intel_dp.c 237.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

28
#include <linux/export.h>
29
#include <linux/i2c.h>
30 31
#include <linux/notifier.h>
#include <linux/reboot.h>
32 33
#include <linux/slab.h>
#include <linux/types.h>
34

35
#include <asm/byteorder.h>
36

37
#include <drm/drm_atomic_helper.h>
38
#include <drm/drm_crtc.h>
39
#include <drm/drm_dp_helper.h>
40
#include <drm/drm_edid.h>
41
#include <drm/drm_hdcp.h>
42
#include <drm/drm_probe_helper.h>
43

44
#include "i915_debugfs.h"
45
#include "i915_drv.h"
46
#include "i915_trace.h"
47
#include "intel_atomic.h"
48
#include "intel_audio.h"
49
#include "intel_connector.h"
50
#include "intel_ddi.h"
51
#include "intel_display_types.h"
52
#include "intel_dp.h"
53
#include "intel_dp_link_training.h"
54
#include "intel_dp_mst.h"
55
#include "intel_dpio_phy.h"
56
#include "intel_fifo_underrun.h"
57
#include "intel_hdcp.h"
58
#include "intel_hdmi.h"
59
#include "intel_hotplug.h"
60
#include "intel_lspcon.h"
61
#include "intel_lvds.h"
62
#include "intel_panel.h"
63
#include "intel_psr.h"
64
#include "intel_sideband.h"
65
#include "intel_tc.h"
66
#include "intel_vdsc.h"
67

68
#define DP_DPRX_ESI_LEN 14
69

70 71 72 73 74
/* DP DSC throughput values used for slice count calculations KPixels/s */
#define DP_DSC_PEAK_PIXEL_RATE			2720000
#define DP_DSC_MAX_ENC_THROUGHPUT_0		340000
#define DP_DSC_MAX_ENC_THROUGHPUT_1		400000

75 76
/* DP DSC FEC Overhead factor = 1/(0.972261) */
#define DP_DSC_FEC_OVERHEAD_FACTOR		972261
77

78 79 80 81 82 83
/* Compliance test status bits  */
#define INTEL_DP_RESOLUTION_SHIFT_MASK	0
#define INTEL_DP_RESOLUTION_PREFERRED	(1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_STANDARD	(2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
#define INTEL_DP_RESOLUTION_FAILSAFE	(3 << INTEL_DP_RESOLUTION_SHIFT_MASK)

84
struct dp_link_dpll {
85
	int clock;
86 87 88
	struct dpll dpll;
};

89
static const struct dp_link_dpll g4x_dpll[] = {
90
	{ 162000,
91
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
92
	{ 270000,
93 94 95 96
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
97
	{ 162000,
98
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
99
	{ 270000,
100 101 102
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

103
static const struct dp_link_dpll vlv_dpll[] = {
104
	{ 162000,
C
Chon Ming Lee 已提交
105
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
106
	{ 270000,
107 108 109
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

110 111 112 113 114 115 116 117 118 119
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
120
	{ 162000,	/* m2_int = 32, m2_fraction = 1677722 */
121
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
122
	{ 270000,	/* m2_int = 27, m2_fraction = 0 */
123 124
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
};
125

126 127 128 129 130 131 132 133
/* Constants for DP DSC configurations */
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};

/* With Single pipe configuration, HW is capable of supporting maximum
 * of 4 slices per line.
 */
static const u8 valid_dsc_slicecount[] = {1, 2, 4};

134
/**
135
 * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
136 137 138 139 140
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
141
bool intel_dp_is_edp(struct intel_dp *intel_dp)
142
{
143 144 145
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
146 147
}

148 149
static void intel_dp_link_down(struct intel_encoder *encoder,
			       const struct intel_crtc_state *old_crtc_state);
150
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
151
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
152 153
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state);
154
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
155
				      enum pipe pipe);
156
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
157

158 159 160
/* update sink rates from dpcd */
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
{
161
	static const int dp_rates[] = {
162
		162000, 270000, 540000, 810000
163
	};
164
	int i, max_rate;
165

166 167 168 169 170 171 172 173 174 175 176
	if (drm_dp_has_quirk(&intel_dp->desc, 0,
			     DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
		/* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
		static const int quirk_rates[] = { 162000, 270000, 324000 };

		memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
		intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);

		return;
	}

177
	max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
178

179 180
	for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
		if (dp_rates[i] > max_rate)
181
			break;
182
		intel_dp->sink_rates[i] = dp_rates[i];
183
	}
184

185
	intel_dp->num_sink_rates = i;
186 187
}

188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
/* Get length of rates array potentially limited by max_rate. */
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
{
	int i;

	/* Limit results by potentially reduced max rate */
	for (i = 0; i < len; i++) {
		if (rates[len - i - 1] <= max_rate)
			return len - i;
	}

	return 0;
}

/* Get length of common rates array potentially limited by max_rate. */
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
					  int max_rate)
{
	return intel_dp_rate_limit_len(intel_dp->common_rates,
				       intel_dp->num_common_rates, max_rate);
}

210 211
/* Theoretical max between source and sink */
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
212
{
213
	return intel_dp->common_rates[intel_dp->num_common_rates - 1];
214 215
}

216 217
/* Theoretical max between source and sink */
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
218 219
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
220 221
	int source_max = intel_dig_port->max_lanes;
	int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
222
	int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
223

224
	return min3(source_max, sink_max, fia_max);
225 226
}

227
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
228 229 230 231
{
	return intel_dp->max_link_lane_count;
}

232
int
233
intel_dp_link_required(int pixel_clock, int bpp)
234
{
235 236
	/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
	return DIV_ROUND_UP(pixel_clock * bpp, 8);
237 238
}

239
int
240 241
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
242 243 244 245 246 247 248
	/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
	 * link rate that is generally expressed in Gbps. Since, 8 bits of data
	 * is transmitted every LS_Clk per lane, there is no need to account for
	 * the channel encoding that is done in the PHY layer here.
	 */

	return max_link_clock * max_lanes;
249 250
}

251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
static int
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &intel_dig_port->base;
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	int max_dotclk = dev_priv->max_dotclk_freq;
	int ds_max_dotclk;

	int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;

	if (type != DP_DS_PORT_TYPE_VGA)
		return max_dotclk;

	ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
						    intel_dp->downstream_ports);

	if (ds_max_dotclk != 0)
		max_dotclk = min(max_dotclk, ds_max_dotclk);

	return max_dotclk;
}

274
static int cnl_max_source_rate(struct intel_dp *intel_dp)
275 276 277 278 279
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
	enum port port = dig_port->base.port;

280
	u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
281 282 283

	/* Low voltage SKUs are limited to max of 5.4G */
	if (voltage == VOLTAGE_INFO_0_85V)
284
		return 540000;
285 286 287

	/* For this SKU 8.1G is supported in all ports */
	if (IS_CNL_WITH_PORT_F(dev_priv))
288
		return 810000;
289

290
	/* For other SKUs, max rate on ports A and D is 5.4G */
291
	if (port == PORT_A || port == PORT_D)
292
		return 540000;
293

294
	return 810000;
295 296
}

297 298 299
static int icl_max_source_rate(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
300
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
301
	enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
302

303
	if (intel_phy_is_combo(dev_priv, phy) &&
304
	    !IS_ELKHARTLAKE(dev_priv) &&
305
	    !intel_dp_is_edp(intel_dp))
306 307 308 309 310
		return 540000;

	return 810000;
}

311 312
static void
intel_dp_set_source_rates(struct intel_dp *intel_dp)
313
{
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
	/* The values must be in increasing order */
	static const int cnl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
	};
	static const int bxt_rates[] = {
		162000, 216000, 243000, 270000, 324000, 432000, 540000
	};
	static const int skl_rates[] = {
		162000, 216000, 270000, 324000, 432000, 540000
	};
	static const int hsw_rates[] = {
		162000, 270000, 540000
	};
	static const int g4x_rates[] = {
		162000, 270000
	};
330
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331
	struct intel_encoder *encoder = &dig_port->base;
332
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
333
	const int *source_rates;
334
	int size, max_rate = 0, vbt_max_rate;
335

336
	/* This should only be done once */
337 338
	drm_WARN_ON(&dev_priv->drm,
		    intel_dp->source_rates || intel_dp->num_source_rates);
339

340
	if (INTEL_GEN(dev_priv) >= 10) {
341
		source_rates = cnl_rates;
342
		size = ARRAY_SIZE(cnl_rates);
343
		if (IS_GEN(dev_priv, 10))
344 345 346
			max_rate = cnl_max_source_rate(intel_dp);
		else
			max_rate = icl_max_source_rate(intel_dp);
347 348 349
	} else if (IS_GEN9_LP(dev_priv)) {
		source_rates = bxt_rates;
		size = ARRAY_SIZE(bxt_rates);
350
	} else if (IS_GEN9_BC(dev_priv)) {
351
		source_rates = skl_rates;
352
		size = ARRAY_SIZE(skl_rates);
353 354
	} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
		   IS_BROADWELL(dev_priv)) {
355 356
		source_rates = hsw_rates;
		size = ARRAY_SIZE(hsw_rates);
357
	} else {
358 359
		source_rates = g4x_rates;
		size = ARRAY_SIZE(g4x_rates);
360 361
	}

362
	vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
363 364 365 366 367
	if (max_rate && vbt_max_rate)
		max_rate = min(max_rate, vbt_max_rate);
	else if (vbt_max_rate)
		max_rate = vbt_max_rate;

368 369 370
	if (max_rate)
		size = intel_dp_rate_limit_len(source_rates, size, max_rate);

371 372
	intel_dp->source_rates = source_rates;
	intel_dp->num_source_rates = size;
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
}

static int intersect_rates(const int *source_rates, int source_len,
			   const int *sink_rates, int sink_len,
			   int *common_rates)
{
	int i = 0, j = 0, k = 0;

	while (i < source_len && j < sink_len) {
		if (source_rates[i] == sink_rates[j]) {
			if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
				return k;
			common_rates[k] = source_rates[i];
			++k;
			++i;
			++j;
		} else if (source_rates[i] < sink_rates[j]) {
			++i;
		} else {
			++j;
		}
	}
	return k;
}

398 399 400 401 402 403 404 405 406 407 408 409
/* return index of rate in rates array, or -1 if not found */
static int intel_dp_rate_index(const int *rates, int len, int rate)
{
	int i;

	for (i = 0; i < len; i++)
		if (rate == rates[i])
			return i;

	return -1;
}

410
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
411
{
412 413 414 415
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);

	drm_WARN_ON(&i915->drm,
		    !intel_dp->num_source_rates || !intel_dp->num_sink_rates);
416

417 418 419 420 421 422 423
	intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
						     intel_dp->num_source_rates,
						     intel_dp->sink_rates,
						     intel_dp->num_sink_rates,
						     intel_dp->common_rates);

	/* Paranoia, there should always be something in common. */
424
	if (drm_WARN_ON(&i915->drm, intel_dp->num_common_rates == 0)) {
425
		intel_dp->common_rates[0] = 162000;
426 427 428 429
		intel_dp->num_common_rates = 1;
	}
}

430
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
431
				       u8 lane_count)
432 433 434 435 436 437
{
	/*
	 * FIXME: we need to synchronize the current link parameters with
	 * hardware readout. Currently fast link training doesn't work on
	 * boot-up.
	 */
438 439
	if (link_rate == 0 ||
	    link_rate > intel_dp->max_link_rate)
440 441
		return false;

442 443
	if (lane_count == 0 ||
	    lane_count > intel_dp_max_lane_count(intel_dp))
444 445 446 447 448
		return false;

	return true;
}

449 450
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
						     int link_rate,
451
						     u8 lane_count)
452 453 454 455 456 457 458 459 460 461 462 463 464
{
	const struct drm_display_mode *fixed_mode =
		intel_dp->attached_connector->panel.fixed_mode;
	int mode_rate, max_rate;

	mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
	max_rate = intel_dp_max_data_rate(link_rate, lane_count);
	if (mode_rate > max_rate)
		return false;

	return true;
}

465
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
466
					    int link_rate, u8 lane_count)
467
{
468
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
469
	int index;
470

471 472 473 474
	index = intel_dp_rate_index(intel_dp->common_rates,
				    intel_dp->num_common_rates,
				    link_rate);
	if (index > 0) {
475 476 477 478
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp->common_rates[index - 1],
							      lane_count)) {
479 480
			drm_dbg_kms(&i915->drm,
				    "Retrying Link training for eDP with same parameters\n");
481 482
			return 0;
		}
483 484
		intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
		intel_dp->max_link_lane_count = lane_count;
485
	} else if (lane_count > 1) {
486 487 488 489
		if (intel_dp_is_edp(intel_dp) &&
		    !intel_dp_can_link_train_fallback_for_edp(intel_dp,
							      intel_dp_max_common_rate(intel_dp),
							      lane_count >> 1)) {
490 491
			drm_dbg_kms(&i915->drm,
				    "Retrying Link training for eDP with same parameters\n");
492 493
			return 0;
		}
494
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
495
		intel_dp->max_link_lane_count = lane_count >> 1;
496
	} else {
497
		drm_err(&i915->drm, "Link Training Unsuccessful\n");
498 499 500 501 502 503
		return -1;
	}

	return 0;
}

504 505 506 507 508 509
u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
{
	return div_u64(mul_u32_u32(mode_clock, 1000000U),
		       DP_DSC_FEC_OVERHEAD_FACTOR);
}

510 511 512 513 514 515 516 517 518 519 520
static int
small_joiner_ram_size_bits(struct drm_i915_private *i915)
{
	if (INTEL_GEN(i915) >= 11)
		return 7680 * 8;
	else
		return 6144 * 8;
}

static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
				       u32 link_clock, u32 lane_count,
521 522 523 524 525 526 527 528 529 530 531 532 533
				       u32 mode_clock, u32 mode_hdisplay)
{
	u32 bits_per_pixel, max_bpp_small_joiner_ram;
	int i;

	/*
	 * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
	 * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
	 * for SST -> TimeSlotsPerMTP is 1,
	 * for MST -> TimeSlotsPerMTP has to be calculated
	 */
	bits_per_pixel = (link_clock * lane_count * 8) /
			 intel_dp_mode_to_fec_clock(mode_clock);
534
	drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
535 536

	/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
537 538
	max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
		mode_hdisplay;
539 540
	drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
		    max_bpp_small_joiner_ram);
541 542 543 544 545 546 547 548 549

	/*
	 * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
	 * check, output bpp from small joiner RAM check)
	 */
	bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);

	/* Error out if the max bpp is less than smallest allowed valid bpp */
	if (bits_per_pixel < valid_dsc_bpp[0]) {
550 551
		drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
			    bits_per_pixel, valid_dsc_bpp[0]);
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
		return 0;
	}

	/* Find the nearest match in the array of known BPPs from VESA */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
		if (bits_per_pixel < valid_dsc_bpp[i + 1])
			break;
	}
	bits_per_pixel = valid_dsc_bpp[i];

	/*
	 * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
	 * fractional part is 0
	 */
	return bits_per_pixel << 4;
}

static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
				       int mode_clock, int mode_hdisplay)
{
572
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
573 574 575 576 577 578 579 580 581 582 583 584
	u8 min_slice_count, i;
	int max_slice_width;

	if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_0);
	else
		min_slice_count = DIV_ROUND_UP(mode_clock,
					       DP_DSC_MAX_ENC_THROUGHPUT_1);

	max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
	if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
585 586 587
		drm_dbg_kms(&i915->drm,
			    "Unsupported slice width %d by DP DSC Sink device\n",
			    max_slice_width);
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604
		return 0;
	}
	/* Also take into account max slice width */
	min_slice_count = min_t(u8, min_slice_count,
				DIV_ROUND_UP(mode_hdisplay,
					     max_slice_width));

	/* Find the closest match to the valid slice count values */
	for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
		if (valid_dsc_slicecount[i] >
		    drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
						    false))
			break;
		if (min_slice_count  <= valid_dsc_slicecount[i])
			return valid_dsc_slicecount[i];
	}

605 606
	drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
		    min_slice_count);
607 608 609
	return 0;
}

610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
				  int hdisplay)
{
	/*
	 * Older platforms don't like hdisplay==4096 with DP.
	 *
	 * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
	 * and frame counter increment), but we don't get vblank interrupts,
	 * and the pipe underruns immediately. The link also doesn't seem
	 * to get trained properly.
	 *
	 * On CHV the vblank interrupts don't seem to disappear but
	 * otherwise the symptoms are similar.
	 *
	 * TODO: confirm the behaviour on HSW+
	 */
	return hdisplay == 4096 && !HAS_DDI(dev_priv);
}

629
static enum drm_mode_status
630 631 632
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
633
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
634 635
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
636
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
637 638
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
639
	int max_dotclk;
640 641
	u16 dsc_max_output_bpp = 0;
	u8 dsc_slice_count = 0;
642

643 644 645
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
		return MODE_NO_DBLESCAN;

646
	max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
647

648
	if (intel_dp_is_edp(intel_dp) && fixed_mode) {
649
		if (mode->hdisplay > fixed_mode->hdisplay)
650 651
			return MODE_PANEL;

652
		if (mode->vdisplay > fixed_mode->vdisplay)
653
			return MODE_PANEL;
654 655

		target_clock = fixed_mode->clock;
656 657
	}

658
	max_link_clock = intel_dp_max_link_rate(intel_dp);
659
	max_lanes = intel_dp_max_lane_count(intel_dp);
660 661 662 663

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

664 665 666
	if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
		return MODE_H_ILLEGAL;

667 668 669 670 671 672 673 674 675 676 677 678
	/*
	 * Output bpp is stored in 6.4 format so right shift by 4 to get the
	 * integer value since we support only integer values of bpp.
	 */
	if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
	    drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
		if (intel_dp_is_edp(intel_dp)) {
			dsc_max_output_bpp =
				drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
			dsc_slice_count =
				drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
								true);
679
		} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
680
			dsc_max_output_bpp =
681 682
				intel_dp_dsc_get_output_bpp(dev_priv,
							    max_link_clock,
683 684 685 686 687 688 689 690 691 692 693 694
							    max_lanes,
							    target_clock,
							    mode->hdisplay) >> 4;
			dsc_slice_count =
				intel_dp_dsc_get_slice_count(intel_dp,
							     target_clock,
							     mode->hdisplay);
		}
	}

	if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
	    target_clock > max_dotclk)
695
		return MODE_CLOCK_HIGH;
696 697 698 699

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

700 701 702
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

703
	return intel_mode_valid_max_plane_size(dev_priv, mode);
704 705
}

706
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
707
{
708 709
	int i;
	u32 v = 0;
710 711 712 713

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
714
		v |= ((u32)src[i]) << ((3 - i) * 8);
715 716 717
	return v;
}

718
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
719 720 721 722 723 724 725 726
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

727
static void
728
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
729
static void
730
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
731
					      bool force_disable_vdd);
732
static void
733
intel_dp_pps_init(struct intel_dp *intel_dp);
734

735 736
static intel_wakeref_t
pps_lock(struct intel_dp *intel_dp)
737
{
738
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
739
	intel_wakeref_t wakeref;
740 741

	/*
742
	 * See intel_power_sequencer_reset() why we need
743 744
	 * a power domain reference here.
	 */
745 746
	wakeref = intel_display_power_get(dev_priv,
					  intel_aux_power_domain(dp_to_dig_port(intel_dp)));
747 748

	mutex_lock(&dev_priv->pps_mutex);
749 750

	return wakeref;
751 752
}

753 754
static intel_wakeref_t
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
755
{
756
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
757 758

	mutex_unlock(&dev_priv->pps_mutex);
759 760 761 762
	intel_display_power_put(dev_priv,
				intel_aux_power_domain(dp_to_dig_port(intel_dp)),
				wakeref);
	return 0;
763 764
}

765 766 767
#define with_pps_lock(dp, wf) \
	for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))

768 769 770
static void
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
{
771
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
772 773
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum pipe pipe = intel_dp->pps_pipe;
774 775 776
	bool pll_enabled, release_cl_override = false;
	enum dpio_phy phy = DPIO_PHY(pipe);
	enum dpio_channel ch = vlv_pipe_to_channel(pipe);
777
	u32 DP;
778

779 780 781 782 783
	if (drm_WARN(&dev_priv->drm,
		     intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
		     "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
		     pipe_name(pipe), intel_dig_port->base.base.base.id,
		     intel_dig_port->base.base.name))
784 785
		return;

786 787 788 789
	drm_dbg_kms(&dev_priv->drm,
		    "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(pipe), intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
790 791 792 793

	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
794
	DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
795 796 797 798
	DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
	DP |= DP_PORT_WIDTH(1);
	DP |= DP_LINK_TRAIN_PAT_1;

799
	if (IS_CHERRYVIEW(dev_priv))
800 801 802
		DP |= DP_PIPE_SEL_CHV(pipe);
	else
		DP |= DP_PIPE_SEL(pipe);
803

804
	pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
805 806 807 808 809

	/*
	 * The DPLL for the pipe must be enabled for this to work.
	 * So enable temporarily it if it's not already enabled.
	 */
810
	if (!pll_enabled) {
811
		release_cl_override = IS_CHERRYVIEW(dev_priv) &&
812 813
			!chv_phy_powergate_ch(dev_priv, phy, ch, true);

814
		if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
815
				     &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
816 817 818
			drm_err(&dev_priv->drm,
				"Failed to force on pll for pipe %c!\n",
				pipe_name(pipe));
819 820
			return;
		}
821
	}
822

823 824 825
	/*
	 * Similar magic as in intel_dp_enable_port().
	 * We _must_ do this port enable + disable trick
826
	 * to make this power sequencer lock onto the port.
827 828
	 * Otherwise even VDD force bit won't work.
	 */
829 830
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
831

832 833
	intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
834

835 836
	intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
837

838
	if (!pll_enabled) {
839
		vlv_force_pll_off(dev_priv, pipe);
840 841 842 843

		if (release_cl_override)
			chv_phy_powergate_ch(dev_priv, phy, ch, false);
	}
844 845
}

846 847 848 849 850 851 852 853 854
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
{
	struct intel_encoder *encoder;
	unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);

	/*
	 * We don't have power sequencer currently.
	 * Pick one that's not used by other ports.
	 */
855
	for_each_intel_dp(&dev_priv->drm, encoder) {
856
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
857 858

		if (encoder->type == INTEL_OUTPUT_EDP) {
859 860 861 862
			drm_WARN_ON(&dev_priv->drm,
				    intel_dp->active_pipe != INVALID_PIPE &&
				    intel_dp->active_pipe !=
				    intel_dp->pps_pipe);
863 864 865 866

			if (intel_dp->pps_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->pps_pipe);
		} else {
867 868
			drm_WARN_ON(&dev_priv->drm,
				    intel_dp->pps_pipe != INVALID_PIPE);
869 870 871 872 873 874 875 876 877 878 879 880

			if (intel_dp->active_pipe != INVALID_PIPE)
				pipes &= ~(1 << intel_dp->active_pipe);
		}
	}

	if (pipes == 0)
		return INVALID_PIPE;

	return ffs(pipes) - 1;
}

881 882 883
static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
884
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
885
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
886
	enum pipe pipe;
887

V
Ville Syrjälä 已提交
888
	lockdep_assert_held(&dev_priv->pps_mutex);
889

890
	/* We should never land here with regular DP ports */
891
	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
892

893 894
	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
		    intel_dp->active_pipe != intel_dp->pps_pipe);
895

896 897 898
	if (intel_dp->pps_pipe != INVALID_PIPE)
		return intel_dp->pps_pipe;

899
	pipe = vlv_find_free_pps(dev_priv);
900 901 902 903 904

	/*
	 * Didn't find one. This should not happen since there
	 * are two power sequencers and up to two eDP ports.
	 */
905
	if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
906
		pipe = PIPE_A;
907

908
	vlv_steal_power_sequencer(dev_priv, pipe);
909
	intel_dp->pps_pipe = pipe;
910

911 912 913 914 915
	drm_dbg_kms(&dev_priv->drm,
		    "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(intel_dp->pps_pipe),
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
916 917

	/* init power sequencer on this pipe and port */
918 919
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
920

921 922 923 924 925
	/*
	 * Even vdd force doesn't work until we've made
	 * the power sequencer lock in on the port.
	 */
	vlv_power_sequencer_kick(intel_dp);
926 927 928 929

	return intel_dp->pps_pipe;
}

930 931 932
static int
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
{
933
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
934
	int backlight_controller = dev_priv->vbt.backlight.controller;
935 936 937 938

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* We should never land here with regular DP ports */
939
	drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
940 941

	if (!intel_dp->pps_reset)
942
		return backlight_controller;
943 944 945 946 947 948 949

	intel_dp->pps_reset = false;

	/*
	 * Only the HW needs to be reprogrammed, the SW state is fixed and
	 * has been setup during connector init.
	 */
950
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
951

952
	return backlight_controller;
953 954
}

955 956 957 958 959 960
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
			       enum pipe pipe);

static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
			       enum pipe pipe)
{
961
	return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
962 963 964 965 966
}

static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
				enum pipe pipe)
{
967
	return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
968 969 970 971 972 973 974
}

static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
			 enum pipe pipe)
{
	return true;
}
975

976
static enum pipe
977 978 979
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
		     enum port port,
		     vlv_pipe_check pipe_check)
980 981
{
	enum pipe pipe;
982 983

	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
984
		u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
985
			PANEL_PORT_SELECT_MASK;
986 987 988 989

		if (port_sel != PANEL_PORT_SELECT_VLV(port))
			continue;

990 991 992
		if (!pipe_check(dev_priv, pipe))
			continue;

993
		return pipe;
994 995
	}

996 997 998 999 1000 1001
	return INVALID_PIPE;
}

static void
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
{
1002
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1003
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1004
	enum port port = intel_dig_port->base.port;
1005 1006 1007 1008

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* try to find a pipe with this port selected */
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
	/* first pick one where the panel is on */
	intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
						  vlv_pipe_has_pp_on);
	/* didn't find one? pick one where vdd is on */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_has_vdd_on);
	/* didn't find one? pick one with just the correct port */
	if (intel_dp->pps_pipe == INVALID_PIPE)
		intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
							  vlv_pipe_any);
1020 1021 1022

	/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
	if (intel_dp->pps_pipe == INVALID_PIPE) {
1023 1024 1025 1026
		drm_dbg_kms(&dev_priv->drm,
			    "no initial power sequencer for [ENCODER:%d:%s]\n",
			    intel_dig_port->base.base.base.id,
			    intel_dig_port->base.base.name);
1027
		return;
1028 1029
	}

1030 1031 1032 1033 1034
	drm_dbg_kms(&dev_priv->drm,
		    "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name,
		    pipe_name(intel_dp->pps_pipe));
1035

1036 1037
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1038 1039
}

1040
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1041 1042 1043
{
	struct intel_encoder *encoder;

1044 1045 1046 1047
	if (drm_WARN_ON(&dev_priv->drm,
			!(IS_VALLEYVIEW(dev_priv) ||
			  IS_CHERRYVIEW(dev_priv) ||
			  IS_GEN9_LP(dev_priv))))
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059
		return;

	/*
	 * We can't grab pps_mutex here due to deadlock with power_domain
	 * mutex when power_domain functions are called while holding pps_mutex.
	 * That also means that in order to use pps_pipe the code needs to
	 * hold both a power domain reference and pps_mutex, and the power domain
	 * reference get/put must be done while _not_ holding pps_mutex.
	 * pps_{lock,unlock}() do these steps in the correct order, so one
	 * should use them always.
	 */

1060
	for_each_intel_dp(&dev_priv->drm, encoder) {
1061
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1062

1063 1064
		drm_WARN_ON(&dev_priv->drm,
			    intel_dp->active_pipe != INVALID_PIPE);
1065 1066 1067 1068

		if (encoder->type != INTEL_OUTPUT_EDP)
			continue;

1069
		if (IS_GEN9_LP(dev_priv))
1070 1071 1072
			intel_dp->pps_reset = true;
		else
			intel_dp->pps_pipe = INVALID_PIPE;
1073
	}
1074 1075
}

1076 1077 1078 1079 1080 1081 1082 1083
struct pps_registers {
	i915_reg_t pp_ctrl;
	i915_reg_t pp_stat;
	i915_reg_t pp_on;
	i915_reg_t pp_off;
	i915_reg_t pp_div;
};

