return DP_AUX_CH_DATA(aux_ch, index);
1733
	default:
1734 1735
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1736 1737 1738
	}
}

1739 1740 1741 1742 1743 1744 1745 1746
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1747
{
1748
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1749 1750
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1751

1752 1753 1754 1755 1756 1757 1758 1759 1760 1761
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1762

1763 1764 1765 1766 1767 1768 1769 1770
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1771

1772 1773 1774 1775
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1776

1777
	drm_dp_aux_init(&intel_dp->aux);
1778

1779
	/* Failure to allocate our preferred name is not critical */
1780 1781
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
				       aux_ch_name(dig_port->aux_ch),
1782
				       port_name(encoder->port));
1783
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1784 1785
}

1786
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1787
{
1788
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1789

1790
	return max_rate >= 540000;
1791 1792
}

1793 1794 1795 1796 1797 1798 1799
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1800 1801
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1802
		   struct intel_crtc_state *pipe_config)
1803
{
1804
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1805 1806
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1807

1808
	if (IS_G4X(dev_priv)) {
1809 1810
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1811
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1812 1813
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1814
	} else if (IS_CHERRYVIEW(dev_priv)) {
1815 1816
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1817
	} else if (IS_VALLEYVIEW(dev_priv)) {
1818 1819
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1820
	}
1821 1822 1823

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1824
			if (pipe_config->port_clock == divisor[i].clock) {
1825 1826 1827 1828 1829
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1830 1831 1832
	}
}

1833 1834 1835 1836 1837 1838 1839 1840
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1841
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1842 1843 1844 1845 1846 1847 1848 1849 1850
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
1851
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1852 1853
	char str[128]; /* FIXME: too big for stack? */

1854
	if (!drm_debug_enabled(DRM_UT_KMS))
1855 1856
		return;

1857 1858
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1859
	drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1860

1861 1862
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1863
	drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1864

1865 1866
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1867
	drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1868 1869
}

1870 1871 1872 1873 1874
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
	int len;

1875
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1876 1877 1878
	if (WARN_ON(len <= 0))
		return 162000;

1879
	return intel_dp->common_rates[len - 1];
1880 1881
}

1882 1883
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1884 1885
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1886 1887 1888 1889 1890

	if (WARN_ON(i < 0))
		i = 0;

	return i;
1891 1892
}

1893
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1894
			   u8 *link_bw, u8 *rate_select)
1895
{
1896 1897
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1898 1899 1900 1901 1902 1903 1904 1905 1906
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1907
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1908 1909 1910 1911
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1912 1913 1914 1915 1916 1917 1918 1919
	/* On TGL, FEC is supported on all Pipes */
	if (INTEL_GEN(dev_priv) >= 12)
		return true;

	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
		return true;

	return false;
1920 1921 1922 1923 1924 1925 1926 1927 1928
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

1929
static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1930
				  const struct intel_crtc_state *crtc_state)
1931
{
1932 1933 1934
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;

	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1935 1936
		return false;

1937
	return intel_dsc_source_support(encoder, crtc_state) &&
1938 1939 1940
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1941 1942
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1943
{
1944
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1945
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1946 1947 1948 1949 1950 1951 1952 1953
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1954 1955 1956 1957
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1958 1959 1960
			drm_dbg_kms(&dev_priv->drm,
				    "clamping bpp for eDP panel to BIOS-provided %i\n",
				    dev_priv->vbt.edp.bpp);
1961 1962 1963 1964
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1965 1966 1967
	return bpp;
}

1968
/* Adjust link config limits based on compliance test requests. */
1969
void
1970 1971 1972 1973
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
1974 1975
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);

1976 1977 1978 1979 1980 1981 1982
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

1983
		drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
{
	/*
	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
	 * format of the number of bytes per pixel will be half the number
	 * of bytes of RGB pixel.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		bpp /= 2;

	return bpp;
}

2019
/* Optimize link config in order: max bpp, min clock, min lanes */
2020
static int
2021 2022 2023 2024
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
2025
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2026 2027 2028 2029
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2030 2031
		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);

2032
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2033
						   output_bpp);
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

2048
					return 0;
2049 2050 2051 2052 2053
				}
			}
		}
	}

2054
	return -EINVAL;
2055 2056
}

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

2072 2073 2074 2075 2076
#define DSC_SUPPORTED_VERSION_MIN		1

static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
				       struct intel_crtc_state *crtc_state)
{
2077
	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2078
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2079 2080 2081 2082 2083 2084 2085 2086
	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
	u8 line_buf_depth;
	int ret;

	ret = intel_dsc_compute_params(encoder, crtc_state);
	if (ret)
		return ret;

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	/*
	 * Slice Height of 8 works for all currently available panels. So start
	 * with that if pic_height is an integral multiple of 8. Eventually add
	 * logic to try multiple slice heights.
	 */
	if (vdsc_cfg->pic_height % 8 == 0)
		vdsc_cfg->slice_height = 8;
	else if (vdsc_cfg->pic_height % 4 == 0)
		vdsc_cfg->slice_height = 4;
	else
		vdsc_cfg->slice_height = 2;

2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
	vdsc_cfg->dsc_version_major =
		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
	vdsc_cfg->dsc_version_minor =
		min(DSC_SUPPORTED_VERSION_MIN,
		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);

	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
		DP_DSC_RGB;

	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
	if (!line_buf_depth) {
2112 2113
		drm_dbg_kms(&i915->drm,
			    "DSC Sink Line Buffer Depth invalid\n");
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
		return -EINVAL;
	}

	if (vdsc_cfg->dsc_version_minor == 2)
		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
	else
		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;

	vdsc_cfg->block_pred_enable =
		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;

	return drm_dsc_compute_rc_parameters(vdsc_cfg);
}

2131 2132 2133 2134
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
2135 2136 2137
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2138 2139
	const struct drm_display_mode *adjusted_mode =
		&pipe_config->hw.adjusted_mode;
2140 2141
	u8 dsc_max_bpc;
	int pipe_bpp;
2142
	int ret;
2143

2144 2145 2146
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
		intel_dp_supports_fec(intel_dp, pipe_config);

2147
	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2148
		return -EINVAL;
2149

2150 2151 2152 2153 2154 2155
	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
	if (INTEL_GEN(dev_priv) >= 12)
		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
	else
		dsc_max_bpc = min_t(u8, 10,
				    conn_state->max_requested_bpc);
2156 2157

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2158 2159 2160

	/* Min Input BPC for ICL+ is 8 */
	if (pipe_bpp < 8 * 3) {
2161 2162
		drm_dbg_kms(&dev_priv->drm,
			    "No DSC support for less than 8bpc\n");
2163
		return -EINVAL;
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
2176
		pipe_config->dsc.compressed_bpp =
2177 2178
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
2179
		pipe_config->dsc.slice_count =
2180 2181 2182 2183 2184 2185 2186
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
2187 2188
			intel_dp_dsc_get_output_bpp(dev_priv,
						    pipe_config->port_clock,
2189 2190 2191 2192 2193 2194 2195 2196
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2197 2198
			drm_dbg_kms(&dev_priv->drm,
				    "Compressed BPP/Slice Count not supported\n");
2199
			return -EINVAL;
2200
		}
2201
		pipe_config->dsc.compressed_bpp = min_t(u16,
2202 2203
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
2204
		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2205 2206 2207 2208 2209 2210 2211
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2212 2213
		if (pipe_config->dsc.slice_count > 1) {
			pipe_config->dsc.dsc_split = true;
2214
		} else {
2215 2216
			drm_dbg_kms(&dev_priv->drm,
				    "Cannot split stream to use 2 VDSC instances\n");
2217
			return -EINVAL;
2218 2219
		}
	}
2220

2221
	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2222
	if (ret < 0) {
2223 2224 2225 2226 2227
		drm_dbg_kms(&dev_priv->drm,
			    "Cannot compute valid DSC parameters for Input Bpp = %d "
			    "Compressed BPP = %d\n",
			    pipe_config->pipe_bpp,
			    pipe_config->dsc.compressed_bpp);
2228
		return ret;
2229
	}
2230

2231
	pipe_config->dsc.compression_enable = true;
2232 2233 2234 2235 2236
	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
		    "Compressed Bpp = %d Slice Count = %d\n",
		    pipe_config->pipe_bpp,
		    pipe_config->dsc.compressed_bpp,
		    pipe_config->dsc.slice_count);
2237

2238
	return 0;
2239 2240
}

2241 2242 2243 2244 2245 2246 2247 2248
int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
		return 6 * 3;
	else
		return 8 * 3;
}

2249
static int
2250
intel_dp_compute_link_config(struct intel_encoder *encoder,
2251 2252
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
2253
{
2254
	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2255 2256
	const struct drm_display_mode *adjusted_mode =
		&pipe_config->hw.adjusted_mode;
2257
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2258
	struct link_config_limits limits;
2259
	int common_len;
2260
	int ret;
2261

2262
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2263
						    intel_dp->max_link_rate);
2264 2265

	/* No common link rates between source and sink */
2266
	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2267

2268 2269 2270 2271 2272 2273
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

2274
	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2275
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2276

2277
	if (intel_dp_is_edp(intel_dp)) {
2278 2279
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2280 2281 2282 2283
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
2284
		 */
2285 2286
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2287
	}
2288

2289 2290
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2291 2292 2293 2294 2295
	drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
		    "max rate %d max bpp %d pixel clock %iKHz\n",
		    limits.max_lane_count,
		    intel_dp->common_rates[limits.max_clock],
		    limits.max_bpp, adjusted_mode->crtc_clock);
2296

2297 2298 2299 2300 2301
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2302 2303

	/* enable compression if the mode doesn't fit available BW */
2304
	drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2305 2306 2307 2308 2309
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2310
	}
2311

2312
	if (pipe_config->dsc.compression_enable) {
2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324
		drm_dbg_kms(&i915->drm,
			    "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			    pipe_config->lane_count, pipe_config->port_clock,
			    pipe_config->pipe_bpp,
			    pipe_config->dsc.compressed_bpp);

		drm_dbg_kms(&i915->drm,
			    "DP link rate required %i available %i\n",
			    intel_dp_link_required(adjusted_mode->crtc_clock,
						   pipe_config->dsc.compressed_bpp),
			    intel_dp_max_data_rate(pipe_config->port_clock,
						   pipe_config->lane_count));
2325
	} else {
2326 2327 2328
		drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
			    pipe_config->lane_count, pipe_config->port_clock,
			    pipe_config->pipe_bpp);
2329

2330 2331 2332 2333 2334 2335
		drm_dbg_kms(&i915->drm,
			    "DP link rate required %i available %i\n",
			    intel_dp_link_required(adjusted_mode->crtc_clock,
						   pipe_config->pipe_bpp),
			    intel_dp_max_data_rate(pipe_config->port_clock,
						   pipe_config->lane_count));
2336
	}
2337
	return 0;
2338 2339
}

2340 2341
static int
intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2342 2343
			 struct intel_crtc_state *crtc_state,
			 const struct drm_connector_state *conn_state)
2344
{
2345
	struct drm_connector *connector = conn_state->connector;
2346 2347
	const struct drm_display_info *info = &connector->display_info;
	const struct drm_display_mode *adjusted_mode =
2348
		&crtc_state->hw.adjusted_mode;
2349 2350 2351 2352 2353 2354 2355 2356

	if (!drm_mode_is_420_only(info, adjusted_mode) ||
	    !intel_dp_get_colorimetry_status(intel_dp) ||
	    !connector->ycbcr_420_allowed)
		return 0;

	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;

2357
	return intel_pch_panel_fitting(crtc_state, conn_state);
2358 2359
}

2360 2361 2362 2363 2364 2365
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
2366
		&crtc_state->hw.adjusted_mode;
2367

2368 2369 2370 2371 2372 2373 2374 2375 2376 2377
	/*
	 * Our YCbCr output is always limited range.
	 * crtc_state->limited_color_range only applies to RGB,
	 * and it must never be set for YCbCr or we risk setting
	 * some conflicting bits in PIPECONF which will mess up
	 * the colors on the monitor.
	 */
	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
		return false;

2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403
static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
				    enum port port)
{
	if (IS_G4X(dev_priv))
		return false;
	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
		return false;

	return true;
}

2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502
static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
					     const struct drm_connector_state *conn_state,
					     struct drm_dp_vsc_sdp *vsc)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	/*
	 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
	 * Colorimetry Format indication.
	 */
	vsc->revision = 0x5;
	vsc->length = 0x13;

	/* DP 1.4a spec, Table 2-120 */
	switch (crtc_state->output_format) {
	case INTEL_OUTPUT_FORMAT_YCBCR444:
		vsc->pixelformat = DP_PIXELFORMAT_YUV444;
		break;
	case INTEL_OUTPUT_FORMAT_YCBCR420:
		vsc->pixelformat = DP_PIXELFORMAT_YUV420;
		break;
	case INTEL_OUTPUT_FORMAT_RGB:
	default:
		vsc->pixelformat = DP_PIXELFORMAT_RGB;
	}

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_BT709_YCC:
		vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_601:
		vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_709:
		vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
		break;
	case DRM_MODE_COLORIMETRY_SYCC_601:
		vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
		break;
	case DRM_MODE_COLORIMETRY_OPYCC_601:
		vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
		vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
		vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
		vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
		break;
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
		vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
		break;
	default:
		/*
		 * RGB->YCBCR color conversion uses the BT.709
		 * color space.
		 */
		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
			vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
		else
			vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
		break;
	}

	vsc->bpc = crtc_state->pipe_bpp / 3;

	/* only RGB pixelformat supports 6 bpc */
	drm_WARN_ON(&dev_priv->drm,
		    vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);

	/* all YCbCr are always limited range */
	vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
	vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
}

static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
				     struct intel_crtc_state *crtc_state,
				     const struct drm_connector_state *conn_state)
{
	struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;

	/* When PSR is enabled, VSC SDP is handled by PSR routine */
	if (intel_psr_enabled(intel_dp))
		return;

	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
		return;

	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
	vsc->sdp_type = DP_SDP_VSC;
	intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
					 &crtc_state->infoframes.vsc);
}

2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
static void
intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
					    struct intel_crtc_state *crtc_state,
					    const struct drm_connector_state *conn_state)
{
	int ret;
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;

	if (!conn_state->hdr_output_metadata)
		return;

	ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);

	if (ret) {
		drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
		return;
	}

	crtc_state->infoframes.enable |=
		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
}

2526
int
2527 2528 2529 2530 2531
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2532
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2533 2534
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2535 2536 2537 2538
	enum port port = encoder->port;
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
L
Lyude Paul 已提交
2539
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2540
					   DP_DPCD_QUIRK_CONSTANT_N);
2541
	int ret = 0, output_bpp;
2542 2543 2544 2545

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2546
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2547

2548 2549
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2550
	else
2551 2552
		ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
					       conn_state);
2553 2554
	if (ret)
		return ret;
2555

2556
	pipe_config->has_drrs = false;
2557
	if (!intel_dp_port_has_audio(dev_priv, port))
2558 2559 2560 2561 2562 2563 2564
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2565 2566
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2567

R
Rodrigo Vivi 已提交
2568
		if (HAS_GMCH(dev_priv))
2569
			ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2570
		else
2571 2572 2573
			ret = intel_pch_panel_fitting(pipe_config, conn_state);
		if (ret)
			return ret;
2574 2575
	}

2576
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2577
		return -EINVAL;
2578

