page_alloc.c 215.0 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 *  linux/mm/page_alloc.c
 *
 *  Manages the free list, the system allocates free pages here.
 *  Note that kmalloc() lives in slab.c
 *
 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 *  Swap reorganised 29.12.95, Stephen Tweedie
 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
 */

#include <linux/stddef.h>
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/interrupt.h>
#include <linux/pagemap.h>
22
#include <linux/jiffies.h>
L
Linus Torvalds 已提交
23
#include <linux/bootmem.h>
24
#include <linux/memblock.h>
L
Linus Torvalds 已提交
25
#include <linux/compiler.h>
26
#include <linux/kernel.h>
27
#include <linux/kasan.h>
L
Linus Torvalds 已提交
28 29 30 31 32
#include <linux/module.h>
#include <linux/suspend.h>
#include <linux/pagevec.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
33
#include <linux/ratelimit.h>
34
#include <linux/oom.h>
L
Linus Torvalds 已提交
35 36 37 38 39
#include <linux/notifier.h>
#include <linux/topology.h>
#include <linux/sysctl.h>
#include <linux/cpu.h>
#include <linux/cpuset.h>
40
#include <linux/memory_hotplug.h>
L
Linus Torvalds 已提交
41 42
#include <linux/nodemask.h>
#include <linux/vmalloc.h>
43
#include <linux/vmstat.h>
44
#include <linux/mempolicy.h>
45
#include <linux/memremap.h>
46
#include <linux/stop_machine.h>
47 48
#include <linux/sort.h>
#include <linux/pfn.h>
49
#include <xen/xen.h>
50
#include <linux/backing-dev.h>
51
#include <linux/fault-inject.h>
K
KAMEZAWA Hiroyuki 已提交
52
#include <linux/page-isolation.h>
53
#include <linux/page_ext.h>
54
#include <linux/debugobjects.h>
55
#include <linux/kmemleak.h>
56
#include <linux/compaction.h>
57
#include <trace/events/kmem.h>
58
#include <trace/events/oom.h>
59
#include <linux/prefetch.h>
60
#include <linux/mm_inline.h>
61
#include <linux/migrate.h>
62
#include <linux/hugetlb.h>
63
#include <linux/sched/rt.h>
64
#include <linux/sched/mm.h>
65
#include <linux/page_owner.h>
66
#include <linux/kthread.h>
67
#include <linux/memcontrol.h>
68
#include <linux/ftrace.h>
69
#include <linux/lockdep.h>
70
#include <linux/nmi.h>
L
Linus Torvalds 已提交
71

72
#include <asm/sections.h>
L
Linus Torvalds 已提交
73
#include <asm/tlbflush.h>
74
#include <asm/div64.h>
L
Linus Torvalds 已提交
75 76
#include "internal.h"

77 78
/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
static DEFINE_MUTEX(pcp_batch_high_lock);
79
#define MIN_PERCPU_PAGELIST_FRACTION	(8)
80

81 82 83 84 85
#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
DEFINE_PER_CPU(int, numa_node);
EXPORT_PER_CPU_SYMBOL(numa_node);
#endif

86 87
DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);

88 89 90 91 92 93 94 95 96
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
 * defined in <linux/topology.h>.
 */
DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
EXPORT_PER_CPU_SYMBOL(_numa_mem_);
97
int _node_numa_mem_[MAX_NUMNODES];
98 99
#endif

100 101 102 103
/* work_structs for global per-cpu drains */
DEFINE_MUTEX(pcpu_drain_mutex);
DEFINE_PER_CPU(struct work_struct, pcpu_drain);

104
#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
105
volatile unsigned long latent_entropy __latent_entropy;
106 107 108
EXPORT_SYMBOL(latent_entropy);
#endif

L
Linus Torvalds 已提交
109
/*
110
 * Array of node states.
L
Linus Torvalds 已提交
111
 */
112 113 114 115 116 117 118
nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
	[N_POSSIBLE] = NODE_MASK_ALL,
	[N_ONLINE] = { { [0] = 1UL } },
#ifndef CONFIG_NUMA
	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
#ifdef CONFIG_HIGHMEM
	[N_HIGH_MEMORY] = { { [0] = 1UL } },
119 120
#endif
	[N_MEMORY] = { { [0] = 1UL } },
121 122 123 124 125
	[N_CPU] = { { [0] = 1UL } },
#endif	/* NUMA */
};
EXPORT_SYMBOL(node_states);

126 127 128
/* Protect totalram_pages and zone->managed_pages */
static DEFINE_SPINLOCK(managed_page_count_lock);

129
unsigned long totalram_pages __read_mostly;
130
unsigned long totalreserve_pages __read_mostly;
131
unsigned long totalcma_pages __read_mostly;
132

133
int percpu_pagelist_fraction;
134
gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
L
Linus Torvalds 已提交
135

136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
/*
 * A cached value of the page's pageblock's migratetype, used when the page is
 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 * Also the migratetype set in the page does not necessarily match the pcplist
 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 * other index - this ensures that it will be put on the correct CMA freelist.
 */
static inline int get_pcppage_migratetype(struct page *page)
{
	return page->index;
}

static inline void set_pcppage_migratetype(struct page *page, int migratetype)
{
	page->index = migratetype;
}

154 155 156 157 158 159 160 161 162
#ifdef CONFIG_PM_SLEEP
/*
 * The following functions are used by the suspend/hibernate code to temporarily
 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 * they should always be called with pm_mutex held (gfp_allowed_mask also should
 * only be modified with pm_mutex held, unless the suspend/hibernate code is
 * guaranteed not to run in parallel with that modification).
 */
163 164 165 166

static gfp_t saved_gfp_mask;

void pm_restore_gfp_mask(void)
167 168
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
169 170 171 172
	if (saved_gfp_mask) {
		gfp_allowed_mask = saved_gfp_mask;
		saved_gfp_mask = 0;
	}
173 174
}

175
void pm_restrict_gfp_mask(void)
176 177
{
	WARN_ON(!mutex_is_locked(&pm_mutex));
178 179
	WARN_ON(saved_gfp_mask);
	saved_gfp_mask = gfp_allowed_mask;
180
	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
181
}
182 183 184

bool pm_suspended_storage(void)
{
185
	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
186 187 188
		return false;
	return true;
}
189 190
#endif /* CONFIG_PM_SLEEP */

191
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
192
unsigned int pageblock_order __read_mostly;
193 194
#endif

195
static void __free_pages_ok(struct page *page, unsigned int order);
196

L
Linus Torvalds 已提交
197 198 199 200 201 202
/*
 * results with 256, 32 in the lowmem_reserve sysctl:
 *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 *	1G machine -> (16M dma, 784M normal, 224M high)
 *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
Y
Yaowei Bai 已提交
203
 *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
A
Andi Kleen 已提交
204 205 206
 *
 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 * don't need any ZONE_NORMAL reservation
L
Linus Torvalds 已提交
207
 */
208
int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
209
#ifdef CONFIG_ZONE_DMA
210
	 256,
211
#endif
212
#ifdef CONFIG_ZONE_DMA32
213
	 256,
214
#endif
215
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
216
	 32,
217
#endif
M
Mel Gorman 已提交
218
	 32,
219
};
L
Linus Torvalds 已提交
220 221 222

EXPORT_SYMBOL(totalram_pages);

223
static char * const zone_names[MAX_NR_ZONES] = {
224
#ifdef CONFIG_ZONE_DMA
225
	 "DMA",
226
#endif
227
#ifdef CONFIG_ZONE_DMA32
228
	 "DMA32",
229
#endif
230
	 "Normal",
231
#ifdef CONFIG_HIGHMEM
M
Mel Gorman 已提交
232
	 "HighMem",
233
#endif
M
Mel Gorman 已提交
234
	 "Movable",
235 236 237
#ifdef CONFIG_ZONE_DEVICE
	 "Device",
#endif
238 239
};

240 241 242 243 244 245 246 247 248 249 250 251 252
char * const migratetype_names[MIGRATE_TYPES] = {
	"Unmovable",
	"Movable",
	"Reclaimable",
	"HighAtomic",
#ifdef CONFIG_CMA
	"CMA",
#endif
#ifdef CONFIG_MEMORY_ISOLATION
	"Isolate",
#endif
};

253 254 255 256 257 258
compound_page_dtor * const compound_page_dtors[] = {
	NULL,
	free_compound_page,
#ifdef CONFIG_HUGETLB_PAGE
	free_huge_page,
#endif
259 260 261
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	free_transhuge_page,
#endif
262 263
};

L
Linus Torvalds 已提交
264
int min_free_kbytes = 1024;
265
int user_min_free_kbytes = -1;
266
int watermark_scale_factor = 10;
L
Linus Torvalds 已提交
267

268 269
static unsigned long __meminitdata nr_kernel_pages;
static unsigned long __meminitdata nr_all_pages;
270
static unsigned long __meminitdata dma_reserve;
L
Linus Torvalds 已提交
271

T
Tejun Heo 已提交
272 273 274 275 276 277
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
static unsigned long __initdata required_kernelcore;
static unsigned long __initdata required_movablecore;
static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
278
static bool mirrored_kernelcore;
T
Tejun Heo 已提交
279 280 281 282 283

/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
int movable_zone;
EXPORT_SYMBOL(movable_zone);
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
284

M
Miklos Szeredi 已提交
285 286
#if MAX_NUMNODES > 1
int nr_node_ids __read_mostly = MAX_NUMNODES;
287
int nr_online_nodes __read_mostly = 1;
M
Miklos Szeredi 已提交
288
EXPORT_SYMBOL(nr_node_ids);
289
EXPORT_SYMBOL(nr_online_nodes);
M
Miklos Szeredi 已提交
290 291
#endif

292 293
int page_group_by_mobility_disabled __read_mostly;

294
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 296

/*
297
 * Determine how many pages need to be initialized during early boot
298 299 300 301
 * (non-deferred initialization).
 * The value of first_deferred_pfn will be set later, once non-deferred pages
 * are initialized, but for now set it ULONG_MAX.
 */
302 303
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
304 305 306
	phys_addr_t start_addr, end_addr;
	unsigned long max_pgcnt;
	unsigned long reserved;
307 308 309 310 311

	/*
	 * Initialise at least 2G of a node but also take into account that
	 * two large system hashes that can take up 1GB for 0.25TB/node.
	 */
312 313
	max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
			(pgdat->node_spanned_pages >> 8));
314 315 316 317 318 319

	/*
	 * Compensate the all the memblock reservations (e.g. crash kernel)
	 * from the initial estimation to make sure we will initialize enough
	 * memory to boot.
	 */
320 321 322 323
	start_addr = PFN_PHYS(pgdat->node_start_pfn);
	end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
	reserved = memblock_reserved_memory_within(start_addr, end_addr);
	max_pgcnt += PHYS_PFN(reserved);
324

325
	pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
326 327 328 329
	pgdat->first_deferred_pfn = ULONG_MAX;
}

/* Returns true if the struct page for the pfn is uninitialised */
330
static inline bool __meminit early_page_uninitialised(unsigned long pfn)
331
{
332 333 334
	int nid = early_pfn_to_nid(pfn);

	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
335 336 337 338 339 340 341 342 343 344 345 346 347
		return true;

	return false;
}

/*
 * Returns false when the remaining initialisation should be deferred until
 * later in the boot cycle when it can be parallelised.
 */
static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
348
	/* Always populate low zones for address-constrained allocations */
349 350
	if (zone_end < pgdat_end_pfn(pgdat))
		return true;
351 352 353
	/* Xen PV domains need page structures early */
	if (xen_pv_domain())
		return true;
354
	(*nr_initialised)++;
355
	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
		pgdat->first_deferred_pfn = pfn;
		return false;
	}

	return true;
}
#else
static inline void reset_deferred_meminit(pg_data_t *pgdat)
{
}

static inline bool early_page_uninitialised(unsigned long pfn)
{
	return false;
}

static inline bool update_defer_init(pg_data_t *pgdat,
				unsigned long pfn, unsigned long zone_end,
				unsigned long *nr_initialised)
{
	return true;
}
#endif

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
/* Return a pointer to the bitmap storing bits affecting a block of pages */
static inline unsigned long *get_pageblock_bitmap(struct page *page,
							unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	return __pfn_to_section(pfn)->pageblock_flags;
#else
	return page_zone(page)->pageblock_flags;
#endif /* CONFIG_SPARSEMEM */
}

static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
{
#ifdef CONFIG_SPARSEMEM
	pfn &= (PAGES_PER_SECTION-1);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#else
	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
#endif /* CONFIG_SPARSEMEM */
}

/**
 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest to retrieve
 * @mask: mask of bits that the caller is interested in
 *
 * Return: pageblock_bits flags
 */
static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long word;

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	word = bitmap[word_bitidx];
	bitidx += end_bitidx;
	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
}

unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
}

static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
{
	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
}

/**
 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 * @page: The page within the block of interest
 * @flags: The flags to set
 * @pfn: The target page frame number
 * @end_bitidx: The last bit of interest
 * @mask: mask of bits that the caller is interested in
 */
void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
					unsigned long pfn,
					unsigned long end_bitidx,
					unsigned long mask)
{
	unsigned long *bitmap;
	unsigned long bitidx, word_bitidx;
	unsigned long old_word, word;

	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);

	bitmap = get_pageblock_bitmap(page, pfn);
	bitidx = pfn_to_bitidx(page, pfn);
	word_bitidx = bitidx / BITS_PER_LONG;
	bitidx &= (BITS_PER_LONG-1);

	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);

	bitidx += end_bitidx;
	mask <<= (BITS_PER_LONG - bitidx - 1);
	flags <<= (BITS_PER_LONG - bitidx - 1);

	word = READ_ONCE(bitmap[word_bitidx]);
	for (;;) {
		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
		if (word == old_word)
			break;
		word = old_word;
	}
}
481

482
void set_pageblock_migratetype(struct page *page, int migratetype)
483
{
484 485
	if (unlikely(page_group_by_mobility_disabled &&
		     migratetype < MIGRATE_PCPTYPES))
486 487
		migratetype = MIGRATE_UNMOVABLE;

488 489 490 491
	set_pageblock_flags_group(page, (unsigned long)migratetype,
					PB_migrate, PB_migrate_end);
}

N
Nick Piggin 已提交
492
#ifdef CONFIG_DEBUG_VM
493
static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
L
Linus Torvalds 已提交
494
{
495 496 497
	int ret = 0;
	unsigned seq;
	unsigned long pfn = page_to_pfn(page);
498
	unsigned long sp, start_pfn;
499