1084
static void intel_pps_get_registers(struct intel_dp *intel_dp,
1085 1086
				    struct pps_registers *regs)
{
1087
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1088 1089
	int pps_idx = 0;

1090 1091
	memset(regs, 0, sizeof(*regs));

1092
	if (IS_GEN9_LP(dev_priv))
1093 1094 1095
		pps_idx = bxt_power_sequencer_idx(intel_dp);
	else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		pps_idx = vlv_power_sequencer_pipe(intel_dp);
1096

1097 1098 1099 1100
	regs->pp_ctrl = PP_CONTROL(pps_idx);
	regs->pp_stat = PP_STATUS(pps_idx);
	regs->pp_on = PP_ON_DELAYS(pps_idx);
	regs->pp_off = PP_OFF_DELAYS(pps_idx);
1101 1102

	/* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1103
	if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1104 1105
		regs->pp_div = INVALID_MMIO_REG;
	else
1106
		regs->pp_div = PP_DIVISOR(pps_idx);
1107 1108
}

1109 1110
static i915_reg_t
_pp_ctrl_reg(struct intel_dp *intel_dp)
1111
{
1112
	struct pps_registers regs;
1113

1114
	intel_pps_get_registers(intel_dp, &regs);
1115 1116

	return regs.pp_ctrl;
1117 1118
}

1119 1120
static i915_reg_t
_pp_stat_reg(struct intel_dp *intel_dp)
1121
{
1122
	struct pps_registers regs;
1123

1124
	intel_pps_get_registers(intel_dp, &regs);
1125 1126

	return regs.pp_stat;
1127 1128
}

1129 1130 1131 1132 1133 1134 1135
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
   This function only applicable when panel PM state is not to be tracked */
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
			      void *unused)
{
	struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
						 edp_notifier);
1136
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1137
	intel_wakeref_t wakeref;
1138

1139
	if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1140 1141
		return 0;

1142 1143 1144 1145 1146 1147 1148 1149
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
			enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
			i915_reg_t pp_ctrl_reg, pp_div_reg;
			u32 pp_div;

			pp_ctrl_reg = PP_CONTROL(pipe);
			pp_div_reg  = PP_DIVISOR(pipe);
1150
			pp_div = intel_de_read(dev_priv, pp_div_reg);
1151 1152 1153
			pp_div &= PP_REFERENCE_DIVIDER_MASK;

			/* 0x1F write to PP_DIV_REG sets max cycle delay */
1154 1155 1156
			intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
			intel_de_write(dev_priv, pp_ctrl_reg,
				       PANEL_UNLOCK_REGS);
1157 1158
			msleep(intel_dp->panel_power_cycle_delay);
		}
1159 1160 1161 1162 1163
	}

	return 0;
}

1164
static bool edp_have_panel_power(struct intel_dp *intel_dp)
1165
{
1166
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1167

V
Ville Syrjälä 已提交
1168 1169
	lockdep_assert_held(&dev_priv->pps_mutex);

1170
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1171 1172 1173
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1174
	return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1175 1176
}

1177
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1178
{
1179
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1180

V
Ville Syrjälä 已提交
1181 1182
	lockdep_assert_held(&dev_priv->pps_mutex);

1183
	if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1184 1185 1186
	    intel_dp->pps_pipe == INVALID_PIPE)
		return false;

1187
	return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1188 1189
}

1190 1191 1192
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
1193
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1194

1195
	if (!intel_dp_is_edp(intel_dp))
1196
		return;
1197

1198
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1199 1200
		drm_WARN(&dev_priv->drm, 1,
			 "eDP powered off while attempting aux channel communication.\n");
1201
		drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1202 1203
			    intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
			    intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1204 1205 1206
	}
}

1207
static u32
1208
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1209
{
1210
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1211
	i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1212
	const unsigned int timeout_ms = 10;
1213
	u32 status;
1214 1215
	bool done;

1216 1217
#define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
	done = wait_event_timeout(i915->gmbus_wait_queue, C,
1218
				  msecs_to_jiffies_timeout(timeout_ms));
1219 1220 1221 1222

	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);

1223
	if (!done)
1224
		drm_err(&i915->drm,
1225
			"%s: did not complete or timeout within %ums (status 0x%08x)\n",
1226
			intel_dp->aux.name, timeout_ms, status);
1227 1228 1229 1230 1231
#undef C

	return status;
}

1232
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1233
{
1234
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1235

1236 1237 1238
	if (index)
		return 0;

1239 1240
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
1241
	 * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1242
	 */
1243
	return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1244 1245
}

1246
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1247
{
1248
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1249
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1250
	u32 freq;
1251 1252 1253 1254

	if (index)
		return 0;

1255 1256 1257 1258 1259
	/*
	 * The clock divider is based off the cdclk or PCH rawclk, and would
	 * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
	 * divide by 2000 and use that
	 */
1260
	if (dig_port->aux_ch == AUX_CH_A)
1261
		freq = dev_priv->cdclk.hw.cdclk;
1262
	else
1263 1264
		freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
	return DIV_ROUND_CLOSEST(freq, 2000);
1265 1266
}

1267
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1268
{
1269
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1270
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1271

1272
	if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1273
		/* Workaround for non-ULT HSW */
1274 1275 1276 1277 1278
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
1279
	}
1280 1281

	return ilk_get_aux_clock_divider(intel_dp, index);
1282 1283
}

1284
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1285 1286 1287 1288 1289 1290 1291 1292 1293
{
	/*
	 * SKL doesn't need us to program the AUX clock divider (Hardware will
	 * derive the clock from CDCLK automatically). We still implement the
	 * get_aux_clock_divider vfunc to plug-in into the existing code.
	 */
	return index ? 0 : 1;
}

1294 1295 1296
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 aux_clock_divider)
1297 1298
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1299 1300
	struct drm_i915_private *dev_priv =
			to_i915(intel_dig_port->base.base.dev);
1301
	u32 precharge, timeout;
1302

1303
	if (IS_GEN(dev_priv, 6))
1304 1305 1306 1307
		precharge = 3;
	else
		precharge = 5;

1308
	if (IS_BROADWELL(dev_priv))
1309 1310 1311 1312 1313
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
1314
	       DP_AUX_CH_CTL_DONE |
1315
	       DP_AUX_CH_CTL_INTERRUPT |
1316
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
1317
	       timeout |
1318
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
1319 1320
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1321
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1322 1323
}

1324 1325 1326
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
				int send_bytes,
				u32 unused)
1327
{
1328
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1329 1330 1331
	struct drm_i915_private *i915 =
			to_i915(intel_dig_port->base.base.dev);
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1332
	u32 ret;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343

	ret = DP_AUX_CH_CTL_SEND_BUSY |
	      DP_AUX_CH_CTL_DONE |
	      DP_AUX_CH_CTL_INTERRUPT |
	      DP_AUX_CH_CTL_TIME_OUT_ERROR |
	      DP_AUX_CH_CTL_TIME_OUT_MAX |
	      DP_AUX_CH_CTL_RECEIVE_ERROR |
	      (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	      DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
	      DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);

1344 1345
	if (intel_phy_is_tc(i915, phy) &&
	    intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1346 1347 1348
		ret |= DP_AUX_CH_CTL_TBT_IO;

	return ret;
1349 1350
}

1351
static int
1352
intel_dp_aux_xfer(struct intel_dp *intel_dp,
1353 1354
		  const u8 *send, int send_bytes,
		  u8 *recv, int recv_size,
1355
		  u32 aux_send_ctl_flags)
1356 1357
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1358
	struct drm_i915_private *i915 =
1359
			to_i915(intel_dig_port->base.base.dev);
1360
	struct intel_uncore *uncore = &i915->uncore;
1361 1362
	enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
	bool is_tc_port = intel_phy_is_tc(i915, phy);
1363
	i915_reg_t ch_ctl, ch_data[5];
1364
	u32 aux_clock_divider;
1365
	enum intel_display_power_domain aux_domain;
1366 1367
	intel_wakeref_t aux_wakeref;
	intel_wakeref_t pps_wakeref;
1368
	int i, ret, recv_bytes;
1369
	int try, clock = 0;
1370
	u32 status;
1371 1372
	bool vdd;

1373 1374 1375 1376
	ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
	for (i = 0; i < ARRAY_SIZE(ch_data); i++)
		ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);

1377 1378 1379
	if (is_tc_port)
		intel_tc_port_lock(intel_dig_port);

1380 1381
	aux_domain = intel_aux_power_domain(intel_dig_port);

1382
	aux_wakeref = intel_display_power_get(i915, aux_domain);
1383
	pps_wakeref = pps_lock(intel_dp);
V
Ville Syrjälä 已提交
1384

1385 1386 1387 1388 1389 1390
	/*
	 * We will be called with VDD already enabled for dpcd/edid/oui reads.
	 * In such cases we want to leave VDD enabled and it's up to upper layers
	 * to turn it off. But for eg. i2c-dev access we need to turn it on/off
	 * ourselves.
	 */
1391
	vdd = edp_panel_vdd_on(intel_dp);
1392 1393 1394 1395 1396

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
1397
	cpu_latency_qos_update_request(&i915->pm_qos, 0);
1398 1399

	intel_dp_check_edp(intel_dp);
1400

1401 1402
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
1403
		status = intel_uncore_read_notrace(uncore, ch_ctl);
1404 1405 1406 1407
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}
1408 1409
	/* just trace the final value */
	trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1410 1411

	if (try == 3) {
1412
		const u32 status = intel_uncore_read(uncore, ch_ctl);
1413

1414
		if (status != intel_dp->aux_busy_last_status) {
1415 1416 1417
			drm_WARN(&i915->drm, 1,
				 "%s: not started (status 0x%08x)\n",
				 intel_dp->aux.name, status);
1418
			intel_dp->aux_busy_last_status = status;
1419 1420
		}

1421 1422
		ret = -EBUSY;
		goto out;
1423 1424
	}

1425
	/* Only 5 data registers! */
1426
	if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1427 1428 1429 1430
		ret = -E2BIG;
		goto out;
	}

1431
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1432 1433 1434 1435 1436
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  send_bytes,
							  aux_clock_divider);

		send_ctl |= aux_send_ctl_flags;
1437

1438 1439 1440 1441
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
1442 1443 1444 1445
				intel_uncore_write(uncore,
						   ch_data[i >> 2],
						   intel_dp_pack_aux(send + i,
								     send_bytes - i));
1446 1447

			/* Send the command and wait for it to complete */
1448
			intel_uncore_write(uncore, ch_ctl, send_ctl);
1449

1450
			status = intel_dp_aux_wait_done(intel_dp);
1451 1452

			/* Clear done status and any errors */
1453 1454 1455 1456 1457 1458
			intel_uncore_write(uncore,
					   ch_ctl,
					   status |
					   DP_AUX_CH_CTL_DONE |
					   DP_AUX_CH_CTL_TIME_OUT_ERROR |
					   DP_AUX_CH_CTL_RECEIVE_ERROR);
1459

1460 1461 1462 1463 1464
			/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
			 *   400us delay required for errors and timeouts
			 *   Timeout errors from the HW already meet this
			 *   requirement so skip to next iteration
			 */
1465 1466 1467
			if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
				continue;

1468 1469
			if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
				usleep_range(400, 500);
1470
				continue;
1471
			}
1472
			if (status & DP_AUX_CH_CTL_DONE)
1473
				goto done;
1474
		}
1475 1476 1477
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1478 1479
		drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
			intel_dp->aux.name, status);
1480 1481
		ret = -EBUSY;
		goto out;
1482 1483
	}

1484
done:
1485 1486 1487
	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
1488
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1489 1490
		drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
			intel_dp->aux.name, status);
1491 1492
		ret = -EIO;
		goto out;
1493
	}
1494 1495 1496

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
1497
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1498 1499
		drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
			    intel_dp->aux.name, status);
1500 1501
		ret = -ETIMEDOUT;
		goto out;
1502 1503 1504 1505 1506
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1507 1508 1509 1510 1511 1512 1513

	/*
	 * By BSpec: "Message sizes of 0 or >20 are not allowed."
	 * We have no idea of what happened so we return -EBUSY so
	 * drm layer takes care for the necessary retries.
	 */
	if (recv_bytes == 0 || recv_bytes > 20) {
1514
		drm_dbg_kms(&i915->drm,
1515 1516
			    "%s: Forbidden recv_bytes = %d on aux transaction\n",
			    intel_dp->aux.name, recv_bytes);
1517 1518 1519 1520
		ret = -EBUSY;
		goto out;
	}

1521 1522
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
1523

1524
	for (i = 0; i < recv_bytes; i += 4)
1525
		intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1526
				    recv + i, recv_bytes - i);
1527

1528 1529
	ret = recv_bytes;
out:
1530
	cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1531

1532 1533 1534
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

1535
	pps_unlock(intel_dp, pps_wakeref);
1536
	intel_display_power_put_async(i915, aux_domain, aux_wakeref);
V
Ville Syrjälä 已提交
1537

1538 1539 1540
	if (is_tc_port)
		intel_tc_port_unlock(intel_dig_port);

1541
	return ret;
1542 1543
}

1544 1545
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556

static void
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
		    const struct drm_dp_aux_msg *msg)
{
	txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
	txbuf[1] = (msg->address >> 8) & 0xff;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
}

1557 1558
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1559
{
1560
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1561
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1562
	u8 txbuf[20], rxbuf[20];
1563
	size_t txsize, rxsize;
1564 1565
	int ret;

1566
	intel_dp_aux_header(txbuf, msg);
1567

1568 1569 1570
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
1571
	case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1572
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1573
		rxsize = 2; /* 0 or 1 data bytes */
1574

1575
		if (drm_WARN_ON(&i915->drm, txsize > 20))
1576
			return -E2BIG;
1577

1578
		drm_WARN_ON(&i915->drm, !msg->buffer != !msg->size);
1579

1580 1581
		if (msg->buffer)
			memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1582

1583
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1584
					rxbuf, rxsize, 0);
1585 1586
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
1587

1588 1589 1590 1591 1592 1593 1594
			if (ret > 1) {
				/* Number of bytes written in a short write. */
				ret = clamp_t(int, rxbuf[1], 0, msg->size);
			} else {
				/* Return payload size. */
				ret = msg->size;
			}
1595 1596
		}
		break;
1597

1598 1599
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
1600
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1601
		rxsize = msg->size + 1;
1602

1603
		if (drm_WARN_ON(&i915->drm, rxsize > 20))
1604
			return -E2BIG;
1605

1606
		ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1607
					rxbuf, rxsize, 0);
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
1618
		}
1619 1620 1621 1622 1623
		break;

	default:
		ret = -EINVAL;
		break;
1624
	}
1625

1626
	return ret;
1627 1628
}

1629

1630
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1631
{
1632
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1633 1634
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1635

1636 1637 1638 1639 1640
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_CTL(aux_ch);
1641
	default:
1642 1643
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_B);
1644 1645 1646
	}
}

1647
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1648
{
1649
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1650 1651
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1652

1653 1654 1655 1656 1657
	switch (aux_ch) {
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return DP_AUX_CH_DATA(aux_ch, index);
1658
	default:
1659 1660
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_B, index);
1661 1662 1663
	}
}

1664
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1665
{
1666
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1667 1668
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1669

1670 1671 1672 1673 1674 1675 1676
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_CTL(aux_ch);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_CTL(aux_ch);
1677
	default:
1678 1679
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1680 1681 1682
	}
}

1683
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1684
{
1685
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1686 1687
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1688

1689 1690 1691 1692 1693 1694 1695
	switch (aux_ch) {
	case AUX_CH_A:
		return DP_AUX_CH_DATA(aux_ch, index);
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
		return PCH_DP_AUX_CH_DATA(aux_ch, index);
1696
	default:
1697 1698
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1699 1700 1701
	}
}

1702
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1703
{
1704
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1705 1706
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1707

1708 1709 1710 1711 1712
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1713
	case AUX_CH_E:
1714
	case AUX_CH_F:
1715
	case AUX_CH_G:
1716
		return DP_AUX_CH_CTL(aux_ch);
1717
	default:
1718 1719
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_CTL(AUX_CH_A);
1720 1721 1722
	}
}

1723
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1724
{
1725
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1726 1727
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	enum aux_ch aux_ch = dig_port->aux_ch;
1728

1729 1730 1731 1732 1733
	switch (aux_ch) {
	case AUX_CH_A:
	case AUX_CH_B:
	case AUX_CH_C:
	case AUX_CH_D:
1734
	case AUX_CH_E:
1735
	case AUX_CH_F:
1736
	case AUX_CH_G:
1737
		return DP_AUX_CH_DATA(aux_ch, index);
1738
	default:
1739 1740
		MISSING_CASE(aux_ch);
		return DP_AUX_CH_DATA(AUX_CH_A, index);
1741 1742 1743
	}
}

1744 1745 1746 1747 1748 1749 1750 1751
static void
intel_dp_aux_fini(struct intel_dp *intel_dp)
{
	kfree(intel_dp->aux.name);
}

static void
intel_dp_aux_init(struct intel_dp *intel_dp)
1752
{
1753
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1754 1755
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
1756

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766
	if (INTEL_GEN(dev_priv) >= 9) {
		intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = skl_aux_data_reg;
	} else if (HAS_PCH_SPLIT(dev_priv)) {
		intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
	} else {
		intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
		intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
	}
1767

1768 1769 1770 1771 1772 1773 1774 1775
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
	else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev_priv))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1776

1777 1778 1779 1780
	if (INTEL_GEN(dev_priv) >= 9)
		intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
	else
		intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1781

1782
	drm_dp_aux_init(&intel_dp->aux);
1783

1784
	/* Failure to allocate our preferred name is not critical */
1785 1786
	intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
				       aux_ch_name(dig_port->aux_ch),
1787
				       port_name(encoder->port));
1788
	intel_dp->aux.transfer = intel_dp_aux_transfer;
1789 1790
}

1791
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1792
{
1793
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1794

1795
	return max_rate >= 540000;
1796 1797
}

1798 1799 1800 1801 1802 1803 1804
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
{
	int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];

	return max_rate >= 810000;
}

1805 1806
static void
intel_dp_set_clock(struct intel_encoder *encoder,
1807
		   struct intel_crtc_state *pipe_config)
1808
{
1809
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1810 1811
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
1812

1813
	if (IS_G4X(dev_priv)) {
1814 1815
		divisor = g4x_dpll;
		count = ARRAY_SIZE(g4x_dpll);
1816
	} else if (HAS_PCH_SPLIT(dev_priv)) {
1817 1818
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
1819
	} else if (IS_CHERRYVIEW(dev_priv)) {
1820 1821
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
1822
	} else if (IS_VALLEYVIEW(dev_priv)) {
1823 1824
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
1825
	}
1826 1827 1828

	if (divisor && count) {
		for (i = 0; i < count; i++) {
1829
			if (pipe_config->port_clock == divisor[i].clock) {
1830 1831 1832 1833 1834
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
1835 1836 1837
	}
}

1838 1839 1840 1841 1842 1843 1844 1845
static void snprintf_int_array(char *str, size_t len,
			       const int *array, int nelem)
{
	int i;

	str[0] = '\0';

	for (i = 0; i < nelem; i++) {
1846
		int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1847 1848 1849 1850 1851 1852 1853 1854 1855
		if (r >= len)
			return;
		str += r;
		len -= r;
	}
}

static void intel_dp_print_rates(struct intel_dp *intel_dp)
{
1856
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1857 1858
	char str[128]; /* FIXME: too big for stack? */

1859
	if (!drm_debug_enabled(DRM_UT_KMS))
1860 1861
		return;

1862 1863
	snprintf_int_array(str, sizeof(str),
			   intel_dp->source_rates, intel_dp->num_source_rates);
1864
	drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1865

1866 1867
	snprintf_int_array(str, sizeof(str),
			   intel_dp->sink_rates, intel_dp->num_sink_rates);
1868
	drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1869

1870 1871
	snprintf_int_array(str, sizeof(str),
			   intel_dp->common_rates, intel_dp->num_common_rates);
1872
	drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1873 1874
}

1875 1876 1877
int
intel_dp_max_link_rate(struct intel_dp *intel_dp)
{
1878
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1879 1880
	int len;

1881
	len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1882
	if (drm_WARN_ON(&i915->drm, len <= 0))
1883 1884
		return 162000;

1885
	return intel_dp->common_rates[len - 1];
1886 1887
}

1888 1889
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
{
1890
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1891 1892
	int i = intel_dp_rate_index(intel_dp->sink_rates,
				    intel_dp->num_sink_rates, rate);
1893

1894
	if (drm_WARN_ON(&i915->drm, i < 0))
1895 1896 1897
		i = 0;

	return i;
1898 1899
}

1900
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1901
			   u8 *link_bw, u8 *rate_select)
1902
{
1903 1904
	/* eDP 1.4 rate select method. */
	if (intel_dp->use_rate_select) {
1905 1906 1907 1908 1909 1910 1911 1912 1913
		*link_bw = 0;
		*rate_select =
			intel_dp_rate_select(intel_dp, port_clock);
	} else {
		*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
		*rate_select = 0;
	}
}

1914
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1915 1916 1917 1918
					 const struct intel_crtc_state *pipe_config)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

1919 1920 1921 1922 1923 1924 1925 1926
	/* On TGL, FEC is supported on all Pipes */
	if (INTEL_GEN(dev_priv) >= 12)
		return true;

	if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
		return true;

	return false;
1927 1928 1929 1930 1931 1932 1933 1934 1935
}

static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *pipe_config)
{
	return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
		drm_dp_sink_supports_fec(intel_dp->fec_capable);
}

1936
static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1937
				  const struct intel_crtc_state *crtc_state)
1938
{
1939 1940 1941
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;

	if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1942 1943
		return false;

1944
	return intel_dsc_source_support(encoder, crtc_state) &&
1945 1946 1947
		drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
}

1948 1949
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
				struct intel_crtc_state *pipe_config)
1950
{
1951
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1952
	struct intel_connector *intel_connector = intel_dp->attached_connector;
1953 1954 1955 1956 1957 1958 1959 1960
	int bpp, bpc;

	bpp = pipe_config->pipe_bpp;
	bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);

	if (bpc > 0)
		bpp = min(bpp, 3*bpc);

1961 1962 1963 1964
	if (intel_dp_is_edp(intel_dp)) {
		/* Get bpp from vbt only for panels that dont have bpp in edid */
		if (intel_connector->base.display_info.bpc == 0 &&
		    dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1965 1966 1967
			drm_dbg_kms(&dev_priv->drm,
				    "clamping bpp for eDP panel to BIOS-provided %i\n",
				    dev_priv->vbt.edp.bpp);
1968 1969 1970 1971
			bpp = dev_priv->vbt.edp.bpp;
		}
	}

1972 1973 1974
	return bpp;
}

1975
/* Adjust link config limits based on compliance test requests. */
1976
void
1977 1978 1979 1980
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  struct link_config_limits *limits)
{
1981 1982
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);

1983 1984 1985 1986 1987 1988 1989
	/* For DP Compliance we override the computed bpp for the pipe */
	if (intel_dp->compliance.test_data.bpc != 0) {
		int bpp = 3 * intel_dp->compliance.test_data.bpc;

		limits->min_bpp = limits->max_bpp = bpp;
		pipe_config->dither_force_disable = bpp == 6 * 3;

1990
		drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
	}

	/* Use values requested by Compliance Test Request */
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
		int index;

		/* Validate the compliance test data since max values
		 * might have changed due to link train fallback.
		 */
		if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
					       intel_dp->compliance.test_lane_count)) {
			index = intel_dp_rate_index(intel_dp->common_rates,
						    intel_dp->num_common_rates,
						    intel_dp->compliance.test_link_rate);
			if (index >= 0)
				limits->min_clock = limits->max_clock = index;
			limits->min_lane_count = limits->max_lane_count =
				intel_dp->compliance.test_lane_count;
		}
	}
}

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
{
	/*
	 * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
	 * format of the number of bytes per pixel will be half the number
	 * of bytes of RGB pixel.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		bpp /= 2;

	return bpp;
}

2026
/* Optimize link config in order: max bpp, min clock, min lanes */
2027
static int
2028 2029 2030 2031
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
				  struct intel_crtc_state *pipe_config,
				  const struct link_config_limits *limits)
{
2032
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2033 2034 2035 2036
	int bpp, clock, lane_count;
	int mode_rate, link_clock, link_avail;

	for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2037 2038
		int output_bpp = intel_dp_output_bpp(pipe_config, bpp);

2039
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2040
						   output_bpp);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054

		for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
			for (lane_count = limits->min_lane_count;
			     lane_count <= limits->max_lane_count;
			     lane_count <<= 1) {
				link_clock = intel_dp->common_rates[clock];
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					pipe_config->lane_count = lane_count;
					pipe_config->pipe_bpp = bpp;
					pipe_config->port_clock = link_clock;

2055
					return 0;
2056 2057 2058 2059 2060
				}
			}
		}
	}

2061
	return -EINVAL;
2062 2063
}

2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
{
	int i, num_bpc;
	u8 dsc_bpc[3] = {0};

	num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
						       dsc_bpc);
	for (i = 0; i < num_bpc; i++) {
		if (dsc_max_bpc >= dsc_bpc[i])
			return dsc_bpc[i] * 3;
	}

	return 0;
}

2079 2080 2081 2082 2083
#define DSC_SUPPORTED_VERSION_MIN		1

static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
				       struct intel_crtc_state *crtc_state)
{
2084
	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2085
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2086 2087 2088 2089 2090 2091 2092 2093
	struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
	u8 line_buf_depth;
	int ret;

	ret = intel_dsc_compute_params(encoder, crtc_state);
	if (ret)
		return ret;

2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
	/*
	 * Slice Height of 8 works for all currently available panels. So start
	 * with that if pic_height is an integral multiple of 8. Eventually add
	 * logic to try multiple slice heights.
	 */
	if (vdsc_cfg->pic_height % 8 == 0)
		vdsc_cfg->slice_height = 8;
	else if (vdsc_cfg->pic_height % 4 == 0)
		vdsc_cfg->slice_height = 4;
	else
		vdsc_cfg->slice_height = 2;

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
	vdsc_cfg->dsc_version_major =
		(intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
		 DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
	vdsc_cfg->dsc_version_minor =
		min(DSC_SUPPORTED_VERSION_MIN,
		    (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
		     DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);

	vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
		DP_DSC_RGB;

	line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
	if (!line_buf_depth) {
2119 2120
		drm_dbg_kms(&i915->drm,
			    "DSC Sink Line Buffer Depth invalid\n");
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137
		return -EINVAL;
	}

	if (vdsc_cfg->dsc_version_minor == 2)
		vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
			DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
	else
		vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
			DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;

	vdsc_cfg->block_pred_enable =
		intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
		DP_DSC_BLK_PREDICTION_IS_SUPPORTED;

	return drm_dsc_compute_rc_parameters(vdsc_cfg);
}

2138 2139 2140 2141
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
				       struct intel_crtc_state *pipe_config,
				       struct drm_connector_state *conn_state,
				       struct link_config_limits *limits)
2142 2143 2144
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2145 2146
	const struct drm_display_mode *adjusted_mode =
		&pipe_config->hw.adjusted_mode;
2147 2148
	u8 dsc_max_bpc;
	int pipe_bpp;
2149
	int ret;
2150

2151 2152 2153
	pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
		intel_dp_supports_fec(intel_dp, pipe_config);

2154
	if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2155
		return -EINVAL;
2156

2157 2158 2159 2160 2161 2162
	/* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
	if (INTEL_GEN(dev_priv) >= 12)
		dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
	else
		dsc_max_bpc = min_t(u8, 10,
				    conn_state->max_requested_bpc);
2163 2164

	pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2165 2166 2167

	/* Min Input BPC for ICL+ is 8 */
	if (pipe_bpp < 8 * 3) {
2168 2169
		drm_dbg_kms(&dev_priv->drm,
			    "No DSC support for less than 8bpc\n");
2170
		return -EINVAL;
2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182
	}