R
Rodrigo Vivi 已提交
2579
	if (HAS_GMCH(dev_priv) &&
2580
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2581
		return -EINVAL;
2582 2583

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2584
		return -EINVAL;
2585

2586 2587 2588
	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
		return -EINVAL;

2589 2590 2591
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2592

2593 2594
	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);
2595

2596 2597
	if (pipe_config->dsc.compression_enable)
		output_bpp = pipe_config->dsc.compressed_bpp;
2598
	else
2599
		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2600 2601 2602 2603 2604 2605

	intel_link_compute_m_n(output_bpp,
			       pipe_config->lane_count,
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
			       &pipe_config->dp_m_n,
2606
			       constant_n, pipe_config->fec_enable);
2607

2608
	if (intel_connector->panel.downclock_mode != NULL &&
2609
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2610
			pipe_config->has_drrs = true;
2611
			intel_link_compute_m_n(output_bpp,
2612 2613 2614 2615
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2616
					       constant_n, pipe_config->fec_enable);
2617 2618
	}

2619
	if (!HAS_DDI(dev_priv))
2620
		intel_dp_set_clock(encoder, pipe_config);
2621

2622
	intel_psr_compute_config(intel_dp, pipe_config);
2623
	intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2624
	intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2625

2626
	return 0;
2627 2628
}

2629
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2630
			      int link_rate, u8 lane_count,
2631
			      bool link_mst)
2632
{
2633
	intel_dp->link_trained = false;
2634 2635 2636
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2637 2638
}

2639
static void intel_dp_prepare(struct intel_encoder *encoder,
2640
			     const struct intel_crtc_state *pipe_config)
2641
{
2642
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2643
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2644
	enum port port = encoder->port;
2645
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2646
	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2647

2648 2649 2650 2651
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2652

2653
	/*
K
Keith Packard 已提交
2654
	 * There are four kinds of DP registers:
2655 2656
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2657 2658
	 * 	SNB CPU
	 *	IVB CPU
2659 2660 2661 2662 2663 2664 2665 2666
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
2667
	 * configuration happens (oddly) in ilk_pch_enable
2668
	 */
2669

2670 2671 2672
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
2673
	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2674

2675 2676
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2677
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2678

2679
	/* Split out the IBX/CPU vs CPT settings */
2680

2681
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2682 2683 2684 2685 2686 2687
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2688
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2689 2690
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2691
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2692
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2693 2694
		u32 trans_dp;

2695
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2696

2697
		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2698 2699 2700 2701
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2702
		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2703
	} else {
2704
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2705
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2706 2707 2708 2709 2710 2711 2712

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2713
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2714 2715
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2716
		if (IS_CHERRYVIEW(dev_priv))
2717 2718 2719
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2720
	}
2721 2722
}

2723 2724
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2725

2726 2727
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2728

2729 2730
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2731

2732
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2733

2734
static void wait_panel_status(struct intel_dp *intel_dp,
2735 2736
				       u32 mask,
				       u32 value)
2737
{
2738
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2739
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2740

V
Ville Syrjälä 已提交
2741 2742
	lockdep_assert_held(&dev_priv->pps_mutex);

2743
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2744

2745 2746
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2747

2748 2749 2750
	drm_dbg_kms(&dev_priv->drm,
		    "mask %08x value %08x status %08x control %08x\n",
		    mask, value,
2751 2752
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2753

2754 2755
	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
				       mask, value, 5000))
2756 2757
		drm_err(&dev_priv->drm,
			"Panel status timeout: status %08x control %08x\n",
2758 2759
			intel_de_read(dev_priv, pp_stat_reg),
			intel_de_read(dev_priv, pp_ctrl_reg));
2760

2761
	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2762
}
2763

2764
static void wait_panel_on(struct intel_dp *intel_dp)
2765
{
2766 2767 2768
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);

	drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2769
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2770 2771
}

2772
static void wait_panel_off(struct intel_dp *intel_dp)
2773
{
2774 2775 2776
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);

	drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2777
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2778 2779
}

2780
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2781
{
2782
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2783 2784 2785
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2786
	drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2787

2788 2789 2790 2791 2792
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2793 2794
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2795 2796 2797
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2798

2799
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2800 2801
}

2802
static void wait_backlight_on(struct intel_dp *intel_dp)
2803 2804 2805 2806 2807
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2808
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2809 2810 2811 2812
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2813

2814 2815 2816 2817
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2818
static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2819
{
2820
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2821
	u32 control;
2822

V
Ville Syrjälä 已提交
2823 2824
	lockdep_assert_held(&dev_priv->pps_mutex);

2825
	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2826 2827
	if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
			(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2828 2829 2830
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2831
	return control;
2832 2833
}

2834 2835 2836 2837 2838
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2839
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2840
{
2841
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2842
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2843
	u32 pp;
2844
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2845
	bool need_to_disable = !intel_dp->want_panel_vdd;
2846

V
Ville Syrjälä 已提交
2847 2848
	lockdep_assert_held(&dev_priv->pps_mutex);

2849
	if (!intel_dp_is_edp(intel_dp))
2850
		return false;
2851

2852
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2853
	intel_dp->want_panel_vdd = true;
2854

2855
	if (edp_have_panel_vdd(intel_dp))
2856
		return need_to_disable;
2857

2858 2859
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2860

2861 2862 2863
	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
2864

2865 2866
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2867

2868
	pp = ilk_get_pp_control(intel_dp);
2869
	pp |= EDP_FORCE_VDD;
2870

2871 2872
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2873

2874 2875
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2876
	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2877 2878
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2879 2880 2881
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2882
	if (!edp_have_panel_power(intel_dp)) {
2883 2884 2885 2886
		drm_dbg_kms(&dev_priv->drm,
			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
			    intel_dig_port->base.base.base.id,
			    intel_dig_port->base.base.name);
2887 2888
		msleep(intel_dp->panel_power_up_delay);
	}
2889 2890 2891 2892

	return need_to_disable;
}

2893 2894 2895 2896 2897 2898 2899
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2900
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2901
{
2902
	intel_wakeref_t wakeref;
2903
	bool vdd;
2904

2905
	if (!intel_dp_is_edp(intel_dp))
2906 2907
		return;

2908 2909 2910
	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
2911 2912 2913
	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
2914 2915
}

2916
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2917
{
2918
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2919 2920
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2921
	u32 pp;
2922
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2923

V
Ville Syrjälä 已提交
2924
	lockdep_assert_held(&dev_priv->pps_mutex);
2925

2926
	drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2927

2928
	if (!edp_have_panel_vdd(intel_dp))
2929
		return;
2930

2931 2932 2933
	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
2934

2935
	pp = ilk_get_pp_control(intel_dp);
2936
	pp &= ~EDP_FORCE_VDD;
2937

2938 2939
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2940

2941 2942
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
P
Paulo Zanoni 已提交
2943

2944
	/* Make sure sequencer is idle before allowing subsequent activity */
2945
	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2946 2947
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2948

2949
	if ((pp & PANEL_POWER_ON) == 0)
2950
		intel_dp->panel_power_off_time = ktime_get_boottime();
2951

2952 2953
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2954
}
2955

2956
static void edp_panel_vdd_work(struct work_struct *__work)
2957
{
2958 2959 2960 2961
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;
2962

2963 2964 2965 2966
	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
2967 2968
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

2982 2983 2984 2985 2986
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2987
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2988
{
2989
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
2990 2991 2992

	lockdep_assert_held(&dev_priv->pps_mutex);

2993
	if (!intel_dp_is_edp(intel_dp))
2994
		return;
2995

2996 2997 2998
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
2999

3000 3001
	intel_dp->want_panel_vdd = false;

3002
	if (sync)
3003
		edp_panel_vdd_off_sync(intel_dp);
3004 3005
	else
		edp_panel_vdd_schedule_off(intel_dp);
3006 3007
}

3008
static void edp_panel_on(struct intel_dp *intel_dp)
3009
{
3010
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3011
	u32 pp;
3012
	i915_reg_t pp_ctrl_reg;
3013

3014 3015
	lockdep_assert_held(&dev_priv->pps_mutex);

3016
	if (!intel_dp_is_edp(intel_dp))
3017
		return;
3018

3019 3020 3021
	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
		    dp_to_dig_port(intel_dp)->base.base.base.id,
		    dp_to_dig_port(intel_dp)->base.base.name);
V
Ville Syrjälä 已提交
3022

3023 3024 3025 3026
	if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
		     "[ENCODER:%d:%s] panel power already on\n",
		     dp_to_dig_port(intel_dp)->base.base.base.id,
		     dp_to_dig_port(intel_dp)->base.base.name))
3027
		return;
3028

3029
	wait_panel_power_cycle(intel_dp);
3030

3031
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3032
	pp = ilk_get_pp_control(intel_dp);
3033
	if (IS_GEN(dev_priv, 5)) {
3034 3035
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
3036 3037
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3038
	}
3039

3040
	pp |= PANEL_POWER_ON;
3041
	if (!IS_GEN(dev_priv, 5))
3042 3043
		pp |= PANEL_POWER_RESET;

3044 3045
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3046

3047
	wait_panel_on(intel_dp);
3048
	intel_dp->last_power_on = jiffies;
3049

3050
	if (IS_GEN(dev_priv, 5)) {
3051
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3052 3053
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3054
	}
3055
}
V
Ville Syrjälä 已提交
3056

3057 3058
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
3059 3060
	intel_wakeref_t wakeref;

3061
	if (!intel_dp_is_edp(intel_dp))
3062 3063
		return;

3064 3065
	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
3066 3067
}

3068 3069

static void edp_panel_off(struct intel_dp *intel_dp)
3070
{
3071
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3072
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3073
	u32 pp;
3074
	i915_reg_t pp_ctrl_reg;
3075

3076 3077
	lockdep_assert_held(&dev_priv->pps_mutex);

3078
	if (!intel_dp_is_edp(intel_dp))
3079
		return;
3080

3081 3082
	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
		    dig_port->base.base.base.id, dig_port->base.base.name);
3083

3084 3085 3086
	drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
		 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
		 dig_port->base.base.base.id, dig_port->base.base.name);
3087

3088
	pp = ilk_get_pp_control(intel_dp);
3089 3090
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
3091
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3092
		EDP_BLC_ENABLE);
3093

3094
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3095

3096 3097
	intel_dp->want_panel_vdd = false;

3098 3099
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3100

3101
	wait_panel_off(intel_dp);
3102
	intel_dp->panel_power_off_time = ktime_get_boottime();
3103 3104

	/* We got a reference when we enabled the VDD. */
3105
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3106
}
V
Ville Syrjälä 已提交
3107

3108 3109
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
3110 3111
	intel_wakeref_t wakeref;

3112
	if (!intel_dp_is_edp(intel_dp))
3113
		return;
V
Ville Syrjälä 已提交
3114

3115 3116
	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
3117 3118
}

3119 3120
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3121
{
3122
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3123
	intel_wakeref_t wakeref;
3124

3125 3126 3127 3128 3129 3130
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
3131
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
3132

3133 3134 3135
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
3136

3137
		pp = ilk_get_pp_control(intel_dp);
3138
		pp |= EDP_BLC_ENABLE;
3139

3140 3141
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3142
	}
3143 3144
}

3145
/* Enable backlight PWM and backlight PP control. */
3146 3147
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
3148
{
3149
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3150
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3151

3152
	if (!intel_dp_is_edp(intel_dp))
3153 3154
		return;

3155
	drm_dbg_kms(&i915->drm, "\n");
3156

3157
	intel_panel_enable_backlight(crtc_state, conn_state);
3158 3159 3160 3161 3162
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3163
{
3164
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3165
	intel_wakeref_t wakeref;
3166

3167
	if (!intel_dp_is_edp(intel_dp))
3168 3169
		return;

3170 3171 3172
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
V
Ville Syrjälä 已提交
3173

3174
		pp = ilk_get_pp_control(intel_dp);
3175
		pp &= ~EDP_BLC_ENABLE;
3176

3177 3178
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3179
	}
V
Ville Syrjälä 已提交
3180 3181

	intel_dp->last_backlight_off = jiffies;
3182
	edp_wait_backlight_off(intel_dp);
3183
}
3184

3185
/* Disable backlight PP control and backlight PWM. */
3186
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3187
{
3188
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3189
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3190

3191
	if (!intel_dp_is_edp(intel_dp))
3192 3193
		return;

3194
	drm_dbg_kms(&i915->drm, "\n");
3195

3196
	_intel_edp_backlight_off(intel_dp);
3197
	intel_panel_disable_backlight(old_conn_state);
3198
}
3199

3200 3201 3202 3203 3204 3205 3206
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
3207
	struct drm_i915_private *i915 = to_i915(connector->base.dev);
3208
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3209
	intel_wakeref_t wakeref;
V
Ville Syrjälä 已提交
3210 3211
	bool is_enabled;

3212 3213
	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
3214
		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3215 3216 3217
	if (is_enabled == enable)
		return;

3218 3219
	drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
		    enable ? "enable" : "disable");
3220 3221 3222 3223 3224 3225 3226

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

3227 3228 3229 3230
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3231
	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3232 3233

	I915_STATE_WARN(cur_state != state,
3234 3235
			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
			dig_port->base.base.base.id, dig_port->base.base.name,
3236
			onoff(state), onoff(cur_state));
3237 3238 3239 3240 3241
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
3242
	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3243 3244 3245

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
3246
			onoff(state), onoff(cur_state));
3247 3248 3249 3250
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

3251 3252
static void ilk_edp_pll_on(struct intel_dp *intel_dp,
			   const struct intel_crtc_state *pipe_config)
3253
{
3254
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3255
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3256

3257
	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3258 3259
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
3260

3261 3262
	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
		    pipe_config->port_clock);
3263 3264 3265

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

3266
	if (pipe_config->port_clock == 162000)
3267 3268 3269 3270
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

3271 3272
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3273 3274
	udelay(500);

3275 3276 3277 3278 3279 3280
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
3281
	if (IS_GEN(dev_priv, 5))
3282
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3283

3284
	intel_dp->DP |= DP_PLL_ENABLE;
3285

3286 3287
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3288
	udelay(200);
3289 3290
}

3291 3292
static void ilk_edp_pll_off(struct intel_dp *intel_dp,
			    const struct intel_crtc_state *old_crtc_state)
3293
{
3294
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3295
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3296

3297
	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3298 3299
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
3300

3301
	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3302

3303
	intel_dp->DP &= ~DP_PLL_ENABLE;
3304

3305 3306
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3307 3308 3309
	udelay(200);
}

3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3321
		drm_dp_is_branch(intel_dp->dpcd) &&
3322 3323 3324
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

3325 3326 3327 3328
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
3329
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3330 3331
	int ret;

3332
	if (!crtc_state->dsc.compression_enable)
3333 3334 3335 3336 3337
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
3338 3339 3340
		drm_dbg_kms(&i915->drm,
			    "Failed to %s sink decompression state\n",
			    enable ? "enable" : "disable");
3341 3342
}

3343
/* If the sink supports it, try to set the power state appropriately */
3344
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3345
{
3346
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3347 3348 3349 3350 3351 3352 3353
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
3354 3355 3356
		if (downstream_hpd_needs_d0(intel_dp))
			return;

3357 3358
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
3359
	} else {
3360 3361
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

3362 3363 3364 3365 3366
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
3367 3368
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
3369 3370 3371 3372
			if (ret == 1)
				break;
			msleep(1);
		}
3373 3374 3375