500 501
	do {
		seq = zone_span_seqbegin(zone);
502 503
		start_pfn = zone->zone_start_pfn;
		sp = zone->spanned_pages;
504
		if (!zone_spans_pfn(zone, pfn))
505 506 507
			ret = 1;
	} while (zone_span_seqretry(zone, seq));

508
	if (ret)
509 510 511
		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
			pfn, zone_to_nid(zone), zone->name,
			start_pfn, start_pfn + sp);
512

513
	return ret;
514 515 516 517
}

static int page_is_consistent(struct zone *zone, struct page *page)
{
518
	if (!pfn_valid_within(page_to_pfn(page)))
519
		return 0;
L
Linus Torvalds 已提交
520
	if (zone != page_zone(page))
521 522 523 524 525 526 527
		return 0;

	return 1;
}
/*
 * Temporary debugging check for pages not lying within a given zone.
 */
528
static int __maybe_unused bad_range(struct zone *zone, struct page *page)
529 530
{
	if (page_outside_zone_boundaries(zone, page))
L
Linus Torvalds 已提交
531
		return 1;
532 533 534
	if (!page_is_consistent(zone, page))
		return 1;

L
Linus Torvalds 已提交
535 536
	return 0;
}
N
Nick Piggin 已提交
537
#else
538
static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
N
Nick Piggin 已提交
539 540 541 542 543
{
	return 0;
}
#endif

544 545
static void bad_page(struct page *page, const char *reason,
		unsigned long bad_flags)
L
Linus Torvalds 已提交
546
{
547 548 549 550 551 552 553 554 555 556 557 558 559 560
	static unsigned long resume;
	static unsigned long nr_shown;
	static unsigned long nr_unshown;

	/*
	 * Allow a burst of 60 reports, then keep quiet for that minute;
	 * or allow a steady drip of one report per second.
	 */
	if (nr_shown == 60) {
		if (time_before(jiffies, resume)) {
			nr_unshown++;
			goto out;
		}
		if (nr_unshown) {
561
			pr_alert(
562
			      "BUG: Bad page state: %lu messages suppressed\n",
563 564 565 566 567 568 569 570
				nr_unshown);
			nr_unshown = 0;
		}
		nr_shown = 0;
	}
	if (nr_shown++ == 0)
		resume = jiffies + 60 * HZ;

571
	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
572
		current->comm, page_to_pfn(page));
573 574 575 576 577
	__dump_page(page, reason);
	bad_flags &= page->flags;
	if (bad_flags)
		pr_alert("bad because of flags: %#lx(%pGp)\n",
						bad_flags, &bad_flags);
578
	dump_page_owner(page);
579

580
	print_modules();
L
Linus Torvalds 已提交
581
	dump_stack();
582
out:
583
	/* Leave bad fields for debug, except PageBuddy could make trouble */
584
	page_mapcount_reset(page); /* remove PageBuddy */
585
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
L
Linus Torvalds 已提交
586 587 588 589 590
}

/*
 * Higher-order pages are called "compound pages".  They are structured thusly:
 *
591
 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
L
Linus Torvalds 已提交
592
 *
593 594
 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
L
Linus Torvalds 已提交
595
 *
596 597
 * The first tail page's ->compound_dtor holds the offset in array of compound
 * page destructors. See compound_page_dtors.
L
Linus Torvalds 已提交
598
 *
599
 * The first tail page's ->compound_order holds the order of allocation.
600
 * This usage means that zero-order pages may not be compound.
L
Linus Torvalds 已提交
601
 */
602

603
void free_compound_page(struct page *page)
604
{
605
	__free_pages_ok(page, compound_order(page));
606 607
}

608
void prep_compound_page(struct page *page, unsigned int order)
609 610 611 612
{
	int i;
	int nr_pages = 1 << order;

613
	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
614 615 616 617
	set_compound_order(page, order);
	__SetPageHead(page);
	for (i = 1; i < nr_pages; i++) {
		struct page *p = page + i;
618
		set_page_count(p, 0);
619
		p->mapping = TAIL_MAPPING;
620
		set_compound_head(p, page);
621
	}
622
	atomic_set(compound_mapcount_ptr(page), -1);
623 624
}

625 626
#ifdef CONFIG_DEBUG_PAGEALLOC
unsigned int _debug_guardpage_minorder;
627 628
bool _debug_pagealloc_enabled __read_mostly
			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
629
EXPORT_SYMBOL(_debug_pagealloc_enabled);
630 631
bool _debug_guardpage_enabled __read_mostly;

632 633 634 635
static int __init early_debug_pagealloc(char *buf)
{
	if (!buf)
		return -EINVAL;
636
	return kstrtobool(buf, &_debug_pagealloc_enabled);
637 638 639
}
early_param("debug_pagealloc", early_debug_pagealloc);

640 641
static bool need_debug_guardpage(void)
{
642 643 644 645
	/* If we don't use debug_pagealloc, we don't need guard page */
	if (!debug_pagealloc_enabled())
		return false;

646 647 648
	if (!debug_guardpage_minorder())
		return false;

649 650 651 652 653
	return true;
}

static void init_debug_guardpage(void)
{
654 655 656
	if (!debug_pagealloc_enabled())
		return;

657 658 659
	if (!debug_guardpage_minorder())
		return;

660 661 662 663 664 665 666
	_debug_guardpage_enabled = true;
}

struct page_ext_operations debug_guardpage_ops = {
	.need = need_debug_guardpage,
	.init = init_debug_guardpage,
};
667 668 669 670 671 672

static int __init debug_guardpage_minorder_setup(char *buf)
{
	unsigned long res;

	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
673
		pr_err("Bad debug_guardpage_minorder value\n");
674 675 676
		return 0;
	}
	_debug_guardpage_minorder = res;
677
	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
678 679
	return 0;
}
680
early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
681

682
static inline bool set_page_guard(struct zone *zone, struct page *page,
683
				unsigned int order, int migratetype)
684
{
685 686 687
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
688 689 690 691
		return false;

	if (order >= debug_guardpage_minorder())
		return false;
692 693

	page_ext = lookup_page_ext(page);
694
	if (unlikely(!page_ext))
695
		return false;
696

697 698
	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

699 700 701 702
	INIT_LIST_HEAD(&page->lru);
	set_page_private(page, order);
	/* Guard pages are not available for any usage */
	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
703 704

	return true;
705 706
}

707 708
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype)
709
{
710 711 712 713 714 715
	struct page_ext *page_ext;

	if (!debug_guardpage_enabled())
		return;

	page_ext = lookup_page_ext(page);
716 717 718
	if (unlikely(!page_ext))
		return;

719 720
	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);

721 722 723
	set_page_private(page, 0);
	if (!is_migrate_isolate(migratetype))
		__mod_zone_freepage_state(zone, (1 << order), migratetype);
724 725
}
#else
726
struct page_ext_operations debug_guardpage_ops;
727 728
static inline bool set_page_guard(struct zone *zone, struct page *page,
			unsigned int order, int migratetype) { return false; }
729 730
static inline void clear_page_guard(struct zone *zone, struct page *page,
				unsigned int order, int migratetype) {}
731 732
#endif

733
static inline void set_page_order(struct page *page, unsigned int order)
734
{
H
Hugh Dickins 已提交
735
	set_page_private(page, order);
736
	__SetPageBuddy(page);
L
Linus Torvalds 已提交
737 738 739 740
}

static inline void rmv_page_order(struct page *page)
{
741
	__ClearPageBuddy(page);
H
Hugh Dickins 已提交
742
	set_page_private(page, 0);
L
Linus Torvalds 已提交
743 744 745 746 747
}

/*
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
748
 * (a) the buddy is not in a hole (check before calling!) &&
749
 * (b) the buddy is in the buddy system &&
750 751
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
752
 *
753 754 755 756
 * For recording whether a page is in the buddy system, we set ->_mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE.
 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
 * serialized by zone->lock.
L
Linus Torvalds 已提交
757
 *
758
 * For recording page's order, we use page_private(page).
L
Linus Torvalds 已提交
759
 */
760
static inline int page_is_buddy(struct page *page, struct page *buddy,
761
							unsigned int order)
L
Linus Torvalds 已提交
762
{
763
	if (page_is_guard(buddy) && page_order(buddy) == order) {
764 765 766
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

767 768
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

769 770 771
		return 1;
	}

772
	if (PageBuddy(buddy) && page_order(buddy) == order) {
773 774 775 776 777 778 779 780
		/*
		 * zone check is done late to avoid uselessly
		 * calculating zone/node ids for pages that could
		 * never merge.
		 */
		if (page_zone_id(page) != page_zone_id(buddy))
			return 0;

781 782
		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);

783
		return 1;
784
	}
785
	return 0;
L
Linus Torvalds 已提交
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
}

/*
 * Freeing function for a buddy system allocator.
 *
 * The concept of a buddy system is to maintain direct-mapped table
 * (containing bit values) for memory blocks of various "orders".
 * The bottom level table contains the map for the smallest allocatable
 * units of memory (here, pages), and each level above it describes
 * pairs of units from the levels below, hence, "buddies".
 * At a high level, all that happens here is marking the table entry
 * at the bottom level available, and propagating the changes upward
 * as necessary, plus some accounting needed to play nicely with other
 * parts of the VM system.
 * At each level, we keep a list of pages, which are heads of continuous
801 802 803
 * free pages of length of (1 << order) and marked with _mapcount
 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
 * field.
L
Linus Torvalds 已提交
804
 * So when we are allocating or freeing one, we can derive the state of the
805 806
 * other.  That is, if we allocate a small block, and both were
 * free, the remainder of the region must be split into blocks.
L
Linus Torvalds 已提交
807
 * If a block is freed, and its buddy is also free, then this
808
 * triggers coalescing into a block of larger size.
L
Linus Torvalds 已提交
809
 *
810
 * -- nyc
L
Linus Torvalds 已提交
811 812
 */

N
Nick Piggin 已提交
813
static inline void __free_one_page(struct page *page,
814
		unsigned long pfn,
815 816
		struct zone *zone, unsigned int order,
		int migratetype)
L
Linus Torvalds 已提交
817
{
818 819
	unsigned long combined_pfn;
	unsigned long uninitialized_var(buddy_pfn);
820
	struct page *buddy;
821 822 823
	unsigned int max_order;

	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
L
Linus Torvalds 已提交
824

825
	VM_BUG_ON(!zone_is_initialized(zone));
826
	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
L
Linus Torvalds 已提交
827

828
	VM_BUG_ON(migratetype == -1);
829
	if (likely(!is_migrate_isolate(migratetype)))
830
		__mod_zone_freepage_state(zone, 1 << order, migratetype);
831

832
	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
833
	VM_BUG_ON_PAGE(bad_range(zone, page), page);
L
Linus Torvalds 已提交
834

835
continue_merging:
836
	while (order < max_order - 1) {
837 838
		buddy_pfn = __find_buddy_pfn(pfn, order);
		buddy = page + (buddy_pfn - pfn);
839 840 841

		if (!pfn_valid_within(buddy_pfn))
			goto done_merging;
842
		if (!page_is_buddy(page, buddy, order))
843
			goto done_merging;
844 845 846 847 848
		/*
		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
		 * merge with it and move up one order.
		 */
		if (page_is_guard(buddy)) {
849
			clear_page_guard(zone, buddy, order, migratetype);
850 851 852 853 854
		} else {
			list_del(&buddy->lru);
			zone->free_area[order].nr_free--;
			rmv_page_order(buddy);
		}
855 856 857
		combined_pfn = buddy_pfn & pfn;
		page = page + (combined_pfn - pfn);
		pfn = combined_pfn;
L
Linus Torvalds 已提交
858 859
		order++;
	}
860 861 862 863 864 865 866 867 868 869 870 871
	if (max_order < MAX_ORDER) {
		/* If we are here, it means order is >= pageblock_order.
		 * We want to prevent merge between freepages on isolate
		 * pageblock and normal pageblock. Without this, pageblock
		 * isolation could cause incorrect freepage or CMA accounting.
		 *
		 * We don't want to hit this code for the more frequent
		 * low-order merging.
		 */
		if (unlikely(has_isolate_pageblock(zone))) {
			int buddy_mt;

872 873
			buddy_pfn = __find_buddy_pfn(pfn, order);
			buddy = page + (buddy_pfn - pfn);
874 875 876 877 878 879 880 881 882 883 884 885
			buddy_mt = get_pageblock_migratetype(buddy);

			if (migratetype != buddy_mt
					&& (is_migrate_isolate(migratetype) ||
						is_migrate_isolate(buddy_mt)))
				goto done_merging;
		}
		max_order++;
		goto continue_merging;
	}

done_merging:
L
Linus Torvalds 已提交
886
	set_page_order(page, order);
887 888 889 890 891 892 893 894 895

	/*
	 * If this is not the largest possible page, check if the buddy
	 * of the next-highest order is free. If it is, it's possible
	 * that pages are being freed that will coalesce soon. In case,
	 * that is happening, add the free page to the tail of the list
	 * so it's less likely to be used soon and more likely to be merged
	 * as a higher order page
	 */
896
	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
897
		struct page *higher_page, *higher_buddy;
898 899 900 901
		combined_pfn = buddy_pfn & pfn;
		higher_page = page + (combined_pfn - pfn);
		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
902 903
		if (pfn_valid_within(buddy_pfn) &&
		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
904 905 906 907 908 909 910 911
			list_add_tail(&page->lru,
				&zone->free_area[order].free_list[migratetype]);
			goto out;
		}
	}

	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
out:
L
Linus Torvalds 已提交
912 913 914
	zone->free_area[order].nr_free++;
}

915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
/*
 * A bad page could be due to a number of fields. Instead of multiple branches,
 * try and check multiple fields with one check. The caller must do a detailed
 * check if necessary.
 */
static inline bool page_expected_state(struct page *page,
					unsigned long check_flags)
{
	if (unlikely(atomic_read(&page->_mapcount) != -1))
		return false;

	if (unlikely((unsigned long)page->mapping |
			page_ref_count(page) |
#ifdef CONFIG_MEMCG
			(unsigned long)page->mem_cgroup |
#endif
			(page->flags & check_flags)))
		return false;

	return true;
}

937
static void free_pages_check_bad(struct page *page)
L
Linus Torvalds 已提交
938
{
939 940 941 942 943
	const char *bad_reason;
	unsigned long bad_flags;

	bad_reason = NULL;
	bad_flags = 0;
944

945
	if (unlikely(atomic_read(&page->_mapcount) != -1))
946 947 948
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
949
	if (unlikely(page_ref_count(page) != 0))
950
		bad_reason = "nonzero _refcount";
951 952 953 954
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
	}
955 956 957 958
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
959
	bad_page(page, bad_reason, bad_flags);
960 961 962 963
}

static inline int free_pages_check(struct page *page)
{
964
	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
965 966 967 968
		return 0;