	/*
	 * For now enable DSC for max bpp, max link rate, max lane count.
	 * Optimize this later for the minimum possible link rate/lane count
	 * with DSC enabled for the requested mode.
	 */
	pipe_config->pipe_bpp = pipe_bpp;
	pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
	pipe_config->lane_count = limits->max_lane_count;

	if (intel_dp_is_edp(intel_dp)) {
2183
		pipe_config->dsc.compressed_bpp =
2184 2185
			min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
			      pipe_config->pipe_bpp);
2186
		pipe_config->dsc.slice_count =
2187 2188 2189 2190 2191 2192 2193
			drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
							true);
	} else {
		u16 dsc_max_output_bpp;
		u8 dsc_dp_slice_count;

		dsc_max_output_bpp =
2194 2195
			intel_dp_dsc_get_output_bpp(dev_priv,
						    pipe_config->port_clock,
2196 2197 2198 2199 2200 2201 2202 2203
						    pipe_config->lane_count,
						    adjusted_mode->crtc_clock,
						    adjusted_mode->crtc_hdisplay);
		dsc_dp_slice_count =
			intel_dp_dsc_get_slice_count(intel_dp,
						     adjusted_mode->crtc_clock,
						     adjusted_mode->crtc_hdisplay);
		if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2204 2205
			drm_dbg_kms(&dev_priv->drm,
				    "Compressed BPP/Slice Count not supported\n");
2206
			return -EINVAL;
2207
		}
2208
		pipe_config->dsc.compressed_bpp = min_t(u16,
2209 2210
							       dsc_max_output_bpp >> 4,
							       pipe_config->pipe_bpp);
2211
		pipe_config->dsc.slice_count = dsc_dp_slice_count;
2212 2213 2214 2215 2216 2217 2218
	}
	/*
	 * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
	 * is greater than the maximum Cdclock and if slice count is even
	 * then we need to use 2 VDSC instances.
	 */
	if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2219 2220
		if (pipe_config->dsc.slice_count > 1) {
			pipe_config->dsc.dsc_split = true;
2221
		} else {
2222 2223
			drm_dbg_kms(&dev_priv->drm,
				    "Cannot split stream to use 2 VDSC instances\n");
2224
			return -EINVAL;
2225 2226
		}
	}
2227

2228
	ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2229
	if (ret < 0) {
2230 2231 2232 2233 2234
		drm_dbg_kms(&dev_priv->drm,
			    "Cannot compute valid DSC parameters for Input Bpp = %d "
			    "Compressed BPP = %d\n",
			    pipe_config->pipe_bpp,
			    pipe_config->dsc.compressed_bpp);
2235
		return ret;
2236
	}
2237

2238
	pipe_config->dsc.compression_enable = true;
2239 2240 2241 2242 2243
	drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
		    "Compressed Bpp = %d Slice Count = %d\n",
		    pipe_config->pipe_bpp,
		    pipe_config->dsc.compressed_bpp,
		    pipe_config->dsc.slice_count);
2244

2245
	return 0;
2246 2247
}

2248 2249 2250 2251 2252 2253 2254 2255
int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
{
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
		return 6 * 3;
	else
		return 8 * 3;
}

2256
static int
2257
intel_dp_compute_link_config(struct intel_encoder *encoder,
2258 2259
			     struct intel_crtc_state *pipe_config,
			     struct drm_connector_state *conn_state)
2260
{
2261
	struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2262 2263
	const struct drm_display_mode *adjusted_mode =
		&pipe_config->hw.adjusted_mode;
2264
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2265
	struct link_config_limits limits;
2266
	int common_len;
2267
	int ret;
2268

2269
	common_len = intel_dp_common_len_rate_limit(intel_dp,
2270
						    intel_dp->max_link_rate);
2271 2272

	/* No common link rates between source and sink */
2273
	drm_WARN_ON(encoder->base.dev, common_len <= 0);
2274

2275 2276 2277 2278 2279 2280
	limits.min_clock = 0;
	limits.max_clock = common_len - 1;

	limits.min_lane_count = 1;
	limits.max_lane_count = intel_dp_max_lane_count(intel_dp);

2281
	limits.min_bpp = intel_dp_min_bpp(pipe_config);
2282
	limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2283

2284
	if (intel_dp_is_edp(intel_dp)) {
2285 2286
		/*
		 * Use the maximum clock and number of lanes the eDP panel
2287 2288 2289 2290
		 * advertizes being capable of. The panels are generally
		 * designed to support only a single clock and lane
		 * configuration, and typically these values correspond to the
		 * native resolution of the panel.
2291
		 */
2292 2293
		limits.min_lane_count = limits.max_lane_count;
		limits.min_clock = limits.max_clock;
2294
	}
2295

2296 2297
	intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);

2298 2299 2300 2301 2302
	drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
		    "max rate %d max bpp %d pixel clock %iKHz\n",
		    limits.max_lane_count,
		    intel_dp->common_rates[limits.max_clock],
		    limits.max_bpp, adjusted_mode->crtc_clock);
2303

2304 2305 2306 2307 2308
	/*
	 * Optimize for slow and wide. This is the place to add alternative
	 * optimization policy.
	 */
	ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2309 2310

	/* enable compression if the mode doesn't fit available BW */
2311
	drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2312 2313 2314 2315 2316
	if (ret || intel_dp->force_dsc_en) {
		ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
						  conn_state, &limits);
		if (ret < 0)
			return ret;
2317
	}
2318

2319
	if (pipe_config->dsc.compression_enable) {
2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
		drm_dbg_kms(&i915->drm,
			    "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
			    pipe_config->lane_count, pipe_config->port_clock,
			    pipe_config->pipe_bpp,
			    pipe_config->dsc.compressed_bpp);

		drm_dbg_kms(&i915->drm,
			    "DP link rate required %i available %i\n",
			    intel_dp_link_required(adjusted_mode->crtc_clock,
						   pipe_config->dsc.compressed_bpp),
			    intel_dp_max_data_rate(pipe_config->port_clock,
						   pipe_config->lane_count));
2332
	} else {
2333 2334 2335
		drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
			    pipe_config->lane_count, pipe_config->port_clock,
			    pipe_config->pipe_bpp);
2336

2337 2338 2339 2340 2341 2342
		drm_dbg_kms(&i915->drm,
			    "DP link rate required %i available %i\n",
			    intel_dp_link_required(adjusted_mode->crtc_clock,
						   pipe_config->pipe_bpp),
			    intel_dp_max_data_rate(pipe_config->port_clock,
						   pipe_config->lane_count));
2343
	}
2344
	return 0;
2345 2346
}

2347 2348
static int
intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2349 2350
			 struct intel_crtc_state *crtc_state,
			 const struct drm_connector_state *conn_state)
2351
{
2352
	struct drm_connector *connector = conn_state->connector;
2353 2354
	const struct drm_display_info *info = &connector->display_info;
	const struct drm_display_mode *adjusted_mode =
2355
		&crtc_state->hw.adjusted_mode;
2356 2357 2358 2359 2360 2361 2362 2363

	if (!drm_mode_is_420_only(info, adjusted_mode) ||
	    !intel_dp_get_colorimetry_status(intel_dp) ||
	    !connector->ycbcr_420_allowed)
		return 0;

	crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;

2364
	return intel_pch_panel_fitting(crtc_state, conn_state);
2365 2366
}

2367 2368 2369 2370 2371 2372
bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state)
{
	const struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
	const struct drm_display_mode *adjusted_mode =
2373
		&crtc_state->hw.adjusted_mode;
2374

2375 2376 2377 2378 2379 2380 2381 2382 2383 2384
	/*
	 * Our YCbCr output is always limited range.
	 * crtc_state->limited_color_range only applies to RGB,
	 * and it must never be set for YCbCr or we risk setting
	 * some conflicting bits in PIPECONF which will mess up
	 * the colors on the monitor.
	 */
	if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
		return false;

2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
		return crtc_state->pipe_bpp != 18 &&
			drm_default_rgb_quant_range(adjusted_mode) ==
			HDMI_QUANTIZATION_RANGE_LIMITED;
	} else {
		return intel_conn_state->broadcast_rgb ==
			INTEL_BROADCAST_RGB_LIMITED;
	}
}

2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
				    enum port port)
{
	if (IS_G4X(dev_priv))
		return false;
	if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
		return false;

	return true;
}

2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496
static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
					     const struct drm_connector_state *conn_state,
					     struct drm_dp_vsc_sdp *vsc)
{
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);

	/*
	 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
	 * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
	 * Colorimetry Format indication.
	 */
	vsc->revision = 0x5;
	vsc->length = 0x13;

	/* DP 1.4a spec, Table 2-120 */
	switch (crtc_state->output_format) {
	case INTEL_OUTPUT_FORMAT_YCBCR444:
		vsc->pixelformat = DP_PIXELFORMAT_YUV444;
		break;
	case INTEL_OUTPUT_FORMAT_YCBCR420:
		vsc->pixelformat = DP_PIXELFORMAT_YUV420;
		break;
	case INTEL_OUTPUT_FORMAT_RGB:
	default:
		vsc->pixelformat = DP_PIXELFORMAT_RGB;
	}

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_BT709_YCC:
		vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_601:
		vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
		break;
	case DRM_MODE_COLORIMETRY_XVYCC_709:
		vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
		break;
	case DRM_MODE_COLORIMETRY_SYCC_601:
		vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
		break;
	case DRM_MODE_COLORIMETRY_OPYCC_601:
		vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
		vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
		vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
		break;
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
		vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
		break;
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
	case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
		vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
		break;
	default:
		/*
		 * RGB->YCBCR color conversion uses the BT.709
		 * color space.
		 */
		if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
			vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
		else
			vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
		break;
	}

	vsc->bpc = crtc_state->pipe_bpp / 3;

	/* only RGB pixelformat supports 6 bpc */
	drm_WARN_ON(&dev_priv->drm,
		    vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);

	/* all YCbCr are always limited range */
	vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
	vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
}

static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
				     struct intel_crtc_state *crtc_state,
				     const struct drm_connector_state *conn_state)
{
	struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;

2497 2498
	/* When a crtc state has PSR, VSC SDP will be handled by PSR routine */
	if (crtc_state->has_psr)
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
		return;

	if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
		return;

	crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
	vsc->sdp_type = DP_SDP_VSC;
	intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
					 &crtc_state->infoframes.vsc);
}

2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp,
				  const struct intel_crtc_state *crtc_state,
				  const struct drm_connector_state *conn_state,
				  struct drm_dp_vsc_sdp *vsc)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);

	vsc->sdp_type = DP_SDP_VSC;

	if (dev_priv->psr.psr2_enabled) {
		if (dev_priv->psr.colorimetry_support &&
		    intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
			/* [PSR2, +Colorimetry] */
			intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
							 vsc);
		} else {
			/*
			 * [PSR2, -Colorimetry]
			 * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
			 * 3D stereo + PSR/PSR2 + Y-coordinate.
			 */
			vsc->revision = 0x4;
			vsc->length = 0xe;
		}
	} else {
		/*
		 * [PSR1]
		 * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
		 * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
		 * higher).
		 */
		vsc->revision = 0x2;
		vsc->length = 0x8;
	}
}

2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568
static void
intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
					    struct intel_crtc_state *crtc_state,
					    const struct drm_connector_state *conn_state)
{
	int ret;
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;

	if (!conn_state->hdr_output_metadata)
		return;

	ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);

	if (ret) {
		drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
		return;
	}

	crtc_state->infoframes.enable |=
		intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
}

2569
int
2570 2571 2572 2573 2574
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_state *pipe_config,
			struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2575
	struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2576 2577
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2578 2579 2580 2581
	enum port port = encoder->port;
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct intel_digital_connector_state *intel_conn_state =
		to_intel_digital_connector_state(conn_state);
L
Lyude Paul 已提交
2582
	bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2583
					   DP_DPCD_QUIRK_CONSTANT_N);
2584
	int ret = 0, output_bpp;
2585 2586 2587 2588

	if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
		pipe_config->has_pch_encoder = true;

2589
	pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2590

2591 2592
	if (lspcon->active)
		lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2593
	else
2594 2595
		ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
					       conn_state);
2596 2597
	if (ret)
		return ret;
2598

2599
	pipe_config->has_drrs = false;
2600
	if (!intel_dp_port_has_audio(dev_priv, port))
2601 2602 2603 2604 2605 2606 2607
		pipe_config->has_audio = false;
	else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
		pipe_config->has_audio = intel_dp->has_audio;
	else
		pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;

	if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2608 2609
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
2610

R
Rodrigo Vivi 已提交
2611
		if (HAS_GMCH(dev_priv))
2612
			ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2613
		else
2614 2615 2616
			ret = intel_pch_panel_fitting(pipe_config, conn_state);
		if (ret)
			return ret;
2617 2618
	}

2619
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2620
		return -EINVAL;
2621

R
Rodrigo Vivi 已提交
2622
	if (HAS_GMCH(dev_priv) &&
2623
	    adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2624
		return -EINVAL;
2625 2626

	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2627
		return -EINVAL;
2628

2629 2630 2631
	if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
		return -EINVAL;

2632 2633 2634
	ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
	if (ret < 0)
		return ret;
2635

2636 2637
	pipe_config->limited_color_range =
		intel_dp_limited_color_range(pipe_config, conn_state);
2638

2639 2640
	if (pipe_config->dsc.compression_enable)
		output_bpp = pipe_config->dsc.compressed_bpp;
2641
	else
2642
		output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2643 2644 2645 2646 2647 2648

	intel_link_compute_m_n(output_bpp,
			       pipe_config->lane_count,
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
			       &pipe_config->dp_m_n,
2649
			       constant_n, pipe_config->fec_enable);
2650

2651
	if (intel_connector->panel.downclock_mode != NULL &&
2652
		dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2653
			pipe_config->has_drrs = true;
2654
			intel_link_compute_m_n(output_bpp,
2655 2656 2657 2658
					       pipe_config->lane_count,
					       intel_connector->panel.downclock_mode->clock,
					       pipe_config->port_clock,
					       &pipe_config->dp_m2_n2,
2659
					       constant_n, pipe_config->fec_enable);
2660 2661
	}

2662
	if (!HAS_DDI(dev_priv))
2663
		intel_dp_set_clock(encoder, pipe_config);
2664

2665
	intel_psr_compute_config(intel_dp, pipe_config);
2666
	intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2667
	intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2668

2669
	return 0;
2670 2671
}

2672
void intel_dp_set_link_params(struct intel_dp *intel_dp,
2673
			      int link_rate, u8 lane_count,
2674
			      bool link_mst)
2675
{
2676
	intel_dp->link_trained = false;
2677 2678 2679
	intel_dp->link_rate = link_rate;
	intel_dp->lane_count = lane_count;
	intel_dp->link_mst = link_mst;
2680 2681
}

2682
static void intel_dp_prepare(struct intel_encoder *encoder,
2683
			     const struct intel_crtc_state *pipe_config)
2684
{
2685
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2686
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2687
	enum port port = encoder->port;
2688
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2689
	const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2690

2691 2692 2693 2694
	intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
				 pipe_config->lane_count,
				 intel_crtc_has_type(pipe_config,
						     INTEL_OUTPUT_DP_MST));
2695

2696
	/*
K
Keith Packard 已提交
2697
	 * There are four kinds of DP registers:
2698 2699
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
2700 2701
	 * 	SNB CPU
	 *	IVB CPU
2702 2703 2704 2705 2706 2707 2708 2709
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
2710
	 * configuration happens (oddly) in ilk_pch_enable
2711
	 */
2712

2713 2714 2715
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
2716
	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2717

2718 2719
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2720
	intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2721

2722
	/* Split out the IBX/CPU vs CPT settings */
2723

2724
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
K
Keith Packard 已提交
2725 2726 2727 2728 2729 2730
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

2731
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
2732 2733
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2734
		intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2735
	} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2736 2737
		u32 trans_dp;

2738
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2739

2740
		trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2741 2742 2743 2744
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
			trans_dp |= TRANS_DP_ENH_FRAMING;
		else
			trans_dp &= ~TRANS_DP_ENH_FRAMING;
2745
		intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2746
	} else {
2747
		if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2748
			intel_dp->DP |= DP_COLOR_RANGE_16_235;
2749 2750 2751 2752 2753 2754 2755

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

2756
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2757 2758
			intel_dp->DP |= DP_ENHANCED_FRAMING;

2759
		if (IS_CHERRYVIEW(dev_priv))
2760 2761 2762
			intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
		else
			intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2763
	}
2764 2765
}

2766 2767
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2768

2769 2770
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
2771

2772 2773
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2774

2775
static void intel_pps_verify_state(struct intel_dp *intel_dp);
I
Imre Deak 已提交
2776

2777
static void wait_panel_status(struct intel_dp *intel_dp,
2778 2779
				       u32 mask,
				       u32 value)
2780
{
2781
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2782
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2783

V
Ville Syrjälä 已提交
2784 2785
	lockdep_assert_held(&dev_priv->pps_mutex);

2786
	intel_pps_verify_state(intel_dp);
I
Imre Deak 已提交
2787

2788 2789
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2790

2791 2792 2793
	drm_dbg_kms(&dev_priv->drm,
		    "mask %08x value %08x status %08x control %08x\n",
		    mask, value,
2794 2795
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2796

2797 2798
	if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
				       mask, value, 5000))
2799 2800
		drm_err(&dev_priv->drm,
			"Panel status timeout: status %08x control %08x\n",
2801 2802
			intel_de_read(dev_priv, pp_stat_reg),
			intel_de_read(dev_priv, pp_ctrl_reg));
2803

2804
	drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2805
}
2806

2807
static void wait_panel_on(struct intel_dp *intel_dp)
2808
{
2809 2810 2811
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);

	drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2812
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2813 2814
}

2815
static void wait_panel_off(struct intel_dp *intel_dp)
2816
{
2817 2818 2819
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);

	drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2820
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2821 2822
}

2823
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2824
{
2825
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2826 2827 2828
	ktime_t panel_power_on_time;
	s64 panel_power_off_duration;

2829
	drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2830

2831 2832 2833 2834 2835
	/* take the difference of currrent time and panel power off time
	 * and then make panel wait for t11_t12 if needed. */
	panel_power_on_time = ktime_get_boottime();
	panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);

2836 2837
	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
2838 2839 2840
	if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
		wait_remaining_ms_from_jiffies(jiffies,
				       intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2841

2842
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2843 2844
}

2845
static void wait_backlight_on(struct intel_dp *intel_dp)
2846 2847 2848 2849 2850
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

2851
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2852 2853 2854 2855
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
2856

2857 2858 2859 2860
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

2861
static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2862
{
2863
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2864
	u32 control;
2865

V
Ville Syrjälä 已提交
2866 2867
	lockdep_assert_held(&dev_priv->pps_mutex);

2868
	control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2869 2870
	if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
			(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2871 2872 2873
		control &= ~PANEL_UNLOCK_MASK;
		control |= PANEL_UNLOCK_REGS;
	}
2874
	return control;
2875 2876
}

2877 2878 2879 2880 2881
/*
 * Must be paired with edp_panel_vdd_off().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
2882
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2883
{
2884
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2885
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2886
	u32 pp;
2887
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2888
	bool need_to_disable = !intel_dp->want_panel_vdd;
2889

V
Ville Syrjälä 已提交
2890 2891
	lockdep_assert_held(&dev_priv->pps_mutex);

2892
	if (!intel_dp_is_edp(intel_dp))
2893
		return false;
2894

2895
	cancel_delayed_work(&intel_dp->panel_vdd_work);
2896
	intel_dp->want_panel_vdd = true;
2897

2898
	if (edp_have_panel_vdd(intel_dp))
2899
		return need_to_disable;
2900

2901 2902
	intel_display_power_get(dev_priv,
				intel_aux_power_domain(intel_dig_port));
2903

2904 2905 2906
	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
2907

2908 2909
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
2910

2911
	pp = ilk_get_pp_control(intel_dp);
2912
	pp |= EDP_FORCE_VDD;
2913

2914 2915
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2916

2917 2918
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
2919
	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2920 2921
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2922 2923 2924
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
2925
	if (!edp_have_panel_power(intel_dp)) {
2926 2927 2928 2929
		drm_dbg_kms(&dev_priv->drm,
			    "[ENCODER:%d:%s] panel power wasn't enabled\n",
			    intel_dig_port->base.base.base.id,
			    intel_dig_port->base.base.name);
2930 2931
		msleep(intel_dp->panel_power_up_delay);
	}
2932 2933 2934 2935

	return need_to_disable;
}

2936 2937 2938 2939 2940 2941 2942
/*
 * Must be paired with intel_edp_panel_vdd_off() or
 * intel_edp_panel_off().
 * Nested calls to these functions are not allowed since
 * we drop the lock. Caller must use some higher level
 * locking to prevent nested calls from other threads.
 */
2943
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2944
{
2945
	intel_wakeref_t wakeref;
2946
	bool vdd;
2947

2948
	if (!intel_dp_is_edp(intel_dp))
2949 2950
		return;

2951 2952 2953
	vdd = false;
	with_pps_lock(intel_dp, wakeref)
		vdd = edp_panel_vdd_on(intel_dp);
2954 2955 2956
	I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
2957 2958
}

2959
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2960
{
2961
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2962 2963
	struct intel_digital_port *intel_dig_port =
		dp_to_dig_port(intel_dp);
2964
	u32 pp;
2965
	i915_reg_t pp_stat_reg, pp_ctrl_reg;
2966

V
Ville Syrjälä 已提交
2967
	lockdep_assert_held(&dev_priv->pps_mutex);
2968

2969
	drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2970

2971
	if (!edp_have_panel_vdd(intel_dp))
2972
		return;
2973

2974 2975 2976
	drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
2977

2978
	pp = ilk_get_pp_control(intel_dp);
2979
	pp &= ~EDP_FORCE_VDD;
2980

2981 2982
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
	pp_stat_reg = _pp_stat_reg(intel_dp);
2983

2984 2985
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
P
Paulo Zanoni 已提交
2986

2987
	/* Make sure sequencer is idle before allowing subsequent activity */
2988
	drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2989 2990
		    intel_de_read(dev_priv, pp_stat_reg),
		    intel_de_read(dev_priv, pp_ctrl_reg));
2991

2992
	if ((pp & PANEL_POWER_ON) == 0)
2993
		intel_dp->panel_power_off_time = ktime_get_boottime();
2994

2995 2996
	intel_display_power_put_unchecked(dev_priv,
					  intel_aux_power_domain(intel_dig_port));
2997
}
2998

2999
static void edp_panel_vdd_work(struct work_struct *__work)
3000
{
3001 3002 3003 3004
	struct intel_dp *intel_dp =
		container_of(to_delayed_work(__work),
			     struct intel_dp, panel_vdd_work);
	intel_wakeref_t wakeref;
3005

3006 3007 3008 3009
	with_pps_lock(intel_dp, wakeref) {
		if (!intel_dp->want_panel_vdd)
			edp_panel_vdd_off_sync(intel_dp);
	}
3010 3011
}

3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
{
	unsigned long delay;

	/*
	 * Queue the timer to fire a long time from now (relative to the power
	 * down delay) to keep the panel power up across a sequence of
	 * operations.
	 */
	delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
	schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
}

3025 3026 3027 3028 3029
/*
 * Must be paired with edp_panel_vdd_on().
 * Must hold pps_mutex around the whole on/off sequence.
 * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
 */
3030
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3031
{
3032
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Ville Syrjälä 已提交
3033 3034 3035

	lockdep_assert_held(&dev_priv->pps_mutex);

3036
	if (!intel_dp_is_edp(intel_dp))
3037
		return;
3038

3039 3040 3041
	I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
			dp_to_dig_port(intel_dp)->base.base.base.id,
			dp_to_dig_port(intel_dp)->base.base.name);
3042

3043 3044
	intel_dp->want_panel_vdd = false;

3045
	if (sync)
3046
		edp_panel_vdd_off_sync(intel_dp);
3047 3048
	else
		edp_panel_vdd_schedule_off(intel_dp);
3049 3050
}

3051
static void edp_panel_on(struct intel_dp *intel_dp)
3052
{
3053
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3054
	u32 pp;
3055
	i915_reg_t pp_ctrl_reg;
3056

3057 3058
	lockdep_assert_held(&dev_priv->pps_mutex);

3059
	if (!intel_dp_is_edp(intel_dp))
3060
		return;
3061

3062 3063 3064
	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
		    dp_to_dig_port(intel_dp)->base.base.base.id,
		    dp_to_dig_port(intel_dp)->base.base.name);
V
Ville Syrjälä 已提交
3065

3066 3067 3068 3069
	if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
		     "[ENCODER:%d:%s] panel power already on\n",
		     dp_to_dig_port(intel_dp)->base.base.base.id,
		     dp_to_dig_port(intel_dp)->base.base.name))
3070
		return;
3071

3072
	wait_panel_power_cycle(intel_dp);
3073

3074
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3075
	pp = ilk_get_pp_control(intel_dp);
3076
	if (IS_GEN(dev_priv, 5)) {
3077 3078
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
3079 3080
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3081
	}
3082

3083
	pp |= PANEL_POWER_ON;
3084
	if (!IS_GEN(dev_priv, 5))
3085 3086
		pp |= PANEL_POWER_RESET;

3087 3088
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3089

3090
	wait_panel_on(intel_dp);
3091
	intel_dp->last_power_on = jiffies;
3092

3093
	if (IS_GEN(dev_priv, 5)) {
3094
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3095 3096
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3097
	}
3098
}
V
Ville Syrjälä 已提交
3099

3100 3101
void intel_edp_panel_on(struct intel_dp *intel_dp)
{
3102 3103
	intel_wakeref_t wakeref;

3104
	if (!intel_dp_is_edp(intel_dp))
3105 3106
		return;

3107 3108
	with_pps_lock(intel_dp, wakeref)
		edp_panel_on(intel_dp);
3109 3110
}

3111 3112

static void edp_panel_off(struct intel_dp *intel_dp)
3113
{
3114
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3115
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3116
	u32 pp;
3117
	i915_reg_t pp_ctrl_reg;
3118

3119 3120
	lockdep_assert_held(&dev_priv->pps_mutex);

3121
	if (!intel_dp_is_edp(intel_dp))
3122
		return;
3123

3124 3125
	drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
		    dig_port->base.base.base.id, dig_port->base.base.name);
3126

3127 3128 3129
	drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
		 "Need [ENCODER:%d:%s] VDD to turn off panel\n",
		 dig_port->base.base.base.id, dig_port->base.base.name);
3130

3131
	pp = ilk_get_pp_control(intel_dp);
3132 3133
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
3134
	pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3135
		EDP_BLC_ENABLE);
3136

3137
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3138

3139 3140
	intel_dp->want_panel_vdd = false;

3141 3142
	intel_de_write(dev_priv, pp_ctrl_reg, pp);
	intel_de_posting_read(dev_priv, pp_ctrl_reg);
3143

3144
	wait_panel_off(intel_dp);
3145
	intel_dp->panel_power_off_time = ktime_get_boottime();
3146 3147

	/* We got a reference when we enabled the VDD. */
3148
	intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3149
}
V
Ville Syrjälä 已提交
3150

3151 3152
void intel_edp_panel_off(struct intel_dp *intel_dp)
{
3153 3154
	intel_wakeref_t wakeref;

3155
	if (!intel_dp_is_edp(intel_dp))
3156
		return;
V
Ville Syrjälä 已提交
3157

3158 3159
	with_pps_lock(intel_dp, wakeref)
		edp_panel_off(intel_dp);
3160 3161
}

3162 3163
/* Enable backlight in the panel power control. */
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3164
{
3165
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3166
	intel_wakeref_t wakeref;
3167

3168 3169 3170 3171 3172 3173
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
3174
	wait_backlight_on(intel_dp);
V
Ville Syrjälä 已提交
3175

3176 3177 3178
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
3179

3180
		pp = ilk_get_pp_control(intel_dp);
3181
		pp |= EDP_BLC_ENABLE;
3182

3183 3184
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3185
	}
3186 3187
}

3188
/* Enable backlight PWM and backlight PP control. */
3189 3190
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
			    const struct drm_connector_state *conn_state)
3191
{
3192
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3193
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3194

3195
	if (!intel_dp_is_edp(intel_dp))
3196 3197
		return;

3198
	drm_dbg_kms(&i915->drm, "\n");
3199

3200
	intel_panel_enable_backlight(crtc_state, conn_state);
3201 3202 3203 3204 3205
	_intel_edp_backlight_on(intel_dp);
}