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
3376
	}
3377 3378

	if (ret != 1)
3379 3380
		drm_dbg_kms(&i915->drm, "failed to %s sink power state\n",
			    mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3381 3382
}

3383 3384 3385 3386 3387 3388
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
3389
		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3390 3391 3392 3393 3394 3395 3396

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

3397 3398
	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
		    port_name(port));
3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

3413
	val = intel_de_read(dev_priv, dp_reg);
3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

3430 3431
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
3432
{
3433
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3434
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3435
	intel_wakeref_t wakeref;
3436
	bool ret;
3437

3438 3439 3440
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
3441 3442
		return false;

3443 3444
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
3445

3446
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3447 3448

	return ret;
3449
}
3450

3451
static void intel_dp_get_config(struct intel_encoder *encoder,
3452
				struct intel_crtc_state *pipe_config)
3453
{
3454
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3455
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3456
	u32 tmp, flags = 0;
3457
	enum port port = encoder->port;
3458
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3459

3460 3461 3462 3463
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3464

3465
	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3466 3467

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3468

3469
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3470 3471
		u32 trans_dp = intel_de_read(dev_priv,
					     TRANS_DP_CTL(crtc->pipe));
3472 3473

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3474 3475 3476
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3477

3478
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3479 3480 3481 3482
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3483
		if (tmp & DP_SYNC_HS_HIGH)
3484 3485 3486
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3487

3488
		if (tmp & DP_SYNC_VS_HIGH)
3489 3490 3491 3492
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3493

3494
	pipe_config->hw.adjusted_mode.flags |= flags;
3495

3496
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3497 3498
		pipe_config->limited_color_range = true;

3499 3500 3501
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3502 3503
	intel_dp_get_m_n(crtc, pipe_config);

3504
	if (port == PORT_A) {
3505
		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3506 3507 3508 3509
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3510

3511
	pipe_config->hw.adjusted_mode.crtc_clock =
3512 3513
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3514

3515
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3516
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
3530 3531 3532
		drm_dbg_kms(&dev_priv->drm,
			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3533
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3534
	}
3535 3536
}

3537 3538
static void intel_disable_dp(struct intel_atomic_state *state,
			     struct intel_encoder *encoder,
3539 3540
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3541
{
3542
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3543

3544 3545
	intel_dp->link_trained = false;

3546
	if (old_crtc_state->has_audio)
3547 3548
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3549 3550 3551

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3552
	intel_edp_panel_vdd_on(intel_dp);
3553
	intel_edp_backlight_off(old_conn_state);
3554
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3555
	intel_edp_panel_off(intel_dp);
3556 3557
}

3558 3559
static void g4x_disable_dp(struct intel_atomic_state *state,
			   struct intel_encoder *encoder,
3560 3561 3562
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
3563
	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3564 3565
}

3566 3567
static void vlv_disable_dp(struct intel_atomic_state *state,
			   struct intel_encoder *encoder,
3568 3569 3570
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
3571
	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3572 3573
}

3574 3575
static void g4x_post_disable_dp(struct intel_atomic_state *state,
				struct intel_encoder *encoder,
3576 3577
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3578
{
3579
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3580
	enum port port = encoder->port;
3581

3582 3583 3584 3585 3586 3587
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3588
	intel_dp_link_down(encoder, old_crtc_state);
3589 3590

	/* Only ilk+ has port A */
3591
	if (port == PORT_A)
3592
		ilk_edp_pll_off(intel_dp, old_crtc_state);
3593 3594
}

3595 3596
static void vlv_post_disable_dp(struct intel_atomic_state *state,
				struct intel_encoder *encoder,
3597 3598
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3599
{
3600
	intel_dp_link_down(encoder, old_crtc_state);
3601 3602
}

3603 3604
static void chv_post_disable_dp(struct intel_atomic_state *state,
				struct intel_encoder *encoder,
3605 3606
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3607
{
3608
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3609

3610
	intel_dp_link_down(encoder, old_crtc_state);
3611

3612
	vlv_dpio_get(dev_priv);
3613 3614

	/* Assert data lane reset */
3615
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3616

3617
	vlv_dpio_put(dev_priv);
3618 3619
}

3620
static void
3621 3622
cpt_set_link_train(struct intel_dp *intel_dp,
		   u8 dp_train_pat)
3623
{
3624
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3625
	u32 *DP = &intel_dp->DP;
3626

3627
	*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3628

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644
	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
	case DP_TRAINING_PATTERN_DISABLE:
		*DP |= DP_LINK_TRAIN_OFF_CPT;
		break;
	case DP_TRAINING_PATTERN_1:
		*DP |= DP_LINK_TRAIN_PAT_1_CPT;
		break;
	case DP_TRAINING_PATTERN_2:
		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
		break;
	case DP_TRAINING_PATTERN_3:
		drm_dbg_kms(&dev_priv->drm,
			    "TPS3 not supported, using TPS2 instead\n");
		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
		break;
	}
3645

3646 3647 3648
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
}
3649

3650 3651 3652 3653 3654 3655
static void
g4x_set_link_train(struct intel_dp *intel_dp,
		   u8 dp_train_pat)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u32 *DP = &intel_dp->DP;
3656

3657
	*DP &= ~DP_LINK_TRAIN_MASK;
3658

3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673
	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
	case DP_TRAINING_PATTERN_DISABLE:
		*DP |= DP_LINK_TRAIN_OFF;
		break;
	case DP_TRAINING_PATTERN_1:
		*DP |= DP_LINK_TRAIN_PAT_1;
		break;
	case DP_TRAINING_PATTERN_2:
		*DP |= DP_LINK_TRAIN_PAT_2;
		break;
	case DP_TRAINING_PATTERN_3:
		drm_dbg_kms(&dev_priv->drm,
			    "TPS3 not supported, using TPS2 instead\n");
		*DP |= DP_LINK_TRAIN_PAT_2;
		break;
3674
	}
3675 3676 3677

	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3678 3679
}

3680
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3681
				 const struct intel_crtc_state *old_crtc_state)
3682
{
3683
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3684 3685 3686

	/* enable with pattern 1 (as per spec) */

3687
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3688 3689 3690 3691 3692 3693 3694 3695

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3696
	if (old_crtc_state->has_audio)
3697
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3698

3699 3700
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3701 3702
}

3703 3704
static void intel_enable_dp(struct intel_atomic_state *state,
			    struct intel_encoder *encoder,
3705 3706
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3707
{
3708
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3709
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3710
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3711
	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3712
	enum pipe pipe = crtc->pipe;
3713
	intel_wakeref_t wakeref;
3714

3715
	if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3716
		return;
3717

3718 3719 3720
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);
3721

3722
		intel_dp_enable_port(intel_dp, pipe_config);
3723

3724 3725 3726 3727
		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}
3728

3729
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3730 3731
		unsigned int lane_mask = 0x0;

3732
		if (IS_CHERRYVIEW(dev_priv))
3733
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3734

3735 3736
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3737
	}
3738

3739
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3740
	intel_dp_start_link_train(intel_dp);
3741
	intel_dp_stop_link_train(intel_dp);
3742

3743
	if (pipe_config->has_audio) {
3744 3745
		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
			pipe_name(pipe));
3746
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3747
	}
3748
}
3749

3750 3751
static void g4x_enable_dp(struct intel_atomic_state *state,
			  struct intel_encoder *encoder,
3752 3753
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3754
{
3755
	intel_enable_dp(state, encoder, pipe_config, conn_state);
3756
	intel_edp_backlight_on(pipe_config, conn_state);
3757
}
3758

3759 3760
static void vlv_enable_dp(struct intel_atomic_state *state,
			  struct intel_encoder *encoder,
3761 3762
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3763
{
3764
	intel_edp_backlight_on(pipe_config, conn_state);
3765 3766
}

3767 3768
static void g4x_pre_enable_dp(struct intel_atomic_state *state,
			      struct intel_encoder *encoder,
3769 3770
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3771
{
3772
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3773
	enum port port = encoder->port;
3774

3775
	intel_dp_prepare(encoder, pipe_config);
3776

3777
	/* Only ilk+ has port A */
3778
	if (port == PORT_A)
3779
		ilk_edp_pll_on(intel_dp, pipe_config);
3780 3781
}

3782 3783 3784
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3785
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3786
	enum pipe pipe = intel_dp->pps_pipe;
3787
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3788

3789
	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3790

3791
	if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3792 3793
		return;

3794 3795 3796
	edp_panel_vdd_off_sync(intel_dp);

	/*
3797
	 * VLV seems to get confused when multiple power sequencers
3798 3799 3800
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3801
	 * selected in multiple power sequencers, but let's clear the
3802 3803 3804
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
3805 3806 3807 3808
	drm_dbg_kms(&dev_priv->drm,
		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
		    pipe_name(pipe), intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
3809 3810
	intel_de_write(dev_priv, pp_on_reg, 0);
	intel_de_posting_read(dev_priv, pp_on_reg);
3811 3812 3813 3814

	intel_dp->pps_pipe = INVALID_PIPE;
}

3815
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3816 3817 3818 3819 3820 3821
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3822
	for_each_intel_dp(&dev_priv->drm, encoder) {
3823
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3824

3825 3826 3827 3828
		drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
			 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
			 pipe_name(pipe), encoder->base.base.id,
			 encoder->base.name);
3829

3830 3831 3832
		if (intel_dp->pps_pipe != pipe)
			continue;

3833 3834 3835 3836
		drm_dbg_kms(&dev_priv->drm,
			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
			    pipe_name(pipe), encoder->base.base.id,
			    encoder->base.name);
3837 3838

		/* make sure vdd is off before we steal it */
3839
		vlv_detach_power_sequencer(intel_dp);
3840 3841 3842
	}
}

3843 3844
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3845
{
3846
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3847
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3848
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3849 3850 3851

	lockdep_assert_held(&dev_priv->pps_mutex);

3852
	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3853

3854 3855 3856 3857 3858 3859 3860
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3861
		vlv_detach_power_sequencer(intel_dp);
3862
	}
3863 3864 3865 3866 3867

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3868
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3869

3870 3871
	intel_dp->active_pipe = crtc->pipe;

3872
	if (!intel_dp_is_edp(intel_dp))
3873 3874
		return;

3875 3876 3877
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

3878 3879 3880 3881
	drm_dbg_kms(&dev_priv->drm,
		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
		    encoder->base.name);
3882 3883

	/* init power sequencer on this pipe and port */
3884 3885
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3886 3887
}

3888 3889
static void vlv_pre_enable_dp(struct intel_atomic_state *state,
			      struct intel_encoder *encoder,
3890 3891
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3892
{
3893
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3894

3895
	intel_enable_dp(state, encoder, pipe_config, conn_state);
3896 3897
}

3898 3899
static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
				  struct intel_encoder *encoder,
3900 3901
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3902
{
3903
	intel_dp_prepare(encoder, pipe_config);
3904

3905
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3906 3907
}

3908 3909
static void chv_pre_enable_dp(struct intel_atomic_state *state,
			      struct intel_encoder *encoder,
3910 3911
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3912
{
3913
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3914

3915
	intel_enable_dp(state, encoder, pipe_config, conn_state);
3916 3917

	/* Second common lane will stay alive on its own now */
3918
	chv_phy_release_cl2_override(encoder);
3919 3920
}

3921 3922
static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
				  struct intel_encoder *encoder,
3923 3924
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3925
{
3926
	intel_dp_prepare(encoder, pipe_config);
3927

3928
	chv_phy_pre_pll_enable(encoder, pipe_config);
3929 3930
}

3931 3932
static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
				    struct intel_encoder *encoder,
3933 3934
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3935
{
3936
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3937 3938
}

3939 3940 3941 3942
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3943
bool
3944
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3945
{
3946 3947
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3948 3949
}

3950
/* These are source-specific values. */
3951
u8
K
Keith Packard 已提交
3952
intel_dp_voltage_max(struct intel_dp *intel_dp)
3953
{
3954
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3955 3956
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3957

3958
	if (HAS_DDI(dev_priv))
3959
		return intel_ddi_dp_voltage_max(encoder);
3960
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3961
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3962
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3963
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3964
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3965
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
3966
	else
3967
		return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
K
Keith Packard 已提交
3968 3969
}

3970 3971
u8
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
K
Keith Packard 已提交
3972
{
3973
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3974 3975
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum port port = encoder->port;
K
Keith Packard 已提交
3976

3977 3978
	if (HAS_DDI(dev_priv)) {
		return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3979
	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3980
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3981 3982 3983 3984 3985 3986 3987
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_3;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3988
		default:
3989
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
3990
		}
3991
	} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
3992
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3993 3994 3995 3996 3997
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
K
Keith Packard 已提交
3998
		default:
3999
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
4000 4001 4002
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4003 4004 4005 4006 4007 4008 4009
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
			return DP_TRAIN_PRE_EMPH_LEVEL_2;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
			return DP_TRAIN_PRE_EMPH_LEVEL_1;
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
K
Keith Packard 已提交
4010
		default:
4011
			return DP_TRAIN_PRE_EMPH_LEVEL_0;
K
Keith Packard 已提交
4012
		}
4013 4014 4015
	}
}

4016
static void vlv_set_signal_levels(struct intel_dp *intel_dp)
4017
{
4018
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4019 4020
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
4021
	u8 train_set = intel_dp->train_set[0];
4022 4023

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4024
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4025 4026
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4027
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4028 4029 4030
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
4031
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4032 4033 4034
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
4035
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4036 4037 4038
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
4039
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4040 4041 4042 4043
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
4044
			return;
4045 4046
		}
		break;
4047
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4048 4049
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4050
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4051 4052 4053
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
4054
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4055 4056 4057
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
4058
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4059 4060 4061 4062
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
4063
			return;
4064 4065
		}
		break;
4066
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4067 4068
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4069
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4070 4071 4072
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
4073
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4074 4075 4076 4077
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
4078
			return;
4079 4080
		}
		break;
4081
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4082 4083
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4084
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4085 4086 4087 4088
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
4089
			return;
4090 4091 4092
		}
		break;
	default:
4093
		return;
4094 4095
	}

4096 4097
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
4098 4099
}

4100
static void chv_set_signal_levels(struct intel_dp *intel_dp)
4101
{
4102 4103 4104
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
4105
	u8 train_set = intel_dp->train_set[0];
4106 4107

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4108
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4109
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4110
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4111 4112 4113
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
4114
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4115 4116 4117
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
4118
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4119 4120 4121
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
4122
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4123 4124
			deemph_reg_value = 128;
			margin_reg_value = 154;
4125
			uniq_trans_scale = true;
4126 4127
			break;
		default:
4128
			return;
4129 4130
		}
		break;
4131
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4132
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4133
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4134 4135 4136
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
4137
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4138 4139 4140
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
4141
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4142 4143 4144 4145
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
4146
			return;
4147 4148
		}
		break;
4149
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4150
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4151
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4152 4153 4154
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
4155
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4156 4157 4158 4159
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
4160
			return;
4161 4162
		}
		break;
4163
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4164
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4165
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4166 4167 4168 4169
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
4170
			return;
4171 4172 4173
		}
		break;
	default:
4174
		return;
4175 4176
	}

4177 4178
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
4179 4180
}

4181
static u32 g4x_signal_levels(u8 train_set)
4182
{
4183
	u32 signal_levels = 0;
4184