	/* Something has gone sideways, find it */
	free_pages_check_bad(page);
969
	return 1;
L
Linus Torvalds 已提交
970 971
}

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
static int free_tail_pages_check(struct page *head_page, struct page *page)
{
	int ret = 1;

	/*
	 * We rely page->lru.next never has bit 0 set, unless the page
	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
	 */
	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);

	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
		ret = 0;
		goto out;
	}
	switch (page - head_page) {
	case 1:
		/* the first tail page: ->mapping is compound_mapcount() */
		if (unlikely(compound_mapcount(page))) {
			bad_page(page, "nonzero compound_mapcount", 0);
			goto out;
		}
		break;
	case 2:
		/*
		 * the second tail page: ->mapping is
		 * page_deferred_list().next -- ignore value.
		 */
		break;
	default:
		if (page->mapping != TAIL_MAPPING) {
			bad_page(page, "corrupted mapping in tail page", 0);
			goto out;
		}
		break;
	}
	if (unlikely(!PageTail(page))) {
		bad_page(page, "PageTail not set", 0);
		goto out;
	}
	if (unlikely(compound_head(page) != head_page)) {
		bad_page(page, "compound_head not consistent", 0);
		goto out;
	}
	ret = 0;
out:
	page->mapping = NULL;
	clear_compound_head(page);
	return ret;
}

1022 1023
static __always_inline bool free_pages_prepare(struct page *page,
					unsigned int order, bool check_free)
1024
{
1025
	int bad = 0;
1026 1027 1028

	VM_BUG_ON_PAGE(PageTail(page), page);

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	trace_mm_page_free(page, order);

	/*
	 * Check tail pages before head page information is cleared to
	 * avoid checking PageCompound for order-0 pages.
	 */
	if (unlikely(order)) {
		bool compound = PageCompound(page);
		int i;

		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1040

1041 1042
		if (compound)
			ClearPageDoubleMap(page);
1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
		for (i = 1; i < (1 << order); i++) {
			if (compound)
				bad += free_tail_pages_check(page, page + i);
			if (unlikely(free_pages_check(page + i))) {
				bad++;
				continue;
			}
			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
		}
	}
1053
	if (PageMappingFlags(page))
1054
		page->mapping = NULL;
1055
	if (memcg_kmem_enabled() && PageKmemcg(page))
1056
		memcg_kmem_uncharge(page, order);
1057 1058 1059 1060
	if (check_free)
		bad += free_pages_check(page);
	if (bad)
		return false;
1061

1062 1063 1064
	page_cpupid_reset_last(page);
	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
	reset_page_owner(page, order);
1065 1066 1067

	if (!PageHighMem(page)) {
		debug_check_no_locks_freed(page_address(page),
1068
					   PAGE_SIZE << order);
1069
		debug_check_no_obj_freed(page_address(page),
1070
					   PAGE_SIZE << order);
1071
	}
1072 1073 1074
	arch_free_page(page, order);
	kernel_poison_pages(page, 1 << order, 0);
	kernel_map_pages(page, 1 << order, 0);
1075
	kasan_free_pages(page, order);
1076 1077 1078 1079

	return true;
}

1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
#ifdef CONFIG_DEBUG_VM
static inline bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, true);
}

static inline bool bulkfree_pcp_prepare(struct page *page)
{
	return false;
}
#else
static bool free_pcp_prepare(struct page *page)
{
	return free_pages_prepare(page, 0, false);
}

1096 1097 1098 1099 1100 1101
static bool bulkfree_pcp_prepare(struct page *page)
{
	return free_pages_check(page);
}
#endif /* CONFIG_DEBUG_VM */

L
Linus Torvalds 已提交
1102
/*
1103
 * Frees a number of pages from the PCP lists
L
Linus Torvalds 已提交
1104
 * Assumes all pages on list are in same zone, and of same order.
1105
 * count is the number of pages to free.
L
Linus Torvalds 已提交
1106 1107 1108 1109 1110 1111 1112
 *
 * If the zone was previously in an "all pages pinned" state then look to
 * see if this freeing clears that state.
 *
 * And clear the zone's pages_scanned counter, to hold off the "all pages are
 * pinned" detection logic.
 */
1113 1114
static void free_pcppages_bulk(struct zone *zone, int count,
					struct per_cpu_pages *pcp)
L
Linus Torvalds 已提交
1115
{
1116
	int migratetype = 0;
1117
	int batch_free = 0;
1118
	bool isolated_pageblocks;
1119

1120
	spin_lock(&zone->lock);
1121
	isolated_pageblocks = has_isolate_pageblock(zone);
1122

1123
	while (count) {
N
Nick Piggin 已提交
1124
		struct page *page;
1125 1126 1127
		struct list_head *list;

		/*
1128 1129 1130 1131 1132
		 * Remove pages from lists in a round-robin fashion. A
		 * batch_free count is maintained that is incremented when an
		 * empty list is encountered.  This is so more pages are freed
		 * off fuller lists instead of spinning excessively around empty
		 * lists
1133 1134
		 */
		do {
1135
			batch_free++;
1136 1137 1138 1139
			if (++migratetype == MIGRATE_PCPTYPES)
				migratetype = 0;
			list = &pcp->lists[migratetype];
		} while (list_empty(list));
N
Nick Piggin 已提交
1140

1141 1142
		/* This is the only non-empty list. Free them all. */
		if (batch_free == MIGRATE_PCPTYPES)
1143
			batch_free = count;
1144

1145
		do {
1146 1147
			int mt;	/* migratetype of the to-be-freed page */

1148
			page = list_last_entry(list, struct page, lru);
1149 1150
			/* must delete as __free_one_page list manipulates */
			list_del(&page->lru);
1151

1152
			mt = get_pcppage_migratetype(page);
1153 1154 1155
			/* MIGRATE_ISOLATE page should not go to pcplists */
			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
			/* Pageblock could have been isolated meanwhile */
1156
			if (unlikely(isolated_pageblocks))
1157 1158
				mt = get_pageblock_migratetype(page);

1159 1160 1161
			if (bulkfree_pcp_prepare(page))
				continue;

1162
			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1163
			trace_mm_page_pcpu_drain(page, 0, mt);
1164
		} while (--count && --batch_free && !list_empty(list));
L
Linus Torvalds 已提交
1165
	}
1166
	spin_unlock(&zone->lock);
L
Linus Torvalds 已提交
1167 1168
}

1169 1170
static void free_one_page(struct zone *zone,
				struct page *page, unsigned long pfn,
1171
				unsigned int order,
1172
				int migratetype)
L
Linus Torvalds 已提交
1173
{
1174
	spin_lock(&zone->lock);
1175 1176 1177 1178
	if (unlikely(has_isolate_pageblock(zone) ||
		is_migrate_isolate(migratetype))) {
		migratetype = get_pfnblock_migratetype(page, pfn);
	}
1179
	__free_one_page(page, pfn, zone, order, migratetype);
1180
	spin_unlock(&zone->lock);
N
Nick Piggin 已提交
1181 1182
}

1183
static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1184
				unsigned long zone, int nid, bool zero)
1185
{
1186 1187
	if (zero)
		mm_zero_struct_page(page);
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
	set_page_links(page, zone, nid, pfn);
	init_page_count(page);
	page_mapcount_reset(page);
	page_cpupid_reset_last(page);

	INIT_LIST_HEAD(&page->lru);
#ifdef WANT_PAGE_VIRTUAL
	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
	if (!is_highmem_idx(zone))
		set_page_address(page, __va(pfn << PAGE_SHIFT));
#endif
}

static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1202
					int nid, bool zero)
1203
{
1204
	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero);
1205 1206
}

1207
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1208
static void __meminit init_reserved_page(unsigned long pfn)
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
{
	pg_data_t *pgdat;
	int nid, zid;

	if (!early_page_uninitialised(pfn))
		return;

	nid = early_pfn_to_nid(pfn);
	pgdat = NODE_DATA(nid);

	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		struct zone *zone = &pgdat->node_zones[zid];

		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
			break;
	}
1225
	__init_single_pfn(pfn, zid, nid, true);
1226 1227 1228 1229 1230 1231 1232
}
#else
static inline void init_reserved_page(unsigned long pfn)
{
}
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */

1233 1234 1235 1236 1237 1238
/*
 * Initialised pages do not have PageReserved set. This function is
 * called for each range allocated by the bootmem allocator and
 * marks the pages PageReserved. The remaining valid pages are later
 * sent to the buddy page allocator.
 */
1239
void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1240 1241 1242 1243
{
	unsigned long start_pfn = PFN_DOWN(start);
	unsigned long end_pfn = PFN_UP(end);

1244 1245 1246 1247 1248
	for (; start_pfn < end_pfn; start_pfn++) {
		if (pfn_valid(start_pfn)) {
			struct page *page = pfn_to_page(start_pfn);

			init_reserved_page(start_pfn);
1249 1250 1251 1252

			/* Avoid false-positive PageTail() */
			INIT_LIST_HEAD(&page->lru);

1253 1254 1255
			SetPageReserved(page);
		}
	}
1256 1257
}

1258 1259
static void __free_pages_ok(struct page *page, unsigned int order)
{
1260
	unsigned long flags;
M
Minchan Kim 已提交
1261
	int migratetype;
1262
	unsigned long pfn = page_to_pfn(page);
1263

1264
	if (!free_pages_prepare(page, order, true))
1265 1266
		return;

1267
	migratetype = get_pfnblock_migratetype(page, pfn);
1268 1269
	local_irq_save(flags);
	__count_vm_events(PGFREE, 1 << order);
1270
	free_one_page(page_zone(page), page, pfn, order, migratetype);
1271
	local_irq_restore(flags);
L
Linus Torvalds 已提交
1272 1273
}

1274
static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1275
{
1276
	unsigned int nr_pages = 1 << order;
1277
	struct page *p = page;
1278
	unsigned int loop;
1279

1280 1281 1282
	prefetchw(p);
	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
		prefetchw(p + 1);
1283 1284
		__ClearPageReserved(p);
		set_page_count(p, 0);
1285
	}
1286 1287
	__ClearPageReserved(p);
	set_page_count(p, 0);
1288

1289
	page_zone(page)->managed_pages += nr_pages;
1290 1291
	set_page_refcounted(page);
	__free_pages(page, order);
1292 1293
}

1294 1295
#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1296

1297 1298 1299 1300
static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;

int __meminit early_pfn_to_nid(unsigned long pfn)
{
1301
	static DEFINE_SPINLOCK(early_pfn_lock);
1302 1303
	int nid;

1304
	spin_lock(&early_pfn_lock);
1305
	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1306
	if (nid < 0)
1307
		nid = first_online_node;
1308 1309 1310
	spin_unlock(&early_pfn_lock);

	return nid;
1311 1312 1313 1314
}
#endif

#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1315 1316 1317
static inline bool __meminit __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
{
	int nid;

	nid = __early_pfn_to_nid(pfn, state);
	if (nid >= 0 && nid != node)
		return false;
	return true;
}

/* Only safe to use early in boot when initialisation is single-threaded */
static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
}

#else

static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
{
	return true;
}
1339 1340 1341
static inline bool __meminit  __maybe_unused
meminit_pfn_in_nid(unsigned long pfn, int node,
		   struct mminit_pfnnid_cache *state)
1342 1343 1344 1345 1346 1347
{
	return true;
}
#endif


1348
void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1349 1350 1351 1352
							unsigned int order)
{
	if (early_page_uninitialised(pfn))
		return;
1353
	return __free_pages_boot_core(page, order);
1354 1355
}

1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
/*
 * Check that the whole (or subset of) a pageblock given by the interval of
 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
 * with the migration of free compaction scanner. The scanners then need to
 * use only pfn_valid_within() check for arches that allow holes within
 * pageblocks.
 *
 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
 *
 * It's possible on some configurations to have a setup like node0 node1 node0
 * i.e. it's possible that all pages within a zones range of pages do not
 * belong to a single zone. We assume that a border between node0 and node1
 * can occur within a single pageblock, but not a node0 node1 node0
 * interleaving within a single pageblock. It is therefore sufficient to check
 * the first and last page of a pageblock and avoid checking each individual
 * page in a pageblock.
 */
struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
				     unsigned long end_pfn, struct zone *zone)
{
	struct page *start_page;
	struct page *end_page;

	/* end_pfn is one past the range we are checking */
	end_pfn--;

	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
		return NULL;

1385 1386 1387
	start_page = pfn_to_online_page(start_pfn);
	if (!start_page)
		return NULL;
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426

	if (page_zone(start_page) != zone)
		return NULL;

	end_page = pfn_to_page(end_pfn);

	/* This gives a shorter code than deriving page_zone(end_page) */
	if (page_zone_id(start_page) != page_zone_id(end_page))
		return NULL;

	return start_page;
}

void set_zone_contiguous(struct zone *zone)
{
	unsigned long block_start_pfn = zone->zone_start_pfn;
	unsigned long block_end_pfn;

	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
	for (; block_start_pfn < zone_end_pfn(zone);
			block_start_pfn = block_end_pfn,
			 block_end_pfn += pageblock_nr_pages) {

		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));

		if (!__pageblock_pfn_to_page(block_start_pfn,
					     block_end_pfn, zone))
			return;
	}

	/* We confirm that there is no hole */
	zone->contiguous = true;
}

void clear_zone_contiguous(struct zone *zone)
{
	zone->contiguous = false;
}

1427
#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1428 1429
static void __init deferred_free_range(unsigned long pfn,
				       unsigned long nr_pages)
1430
{
1431 1432
	struct page *page;
	unsigned long i;
1433

1434
	if (!nr_pages)
1435 1436
		return;

1437 1438
	page = pfn_to_page(pfn);

1439
	/* Free a large naturally-aligned chunk if possible */
1440 1441
	if (nr_pages == pageblock_nr_pages &&
	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1442
		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1443
		__free_pages_boot_core(page, pageblock_order);
1444 1445 1446
		return;
	}