/* Disable backlight in the panel power control. */
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3206
{
3207
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3208
	intel_wakeref_t wakeref;
3209

3210
	if (!intel_dp_is_edp(intel_dp))
3211 3212
		return;

3213 3214 3215
	with_pps_lock(intel_dp, wakeref) {
		i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		u32 pp;
V
Ville Syrjälä 已提交
3216

3217
		pp = ilk_get_pp_control(intel_dp);
3218
		pp &= ~EDP_BLC_ENABLE;
3219

3220 3221
		intel_de_write(dev_priv, pp_ctrl_reg, pp);
		intel_de_posting_read(dev_priv, pp_ctrl_reg);
3222
	}
V
Ville Syrjälä 已提交
3223 3224

	intel_dp->last_backlight_off = jiffies;
3225
	edp_wait_backlight_off(intel_dp);
3226
}
3227

3228
/* Disable backlight PP control and backlight PWM. */
3229
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3230
{
3231
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3232
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3233

3234
	if (!intel_dp_is_edp(intel_dp))
3235 3236
		return;

3237
	drm_dbg_kms(&i915->drm, "\n");
3238

3239
	_intel_edp_backlight_off(intel_dp);
3240
	intel_panel_disable_backlight(old_conn_state);
3241
}
3242

3243 3244 3245 3246 3247 3248 3249
/*
 * Hook for controlling the panel power control backlight through the bl_power
 * sysfs attribute. Take care to handle multiple calls.
 */
static void intel_edp_backlight_power(struct intel_connector *connector,
				      bool enable)
{
3250
	struct drm_i915_private *i915 = to_i915(connector->base.dev);
3251
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3252
	intel_wakeref_t wakeref;
V
Ville Syrjälä 已提交
3253 3254
	bool is_enabled;

3255 3256
	is_enabled = false;
	with_pps_lock(intel_dp, wakeref)
3257
		is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3258 3259 3260
	if (is_enabled == enable)
		return;

3261 3262
	drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
		    enable ? "enable" : "disable");
3263 3264 3265 3266 3267 3268 3269

	if (enable)
		_intel_edp_backlight_on(intel_dp);
	else
		_intel_edp_backlight_off(intel_dp);
}

3270 3271 3272 3273
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3274
	bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3275 3276

	I915_STATE_WARN(cur_state != state,
3277 3278
			"[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
			dig_port->base.base.base.id, dig_port->base.base.name,
3279
			onoff(state), onoff(cur_state));
3280 3281 3282 3283 3284
}
#define assert_dp_port_disabled(d) assert_dp_port((d), false)

static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
{
3285
	bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3286 3287 3288

	I915_STATE_WARN(cur_state != state,
			"eDP PLL state assertion failure (expected %s, current %s)\n",
3289
			onoff(state), onoff(cur_state));
3290 3291 3292 3293
}
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)

3294 3295
static void ilk_edp_pll_on(struct intel_dp *intel_dp,
			   const struct intel_crtc_state *pipe_config)
3296
{
3297
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3298
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3299

3300
	assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3301 3302
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_disabled(dev_priv);
3303

3304 3305
	drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
		    pipe_config->port_clock);
3306 3307 3308

	intel_dp->DP &= ~DP_PLL_FREQ_MASK;

3309
	if (pipe_config->port_clock == 162000)
3310 3311 3312 3313
		intel_dp->DP |= DP_PLL_FREQ_162MHZ;
	else
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;

3314 3315
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3316 3317
	udelay(500);

3318 3319 3320 3321 3322 3323
	/*
	 * [DevILK] Work around required when enabling DP PLL
	 * while a pipe is enabled going to FDI:
	 * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
	 * 2. Program DP PLL enable
	 */
3324
	if (IS_GEN(dev_priv, 5))
3325
		intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3326

3327
	intel_dp->DP |= DP_PLL_ENABLE;
3328

3329 3330
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3331
	udelay(200);
3332 3333
}

3334 3335
static void ilk_edp_pll_off(struct intel_dp *intel_dp,
			    const struct intel_crtc_state *old_crtc_state)
3336
{
3337
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3338
	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3339

3340
	assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3341 3342
	assert_dp_port_disabled(intel_dp);
	assert_edp_pll_enabled(dev_priv);
3343

3344
	drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3345

3346
	intel_dp->DP &= ~DP_PLL_ENABLE;
3347

3348 3349
	intel_de_write(dev_priv, DP_A, intel_dp->DP);
	intel_de_posting_read(dev_priv, DP_A);
3350 3351 3352
	udelay(200);
}

3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
{
	/*
	 * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
	 * be capable of signalling downstream hpd with a long pulse.
	 * Whether or not that means D3 is safe to use is not clear,
	 * but let's assume so until proven otherwise.
	 *
	 * FIXME should really check all downstream ports...
	 */
	return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3364
		drm_dp_is_branch(intel_dp->dpcd) &&
3365 3366 3367
		intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
}

3368 3369 3370 3371
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
					   const struct intel_crtc_state *crtc_state,
					   bool enable)
{
3372
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3373 3374
	int ret;

3375
	if (!crtc_state->dsc.compression_enable)
3376 3377 3378 3379 3380
		return;

	ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
				 enable ? DP_DECOMPRESSION_EN : 0);
	if (ret < 0)
3381 3382 3383
		drm_dbg_kms(&i915->drm,
			    "Failed to %s sink decompression state\n",
			    enable ? "enable" : "disable");
3384 3385
}

3386
/* If the sink supports it, try to set the power state appropriately */
3387
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3388
{
3389
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3390 3391 3392 3393 3394 3395 3396
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
3397 3398 3399
		if (downstream_hpd_needs_d0(intel_dp))
			return;

3400 3401
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
3402
	} else {
3403 3404
		struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);

3405 3406 3407 3408 3409
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
3410 3411
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
3412 3413 3414 3415
			if (ret == 1)
				break;
			msleep(1);
		}
3416 3417 3418

		if (ret == 1 && lspcon->active)
			lspcon_wait_pcon_mode(lspcon);
3419
	}
3420 3421

	if (ret != 1)
3422 3423
		drm_dbg_kms(&i915->drm, "failed to %s sink power state\n",
			    mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3424 3425
}

3426 3427 3428 3429 3430 3431
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
				 enum port port, enum pipe *pipe)
{
	enum pipe p;

	for_each_pipe(dev_priv, p) {
3432
		u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3433 3434 3435 3436 3437 3438 3439

		if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
			*pipe = p;
			return true;
		}
	}

3440 3441
	drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
		    port_name(port));
3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455

	/* must initialize pipe to something for the asserts */
	*pipe = PIPE_A;

	return false;
}

bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
			   i915_reg_t dp_reg, enum port port,
			   enum pipe *pipe)
{
	bool ret;
	u32 val;

3456
	val = intel_de_read(dev_priv, dp_reg);
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472

	ret = val & DP_PORT_EN;

	/* asserts want to know the pipe even if the port is disabled */
	if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
	else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
		ret &= cpt_dp_port_selected(dev_priv, port, pipe);
	else if (IS_CHERRYVIEW(dev_priv))
		*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
	else
		*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;

	return ret;
}

3473 3474
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
3475
{
3476
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3477
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3478
	intel_wakeref_t wakeref;
3479
	bool ret;
3480

3481 3482 3483
	wakeref = intel_display_power_get_if_enabled(dev_priv,
						     encoder->power_domain);
	if (!wakeref)
3484 3485
		return false;

3486 3487
	ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				    encoder->port, pipe);
3488

3489
	intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3490 3491

	return ret;
3492
}
3493

3494
static void intel_dp_get_config(struct intel_encoder *encoder,
3495
				struct intel_crtc_state *pipe_config)
3496
{
3497
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3498
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3499
	u32 tmp, flags = 0;
3500
	enum port port = encoder->port;
3501
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3502

3503 3504 3505 3506
	if (encoder->type == INTEL_OUTPUT_EDP)
		pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
	else
		pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3507

3508
	tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3509 3510

	pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3511

3512
	if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3513 3514
		u32 trans_dp = intel_de_read(dev_priv,
					     TRANS_DP_CTL(crtc->pipe));
3515 3516

		if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3517 3518 3519
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3520

3521
		if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3522 3523 3524 3525
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
3526
		if (tmp & DP_SYNC_HS_HIGH)
3527 3528 3529
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
3530

3531
		if (tmp & DP_SYNC_VS_HIGH)
3532 3533 3534 3535
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
3536

3537
	pipe_config->hw.adjusted_mode.flags |= flags;
3538

3539
	if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3540 3541
		pipe_config->limited_color_range = true;

3542 3543 3544
	pipe_config->lane_count =
		((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;

3545 3546
	intel_dp_get_m_n(crtc, pipe_config);

3547
	if (port == PORT_A) {
3548
		if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3549 3550 3551 3552
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
3553

3554
	pipe_config->hw.adjusted_mode.crtc_clock =
3555 3556
		intel_dotclock_calculate(pipe_config->port_clock,
					 &pipe_config->dp_m_n);
3557

3558
	if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3559
	    pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
3573 3574 3575
		drm_dbg_kms(&dev_priv->drm,
			    "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			    pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3576
		dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3577
	}
3578 3579
}

3580 3581
static void intel_disable_dp(struct intel_atomic_state *state,
			     struct intel_encoder *encoder,
3582 3583
			     const struct intel_crtc_state *old_crtc_state,
			     const struct drm_connector_state *old_conn_state)
3584
{
3585
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3586

3587 3588
	intel_dp->link_trained = false;

3589
	if (old_crtc_state->has_audio)
3590 3591
		intel_audio_codec_disable(encoder,
					  old_crtc_state, old_conn_state);
3592 3593 3594

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
3595
	intel_edp_panel_vdd_on(intel_dp);
3596
	intel_edp_backlight_off(old_conn_state);
3597
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3598
	intel_edp_panel_off(intel_dp);
3599 3600
}

3601 3602
static void g4x_disable_dp(struct intel_atomic_state *state,
			   struct intel_encoder *encoder,
3603 3604 3605
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
3606
	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3607 3608
}

3609 3610
static void vlv_disable_dp(struct intel_atomic_state *state,
			   struct intel_encoder *encoder,
3611 3612 3613
			   const struct intel_crtc_state *old_crtc_state,
			   const struct drm_connector_state *old_conn_state)
{
3614
	intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3615 3616
}

3617 3618
static void g4x_post_disable_dp(struct intel_atomic_state *state,
				struct intel_encoder *encoder,
3619 3620
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3621
{
3622
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3623
	enum port port = encoder->port;
3624

3625 3626 3627 3628 3629 3630
	/*
	 * Bspec does not list a specific disable sequence for g4x DP.
	 * Follow the ilk+ sequence (disable pipe before the port) for
	 * g4x DP as it does not suffer from underruns like the normal
	 * g4x modeset sequence (disable pipe after the port).
	 */
3631
	intel_dp_link_down(encoder, old_crtc_state);
3632 3633

	/* Only ilk+ has port A */
3634
	if (port == PORT_A)
3635
		ilk_edp_pll_off(intel_dp, old_crtc_state);
3636 3637
}

3638 3639
static void vlv_post_disable_dp(struct intel_atomic_state *state,
				struct intel_encoder *encoder,
3640 3641
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3642
{
3643
	intel_dp_link_down(encoder, old_crtc_state);
3644 3645
}

3646 3647
static void chv_post_disable_dp(struct intel_atomic_state *state,
				struct intel_encoder *encoder,
3648 3649
				const struct intel_crtc_state *old_crtc_state,
				const struct drm_connector_state *old_conn_state)
3650
{
3651
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3652

3653
	intel_dp_link_down(encoder, old_crtc_state);
3654

3655
	vlv_dpio_get(dev_priv);
3656 3657

	/* Assert data lane reset */
3658
	chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3659

3660
	vlv_dpio_put(dev_priv);
3661 3662
}

3663
static void
3664 3665
cpt_set_link_train(struct intel_dp *intel_dp,
		   u8 dp_train_pat)
3666
{
3667
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3668
	u32 *DP = &intel_dp->DP;
3669

3670
	*DP &= ~DP_LINK_TRAIN_MASK_CPT;
3671

3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
	case DP_TRAINING_PATTERN_DISABLE:
		*DP |= DP_LINK_TRAIN_OFF_CPT;
		break;
	case DP_TRAINING_PATTERN_1:
		*DP |= DP_LINK_TRAIN_PAT_1_CPT;
		break;
	case DP_TRAINING_PATTERN_2:
		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
		break;
	case DP_TRAINING_PATTERN_3:
		drm_dbg_kms(&dev_priv->drm,
			    "TPS3 not supported, using TPS2 instead\n");
		*DP |= DP_LINK_TRAIN_PAT_2_CPT;
		break;
	}
3688

3689 3690 3691
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
}
3692

3693 3694 3695 3696 3697 3698
static void
g4x_set_link_train(struct intel_dp *intel_dp,
		   u8 dp_train_pat)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u32 *DP = &intel_dp->DP;
3699

3700
	*DP &= ~DP_LINK_TRAIN_MASK;
3701

3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716
	switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
	case DP_TRAINING_PATTERN_DISABLE:
		*DP |= DP_LINK_TRAIN_OFF;
		break;
	case DP_TRAINING_PATTERN_1:
		*DP |= DP_LINK_TRAIN_PAT_1;
		break;
	case DP_TRAINING_PATTERN_2:
		*DP |= DP_LINK_TRAIN_PAT_2;
		break;
	case DP_TRAINING_PATTERN_3:
		drm_dbg_kms(&dev_priv->drm,
			    "TPS3 not supported, using TPS2 instead\n");
		*DP |= DP_LINK_TRAIN_PAT_2;
		break;
3717
	}
3718 3719 3720

	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3721 3722
}

3723
static void intel_dp_enable_port(struct intel_dp *intel_dp,
3724
				 const struct intel_crtc_state *old_crtc_state)
3725
{
3726
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3727 3728 3729

	/* enable with pattern 1 (as per spec) */

3730
	intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3731 3732 3733 3734 3735 3736 3737 3738

	/*
	 * Magic for VLV/CHV. We _must_ first set up the register
	 * without actually enabling the port, and then do another
	 * write to enable the port. Otherwise link training will
	 * fail when the power sequencer is freshly used for this port.
	 */
	intel_dp->DP |= DP_PORT_EN;
3739
	if (old_crtc_state->has_audio)
3740
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3741

3742 3743
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
3744 3745
}

3746 3747
static void intel_enable_dp(struct intel_atomic_state *state,
			    struct intel_encoder *encoder,
3748 3749
			    const struct intel_crtc_state *pipe_config,
			    const struct drm_connector_state *conn_state)
3750
{
3751
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3752
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3753
	struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3754
	u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3755
	enum pipe pipe = crtc->pipe;
3756
	intel_wakeref_t wakeref;
3757

3758
	if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3759
		return;
3760

3761 3762 3763
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			vlv_init_panel_power_sequencer(encoder, pipe_config);
3764

3765
		intel_dp_enable_port(intel_dp, pipe_config);
3766

3767 3768 3769 3770
		edp_panel_vdd_on(intel_dp);
		edp_panel_on(intel_dp);
		edp_panel_vdd_off(intel_dp, true);
	}
3771

3772
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3773 3774
		unsigned int lane_mask = 0x0;

3775
		if (IS_CHERRYVIEW(dev_priv))
3776
			lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3777

3778 3779
		vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
				    lane_mask);
3780
	}
3781

3782
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3783
	intel_dp_start_link_train(intel_dp);
3784
	intel_dp_stop_link_train(intel_dp);
3785

3786
	if (pipe_config->has_audio) {
3787 3788
		drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
			pipe_name(pipe));
3789
		intel_audio_codec_enable(encoder, pipe_config, conn_state);
3790
	}
3791
}
3792

3793 3794
static void g4x_enable_dp(struct intel_atomic_state *state,
			  struct intel_encoder *encoder,
3795 3796
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3797
{
3798
	intel_enable_dp(state, encoder, pipe_config, conn_state);
3799
	intel_edp_backlight_on(pipe_config, conn_state);
3800
}
3801

3802 3803
static void vlv_enable_dp(struct intel_atomic_state *state,
			  struct intel_encoder *encoder,
3804 3805
			  const struct intel_crtc_state *pipe_config,
			  const struct drm_connector_state *conn_state)
3806
{
3807
	intel_edp_backlight_on(pipe_config, conn_state);
3808 3809
}

3810 3811
static void g4x_pre_enable_dp(struct intel_atomic_state *state,
			      struct intel_encoder *encoder,
3812 3813
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3814
{
3815
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3816
	enum port port = encoder->port;
3817

3818
	intel_dp_prepare(encoder, pipe_config);
3819

3820
	/* Only ilk+ has port A */
3821
	if (port == PORT_A)
3822
		ilk_edp_pll_on(intel_dp, pipe_config);
3823 3824
}

3825 3826 3827
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3828
	struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3829
	enum pipe pipe = intel_dp->pps_pipe;
3830
	i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3831

3832
	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3833

3834
	if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3835 3836
		return;

3837 3838 3839
	edp_panel_vdd_off_sync(intel_dp);

	/*
3840
	 * VLV seems to get confused when multiple power sequencers
3841 3842 3843
	 * have the same port selected (even if only one has power/vdd
	 * enabled). The failure manifests as vlv_wait_port_ready() failing
	 * CHV on the other hand doesn't seem to mind having the same port
3844
	 * selected in multiple power sequencers, but let's clear the
3845 3846 3847
	 * port select always when logically disconnecting a power sequencer
	 * from a port.
	 */
3848 3849 3850 3851
	drm_dbg_kms(&dev_priv->drm,
		    "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
		    pipe_name(pipe), intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name);
3852 3853
	intel_de_write(dev_priv, pp_on_reg, 0);
	intel_de_posting_read(dev_priv, pp_on_reg);
3854 3855 3856 3857

	intel_dp->pps_pipe = INVALID_PIPE;
}

3858
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3859 3860 3861 3862 3863 3864
				      enum pipe pipe)
{
	struct intel_encoder *encoder;

	lockdep_assert_held(&dev_priv->pps_mutex);

3865
	for_each_intel_dp(&dev_priv->drm, encoder) {
3866
		struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3867

3868 3869 3870 3871
		drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
			 "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
			 pipe_name(pipe), encoder->base.base.id,
			 encoder->base.name);
3872

3873 3874 3875
		if (intel_dp->pps_pipe != pipe)
			continue;

3876 3877 3878 3879
		drm_dbg_kms(&dev_priv->drm,
			    "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
			    pipe_name(pipe), encoder->base.base.id,
			    encoder->base.name);
3880 3881

		/* make sure vdd is off before we steal it */
3882
		vlv_detach_power_sequencer(intel_dp);
3883 3884 3885
	}
}

3886 3887
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
					   const struct intel_crtc_state *crtc_state)
3888
{
3889
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3890
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3891
	struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3892 3893 3894

	lockdep_assert_held(&dev_priv->pps_mutex);

3895
	drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3896

3897 3898 3899 3900 3901 3902 3903
	if (intel_dp->pps_pipe != INVALID_PIPE &&
	    intel_dp->pps_pipe != crtc->pipe) {
		/*
		 * If another power sequencer was being used on this
		 * port previously make sure to turn off vdd there while
		 * we still have control of it.
		 */
3904
		vlv_detach_power_sequencer(intel_dp);
3905
	}
3906 3907 3908 3909 3910

	/*
	 * We may be stealing the power
	 * sequencer from another port.
	 */
3911
	vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3912

3913 3914
	intel_dp->active_pipe = crtc->pipe;

3915
	if (!intel_dp_is_edp(intel_dp))
3916 3917
		return;

3918 3919 3920
	/* now it's all ours */
	intel_dp->pps_pipe = crtc->pipe;

3921 3922 3923 3924
	drm_dbg_kms(&dev_priv->drm,
		    "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
		    pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
		    encoder->base.name);
3925 3926

	/* init power sequencer on this pipe and port */
3927 3928
	intel_dp_init_panel_power_sequencer(intel_dp);
	intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3929 3930
}

3931 3932
static void vlv_pre_enable_dp(struct intel_atomic_state *state,
			      struct intel_encoder *encoder,
3933 3934
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3935
{
3936
	vlv_phy_pre_encoder_enable(encoder, pipe_config);
3937

3938
	intel_enable_dp(state, encoder, pipe_config, conn_state);
3939 3940
}

3941 3942
static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
				  struct intel_encoder *encoder,
3943 3944
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3945
{
3946
	intel_dp_prepare(encoder, pipe_config);
3947

3948
	vlv_phy_pre_pll_enable(encoder, pipe_config);
3949 3950
}

3951 3952
static void chv_pre_enable_dp(struct intel_atomic_state *state,
			      struct intel_encoder *encoder,
3953 3954
			      const struct intel_crtc_state *pipe_config,
			      const struct drm_connector_state *conn_state)
3955
{
3956
	chv_phy_pre_encoder_enable(encoder, pipe_config);
3957

3958
	intel_enable_dp(state, encoder, pipe_config, conn_state);
3959 3960

	/* Second common lane will stay alive on its own now */
3961
	chv_phy_release_cl2_override(encoder);
3962 3963
}

3964 3965
static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
				  struct intel_encoder *encoder,
3966 3967
				  const struct intel_crtc_state *pipe_config,
				  const struct drm_connector_state *conn_state)
3968
{
3969
	intel_dp_prepare(encoder, pipe_config);
3970

3971
	chv_phy_pre_pll_enable(encoder, pipe_config);
3972 3973
}

3974 3975
static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
				    struct intel_encoder *encoder,
3976 3977
				    const struct intel_crtc_state *old_crtc_state,
				    const struct drm_connector_state *old_conn_state)
3978
{
3979
	chv_phy_post_pll_disable(encoder, old_crtc_state);
3980 3981
}

3982 3983 3984 3985
/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
3986
bool
3987
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3988
{
3989 3990
	return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
				DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3991 3992
}

3993
static u8 intel_dp_voltage_max_2(struct intel_dp *intel_dp)
3994
{
3995 3996
	return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
}
K
Keith Packard 已提交
3997

3998 3999 4000
static u8 intel_dp_voltage_max_3(struct intel_dp *intel_dp)
{
	return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
K
Keith Packard 已提交
4001 4002
}

4003
static u8 intel_dp_pre_empemph_max_2(struct intel_dp *intel_dp)
K
Keith Packard 已提交
4004
{
4005 4006
	return DP_TRAIN_PRE_EMPH_LEVEL_2;
}
K
Keith Packard 已提交
4007

4008 4009 4010
static u8 intel_dp_pre_empemph_max_3(struct intel_dp *intel_dp)
{
	return DP_TRAIN_PRE_EMPH_LEVEL_3;
4011 4012
}

4013
static void vlv_set_signal_levels(struct intel_dp *intel_dp)
4014
{
4015
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4016 4017
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
4018
	u8 train_set = intel_dp->train_set[0];
4019 4020

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4021
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4022 4023
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4024
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4025 4026 4027
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
4028
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4029 4030 4031
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
4032
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4033 4034 4035
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
4036
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4037 4038 4039 4040
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
4041
			return;
4042 4043
		}
		break;
4044
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4045 4046
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4047
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4048 4049 4050
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
4051
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4052 4053 4054
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
4055
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4056 4057 4058 4059
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
4060
			return;
4061 4062
		}
		break;
4063
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4064 4065
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4066
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4067 4068 4069
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
4070
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4071 4072 4073 4074
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
4075
			return;
4076 4077
		}
		break;
4078
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4079 4080
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4081
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4082 4083 4084 4085
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
4086
			return;
4087 4088 4089
		}
		break;
	default:
4090
		return;
4091 4092
	}

4093 4094
	vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
				 uniqtranscale_reg_value, 0);
4095 4096
}

4097
static void chv_set_signal_levels(struct intel_dp *intel_dp)
4098
{
4099 4100 4101
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	u32 deemph_reg_value, margin_reg_value;
	bool uniq_trans_scale = false;
4102
	u8 train_set = intel_dp->train_set[0];
4103 4104

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4105
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4106
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4107
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4108 4109 4110
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
4111
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4112 4113 4114
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
4115
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4116 4117 4118
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
4119
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4120 4121
			deemph_reg_value = 128;
			margin_reg_value = 154;
4122
			uniq_trans_scale = true;
4123 4124
			break;
		default:
4125
			return;
4126 4127
		}
		break;
4128
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4129
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4130
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4131 4132 4133
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
4134
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4135 4136 4137
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
4138
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4139 4140 4141 4142
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
4143
			return;
4144 4145
		}
		break;
4146
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4147
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4148
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4149 4150 4151
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
4152
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4153 4154 4155 4156
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
4157
			return;
4158 4159
		}
		break;
4160
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4161
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4162
		case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4163 4164 4165 4166
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
4167
			return;
4168 4169 4170
		}
		break;
	default:
4171
		return;
4172 4173
	}

4174 4175
	chv_set_phy_signal_level(encoder, deemph_reg_value,
				 margin_reg_value, uniq_trans_scale);
4176 4177
}

4178
static u32 g4x_signal_levels(u8 train_set)
4179
{
4180
	u32 signal_levels = 0;
4181

4182
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4183
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4184 4185 4186
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
4187
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4188 4189
		signal_levels |= DP_VOLTAGE_0_6;
		break;
4190
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4191 4192
		signal_levels |= DP_VOLTAGE_0_8;
		break;
4193
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4194 4195 4196
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
4197
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4198
	case DP_TRAIN_PRE_EMPH_LEVEL_0:
4199 4200 4201
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
4202
	case DP_TRAIN_PRE_EMPH_LEVEL_1:
4203 4204
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
4205
	case DP_TRAIN_PRE_EMPH_LEVEL_2:
4206 4207
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
4208
	case DP_TRAIN_PRE_EMPH_LEVEL_3:
4209 4210 4211 4212 4213 4214
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233
static void
g4x_set_signal_levels(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u8 train_set = intel_dp->train_set[0];
	u32 signal_levels;

	signal_levels = g4x_signal_levels(train_set);

	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
		    signal_levels);

	intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
	intel_dp->DP |= signal_levels;

	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
}

4234
/* SNB CPU eDP voltage swing and pre-emphasis control */
4235
static u32 snb_cpu_edp_signal_levels(u8 train_set)
4236
{
4237 4238 4239
	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					DP_TRAIN_PRE_EMPHASIS_MASK);

4240
	switch (signal_levels) {
4241 4242
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4243
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4244
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4245
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4246 4247
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4248
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4249 4250
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4251
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4252 4253
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4254
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4255
	default:
4256 4257 4258
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4259 4260 4261
	}
}

4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
static void
snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u8 train_set = intel_dp->train_set[0];
	u32 signal_levels;

	signal_levels = snb_cpu_edp_signal_levels(train_set);

	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
		    signal_levels);

	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	intel_dp->DP |= signal_levels;

	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
}

4281
/* IVB CPU eDP voltage swing and pre-emphasis control */
4282
static u32 ivb_cpu_edp_signal_levels(u8 train_set)
K
Keith Packard 已提交
4283
{
4284 4285 4286
	u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					DP_TRAIN_PRE_EMPHASIS_MASK);

K
Keith Packard 已提交
4287
	switch (signal_levels) {
4288
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4289
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
4290
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4291
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4292
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4293
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
K
Keith Packard 已提交
4294 4295
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

4296
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4297
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
4298
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4299 4300
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

4301
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
K
Keith Packard 已提交
4302
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
4303
	case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
K
Keith Packard 已提交
4304 4305 4306 4307 4308 4309 4310 4311 4312
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

4313 4314
static void
ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4315
{
4316
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4317
	u8 train_set = intel_dp->train_set[0];
4318
	u32 signal_levels;
4319

4320 4321 4322 4323 4324 4325 4326
	signal_levels = ivb_cpu_edp_signal_levels(train_set);

	drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
		    signal_levels);

	intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
	intel_dp->DP |= signal_levels;
4327

4328 4329 4330 4331 4332 4333 4334 4335
	intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
}

void intel_dp_set_signal_levels(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u8 train_set = intel_dp->train_set[0];
4336 4337 4338 4339 4340 4341 4342 4343 4344

	drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
		    train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
		    train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
	drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
		    (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
		    DP_TRAIN_PRE_EMPHASIS_SHIFT,
		    train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
		    " (max)" : "");
4345