4185
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4186
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4187 4188 4189
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
4190
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4191 4192
		signal_levels |= DP_VOLTAGE_0_6;
		break;
4193
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4194 4195
		signal_levels |= DP_VOLTAGE_0_8;
		break;
4196
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4197 4198 4199
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
4200
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4201
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4202 4203 4204
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
4205
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4206 4207
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
4208
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4209 4210
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
4211
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4212 4213 4214 4215 4216 4217
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
static void
g4x_set_signal_levels(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u8 train_set = intel_dp->train_set[0];
	u32 signal_levels;

	signal_levels = g4x_signal_levels(train_set);

	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
		    signal_levels);

	intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
	intel_dp->DP |= signal_levels;

	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
}

4237
/* SNB CPU eDP voltage swing and pre-emphasis control */
4238
static u32 snb_cpu_edp_signal_levels(u8 train_set)
4239
{
4240 4241 4242
	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					DP_TRAIN_PRE_EMPHASIS_MASK);

4243
	switch (signal_levels) {
4244 4245
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4246
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4247
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4248
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4249 4250
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4251
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4252 4253
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4254
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4255 4256
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4257
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4258
	default:
4259 4260 4261
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4262 4263 4264
	}
}

4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283
static void
snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u8 train_set = intel_dp->train_set[0];
	u32 signal_levels;

	signal_levels = snb_cpu_edp_signal_levels(train_set);

	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
		    signal_levels);

	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	intel_dp->DP |= signal_levels;

	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
}

4284
/* IVB CPU eDP voltage swing and pre-emphasis control */
4285
static u32 ivb_cpu_edp_signal_levels(u8 train_set)
K
Keith Packard 已提交
4286
{
4287 4288 4289
	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					DP_TRAIN_PRE_EMPHASIS_MASK);

K
Keith Packard 已提交
4290
	switch (signal_levels) {
4291
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4292
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4293
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4294
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4295
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
4296 4297
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

4298
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4299
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4300
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4301 4302
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

4303
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4304
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4305
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4306 4307 4308 4309 4310 4311 4312 4313 4314
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

4315 4316
static void
ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4317
{
4318
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4319
	u8 train_set = intel_dp->train_set[0];
4320
	u32 signal_levels;
4321

4322 4323 4324 4325 4326 4327 4328
	signal_levels = ivb_cpu_edp_signal_levels(train_set);

	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
		    signal_levels);

	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
	intel_dp->DP |= signal_levels;
4329

4330 4331 4332 4333 4334 4335 4336 4337
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
}

void intel_dp_set_signal_levels(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u8 train_set = intel_dp->train_set[0];
4338 4339 4340 4341 4342 4343 4344 4345 4346

	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
		    " (max)" : "");
4347

4348
	intel_dp->set_signal_levels(intel_dp);
4349 4350
}

4351
void
4352
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4353
				       u8 dp_train_pat)
4354
{
4355 4356
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
4357

4358 4359 4360 4361
	if (dp_train_pat & train_pat_mask)
		drm_dbg_kms(&dev_priv->drm,
			    "Using DP training pattern TPS%d\n",
			    dp_train_pat & train_pat_mask);
4362

4363
	intel_dp->set_link_train(intel_dp, dp_train_pat);
4364 4365
}

4366
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4367
{
4368 4369
	if (intel_dp->set_idle_link_train)
		intel_dp->set_idle_link_train(intel_dp);
4370 4371
}

4372
static void
4373 4374
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
4375
{
4376
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4377
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4378
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4379
	enum port port = encoder->port;
4380
	u32 DP = intel_dp->DP;
4381

4382 4383 4384
	if (drm_WARN_ON(&dev_priv->drm,
			(intel_de_read(dev_priv, intel_dp->output_reg) &
			 DP_PORT_EN) == 0))
4385 4386
		return;

4387
	drm_dbg_kms(&dev_priv->drm, "\n");
4388

4389
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4390
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4391
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4392
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4393
	} else {
4394
		DP &= ~DP_LINK_TRAIN_MASK;
4395
		DP |= DP_LINK_TRAIN_PAT_IDLE;
4396
	}
4397 4398
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4399

4400
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4401 4402
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4403 4404 4405 4406 4407 4408

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
4409
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4410 4411 4412 4413 4414 4415 4416
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

4417
		/* always enable with pattern 1 (as per spec) */
4418 4419 4420
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
4421 4422
		intel_de_write(dev_priv, intel_dp->output_reg, DP);
		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4423 4424

		DP &= ~DP_PORT_EN;
4425 4426
		intel_de_write(dev_priv, intel_dp->output_reg, DP);
		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4427

4428
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4429 4430
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4431 4432
	}

4433
	msleep(intel_dp->panel_power_down_delay);
4434 4435

	intel_dp->DP = DP;
4436 4437

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4438 4439 4440 4441
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
4442
	}
4443 4444
}

4445 4446 4447
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
4448
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4464 4465
		drm_err(&i915->drm,
			"DPCD failed read at extended capabilities\n");
4466 4467 4468 4469
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4470 4471
		drm_dbg_kms(&i915->drm,
			    "DPCD extended DPCD rev less than base DPCD rev\n");
4472 4473 4474 4475 4476 4477
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

4478 4479
	drm_dbg_kms(&i915->drm, "Base DPCD: %*ph\n",
		    (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4480 4481 4482 4483

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4484
bool
4485
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4486
{
4487 4488
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);

4489 4490
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4491
		return false; /* aux transfer failed */
4492

4493 4494
	intel_dp_extended_receiver_capabilities(intel_dp);

4495 4496
	drm_dbg_kms(&i915->drm, "DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd),
		    intel_dp->dpcd);
4497

4498 4499
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4500

4501 4502 4503 4504 4505 4506 4507 4508 4509 4510
bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
	u8 dprx = 0;

	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
			      &dprx) != 1)
		return false;
	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}

4511 4512
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
4513 4514
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);

4515 4516 4517 4518 4519 4520
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4521 4522 4523
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4524 4525 4526 4527 4528 4529
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
4530 4531 4532
			drm_err(&i915->drm,
				"Failed to read DPCD register 0x%x\n",
				DP_DSC_SUPPORT);
4533

4534 4535 4536
		drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
			    (int)sizeof(intel_dp->dsc_dpcd),
			    intel_dp->dsc_dpcd);
4537

4538
		/* FEC is supported only on DP 1.4 */
4539 4540 4541
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
4542 4543
			drm_err(&i915->drm,
				"Failed to read FEC DPCD register\n");
4544

4545 4546
		drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
			    intel_dp->fec_capable);
4547 4548 4549
	}
}

4550 4551 4552 4553 4554
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4555

4556
	/* this function is meant to be called only once */
4557
	drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4558

4559
	if (!intel_dp_read_dpcd(intel_dp))
4560 4561
		return false;

4562 4563
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4564

4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4575 4576
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4577 4578 4579
		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
			    (int)sizeof(intel_dp->edp_dpcd),
			    intel_dp->edp_dpcd);
4580

4581 4582 4583 4584 4585 4586
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4587 4588
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4589
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4590 4591
		int i;

4592 4593
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4594

4595 4596
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4597 4598 4599 4600

			if (val == 0)
				break;

4601 4602 4603 4604 4605 4606
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4607
			intel_dp->sink_rates[i] = (val * 200) / 10;
4608
		}
4609
		intel_dp->num_sink_rates = i;
4610
	}
4611

4612 4613 4614 4615
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4616 4617 4618 4619 4620
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4621 4622
	intel_dp_set_common_rates(intel_dp);

4623 4624 4625 4626
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4637 4638 4639 4640
	/*
	 * Don't clobber cached eDP rates. Also skip re-reading
	 * the OUI/ID since we know it won't change.
	 */
4641
	if (!intel_dp_is_edp(intel_dp)) {
4642 4643 4644
		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
				 drm_dp_is_branch(intel_dp->dpcd));

4645
		intel_dp_set_sink_rates(intel_dp);
4646 4647
		intel_dp_set_common_rates(intel_dp);
	}
4648

4649
	/*
4650 4651
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4652
	 */
4653
	if (!intel_dp_is_edp(intel_dp) &&
L
Lyude Paul 已提交
4654 4655
	    !drm_dp_has_quirk(&intel_dp->desc, 0,
			      DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4656 4657
		u8 count;
		ssize_t r;
4658

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4680

4681
	if (!drm_dp_is_branch(intel_dp->dpcd))
4682 4683 4684 4685 4686
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4687 4688 4689
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4690 4691 4692
		return false; /* downstream port status fetch failed */

	return true;
4693 4694
}

4695
static bool
4696
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4697
{
4698
	u8 mstm_cap;
4699 4700 4701 4702

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4703
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4704
		return false;
4705

4706
	return mstm_cap & DP_MST_CAP;
4707 4708
}

4709 4710 4711 4712 4713 4714 4715 4716
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
	return i915_modparams.enable_dp_mst &&
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4717 4718 4719
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4720
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4721 4722 4723 4724
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

4725 4726 4727 4728 4729
	drm_dbg_kms(&i915->drm,
		    "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
		    encoder->base.base.id, encoder->base.name,
		    yesno(intel_dp->can_mst), yesno(sink_can_mst),
		    yesno(i915_modparams.enable_dp_mst));
4730 4731 4732 4733

	if (!intel_dp->can_mst)
		return;

4734 4735
	intel_dp->is_mst = sink_can_mst &&
		i915_modparams.enable_dp_mst;
4736 4737 4738

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4739 4740 4741 4742 4743
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4744 4745 4746
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4747 4748
}

4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
bool
intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
		       const struct drm_connector_state *conn_state)
{
	/*
	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
	 * of Color Encoding Format and Content Color Gamut], in order to
	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		return true;

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_SYCC_601:
	case DRM_MODE_COLORIMETRY_OPYCC_601:
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
		return true;
	default:
		break;
	}

	return false;
}

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
				     struct dp_sdp *sdp, size_t size)
{
	size_t length = sizeof(struct dp_sdp);

	if (size < length)
		return -ENOSPC;

	memset(sdp, 0, size);

	/*
	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
	 * VSC SDP Header Bytes
	 */
	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */

	/* VSC SDP Payload for DB16 through DB18 */
	/* Pixel Encoding and Colorimetry Formats  */
	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */

	switch (vsc->bpc) {
	case 6:
		/* 6bpc: 0x0 */
		break;
	case 8:
		sdp->db[17] = 0x1; /* DB17[3:0] */
		break;
	case 10:
		sdp->db[17] = 0x2;
		break;
	case 12:
		sdp->db[17] = 0x3;
		break;
	case 16:
		sdp->db[17] = 0x4;
		break;
	default:
		MISSING_CASE(vsc->bpc);
		break;
	}
	/* Dynamic Range and Component Bit Depth */
	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
		sdp->db[17] |= 0x80;  /* DB17[7] */

	/* Content Type */
	sdp->db[18] = vsc->content_type & 0x7;

	return length;
}

static ssize_t
intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
					 struct dp_sdp *sdp,
					 size_t size)
{
	size_t length = sizeof(struct dp_sdp);
	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
	ssize_t len;

	if (size < length)
		return -ENOSPC;

	memset(sdp, 0, size);

	len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
	if (len < 0) {
		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
		return -ENOSPC;
	}

	if (len != infoframe_size) {
		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
		return -ENOSPC;
	}

	/*
	 * Set up the infoframe sdp packet for HDR static metadata.
	 * Prepare VSC Header for SU as per DP 1.4a spec,
	 * Table 2-100 and Table 2-101
	 */

	/* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
	sdp->sdp_header.HB0 = 0;
	/*
	 * Packet Type 80h + Non-audio INFOFRAME Type value
	 * HDMI_INFOFRAME_TYPE_DRM: 0x87
	 * - 80h + Non-audio INFOFRAME Type value
	 * - InfoFrame Type: 0x07
	 *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
	 */
	sdp->sdp_header.HB1 = drm_infoframe->type;
	/*
	 * Least Significant Eight Bits of (Data Byte Count – 1)
	 * infoframe_size - 1
	 */
	sdp->sdp_header.HB2 = 0x1D;
	/* INFOFRAME SDP Version Number */
	sdp->sdp_header.HB3 = (0x13 << 2);
	/* CTA Header Byte 2 (INFOFRAME Version Number) */
	sdp->db[0] = drm_infoframe->version;
	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
	sdp->db[1] = drm_infoframe->length;
	/*
	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
	 * HDMI_INFOFRAME_HEADER_SIZE
	 */
	BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
	memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
	       HDMI_DRM_INFOFRAME_SIZE);

	/*
	 * Size of DP infoframe sdp packet for HDR static metadata consists of
	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
	 * - Two Data Blocks: 2 bytes
	 *    CTA Header Byte2 (INFOFRAME Version Number)
	 *    CTA Header Byte3 (Length of INFOFRAME)
	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
	 *
	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
	 * will pad rest of the size.
	 */
	return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
}

static void intel_write_dp_sdp(struct intel_encoder *encoder,
			       const struct intel_crtc_state *crtc_state,
			       unsigned int type)
{
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct dp_sdp sdp = {};
	ssize_t len;

	if ((crtc_state->infoframes.enable &
	     intel_hdmi_infoframe_enable(type)) == 0)
		return;

	switch (type) {
	case DP_SDP_VSC:
		len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
					    sizeof(sdp));
		break;
	case HDMI_PACKET_TYPE_GAMUT_METADATA:
		len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
							       &sdp, sizeof(sdp));
		break;
	default:
		MISSING_CASE(type);
4929
		return;
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973
	}

	if (drm_WARN_ON(&dev_priv->drm, len < 0))
		return;

	intel_dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
}

void intel_dp_set_infoframes(struct intel_encoder *encoder,
			     bool enable,
			     const struct intel_crtc_state *crtc_state,
			     const struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
	u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
			 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
			 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
	u32 val = intel_de_read(dev_priv, reg);

	/* TODO: Add DSC case (DIP_ENABLE_PPS) */
	/* When PSR is enabled, this routine doesn't disable VSC DIP */
	if (intel_psr_enabled(intel_dp))
		val &= ~dip_enable;
	else
		val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);

	if (!enable) {
		intel_de_write(dev_priv, reg, val);
		intel_de_posting_read(dev_priv, reg);
		return;
	}

	intel_de_write(dev_priv, reg, val);
	intel_de_posting_read(dev_priv, reg);

	/* When PSR is enabled, VSC SDP is handled by PSR routine */
	if (!intel_psr_enabled(intel_dp))
		intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);

	intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
}

4974
static void
4975 4976 4977
intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
		       const struct intel_crtc_state *crtc_state,
		       const struct drm_connector_state *conn_state)
4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp vsc_sdp = {};

	/* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
	vsc_sdp.sdp_header.HB0 = 0;
	vsc_sdp.sdp_header.HB1 = 0x7;

	/*
	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
	 * Colorimetry Format indication.
	 */
	vsc_sdp.sdp_header.HB2 = 0x5;

	/*
	 * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
	 * Colorimetry Format indication (HB2 = 05h).
	 */
	vsc_sdp.sdp_header.HB3 = 0x13;

4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046
	/* DP 1.4a spec, Table 2-120 */
	switch (crtc_state->output_format) {
	case INTEL_OUTPUT_FORMAT_YCBCR444:
		vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
		break;
	case INTEL_OUTPUT_FORMAT_YCBCR420:
		vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
		break;
	case INTEL_OUTPUT_FORMAT_RGB:
	default:
		/* RGB: DB16[7:4] = 0h */
		break;
	}