1447 1448 1449
	for (i = 0; i < nr_pages; i++, page++, pfn++) {
		if ((pfn & (pageblock_nr_pages - 1)) == 0)
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1450
		__free_pages_boot_core(page, 0);
1451
	}
1452 1453
}

1454 1455 1456 1457 1458 1459 1460 1461 1462
/* Completion tracking for deferred_init_memmap() threads */
static atomic_t pgdat_init_n_undone __initdata;
static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);

static inline void __init pgdat_init_report_one_done(void)
{
	if (atomic_dec_and_test(&pgdat_init_n_undone))
		complete(&pgdat_init_all_done_comp);
}
1463

1464
/*
1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
 * Returns true if page needs to be initialized or freed to buddy allocator.
 *
 * First we check if pfn is valid on architectures where it is possible to have
 * holes within pageblock_nr_pages. On systems where it is not possible, this
 * function is optimized out.
 *
 * Then, we check if a current large page is valid by only checking the validity
 * of the head pfn.
 *
 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
 * within a node: a pfn is between start and end of a node, but does not belong
 * to this memory node.
1477
 */
1478 1479 1480
static inline bool __init
deferred_pfn_valid(int nid, unsigned long pfn,
		   struct mminit_pfnnid_cache *nid_init_state)
1481
{
1482 1483 1484 1485 1486 1487 1488 1489
	if (!pfn_valid_within(pfn))
		return false;
	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
		return false;
	if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
		return false;
	return true;
}
1490

1491 1492 1493 1494 1495 1496 1497 1498 1499 1500
/*
 * Free pages to buddy allocator. Try to free aligned pages in
 * pageblock_nr_pages sizes.
 */
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
				       unsigned long end_pfn)
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_free = 0;
1501

1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 0;
		} else if (!(pfn & nr_pgmask)) {
			deferred_free_range(pfn - nr_free, nr_free);
			nr_free = 1;
			cond_resched();
		} else {
			nr_free++;
		}
	}
	/* Free the last block of pages to allocator */
	deferred_free_range(pfn - nr_free, nr_free);
1516 1517
}

1518 1519 1520 1521 1522 1523 1524 1525
/*
 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
 * by performing it only once every pageblock_nr_pages.
 * Return number of pages initialized.
 */
static unsigned long  __init deferred_init_pages(int nid, int zid,
						 unsigned long pfn,
						 unsigned long end_pfn)
1526 1527 1528 1529 1530 1531
{
	struct mminit_pfnnid_cache nid_init_state = { };
	unsigned long nr_pgmask = pageblock_nr_pages - 1;
	unsigned long nr_pages = 0;
	struct page *page = NULL;

1532 1533 1534
	for (; pfn < end_pfn; pfn++) {
		if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
			page = NULL;
1535
			continue;
1536
		} else if (!page || !(pfn & nr_pgmask)) {
1537 1538
			page = pfn_to_page(pfn);
			cond_resched();
1539 1540
		} else {
			page++;
1541
		}
1542
		__init_single_page(page, pfn, zid, nid, true);
1543
		nr_pages++;
1544
	}
1545
	return (nr_pages);
1546 1547
}

1548
/* Initialise remaining memory on a node */
1549
static int __init deferred_init_memmap(void *data)
1550
{
1551 1552
	pg_data_t *pgdat = data;
	int nid = pgdat->node_id;
1553 1554
	unsigned long start = jiffies;
	unsigned long nr_pages = 0;
1555 1556 1557
	unsigned long spfn, epfn;
	phys_addr_t spa, epa;
	int zid;
1558 1559
	struct zone *zone;
	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1560
	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1561
	u64 i;
1562

1563
	if (first_init_pfn == ULONG_MAX) {
1564
		pgdat_init_report_one_done();
1565 1566 1567 1568 1569 1570
		return 0;
	}

	/* Bind memory initialisation thread to a local node if possible */
	if (!cpumask_empty(cpumask))
		set_cpus_allowed_ptr(current, cpumask);
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582

	/* Sanity check boundaries */
	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
	pgdat->first_deferred_pfn = ULONG_MAX;

	/* Only the highest zone is deferred so find it */
	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
		zone = pgdat->node_zones + zid;
		if (first_init_pfn < zone_end_pfn(zone))
			break;
	}
1583
	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1584

1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
	/*
	 * Initialize and free pages. We do it in two loops: first we initialize
	 * struct page, than free to buddy allocator, because while we are
	 * freeing pages we can access pages that are ahead (computing buddy
	 * page in __free_one_page()).
	 */
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
		nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
	}
1596 1597 1598
	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1599
		deferred_free_pages(nid, zid, spfn, epfn);
1600 1601 1602 1603 1604
	}

	/* Sanity check that the next zone really is unpopulated */
	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));

1605
	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1606
					jiffies_to_msecs(jiffies - start));
1607 1608

	pgdat_init_report_one_done();
1609 1610
	return 0;
}
1611
#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1612 1613 1614

void __init page_alloc_init_late(void)
{
1615 1616 1617
	struct zone *zone;

#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1618 1619
	int nid;

1620 1621
	/* There will be num_node_state(N_MEMORY) threads */
	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1622 1623 1624 1625 1626
	for_each_node_state(nid, N_MEMORY) {
		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
	}

	/* Block until all are initialised */
1627
	wait_for_completion(&pgdat_init_all_done_comp);
1628 1629 1630

	/* Reinit limits that are based on free pages after the kernel is up */
	files_maxfiles_init();
1631
#endif
P
Pavel Tatashin 已提交
1632 1633 1634 1635
#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
	/* Discard memblock private memory */
	memblock_discard();
#endif
1636 1637 1638

	for_each_populated_zone(zone)
		set_zone_contiguous(zone);
1639 1640
}

1641
#ifdef CONFIG_CMA
1642
/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653
void __init init_cma_reserved_pageblock(struct page *page)
{
	unsigned i = pageblock_nr_pages;
	struct page *p = page;

	do {
		__ClearPageReserved(p);
		set_page_count(p, 0);
	} while (++p, --i);

	set_pageblock_migratetype(page, MIGRATE_CMA);
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667

	if (pageblock_order >= MAX_ORDER) {
		i = pageblock_nr_pages;
		p = page;
		do {
			set_page_refcounted(p);
			__free_pages(p, MAX_ORDER - 1);
			p += MAX_ORDER_NR_PAGES;
		} while (i -= MAX_ORDER_NR_PAGES);
	} else {
		set_page_refcounted(page);
		__free_pages(page, pageblock_order);
	}

1668
	adjust_managed_page_count(page, pageblock_nr_pages);
1669 1670
}
#endif
L
Linus Torvalds 已提交
1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683

/*
 * The order of subdivision here is critical for the IO subsystem.
 * Please do not alter this order without good reasons and regression
 * testing. Specifically, as large blocks of memory are subdivided,
 * the order in which smaller blocks are delivered depends on the order
 * they're subdivided in this function. This is the primary factor
 * influencing the order in which pages are delivered to the IO
 * subsystem according to empirical testing, and this is also justified
 * by considering the behavior of a buddy system containing a single
 * large block of memory acted on by a series of small allocations.
 * This behavior is a critical factor in sglist merging's success.
 *
1684
 * -- nyc
L
Linus Torvalds 已提交
1685
 */
N
Nick Piggin 已提交
1686
static inline void expand(struct zone *zone, struct page *page,
1687 1688
	int low, int high, struct free_area *area,
	int migratetype)
L
Linus Torvalds 已提交
1689 1690 1691 1692 1693 1694 1695
{
	unsigned long size = 1 << high;

	while (high > low) {
		area--;
		high--;
		size >>= 1;
1696
		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1697

1698 1699 1700 1701 1702 1703 1704
		/*
		 * Mark as guard pages (or page), that will allow to
		 * merge back to allocator when buddy will be freed.
		 * Corresponding page table entries will not be touched,
		 * pages will stay not present in virtual address space
		 */
		if (set_page_guard(zone, &page[size], high, migratetype))
1705
			continue;
1706

1707
		list_add(&page[size].lru, &area->free_list[migratetype]);
L
Linus Torvalds 已提交
1708 1709 1710 1711 1712
		area->nr_free++;
		set_page_order(&page[size], high);
	}
}

1713
static void check_new_page_bad(struct page *page)
L
Linus Torvalds 已提交
1714
{
1715 1716
	const char *bad_reason = NULL;
	unsigned long bad_flags = 0;
1717

1718
	if (unlikely(atomic_read(&page->_mapcount) != -1))
1719 1720 1721
		bad_reason = "nonzero mapcount";
	if (unlikely(page->mapping != NULL))
		bad_reason = "non-NULL mapping";
1722
	if (unlikely(page_ref_count(page) != 0))
1723
		bad_reason = "nonzero _count";
1724 1725 1726
	if (unlikely(page->flags & __PG_HWPOISON)) {
		bad_reason = "HWPoisoned (hardware-corrupted)";
		bad_flags = __PG_HWPOISON;
1727 1728 1729
		/* Don't complain about hwpoisoned pages */
		page_mapcount_reset(page); /* remove PageBuddy */
		return;
1730
	}
1731 1732 1733 1734
	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
	}
1735 1736 1737 1738
#ifdef CONFIG_MEMCG
	if (unlikely(page->mem_cgroup))
		bad_reason = "page still charged to cgroup";
#endif
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
	bad_page(page, bad_reason, bad_flags);
}

/*
 * This page is about to be returned from the page allocator
 */
static inline int check_new_page(struct page *page)
{
	if (likely(page_expected_state(page,
				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
		return 0;

	check_new_page_bad(page);
	return 1;
1753 1754
}

1755
static inline bool free_pages_prezeroed(void)
1756 1757
{
	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1758
		page_poisoning_enabled();
1759 1760
}

1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
#ifdef CONFIG_DEBUG_VM
static bool check_pcp_refill(struct page *page)
{
	return false;
}

static bool check_new_pcp(struct page *page)
{
	return check_new_page(page);
}
#else
static bool check_pcp_refill(struct page *page)
{
	return check_new_page(page);
}
static bool check_new_pcp(struct page *page)
{
	return false;
}
#endif /* CONFIG_DEBUG_VM */

static bool check_new_pages(struct page *page, unsigned int order)
{
	int i;
	for (i = 0; i < (1 << order); i++) {
		struct page *p = page + i;

		if (unlikely(check_new_page(p)))
			return true;
	}

	return false;
}

1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
inline void post_alloc_hook(struct page *page, unsigned int order,
				gfp_t gfp_flags)
{
	set_page_private(page, 0);
	set_page_refcounted(page);

	arch_alloc_page(page, order);
	kernel_map_pages(page, 1 << order, 1);
	kernel_poison_pages(page, 1 << order, 1);
	kasan_alloc_pages(page, order);
	set_page_owner(page, order, gfp_flags);
}

1808
static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1809
							unsigned int alloc_flags)
1810 1811
{
	int i;
1812

1813
	post_alloc_hook(page, order, gfp_flags);
N
Nick Piggin 已提交
1814

1815
	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1816 1817
		for (i = 0; i < (1 << order); i++)
			clear_highpage(page + i);
N
Nick Piggin 已提交
1818 1819 1820 1821

	if (order && (gfp_flags & __GFP_COMP))
		prep_compound_page(page, order);

1822
	/*
1823
	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1824 1825 1826 1827
	 * allocate the page. The expectation is that the caller is taking
	 * steps that will free more memory. The caller should avoid the page
	 * being used for !PFMEMALLOC purposes.
	 */
1828 1829 1830 1831
	if (alloc_flags & ALLOC_NO_WATERMARKS)
		set_page_pfmemalloc(page);
	else
		clear_page_pfmemalloc(page);
L
Linus Torvalds 已提交
1832 1833
}

1834 1835 1836 1837
/*
 * Go through the free lists for the given migratetype and remove
 * the smallest available page from the freelists
 */
1838
static __always_inline
1839
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1840 1841 1842
						int migratetype)
{
	unsigned int current_order;
1843
	struct free_area *area;
1844 1845 1846 1847 1848
	struct page *page;

	/* Find a page of the appropriate size in the preferred list */
	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
		area = &(zone->free_area[current_order]);
1849
		page = list_first_entry_or_null(&area->free_list[migratetype],
1850
							struct page, lru);
1851 1852
		if (!page)
			continue;
1853 1854 1855 1856
		list_del(&page->lru);
		rmv_page_order(page);
		area->nr_free--;
		expand(zone, page, order, current_order, area, migratetype);
1857
		set_pcppage_migratetype(page, migratetype);
1858 1859 1860 1861 1862 1863 1864
		return page;
	}

	return NULL;
}


1865 1866 1867 1868
/*
 * This array describes the order lists are fallen back to when
 * the free lists for the desirable migrate type are depleted
 */
1869
static int fallbacks[MIGRATE_TYPES][4] = {
1870 1871 1872
	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1873
#ifdef CONFIG_CMA
1874
	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1875
#endif
1876
#ifdef CONFIG_MEMORY_ISOLATION
1877
	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1878
#endif
1879 1880
};

1881
#ifdef CONFIG_CMA
1882
static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1883 1884 1885 1886 1887 1888 1889 1890 1891
					unsigned int order)
{
	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
}
#else
static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
					unsigned int order) { return NULL; }
#endif

1892 1893
/*
 * Move the free pages in a range to the free lists of the requested type.
1894
 * Note that start_page and end_pages are not aligned on a pageblock
1895 1896
 * boundary. If alignment is required, use move_freepages_block()
 */
1897
static int move_freepages(struct zone *zone,
A
Adrian Bunk 已提交
1898
			  struct page *start_page, struct page *end_page,
1899
			  int migratetype, int *num_movable)
1900 1901
{
	struct page *page;
1902
	unsigned int order;
1903
	int pages_moved = 0;
1904 1905 1906 1907 1908 1909 1910

#ifndef CONFIG_HOLES_IN_ZONE
	/*
	 * page_zone is not safe to call in this context when
	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
	 * anyway as we check zone boundaries in move_freepages_block().
	 * Remove at a later date when no bug reports exist related to
M
Mel Gorman 已提交
1911
	 * grouping pages by mobility
1912
	 */
1913 1914 1915
	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
	          pfn_valid(page_to_pfn(end_page)) &&
	          page_zone(start_page) != page_zone(end_page));
1916 1917
#endif

1918 1919 1920
	if (num_movable)
		*num_movable = 0;