4346
	intel_dp->set_signal_levels(intel_dp);
4347 4348
}

4349
void
4350
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4351
				       u8 dp_train_pat)
4352
{
4353 4354
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
4355

4356 4357 4358 4359
	if (dp_train_pat & train_pat_mask)
		drm_dbg_kms(&dev_priv->drm,
			    "Using DP training pattern TPS%d\n",
			    dp_train_pat & train_pat_mask);
4360

4361
	intel_dp->set_link_train(intel_dp, dp_train_pat);
4362 4363
}

4364
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4365
{
4366 4367
	if (intel_dp->set_idle_link_train)
		intel_dp->set_idle_link_train(intel_dp);
4368 4369
}

4370
static void
4371 4372
intel_dp_link_down(struct intel_encoder *encoder,
		   const struct intel_crtc_state *old_crtc_state)
4373
{
4374
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4375
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4376
	struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4377
	enum port port = encoder->port;
4378
	u32 DP = intel_dp->DP;
4379

4380 4381 4382
	if (drm_WARN_ON(&dev_priv->drm,
			(intel_de_read(dev_priv, intel_dp->output_reg) &
			 DP_PORT_EN) == 0))
4383 4384
		return;

4385
	drm_dbg_kms(&dev_priv->drm, "\n");
4386

4387
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4388
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4389
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
4390
		DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4391
	} else {
4392
		DP &= ~DP_LINK_TRAIN_MASK;
4393
		DP |= DP_LINK_TRAIN_PAT_IDLE;
4394
	}
4395 4396
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4397

4398
	DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4399 4400
	intel_de_write(dev_priv, intel_dp->output_reg, DP);
	intel_de_posting_read(dev_priv, intel_dp->output_reg);
4401 4402 4403 4404 4405 4406

	/*
	 * HW workaround for IBX, we need to move the port
	 * to transcoder A after disabling it to allow the
	 * matching HDMI port to be enabled on transcoder A.
	 */
4407
	if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4408 4409 4410 4411 4412 4413 4414
		/*
		 * We get CPU/PCH FIFO underruns on the other pipe when
		 * doing the workaround. Sweep them under the rug.
		 */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);

4415
		/* always enable with pattern 1 (as per spec) */
4416 4417 4418
		DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
		DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
			DP_LINK_TRAIN_PAT_1;
4419 4420
		intel_de_write(dev_priv, intel_dp->output_reg, DP);
		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4421 4422

		DP &= ~DP_PORT_EN;
4423 4424
		intel_de_write(dev_priv, intel_dp->output_reg, DP);
		intel_de_posting_read(dev_priv, intel_dp->output_reg);
4425

4426
		intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4427 4428
		intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
		intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4429 4430
	}

4431
	msleep(intel_dp->panel_power_down_delay);
4432 4433

	intel_dp->DP = DP;
4434 4435

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4436 4437 4438 4439
		intel_wakeref_t wakeref;

		with_pps_lock(intel_dp, wakeref)
			intel_dp->active_pipe = INVALID_PIPE;
4440
	}
4441 4442
}

4443 4444 4445
static void
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
{
4446
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461
	u8 dpcd_ext[6];

	/*
	 * Prior to DP1.3 the bit represented by
	 * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
	 * if it is set DP_DPCD_REV at 0000h could be at a value less than
	 * the true capability of the panel. The only way to check is to
	 * then compare 0000h and 2200h.
	 */
	if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
	      DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
		return;

	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
			     &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4462 4463
		drm_err(&i915->drm,
			"DPCD failed read at extended capabilities\n");
4464 4465 4466 4467
		return;
	}

	if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4468 4469
		drm_dbg_kms(&i915->drm,
			    "DPCD extended DPCD rev less than base DPCD rev\n");
4470 4471 4472 4473 4474 4475
		return;
	}

	if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
		return;

4476 4477
	drm_dbg_kms(&i915->drm, "Base DPCD: %*ph\n",
		    (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4478 4479 4480 4481

	memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
}

4482
bool
4483
intel_dp_read_dpcd(struct intel_dp *intel_dp)
4484
{
4485 4486
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);

4487 4488
	if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
			     sizeof(intel_dp->dpcd)) < 0)
4489
		return false; /* aux transfer failed */
4490

4491 4492
	intel_dp_extended_receiver_capabilities(intel_dp);

4493 4494
	drm_dbg_kms(&i915->drm, "DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd),
		    intel_dp->dpcd);
4495

4496 4497
	return intel_dp->dpcd[DP_DPCD_REV] != 0;
}
4498

4499 4500 4501 4502 4503 4504 4505 4506 4507 4508
bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
{
	u8 dprx = 0;

	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
			      &dprx) != 1)
		return false;
	return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
}

4509 4510
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
{
4511 4512
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);

4513 4514 4515 4516 4517 4518
	/*
	 * Clear the cached register set to avoid using stale values
	 * for the sinks that do not support DSC.
	 */
	memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));

4519 4520 4521
	/* Clear fec_capable to avoid using stale values */
	intel_dp->fec_capable = 0;

4522 4523 4524 4525 4526 4527
	/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
	    intel_dp->edp_dpcd[0] >= DP_EDP_14) {
		if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
				     intel_dp->dsc_dpcd,
				     sizeof(intel_dp->dsc_dpcd)) < 0)
4528 4529 4530
			drm_err(&i915->drm,
				"Failed to read DPCD register 0x%x\n",
				DP_DSC_SUPPORT);
4531

4532 4533 4534
		drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
			    (int)sizeof(intel_dp->dsc_dpcd),
			    intel_dp->dsc_dpcd);
4535

4536
		/* FEC is supported only on DP 1.4 */
4537 4538 4539
		if (!intel_dp_is_edp(intel_dp) &&
		    drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
				      &intel_dp->fec_capable) < 0)
4540 4541
			drm_err(&i915->drm,
				"Failed to read FEC DPCD register\n");
4542

4543 4544
		drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
			    intel_dp->fec_capable);
4545 4546 4547
	}
}

4548 4549 4550 4551 4552
static bool
intel_edp_init_dpcd(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
		to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4553

4554
	/* this function is meant to be called only once */
4555
	drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4556

4557
	if (!intel_dp_read_dpcd(intel_dp))
4558 4559
		return false;

4560 4561
	drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
			 drm_dp_is_branch(intel_dp->dpcd));
4562

4563 4564 4565 4566 4567 4568 4569 4570 4571 4572
	/*
	 * Read the eDP display control registers.
	 *
	 * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
	 * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
	 * set, but require eDP 1.4+ detection (e.g. for supported link rates
	 * method). The display control registers should read zero if they're
	 * not supported anyway.
	 */
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
D
Dan Carpenter 已提交
4573 4574
			     intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
			     sizeof(intel_dp->edp_dpcd))
4575 4576 4577
		drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
			    (int)sizeof(intel_dp->edp_dpcd),
			    intel_dp->edp_dpcd);
4578

4579 4580 4581 4582 4583 4584
	/*
	 * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
	 * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
	 */
	intel_psr_init_dpcd(intel_dp);

4585 4586
	/* Read the eDP 1.4+ supported link rates. */
	if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4587
		__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4588 4589
		int i;

4590 4591
		drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
				sink_rates, sizeof(sink_rates));
4592

4593 4594
		for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
			int val = le16_to_cpu(sink_rates[i]);
4595 4596 4597 4598

			if (val == 0)
				break;

4599 4600 4601 4602 4603 4604
			/* Value read multiplied by 200kHz gives the per-lane
			 * link rate in kHz. The source rates are, however,
			 * stored in terms of LS_Clk kHz. The full conversion
			 * back to symbols is
			 * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
			 */
4605
			intel_dp->sink_rates[i] = (val * 200) / 10;
4606
		}
4607
		intel_dp->num_sink_rates = i;
4608
	}
4609

4610 4611 4612 4613
	/*
	 * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
	 * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
	 */
4614 4615 4616 4617 4618
	if (intel_dp->num_sink_rates)
		intel_dp->use_rate_select = true;
	else
		intel_dp_set_sink_rates(intel_dp);

4619 4620
	intel_dp_set_common_rates(intel_dp);

4621 4622 4623 4624
	/* Read the eDP DSC DPCD registers */
	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
		intel_dp_get_dsc_sink_cap(intel_dp);

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
	return true;
}


static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
{
	if (!intel_dp_read_dpcd(intel_dp))
		return false;

4635 4636 4637 4638
	/*
	 * Don't clobber cached eDP rates. Also skip re-reading
	 * the OUI/ID since we know it won't change.
	 */
4639
	if (!intel_dp_is_edp(intel_dp)) {
4640 4641 4642
		drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
				 drm_dp_is_branch(intel_dp->dpcd));

4643
		intel_dp_set_sink_rates(intel_dp);
4644 4645
		intel_dp_set_common_rates(intel_dp);
	}
4646

4647
	/*
4648 4649
	 * Some eDP panels do not set a valid value for sink count, that is why
	 * it don't care about read it here and in intel_edp_init_dpcd().
4650
	 */
4651
	if (!intel_dp_is_edp(intel_dp) &&
L
Lyude Paul 已提交
4652 4653
	    !drm_dp_has_quirk(&intel_dp->desc, 0,
			      DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4654 4655
		u8 count;
		ssize_t r;
4656

4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677
		r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
		if (r < 1)
			return false;

		/*
		 * Sink count can change between short pulse hpd hence
		 * a member variable in intel_dp will track any changes
		 * between short pulse interrupts.
		 */
		intel_dp->sink_count = DP_GET_SINK_COUNT(count);

		/*
		 * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
		 * a dongle is present but no display. Unless we require to know
		 * if a dongle is present or not, we don't need to update
		 * downstream port information. So, an early return here saves
		 * time from performing other operations which are not required.
		 */
		if (!intel_dp->sink_count)
			return false;
	}
4678

4679
	if (!drm_dp_is_branch(intel_dp->dpcd))
4680 4681 4682 4683 4684
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

4685 4686 4687
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
			     intel_dp->downstream_ports,
			     DP_MAX_DOWNSTREAM_PORTS) < 0)
4688 4689 4690
		return false; /* downstream port status fetch failed */

	return true;
4691 4692
}

4693
static bool
4694
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4695
{
4696
	u8 mstm_cap;
4697 4698 4699 4700

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
		return false;

4701
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4702
		return false;
4703

4704
	return mstm_cap & DP_MST_CAP;
4705 4706
}

4707 4708 4709
static bool
intel_dp_can_mst(struct intel_dp *intel_dp)
{
4710 4711 4712
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);

	return i915->params.enable_dp_mst &&
4713 4714 4715 4716
		intel_dp->can_mst &&
		intel_dp_sink_can_mst(intel_dp);
}

4717 4718 4719
static void
intel_dp_configure_mst(struct intel_dp *intel_dp)
{
4720
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4721 4722 4723 4724
	struct intel_encoder *encoder =
		&dp_to_dig_port(intel_dp)->base;
	bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);

4725 4726 4727 4728
	drm_dbg_kms(&i915->drm,
		    "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
		    encoder->base.base.id, encoder->base.name,
		    yesno(intel_dp->can_mst), yesno(sink_can_mst),
4729
		    yesno(i915->params.enable_dp_mst));
4730 4731 4732 4733

	if (!intel_dp->can_mst)
		return;

4734
	intel_dp->is_mst = sink_can_mst &&
4735
		i915->params.enable_dp_mst;
4736 4737 4738

	drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
					intel_dp->is_mst);
4739 4740 4741 4742 4743
}

static bool
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
4744 4745 4746
	return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
				sink_irq_vector, DP_DPRX_ESI_LEN) ==
		DP_DPRX_ESI_LEN;
4747 4748
}

4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
bool
intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
		       const struct drm_connector_state *conn_state)
{
	/*
	 * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
	 * of Color Encoding Format and Content Color Gamut], in order to
	 * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
	 */
	if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
		return true;

	switch (conn_state->colorspace) {
	case DRM_MODE_COLORIMETRY_SYCC_601:
	case DRM_MODE_COLORIMETRY_OPYCC_601:
	case DRM_MODE_COLORIMETRY_BT2020_YCC:
	case DRM_MODE_COLORIMETRY_BT2020_RGB:
	case DRM_MODE_COLORIMETRY_BT2020_CYCC:
		return true;
	default:
		break;
	}

	return false;
}

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793
static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
				     struct dp_sdp *sdp, size_t size)
{
	size_t length = sizeof(struct dp_sdp);

	if (size < length)
		return -ENOSPC;

	memset(sdp, 0, size);

	/*
	 * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
	 * VSC SDP Header Bytes
	 */
	sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
	sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
	sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
	sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */

4794 4795 4796 4797 4798 4799 4800
	/*
	 * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as
	 * per DP 1.4a spec.
	 */
	if (vsc->revision != 0x5)
		goto out;

4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832
	/* VSC SDP Payload for DB16 through DB18 */
	/* Pixel Encoding and Colorimetry Formats  */
	sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
	sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */

	switch (vsc->bpc) {
	case 6:
		/* 6bpc: 0x0 */
		break;
	case 8:
		sdp->db[17] = 0x1; /* DB17[3:0] */
		break;
	case 10:
		sdp->db[17] = 0x2;
		break;
	case 12:
		sdp->db[17] = 0x3;
		break;
	case 16:
		sdp->db[17] = 0x4;
		break;
	default:
		MISSING_CASE(vsc->bpc);
		break;
	}
	/* Dynamic Range and Component Bit Depth */
	if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
		sdp->db[17] |= 0x80;  /* DB17[7] */

	/* Content Type */
	sdp->db[18] = vsc->content_type & 0x7;

4833
out:
4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936
	return length;
}

static ssize_t
intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
					 struct dp_sdp *sdp,
					 size_t size)
{
	size_t length = sizeof(struct dp_sdp);
	const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
	unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
	ssize_t len;

	if (size < length)
		return -ENOSPC;

	memset(sdp, 0, size);

	len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
	if (len < 0) {
		DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
		return -ENOSPC;
	}

	if (len != infoframe_size) {
		DRM_DEBUG_KMS("wrong static hdr metadata size\n");
		return -ENOSPC;
	}

	/*
	 * Set up the infoframe sdp packet for HDR static metadata.
	 * Prepare VSC Header for SU as per DP 1.4a spec,
	 * Table 2-100 and Table 2-101
	 */

	/* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
	sdp->sdp_header.HB0 = 0;
	/*
	 * Packet Type 80h + Non-audio INFOFRAME Type value
	 * HDMI_INFOFRAME_TYPE_DRM: 0x87
	 * - 80h + Non-audio INFOFRAME Type value
	 * - InfoFrame Type: 0x07
	 *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
	 */
	sdp->sdp_header.HB1 = drm_infoframe->type;
	/*
	 * Least Significant Eight Bits of (Data Byte Count – 1)
	 * infoframe_size - 1
	 */
	sdp->sdp_header.HB2 = 0x1D;
	/* INFOFRAME SDP Version Number */
	sdp->sdp_header.HB3 = (0x13 << 2);
	/* CTA Header Byte 2 (INFOFRAME Version Number) */
	sdp->db[0] = drm_infoframe->version;
	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
	sdp->db[1] = drm_infoframe->length;
	/*
	 * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
	 * HDMI_INFOFRAME_HEADER_SIZE
	 */
	BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
	memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
	       HDMI_DRM_INFOFRAME_SIZE);

	/*
	 * Size of DP infoframe sdp packet for HDR static metadata consists of
	 * - DP SDP Header(struct dp_sdp_header): 4 bytes
	 * - Two Data Blocks: 2 bytes
	 *    CTA Header Byte2 (INFOFRAME Version Number)
	 *    CTA Header Byte3 (Length of INFOFRAME)
	 * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
	 *
	 * Prior to GEN11's GMP register size is identical to DP HDR static metadata
	 * infoframe size. But GEN11+ has larger than that size, write_infoframe
	 * will pad rest of the size.
	 */
	return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
}

static void intel_write_dp_sdp(struct intel_encoder *encoder,
			       const struct intel_crtc_state *crtc_state,
			       unsigned int type)
{
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct dp_sdp sdp = {};
	ssize_t len;

	if ((crtc_state->infoframes.enable &
	     intel_hdmi_infoframe_enable(type)) == 0)
		return;

	switch (type) {
	case DP_SDP_VSC:
		len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
					    sizeof(sdp));
		break;
	case HDMI_PACKET_TYPE_GAMUT_METADATA:
		len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
							       &sdp, sizeof(sdp));
		break;
	default:
		MISSING_CASE(type);
4937
		return;
4938 4939 4940 4941 4942 4943 4944 4945
	}

	if (drm_WARN_ON(&dev_priv->drm, len < 0))
		return;

	intel_dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
}

4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963
void intel_write_dp_vsc_sdp(struct intel_encoder *encoder,
			    const struct intel_crtc_state *crtc_state,
			    struct drm_dp_vsc_sdp *vsc)
{
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct dp_sdp sdp = {};
	ssize_t len;

	len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp));

	if (drm_WARN_ON(&dev_priv->drm, len < 0))
		return;

	intel_dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC,
					&sdp, len);
}

4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999
void intel_dp_set_infoframes(struct intel_encoder *encoder,
			     bool enable,
			     const struct intel_crtc_state *crtc_state,
			     const struct drm_connector_state *conn_state)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
	u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
			 VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
			 VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
	u32 val = intel_de_read(dev_priv, reg);

	/* TODO: Add DSC case (DIP_ENABLE_PPS) */
	/* When PSR is enabled, this routine doesn't disable VSC DIP */
	if (intel_psr_enabled(intel_dp))
		val &= ~dip_enable;
	else
		val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);

	if (!enable) {
		intel_de_write(dev_priv, reg, val);
		intel_de_posting_read(dev_priv, reg);
		return;
	}

	intel_de_write(dev_priv, reg, val);
	intel_de_posting_read(dev_priv, reg);

	/* When PSR is enabled, VSC SDP is handled by PSR routine */
	if (!intel_psr_enabled(intel_dp))
		intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);

	intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
}

G
Gwan-gyeong Mun 已提交
5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171
static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
				   const void *buffer, size_t size)
{
	const struct dp_sdp *sdp = buffer;

	if (size < sizeof(struct dp_sdp))
		return -EINVAL;

	memset(vsc, 0, size);

	if (sdp->sdp_header.HB0 != 0)
		return -EINVAL;

	if (sdp->sdp_header.HB1 != DP_SDP_VSC)
		return -EINVAL;

	vsc->sdp_type = sdp->sdp_header.HB1;
	vsc->revision = sdp->sdp_header.HB2;
	vsc->length = sdp->sdp_header.HB3;

	if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
	    (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) {
		/*
		 * - HB2 = 0x2, HB3 = 0x8
		 *   VSC SDP supporting 3D stereo + PSR
		 * - HB2 = 0x4, HB3 = 0xe
		 *   VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
		 *   first scan line of the SU region (applies to eDP v1.4b
		 *   and higher).
		 */
		return 0;
	} else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
		/*
		 * - HB2 = 0x5, HB3 = 0x13
		 *   VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
		 *   Format.
		 */
		vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
		vsc->colorimetry = sdp->db[16] & 0xf;
		vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;

		switch (sdp->db[17] & 0x7) {
		case 0x0:
			vsc->bpc = 6;
			break;
		case 0x1:
			vsc->bpc = 8;
			break;
		case 0x2:
			vsc->bpc = 10;
			break;
		case 0x3:
			vsc->bpc = 12;
			break;
		case 0x4:
			vsc->bpc = 16;
			break;
		default:
			MISSING_CASE(sdp->db[17] & 0x7);
			return -EINVAL;
		}

		vsc->content_type = sdp->db[18] & 0x7;
	} else {
		return -EINVAL;
	}

	return 0;
}

static int
intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
					   const void *buffer, size_t size)
{
	int ret;

	const struct dp_sdp *sdp = buffer;

	if (size < sizeof(struct dp_sdp))
		return -EINVAL;

	if (sdp->sdp_header.HB0 != 0)
		return -EINVAL;

	if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
		return -EINVAL;

	/*
	 * Least Significant Eight Bits of (Data Byte Count – 1)
	 * 1Dh (i.e., Data Byte Count = 30 bytes).
	 */
	if (sdp->sdp_header.HB2 != 0x1D)
		return -EINVAL;

	/* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
	if ((sdp->sdp_header.HB3 & 0x3) != 0)
		return -EINVAL;

	/* INFOFRAME SDP Version Number */
	if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
		return -EINVAL;

	/* CTA Header Byte 2 (INFOFRAME Version Number) */
	if (sdp->db[0] != 1)
		return -EINVAL;

	/* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
	if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
		return -EINVAL;

	ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
					     HDMI_DRM_INFOFRAME_SIZE);

	return ret;
}

static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
				  struct intel_crtc_state *crtc_state,
				  struct drm_dp_vsc_sdp *vsc)
{
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	unsigned int type = DP_SDP_VSC;
	struct dp_sdp sdp = {};
	int ret;

	/* When PSR is enabled, VSC SDP is handled by PSR routine */
	if (intel_psr_enabled(intel_dp))
		return;

	if ((crtc_state->infoframes.enable &
	     intel_hdmi_infoframe_enable(type)) == 0)
		return;

	intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));

	ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));

	if (ret)
		drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
}

static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
						     struct intel_crtc_state *crtc_state,
						     struct hdmi_drm_infoframe *drm_infoframe)
{
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
	unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
	struct dp_sdp sdp = {};
	int ret;

	if ((crtc_state->infoframes.enable &
	    intel_hdmi_infoframe_enable(type)) == 0)
		return;

	intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
				       sizeof(sdp));

	ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
							 sizeof(sdp));

	if (ret)
		drm_dbg_kms(&dev_priv->drm,
			    "Failed to unpack DP HDR Metadata Infoframe SDP\n");
}

void intel_read_dp_sdp(struct intel_encoder *encoder,
		       struct intel_crtc_state *crtc_state,
		       unsigned int type)
{
5172 5173 5174
	if (encoder->type != INTEL_OUTPUT_DDI)
		return;

G
Gwan-gyeong Mun 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189
	switch (type) {
	case DP_SDP_VSC:
		intel_read_dp_vsc_sdp(encoder, crtc_state,
				      &crtc_state->infoframes.vsc);
		break;
	case HDMI_PACKET_TYPE_GAMUT_METADATA:
		intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
							 &crtc_state->infoframes.drm.drm);
		break;
	default:
		MISSING_CASE(type);
		break;
	}
}

5190
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5191
{
5192
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5193
	int status = 0;
5194
	int test_link_rate;
5195
	u8 test_lane_count, test_link_bw;
5196 5197 5198 5199 5200 5201 5202 5203
	/* (DP CTS 1.2)
	 * 4.3.1.11
	 */
	/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
				   &test_lane_count);

	if (status <= 0) {
5204
		drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5205 5206 5207 5208 5209 5210 5211
		return DP_TEST_NAK;
	}
	test_lane_count &= DP_MAX_LANE_COUNT_MASK;

	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
				   &test_link_bw);
	if (status <= 0) {
5212
		drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5213 5214 5215
		return DP_TEST_NAK;
	}
	test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5216 5217 5218 5219

	/* Validate the requested link rate and lane count */
	if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
					test_lane_count))
5220 5221 5222 5223 5224 5225
		return DP_TEST_NAK;

	intel_dp->compliance.test_lane_count = test_lane_count;
	intel_dp->compliance.test_link_rate = test_link_rate;

	return DP_TEST_ACK;
5226 5227
}

5228
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5229
{
5230
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5231 5232
	u8 test_pattern;
	u8 test_misc;
5233 5234 5235 5236
	__be16 h_width, v_height;
	int status = 0;

	/* Read the TEST_PATTERN (DP CTS 3.1.5) */
5237 5238
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
				   &test_pattern);
5239
	if (status <= 0) {
5240
		drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5241 5242 5243 5244 5245 5246 5247 5248
		return DP_TEST_NAK;
	}
	if (test_pattern != DP_COLOR_RAMP)
		return DP_TEST_NAK;

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
				  &h_width, 2);
	if (status <= 0) {
5249
		drm_dbg_kms(&i915->drm, "H Width read failed\n");
5250 5251 5252 5253 5254 5255
		return DP_TEST_NAK;
	}

	status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
				  &v_height, 2);
	if (status <= 0) {
5256
		drm_dbg_kms(&i915->drm, "V Height read failed\n");
5257 5258 5259
		return DP_TEST_NAK;
	}

5260 5261
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
				   &test_misc);
5262
	if (status <= 0) {
5263
		drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284
		return DP_TEST_NAK;
	}
	if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
		return DP_TEST_NAK;
	if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
		return DP_TEST_NAK;
	switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
	case DP_TEST_BIT_DEPTH_6:
		intel_dp->compliance.test_data.bpc = 6;
		break;
	case DP_TEST_BIT_DEPTH_8:
		intel_dp->compliance.test_data.bpc = 8;
		break;
	default:
		return DP_TEST_NAK;
	}

	intel_dp->compliance.test_data.video_pattern = test_pattern;
	intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
	intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
	/* Set test active flag here so userspace doesn't interrupt things */
5285
	intel_dp->compliance.test_active = true;
5286 5287

	return DP_TEST_ACK;
5288 5289
}

5290
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5291
{
5292
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5293
	u8 test_result = DP_TEST_ACK;
5294 5295 5296 5297
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct drm_connector *connector = &intel_connector->base;

	if (intel_connector->detect_edid == NULL ||
5298
	    connector->edid_corrupt ||
5299 5300 5301 5302 5303 5304 5305 5306 5307 5308
	    intel_dp->aux.i2c_defer_count > 6) {
		/* Check EDID read for NACKs, DEFERs and corruption
		 * (DP CTS 1.2 Core r1.1)
		 *    4.2.2.4 : Failed EDID read, I2C_NAK
		 *    4.2.2.5 : Failed EDID read, I2C_DEFER
		 *    4.2.2.6 : EDID corruption detected
		 * Use failsafe mode for all cases
		 */
		if (intel_dp->aux.i2c_nack_count > 0 ||
			intel_dp->aux.i2c_defer_count > 0)
5309 5310 5311 5312
			drm_dbg_kms(&i915->drm,
				    "EDID read had %d NACKs, %d DEFERs\n",
				    intel_dp->aux.i2c_nack_count,
				    intel_dp->aux.i2c_defer_count);
5313
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5314
	} else {
5315 5316 5317 5318 5319 5320 5321
		struct edid *block = intel_connector->detect_edid;

		/* We have to write the checksum
		 * of the last block read
		 */
		block += intel_connector->detect_edid->extensions;

5322 5323
		if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
				       block->checksum) <= 0)
5324 5325
			drm_dbg_kms(&i915->drm,
				    "Failed to write EDID checksum\n");
5326 5327

		test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5328
		intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5329 5330 5331
	}

	/* Set test active flag here so userspace doesn't interrupt things */
5332
	intel_dp->compliance.test_active = true;
5333

5334 5335 5336
	return test_result;
}

5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
{
	struct drm_dp_phy_test_params *data =
		&intel_dp->compliance.test_data.phytest;

	if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
		DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
		return DP_TEST_NAK;
	}

	/*
	 * link_mst is set to false to avoid executing mst related code
	 * during compliance testing.
	 */
	intel_dp->link_mst = false;

	return DP_TEST_ACK;
}

5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
{
	struct drm_i915_private *dev_priv =
			to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_dp_phy_test_params *data =
			&intel_dp->compliance.test_data.phytest;
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
	enum pipe pipe = crtc->pipe;
	u32 pattern_val;

	switch (data->phy_pattern) {
	case DP_PHY_TEST_PATTERN_NONE:
		DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
		break;
	case DP_PHY_TEST_PATTERN_D10_2:
		DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
		break;
	case DP_PHY_TEST_PATTERN_ERROR_COUNT:
		DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE |
			       DDI_DP_COMP_CTL_SCRAMBLED_0);
		break;
	case DP_PHY_TEST_PATTERN_PRBS7:
		DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
		break;
	case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
		/*
		 * FIXME: Ideally pattern should come from DPCD 0x250. As
		 * current firmware of DPR-100 could not set it, so hardcoding
		 * now for complaince test.
		 */
		DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
		pattern_val = 0x3e0f83e0;
		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
		pattern_val = 0x0f83e0f8;
		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
		pattern_val = 0x0000f83e;
		intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE |
			       DDI_DP_COMP_CTL_CUSTOM80);
		break;
	case DP_PHY_TEST_PATTERN_CP2520:
		/*
		 * FIXME: Ideally pattern should come from DPCD 0x24A. As
		 * current firmware of DPR-100 could not set it, so hardcoding
		 * now for complaince test.
		 */
		DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
		pattern_val = 0xFB;
		intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
			       DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
			       pattern_val);
		break;
	default:
		WARN(1, "Invalid Phy Test Pattern\n");
	}
}

static void
intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
	enum pipe pipe = crtc->pipe;
	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;