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_BT709_YCC:
		vsc_sdp.db[16] |= 0x1;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_601:
		vsc_sdp.db[16] |= 0x2;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_709:
		vsc_sdp.db[16] |= 0x3;
		break;
	case DRM_MODE_COLORIMETRY_SYCC_601:
		vsc_sdp.db[16] |= 0x4;
		break;
	case DRM_MODE_COLORIMETRY_OPYCC_601:
		vsc_sdp.db[16] |= 0x5;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
		vsc_sdp.db[16] |= 0x6;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
		vsc_sdp.db[16] |= 0x7;
		break;
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
		vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
		break;
	default:
		/* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */

		/* RGB->YCBCR color conversion uses the BT.709 color space. */
		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
			vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
		break;
	}
5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097

	/*
	 * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
	 * the following Component Bit Depth values are defined:
	 * 001b = 8bpc.
	 * 010b = 10bpc.
	 * 011b = 12bpc.
	 * 100b = 16bpc.
	 */
	switch (crtc_state->pipe_bpp) {
	case 24: /* 8bpc */
		vsc_sdp.db[17] = 0x1;
		break;
	case 30: /* 10bpc */
		vsc_sdp.db[17] = 0x2;
		break;
	case 36: /* 12bpc */
		vsc_sdp.db[17] = 0x3;
		break;
	case 48: /* 16bpc */
		vsc_sdp.db[17] = 0x4;
		break;
	default:
		MISSING_CASE(crtc_state->pipe_bpp);
		break;
	}

	/*
	 * Dynamic Range (Bit 7)
	 * 0 = VESA range, 1 = CTA range.
	 * all YCbCr are always limited range
	 */
	vsc_sdp.db[17] |= 0x80;

	/*
	 * Content Type (Bits 2:0)
	 * 000b = Not defined.
	 * 001b = Graphics.
	 * 010b = Photo.
	 * 011b = Video.
	 * 100b = Game
	 * All other values are RESERVED.
	 * Note: See CTA-861-G for the definition and expected
	 * processing by a stream sink for the above contect types.
	 */
	vsc_sdp.db[18] = 0;

	intel_dig_port->write_infoframe(&intel_dig_port->base,
			crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
}

5098 5099 5100 5101 5102
static void
intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
					  const struct intel_crtc_state *crtc_state,
					  const struct drm_connector_state *conn_state)
{
5103
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5104 5105 5106 5107 5108 5109 5110 5111 5112 5113
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct dp_sdp infoframe_sdp = {};
	struct hdmi_drm_infoframe drm_infoframe = {};
	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
	ssize_t len;
	int ret;

	ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
	if (ret) {
5114 5115
		drm_dbg_kms(&i915->drm,
			    "couldn't set HDR metadata in infoframe\n");
5116 5117 5118 5119 5120
		return;
	}

	len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
	if (len < 0) {
5121 5122
		drm_dbg_kms(&i915->drm,
			    "buffer size is smaller than hdr metadata infoframe\n");
5123 5124 5125 5126
		return;
	}

	if (len != infoframe_size) {
5127
		drm_dbg_kms(&i915->drm, "wrong static hdr metadata size\n");
5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180
		return;
	}

	/*
	 * Set up the infoframe sdp packet for HDR static metadata.
	 * Prepare VSC Header for SU as per DP 1.4a spec,
	 * Table 2-100 and Table 2-101
	 */

	/* Packet ID, 00h for non-Audio INFOFRAME */
	infoframe_sdp.sdp_header.HB0 = 0;
	/*
	 * Packet Type 80h + Non-audio INFOFRAME Type value
	 * HDMI_INFOFRAME_TYPE_DRM: 0x87,
	 */
	infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
	/*
	 * Least Significant Eight Bits of (Data Byte Count – 1)
	 * infoframe_size - 1,
	 */
	infoframe_sdp.sdp_header.HB2 = 0x1D;
	/* INFOFRAME SDP Version Number */
	infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
	/* CTA Header Byte 2 (INFOFRAME Version Number) */
	infoframe_sdp.db[0] = drm_infoframe.version;
	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
	infoframe_sdp.db[1] = drm_infoframe.length;
	/*
	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
	 * HDMI_INFOFRAME_HEADER_SIZE
	 */
	BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
	memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
	       HDMI_DRM_INFOFRAME_SIZE);

	/*
	 * Size of DP infoframe sdp packet for HDR static metadata is consist of
	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
	 * - Two Data Blocks: 2 bytes
	 *    CTA Header Byte2 (INFOFRAME Version Number)
	 *    CTA Header Byte3 (Length of INFOFRAME)
	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
	 *
	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
	 * will pad rest of the size.
	 */
	intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
					HDMI_PACKET_TYPE_GAMUT_METADATA,
					&infoframe_sdp,
					sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
}

5181 5182 5183
void intel_dp_vsc_enable(struct intel_dp *intel_dp,
			 const struct intel_crtc_state *crtc_state,
			 const struct drm_connector_state *conn_state)
5184
{
5185
	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
5186 5187
		return;

5188
	intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
5189 5190
}

5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202
void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	if (!conn_state->hdr_output_metadata)
		return;

	intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
						  crtc_state,
						  conn_state);
}

5203
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5204
{
5205
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5206
	int status = 0;
5207
	int test_link_rate;
5208
	u8 test_lane_count, test_link_bw;
5209 5210 5211 5212 5213 5214 5215 5216
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
5217
		drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5218 5219 5220 5221 5222 5223 5224
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
5225
		drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5226 5227 5228
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5229 5230 5231 5232

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
5233 5234 5235 5236 5237 5238
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
5239 5240
}

5241
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5242
{
5243
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5244 5245
	u8 test_pattern;
	u8 test_misc;
5246 5247 5248 5249
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
5250 5251
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
5252
	if (status <= 0) {
5253
		drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5254 5255 5256 5257 5258 5259 5260 5261
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
5262
		drm_dbg_kms(&i915->drm, "H Width read failed\n");
5263 5264 5265 5266 5267 5268
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
5269
		drm_dbg_kms(&i915->drm, "V Height read failed\n");
5270 5271 5272
		return DP_TEST_NAK;
	}

5273 5274
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
5275
	if (status <= 0) {
5276
		drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
5298
	intel_dp->compliance.test_active = true;
5299 5300

	return DP_TEST_ACK;
5301 5302
}

5303
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5304
{
5305
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5306
	u8 test_result = DP_TEST_ACK;
5307 5308 5309 5310
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
5311
	    connector->edid_corrupt ||
5312 5313 5314 5315 5316 5317 5318 5319 5320 5321
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
5322 5323 5324 5325
			drm_dbg_kms(&i915->drm,
				    "EDID read had %d NACKs, %d DEFERs\n",
				    intel_dp->aux.i2c_nack_count,
				    intel_dp->aux.i2c_defer_count);
5326
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5327
	} else {
5328 5329 5330 5331 5332 5333 5334
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

5335 5336
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
5337 5338
			drm_dbg_kms(&i915->drm,
				    "Failed to write EDID checksum\n");
5339 5340

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5341
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5342 5343 5344
	}

	/* Set test active flag here so userspace doesn't interrupt things */
5345
	intel_dp->compliance.test_active = true;
5346

5347 5348 5349
	return test_result;
}

5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
{
	struct drm_dp_phy_test_params *data =
		&intel_dp->compliance.test_data.phytest;

	if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
		DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
		return DP_TEST_NAK;
	}

	/*
	 * link_mst is set to false to avoid executing mst related code
	 * during compliance testing.
	 */
	intel_dp->link_mst = false;

	return DP_TEST_ACK;
}

5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513
static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
			to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_dp_phy_test_params *data =
			&intel_dp->compliance.test_data.phytest;
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
	enum pipe pipe = crtc->pipe;
	u32 pattern_val;

	switch (data->phy_pattern) {
	case DP_PHY_TEST_PATTERN_NONE:
		DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
		break;
	case DP_PHY_TEST_PATTERN_D10_2:
		DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
		break;
	case DP_PHY_TEST_PATTERN_ERROR_COUNT:
		DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE |
			       DDI_DP_COMP_CTL_SCRAMBLED_0);
		break;
	case DP_PHY_TEST_PATTERN_PRBS7:
		DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
		break;
	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
		/*
		 * FIXME: Ideally pattern should come from DPCD 0x250. As
		 * current firmware of DPR-100 could not set it, so hardcoding
		 * now for complaince test.
		 */
		DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
		pattern_val = 0x3e0f83e0;
		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
		pattern_val = 0x0f83e0f8;
		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
		pattern_val = 0x0000f83e;
		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE |
			       DDI_DP_COMP_CTL_CUSTOM80);
		break;
	case DP_PHY_TEST_PATTERN_CP2520:
		/*
		 * FIXME: Ideally pattern should come from DPCD 0x24A. As
		 * current firmware of DPR-100 could not set it, so hardcoding
		 * now for complaince test.
		 */
		DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
		pattern_val = 0xFB;
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
			       pattern_val);
		break;
	default:
		WARN(1, "Invalid Phy Test Pattern\n");
	}
}

static void
intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
	enum pipe pipe = crtc->pipe;
	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;

	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
						 TRANS_DDI_FUNC_CTL(pipe));
	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));

	trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
				      TGL_TRANS_DDI_PORT_MASK);
	trans_conf_value &= ~PIPECONF_ENABLE;
	dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;

	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
		       trans_ddi_func_ctl_value);
	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
}

static void
intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	enum port port = intel_dig_port->base.port;
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
	enum pipe pipe = crtc->pipe;
	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;

	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
						 TRANS_DDI_FUNC_CTL(pipe));
	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));

	trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
				    TGL_TRANS_DDI_SELECT_PORT(port);
	trans_conf_value |= PIPECONF_ENABLE;
	dp_tp_ctl_value |= DP_TP_CTL_ENABLE;

	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
		       trans_ddi_func_ctl_value);
}

void intel_dp_process_phy_request(struct intel_dp *intel_dp)
{
	struct drm_dp_phy_test_params *data =
		&intel_dp->compliance.test_data.phytest;
	u8 link_status[DP_LINK_STATUS_SIZE];

	if (!intel_dp_get_link_status(intel_dp, link_status)) {
		DRM_DEBUG_KMS("failed to get link status\n");
		return;
	}

	/* retrieve vswing & pre-emphasis setting */
	intel_dp_get_adjust_train(intel_dp, link_status);

	intel_dp_autotest_phy_ddi_disable(intel_dp);

	intel_dp_set_signal_levels(intel_dp);

	intel_dp_phy_pattern_update(intel_dp);

	intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);

	drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
				    link_status[DP_DPCD_REV]);
}

5514
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5515
{
5516
	u8 test_result;
5517 5518 5519 5520 5521

	test_result = intel_dp_prepare_phytest(intel_dp);
	if (test_result != DP_TEST_ACK)
		DRM_ERROR("Phy test preparation failed\n");

5522 5523
	intel_dp_process_phy_request(intel_dp);

5524 5525 5526 5527 5528
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
5529
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5530 5531
	u8 response = DP_TEST_NAK;
	u8 request = 0;
5532
	int status;
5533

5534
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5535
	if (status <= 0) {
5536 5537
		drm_dbg_kms(&i915->drm,
			    "Could not read test request from sink\n");
5538 5539 5540
		goto update_status;
	}

5541
	switch (request) {
5542
	case DP_TEST_LINK_TRAINING:
5543
		drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5544 5545 5546
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
5547
		drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5548 5549 5550
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
5551
		drm_dbg_kms(&i915->drm, "EDID test requested\n");
5552 5553 5554
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
5555
		drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5556 5557 5558
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
5559 5560
		drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
			    request);
5561 5562 5563
		break;
	}

5564 5565 5566
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

5567
update_status:
5568
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5569
	if (status <= 0)
5570 5571
		drm_dbg_kms(&i915->drm,
			    "Could not write test response to sink\n");
5572 5573
}

5574 5575 5576
static int
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
5577
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5578
	bool need_retrain = false;
5579

5580 5581 5582 5583 5584 5585 5586 5587
	if (!intel_dp->is_mst)
		return -EINVAL;

	WARN_ON_ONCE(intel_dp->active_mst_links < 0);

	for (;;) {
		u8 esi[DP_DPRX_ESI_LEN] = {};
		bool bret, handled;
5588
		int retry;
5589

5590
		bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5591 5592 5593 5594 5595
		if (!bret) {
			drm_dbg_kms(&i915->drm,
				    "failed to get ESI - device may have failed\n");
			return -EINVAL;
		}
5596

5597
		/* check link status - esi[10] = 0x200c */
5598
		if (intel_dp->active_mst_links > 0 && !need_retrain &&
5599 5600 5601
		    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
			drm_dbg_kms(&i915->drm,
				    "channel EQ not ok, retraining\n");
5602
			need_retrain = true;
5603
		}
5604

5605
		drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5606

5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
		drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
		if (!handled)
			break;

		for (retry = 0; retry < 3; retry++) {
			int wret;

			wret = drm_dp_dpcd_write(&intel_dp->aux,
						 DP_SINK_COUNT_ESI+1,
						 &esi[1], 3);
			if (wret == 3)
				break;
5619 5620
		}
	}
5621

5622
	return need_retrain;
5623 5624
}

5625 5626 5627 5628 5629
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

5630
	if (!intel_dp->link_trained)
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
5642 5643 5644
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744
static bool intel_dp_has_connector(struct intel_dp *intel_dp,
				   const struct drm_connector_state *conn_state)
{
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
	struct intel_encoder *encoder;
	enum pipe pipe;

	if (!conn_state->best_encoder)
		return false;

	/* SST */
	encoder = &dp_to_dig_port(intel_dp)->base;
	if (conn_state->best_encoder == &encoder->base)
		return true;

	/* MST */
	for_each_pipe(i915, pipe) {
		encoder = &intel_dp->mst_encoders[pipe]->base;
		if (conn_state->best_encoder == &encoder->base)
			return true;
	}

	return false;
}

static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
				      struct drm_modeset_acquire_ctx *ctx,
				      u32 *crtc_mask)
{
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
	struct drm_connector_list_iter conn_iter;
	struct intel_connector *connector;
	int ret = 0;

	*crtc_mask = 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;

	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
	for_each_intel_connector_iter(connector, &conn_iter) {
		struct drm_connector_state *conn_state =
			connector->base.state;
		struct intel_crtc_state *crtc_state;
		struct intel_crtc *crtc;

		if (!intel_dp_has_connector(intel_dp, conn_state))
			continue;

		crtc = to_intel_crtc(conn_state->crtc);
		if (!crtc)
			continue;

		ret = drm_modeset_lock(&crtc->base.mutex, ctx);
		if (ret)
			break;

		crtc_state = to_intel_crtc_state(crtc->base.state);

		drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));

		if (!crtc_state->hw.active)
			continue;

		if (conn_state->commit &&
		    !try_wait_for_completion(&conn_state->commit->hw_done))
			continue;

		*crtc_mask |= drm_crtc_mask(&crtc->base);
	}
	drm_connector_list_iter_end(&conn_iter);

	if (!intel_dp_needs_link_retrain(intel_dp))
		*crtc_mask = 0;

	return ret;
}

static bool intel_dp_is_connected(struct intel_dp *intel_dp)
{
	struct intel_connector *connector = intel_dp->attached_connector;

	return connector->base.status == connector_status_connected ||
		intel_dp->is_mst;
}

5745 5746
int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
5747 5748
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5749
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5750
	struct intel_crtc *crtc;
5751
	u32 crtc_mask;
5752 5753
	int ret;