1921 1922 1923 1924 1925 1926
	for (page = start_page; page <= end_page;) {
		if (!pfn_valid_within(page_to_pfn(page))) {
			page++;
			continue;
		}

1927 1928 1929
		/* Make sure we are not inadvertently changing nodes */
		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);

1930
		if (!PageBuddy(page)) {
1931 1932 1933 1934 1935 1936 1937 1938 1939
			/*
			 * We assume that pages that could be isolated for
			 * migration are movable. But we don't actually try
			 * isolating, as that would be expensive.
			 */
			if (num_movable &&
					(PageLRU(page) || __PageMovable(page)))
				(*num_movable)++;

1940 1941 1942 1943 1944
			page++;
			continue;
		}

		order = page_order(page);
1945 1946
		list_move(&page->lru,
			  &zone->free_area[order].free_list[migratetype]);
1947
		page += 1 << order;
1948
		pages_moved += 1 << order;
1949 1950
	}

1951
	return pages_moved;
1952 1953
}

1954
int move_freepages_block(struct zone *zone, struct page *page,
1955
				int migratetype, int *num_movable)
1956 1957 1958 1959 1960
{
	unsigned long start_pfn, end_pfn;
	struct page *start_page, *end_page;

	start_pfn = page_to_pfn(page);
1961
	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1962
	start_page = pfn_to_page(start_pfn);
1963 1964
	end_page = start_page + pageblock_nr_pages - 1;
	end_pfn = start_pfn + pageblock_nr_pages - 1;
1965 1966

	/* Do not cross zone boundaries */
1967
	if (!zone_spans_pfn(zone, start_pfn))
1968
		start_page = page;
1969
	if (!zone_spans_pfn(zone, end_pfn))
1970 1971
		return 0;

1972 1973
	return move_freepages(zone, start_page, end_page, migratetype,
								num_movable);
1974 1975
}

1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
static void change_pageblock_range(struct page *pageblock_page,
					int start_order, int migratetype)
{
	int nr_pageblocks = 1 << (start_order - pageblock_order);

	while (nr_pageblocks--) {
		set_pageblock_migratetype(pageblock_page, migratetype);
		pageblock_page += pageblock_nr_pages;
	}
}

1987
/*
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
 * When we are falling back to another migratetype during allocation, try to
 * steal extra free pages from the same pageblocks to satisfy further
 * allocations, instead of polluting multiple pageblocks.
 *
 * If we are stealing a relatively large buddy page, it is likely there will
 * be more free pages in the pageblock, so try to steal them all. For
 * reclaimable and unmovable allocations, we steal regardless of page size,
 * as fragmentation caused by those allocations polluting movable pageblocks
 * is worse than movable allocations stealing from unmovable and reclaimable
 * pageblocks.
1998
 */
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
static bool can_steal_fallback(unsigned int order, int start_mt)
{
	/*
	 * Leaving this order check is intended, although there is
	 * relaxed order check in next check. The reason is that
	 * we can actually steal whole pageblock if this condition met,
	 * but, below check doesn't guarantee it and that is just heuristic
	 * so could be changed anytime.
	 */
	if (order >= pageblock_order)
		return true;

	if (order >= pageblock_order / 2 ||
		start_mt == MIGRATE_RECLAIMABLE ||
		start_mt == MIGRATE_UNMOVABLE ||
		page_group_by_mobility_disabled)
		return true;

	return false;
}

/*
 * This function implements actual steal behaviour. If order is large enough,
 * we can steal whole pageblock. If not, we first move freepages in this
2023 2024 2025 2026
 * pageblock to our migratetype and determine how many already-allocated pages
 * are there in the pageblock with a compatible migratetype. If at least half
 * of pages are free or compatible, we can change migratetype of the pageblock
 * itself, so pages freed in the future will be put on the correct free list.
2027 2028
 */
static void steal_suitable_fallback(struct zone *zone, struct page *page,
2029
					int start_type, bool whole_block)
2030
{
2031
	unsigned int current_order = page_order(page);
2032
	struct free_area *area;
2033 2034 2035 2036
	int free_pages, movable_pages, alike_pages;
	int old_block_type;

	old_block_type = get_pageblock_migratetype(page);
2037

2038 2039 2040 2041
	/*
	 * This can happen due to races and we want to prevent broken
	 * highatomic accounting.
	 */
2042
	if (is_migrate_highatomic(old_block_type))
2043 2044
		goto single_page;

2045 2046 2047
	/* Take ownership for orders >= pageblock_order */
	if (current_order >= pageblock_order) {
		change_pageblock_range(page, current_order, start_type);
2048
		goto single_page;
2049 2050
	}

2051 2052 2053 2054
	/* We are not allowed to try stealing from the whole block */
	if (!whole_block)
		goto single_page;

2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078
	free_pages = move_freepages_block(zone, page, start_type,
						&movable_pages);
	/*
	 * Determine how many pages are compatible with our allocation.
	 * For movable allocation, it's the number of movable pages which
	 * we just obtained. For other types it's a bit more tricky.
	 */
	if (start_type == MIGRATE_MOVABLE) {
		alike_pages = movable_pages;
	} else {
		/*
		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
		 * to MOVABLE pageblock, consider all non-movable pages as
		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
		 * vice versa, be conservative since we can't distinguish the
		 * exact migratetype of non-movable pages.
		 */
		if (old_block_type == MIGRATE_MOVABLE)
			alike_pages = pageblock_nr_pages
						- (free_pages + movable_pages);
		else
			alike_pages = 0;
	}

2079
	/* moving whole block can fail due to zone boundary conditions */
2080
	if (!free_pages)
2081
		goto single_page;
2082

2083 2084 2085 2086 2087
	/*
	 * If a sufficient number of pages in the block are either free or of
	 * comparable migratability as our allocation, claim the whole block.
	 */
	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2088 2089
			page_group_by_mobility_disabled)
		set_pageblock_migratetype(page, start_type);
2090 2091 2092 2093 2094 2095

	return;

single_page:
	area = &zone->free_area[current_order];
	list_move(&page->lru, &area->free_list[start_type]);
2096 2097
}

2098 2099 2100 2101 2102 2103 2104 2105
/*
 * Check whether there is a suitable fallback freepage with requested order.
 * If only_stealable is true, this function returns fallback_mt only if
 * we can steal other freepages all together. This would help to reduce
 * fragmentation due to mixed migratetype pages in one pageblock.
 */
int find_suitable_fallback(struct free_area *area, unsigned int order,
			int migratetype, bool only_stealable, bool *can_steal)
2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
{
	int i;
	int fallback_mt;

	if (area->nr_free == 0)
		return -1;

	*can_steal = false;
	for (i = 0;; i++) {
		fallback_mt = fallbacks[migratetype][i];
2116
		if (fallback_mt == MIGRATE_TYPES)
2117 2118 2119 2120
			break;

		if (list_empty(&area->free_list[fallback_mt]))
			continue;
2121

2122 2123 2124
		if (can_steal_fallback(order, migratetype))
			*can_steal = true;

2125 2126 2127 2128 2129
		if (!only_stealable)
			return fallback_mt;

		if (*can_steal)
			return fallback_mt;
2130
	}
2131 2132

	return -1;
2133 2134
}

2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160
/*
 * Reserve a pageblock for exclusive use of high-order atomic allocations if
 * there are no empty page blocks that contain a page with a suitable order
 */
static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
				unsigned int alloc_order)
{
	int mt;
	unsigned long max_managed, flags;

	/*
	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
	 * Check is race-prone but harmless.
	 */
	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
	if (zone->nr_reserved_highatomic >= max_managed)
		return;

	spin_lock_irqsave(&zone->lock, flags);

	/* Recheck the nr_reserved_highatomic limit under the lock */
	if (zone->nr_reserved_highatomic >= max_managed)
		goto out_unlock;

	/* Yoink! */
	mt = get_pageblock_migratetype(page);
2161 2162
	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
	    && !is_migrate_cma(mt)) {
2163 2164
		zone->nr_reserved_highatomic += pageblock_nr_pages;
		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2165
		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176
	}

out_unlock:
	spin_unlock_irqrestore(&zone->lock, flags);
}

/*
 * Used when an allocation is about to fail under memory pressure. This
 * potentially hurts the reliability of high-order allocations when under
 * intense memory pressure but failed atomic allocations should be easier
 * to recover from than an OOM.
2177 2178 2179
 *
 * If @force is true, try to unreserve a pageblock even though highatomic
 * pageblock is exhausted.
2180
 */
2181 2182
static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
						bool force)
2183 2184 2185 2186 2187 2188 2189
{
	struct zonelist *zonelist = ac->zonelist;
	unsigned long flags;
	struct zoneref *z;
	struct zone *zone;
	struct page *page;
	int order;
2190
	bool ret;
2191 2192 2193

	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
								ac->nodemask) {
2194 2195 2196 2197 2198 2199
		/*
		 * Preserve at least one pageblock unless memory pressure
		 * is really high.
		 */
		if (!force && zone->nr_reserved_highatomic <=
					pageblock_nr_pages)
2200 2201 2202 2203 2204 2205
			continue;

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
			struct free_area *area = &(zone->free_area[order]);

2206 2207 2208 2209
			page = list_first_entry_or_null(
					&area->free_list[MIGRATE_HIGHATOMIC],
					struct page, lru);
			if (!page)
2210 2211 2212
				continue;

			/*
2213 2214 2215 2216 2217
			 * In page freeing path, migratetype change is racy so
			 * we can counter several free pages in a pageblock
			 * in this loop althoug we changed the pageblock type
			 * from highatomic to ac->migratetype. So we should
			 * adjust the count once.
2218
			 */
2219
			if (is_migrate_highatomic_page(page)) {
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230
				/*
				 * It should never happen but changes to
				 * locking could inadvertently allow a per-cpu
				 * drain to add pages to MIGRATE_HIGHATOMIC
				 * while unreserving so be safe and watch for
				 * underflows.
				 */
				zone->nr_reserved_highatomic -= min(
						pageblock_nr_pages,
						zone->nr_reserved_highatomic);
			}
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241

			/*
			 * Convert to ac->migratetype and avoid the normal
			 * pageblock stealing heuristics. Minimally, the caller
			 * is doing the work and needs the pages. More
			 * importantly, if the block was always converted to
			 * MIGRATE_UNMOVABLE or another type then the number
			 * of pageblocks that cannot be completely freed
			 * may increase.
			 */
			set_pageblock_migratetype(page, ac->migratetype);
2242 2243
			ret = move_freepages_block(zone, page, ac->migratetype,
									NULL);
2244 2245 2246 2247
			if (ret) {
				spin_unlock_irqrestore(&zone->lock, flags);
				return ret;
			}
2248 2249 2250
		}
		spin_unlock_irqrestore(&zone->lock, flags);
	}
2251 2252

	return false;
2253 2254
}

2255 2256 2257 2258 2259
/*
 * Try finding a free buddy page on the fallback list and put it on the free
 * list of requested migratetype, possibly along with other pages from the same
 * block, depending on fragmentation avoidance heuristics. Returns true if
 * fallback was found so that __rmqueue_smallest() can grab it.
2260 2261 2262 2263
 *
 * The use of signed ints for order and current_order is a deliberate
 * deviation from the rest of this file, to make the for loop
 * condition simpler.
2264
 */
2265
static __always_inline bool
2266
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2267
{
2268
	struct free_area *area;
2269
	int current_order;
2270
	struct page *page;
2271 2272
	int fallback_mt;
	bool can_steal;
2273

2274 2275 2276 2277 2278
	/*
	 * Find the largest available free page in the other list. This roughly
	 * approximates finding the pageblock with the most free pages, which
	 * would be too costly to do exactly.
	 */
2279
	for (current_order = MAX_ORDER - 1; current_order >= order;
2280
				--current_order) {
2281 2282
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
2283
				start_migratetype, false, &can_steal);
2284 2285
		if (fallback_mt == -1)
			continue;
2286

2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297
		/*
		 * We cannot steal all free pages from the pageblock and the
		 * requested migratetype is movable. In that case it's better to
		 * steal and split the smallest available page instead of the
		 * largest available page, because even if the next movable
		 * allocation falls back into a different pageblock than this
		 * one, it won't cause permanent fragmentation.
		 */
		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
					&& current_order > order)
			goto find_smallest;
2298

2299 2300
		goto do_steal;
	}
2301

2302
	return false;
2303

2304 2305 2306 2307 2308 2309 2310 2311
find_smallest:
	for (current_order = order; current_order < MAX_ORDER;
							current_order++) {
		area = &(zone->free_area[current_order]);
		fallback_mt = find_suitable_fallback(area, current_order,
				start_migratetype, false, &can_steal);
		if (fallback_mt != -1)
			break;
2312 2313
	}

2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330
	/*
	 * This should not happen - we already found a suitable fallback
	 * when looking for the largest page.
	 */
	VM_BUG_ON(current_order == MAX_ORDER);

do_steal:
	page = list_first_entry(&area->free_list[fallback_mt],
							struct page, lru);

	steal_suitable_fallback(zone, page, start_migratetype, can_steal);

	trace_mm_page_alloc_extfrag(page, order, current_order,
		start_migratetype, fallback_mt);

	return true;

2331 2332
}

2333
/*
L
Linus Torvalds 已提交
2334 2335 2336
 * Do the hard work of removing an element from the buddy allocator.
 * Call me with the zone->lock already held.
 */
2337 2338
static __always_inline struct page *
__rmqueue(struct zone *zone, unsigned int order, int migratetype)
L
Linus Torvalds 已提交
2339 2340 2341
{
	struct page *page;

2342
retry:
2343
	page = __rmqueue_smallest(zone, order, migratetype);
2344
	if (unlikely(!page)) {
2345 2346 2347
		if (migratetype == MIGRATE_MOVABLE)
			page = __rmqueue_cma_fallback(zone, order);

2348 2349
		if (!page && __rmqueue_fallback(zone, order, migratetype))
			goto retry;
2350 2351
	}

2352
	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2353
	return page;
L
Linus Torvalds 已提交
2354 2355
}

2356
/*
L
Linus Torvalds 已提交
2357 2358 2359 2360
 * Obtain a specified number of elements from the buddy allocator, all under
 * a single hold of the lock, for efficiency.  Add them to the supplied list.
 * Returns the number of new pages which were placed at *list.
 */
2361
static int rmqueue_bulk(struct zone *zone, unsigned int order,
2362
			unsigned long count, struct list_head *list,
M
Mel Gorman 已提交
2363
			int migratetype)
L
Linus Torvalds 已提交
2364
{
2365
	int i, alloced = 0;
2366