	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
						 TRANS_DDI_FUNC_CTL(pipe));
	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));

	trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
				      TGL_TRANS_DDI_PORT_MASK);
	trans_conf_value &= ~PIPECONF_ENABLE;
	dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;

	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
		       trans_ddi_func_ctl_value);
	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
}

static void
intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = to_i915(dev);
	enum port port = intel_dig_port->base.port;
	struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
	enum pipe pipe = crtc->pipe;
	u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;

	trans_ddi_func_ctl_value = intel_de_read(dev_priv,
						 TRANS_DDI_FUNC_CTL(pipe));
	trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
	dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));

	trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
				    TGL_TRANS_DDI_SELECT_PORT(port);
	trans_conf_value |= PIPECONF_ENABLE;
	dp_tp_ctl_value |= DP_TP_CTL_ENABLE;

	intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
	intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
	intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
		       trans_ddi_func_ctl_value);
}

void intel_dp_process_phy_request(struct intel_dp *intel_dp)
{
	struct drm_dp_phy_test_params *data =
		&intel_dp->compliance.test_data.phytest;
	u8 link_status[DP_LINK_STATUS_SIZE];

	if (!intel_dp_get_link_status(intel_dp, link_status)) {
		DRM_DEBUG_KMS("failed to get link status\n");
		return;
	}

	/* retrieve vswing & pre-emphasis setting */
	intel_dp_get_adjust_train(intel_dp, link_status);

	intel_dp_autotest_phy_ddi_disable(intel_dp);

	intel_dp_set_signal_levels(intel_dp);

	intel_dp_phy_pattern_update(intel_dp);

	intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);

	drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
				    link_status[DP_DPCD_REV]);
}

5501
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5502
{
5503
	u8 test_result;
5504 5505 5506 5507 5508

	test_result = intel_dp_prepare_phytest(intel_dp);
	if (test_result != DP_TEST_ACK)
		DRM_ERROR("Phy test preparation failed\n");

5509 5510
	intel_dp_process_phy_request(intel_dp);

5511 5512 5513 5514 5515
	return test_result;
}

static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
5516
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5517 5518
	u8 response = DP_TEST_NAK;
	u8 request = 0;
5519
	int status;
5520

5521
	status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5522
	if (status <= 0) {
5523 5524
		drm_dbg_kms(&i915->drm,
			    "Could not read test request from sink\n");
5525 5526 5527
		goto update_status;
	}

5528
	switch (request) {
5529
	case DP_TEST_LINK_TRAINING:
5530
		drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5531 5532 5533
		response = intel_dp_autotest_link_training(intel_dp);
		break;
	case DP_TEST_LINK_VIDEO_PATTERN:
5534
		drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5535 5536 5537
		response = intel_dp_autotest_video_pattern(intel_dp);
		break;
	case DP_TEST_LINK_EDID_READ:
5538
		drm_dbg_kms(&i915->drm, "EDID test requested\n");
5539 5540 5541
		response = intel_dp_autotest_edid(intel_dp);
		break;
	case DP_TEST_LINK_PHY_TEST_PATTERN:
5542
		drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5543 5544 5545
		response = intel_dp_autotest_phy_pattern(intel_dp);
		break;
	default:
5546 5547
		drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
			    request);
5548 5549 5550
		break;
	}

5551 5552 5553
	if (response & DP_TEST_ACK)
		intel_dp->compliance.test_type = request;

5554
update_status:
5555
	status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5556
	if (status <= 0)
5557 5558
		drm_dbg_kms(&i915->drm,
			    "Could not write test response to sink\n");
5559 5560
}

5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574
/**
 * intel_dp_check_mst_status - service any pending MST interrupts, check link status
 * @intel_dp: Intel DP struct
 *
 * Read any pending MST interrupts, call MST core to handle these and ack the
 * interrupts. Check if the main and AUX link state is ok.
 *
 * Returns:
 * - %true if pending interrupts were serviced (or no interrupts were
 *   pending) w/o detecting an error condition.
 * - %false if an error condition - like AUX failure or a loss of link - is
 *   detected, which needs servicing from the hotplug work.
 */
static bool
5575 5576
intel_dp_check_mst_status(struct intel_dp *intel_dp)
{
5577
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5578
	bool link_ok = true;
5579

5580
	drm_WARN_ON_ONCE(&i915->drm, intel_dp->active_mst_links < 0);
5581 5582 5583

	for (;;) {
		u8 esi[DP_DPRX_ESI_LEN] = {};
5584
		bool handled;
5585
		int retry;
5586

5587
		if (!intel_dp_get_sink_irq_esi(intel_dp, esi)) {
5588 5589
			drm_dbg_kms(&i915->drm,
				    "failed to get ESI - device may have failed\n");
5590 5591 5592
			link_ok = false;

			break;
5593
		}
5594

5595
		/* check link status - esi[10] = 0x200c */
5596
		if (intel_dp->active_mst_links > 0 && link_ok &&
5597 5598 5599
		    !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
			drm_dbg_kms(&i915->drm,
				    "channel EQ not ok, retraining\n");
5600
			link_ok = false;
5601
		}
5602

5603
		drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5604

5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
		drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
		if (!handled)
			break;

		for (retry = 0; retry < 3; retry++) {
			int wret;

			wret = drm_dp_dpcd_write(&intel_dp->aux,
						 DP_SINK_COUNT_ESI+1,
						 &esi[1], 3);
			if (wret == 3)
				break;
5617 5618
		}
	}
5619

5620
	return link_ok;
5621 5622
}

5623 5624 5625 5626 5627
static bool
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
{
	u8 link_status[DP_LINK_STATUS_SIZE];

5628
	if (!intel_dp->link_trained)
5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639
		return false;

	/*
	 * While PSR source HW is enabled, it will control main-link sending
	 * frames, enabling and disabling it so trying to do a retrain will fail
	 * as the link would or not be on or it could mix training patterns
	 * and frame data at the same time causing retrain to fail.
	 * Also when exiting PSR, HW will retrain the link anyways fixing
	 * any link status error.
	 */
	if (intel_psr_enabled(intel_dp))
5640 5641 5642
		return false;

	if (!intel_dp_get_link_status(intel_dp, link_status))
5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656
		return false;

	/*
	 * Validate the cached values of intel_dp->link_rate and
	 * intel_dp->lane_count before attempting to retrain.
	 */
	if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
					intel_dp->lane_count))
		return false;

	/* Retrain if Channel EQ or CR not ok */
	return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
}

5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742
static bool intel_dp_has_connector(struct intel_dp *intel_dp,
				   const struct drm_connector_state *conn_state)
{
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
	struct intel_encoder *encoder;
	enum pipe pipe;

	if (!conn_state->best_encoder)
		return false;

	/* SST */
	encoder = &dp_to_dig_port(intel_dp)->base;
	if (conn_state->best_encoder == &encoder->base)
		return true;

	/* MST */
	for_each_pipe(i915, pipe) {
		encoder = &intel_dp->mst_encoders[pipe]->base;
		if (conn_state->best_encoder == &encoder->base)
			return true;
	}

	return false;
}

static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
				      struct drm_modeset_acquire_ctx *ctx,
				      u32 *crtc_mask)
{
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
	struct drm_connector_list_iter conn_iter;
	struct intel_connector *connector;
	int ret = 0;

	*crtc_mask = 0;

	if (!intel_dp_needs_link_retrain(intel_dp))
		return 0;

	drm_connector_list_iter_begin(&i915->drm, &conn_iter);
	for_each_intel_connector_iter(connector, &conn_iter) {
		struct drm_connector_state *conn_state =
			connector->base.state;
		struct intel_crtc_state *crtc_state;
		struct intel_crtc *crtc;

		if (!intel_dp_has_connector(intel_dp, conn_state))
			continue;

		crtc = to_intel_crtc(conn_state->crtc);
		if (!crtc)
			continue;

		ret = drm_modeset_lock(&crtc->base.mutex, ctx);
		if (ret)
			break;

		crtc_state = to_intel_crtc_state(crtc->base.state);

		drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));

		if (!crtc_state->hw.active)
			continue;

		if (conn_state->commit &&
		    !try_wait_for_completion(&conn_state->commit->hw_done))
			continue;

		*crtc_mask |= drm_crtc_mask(&crtc->base);
	}
	drm_connector_list_iter_end(&conn_iter);

	if (!intel_dp_needs_link_retrain(intel_dp))
		*crtc_mask = 0;

	return ret;
}

static bool intel_dp_is_connected(struct intel_dp *intel_dp)
{
	struct intel_connector *connector = intel_dp->attached_connector;

	return connector->base.status == connector_status_connected ||
		intel_dp->is_mst;
}

5743 5744
int intel_dp_retrain_link(struct intel_encoder *encoder,
			  struct drm_modeset_acquire_ctx *ctx)
5745 5746
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5747
	struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5748
	struct intel_crtc *crtc;
5749
	u32 crtc_mask;
5750 5751
	int ret;

5752
	if (!intel_dp_is_connected(intel_dp))
5753 5754 5755 5756 5757 5758 5759
		return 0;

	ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
			       ctx);
	if (ret)
		return ret;

5760
	ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5761 5762 5763
	if (ret)
		return ret;

5764
	if (crtc_mask == 0)
5765 5766
		return 0;

5767 5768
	drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
		    encoder->base.base.id, encoder->base.name);
5769

5770 5771 5772
	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
		const struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
5773

5774 5775 5776 5777 5778 5779
		/* Suppress underruns caused by re-training */
		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
		if (crtc_state->has_pch_encoder)
			intel_set_pch_fifo_underrun_reporting(dev_priv,
							      intel_crtc_pch_transcoder(crtc), false);
	}
5780 5781 5782 5783

	intel_dp_start_link_train(intel_dp);
	intel_dp_stop_link_train(intel_dp);

5784 5785 5786
	for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
		const struct intel_crtc_state *crtc_state =
			to_intel_crtc_state(crtc->base.state);
5787

5788 5789 5790 5791 5792 5793 5794 5795
		/* Keep underrun reporting disabled until things are stable */
		intel_wait_for_vblank(dev_priv, crtc->pipe);

		intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
		if (crtc_state->has_pch_encoder)
			intel_set_pch_fifo_underrun_reporting(dev_priv,
							      intel_crtc_pch_transcoder(crtc), true);
	}
5796 5797

	return 0;
5798 5799
}

5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
/*
 * If display is now connected check links status,
 * there has been known issues of link loss triggering
 * long pulse.
 *
 * Some sinks (eg. ASUS PB287Q) seem to perform some
 * weird HPD ping pong during modesets. So we can apparently
 * end up with HPD going low during a modeset, and then
 * going back up soon after. And once that happens we must
 * retrain the link to get a picture. That's in case no
 * userspace component reacted to intermittent HPD dip.
 */
5812 5813
static enum intel_hotplug_state
intel_dp_hotplug(struct intel_encoder *encoder,
5814
		 struct intel_connector *connector)
5815
{
5816
	struct drm_modeset_acquire_ctx ctx;
5817
	enum intel_hotplug_state state;
5818
	int ret;
5819

5820
	state = intel_encoder_hotplug(encoder, connector);
5821

5822
	drm_modeset_acquire_init(&ctx, 0);
5823

5824 5825
	for (;;) {
		ret = intel_dp_retrain_link(encoder, &ctx);
5826

5827 5828 5829 5830
		if (ret == -EDEADLK) {
			drm_modeset_backoff(&ctx);
			continue;
		}
5831

5832 5833
		break;
	}
5834

5835 5836
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);
5837 5838
	drm_WARN(encoder->base.dev, ret,
		 "Acquiring modeset locks failed with %i\n", ret);
5839

5840 5841 5842 5843
	/*
	 * Keeping it consistent with intel_ddi_hotplug() and
	 * intel_hdmi_hotplug().
	 */
5844
	if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5845 5846
		state = INTEL_HOTPLUG_RETRY;

5847
	return state;
5848 5849
}

5850 5851
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
{
5852
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866
	u8 val;

	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (drm_dp_dpcd_readb(&intel_dp->aux,
			      DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
		return;

	drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);

	if (val & DP_AUTOMATED_TEST_REQUEST)
		intel_dp_handle_test_request(intel_dp);

5867
	if (val & DP_CP_IRQ)
5868
		intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5869 5870

	if (val & DP_SINK_SPECIFIC_IRQ)
5871
		drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5872 5873
}

5874 5875 5876 5877 5878 5879 5880
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
5881 5882 5883 5884 5885
 *
 * intel_dp_short_pulse -  handles short pulse interrupts
 * when full detection is not required.
 * Returns %true if short pulse is handled and full detection
 * is NOT required and %false otherwise.
5886
 */
5887
static bool
5888
intel_dp_short_pulse(struct intel_dp *intel_dp)
5889
{
5890
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5891 5892
	u8 old_sink_count = intel_dp->sink_count;
	bool ret;
5893

5894 5895 5896 5897
	/*
	 * Clearing compliance test variables to allow capturing
	 * of values for next automated test request.
	 */
5898
	memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5899

5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910
	/*
	 * Now read the DPCD to see if it's actually running
	 * If the current value of sink count doesn't match with
	 * the value that was stored earlier or dpcd read failed
	 * we need to do full detection
	 */
	ret = intel_dp_get_dpcd(intel_dp);

	if ((old_sink_count != intel_dp->sink_count) || !ret) {
		/* No need to proceed if we are going to do full detect */
		return false;
5911 5912
	}

5913
	intel_dp_check_service_irq(intel_dp);
5914

5915 5916 5917
	/* Handle CEC interrupts, if any */
	drm_dp_cec_irq(&intel_dp->aux);

5918 5919 5920
	/* defer to the hotplug work for link retraining if needed */
	if (intel_dp_needs_link_retrain(intel_dp))
		return false;
5921

5922 5923
	intel_psr_short_pulse(intel_dp);

5924
	if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5925 5926
		drm_dbg_kms(&dev_priv->drm,
			    "Link Training Compliance Test requested\n");
5927
		/* Send a Hotplug Uevent to userspace to start modeset */
5928
		drm_kms_helper_hotplug_event(&dev_priv->drm);
5929
	}
5930 5931

	return true;
5932 5933
}

5934
/* XXX this is probably wrong for multiple downstream ports */
5935
static enum drm_connector_status
5936
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5937
{
5938
	struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5939
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5940 5941
	u8 *dpcd = intel_dp->dpcd;
	u8 type;
5942

5943
	if (drm_WARN_ON(&i915->drm, intel_dp_is_edp(intel_dp)))
5944 5945
		return connector_status_connected;

5946 5947 5948
	if (lspcon->active)
		lspcon_resume(lspcon);

5949 5950 5951 5952
	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

	/* if there's no downstream port, we're done */
5953
	if (!drm_dp_is_branch(dpcd))
5954
		return connector_status_connected;
5955 5956

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
5957 5958
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5959

5960 5961
		return intel_dp->sink_count ?
		connector_status_connected : connector_status_disconnected;
5962 5963
	}

5964 5965 5966
	if (intel_dp_can_mst(intel_dp))
		return connector_status_connected;

5967
	/* If no HPD, poke DDC gently */
5968
	if (drm_probe_ddc(&intel_dp->aux.ddc))
5969
		return connector_status_connected;
5970 5971

	/* Well we tried, say unknown for unreliable port types */
5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
5984 5985

	/* Anything else is out of spec, warn and ignore */
5986
	drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
5987
	return connector_status_disconnected;
5988 5989
}

5990 5991 5992
static enum drm_connector_status
edp_detect(struct intel_dp *intel_dp)
{
5993
	return connector_status_connected;
5994 5995
}

5996
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5997
{
5998
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5999
	u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6000

6001
	return intel_de_read(dev_priv, SDEISR) & bit;
6002 6003
}

6004
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6005
{
6006
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6007
	u32 bit;
6008

6009 6010
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
6011 6012
		bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
		break;
6013
	case HPD_PORT_C:
6014 6015
		bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
		break;
6016
	case HPD_PORT_D:
6017 6018 6019
		bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
		break;
	default:
6020
		MISSING_CASE(encoder->hpd_pin);
6021 6022 6023
		return false;
	}

6024
	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6025 6026
}

6027
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6028
{
6029
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6030 6031
	u32 bit;

6032 6033
	switch (encoder->hpd_pin) {
	case HPD_PORT_B:
6034
		bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6035
		break;
6036
	case HPD_PORT_C:
6037
		bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6038
		break;
6039
	case HPD_PORT_D:
6040
		bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6041 6042
		break;
	default:
6043
		MISSING_CASE(encoder->hpd_pin);
6044
		return false;
6045 6046
	}

6047
	return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6048 6049
}

6050
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6051
{
6052
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6053
	u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6054

6055
	return intel_de_read(dev_priv, DEISR) & bit;
6056 6057
}

6058 6059
/*
 * intel_digital_port_connected - is the specified port connected?
6060
 * @encoder: intel_encoder
6061
 *
6062 6063 6064 6065 6066
 * In cases where there's a connector physically connected but it can't be used
 * by our hardware we also return false, since the rest of the driver should
 * pretty much treat the port as disconnected. This is relevant for type-C
 * (starting on ICL) where there's ownership involved.
 *
6067
 * Return %true if port is connected, %false otherwise.
6068
 */
6069 6070 6071
bool intel_digital_port_connected(struct intel_encoder *encoder)
{
	struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6072
	struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6073
	bool is_connected = false;
6074 6075 6076
	intel_wakeref_t wakeref;

	with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6077
		is_connected = dig_port->connected(encoder);
6078 6079 6080 6081

	return is_connected;
}

6082
static struct edid *
6083
intel_dp_get_edid(struct intel_dp *intel_dp)
6084
{
6085
	struct intel_connector *intel_connector = intel_dp->attached_connector;
6086

6087 6088 6089 6090
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
6091 6092
			return NULL;

J
Jani Nikula 已提交
6093
		return drm_edid_duplicate(intel_connector->edid);
6094 6095 6096 6097
	} else
		return drm_get_edid(&intel_connector->base,
				    &intel_dp->aux.ddc);
}
6098

6099 6100 6101 6102 6103
static void
intel_dp_set_edid(struct intel_dp *intel_dp)
{
	struct intel_connector *intel_connector = intel_dp->attached_connector;
	struct edid *edid;
6104

6105
	intel_dp_unset_edid(intel_dp);
6106 6107 6108
	edid = intel_dp_get_edid(intel_dp);
	intel_connector->detect_edid = edid;

6109
	intel_dp->has_audio = drm_detect_monitor_audio(edid);
6110
	drm_dp_cec_set_edid(&intel_dp->aux, edid);
L
Lyude Paul 已提交
6111
	intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6112 6113
}

6114 6115
static void
intel_dp_unset_edid(struct intel_dp *intel_dp)
6116
{
6117
	struct intel_connector *intel_connector = intel_dp->attached_connector;
6118

6119
	drm_dp_cec_unset_edid(&intel_dp->aux);
6120 6121
	kfree(intel_connector->detect_edid);
	intel_connector->detect_edid = NULL;
6122

6123
	intel_dp->has_audio = false;
L
Lyude Paul 已提交
6124
	intel_dp->edid_quirks = 0;
6125
}
6126

6127
static int
6128 6129 6130
intel_dp_detect(struct drm_connector *connector,
		struct drm_modeset_acquire_ctx *ctx,
		bool force)
Z
Zhenyu Wang 已提交
6131
{
6132
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
6133
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6134 6135
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *encoder = &dig_port->base;
Z
Zhenyu Wang 已提交
6136 6137
	enum drm_connector_status status;

6138 6139
	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
		    connector->base.id, connector->name);
6140 6141
	drm_WARN_ON(&dev_priv->drm,
		    !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6142

6143
	/* Can't disconnect eDP */
6144
	if (intel_dp_is_edp(intel_dp))
6145
		status = edp_detect(intel_dp);
6146
	else if (intel_digital_port_connected(encoder))
6147
		status = intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
6148
	else
6149 6150
		status = connector_status_disconnected;

6151
	if (status == connector_status_disconnected) {
6152
		memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6153
		memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6154

6155
		if (intel_dp->is_mst) {
6156 6157 6158 6159
			drm_dbg_kms(&dev_priv->drm,
				    "MST device may have disappeared %d vs %d\n",
				    intel_dp->is_mst,
				    intel_dp->mst_mgr.mst_state);
6160 6161 6162 6163 6164
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							intel_dp->is_mst);
		}

6165
		goto out;
6166
	}
Z
Zhenyu Wang 已提交
6167

6168
	if (intel_dp->reset_link_params) {
6169 6170
		/* Initial max link lane count */
		intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6171

6172 6173
		/* Initial max link rate */
		intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6174 6175 6176

		intel_dp->reset_link_params = false;
	}
6177

6178 6179
	intel_dp_print_rates(intel_dp);

6180 6181 6182 6183
	/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
	if (INTEL_GEN(dev_priv) >= 11)
		intel_dp_get_dsc_sink_cap(intel_dp);

6184 6185 6186
	intel_dp_configure_mst(intel_dp);

	if (intel_dp->is_mst) {
6187 6188 6189 6190 6191
		/*
		 * If we are in MST mode then this connector
		 * won't appear connected or have anything
		 * with EDID on it
		 */
6192 6193
		status = connector_status_disconnected;
		goto out;
6194 6195 6196 6197 6198 6199
	}

	/*
	 * Some external monitors do not signal loss of link synchronization
	 * with an IRQ_HPD, so force a link status check.
	 */
6200 6201 6202 6203
	if (!intel_dp_is_edp(intel_dp)) {
		int ret;

		ret = intel_dp_retrain_link(encoder, ctx);
6204
		if (ret)
6205 6206
			return ret;
	}
6207

6208 6209 6210 6211 6212 6213 6214 6215
	/*
	 * Clearing NACK and defer counts to get their exact values
	 * while reading EDID which are required by Compliance tests
	 * 4.2.2.4 and 4.2.2.5
	 */
	intel_dp->aux.i2c_nack_count = 0;
	intel_dp->aux.i2c_defer_count = 0;

6216
	intel_dp_set_edid(intel_dp);
6217 6218
	if (intel_dp_is_edp(intel_dp) ||
	    to_intel_connector(connector)->detect_edid)
6219
		status = connector_status_connected;
6220

6221
	intel_dp_check_service_irq(intel_dp);
6222

6223
out:
6224
	if (status != connector_status_connected && !intel_dp->is_mst)
6225
		intel_dp_unset_edid(intel_dp);
6226

6227 6228 6229 6230 6231 6232
	/*
	 * Make sure the refs for power wells enabled during detect are
	 * dropped to avoid a new detect cycle triggered by HPD polling.
	 */
	intel_display_power_flush_work(dev_priv);

6233
	return status;
6234 6235
}

6236 6237
static void
intel_dp_force(struct drm_connector *connector)
6238
{
6239
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6240 6241
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &dig_port->base;
6242
	struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6243 6244
	enum intel_display_power_domain aux_domain =
		intel_aux_power_domain(dig_port);
6245
	intel_wakeref_t wakeref;
6246

6247 6248
	drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
		    connector->base.id, connector->name);
6249
	intel_dp_unset_edid(intel_dp);
6250

6251 6252
	if (connector->status != connector_status_connected)
		return;
6253

6254
	wakeref = intel_display_power_get(dev_priv, aux_domain);
6255 6256 6257

	intel_dp_set_edid(intel_dp);

6258
	intel_display_power_put(dev_priv, aux_domain, wakeref);
6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct edid *edid;

	edid = intel_connector->detect_edid;
	if (edid) {
		int ret = intel_connector_update_modes(connector, edid);
		if (ret)
			return ret;
	}
6272

6273
	/* if eDP has no EDID, fall back to fixed mode */
6274
	if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
6275
	    intel_connector->panel.fixed_mode) {
6276
		struct drm_display_mode *mode;
6277 6278

		mode = drm_mode_duplicate(connector->dev,
6279
					  intel_connector->panel.fixed_mode);
6280
		if (mode) {
6281 6282 6283 6284
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
6285

6286
	return 0;
6287 6288
}

6289 6290 6291
static int
intel_dp_connector_register(struct drm_connector *connector)
{
6292
	struct drm_i915_private *i915 = to_i915(connector->dev);
6293
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6294 6295 6296 6297 6298
	int ret;

	ret = intel_connector_register(connector);
	if (ret)
		return ret;
6299

6300 6301
	drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
		    intel_dp->aux.name, connector->kdev->kobj.name);
6302 6303

	intel_dp->aux.dev = connector->kdev;
6304 6305
	ret = drm_dp_aux_register(&intel_dp->aux);
	if (!ret)
6306
		drm_dp_cec_register_connector(&intel_dp->aux, connector);
6307
	return ret;
6308 6309
}

6310 6311 6312
static void
intel_dp_connector_unregister(struct drm_connector *connector)
{
6313
	struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6314 6315 6316

	drm_dp_cec_unregister_connector(&intel_dp->aux);
	drm_dp_aux_unregister(&intel_dp->aux);
6317 6318 6319
	intel_connector_unregister(connector);
}

6320
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6321
{
6322
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6323
	struct intel_dp *intel_dp = &intel_dig_port->dp;
6324

6325
	intel_dp_mst_encoder_cleanup(intel_dig_port);
6326
	if (intel_dp_is_edp(intel_dp)) {
6327 6328
		intel_wakeref_t wakeref;

6329
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6330 6331 6332 6333
		/*
		 * vdd might still be enabled do to the delayed vdd off.
		 * Make sure vdd is actually turned off here.
		 */
6334 6335
		with_pps_lock(intel_dp, wakeref)
			edp_panel_vdd_off_sync(intel_dp);
6336

6337 6338 6339 6340
		if (intel_dp->edp_notifier.notifier_call) {
			unregister_reboot_notifier(&intel_dp->edp_notifier);
			intel_dp->edp_notifier.notifier_call = NULL;
		}
6341
	}
6342 6343

	intel_dp_aux_fini(intel_dp);
6344 6345 6346 6347 6348
}

static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
{
	intel_dp_encoder_flush_work(encoder);
6349

6350
	drm_encoder_cleanup(encoder);
6351
	kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6352 6353
}

6354
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6355
{
6356
	struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6357
	intel_wakeref_t wakeref;
6358

6359
	if (!intel_dp_is_edp(intel_dp))
6360 6361
		return;

6362 6363 6364 6365
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
6366
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6367 6368
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
6369 6370
}

6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
{
	long ret;

#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
	ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
					       msecs_to_jiffies(timeout));

	if (!ret)
		DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
}

6383 6384 6385 6386
static
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
				u8 *an)
{
6387
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6388
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
6389 6390 6391 6392 6393
	static const struct drm_dp_aux_msg msg = {
		.request = DP_AUX_NATIVE_WRITE,
		.address = DP_AUX_HDCP_AKSV,
		.size = DRM_HDCP_KSV_LEN,
	};
6394
	u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
6395 6396 6397 6398 6399 6400 6401
	ssize_t dpcd_ret;
	int ret;

	/* Output An first, that's easy */
	dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
				     an, DRM_HDCP_AN_LEN);
	if (dpcd_ret != DRM_HDCP_AN_LEN) {
6402 6403 6404
		drm_dbg_kms(&i915->drm,
			    "Failed to write An over DP/AUX (%zd)\n",
			    dpcd_ret);
6405 6406 6407 6408 6409 6410 6411 6412 6413
		return dpcd_ret >= 0 ? -EIO : dpcd_ret;
	}

	/*
	 * Since Aksv is Oh-So-Secret, we can't access it in software. So in
	 * order to get it on the wire, we need to create the AUX header as if
	 * we were writing the data, and then tickle the hardware to output the
	 * data once the header is sent out.
	 */
6414
	intel_dp_aux_header(txbuf, &msg);
6415