5754
	if (!intel_dp_is_connected(intel_dp))
5755 5756 5757 5758 5759 5760 5761
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

5762
	ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5763 5764 5765
	if (ret)
		return ret;

5766
	if (crtc_mask == 0)
5767 5768
		return 0;

5769 5770
	drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
		    encoder->base.base.id, encoder->base.name);
5771

5772 5773 5774
	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
		const struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
5775

5776 5777 5778 5779 5780 5781
		/* Suppress underruns caused by re-training */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
		if (crtc_state->has_pch_encoder)
			intel_set_pch_fifo_underrun_reporting(dev_priv,
							      intel_crtc_pch_transcoder(crtc), false);
	}
5782 5783 5784 5785

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

5786 5787 5788
	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
		const struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
5789

5790 5791 5792 5793 5794 5795 5796 5797
		/* Keep underrun reporting disabled until things are stable */
		intel_wait_for_vblank(dev_priv, crtc->pipe);

		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
		if (crtc_state->has_pch_encoder)
			intel_set_pch_fifo_underrun_reporting(dev_priv,
							      intel_crtc_pch_transcoder(crtc), true);
	}
5798 5799

	return 0;
5800 5801
}

5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
5814 5815
static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder *encoder,
5816
		 struct intel_connector *connector)
5817
{
5818
	struct drm_modeset_acquire_ctx ctx;
5819
	enum intel_hotplug_state state;
5820
	int ret;
5821

5822
	state = intel_encoder_hotplug(encoder, connector);
5823

5824
	drm_modeset_acquire_init(&ctx, 0);
5825

5826 5827
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
5828

5829 5830 5831 5832
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
5833

5834 5835
		break;
	}
5836

5837 5838
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
5839 5840
	drm_WARN(encoder->base.dev, ret,
		 "Acquiring modeset locks failed with %i\n", ret);
5841

5842 5843 5844 5845
	/*
	 * Keeping it consistent with intel_ddi_hotplug() and
	 * intel_hdmi_hotplug().
	 */
5846
	if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5847 5848
		state = INTEL_HOTPLUG_RETRY;

5849
	return state;
5850 5851
}

5852 5853
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
5854
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

5869
	if (val & DP_CP_IRQ)
5870
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5871 5872

	if (val & DP_SINK_SPECIFIC_IRQ)
5873
		drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5874 5875
}

5876 5877 5878 5879 5880 5881 5882
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
5883 5884 5885 5886 5887
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
5888
 */
5889
static bool
5890
intel_dp_short_pulse(struct intel_dp *intel_dp)
5891
{
5892
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5893 5894
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
5895

5896 5897 5898 5899
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
5900
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5901

5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
5913 5914
	}

5915
	intel_dp_check_service_irq(intel_dp);
5916

5917 5918 5919
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

5920 5921 5922
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
5923

5924 5925
	intel_psr_short_pulse(intel_dp);

5926
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5927 5928
		drm_dbg_kms(&dev_priv->drm,
			    "Link Training Compliance Test requested\n");
5929
		/* Send a Hotplug Uevent to userspace to start modeset */
5930
		drm_kms_helper_hotplug_event(&dev_priv->drm);
5931
	}
5932 5933

	return true;
5934 5935
}

5936
/* XXX this is probably wrong for multiple downstream ports */
5937
static enum drm_connector_status
5938
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5939
{
5940
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5941
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5942 5943
	u8 *dpcd = intel_dp->dpcd;
	u8 type;
5944

5945 5946 5947
	if (WARN_ON(intel_dp_is_edp(intel_dp)))
		return connector_status_connected;

5948 5949 5950
	if (lspcon->active)
		lspcon_resume(lspcon);

5951 5952 5953 5954
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

	/* if there's no downstream port, we're done */
5955
	if (!drm_dp_is_branch(dpcd))
5956
		return connector_status_connected;
5957 5958

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5959 5960
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5961

5962 5963
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
5964 5965
	}

5966 5967 5968
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

5969
	/* If no HPD, poke DDC gently */
5970
	if (drm_probe_ddc(&intel_dp->aux.ddc))
5971
		return connector_status_connected;
5972 5973

	/* Well we tried, say unknown for unreliable port types */
5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
5986 5987

	/* Anything else is out of spec, warn and ignore */
5988
	drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
5989
	return connector_status_disconnected;
5990 5991
}

5992 5993 5994
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
5995
	return connector_status_connected;
5996 5997
}

5998
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5999
{
6000
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6001
	u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6002

6003
	return intel_de_read(dev_priv, SDEISR) & bit;
6004 6005
}

6006
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6007
{
6008
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6009
	u32 bit;
6010

6011 6012
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
6013 6014
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
6015
	case HPD_PORT_C:
6016 6017
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
6018
	case HPD_PORT_D:
6019 6020 6021
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
6022
		MISSING_CASE(encoder->hpd_pin);
6023 6024 6025
		return false;
	}

6026
	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6027 6028
}

6029
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6030
{
6031
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6032 6033
	u32 bit;

6034 6035
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
6036
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6037
		break;
6038
	case HPD_PORT_C:
6039
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6040
		break;
6041
	case HPD_PORT_D:
6042
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6043 6044
		break;
	default:
6045
		MISSING_CASE(encoder->hpd_pin);
6046
		return false;
6047 6048
	}

6049
	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6050 6051
}

6052
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6053
{
6054
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6055
	u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6056

6057
	return intel_de_read(dev_priv, DEISR) & bit;
6058 6059
}

6060 6061
/*
 * intel_digital_port_connected - is the specified port connected?
6062
 * @encoder: intel_encoder
6063
 *
6064 6065 6066 6067 6068
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
6069
 * Return %true if port is connected, %false otherwise.
6070
 */
6071 6072 6073
bool intel_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6074
	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6075
	bool is_connected = false;
6076 6077 6078
	intel_wakeref_t wakeref;

	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6079
		is_connected = dig_port->connected(encoder);
6080 6081 6082 6083

	return is_connected;
}

6084
static struct edid *
6085
intel_dp_get_edid(struct intel_dp *intel_dp)
6086
{
6087
	struct intel_connector *intel_connector = intel_dp->attached_connector;
6088

6089 6090 6091 6092
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
6093 6094
			return NULL;

J
Jani Nikula 已提交
6095
		return drm_edid_duplicate(intel_connector->edid);
6096 6097 6098 6099
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
6100

6101 6102 6103 6104 6105
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
6106

6107
	intel_dp_unset_edid(intel_dp);
6108 6109 6110
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

6111
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
6112
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
L
Lyude Paul 已提交
6113
	intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6114 6115
}

6116 6117
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
6118
{
6119
	struct intel_connector *intel_connector = intel_dp->attached_connector;
6120

6121
	drm_dp_cec_unset_edid(&intel_dp->aux);
6122 6123
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
6124

6125
	intel_dp->has_audio = false;
L
Lyude Paul 已提交
6126
	intel_dp->edid_quirks = 0;
6127
}
6128

6129
static int
6130 6131 6132
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
6133
{
6134
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6135
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6136 6137
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
6138 6139
	enum drm_connector_status status;

6140 6141
	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
		    connector->base.id, connector->name);
6142 6143
	drm_WARN_ON(&dev_priv->drm,
		    !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6144

6145
	/* Can't disconnect eDP */
6146
	if (intel_dp_is_edp(intel_dp))
6147
		status = edp_detect(intel_dp);
6148
	else if (intel_digital_port_connected(encoder))
6149
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
6150
	else
6151 6152
		status = connector_status_disconnected;

6153
	if (status == connector_status_disconnected) {
6154
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6155
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6156

6157
		if (intel_dp->is_mst) {
6158 6159 6160 6161
			drm_dbg_kms(&dev_priv->drm,
				    "MST device may have disappeared %d vs %d\n",
				    intel_dp->is_mst,
				    intel_dp->mst_mgr.mst_state);
6162 6163 6164 6165 6166
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

6167
		goto out;
6168
	}
Z
Zhenyu Wang 已提交
6169

6170
	if (intel_dp->reset_link_params) {
6171 6172
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6173

6174 6175
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6176 6177 6178

		intel_dp->reset_link_params = false;
	}
6179

6180 6181
	intel_dp_print_rates(intel_dp);

6182 6183 6184 6185
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

6186 6187 6188
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
6189 6190 6191 6192 6193
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
6194 6195
		status = connector_status_disconnected;
		goto out;
6196 6197 6198 6199 6200 6201
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
6202 6203 6204 6205
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
6206
		if (ret)
6207 6208
			return ret;
	}
6209

6210 6211 6212 6213 6214 6215 6216 6217
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

6218
	intel_dp_set_edid(intel_dp);
6219 6220
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
6221
		status = connector_status_connected;
6222

6223
	intel_dp_check_service_irq(intel_dp);
6224

6225
out:
6226
	if (status != connector_status_connected && !intel_dp->is_mst)
6227
		intel_dp_unset_edid(intel_dp);
6228

6229 6230 6231 6232 6233 6234
	/*
	 * Make sure the refs for power wells enabled during detect are
	 * dropped to avoid a new detect cycle triggered by HPD polling.
	 */
	intel_display_power_flush_work(dev_priv);

6235
	return status;
6236 6237
}

6238 6239
static void
intel_dp_force(struct drm_connector *connector)
6240
{
6241
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6242 6243
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
6244
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6245 6246
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
6247
	intel_wakeref_t wakeref;
6248

6249 6250
	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
		    connector->base.id, connector->name);
6251
	intel_dp_unset_edid(intel_dp);
6252

6253 6254
	if (connector->status != connector_status_connected)
		return;
6255

6256
	wakeref = intel_display_power_get(dev_priv, aux_domain);
6257 6258 6259

	intel_dp_set_edid(intel_dp);

6260
	intel_display_power_put(dev_priv, aux_domain, wakeref);
6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
6274

6275
	/* if eDP has no EDID, fall back to fixed mode */
6276
	if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
6277
	    intel_connector->panel.fixed_mode) {
6278
		struct drm_display_mode *mode;
6279 6280

		mode = drm_mode_duplicate(connector->dev,
6281
					  intel_connector->panel.fixed_mode);
6282
		if (mode) {
6283 6284 6285 6286
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
6287

6288
	return 0;
6289 6290
}

6291 6292 6293
static int
intel_dp_connector_register(struct drm_connector *connector)
{
6294
	struct drm_i915_private *i915 = to_i915(connector->dev);
6295
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6296 6297 6298 6299 6300
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
6301

6302 6303
	drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
		    intel_dp->aux.name, connector->kdev->kobj.name);
6304 6305

	intel_dp->aux.dev = connector->kdev;
6306 6307
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
6308
		drm_dp_cec_register_connector(&intel_dp->aux, connector);
6309
	return ret;
6310 6311
}

6312 6313 6314
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
6315
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6316 6317 6318

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
6319 6320 6321
	intel_connector_unregister(connector);
}

6322
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6323
{
6324
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6325
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6326

6327
	intel_dp_mst_encoder_cleanup(intel_dig_port);
6328
	if (intel_dp_is_edp(intel_dp)) {
6329 6330
		intel_wakeref_t wakeref;

6331
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6332 6333 6334 6335
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
6336 6337
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);
6338

6339 6340 6341 6342
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
6343
	}
6344 6345

	intel_dp_aux_fini(intel_dp);
6346 6347 6348 6349 6350
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
6351

6352
	drm_encoder_cleanup(encoder);
6353
	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6354 6355
}

6356
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6357
{
6358
	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6359
	intel_wakeref_t wakeref;
6360

6361
	if (!intel_dp_is_edp(intel_dp))
6362 6363
		return;

6364 6365 6366 6367
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
6368
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6369 6370
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
6371 6372
}

6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

6385 6386 6387 6388
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
6389
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6390
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
6391 6392 6393 6394 6395
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
6396
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
6397 6398 6399 6400 6401 6402 6403
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
6404 6405 6406
		drm_dbg_kms(&i915->drm,
			    "Failed to write An over DP/AUX (%zd)\n",
			    dpcd_ret);
6407 6408 6409 6410 6411 6412 6413 6414 6415
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
6416
	intel_dp_aux_header(txbuf, &msg);
6417

6418
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
6419 6420
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
6421
	if (ret < 0) {
6422 6423
		drm_dbg_kms(&i915->drm,
			    "Write Aksv over DP/AUX failed (%d)\n", ret);
6424 6425
		return ret;
	} else if (ret == 0) {
6426
		drm_dbg_kms(&i915->drm, "Aksv write over DP/AUX was empty\n");
6427 6428 6429 6430
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6431
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6432 6433 6434
		drm_dbg_kms(&i915->drm,
			    "Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			    reply);
6435 6436 6437
		return -EIO;
	}
	return 0;
6438 6439 6440 6441 6442
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
6443
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6444
	ssize_t ret;
6445

6446 6447 6448
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
6449 6450
		drm_dbg_kms(&i915->drm,
			    "Read Bksv from DP/AUX failed (%zd)\n", ret);
6451 6452 6453 6454 6455 6456 6457 6458
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
6459
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6460
	ssize_t ret;
6461

6462 6463 6464 6465 6466 6467 6468 6469
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
6470 6471
		drm_dbg_kms(&i915->drm,
			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6472 6473 6474 6475 6476 6477
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
6478 6479
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
6480
{
6481
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6482
	ssize_t ret;
6483

6484
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6485
			       bcaps, 1);
6486
	if (ret != 1) {
6487 6488
		drm_dbg_kms(&i915->drm,
			    "Read bcaps from DP/AUX failed (%zd)\n", ret);
6489 6490
		return ret >= 0 ? -EIO : ret;
	}
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

6506 6507 6508 6509 6510 6511 6512 6513
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
6514
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6515
	ssize_t ret;
6516

6517 6518 6519
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
6520 6521
		drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n",
			    ret);
6522 6523 6524 6525 6526 6527 6528 6529 6530
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
6531
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6532 6533
	ssize_t ret;
	u8 bstatus;
6534

6535 6536 6537
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
6538 6539
		drm_dbg_kms(&i915->drm,
			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
6550
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
6562 6563 6564
			drm_dbg_kms(&i915->drm,
				    "Read ksv[%d] from DP/AUX failed (%zd)\n",
				    i, ret);
6565 6566 6567 6568 6569 6570 6571 6572 6573 6574
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
6575
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6576 6577 6578 6579 6580 6581 6582 6583 6584
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6585 6586
		drm_dbg_kms(&i915->drm,
			    "Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
6603
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6604 6605
	ssize_t ret;
	u8 bstatus;
6606

6607 6608 6609
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
6610 6611
		drm_dbg_kms(&i915->drm,
			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6612
		return false;
6613
	}
6614

6615 6616 6617
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

6633 6634 6635 6636 6637
struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

6638
struct hdcp2_dp_msg_data {
6639 6640 6641 6642 6643
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
6644 6645
};

6646
static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_SEND_RECVID_LIST,
	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_MANAGE,
	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6675 6676
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6677 6678 6679 6680
	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
	  0, 0 },
};
6681

6682 6683 6684
static int
intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
			      u8 *rx_status)
6685
{
6686
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6687 6688 6689 6690 6691 6692
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6693 6694
		drm_dbg_kms(&i915->drm,
			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6736
			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6737
{
6738
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
6758 6759 6760 6761 6762 6763 6764
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
6765 6766 6767 6768 6769
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
6770 6771 6772
		drm_dbg_kms(&i915->drm,
			    "msg_id %d, ret %d, timeout(mSec): %d\n",
			    hdcp2_msg_data->msg_id, ret, timeout);
6773 6774 6775 6776

	return ret;
}

6777
static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6778 6779 6780
{
	int i;