2367
	spin_lock(&zone->lock);
L
Linus Torvalds 已提交
2368
	for (i = 0; i < count; ++i) {
2369
		struct page *page = __rmqueue(zone, order, migratetype);
N
Nick Piggin 已提交
2370
		if (unlikely(page == NULL))
L
Linus Torvalds 已提交
2371
			break;
2372

2373 2374 2375
		if (unlikely(check_pcp_refill(page)))
			continue;

2376
		/*
2377 2378 2379 2380 2381 2382 2383 2384
		 * Split buddy pages returned by expand() are received here in
		 * physical page order. The page is added to the tail of
		 * caller's list. From the callers perspective, the linked list
		 * is ordered by page number under some conditions. This is
		 * useful for IO devices that can forward direction from the
		 * head, thus also in the physical page order. This is useful
		 * for IO devices that can merge IO requests if the physical
		 * pages are ordered properly.
2385
		 */
2386
		list_add_tail(&page->lru, list);
2387
		alloced++;
2388
		if (is_migrate_cma(get_pcppage_migratetype(page)))
2389 2390
			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
					      -(1 << order));
L
Linus Torvalds 已提交
2391
	}
2392 2393 2394 2395 2396 2397 2398

	/*
	 * i pages were removed from the buddy list even if some leak due
	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
	 * on i. Do not confuse with 'alloced' which is the number of
	 * pages added to the pcp list.
	 */
2399
	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2400
	spin_unlock(&zone->lock);
2401
	return alloced;
L
Linus Torvalds 已提交
2402 2403
}

2404
#ifdef CONFIG_NUMA
2405
/*
2406 2407 2408 2409
 * Called from the vmstat counter updater to drain pagesets of this
 * currently executing processor on remote nodes after they have
 * expired.
 *
2410 2411
 * Note that this function must be called with the thread pinned to
 * a single processor.
2412
 */
2413
void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2414 2415
{
	unsigned long flags;
2416
	int to_drain, batch;
2417

2418
	local_irq_save(flags);
2419
	batch = READ_ONCE(pcp->batch);
2420
	to_drain = min(pcp->count, batch);
2421 2422 2423 2424
	if (to_drain > 0) {
		free_pcppages_bulk(zone, to_drain, pcp);
		pcp->count -= to_drain;
	}
2425
	local_irq_restore(flags);
2426 2427 2428
}
#endif

2429
/*
2430
 * Drain pcplists of the indicated processor and zone.
2431 2432 2433 2434 2435
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
2436
static void drain_pages_zone(unsigned int cpu, struct zone *zone)
L
Linus Torvalds 已提交
2437
{
N
Nick Piggin 已提交
2438
	unsigned long flags;
2439 2440
	struct per_cpu_pageset *pset;
	struct per_cpu_pages *pcp;
L
Linus Torvalds 已提交
2441

2442 2443
	local_irq_save(flags);
	pset = per_cpu_ptr(zone->pageset, cpu);
L
Linus Torvalds 已提交
2444

2445 2446 2447 2448 2449 2450 2451
	pcp = &pset->pcp;
	if (pcp->count) {
		free_pcppages_bulk(zone, pcp->count, pcp);
		pcp->count = 0;
	}
	local_irq_restore(flags);
}
2452

2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465
/*
 * Drain pcplists of all zones on the indicated processor.
 *
 * The processor must either be the current processor and the
 * thread pinned to the current processor or a processor that
 * is not online.
 */
static void drain_pages(unsigned int cpu)
{
	struct zone *zone;

	for_each_populated_zone(zone) {
		drain_pages_zone(cpu, zone);
L
Linus Torvalds 已提交
2466 2467 2468
	}
}

2469 2470
/*
 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2471 2472 2473
 *
 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
 * the single zone's pages.
2474
 */
2475
void drain_local_pages(struct zone *zone)
2476
{
2477 2478 2479 2480 2481 2482
	int cpu = smp_processor_id();

	if (zone)
		drain_pages_zone(cpu, zone);
	else
		drain_pages(cpu);
2483 2484
}

2485 2486
static void drain_local_pages_wq(struct work_struct *work)
{
2487 2488 2489 2490 2491 2492 2493 2494
	/*
	 * drain_all_pages doesn't use proper cpu hotplug protection so
	 * we can race with cpu offline when the WQ can move this from
	 * a cpu pinned worker to an unbound one. We can operate on a different
	 * cpu which is allright but we also have to make sure to not move to
	 * a different one.
	 */
	preempt_disable();
2495
	drain_local_pages(NULL);
2496
	preempt_enable();
2497 2498
}

2499
/*
2500 2501
 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
 *
2502 2503
 * When zone parameter is non-NULL, spill just the single zone's pages.
 *
2504
 * Note that this can be extremely slow as the draining happens in a workqueue.
2505
 */
2506
void drain_all_pages(struct zone *zone)
2507
{
2508 2509 2510 2511 2512 2513 2514 2515
	int cpu;

	/*
	 * Allocate in the BSS so we wont require allocation in
	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
	 */
	static cpumask_t cpus_with_pcps;

2516 2517 2518 2519 2520 2521 2522
	/*
	 * Make sure nobody triggers this path before mm_percpu_wq is fully
	 * initialized.
	 */
	if (WARN_ON_ONCE(!mm_percpu_wq))
		return;

2523 2524 2525 2526 2527 2528 2529 2530 2531 2532
	/*
	 * Do not drain if one is already in progress unless it's specific to
	 * a zone. Such callers are primarily CMA and memory hotplug and need
	 * the drain to be complete when the call returns.
	 */
	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
		if (!zone)
			return;
		mutex_lock(&pcpu_drain_mutex);
	}
2533

2534 2535 2536 2537 2538 2539 2540
	/*
	 * We don't care about racing with CPU hotplug event
	 * as offline notification will cause the notified
	 * cpu to drain that CPU pcps and on_each_cpu_mask
	 * disables preemption as part of its processing
	 */
	for_each_online_cpu(cpu) {
2541 2542
		struct per_cpu_pageset *pcp;
		struct zone *z;
2543
		bool has_pcps = false;
2544 2545

		if (zone) {
2546
			pcp = per_cpu_ptr(zone->pageset, cpu);
2547
			if (pcp->pcp.count)
2548
				has_pcps = true;
2549 2550 2551 2552 2553 2554 2555
		} else {
			for_each_populated_zone(z) {
				pcp = per_cpu_ptr(z->pageset, cpu);
				if (pcp->pcp.count) {
					has_pcps = true;
					break;
				}
2556 2557
			}
		}
2558

2559 2560 2561 2562 2563
		if (has_pcps)
			cpumask_set_cpu(cpu, &cpus_with_pcps);
		else
			cpumask_clear_cpu(cpu, &cpus_with_pcps);
	}
2564

2565 2566 2567
	for_each_cpu(cpu, &cpus_with_pcps) {
		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
		INIT_WORK(work, drain_local_pages_wq);
2568
		queue_work_on(cpu, mm_percpu_wq, work);
2569
	}
2570 2571 2572 2573
	for_each_cpu(cpu, &cpus_with_pcps)
		flush_work(per_cpu_ptr(&pcpu_drain, cpu));

	mutex_unlock(&pcpu_drain_mutex);
2574 2575
}

2576
#ifdef CONFIG_HIBERNATION
L
Linus Torvalds 已提交
2577

2578 2579 2580 2581 2582
/*
 * Touch the watchdog for every WD_PAGE_COUNT pages.
 */
#define WD_PAGE_COUNT	(128*1024)

L
Linus Torvalds 已提交
2583 2584
void mark_free_pages(struct zone *zone)
{
2585
	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2586
	unsigned long flags;
2587
	unsigned int order, t;
2588
	struct page *page;
L
Linus Torvalds 已提交
2589

2590
	if (zone_is_empty(zone))
L
Linus Torvalds 已提交
2591 2592 2593
		return;

	spin_lock_irqsave(&zone->lock, flags);
2594

2595
	max_zone_pfn = zone_end_pfn(zone);
2596 2597
	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
		if (pfn_valid(pfn)) {
2598
			page = pfn_to_page(pfn);
2599

2600 2601 2602 2603 2604
			if (!--page_count) {
				touch_nmi_watchdog();
				page_count = WD_PAGE_COUNT;
			}

2605 2606 2607
			if (page_zone(page) != zone)
				continue;

2608 2609
			if (!swsusp_page_is_forbidden(page))
				swsusp_unset_page_free(page);
2610
		}
L
Linus Torvalds 已提交
2611

2612
	for_each_migratetype_order(order, t) {
2613 2614
		list_for_each_entry(page,
				&zone->free_area[order].free_list[t], lru) {
2615
			unsigned long i;
L
Linus Torvalds 已提交
2616

2617
			pfn = page_to_pfn(page);
2618 2619 2620 2621 2622
			for (i = 0; i < (1UL << order); i++) {
				if (!--page_count) {
					touch_nmi_watchdog();
					page_count = WD_PAGE_COUNT;
				}
2623
				swsusp_set_page_free(pfn_to_page(pfn + i));
2624
			}
2625
		}
2626
	}
L
Linus Torvalds 已提交
2627 2628
	spin_unlock_irqrestore(&zone->lock, flags);
}
2629
#endif /* CONFIG_PM */
L
Linus Torvalds 已提交
2630

2631
static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
L
Linus Torvalds 已提交
2632
{
2633
	int migratetype;
L
Linus Torvalds 已提交
2634

2635
	if (!free_pcp_prepare(page))
2636
		return false;
2637

2638
	migratetype = get_pfnblock_migratetype(page, pfn);
2639
	set_pcppage_migratetype(page, migratetype);
2640 2641 2642
	return true;
}

2643
static void free_unref_page_commit(struct page *page, unsigned long pfn)
2644 2645 2646 2647 2648 2649
{
	struct zone *zone = page_zone(page);
	struct per_cpu_pages *pcp;
	int migratetype;

	migratetype = get_pcppage_migratetype(page);
2650
	__count_vm_event(PGFREE);
2651

2652 2653 2654
	/*
	 * We only track unmovable, reclaimable and movable on pcp lists.
	 * Free ISOLATE pages back to the allocator because they are being
2655
	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2656 2657 2658 2659
	 * areas back if necessary. Otherwise, we may have to free
	 * excessively into the page allocator
	 */
	if (migratetype >= MIGRATE_PCPTYPES) {
2660
		if (unlikely(is_migrate_isolate(migratetype))) {
2661
			free_one_page(zone, page, pfn, 0, migratetype);
2662
			return;
2663 2664 2665 2666
		}
		migratetype = MIGRATE_MOVABLE;
	}

2667
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2668
	list_add(&page->lru, &pcp->lists[migratetype]);
L
Linus Torvalds 已提交
2669
	pcp->count++;
N
Nick Piggin 已提交
2670
	if (pcp->count >= pcp->high) {
2671
		unsigned long batch = READ_ONCE(pcp->batch);
2672 2673
		free_pcppages_bulk(zone, batch, pcp);
		pcp->count -= batch;
N
Nick Piggin 已提交
2674
	}
2675
}
2676

2677 2678 2679
/*
 * Free a 0-order page
 */
2680
void free_unref_page(struct page *page)
2681 2682 2683 2684
{
	unsigned long flags;
	unsigned long pfn = page_to_pfn(page);

2685
	if (!free_unref_page_prepare(page, pfn))
2686 2687 2688
		return;

	local_irq_save(flags);
2689
	free_unref_page_commit(page, pfn);
2690
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2691 2692
}

2693 2694 2695
/*
 * Free a list of 0-order pages
 */
2696
void free_unref_page_list(struct list_head *list)
2697 2698
{
	struct page *page, *next;
2699
	unsigned long flags, pfn;
2700
	int batch_count = 0;
2701 2702 2703 2704

	/* Prepare pages for freeing */
	list_for_each_entry_safe(page, next, list, lru) {
		pfn = page_to_pfn(page);
2705
		if (!free_unref_page_prepare(page, pfn))
2706 2707 2708
			list_del(&page->lru);
		set_page_private(page, pfn);
	}
2709

2710
	local_irq_save(flags);
2711
	list_for_each_entry_safe(page, next, list, lru) {
2712 2713 2714
		unsigned long pfn = page_private(page);

		set_page_private(page, 0);
2715 2716
		trace_mm_page_free_batched(page);
		free_unref_page_commit(page, pfn);
2717 2718 2719 2720 2721 2722 2723 2724 2725 2726

		/*
		 * Guard against excessive IRQ disabled times when we get
		 * a large list of pages to free.
		 */
		if (++batch_count == SWAP_CLUSTER_MAX) {
			local_irq_restore(flags);
			batch_count = 0;
			local_irq_save(flags);
		}
2727
	}
2728
	local_irq_restore(flags);
2729 2730
}

N
Nick Piggin 已提交
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
/*
 * split_page takes a non-compound higher-order page, and splits it into
 * n (1<<order) sub-pages: page[0..n]
 * Each sub-page must be freed individually.
 *
 * Note: this is probably too low level an operation for use in drivers.
 * Please consult with lkml before using this in your driver.
 */
void split_page(struct page *page, unsigned int order)
{
	int i;

2743 2744
	VM_BUG_ON_PAGE(PageCompound(page), page);
	VM_BUG_ON_PAGE(!page_count(page), page);
2745

2746
	for (i = 1; i < (1 << order); i++)
2747
		set_page_refcounted(page + i);
2748
	split_page_owner(page, order);
N
Nick Piggin 已提交
2749
}
K
K. Y. Srinivasan 已提交
2750
EXPORT_SYMBOL_GPL(split_page);
N
Nick Piggin 已提交
2751

2752
int __isolate_free_page(struct page *page, unsigned int order)
2753 2754 2755
{
	unsigned long watermark;
	struct zone *zone;
2756
	int mt;
2757 2758 2759 2760

	BUG_ON(!PageBuddy(page));

	zone = page_zone(page);
2761
	mt = get_pageblock_migratetype(page);
2762

2763
	if (!is_migrate_isolate(mt)) {
2764 2765 2766 2767 2768 2769 2770
		/*
		 * Obey watermarks as if the page was being allocated. We can
		 * emulate a high-order watermark check with a raised order-0
		 * watermark, because we already know our high-order page
		 * exists.
		 */
		watermark = min_wmark_pages(zone) + (1UL << order);
2771
		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2772 2773
			return 0;