6416
	ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
6417 6418
				rxbuf, sizeof(rxbuf),
				DP_AUX_CH_CTL_AUX_AKSV_SELECT);
6419
	if (ret < 0) {
6420 6421
		drm_dbg_kms(&i915->drm,
			    "Write Aksv over DP/AUX failed (%d)\n", ret);
6422 6423
		return ret;
	} else if (ret == 0) {
6424
		drm_dbg_kms(&i915->drm, "Aksv write over DP/AUX was empty\n");
6425 6426 6427 6428
		return -EIO;
	}

	reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6429
	if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6430 6431 6432
		drm_dbg_kms(&i915->drm,
			    "Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
			    reply);
6433 6434 6435
		return -EIO;
	}
	return 0;
6436 6437 6438 6439 6440
}

static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
				   u8 *bksv)
{
6441
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6442
	ssize_t ret;
6443

6444 6445 6446
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
			       DRM_HDCP_KSV_LEN);
	if (ret != DRM_HDCP_KSV_LEN) {
6447 6448
		drm_dbg_kms(&i915->drm,
			    "Read Bksv from DP/AUX failed (%zd)\n", ret);
6449 6450 6451 6452 6453 6454 6455 6456
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
				      u8 *bstatus)
{
6457
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6458
	ssize_t ret;
6459

6460 6461 6462 6463 6464 6465 6466 6467
	/*
	 * For some reason the HDMI and DP HDCP specs call this register
	 * definition by different names. In the HDMI spec, it's called BSTATUS,
	 * but in DP it's called BINFO.
	 */
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
			       bstatus, DRM_HDCP_BSTATUS_LEN);
	if (ret != DRM_HDCP_BSTATUS_LEN) {
6468 6469
		drm_dbg_kms(&i915->drm,
			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6470 6471 6472 6473 6474 6475
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
6476 6477
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
			     u8 *bcaps)
6478
{
6479
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6480
	ssize_t ret;
6481

6482
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6483
			       bcaps, 1);
6484
	if (ret != 1) {
6485 6486
		drm_dbg_kms(&i915->drm,
			    "Read bcaps from DP/AUX failed (%zd)\n", ret);
6487 6488
		return ret >= 0 ? -EIO : ret;
	}
6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503

	return 0;
}

static
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
				   bool *repeater_present)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

6504 6505 6506 6507 6508 6509 6510 6511
	*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
	return 0;
}

static
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
				u8 *ri_prime)
{
6512
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6513
	ssize_t ret;
6514

6515 6516 6517
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
			       ri_prime, DRM_HDCP_RI_LEN);
	if (ret != DRM_HDCP_RI_LEN) {
6518 6519
		drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n",
			    ret);
6520 6521 6522 6523 6524 6525 6526 6527 6528
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
				 bool *ksv_ready)
{
6529
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6530 6531
	ssize_t ret;
	u8 bstatus;
6532

6533 6534 6535
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
6536 6537
		drm_dbg_kms(&i915->drm,
			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6538 6539 6540 6541 6542 6543 6544 6545 6546 6547
		return ret >= 0 ? -EIO : ret;
	}
	*ksv_ready = bstatus & DP_BSTATUS_READY;
	return 0;
}

static
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
				int num_downstream, u8 *ksv_fifo)
{
6548
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
	ssize_t ret;
	int i;

	/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
	for (i = 0; i < num_downstream; i += 3) {
		size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
				       DP_AUX_HDCP_KSV_FIFO,
				       ksv_fifo + i * DRM_HDCP_KSV_LEN,
				       len);
		if (ret != len) {
6560 6561 6562
			drm_dbg_kms(&i915->drm,
				    "Read ksv[%d] from DP/AUX failed (%zd)\n",
				    i, ret);
6563 6564 6565 6566 6567 6568 6569 6570 6571 6572
			return ret >= 0 ? -EIO : ret;
		}
	}
	return 0;
}

static
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
				    int i, u32 *part)
{
6573
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6574 6575 6576 6577 6578 6579 6580 6581 6582
	ssize_t ret;

	if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
		return -EINVAL;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_AUX_HDCP_V_PRIME(i), part,
			       DRM_HDCP_V_PRIME_PART_LEN);
	if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6583 6584
		drm_dbg_kms(&i915->drm,
			    "Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600
		return ret >= 0 ? -EIO : ret;
	}
	return 0;
}

static
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
				    bool enable)
{
	/* Not used for single stream DisplayPort setups */
	return 0;
}

static
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
{
6601
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6602 6603
	ssize_t ret;
	u8 bstatus;
6604

6605 6606 6607
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
			       &bstatus, 1);
	if (ret != 1) {
6608 6609
		drm_dbg_kms(&i915->drm,
			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6610
		return false;
6611
	}
6612

6613 6614 6615
	return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
}

6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630
static
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
			  bool *hdcp_capable)
{
	ssize_t ret;
	u8 bcaps;

	ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
	if (ret)
		return ret;

	*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
	return 0;
}

6631 6632 6633 6634 6635
struct hdcp2_dp_errata_stream_type {
	u8	msg_id;
	u8	stream_type;
} __packed;

6636
struct hdcp2_dp_msg_data {
6637 6638 6639 6640 6641
	u8 msg_id;
	u32 offset;
	bool msg_detectable;
	u32 timeout;
	u32 timeout2; /* Added for non_paired situation */
6642 6643
};

6644
static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672
	{ HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
	  false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
	{ HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
	  false, 0, 0 },
	{ HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
	  true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
	  HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
	{ HDCP_2_2_AKE_SEND_PAIRING_INFO,
	  DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
	  HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
	{ HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
	{ HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
	  false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
	{ HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_SEND_RECVID_LIST,
	  DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
	  HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
	{ HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_MANAGE,
	  DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
	  0, 0 },
	{ HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
	  false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6673 6674
/* local define to shovel this through the write_2_2 interface */
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE	50
6675 6676 6677 6678
	{ HDCP_2_2_ERRATA_DP_STREAM_TYPE,
	  DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
	  0, 0 },
};
6679

6680 6681 6682
static int
intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
			      u8 *rx_status)
6683
{
6684
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6685 6686 6687 6688 6689 6690
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
			       HDCP_2_2_DP_RXSTATUS_LEN);
	if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6691 6692
		drm_dbg_kms(&i915->drm,
			    "Read bstatus from DP/AUX failed (%zd)\n", ret);
6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
		return ret >= 0 ? -EIO : ret;
	}

	return 0;
}

static
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
				  u8 msg_id, bool *msg_ready)
{
	u8 rx_status;
	int ret;

	*msg_ready = false;
	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret < 0)
		return ret;

	switch (msg_id) {
	case HDCP_2_2_AKE_SEND_HPRIME:
		if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_AKE_SEND_PAIRING_INFO:
		if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
			*msg_ready = true;
		break;
	case HDCP_2_2_REP_SEND_RECVID_LIST:
		if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
			*msg_ready = true;
		break;
	default:
		DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
		return -EINVAL;
	}

	return 0;
}

static ssize_t
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6734
			    const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6735
{
6736
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
	u8 msg_id = hdcp2_msg_data->msg_id;
	int ret, timeout;
	bool msg_ready = false;

	if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
		timeout = hdcp2_msg_data->timeout2;
	else
		timeout = hdcp2_msg_data->timeout;

	/*
	 * There is no way to detect the CERT, LPRIME and STREAM_READY
	 * availability. So Wait for timeout and read the msg.
	 */
	if (!hdcp2_msg_data->msg_detectable) {
		mdelay(timeout);
		ret = 0;
	} else {
6756 6757 6758 6759 6760 6761 6762
		/*
		 * As we want to check the msg availability at timeout, Ignoring
		 * the timeout at wait for CP_IRQ.
		 */
		intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
		ret = hdcp2_detect_msg_availability(intel_dig_port,
						    msg_id, &msg_ready);
6763 6764 6765 6766 6767
		if (!msg_ready)
			ret = -ETIMEDOUT;
	}

	if (ret)
6768 6769 6770
		drm_dbg_kms(&i915->drm,
			    "msg_id %d, ret %d, timeout(mSec): %d\n",
			    hdcp2_msg_data->msg_id, ret, timeout);
6771 6772 6773 6774

	return ret;
}

6775
static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6776 6777 6778
{
	int i;

6779 6780 6781
	for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
		if (hdcp2_dp_msg_data[i].msg_id == msg_id)
			return &hdcp2_dp_msg_data[i];
6782 6783 6784 6785 6786 6787 6788 6789

	return NULL;
}

static
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
			     void *buf, size_t size)
{
6790 6791
	struct intel_dp *dp = &intel_dig_port->dp;
	struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6792 6793 6794
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_write, len;
6795
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806

	hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
	if (!hdcp2_msg_data)
		return -EINVAL;

	offset = hdcp2_msg_data->offset;

	/* No msg_id in DP HDCP2.2 msgs */
	bytes_to_write = size - 1;
	byte++;

6807 6808
	hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);

6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855
	while (bytes_to_write) {
		len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
				DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;

		ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
					offset, (void *)byte, len);
		if (ret < 0)
			return ret;

		bytes_to_write -= ret;
		byte += ret;
		offset += ret;
	}

	return size;
}

static
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
{
	u8 rx_info[HDCP_2_2_RXINFO_LEN];
	u32 dev_cnt;
	ssize_t ret;

	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RXINFO_OFFSET,
			       (void *)rx_info, HDCP_2_2_RXINFO_LEN);
	if (ret != HDCP_2_2_RXINFO_LEN)
		return ret >= 0 ? -EIO : ret;

	dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
		   HDCP_2_2_DEV_COUNT_LO(rx_info[1]));

	if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
		dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;

	ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
		HDCP_2_2_RECEIVER_IDS_MAX_LEN +
		(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);

	return ret;
}

static
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
			    u8 msg_id, void *buf, size_t size)
{
6856
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6857 6858 6859
	unsigned int offset;
	u8 *byte = buf;
	ssize_t ret, bytes_to_recv, len;
6860
	const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889

	hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
	if (!hdcp2_msg_data)
		return -EINVAL;
	offset = hdcp2_msg_data->offset;

	ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
	if (ret < 0)
		return ret;

	if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
		ret = get_receiver_id_list_size(intel_dig_port);
		if (ret < 0)
			return ret;

		size = ret;
	}
	bytes_to_recv = size - 1;

	/* DP adaptation msgs has no msg_id */
	byte++;

	while (bytes_to_recv) {
		len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
		      DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;

		ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
				       (void *)byte, len);
		if (ret < 0) {
6890 6891
			drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n",
				    msg_id, ret);
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908
			return ret;
		}

		bytes_to_recv -= ret;
		byte += ret;
		offset += ret;
	}
	byte = buf;
	*byte = msg_id;

	return size;
}

static
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
				      bool is_repeater, u8 content_type)
{
6909
	int ret;
6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924
	struct hdcp2_dp_errata_stream_type stream_type_msg;

	if (is_repeater)
		return 0;

	/*
	 * Errata for DP: As Stream type is used for encryption, Receiver
	 * should be communicated with stream type for the decryption of the
	 * content.
	 * Repeater will be communicated with stream type as a part of it's
	 * auth later in time.
	 */
	stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
	stream_type_msg.stream_type = content_type;

6925
	ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6926
					sizeof(stream_type_msg));
6927 6928 6929

	return ret < 0 ? ret : 0;

6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972
}

static
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
{
	u8 rx_status;
	int ret;

	ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
	if (ret)
		return ret;

	if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
		ret = HDCP_REAUTH_REQUEST;
	else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
		ret = HDCP_LINK_INTEGRITY_FAILURE;
	else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
		ret = HDCP_TOPOLOGY_CHANGE;

	return ret;
}

static
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
			   bool *capable)
{
	u8 rx_caps[3];
	int ret;

	*capable = false;
	ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
			       DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
			       rx_caps, HDCP_2_2_RXCAPS_LEN);
	if (ret != HDCP_2_2_RXCAPS_LEN)
		return ret >= 0 ? -EIO : ret;

	if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
	    HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
		*capable = true;

	return 0;
}

6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
	.write_an_aksv = intel_dp_hdcp_write_an_aksv,
	.read_bksv = intel_dp_hdcp_read_bksv,
	.read_bstatus = intel_dp_hdcp_read_bstatus,
	.repeater_present = intel_dp_hdcp_repeater_present,
	.read_ri_prime = intel_dp_hdcp_read_ri_prime,
	.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
	.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
	.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
	.toggle_signalling = intel_dp_hdcp_toggle_signalling,
	.check_link = intel_dp_hdcp_check_link,
6984
	.hdcp_capable = intel_dp_hdcp_capable,
6985 6986 6987 6988 6989 6990
	.write_2_2_msg = intel_dp_hdcp2_write_msg,
	.read_2_2_msg = intel_dp_hdcp2_read_msg,
	.config_stream_type = intel_dp_hdcp2_config_stream_type,
	.check_2_2_link = intel_dp_hdcp2_check_link,
	.hdcp_2_2_capable = intel_dp_hdcp2_capable,
	.protocol = HDCP_PROTOCOL_DP,
6991 6992
};

6993 6994
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
{
6995
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6996
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008

	lockdep_assert_held(&dev_priv->pps_mutex);

	if (!edp_have_panel_vdd(intel_dp))
		return;

	/*
	 * The VDD bit needs a power domain reference, so if the bit is
	 * already enabled when we boot or resume, grab this reference and
	 * schedule a vdd off, so we don't hold on to the reference
	 * indefinitely.
	 */
7009 7010
	drm_dbg_kms(&dev_priv->drm,
		    "VDD left on by BIOS, adjusting state tracking\n");
7011
	intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
7012 7013 7014 7015

	edp_panel_vdd_schedule_off(intel_dp);
}

7016 7017
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
{
7018
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7019 7020
	struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
	enum pipe pipe;
7021

7022 7023 7024
	if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
				  encoder->port, &pipe))
		return pipe;
7025

7026
	return INVALID_PIPE;
7027 7028
}

7029
void intel_dp_encoder_reset(struct drm_encoder *encoder)
7030
{
7031
	struct drm_i915_private *dev_priv = to_i915(encoder->dev);
7032
	struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
7033
	struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
7034
	intel_wakeref_t wakeref;
7035 7036

	if (!HAS_DDI(dev_priv))
7037
		intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7038

7039
	if (lspcon->active)
7040 7041
		lspcon_resume(lspcon);

7042 7043
	intel_dp->reset_link_params = true;

7044 7045 7046 7047
	if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
	    !intel_dp_is_edp(intel_dp))
		return;

7048 7049 7050
	with_pps_lock(intel_dp, wakeref) {
		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
			intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7051

7052 7053 7054 7055 7056 7057 7058 7059
		if (intel_dp_is_edp(intel_dp)) {
			/*
			 * Reinit the power sequencer, in case BIOS did
			 * something nasty with it.
			 */
			intel_dp_pps_init(intel_dp);
			intel_edp_panel_vdd_sanitize(intel_dp);
		}
7060
	}
7061 7062
}

7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099
static int intel_modeset_tile_group(struct intel_atomic_state *state,
				    int tile_group_id)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct drm_connector_list_iter conn_iter;
	struct drm_connector *connector;
	int ret = 0;

	drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		struct drm_connector_state *conn_state;
		struct intel_crtc_state *crtc_state;
		struct intel_crtc *crtc;

		if (!connector->has_tile ||
		    connector->tile_group->id != tile_group_id)
			continue;

		conn_state = drm_atomic_get_connector_state(&state->base,
							    connector);
		if (IS_ERR(conn_state)) {
			ret = PTR_ERR(conn_state);
			break;
		}

		crtc = to_intel_crtc(conn_state->crtc);

		if (!crtc)
			continue;

		crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
		crtc_state->uapi.mode_changed = true;

		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
		if (ret)
			break;
	}
7100
	drm_connector_list_iter_end(&conn_iter);
7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139

	return ret;
}

static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
{
	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
	struct intel_crtc *crtc;

	if (transcoders == 0)
		return 0;

	for_each_intel_crtc(&dev_priv->drm, crtc) {
		struct intel_crtc_state *crtc_state;
		int ret;

		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
		if (IS_ERR(crtc_state))
			return PTR_ERR(crtc_state);

		if (!crtc_state->hw.enable)
			continue;

		if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
			continue;

		crtc_state->uapi.mode_changed = true;

		ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
		if (ret)
			return ret;

		ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
		if (ret)
			return ret;

		transcoders &= ~BIT(crtc_state->cpu_transcoder);
	}

7140
	drm_WARN_ON(&dev_priv->drm, transcoders != 0);
7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181

	return 0;
}

static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
				      struct drm_connector *connector)
{
	const struct drm_connector_state *old_conn_state =
		drm_atomic_get_old_connector_state(&state->base, connector);
	const struct intel_crtc_state *old_crtc_state;
	struct intel_crtc *crtc;
	u8 transcoders;

	crtc = to_intel_crtc(old_conn_state->crtc);
	if (!crtc)
		return 0;

	old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);

	if (!old_crtc_state->hw.active)
		return 0;

	transcoders = old_crtc_state->sync_mode_slaves_mask;
	if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
		transcoders |= BIT(old_crtc_state->master_transcoder);

	return intel_modeset_affected_transcoders(state,
						  transcoders);
}

static int intel_dp_connector_atomic_check(struct drm_connector *conn,
					   struct drm_atomic_state *_state)
{
	struct drm_i915_private *dev_priv = to_i915(conn->dev);
	struct intel_atomic_state *state = to_intel_atomic_state(_state);
	int ret;

	ret = intel_digital_connector_atomic_check(conn, &state->base);
	if (ret)
		return ret;

7182 7183 7184 7185 7186
	/*
	 * We don't enable port sync on BDW due to missing w/as and
	 * due to not having adjusted the modeset sequence appropriately.
	 */
	if (INTEL_GEN(dev_priv) < 9)
7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200
		return 0;

	if (!intel_connector_needs_modeset(state, conn))
		return 0;

	if (conn->has_tile) {
		ret = intel_modeset_tile_group(state, conn->tile_group->id);
		if (ret)
			return ret;
	}

	return intel_modeset_synced_crtcs(state, conn);
}

7201
static const struct drm_connector_funcs intel_dp_connector_funcs = {
7202
	.force = intel_dp_force,
7203
	.fill_modes = drm_helper_probe_single_connector_modes,
7204 7205
	.atomic_get_property = intel_digital_connector_atomic_get_property,
	.atomic_set_property = intel_digital_connector_atomic_set_property,
7206
	.late_register = intel_dp_connector_register,
7207
	.early_unregister = intel_dp_connector_unregister,
7208
	.destroy = intel_connector_destroy,
7209
	.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
7210
	.atomic_duplicate_state = intel_digital_connector_duplicate_state,
7211 7212 7213
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
7214
	.detect_ctx = intel_dp_detect,
7215 7216
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
7217
	.atomic_check = intel_dp_connector_atomic_check,
7218 7219 7220
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
7221
	.reset = intel_dp_encoder_reset,
7222
	.destroy = intel_dp_encoder_destroy,
7223 7224
};

7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237
static bool intel_edp_have_power(struct intel_dp *intel_dp)
{
	intel_wakeref_t wakeref;
	bool have_power = false;

	with_pps_lock(intel_dp, wakeref) {
		have_power = edp_have_panel_power(intel_dp) &&
						  edp_have_panel_vdd(intel_dp);
	}

	return have_power;
}

7238
enum irqreturn
7239 7240
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
7241
	struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
7242
	struct intel_dp *intel_dp = &intel_dig_port->dp;
7243

7244 7245
	if (intel_dig_port->base.type == INTEL_OUTPUT_EDP &&
	    (long_hpd || !intel_edp_have_power(intel_dp))) {
7246
		/*
7247
		 * vdd off can generate a long/short pulse on eDP which
7248 7249
		 * would require vdd on to handle it, and thus we
		 * would end up in an endless cycle of
7250
		 * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
7251
		 */
7252 7253 7254 7255 7256
		drm_dbg_kms(&i915->drm,
			    "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
			    long_hpd ? "long" : "short",
			    intel_dig_port->base.base.base.id,
			    intel_dig_port->base.base.name);
7257
		return IRQ_HANDLED;
7258 7259
	}

7260 7261 7262 7263
	drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
		    intel_dig_port->base.base.base.id,
		    intel_dig_port->base.base.name,
		    long_hpd ? "long" : "short");
7264

7265
	if (long_hpd) {
7266
		intel_dp->reset_link_params = true;
7267 7268 7269 7270
		return IRQ_NONE;
	}

	if (intel_dp->is_mst) {
7271
		if (!intel_dp_check_mst_status(intel_dp))
7272
			return IRQ_NONE;
7273 7274
	} else if (!intel_dp_short_pulse(intel_dp)) {
		return IRQ_NONE;
7275
	}
7276

7277
	return IRQ_HANDLED;
7278 7279
}

7280
/* check the VBT to see whether the eDP is on another port */
7281
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
7282
{
7283 7284 7285 7286
	/*
	 * eDP not supported on g4x. so bail out early just
	 * for a bit extra safety in case the VBT is bonkers.
	 */
7287
	if (INTEL_GEN(dev_priv) < 5)
7288 7289
		return false;

7290
	if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7291 7292
		return true;

7293
	return intel_bios_is_port_edp(dev_priv, port);
7294 7295
}

7296
static void
7297 7298
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
7299
	struct drm_i915_private *dev_priv = to_i915(connector->dev);
7300 7301 7302 7303
	enum port port = dp_to_dig_port(intel_dp)->base.port;

	if (!IS_G4X(dev_priv) && port != PORT_A)
		intel_attach_force_audio_property(connector);
7304

7305
	intel_attach_broadcast_rgb_property(connector);
R
Rodrigo Vivi 已提交
7306
	if (HAS_GMCH(dev_priv))
7307 7308 7309
		drm_connector_attach_max_bpc_property(connector, 6, 10);
	else if (INTEL_GEN(dev_priv) >= 5)
		drm_connector_attach_max_bpc_property(connector, 6, 12);
7310

7311 7312
	intel_attach_colorspace_property(connector);

7313 7314 7315 7316 7317
	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
		drm_object_attach_property(&connector->base,
					   connector->dev->mode_config.hdr_output_metadata_property,
					   0);

7318
	if (intel_dp_is_edp(intel_dp)) {
7319 7320 7321
		u32 allowed_scalers;

		allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
R
Rodrigo Vivi 已提交
7322
		if (!HAS_GMCH(dev_priv))
7323 7324 7325 7326
			allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);

		drm_connector_attach_scaling_mode_property(connector, allowed_scalers);

7327
		connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7328

7329
	}
7330 7331
}

7332 7333
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
7334
	intel_dp->panel_power_off_time = ktime_get_boottime();
7335 7336 7337 7338
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

7339
static void
7340
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7341
{
7342
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7343
	u32 pp_on, pp_off, pp_ctl;
7344
	struct pps_registers regs;
7345

7346
	intel_pps_get_registers(intel_dp, &regs);
7347

7348
	pp_ctl = ilk_get_pp_control(intel_dp);
7349

7350 7351
	/* Ensure PPS is unlocked */
	if (!HAS_DDI(dev_priv))
7352
		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7353

7354 7355
	pp_on = intel_de_read(dev_priv, regs.pp_on);
	pp_off = intel_de_read(dev_priv, regs.pp_off);
7356 7357

	/* Pull timing values out of registers */
7358 7359 7360 7361
	seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
	seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
	seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
	seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7362

7363 7364 7365
	if (i915_mmio_reg_valid(regs.pp_div)) {
		u32 pp_div;

7366
		pp_div = intel_de_read(dev_priv, regs.pp_div);
7367

7368
		seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7369
	} else {
7370
		seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7371
	}
7372 7373
}

I
Imre Deak 已提交
7374 7375 7376 7377 7378 7379 7380 7381 7382
static void
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
{
	DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      state_name,
		      seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
}

static void
7383
intel_pps_verify_state(struct intel_dp *intel_dp)
I
Imre Deak 已提交
7384 7385 7386 7387
{
	struct edp_power_seq hw;
	struct edp_power_seq *sw = &intel_dp->pps_delays;

7388
	intel_pps_readout_hw_state(intel_dp, &hw);
I
Imre Deak 已提交
7389 7390 7391 7392 7393 7394 7395 7396 7397

	if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
	    hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
		DRM_ERROR("PPS state mismatch\n");
		intel_pps_dump_state("sw", sw);
		intel_pps_dump_state("hw", &hw);
	}
}

7398
static void
7399
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7400
{
7401
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7402 7403 7404 7405 7406 7407 7408 7409 7410
	struct edp_power_seq cur, vbt, spec,
		*final = &intel_dp->pps_delays;

	lockdep_assert_held(&dev_priv->pps_mutex);

	/* already initialized? */
	if (final->t11_t12 != 0)
		return;

7411
	intel_pps_readout_hw_state(intel_dp, &cur);
7412

I
Imre Deak 已提交
7413
	intel_pps_dump_state("cur", &cur);
7414

7415
	vbt = dev_priv->vbt.edp.pps;
7416 7417 7418 7419 7420 7421
	/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
	 * of 500ms appears to be too short. Ocassionally the panel
	 * just fails to power back on. Increasing the delay to 800ms
	 * seems sufficient to avoid this problem.
	 */
	if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7422
		vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7423 7424 7425
		drm_dbg_kms(&dev_priv->drm,
			    "Increasing T12 panel delay as per the quirk to %d\n",
			    vbt.t11_t12);
7426
	}
7427 7428 7429 7430 7431
	/* T11_T12 delay is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	vbt.t11_t12 += 100 * 10;
7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

I
Imre Deak 已提交
7445
	intel_pps_dump_state("vbt", &vbt);
7446 7447 7448

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
7449
#define assign_final(field)	final->field = (max(cur.field, vbt.field) == 0 ? \
7450 7451 7452 7453 7454 7455 7456 7457 7458
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

7459
#define get_delay(field)	(DIV_ROUND_UP(final->field, 10))
7460 7461 7462 7463 7464 7465 7466
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

7467 7468 7469 7470 7471
	drm_dbg_kms(&dev_priv->drm,
		    "panel power up delay %d, power down delay %d, power cycle delay %d\n",
		    intel_dp->panel_power_up_delay,
		    intel_dp->panel_power_down_delay,
		    intel_dp->panel_power_cycle_delay);
7472

7473 7474 7475
	drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
		    intel_dp->backlight_on_delay,
		    intel_dp->backlight_off_delay);
I
Imre Deak 已提交
7476 7477 7478 7479 7480 7481 7482 7483 7484 7485

	/*
	 * We override the HW backlight delays to 1 because we do manual waits
	 * on them. For T8, even BSpec recommends doing it. For T9, if we
	 * don't do this, we'll end up waiting for the backlight off delay
	 * twice: once when we do the manual sleep, and once when we disable
	 * the panel and wait for the PP_STATUS bit to become zero.
	 */
	final->t8 = 1;
	final->t9 = 1;
7486 7487 7488 7489 7490 7491

	/*
	 * HW has only a 100msec granularity for t11_t12 so round it up
	 * accordingly.
	 */
	final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7492 7493 7494
}

static void
7495
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7496
					      bool force_disable_vdd)
7497
{
7498
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7499
	u32 pp_on, pp_off, port_sel = 0;
7500
	int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7501
	struct pps_registers regs;
7502
	enum port port = dp_to_dig_port(intel_dp)->base.port;
7503
	const struct edp_power_seq *seq = &intel_dp->pps_delays;
7504

V
Ville Syrjälä 已提交
7505
	lockdep_assert_held(&dev_priv->pps_mutex);
7506

7507
	intel_pps_get_registers(intel_dp, &regs);
7508

7509 7510
	/*
	 * On some VLV machines the BIOS can leave the VDD
7511
	 * enabled even on power sequencers which aren't
7512 7513 7514 7515 7516 7517 7518
	 * hooked up to any port. This would mess up the
	 * power domain tracking the first time we pick
	 * one of these power sequencers for use since
	 * edp_panel_vdd_on() would notice that the VDD was
	 * already on and therefore wouldn't grab the power
	 * domain reference. Disable VDD first to avoid this.
	 * This also avoids spuriously turning the VDD on as
7519
	 * soon as the new power sequencer gets initialized.
7520 7521
	 */
	if (force_disable_vdd) {
7522
		u32 pp = ilk_get_pp_control(intel_dp);
7523