6781 6782 6783
	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
			return &hdcp2_dp_msg_data[i];
6784 6785 6786 6787 6788 6789 6790 6791

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
6792 6793
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6794 6795 6796
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
6797
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

6809 6810
	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857
	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
6858
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6859 6860 6861
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
6862
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
6892 6893
			drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n",
				    msg_id, ret);
6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
6911
	int ret;
6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

6927
	ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6928
					sizeof(stream_type_msg));
6929 6930 6931

	return ret < 0 ? ret : 0;

6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
6986
	.hdcp_capable = intel_dp_hdcp_capable,
6987 6988 6989 6990 6991 6992
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
6993 6994
};

6995 6996
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
6997
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6998
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
7011 7012
	drm_dbg_kms(&dev_priv->drm,
		    "VDD left on by BIOS, adjusting state tracking\n");
7013
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
7014 7015 7016 7017

	edp_panel_vdd_schedule_off(intel_dp);
}

7018 7019
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
7020
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7021 7022
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
7023

7024 7025 7026
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
7027

7028
	return INVALID_PIPE;
7029 7030
}

7031
void intel_dp_encoder_reset(struct drm_encoder *encoder)
7032
{
7033
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
7034
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
7035
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
7036
	intel_wakeref_t wakeref;
7037 7038

	if (!HAS_DDI(dev_priv))
7039
		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7040

7041
	if (lspcon->active)
7042 7043
		lspcon_resume(lspcon);

7044 7045
	intel_dp->reset_link_params = true;

7046 7047 7048 7049
	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
	    !intel_dp_is_edp(intel_dp))
		return;

7050 7051 7052
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7053

7054 7055 7056 7057 7058 7059 7060 7061
		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
7062
	}
7063 7064
}

7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101
static int intel_modeset_tile_group(struct intel_atomic_state *state,
				    int tile_group_id)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct drm_connector_list_iter conn_iter;
	struct drm_connector *connector;
	int ret = 0;

	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		struct drm_connector_state *conn_state;
		struct intel_crtc_state *crtc_state;
		struct intel_crtc *crtc;

		if (!connector->has_tile ||
		    connector->tile_group->id != tile_group_id)
			continue;

		conn_state = drm_atomic_get_connector_state(&state->base,
							    connector);
		if (IS_ERR(conn_state)) {
			ret = PTR_ERR(conn_state);
			break;
		}

		crtc = to_intel_crtc(conn_state->crtc);

		if (!crtc)
			continue;

		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
		crtc_state->uapi.mode_changed = true;

		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
		if (ret)
			break;
	}
7102
	drm_connector_list_iter_end(&conn_iter);
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141

	return ret;
}

static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	if (transcoders == 0)
		return 0;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;
		int ret;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);

		if (!crtc_state->hw.enable)
			continue;

		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
			continue;

		crtc_state->uapi.mode_changed = true;

		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
		if (ret)
			return ret;

		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
		if (ret)
			return ret;

		transcoders &= ~BIT(crtc_state->cpu_transcoder);
	}

7142
	drm_WARN_ON(&dev_priv->drm, transcoders != 0);
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183

	return 0;
}

static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
				      struct drm_connector *connector)
{
	const struct drm_connector_state *old_conn_state =
		drm_atomic_get_old_connector_state(&state->base, connector);
	const struct intel_crtc_state *old_crtc_state;
	struct intel_crtc *crtc;
	u8 transcoders;

	crtc = to_intel_crtc(old_conn_state->crtc);
	if (!crtc)
		return 0;

	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);

	if (!old_crtc_state->hw.active)
		return 0;

	transcoders = old_crtc_state->sync_mode_slaves_mask;
	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
		transcoders |= BIT(old_crtc_state->master_transcoder);

	return intel_modeset_affected_transcoders(state,
						  transcoders);
}

static int intel_dp_connector_atomic_check(struct drm_connector *conn,
					   struct drm_atomic_state *_state)
{
	struct drm_i915_private *dev_priv = to_i915(conn->dev);
	struct intel_atomic_state *state = to_intel_atomic_state(_state);
	int ret;

	ret = intel_digital_connector_atomic_check(conn, &state->base);
	if (ret)
		return ret;

7184 7185 7186 7187 7188
	/*
	 * We don't enable port sync on BDW due to missing w/as and
	 * due to not having adjusted the modeset sequence appropriately.
	 */
	if (INTEL_GEN(dev_priv) < 9)
7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
		return 0;

	if (!intel_connector_needs_modeset(state, conn))
		return 0;

	if (conn->has_tile) {
		ret = intel_modeset_tile_group(state, conn->tile_group->id);
		if (ret)
			return ret;
	}

	return intel_modeset_synced_crtcs(state, conn);
}

7203
static const struct drm_connector_funcs intel_dp_connector_funcs = {
7204
	.force = intel_dp_force,
7205
	.fill_modes = drm_helper_probe_single_connector_modes,
7206 7207
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
7208
	.late_register = intel_dp_connector_register,
7209
	.early_unregister = intel_dp_connector_unregister,
7210
	.destroy = intel_connector_destroy,
7211
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
7212
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
7213 7214 7215
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
7216
	.detect_ctx = intel_dp_detect,
7217 7218
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
7219
	.atomic_check = intel_dp_connector_atomic_check,
7220 7221 7222
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
7223
	.reset = intel_dp_encoder_reset,
7224
	.destroy = intel_dp_encoder_destroy,
7225 7226
};

7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239
static bool intel_edp_have_power(struct intel_dp *intel_dp)
{
	intel_wakeref_t wakeref;
	bool have_power = false;

	with_pps_lock(intel_dp, wakeref) {
		have_power = edp_have_panel_power(intel_dp) &&
						  edp_have_panel_vdd(intel_dp);
	}

	return have_power;
}

7240
enum irqreturn
7241 7242
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
7243
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
7244
	struct intel_dp *intel_dp = &intel_dig_port->dp;
7245

7246 7247
	if (intel_dig_port->base.type == INTEL_OUTPUT_EDP &&
	    (long_hpd || !intel_edp_have_power(intel_dp))) {
7248
		/*
7249
		 * vdd off can generate a long/short pulse on eDP which
7250 7251
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
7252
		 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
7253
		 */
7254 7255 7256 7257 7258
		drm_dbg_kms(&i915->drm,
			    "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
			    long_hpd ? "long" : "short",
			    intel_dig_port->base.base.base.id,
			    intel_dig_port->base.base.name);
7259
		return IRQ_HANDLED;
7260 7261
	}

7262 7263 7264 7265
	drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name,
		    long_hpd ? "long" : "short");
7266

7267
	if (long_hpd) {
7268
		intel_dp->reset_link_params = true;
7269 7270 7271 7272
		return IRQ_NONE;
	}

	if (intel_dp->is_mst) {
7273 7274
		switch (intel_dp_check_mst_status(intel_dp)) {
		case -EINVAL:
7275 7276 7277 7278
			/*
			 * If we were in MST mode, and device is not
			 * there, get out of MST mode
			 */
7279 7280 7281 7282
			drm_dbg_kms(&i915->drm,
				    "MST device may have disappeared %d vs %d\n",
				    intel_dp->is_mst,
				    intel_dp->mst_mgr.mst_state);
7283 7284 7285
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
7286 7287

			return IRQ_NONE;
7288 7289 7290 7291
		case 1:
			return IRQ_NONE;
		default:
			break;
7292
		}
7293
	}
7294

7295
	if (!intel_dp->is_mst) {
7296
		bool handled;
7297 7298 7299

		handled = intel_dp_short_pulse(intel_dp);

7300
		if (!handled)
7301
			return IRQ_NONE;
7302
	}
7303

7304
	return IRQ_HANDLED;
7305 7306
}

7307
/* check the VBT to see whether the eDP is on another port */
7308
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
7309
{
7310 7311 7312 7313
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
7314
	if (INTEL_GEN(dev_priv) < 5)
7315 7316
		return false;

7317
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7318 7319
		return true;

7320
	return intel_bios_is_port_edp(dev_priv, port);
7321 7322
}

7323
static void
7324 7325
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
7326
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
7327 7328 7329 7330
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
7331

7332
	intel_attach_broadcast_rgb_property(connector);
R
Rodrigo Vivi 已提交
7333
	if (HAS_GMCH(dev_priv))
7334 7335 7336
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
7337

7338 7339
	intel_attach_colorspace_property(connector);

7340 7341 7342 7343 7344
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
		drm_object_attach_property(&connector->base,
					   connector->dev->mode_config.hdr_output_metadata_property,
					   0);

7345
	if (intel_dp_is_edp(intel_dp)) {
7346 7347 7348
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
R
Rodrigo Vivi 已提交
7349
		if (!HAS_GMCH(dev_priv))
7350 7351 7352 7353
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

7354
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7355

7356
	}
7357 7358
}

7359 7360
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
7361
	intel_dp->panel_power_off_time = ktime_get_boottime();
7362 7363 7364 7365
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

7366
static void
7367
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7368
{
7369
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7370
	u32 pp_on, pp_off, pp_ctl;
7371
	struct pps_registers regs;
7372

7373
	intel_pps_get_registers(intel_dp, &regs);
7374

7375
	pp_ctl = ilk_get_pp_control(intel_dp);
7376

7377 7378
	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
7379
		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7380

7381 7382
	pp_on = intel_de_read(dev_priv, regs.pp_on);
	pp_off = intel_de_read(dev_priv, regs.pp_off);
7383 7384

	/* Pull timing values out of registers */
7385 7386 7387 7388
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7389

7390 7391 7392
	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

7393
		pp_div = intel_de_read(dev_priv, regs.pp_div);
7394

7395
		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7396
	} else {
7397
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7398
	}
7399 7400
}

I
Imre Deak 已提交
7401 7402 7403 7404 7405 7406 7407 7408 7409
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
7410
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
7411 7412 7413 7414
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

7415
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
7416 7417 7418 7419 7420 7421 7422 7423 7424

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

7425
static void
7426
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7427
{
7428
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7429 7430 7431 7432 7433 7434 7435 7436 7437
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

7438
	intel_pps_readout_hw_state(intel_dp, &cur);
7439

I
Imre Deak 已提交
7440
	intel_pps_dump_state("cur", &cur);
7441

7442
	vbt = dev_priv->vbt.edp.pps;
7443 7444 7445 7446 7447 7448
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7449
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7450 7451 7452
		drm_dbg_kms(&dev_priv->drm,
			    "Increasing T12 panel delay as per the quirk to %d\n",
			    vbt.t11_t12);
7453
	}
7454 7455 7456 7457 7458
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
7472
	intel_pps_dump_state("vbt", &vbt);
7473 7474 7475

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
7476
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
7477 7478 7479 7480 7481 7482 7483 7484 7485
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

7486
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
7487 7488 7489 7490 7491 7492 7493
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

7494 7495 7496 7497 7498
	drm_dbg_kms(&dev_priv->drm,
		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
		    intel_dp->panel_power_up_delay,
		    intel_dp->panel_power_down_delay,
		    intel_dp->panel_power_cycle_delay);
7499

7500 7501 7502
	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
		    intel_dp->backlight_on_delay,
		    intel_dp->backlight_off_delay);
I
Imre Deak 已提交
7503 7504 7505 7506 7507 7508 7509 7510 7511 7512

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
7513 7514 7515 7516 7517 7518

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7519 7520 7521
}

static void
7522
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7523
					      bool force_disable_vdd)
7524
{
7525
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7526
	u32 pp_on, pp_off, port_sel = 0;
7527
	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7528
	struct pps_registers regs;
7529
	enum port port = dp_to_dig_port(intel_dp)->base.port;
7530
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7531

V
Ville Syrjälä 已提交
7532
	lockdep_assert_held(&dev_priv->pps_mutex);
7533

7534
	intel_pps_get_registers(intel_dp, &regs);
7535

7536 7537
	/*
	 * On some VLV machines the BIOS can leave the VDD
7538
	 * enabled even on power sequencers which aren't
7539 7540 7541 7542 7543 7544 7545
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
7546
	 * soon as the new power sequencer gets initialized.
7547 7548
	 */
	if (force_disable_vdd) {
7549
		u32 pp = ilk_get_pp_control(intel_dp);
7550

7551 7552
		drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
			 "Panel power already on\n");
7553 7554

		if (pp & EDP_FORCE_VDD)
7555 7556
			drm_dbg_kms(&dev_priv->drm,
				    "VDD already on, disabling first\n");
7557 7558 7559

		pp &= ~EDP_FORCE_VDD;

7560
		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7561 7562
	}

7563 7564 7565 7566
	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7567 7568 7569

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
7570
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7571
		port_sel = PANEL_PORT_SELECT_VLV(port);
7572
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7573 7574
		switch (port) {
		case PORT_A:
7575
			port_sel = PANEL_PORT_SELECT_DPA;
7576 7577 7578 7579 7580
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
7581
			port_sel = PANEL_PORT_SELECT_DPD;
7582 7583 7584 7585 7586
			break;
		default:
			MISSING_CASE(port);
			break;
		}
7587 7588
	}

7589 7590
	pp_on |= port_sel;

7591 7592
	intel_de_write(dev_priv, regs.pp_on, pp_on);
	intel_de_write(dev_priv, regs.pp_off, pp_off);
7593 7594 7595 7596 7597

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
7598 7599
		intel_de_write(dev_priv, regs.pp_div,
			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7600 7601 7602
	} else {
		u32 pp_ctl;

7603
		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7604
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7605
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7606
		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7607
	}
7608

7609 7610
	drm_dbg_kms(&dev_priv->drm,
		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7611 7612
		    intel_de_read(dev_priv, regs.pp_on),
		    intel_de_read(dev_priv, regs.pp_off),
7613
		    i915_mmio_reg_valid(regs.pp_div) ?
7614 7615
		    intel_de_read(dev_priv, regs.pp_div) :
		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7616 7617
}

7618
static void intel_dp_pps_init(struct intel_dp *intel_dp)
7619
{
7620
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7621 7622

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7623 7624
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
7625 7626
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7627 7628 7629
	}
}

7630 7631
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
7632
 * @dev_priv: i915 device
7633
 * @crtc_state: a pointer to the active intel_crtc_state
7634 7635 7636 7637 7638 7639 7640 7641 7642
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
7643
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7644
				    const struct intel_crtc_state *crtc_state,
7645
				    int refresh_rate)
7646
{
7647
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7648
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7649
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7650 7651

	if (refresh_rate <= 0) {
7652 7653
		drm_dbg_kms(&dev_priv->drm,
			    "Refresh rate should be positive non-zero.\n");
7654 7655 7656
		return;
	}

7657
	if (intel_dp == NULL) {
7658
		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7659 7660 7661 7662
		return;
	}

	if (!intel_crtc) {
7663 7664
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS: intel_crtc not initialized\n");
7665 7666 7667
		return;
	}

7668
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7669
		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7670 7671 7672
		return;
	}

7673 7674
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
7675 7676
		index = DRRS_LOW_RR;

7677
	if (index == dev_priv->drrs.refresh_rate_type) {
7678 7679
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS requested for previously set RR...ignoring\n");
7680 7681 7682
		return;
	}

7683
	if (!crtc_state->hw.active) {
7684 7685
		drm_dbg_kms(&dev_priv->drm,
			    "eDP encoder disabled. CRTC not Active\n");
7686 7687 7688
		return;
	}