2774
		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2775
	}
2776 2777 2778 2779 2780

	/* Remove page from free list */
	list_del(&page->lru);
	zone->free_area[order].nr_free--;
	rmv_page_order(page);
2781

2782 2783 2784 2785
	/*
	 * Set the pageblock if the isolated page is at least half of a
	 * pageblock
	 */
2786 2787
	if (order >= pageblock_order - 1) {
		struct page *endpage = page + (1 << order) - 1;
2788 2789
		for (; page < endpage; page += pageblock_nr_pages) {
			int mt = get_pageblock_migratetype(page);
M
Minchan Kim 已提交
2790
			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2791
			    && !is_migrate_highatomic(mt))
2792 2793 2794
				set_pageblock_migratetype(page,
							  MIGRATE_MOVABLE);
		}
2795 2796
	}

2797

2798
	return 1UL << order;
2799 2800
}

2801 2802 2803 2804 2805
/*
 * Update NUMA hit/miss statistics
 *
 * Must be called with interrupts disabled.
 */
M
Michal Hocko 已提交
2806
static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2807 2808
{
#ifdef CONFIG_NUMA
2809
	enum numa_stat_item local_stat = NUMA_LOCAL;
2810

2811 2812 2813 2814
	/* skip numa counters update if numa stats is disabled */
	if (!static_branch_likely(&vm_numa_stat_key))
		return;

2815
	if (z->node != numa_node_id())
2816 2817
		local_stat = NUMA_OTHER;

2818
	if (z->node == preferred_zone->node)
2819
		__inc_numa_state(z, NUMA_HIT);
2820
	else {
2821 2822
		__inc_numa_state(z, NUMA_MISS);
		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2823
	}
2824
	__inc_numa_state(z, local_stat);
2825 2826 2827
#endif
}

2828 2829
/* Remove page from the per-cpu list, caller must protect the list */
static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
M
Mel Gorman 已提交
2830
			struct per_cpu_pages *pcp,
2831 2832 2833 2834 2835 2836 2837 2838
			struct list_head *list)
{
	struct page *page;

	do {
		if (list_empty(list)) {
			pcp->count += rmqueue_bulk(zone, 0,
					pcp->batch, list,
M
Mel Gorman 已提交
2839
					migratetype);
2840 2841 2842 2843
			if (unlikely(list_empty(list)))
				return NULL;
		}

M
Mel Gorman 已提交
2844
		page = list_first_entry(list, struct page, lru);
2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
		list_del(&page->lru);
		pcp->count--;
	} while (check_new_pcp(page));

	return page;
}

/* Lock and remove page from the per-cpu list */
static struct page *rmqueue_pcplist(struct zone *preferred_zone,
			struct zone *zone, unsigned int order,
			gfp_t gfp_flags, int migratetype)
{
	struct per_cpu_pages *pcp;
	struct list_head *list;
	struct page *page;
2860
	unsigned long flags;
2861

2862
	local_irq_save(flags);
2863 2864
	pcp = &this_cpu_ptr(zone->pageset)->pcp;
	list = &pcp->lists[migratetype];
M
Mel Gorman 已提交
2865
	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2866 2867 2868 2869
	if (page) {
		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
		zone_statistics(preferred_zone, zone);
	}
2870
	local_irq_restore(flags);
2871 2872 2873
	return page;
}

L
Linus Torvalds 已提交
2874
/*
2875
 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
L
Linus Torvalds 已提交
2876
 */
2877
static inline
2878
struct page *rmqueue(struct zone *preferred_zone,
2879
			struct zone *zone, unsigned int order,
2880 2881
			gfp_t gfp_flags, unsigned int alloc_flags,
			int migratetype)
L
Linus Torvalds 已提交
2882 2883
{
	unsigned long flags;
2884
	struct page *page;
L
Linus Torvalds 已提交
2885

2886
	if (likely(order == 0)) {
2887 2888 2889 2890
		page = rmqueue_pcplist(preferred_zone, zone, order,
				gfp_flags, migratetype);
		goto out;
	}
2891

2892 2893 2894 2895 2896 2897
	/*
	 * We most definitely don't want callers attempting to
	 * allocate greater than order-1 page units with __GFP_NOFAIL.
	 */
	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
	spin_lock_irqsave(&zone->lock, flags);
2898

2899 2900 2901 2902 2903 2904 2905
	do {
		page = NULL;
		if (alloc_flags & ALLOC_HARDER) {
			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
			if (page)
				trace_mm_page_alloc_zone_locked(page, order, migratetype);
		}
N
Nick Piggin 已提交
2906
		if (!page)
2907 2908 2909 2910 2911 2912 2913
			page = __rmqueue(zone, order, migratetype);
	} while (page && check_new_pages(page, order));
	spin_unlock(&zone->lock);
	if (!page)
		goto failed;
	__mod_zone_freepage_state(zone, -(1 << order),
				  get_pcppage_migratetype(page));
L
Linus Torvalds 已提交
2914

2915
	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
M
Michal Hocko 已提交
2916
	zone_statistics(preferred_zone, zone);
N
Nick Piggin 已提交
2917
	local_irq_restore(flags);
L
Linus Torvalds 已提交
2918

2919 2920
out:
	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
L
Linus Torvalds 已提交
2921
	return page;
N
Nick Piggin 已提交
2922 2923 2924 2925

failed:
	local_irq_restore(flags);
	return NULL;
L
Linus Torvalds 已提交
2926 2927
}

2928 2929
#ifdef CONFIG_FAIL_PAGE_ALLOC

2930
static struct {
2931 2932
	struct fault_attr attr;

2933
	bool ignore_gfp_highmem;
2934
	bool ignore_gfp_reclaim;
2935
	u32 min_order;
2936 2937
} fail_page_alloc = {
	.attr = FAULT_ATTR_INITIALIZER,
2938
	.ignore_gfp_reclaim = true,
2939
	.ignore_gfp_highmem = true,
2940
	.min_order = 1,
2941 2942 2943 2944 2945 2946 2947 2948
};

static int __init setup_fail_page_alloc(char *str)
{
	return setup_fault_attr(&fail_page_alloc.attr, str);
}
__setup("fail_page_alloc=", setup_fail_page_alloc);

2949
static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2950
{
2951
	if (order < fail_page_alloc.min_order)
2952
		return false;
2953
	if (gfp_mask & __GFP_NOFAIL)
2954
		return false;
2955
	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2956
		return false;
2957 2958
	if (fail_page_alloc.ignore_gfp_reclaim &&
			(gfp_mask & __GFP_DIRECT_RECLAIM))
2959
		return false;
2960 2961 2962 2963 2964 2965 2966 2967

	return should_fail(&fail_page_alloc.attr, 1 << order);
}

#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS

static int __init fail_page_alloc_debugfs(void)
{
A
Al Viro 已提交
2968
	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2969 2970
	struct dentry *dir;

2971 2972 2973 2974
	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
					&fail_page_alloc.attr);
	if (IS_ERR(dir))
		return PTR_ERR(dir);
2975

2976
	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2977
				&fail_page_alloc.ignore_gfp_reclaim))
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
		goto fail;
	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
				&fail_page_alloc.ignore_gfp_highmem))
		goto fail;
	if (!debugfs_create_u32("min-order", mode, dir,
				&fail_page_alloc.min_order))
		goto fail;

	return 0;
fail:
2988
	debugfs_remove_recursive(dir);
2989

2990
	return -ENOMEM;
2991 2992 2993 2994 2995 2996 2997 2998
}

late_initcall(fail_page_alloc_debugfs);

#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */

#else /* CONFIG_FAIL_PAGE_ALLOC */

2999
static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3000
{
3001
	return false;
3002 3003 3004 3005
}

#endif /* CONFIG_FAIL_PAGE_ALLOC */

L
Linus Torvalds 已提交
3006
/*
3007 3008 3009 3010
 * Return true if free base pages are above 'mark'. For high-order checks it
 * will return true of the order-0 watermark is reached and there is at least
 * one free page of a suitable size. Checking now avoids taking the zone lock
 * to check in the allocation paths if no pages are free.
L
Linus Torvalds 已提交
3011
 */
3012 3013 3014
bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
			 int classzone_idx, unsigned int alloc_flags,
			 long free_pages)
L
Linus Torvalds 已提交
3015
{
3016
	long min = mark;
L
Linus Torvalds 已提交
3017
	int o;
3018
	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
L
Linus Torvalds 已提交
3019

3020
	/* free_pages may go negative - that's OK */
3021
	free_pages -= (1 << order) - 1;
3022

R
Rohit Seth 已提交
3023
	if (alloc_flags & ALLOC_HIGH)
L
Linus Torvalds 已提交
3024
		min -= min / 2;
3025 3026 3027 3028 3029 3030

	/*
	 * If the caller does not have rights to ALLOC_HARDER then subtract
	 * the high-atomic reserves. This will over-estimate the size of the
	 * atomic reserve but it avoids a search.
	 */
3031
	if (likely(!alloc_harder)) {
3032
		free_pages -= z->nr_reserved_highatomic;
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
	} else {
		/*
		 * OOM victims can try even harder than normal ALLOC_HARDER
		 * users on the grounds that it's definitely going to be in
		 * the exit path shortly and free memory. Any allocation it
		 * makes during the free path will be small and short-lived.
		 */
		if (alloc_flags & ALLOC_OOM)
			min -= min / 2;
		else
			min -= min / 4;
	}

3046

3047 3048 3049
#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
3050
		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3051
#endif
3052

3053 3054 3055 3056 3057 3058
	/*
	 * Check watermarks for an order-0 allocation request. If these
	 * are not met, then a high-order request also cannot go ahead
	 * even if a suitable page happened to be free.
	 */
	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3059
		return false;
L
Linus Torvalds 已提交
3060

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083
	/* If this is an order-0 request then the watermark is fine */
	if (!order)
		return true;

	/* For a high-order request, check at least one suitable page is free */
	for (o = order; o < MAX_ORDER; o++) {
		struct free_area *area = &z->free_area[o];
		int mt;

		if (!area->nr_free)
			continue;

		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
			if (!list_empty(&area->free_list[mt]))
				return true;
		}

#ifdef CONFIG_CMA
		if ((alloc_flags & ALLOC_CMA) &&
		    !list_empty(&area->free_list[MIGRATE_CMA])) {
			return true;
		}
#endif
3084 3085 3086
		if (alloc_harder &&
			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
			return true;
L
Linus Torvalds 已提交
3087
	}
3088
	return false;
3089 3090
}

3091
bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3092
		      int classzone_idx, unsigned int alloc_flags)
3093 3094 3095 3096 3097
{
	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					zone_page_state(z, NR_FREE_PAGES));
}

3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);
	long cma_pages = 0;

#ifdef CONFIG_CMA
	/* If allocation can't use CMA areas don't use free CMA pages */
	if (!(alloc_flags & ALLOC_CMA))
		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
#endif

	/*
	 * Fast check for order-0 only. If this fails then the reserves
	 * need to be calculated. There is a corner case where the check
	 * passes but only the high-order atomic reserve are free. If
	 * the caller is !atomic then it'll uselessly search the free
	 * list. That corner case is then slower but it is harmless.
	 */
	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
		return true;

	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
					free_pages);
}

3124
bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3125
			unsigned long mark, int classzone_idx)
3126 3127 3128 3129 3130 3131
{
	long free_pages = zone_page_state(z, NR_FREE_PAGES);

	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);

3132
	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3133
								free_pages);
L
Linus Torvalds 已提交
3134 3135
}

3136
#ifdef CONFIG_NUMA
3137 3138
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
3139
	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3140
				RECLAIM_DISTANCE;
3141
}
3142
#else	/* CONFIG_NUMA */
3143 3144 3145 3146
static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
{
	return true;
}
3147 3148
#endif	/* CONFIG_NUMA */

R
Rohit Seth 已提交
3149
/*
3150
 * get_page_from_freelist goes through the zonelist trying to allocate
R
Rohit Seth 已提交
3151 3152 3153
 * a page.
 */
static struct page *
3154 3155
get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
						const struct alloc_context *ac)
M
Martin Hicks 已提交
3156
{
3157
	struct zoneref *z = ac->preferred_zoneref;
3158
	struct zone *zone;
3159 3160
	struct pglist_data *last_pgdat_dirty_limit = NULL;

R
Rohit Seth 已提交
3161
	/*
3162
	 * Scan zonelist, looking for a zone with enough free.
3163
	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
R
Rohit Seth 已提交
3164
	 */
3165
	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3166
								ac->nodemask) {
3167
		struct page *page;
3168 3169
		unsigned long mark;

3170 3171
		if (cpusets_enabled() &&
			(alloc_flags & ALLOC_CPUSET) &&
3172
			!__cpuset_zone_allowed(zone, gfp_mask))
3173
				continue;
3174 3175
		/*
		 * When allocating a page cache page for writing, we
3176 3177
		 * want to get it from a node that is within its dirty
		 * limit, such that no single node holds more than its
3178
		 * proportional share of globally allowed dirty pages.
3179
		 * The dirty limits take into account the node's
3180 3181 3182 3183 3184
		 * lowmem reserves and high watermark so that kswapd
		 * should be able to balance it without having to
		 * write pages from its LRU list.
		 *
		 * XXX: For now, allow allocations to potentially
3185
		 * exceed the per-node dirty limit in the slowpath
3186
		 * (spread_dirty_pages unset) before going into reclaim,
3187
		 * which is important when on a NUMA setup the allowed
3188
		 * nodes are together not big enough to reach the
3189
		 * global limit.  The proper fix for these situations
3190
		 * will require awareness of nodes in the
3191 3192
		 * dirty-throttling and the flusher threads.
		 */
3193 3194 3195 3196 3197 3198 3199 3200 3201
		if (ac->spread_dirty_pages) {
			if (last_pgdat_dirty_limit == zone->zone_pgdat)
				continue;

			if (!node_dirty_ok(zone->zone_pgdat)) {
				last_pgdat_dirty_limit = zone->zone_pgdat;
				continue;
			}
		}
R
Rohit Seth 已提交
3202

3203
		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3204
		if (!zone_watermark_fast(zone, order, mark,
3205
				       ac_classzone_idx(ac), alloc_flags)) {
3206 3207
			int ret;

3208 3209 3210 3211 3212
			/* Checked here to keep the fast path fast */
			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
			if (alloc_flags & ALLOC_NO_WATERMARKS)
				goto try_this_zone;