7524 7525
		drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
			 "Panel power already on\n");
7526 7527

		if (pp & EDP_FORCE_VDD)
7528 7529
			drm_dbg_kms(&dev_priv->drm,
				    "VDD already on, disabling first\n");
7530 7531 7532

		pp &= ~EDP_FORCE_VDD;

7533
		intel_de_write(dev_priv, regs.pp_ctrl, pp);
7534 7535
	}

7536 7537 7538 7539
	pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
		REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
	pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
		REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7540 7541 7542

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
7543
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7544
		port_sel = PANEL_PORT_SELECT_VLV(port);
7545
	} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7546 7547
		switch (port) {
		case PORT_A:
7548
			port_sel = PANEL_PORT_SELECT_DPA;
7549 7550 7551 7552 7553
			break;
		case PORT_C:
			port_sel = PANEL_PORT_SELECT_DPC;
			break;
		case PORT_D:
7554
			port_sel = PANEL_PORT_SELECT_DPD;
7555 7556 7557 7558 7559
			break;
		default:
			MISSING_CASE(port);
			break;
		}
7560 7561
	}

7562 7563
	pp_on |= port_sel;

7564 7565
	intel_de_write(dev_priv, regs.pp_on, pp_on);
	intel_de_write(dev_priv, regs.pp_off, pp_off);
7566 7567 7568 7569 7570

	/*
	 * Compute the divisor for the pp clock, simply match the Bspec formula.
	 */
	if (i915_mmio_reg_valid(regs.pp_div)) {
7571 7572
		intel_de_write(dev_priv, regs.pp_div,
			       REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7573 7574 7575
	} else {
		u32 pp_ctl;

7576
		pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7577
		pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7578
		pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7579
		intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7580
	}
7581

7582 7583
	drm_dbg_kms(&dev_priv->drm,
		    "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7584 7585
		    intel_de_read(dev_priv, regs.pp_on),
		    intel_de_read(dev_priv, regs.pp_off),
7586
		    i915_mmio_reg_valid(regs.pp_div) ?
7587 7588
		    intel_de_read(dev_priv, regs.pp_div) :
		    (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7589 7590
}

7591
static void intel_dp_pps_init(struct intel_dp *intel_dp)
7592
{
7593
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7594 7595

	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7596 7597
		vlv_initial_power_sequencer_setup(intel_dp);
	} else {
7598 7599
		intel_dp_init_panel_power_sequencer(intel_dp);
		intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7600 7601 7602
	}
}

7603 7604
/**
 * intel_dp_set_drrs_state - program registers for RR switch to take effect
7605
 * @dev_priv: i915 device
7606
 * @crtc_state: a pointer to the active intel_crtc_state
7607 7608 7609 7610 7611 7612 7613 7614 7615
 * @refresh_rate: RR to be programmed
 *
 * This function gets called when refresh rate (RR) has to be changed from
 * one frequency to another. Switches can be between high and low RR
 * supported by the panel or to any other RR based on media playback (in
 * this case, RR value needs to be passed from user space).
 *
 * The caller of this function needs to take a lock on dev_priv->drrs.
 */
7616
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7617
				    const struct intel_crtc_state *crtc_state,
7618
				    int refresh_rate)
7619
{
7620
	struct intel_dp *intel_dp = dev_priv->drrs.dp;
7621
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7622
	enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7623 7624

	if (refresh_rate <= 0) {
7625 7626
		drm_dbg_kms(&dev_priv->drm,
			    "Refresh rate should be positive non-zero.\n");
7627 7628 7629
		return;
	}

7630
	if (intel_dp == NULL) {
7631
		drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7632 7633 7634 7635
		return;
	}

	if (!intel_crtc) {
7636 7637
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS: intel_crtc not initialized\n");
7638 7639 7640
		return;
	}

7641
	if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7642
		drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7643 7644 7645
		return;
	}

7646 7647
	if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
			refresh_rate)
7648 7649
		index = DRRS_LOW_RR;

7650
	if (index == dev_priv->drrs.refresh_rate_type) {
7651 7652
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS requested for previously set RR...ignoring\n");
7653 7654 7655
		return;
	}

7656
	if (!crtc_state->hw.active) {
7657 7658
		drm_dbg_kms(&dev_priv->drm,
			    "eDP encoder disabled. CRTC not Active\n");
7659 7660 7661
		return;
	}

7662
	if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7663 7664
		switch (index) {
		case DRRS_HIGH_RR:
7665
			intel_dp_set_m_n(crtc_state, M1_N1);
7666 7667
			break;
		case DRRS_LOW_RR:
7668
			intel_dp_set_m_n(crtc_state, M2_N2);
7669 7670 7671
			break;
		case DRRS_MAX_RR:
		default:
7672 7673
			drm_err(&dev_priv->drm,
				"Unsupported refreshrate type\n");
7674
		}
7675 7676
	} else if (INTEL_GEN(dev_priv) > 6) {
		i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7677
		u32 val;
7678

7679
		val = intel_de_read(dev_priv, reg);
7680
		if (index > DRRS_HIGH_RR) {
7681
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7682 7683 7684
				val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val |= PIPECONF_EDP_RR_MODE_SWITCH;
7685
		} else {
7686
			if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7687 7688 7689
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
			else
				val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7690
		}
7691
		intel_de_write(dev_priv, reg, val);
7692 7693
	}

7694 7695
	dev_priv->drrs.refresh_rate_type = index;

7696 7697
	drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
		    refresh_rate);
7698 7699
}

7700 7701 7702
/**
 * intel_edp_drrs_enable - init drrs struct if supported
 * @intel_dp: DP struct
7703
 * @crtc_state: A pointer to the active crtc state.
7704 7705 7706
 *
 * Initializes frontbuffer_bits and drrs.dp
 */
7707
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7708
			   const struct intel_crtc_state *crtc_state)
V
Vandana Kannan 已提交
7709
{
7710
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
7711

7712
	if (!crtc_state->has_drrs) {
7713
		drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
V
Vandana Kannan 已提交
7714 7715 7716
		return;
	}

7717
	if (dev_priv->psr.enabled) {
7718 7719
		drm_dbg_kms(&dev_priv->drm,
			    "PSR enabled. Not enabling DRRS.\n");
7720 7721 7722
		return;
	}

V
Vandana Kannan 已提交
7723
	mutex_lock(&dev_priv->drrs.mutex);
7724
	if (dev_priv->drrs.dp) {
7725
		drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
V
Vandana Kannan 已提交
7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736
		goto unlock;
	}

	dev_priv->drrs.busy_frontbuffer_bits = 0;

	dev_priv->drrs.dp = intel_dp;

unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
}

7737 7738 7739
/**
 * intel_edp_drrs_disable - Disable DRRS
 * @intel_dp: DP struct
7740
 * @old_crtc_state: Pointer to old crtc_state.
7741 7742
 *
 */
7743
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7744
			    const struct intel_crtc_state *old_crtc_state)
V
Vandana Kannan 已提交
7745
{
7746
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
V
Vandana Kannan 已提交
7747

7748
	if (!old_crtc_state->has_drrs)
V
Vandana Kannan 已提交
7749 7750 7751 7752 7753 7754 7755 7756 7757
		return;

	mutex_lock(&dev_priv->drrs.mutex);
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

	if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7758 7759
		intel_dp_set_drrs_state(dev_priv, old_crtc_state,
			intel_dp->attached_connector->panel.fixed_mode->vrefresh);
V
Vandana Kannan 已提交
7760 7761 7762 7763 7764 7765 7766

	dev_priv->drrs.dp = NULL;
	mutex_unlock(&dev_priv->drrs.mutex);

	cancel_delayed_work_sync(&dev_priv->drrs.work);
}

7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779
static void intel_edp_drrs_downclock_work(struct work_struct *work)
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), drrs.work.work);
	struct intel_dp *intel_dp;

	mutex_lock(&dev_priv->drrs.mutex);

	intel_dp = dev_priv->drrs.dp;

	if (!intel_dp)
		goto unlock;

7780
	/*
7781 7782
	 * The delayed work can race with an invalidate hence we need to
	 * recheck.
7783 7784
	 */

7785 7786
	if (dev_priv->drrs.busy_frontbuffer_bits)
		goto unlock;
7787

7788 7789 7790 7791 7792 7793
	if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
		struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;

		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			intel_dp->attached_connector->panel.downclock_mode->vrefresh);
	}
7794

7795 7796
unlock:
	mutex_unlock(&dev_priv->drrs.mutex);
7797 7798
}

7799
/**
7800
 * intel_edp_drrs_invalidate - Disable Idleness DRRS
7801
 * @dev_priv: i915 device
7802 7803
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7804 7805
 * This function gets called everytime rendering on the given planes start.
 * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7806 7807 7808
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7809 7810
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
			       unsigned int frontbuffer_bits)
7811 7812 7813 7814
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7815
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7816 7817
		return;

7818
	cancel_delayed_work(&dev_priv->drrs.work);
7819

7820
	mutex_lock(&dev_priv->drrs.mutex);
7821 7822 7823 7824 7825
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7826 7827 7828
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;

7829 7830 7831
	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
	dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;

7832
	/* invalidate means busy screen hence upclock */
7833
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7834 7835
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
			dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7836 7837 7838 7839

	mutex_unlock(&dev_priv->drrs.mutex);
}

7840
/**
7841
 * intel_edp_drrs_flush - Restart Idleness DRRS
7842
 * @dev_priv: i915 device
7843 7844
 * @frontbuffer_bits: frontbuffer plane tracking bits
 *
7845 7846 7847 7848
 * This function gets called every time rendering on the given planes has
 * completed or flip on a crtc is completed. So DRRS should be upclocked
 * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
 * if no other planes are dirty.
7849 7850 7851
 *
 * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
 */
7852 7853
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
			  unsigned int frontbuffer_bits)
7854 7855 7856 7857
{
	struct drm_crtc *crtc;
	enum pipe pipe;

7858
	if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7859 7860
		return;

7861
	cancel_delayed_work(&dev_priv->drrs.work);
7862

7863
	mutex_lock(&dev_priv->drrs.mutex);
7864 7865 7866 7867 7868
	if (!dev_priv->drrs.dp) {
		mutex_unlock(&dev_priv->drrs.mutex);
		return;
	}

7869 7870
	crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
	pipe = to_intel_crtc(crtc)->pipe;
7871 7872

	frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7873 7874
	dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;

7875
	/* flush means busy screen hence upclock */
7876
	if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7877 7878
		intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
				dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7879 7880 7881 7882 7883 7884

	/*
	 * flush also means no more activity hence schedule downclock, if all
	 * other fbs are quiescent too
	 */
	if (!dev_priv->drrs.busy_frontbuffer_bits)
7885 7886 7887 7888 7889
		schedule_delayed_work(&dev_priv->drrs.work,
				msecs_to_jiffies(1000));
	mutex_unlock(&dev_priv->drrs.mutex);
}

7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912
/**
 * DOC: Display Refresh Rate Switching (DRRS)
 *
 * Display Refresh Rate Switching (DRRS) is a power conservation feature
 * which enables swtching between low and high refresh rates,
 * dynamically, based on the usage scenario. This feature is applicable
 * for internal panels.
 *
 * Indication that the panel supports DRRS is given by the panel EDID, which
 * would list multiple refresh rates for one resolution.
 *
 * DRRS is of 2 types - static and seamless.
 * Static DRRS involves changing refresh rate (RR) by doing a full modeset
 * (may appear as a blink on screen) and is used in dock-undock scenario.
 * Seamless DRRS involves changing RR without any visual effect to the user
 * and can be used during normal system usage. This is done by programming
 * certain registers.
 *
 * Support for static/seamless DRRS may be indicated in the VBT based on
 * inputs from the panel spec.
 *
 * DRRS saves power by switching to low RR based on usage scenarios.
 *
D
Daniel Vetter 已提交
7913 7914 7915 7916 7917 7918 7919 7920
 * The implementation is based on frontbuffer tracking implementation.  When
 * there is a disturbance on the screen triggered by user activity or a periodic
 * system activity, DRRS is disabled (RR is changed to high RR).  When there is
 * no movement on screen, after a timeout of 1 second, a switch to low RR is
 * made.
 *
 * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
 * and intel_edp_drrs_flush() are called.
7921 7922 7923 7924 7925 7926 7927 7928
 *
 * DRRS can be further extended to support other internal panels and also
 * the scenario of video playback wherein RR is set based on the rate
 * requested by userspace.
 */

/**
 * intel_dp_drrs_init - Init basic DRRS work and mutex.
7929
 * @connector: eDP connector
7930 7931 7932 7933 7934 7935 7936 7937 7938 7939
 * @fixed_mode: preferred mode of panel
 *
 * This function is  called only once at driver load to initialize basic
 * DRRS stuff.
 *
 * Returns:
 * Downclock mode if panel supports it, else return NULL.
 * DRRS support is determined by the presence of downclock mode (apart
 * from VBT setting).
 */
7940
static struct drm_display_mode *
7941 7942
intel_dp_drrs_init(struct intel_connector *connector,
		   struct drm_display_mode *fixed_mode)
7943
{
7944
	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7945 7946
	struct drm_display_mode *downclock_mode = NULL;

7947 7948 7949
	INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
	mutex_init(&dev_priv->drrs.mutex);

7950
	if (INTEL_GEN(dev_priv) <= 6) {
7951 7952
		drm_dbg_kms(&dev_priv->drm,
			    "DRRS supported for Gen7 and above\n");
7953 7954 7955 7956
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7957
		drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7958 7959 7960
		return NULL;
	}

7961
	downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7962
	if (!downclock_mode) {
7963 7964
		drm_dbg_kms(&dev_priv->drm,
			    "Downclock mode is not found. DRRS not supported\n");
7965 7966 7967
		return NULL;
	}

7968
	dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7969

7970
	dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7971 7972
	drm_dbg_kms(&dev_priv->drm,
		    "seamless DRRS supported for eDP panel.\n");
7973 7974 7975
	return downclock_mode;
}

7976
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7977
				     struct intel_connector *intel_connector)
7978
{
7979 7980
	struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
	struct drm_device *dev = &dev_priv->drm;
7981
	struct drm_connector *connector = &intel_connector->base;
7982
	struct drm_display_mode *fixed_mode = NULL;
7983
	struct drm_display_mode *downclock_mode = NULL;
7984
	bool has_dpcd;
7985
	enum pipe pipe = INVALID_PIPE;
7986 7987
	intel_wakeref_t wakeref;
	struct edid *edid;
7988

7989
	if (!intel_dp_is_edp(intel_dp))
7990 7991
		return true;

7992 7993
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);

7994 7995 7996 7997 7998 7999
	/*
	 * On IBX/CPT we may get here with LVDS already registered. Since the
	 * driver uses the only internal power sequencer available for both
	 * eDP and LVDS bail out early in this case to prevent interfering
	 * with an already powered-on LVDS power sequencer.
	 */
8000
	if (intel_get_lvds_encoder(dev_priv)) {
8001 8002
		drm_WARN_ON(dev,
			    !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
8003 8004
		drm_info(&dev_priv->drm,
			 "LVDS was detected, not registering eDP\n");
8005 8006 8007 8008

		return false;
	}

8009 8010 8011 8012 8013
	with_pps_lock(intel_dp, wakeref) {
		intel_dp_init_panel_power_timestamps(intel_dp);
		intel_dp_pps_init(intel_dp);
		intel_edp_panel_vdd_sanitize(intel_dp);
	}
8014

8015
	/* Cache DPCD and EDID for edp. */
8016
	has_dpcd = intel_edp_init_dpcd(intel_dp);
8017

8018
	if (!has_dpcd) {
8019
		/* if this fails, presume the device is a ghost */
8020 8021
		drm_info(&dev_priv->drm,
			 "failed to retrieve link info, disabling eDP\n");
8022
		goto out_vdd_off;
8023 8024
	}

8025
	mutex_lock(&dev->mode_config.mutex);
8026
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
8027 8028
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
L
Lyude Paul 已提交
8029 8030
			drm_connector_update_edid_property(connector, edid);
			intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
8031 8032 8033 8034 8035 8036 8037 8038 8039
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

8040 8041 8042
	fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
	if (fixed_mode)
		downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
8043 8044

	/* fallback to VBT if available for eDP */
8045 8046
	if (!fixed_mode)
		fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
8047
	mutex_unlock(&dev->mode_config.mutex);
8048

8049
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8050 8051
		intel_dp->edp_notifier.notifier_call = edp_notify_handler;
		register_reboot_notifier(&intel_dp->edp_notifier);
8052 8053 8054 8055 8056 8057

		/*
		 * Figure out the current pipe for the initial backlight setup.
		 * If the current pipe isn't valid, try the PPS pipe, and if that
		 * fails just assume pipe A.
		 */
8058
		pipe = vlv_active_pipe(intel_dp);
8059 8060 8061 8062 8063 8064 8065

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = intel_dp->pps_pipe;

		if (pipe != PIPE_A && pipe != PIPE_B)
			pipe = PIPE_A;

8066 8067 8068
		drm_dbg_kms(&dev_priv->drm,
			    "using pipe %c for initial backlight setup\n",
			    pipe_name(pipe));
8069 8070
	}

8071
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
8072
	intel_connector->panel.backlight.power = intel_edp_backlight_power;
8073
	intel_panel_setup_backlight(connector, pipe);
8074

8075 8076
	if (fixed_mode) {
		drm_connector_set_panel_orientation_with_quirk(connector,
8077
				dev_priv->vbt.orientation,
8078 8079
				fixed_mode->hdisplay, fixed_mode->vdisplay);
	}
8080

8081
	return true;
8082 8083 8084 8085 8086 8087 8088

out_vdd_off:
	cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
	/*
	 * vdd might still be enabled do to the delayed vdd off.
	 * Make sure vdd is actually turned off here.
	 */
8089 8090
	with_pps_lock(intel_dp, wakeref)
		edp_panel_vdd_off_sync(intel_dp);
8091 8092

	return false;
8093 8094
}

8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
{
	struct intel_connector *intel_connector;
	struct drm_connector *connector;

	intel_connector = container_of(work, typeof(*intel_connector),
				       modeset_retry_work);
	connector = &intel_connector->base;
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
		      connector->name);

	/* Grab the locks before changing connector property*/
	mutex_lock(&connector->dev->mode_config.mutex);
	/* Set connector link status to BAD and send a Uevent to notify
	 * userspace to do a modeset.
	 */
8111 8112
	drm_connector_set_link_status_property(connector,
					       DRM_MODE_LINK_STATUS_BAD);
8113 8114 8115 8116 8117
	mutex_unlock(&connector->dev->mode_config.mutex);
	/* Send Hotplug uevent so userspace can reprobe */
	drm_kms_helper_hotplug_event(connector->dev);
}

8118
bool
8119 8120
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
8121
{
8122 8123 8124 8125
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
8126
	struct drm_i915_private *dev_priv = to_i915(dev);
8127
	enum port port = intel_encoder->port;
8128
	enum phy phy = intel_port_to_phy(dev_priv, port);
8129
	int type;
8130

8131 8132 8133 8134
	/* Initialize the work for modeset in case of link train failure */
	INIT_WORK(&intel_connector->modeset_retry_work,
		  intel_dp_modeset_retry_work_fn);

8135 8136 8137 8138
	if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
		     "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
		     intel_dig_port->max_lanes, intel_encoder->base.base.id,
		     intel_encoder->base.name))
8139 8140
		return false;

8141 8142
	intel_dp_set_source_rates(intel_dp);

8143
	intel_dp->reset_link_params = true;
8144
	intel_dp->pps_pipe = INVALID_PIPE;
8145
	intel_dp->active_pipe = INVALID_PIPE;
8146

8147
	/* Preserve the current hw state. */
8148
	intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
8149
	intel_dp->attached_connector = intel_connector;
8150

8151 8152 8153 8154 8155
	if (intel_dp_is_port_edp(dev_priv, port)) {
		/*
		 * Currently we don't support eDP on TypeC ports, although in
		 * theory it could work on TypeC legacy ports.
		 */
8156
		drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
8157
		type = DRM_MODE_CONNECTOR_eDP;
8158
	} else {
8159
		type = DRM_MODE_CONNECTOR_DisplayPort;
8160
	}
8161

8162 8163 8164
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
		intel_dp->active_pipe = vlv_active_pipe(intel_dp);

8165 8166 8167 8168 8169 8170 8171 8172
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

8173
	/* eDP only on port B and/or C on vlv/chv */
8174 8175 8176 8177
	if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
			      IS_CHERRYVIEW(dev_priv)) &&
			intel_dp_is_edp(intel_dp) &&
			port != PORT_B && port != PORT_C))
8178 8179
		return false;

8180 8181 8182 8183
	drm_dbg_kms(&dev_priv->drm,
		    "Adding %s connector on [ENCODER:%d:%s]\n",
		    type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
		    intel_encoder->base.base.id, intel_encoder->base.name);
8184

8185
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
8186 8187
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

R
Rodrigo Vivi 已提交
8188
	if (!HAS_GMCH(dev_priv))
8189
		connector->interlace_allowed = true;
8190 8191
	connector->doublescan_allowed = 0;

8192 8193 8194
	if (INTEL_GEN(dev_priv) >= 11)
		connector->ycbcr_420_allowed = true;

8195
	intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
8196
	intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
8197

8198
	intel_dp_aux_init(intel_dp);
8199

8200
	intel_connector_attach_encoder(intel_connector, intel_encoder);
8201

8202
	if (HAS_DDI(dev_priv))
8203 8204 8205 8206
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;

8207
	/* init MST on ports that can support it */
8208 8209
	intel_dp_mst_encoder_init(intel_dig_port,
				  intel_connector->base.base.id);
8210

8211
	if (!intel_edp_init_connector(intel_dp, intel_connector)) {
8212 8213 8214
		intel_dp_aux_fini(intel_dp);
		intel_dp_mst_encoder_cleanup(intel_dig_port);
		goto fail;
8215
	}
8216

8217
	intel_dp_add_properties(intel_dp, connector);
8218

8219
	if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
8220 8221
		int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
		if (ret)
8222 8223
			drm_dbg_kms(&dev_priv->drm,
				    "HDCP init failed, skipping.\n");
8224
	}
8225

8226 8227 8228 8229
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
8230
	if (IS_G45(dev_priv)) {
8231 8232 8233
		u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
		intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
			       (temp & ~0xf) | 0xd);
8234
	}
8235 8236

	return true;
8237 8238 8239 8240 8241

fail:
	drm_connector_cleanup(connector);

	return false;
8242
}
8243

8244
bool intel_dp_init(struct drm_i915_private *dev_priv,
8245 8246
		   i915_reg_t output_reg,
		   enum port port)
8247 8248 8249 8250 8251 8252
{
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

8253
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
8254
	if (!intel_dig_port)
8255
		return false;
8256

8257
	intel_connector = intel_connector_alloc();
S
Sudip Mukherjee 已提交
8258 8259
	if (!intel_connector)
		goto err_connector_alloc;
8260 8261 8262 8263

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

8264 8265 8266
	if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
			     &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
			     "DP %c", port_name(port)))
S
Sudip Mukherjee 已提交
8267
		goto err_encoder_init;
8268

8269
	intel_encoder->hotplug = intel_dp_hotplug;
8270
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
8271
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
8272
	intel_encoder->get_config = intel_dp_get_config;
8273
	intel_encoder->update_pipe = intel_panel_update_backlight;
8274
	intel_encoder->suspend = intel_dp_encoder_suspend;
8275
	if (IS_CHERRYVIEW(dev_priv)) {
8276
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
8277 8278
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
8279
		intel_encoder->disable = vlv_disable_dp;
8280
		intel_encoder->post_disable = chv_post_disable_dp;
8281
		intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
8282
	} else if (IS_VALLEYVIEW(dev_priv)) {
8283
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
8284 8285
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
8286
		intel_encoder->disable = vlv_disable_dp;
8287
		intel_encoder->post_disable = vlv_post_disable_dp;
8288
	} else {
8289 8290
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
8291
		intel_encoder->disable = g4x_disable_dp;
8292
		intel_encoder->post_disable = g4x_post_disable_dp;
8293
	}
8294

8295 8296 8297 8298 8299 8300
	if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
	    (HAS_PCH_CPT(dev_priv) && port != PORT_A))
		intel_dig_port->dp.set_link_train = cpt_set_link_train;
	else
		intel_dig_port->dp.set_link_train = g4x_set_link_train;

8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311
	if (IS_CHERRYVIEW(dev_priv))
		intel_dig_port->dp.set_signal_levels = chv_set_signal_levels;
	else if (IS_VALLEYVIEW(dev_priv))
		intel_dig_port->dp.set_signal_levels = vlv_set_signal_levels;
	else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
		intel_dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
	else if (IS_GEN(dev_priv, 6) && port == PORT_A)
		intel_dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
	else
		intel_dig_port->dp.set_signal_levels = g4x_set_signal_levels;

8312 8313 8314 8315 8316 8317 8318 8319 8320
	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv) ||
	    (HAS_PCH_SPLIT(dev_priv) && port != PORT_A)) {
		intel_dig_port->dp.preemph_max = intel_dp_pre_empemph_max_3;
		intel_dig_port->dp.voltage_max = intel_dp_voltage_max_3;
	} else {
		intel_dig_port->dp.preemph_max = intel_dp_pre_empemph_max_2;
		intel_dig_port->dp.voltage_max = intel_dp_voltage_max_2;
	}

8321
	intel_dig_port->dp.output_reg = output_reg;
8322
	intel_dig_port->max_lanes = 4;
8323 8324
	intel_dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
	intel_dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
8325

8326
	intel_encoder->type = INTEL_OUTPUT_DP;
8327
	intel_encoder->power_domain = intel_port_to_power_domain(port);
8328
	if (IS_CHERRYVIEW(dev_priv)) {
8329
		if (port == PORT_D)
V
Ville Syrjälä 已提交
8330
			intel_encoder->pipe_mask = BIT(PIPE_C);
8331
		else
V
Ville Syrjälä 已提交
8332
			intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8333
	} else {
8334
		intel_encoder->pipe_mask = ~0;
8335
	}
8336
	intel_encoder->cloneable = 0;
8337
	intel_encoder->port = port;
8338

8339 8340
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;

8341 8342 8343 8344 8345 8346
	if (HAS_GMCH(dev_priv)) {
		if (IS_GM45(dev_priv))
			intel_dig_port->connected = gm45_digital_port_connected;
		else
			intel_dig_port->connected = g4x_digital_port_connected;
	} else {
8347 8348
		if (port == PORT_A)
			intel_dig_port->connected = ilk_digital_port_connected;
8349 8350 8351 8352
		else
			intel_dig_port->connected = ibx_digital_port_connected;
	}

8353 8354 8355
	if (port != PORT_A)
		intel_infoframe_init(intel_dig_port);

8356
	intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
S
Sudip Mukherjee 已提交
8357 8358 8359
	if (!intel_dp_init_connector(intel_dig_port, intel_connector))
		goto err_init_connector;

8360
	return true;
S
Sudip Mukherjee 已提交
8361 8362 8363

err_init_connector:
	drm_encoder_cleanup(encoder);
S
Sudip Mukherjee 已提交
8364
err_encoder_init:
S
Sudip Mukherjee 已提交
8365 8366 8367
	kfree(intel_connector);
err_connector_alloc:
	kfree(intel_dig_port);
8368
	return false;
8369
}
8370

8371
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8372
{
8373 8374 8375 8376
	struct intel_encoder *encoder;

	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
8377

8378 8379
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;
8380

8381
		intel_dp = enc_to_intel_dp(encoder);
8382

8383
		if (!intel_dp->can_mst)
8384 8385
			continue;

8386 8387
		if (intel_dp->is_mst)
			drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8388 8389 8390
	}
}

8391
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8392
{
8393
	struct intel_encoder *encoder;
8394

8395 8396
	for_each_intel_encoder(&dev_priv->drm, encoder) {
		struct intel_dp *intel_dp;
8397
		int ret;
8398

8399 8400 8401
		if (encoder->type != INTEL_OUTPUT_DDI)
			continue;

8402
		intel_dp = enc_to_intel_dp(encoder);
8403 8404

		if (!intel_dp->can_mst)
8405
			continue;
8406

8407 8408
		ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
						     true);
8409 8410 8411 8412 8413
		if (ret) {
			intel_dp->is_mst = false;
			drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
							false);
		}
8414 8415
	}
}