7689
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7690 7691
		switch (index) {
		case DRRS_HIGH_RR:
7692
			intel_dp_set_m_n(crtc_state, M1_N1);
7693 7694
			break;
		case DRRS_LOW_RR:
7695
			intel_dp_set_m_n(crtc_state, M2_N2);
7696 7697 7698
			break;
		case DRRS_MAX_RR:
		default:
7699 7700
			drm_err(&dev_priv->drm,
				"Unsupported refreshrate type\n");
7701
		}
7702 7703
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7704
		u32 val;
7705

7706
		val = intel_de_read(dev_priv, reg);
7707
		if (index > DRRS_HIGH_RR) {
7708
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7709 7710 7711
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7712
		} else {
7713
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7714 7715 7716
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7717
		}
7718
		intel_de_write(dev_priv, reg, val);
7719 7720
	}

7721 7722
	dev_priv->drrs.refresh_rate_type = index;

7723 7724
	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
		    refresh_rate);
7725 7726
}

7727 7728 7729
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
7730
 * @crtc_state: A pointer to the active crtc state.
7731 7732 7733
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
7734
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7735
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
7736
{
7737
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
7738

7739
	if (!crtc_state->has_drrs) {
7740
		drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
V
Vandana Kannan 已提交
7741 7742 7743
		return;
	}

7744
	if (dev_priv->psr.enabled) {
7745 7746
		drm_dbg_kms(&dev_priv->drm,
			    "PSR enabled. Not enabling DRRS.\n");
7747 7748 7749
		return;
	}

V
Vandana Kannan 已提交
7750
	mutex_lock(&dev_priv->drrs.mutex);
7751
	if (dev_priv->drrs.dp) {
7752
		drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
V
Vandana Kannan 已提交
7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

7764 7765 7766
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
7767
 * @old_crtc_state: Pointer to old crtc_state.
7768 7769
 *
 */
7770
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7771
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
7772
{
7773
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
7774

7775
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
7776 7777 7778 7779 7780 7781 7782 7783 7784
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7785 7786
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
7787 7788 7789 7790 7791 7792 7793

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

7807
	/*
7808 7809
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
7810 7811
	 */

7812 7813
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
7814

7815 7816 7817 7818 7819 7820
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
7821

7822 7823
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
7824 7825
}

7826
/**
7827
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7828
 * @dev_priv: i915 device
7829 7830
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7831 7832
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7833 7834 7835
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7836 7837
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
7838 7839 7840 7841
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7842
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7843 7844
		return;

7845
	cancel_delayed_work(&dev_priv->drrs.work);
7846

7847
	mutex_lock(&dev_priv->drrs.mutex);
7848 7849 7850 7851 7852
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7853 7854 7855
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

7856 7857 7858
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

7859
	/* invalidate means busy screen hence upclock */
7860
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7861 7862
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7863 7864 7865 7866

	mutex_unlock(&dev_priv->drrs.mutex);
}

7867
/**
7868
 * intel_edp_drrs_flush - Restart Idleness DRRS
7869
 * @dev_priv: i915 device
7870 7871
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7872 7873 7874 7875
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
7876 7877 7878
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7879 7880
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
7881 7882 7883 7884
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7885
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7886 7887
		return;

7888
	cancel_delayed_work(&dev_priv->drrs.work);
7889

7890
	mutex_lock(&dev_priv->drrs.mutex);
7891 7892 7893 7894 7895
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7896 7897
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
7898 7899

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7900 7901
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

7902
	/* flush means busy screen hence upclock */
7903
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7904 7905
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7906 7907 7908 7909 7910 7911

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
7912 7913 7914 7915 7916
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
7940 7941 7942 7943 7944 7945 7946 7947
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
7948 7949 7950 7951 7952 7953 7954 7955
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7956
 * @connector: eDP connector
7957 7958 7959 7960 7961 7962 7963 7964 7965 7966
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
7967
static struct drm_display_mode *
7968 7969
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
7970
{
7971
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7972 7973
	struct drm_display_mode *downclock_mode = NULL;

7974 7975 7976
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

7977
	if (INTEL_GEN(dev_priv) <= 6) {
7978 7979
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS supported for Gen7 and above\n");
7980 7981 7982 7983
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7984
		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7985 7986 7987
		return NULL;
	}

7988
	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7989
	if (!downclock_mode) {
7990 7991
		drm_dbg_kms(&dev_priv->drm,
			    "Downclock mode is not found. DRRS not supported\n");
7992 7993 7994
		return NULL;
	}

7995
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7996

7997
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7998 7999
	drm_dbg_kms(&dev_priv->drm,
		    "seamless DRRS supported for eDP panel.\n");
8000 8001 8002
	return downclock_mode;
}

8003
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
8004
				     struct intel_connector *intel_connector)
8005
{
8006 8007
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
8008
	struct drm_connector *connector = &intel_connector->base;
8009
	struct drm_display_mode *fixed_mode = NULL;
8010
	struct drm_display_mode *downclock_mode = NULL;
8011
	bool has_dpcd;
8012
	enum pipe pipe = INVALID_PIPE;
8013 8014
	intel_wakeref_t wakeref;
	struct edid *edid;
8015

8016
	if (!intel_dp_is_edp(intel_dp))
8017 8018
		return true;

8019 8020
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

8021 8022 8023 8024 8025 8026
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
8027
	if (intel_get_lvds_encoder(dev_priv)) {
8028 8029
		drm_WARN_ON(dev,
			    !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
8030 8031
		drm_info(&dev_priv->drm,
			 "LVDS was detected, not registering eDP\n");
8032 8033 8034 8035

		return false;
	}

8036 8037 8038 8039 8040
	with_pps_lock(intel_dp, wakeref) {
		intel_dp_init_panel_power_timestamps(intel_dp);
		intel_dp_pps_init(intel_dp);
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
8041

8042
	/* Cache DPCD and EDID for edp. */
8043
	has_dpcd = intel_edp_init_dpcd(intel_dp);
8044

8045
	if (!has_dpcd) {
8046
		/* if this fails, presume the device is a ghost */
8047 8048
		drm_info(&dev_priv->drm,
			 "failed to retrieve link info, disabling eDP\n");
8049
		goto out_vdd_off;
8050 8051
	}

8052
	mutex_lock(&dev->mode_config.mutex);
8053
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
8054 8055
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
L
Lyude Paul 已提交
8056 8057
			drm_connector_update_edid_property(connector, edid);
			intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
8058 8059 8060 8061 8062 8063 8064 8065 8066
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

8067 8068 8069
	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
	if (fixed_mode)
		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
8070 8071

	/* fallback to VBT if available for eDP */
8072 8073
	if (!fixed_mode)
		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
8074
	mutex_unlock(&dev->mode_config.mutex);
8075

8076
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8077 8078
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
8079 8080 8081 8082 8083 8084

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
8085
		pipe = vlv_active_pipe(intel_dp);
8086 8087 8088 8089 8090 8091 8092

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

8093 8094 8095
		drm_dbg_kms(&dev_priv->drm,
			    "using pipe %c for initial backlight setup\n",
			    pipe_name(pipe));
8096 8097
	}

8098
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
8099
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
8100
	intel_panel_setup_backlight(connector, pipe);
8101

8102 8103
	if (fixed_mode) {
		drm_connector_set_panel_orientation_with_quirk(connector,
8104
				dev_priv->vbt.orientation,
8105 8106
				fixed_mode->hdisplay, fixed_mode->vdisplay);
	}
8107

8108
	return true;
8109 8110 8111 8112 8113 8114 8115

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
8116 8117
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
8118 8119

	return false;
8120 8121
}

8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
8138 8139
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
8140 8141 8142 8143 8144
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

8145
bool
8146 8147
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
8148
{
8149 8150 8151 8152
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
8153
	struct drm_i915_private *dev_priv = to_i915(dev);
8154
	enum port port = intel_encoder->port;
8155
	enum phy phy = intel_port_to_phy(dev_priv, port);
8156
	int type;
8157

8158 8159 8160 8161
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

8162 8163 8164 8165
	if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
		     "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
		     intel_dig_port->max_lanes, intel_encoder->base.base.id,
		     intel_encoder->base.name))
8166 8167
		return false;

8168 8169
	intel_dp_set_source_rates(intel_dp);

8170
	intel_dp->reset_link_params = true;
8171
	intel_dp->pps_pipe = INVALID_PIPE;
8172
	intel_dp->active_pipe = INVALID_PIPE;
8173

8174
	/* Preserve the current hw state. */
8175
	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
8176
	intel_dp->attached_connector = intel_connector;
8177

8178 8179 8180 8181 8182
	if (intel_dp_is_port_edp(dev_priv, port)) {
		/*
		 * Currently we don't support eDP on TypeC ports, although in
		 * theory it could work on TypeC legacy ports.
		 */
8183
		drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
8184
		type = DRM_MODE_CONNECTOR_eDP;
8185
	} else {
8186
		type = DRM_MODE_CONNECTOR_DisplayPort;
8187
	}
8188

8189 8190 8191
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

8192 8193 8194 8195 8196 8197 8198 8199
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

8200
	/* eDP only on port B and/or C on vlv/chv */
8201 8202 8203 8204
	if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
			      IS_CHERRYVIEW(dev_priv)) &&
			intel_dp_is_edp(intel_dp) &&
			port != PORT_B && port != PORT_C))
8205 8206
		return false;

8207 8208 8209 8210
	drm_dbg_kms(&dev_priv->drm,
		    "Adding %s connector on [ENCODER:%d:%s]\n",
		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
		    intel_encoder->base.base.id, intel_encoder->base.name);
8211

8212
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
8213 8214
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

R
Rodrigo Vivi 已提交
8215
	if (!HAS_GMCH(dev_priv))
8216
		connector->interlace_allowed = true;
8217 8218
	connector->doublescan_allowed = 0;

8219 8220 8221
	if (INTEL_GEN(dev_priv) >= 11)
		connector->ycbcr_420_allowed = true;

8222
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
8223
	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
8224

8225
	intel_dp_aux_init(intel_dp);
8226

8227
	intel_connector_attach_encoder(intel_connector, intel_encoder);
8228

8229
	if (HAS_DDI(dev_priv))
8230 8231 8232 8233
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

8234
	/* init MST on ports that can support it */
8235 8236
	intel_dp_mst_encoder_init(intel_dig_port,
				  intel_connector->base.base.id);
8237

8238
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
8239 8240 8241
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
8242
	}
8243

8244
	intel_dp_add_properties(intel_dp, connector);
8245

8246
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
8247 8248
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
8249 8250
			drm_dbg_kms(&dev_priv->drm,
				    "HDCP init failed, skipping.\n");
8251
	}
8252

8253 8254 8255 8256
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
8257
	if (IS_G45(dev_priv)) {
8258 8259 8260
		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
			       (temp & ~0xf) | 0xd);
8261
	}
8262 8263

	return true;
8264 8265 8266 8267 8268

fail:
	drm_connector_cleanup(connector);

	return false;
8269
}
8270

8271
bool intel_dp_init(struct drm_i915_private *dev_priv,
8272 8273
		   i915_reg_t output_reg,
		   enum port port)
8274 8275 8276 8277 8278 8279
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

8280
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
8281
	if (!intel_dig_port)
8282
		return false;
8283

8284
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
8285 8286
	if (!intel_connector)
		goto err_connector_alloc;
8287 8288 8289 8290

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

8291 8292 8293
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
8294
		goto err_encoder_init;
8295

8296
	intel_encoder->hotplug = intel_dp_hotplug;
8297
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
8298
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
8299
	intel_encoder->get_config = intel_dp_get_config;
8300
	intel_encoder->update_pipe = intel_panel_update_backlight;
8301
	intel_encoder->suspend = intel_dp_encoder_suspend;
8302
	if (IS_CHERRYVIEW(dev_priv)) {
8303
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
8304 8305
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
8306
		intel_encoder->disable = vlv_disable_dp;
8307
		intel_encoder->post_disable = chv_post_disable_dp;
8308
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
8309
	} else if (IS_VALLEYVIEW(dev_priv)) {
8310
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
8311 8312
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
8313
		intel_encoder->disable = vlv_disable_dp;
8314
		intel_encoder->post_disable = vlv_post_disable_dp;
8315
	} else {
8316 8317
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
8318
		intel_encoder->disable = g4x_disable_dp;
8319
		intel_encoder->post_disable = g4x_post_disable_dp;
8320
	}
8321

8322 8323 8324 8325 8326 8327
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A))
		intel_dig_port->dp.set_link_train = cpt_set_link_train;
	else
		intel_dig_port->dp.set_link_train = g4x_set_link_train;

8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338
	if (IS_CHERRYVIEW(dev_priv))
		intel_dig_port->dp.set_signal_levels = chv_set_signal_levels;
	else if (IS_VALLEYVIEW(dev_priv))
		intel_dig_port->dp.set_signal_levels = vlv_set_signal_levels;
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		intel_dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
	else if (IS_GEN(dev_priv, 6) && port == PORT_A)
		intel_dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
	else
		intel_dig_port->dp.set_signal_levels = g4x_set_signal_levels;

8339
	intel_dig_port->dp.output_reg = output_reg;
8340
	intel_dig_port->max_lanes = 4;
8341 8342
	intel_dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
	intel_dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
8343

8344
	intel_encoder->type = INTEL_OUTPUT_DP;
8345
	intel_encoder->power_domain = intel_port_to_power_domain(port);
8346
	if (IS_CHERRYVIEW(dev_priv)) {
8347
		if (port == PORT_D)
V
Ville Syrjälä 已提交
8348
			intel_encoder->pipe_mask = BIT(PIPE_C);
8349
		else
V
Ville Syrjälä 已提交
8350
			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8351
	} else {
8352
		intel_encoder->pipe_mask = ~0;
8353
	}
8354
	intel_encoder->cloneable = 0;
8355
	intel_encoder->port = port;
8356

8357 8358
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

8359 8360 8361 8362 8363 8364
	if (HAS_GMCH(dev_priv)) {
		if (IS_GM45(dev_priv))
			intel_dig_port->connected = gm45_digital_port_connected;
		else
			intel_dig_port->connected = g4x_digital_port_connected;
	} else {
8365 8366
		if (port == PORT_A)
			intel_dig_port->connected = ilk_digital_port_connected;
8367 8368 8369 8370
		else
			intel_dig_port->connected = ibx_digital_port_connected;
	}

8371 8372 8373
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

8374
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
8375 8376 8377
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

8378
	return true;
S
Sudip Mukherjee 已提交
8379 8380 8381

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
8382
err_encoder_init:
S
Sudip Mukherjee 已提交
8383 8384 8385
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
8386
	return false;
8387
}
8388

8389
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8390
{
8391 8392 8393 8394
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
8395

8396 8397
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
8398

8399
		intel_dp = enc_to_intel_dp(encoder);
8400

8401
		if (!intel_dp->can_mst)
8402 8403
			continue;

8404 8405
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8406 8407 8408
	}
}

8409
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8410
{
8411
	struct intel_encoder *encoder;
8412

8413 8414
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
8415
		int ret;
8416

8417 8418 8419
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

8420
		intel_dp = enc_to_intel_dp(encoder);
8421 8422

		if (!intel_dp->can_mst)
8423
			continue;
8424

8425 8426
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
						     true);
8427 8428 8429 8430 8431
		if (ret) {
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							false);
		}
8432 8433
	}
}