3213
			if (node_reclaim_mode == 0 ||
3214
			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3215 3216
				continue;

3217
			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3218
			switch (ret) {
3219
			case NODE_RECLAIM_NOSCAN:
3220
				/* did not scan */
3221
				continue;
3222
			case NODE_RECLAIM_FULL:
3223
				/* scanned but unreclaimable */
3224
				continue;
3225 3226
			default:
				/* did we reclaim enough */
3227
				if (zone_watermark_ok(zone, order, mark,
3228
						ac_classzone_idx(ac), alloc_flags))
3229 3230 3231
					goto try_this_zone;

				continue;
3232
			}
R
Rohit Seth 已提交
3233 3234
		}

3235
try_this_zone:
3236
		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3237
				gfp_mask, alloc_flags, ac->migratetype);
3238
		if (page) {
3239
			prep_new_page(page, order, gfp_mask, alloc_flags);
3240 3241 3242 3243 3244 3245 3246 3247

			/*
			 * If this is a high-order atomic allocation then check
			 * if the pageblock should be reserved for the future
			 */
			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
				reserve_highatomic_pageblock(page, zone, order);

3248 3249
			return page;
		}
3250
	}
3251

3252
	return NULL;
M
Martin Hicks 已提交
3253 3254
}

3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268
/*
 * Large machines with many possible nodes should not always dump per-node
 * meminfo in irq context.
 */
static inline bool should_suppress_show_mem(void)
{
	bool ret = false;

#if NODES_SHIFT > 8
	ret = in_interrupt();
#endif
	return ret;
}

3269
static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3270 3271
{
	unsigned int filter = SHOW_MEM_FILTER_NODES;
3272
	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3273

3274
	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3275 3276 3277 3278 3279 3280 3281 3282
		return;

	/*
	 * This documents exceptions given to allocations in certain
	 * contexts that are allowed to allocate outside current's set
	 * of allowed nodes.
	 */
	if (!(gfp_mask & __GFP_NOMEMALLOC))
3283
		if (tsk_is_oom_victim(current) ||
3284 3285
		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
			filter &= ~SHOW_MEM_FILTER_NODES;
3286
	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3287 3288
		filter &= ~SHOW_MEM_FILTER_NODES;

3289
	show_mem(filter, nodemask);
3290 3291
}

3292
void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3293 3294 3295 3296 3297 3298
{
	struct va_format vaf;
	va_list args;
	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);

3299
	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3300 3301
		return;

3302 3303 3304
	va_start(args, fmt);
	vaf.fmt = fmt;
	vaf.va = &args;
M
Michal Hocko 已提交
3305 3306 3307
	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
			current->comm, &vaf, gfp_mask, &gfp_mask,
			nodemask_pr_args(nodemask));
3308
	va_end(args);
J
Joe Perches 已提交
3309

3310
	cpuset_print_current_mems_allowed();
J
Joe Perches 已提交
3311

3312
	dump_stack();
3313
	warn_alloc_show_mem(gfp_mask, nodemask);
3314 3315
}

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
			      unsigned int alloc_flags,
			      const struct alloc_context *ac)
{
	struct page *page;

	page = get_page_from_freelist(gfp_mask, order,
			alloc_flags|ALLOC_CPUSET, ac);
	/*
	 * fallback to ignore cpuset restriction if our nodes
	 * are depleted
	 */
	if (!page)
		page = get_page_from_freelist(gfp_mask, order,
				alloc_flags, ac);

	return page;
}

3336 3337
static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3338
	const struct alloc_context *ac, unsigned long *did_some_progress)
3339
{
3340 3341 3342
	struct oom_control oc = {
		.zonelist = ac->zonelist,
		.nodemask = ac->nodemask,
3343
		.memcg = NULL,
3344 3345 3346
		.gfp_mask = gfp_mask,
		.order = order,
	};
3347 3348
	struct page *page;

3349 3350 3351
	*did_some_progress = 0;

	/*
3352 3353
	 * Acquire the oom lock.  If that fails, somebody else is
	 * making progress for us.
3354
	 */
3355
	if (!mutex_trylock(&oom_lock)) {
3356
		*did_some_progress = 1;
3357
		schedule_timeout_uninterruptible(1);
L
Linus Torvalds 已提交
3358 3359
		return NULL;
	}
3360

3361 3362 3363
	/*
	 * Go through the zonelist yet one more time, keep very high watermark
	 * here, this is only to catch a parallel oom killing, we must fail if
3364 3365 3366
	 * we're still under heavy pressure. But make sure that this reclaim
	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
	 * allocation which will never fail due to oom_lock already held.
3367
	 */
3368 3369 3370
	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
				      ~__GFP_DIRECT_RECLAIM, order,
				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
R
Rohit Seth 已提交
3371
	if (page)
3372 3373
		goto out;

3374 3375 3376 3377 3378 3379
	/* Coredumps can quickly deplete all memory reserves */
	if (current->flags & PF_DUMPCORE)
		goto out;
	/* The OOM killer will not help higher order allocs */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		goto out;
3380 3381 3382 3383 3384 3385 3386 3387
	/*
	 * We have already exhausted all our reclaim opportunities without any
	 * success so it is time to admit defeat. We will skip the OOM killer
	 * because it is very likely that the caller has a more reasonable
	 * fallback than shooting a random task.
	 */
	if (gfp_mask & __GFP_RETRY_MAYFAIL)
		goto out;
3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
	/* The OOM killer does not needlessly kill tasks for lowmem */
	if (ac->high_zoneidx < ZONE_NORMAL)
		goto out;
	if (pm_suspended_storage())
		goto out;
	/*
	 * XXX: GFP_NOFS allocations should rather fail than rely on
	 * other request to make a forward progress.
	 * We are in an unfortunate situation where out_of_memory cannot
	 * do much for this context but let's try it to at least get
	 * access to memory reserved if the current task is killed (see
	 * out_of_memory). Once filesystems are ready to handle allocation
	 * failures more gracefully we should just bail out here.
	 */

	/* The OOM killer may not free memory on a specific node */
	if (gfp_mask & __GFP_THISNODE)
		goto out;
3406

3407
	/* Exhausted what can be done so it's blame time */
3408
	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3409
		*did_some_progress = 1;
3410

3411 3412 3413 3414 3415 3416
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves
		 */
		if (gfp_mask & __GFP_NOFAIL)
			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3417 3418
					ALLOC_NO_WATERMARKS, ac);
	}
3419
out:
3420
	mutex_unlock(&oom_lock);
3421 3422 3423
	return page;
}

3424 3425 3426 3427 3428 3429
/*
 * Maximum number of compaction retries wit a progress before OOM
 * killer is consider as the only way to move forward.
 */
#define MAX_COMPACT_RETRIES 16

3430 3431 3432 3433
#ifdef CONFIG_COMPACTION
/* Try memory compaction for high-order allocations before reclaim */
static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3434
		unsigned int alloc_flags, const struct alloc_context *ac,
3435
		enum compact_priority prio, enum compact_result *compact_result)
3436
{
3437
	struct page *page;
3438
	unsigned int noreclaim_flag;
3439 3440

	if (!order)
3441 3442
		return NULL;

3443
	noreclaim_flag = memalloc_noreclaim_save();
3444
	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3445
									prio);
3446
	memalloc_noreclaim_restore(noreclaim_flag);
3447

3448
	if (*compact_result <= COMPACT_INACTIVE)
3449
		return NULL;
3450

3451 3452 3453 3454 3455
	/*
	 * At least in one zone compaction wasn't deferred or skipped, so let's
	 * count a compaction stall
	 */
	count_vm_event(COMPACTSTALL);
3456

3457
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3458

3459 3460
	if (page) {
		struct zone *zone = page_zone(page);
3461

3462 3463 3464 3465 3466
		zone->compact_blockskip_flush = false;
		compaction_defer_reset(zone, order, true);
		count_vm_event(COMPACTSUCCESS);
		return page;
	}
3467

3468 3469 3470 3471 3472
	/*
	 * It's bad if compaction run occurs and fails. The most likely reason
	 * is that pages exist, but not enough to satisfy watermarks.
	 */
	count_vm_event(COMPACTFAIL);
3473

3474
	cond_resched();
3475 3476 3477

	return NULL;
}
3478

3479 3480 3481 3482
static inline bool
should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
		     enum compact_result compact_result,
		     enum compact_priority *compact_priority,
3483
		     int *compaction_retries)
3484 3485
{
	int max_retries = MAX_COMPACT_RETRIES;
3486
	int min_priority;
3487 3488 3489
	bool ret = false;
	int retries = *compaction_retries;
	enum compact_priority priority = *compact_priority;
3490 3491 3492 3493

	if (!order)
		return false;

3494 3495 3496
	if (compaction_made_progress(compact_result))
		(*compaction_retries)++;

3497 3498 3499 3500 3501
	/*
	 * compaction considers all the zone as desperately out of memory
	 * so it doesn't really make much sense to retry except when the
	 * failure could be caused by insufficient priority
	 */
3502 3503
	if (compaction_failed(compact_result))
		goto check_priority;
3504 3505 3506 3507 3508 3509 3510

	/*
	 * make sure the compaction wasn't deferred or didn't bail out early
	 * due to locks contention before we declare that we should give up.
	 * But do not retry if the given zonelist is not suitable for
	 * compaction.
	 */
3511 3512 3513 3514
	if (compaction_withdrawn(compact_result)) {
		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
		goto out;
	}
3515 3516

	/*
3517
	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3518 3519 3520 3521 3522 3523 3524 3525
	 * costly ones because they are de facto nofail and invoke OOM
	 * killer to move on while costly can fail and users are ready
	 * to cope with that. 1/4 retries is rather arbitrary but we
	 * would need much more detailed feedback from compaction to
	 * make a better decision.
	 */
	if (order > PAGE_ALLOC_COSTLY_ORDER)
		max_retries /= 4;
3526 3527 3528 3529
	if (*compaction_retries <= max_retries) {
		ret = true;
		goto out;
	}
3530

3531 3532 3533 3534 3535
	/*
	 * Make sure there are attempts at the highest priority if we exhausted
	 * all retries or failed at the lower priorities.
	 */
check_priority:
3536 3537
	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3538

3539
	if (*compact_priority > min_priority) {
3540 3541
		(*compact_priority)--;
		*compaction_retries = 0;
3542
		ret = true;
3543
	}
3544 3545 3546
out:
	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
	return ret;
3547
}
3548 3549 3550
#else
static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3551
		unsigned int alloc_flags, const struct alloc_context *ac,
3552
		enum compact_priority prio, enum compact_result *compact_result)
3553
{
3554
	*compact_result = COMPACT_SKIPPED;
3555 3556
	return NULL;
}
3557 3558

static inline bool
3559 3560
should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
		     enum compact_result compact_result,
3561
		     enum compact_priority *compact_priority,
3562
		     int *compaction_retries)
3563
{
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
	struct zone *zone;
	struct zoneref *z;

	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
		return false;

	/*
	 * There are setups with compaction disabled which would prefer to loop
	 * inside the allocator rather than hit the oom killer prematurely.
	 * Let's give them a good hope and keep retrying while the order-0
	 * watermarks are OK.
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
					ac_classzone_idx(ac), alloc_flags))
			return true;
	}
3582 3583
	return false;
}
3584
#endif /* CONFIG_COMPACTION */
3585

3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598
#ifdef CONFIG_LOCKDEP
struct lockdep_map __fs_reclaim_map =
	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);

static bool __need_fs_reclaim(gfp_t gfp_mask)
{
	gfp_mask = current_gfp_context(gfp_mask);

	/* no reclaim without waiting on it */
	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
		return false;

	/* this guy won't enter reclaim */
T
Tetsuo Handa 已提交
3599
	if (current->flags & PF_MEMALLOC)
3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626
		return false;

	/* We're only interested __GFP_FS allocations for now */
	if (!(gfp_mask & __GFP_FS))
		return false;

	if (gfp_mask & __GFP_NOLOCKDEP)
		return false;

	return true;
}

void fs_reclaim_acquire(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_acquire(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_acquire);

void fs_reclaim_release(gfp_t gfp_mask)
{
	if (__need_fs_reclaim(gfp_mask))
		lock_map_release(&__fs_reclaim_map);
}
EXPORT_SYMBOL_GPL(fs_reclaim_release);
#endif

3627 3628
/* Perform direct synchronous page reclaim */
static int
3629 3630
__perform_reclaim(gfp_t gfp_mask, unsigned int order,
					const struct alloc_context *ac)
3631 3632
{
	struct reclaim_state reclaim_state;
3633
	int progress;
3634
	unsigned int noreclaim_flag;
3635 3636 3637 3638 3639

	cond_resched();

	/* We now go into synchronous reclaim */
	cpuset_memory_pressure_bump();
3640
	noreclaim_flag = memalloc_noreclaim_save();
3641
	fs_reclaim_acquire(gfp_mask);
3642
	reclaim_state.reclaimed_slab = 0;
3643
	current->reclaim_state = &reclaim_state;
3644

3645 3646
	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
								ac->nodemask);
3647

3648
	current->reclaim_state = NULL;
3649
	fs_reclaim_release(gfp_mask);
3650
	memalloc_noreclaim_restore(noreclaim_flag);
3651 3652 3653

	cond_resched();

3654 3655 3656 3657 3658 3659
	return progress;
}

/* The really slow allocator path where we enter direct reclaim */
static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3660
		unsigned int alloc_flags, const struct alloc_context *ac,
3661
		unsigned long *did_some_progress)
3662 3663 3664 3665
{
	struct page *page = NULL;
	bool drained = false;

3666
	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3667 3668
	if (unlikely(!(*did_some_progress)))
		return NULL;
3669

3670
retry:
3671
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3672 3673 3674

	/*
	 * If an allocation failed after direct reclaim, it could be because
3675 3676
	 * pages are pinned on the per-cpu lists or in high alloc reserves.
	 * Shrink them them and try again
3677 3678
	 */
	if (!page && !drained) {
3679
		unreserve_highatomic_pageblock(ac, false);
3680
		drain_all_pages(NULL);
3681 3682 3683 3684
		drained = true;
		goto retry;
	}

3685 3686 3687
	return page;
}

3688
static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3689 3690 3691
{
	struct zoneref *z;
	struct zone *zone;
3692
	pg_data_t *last_pgdat = NULL;
3693

3694
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3695 3696
					ac->high_zoneidx, ac->nodemask) {
		if (last_pgdat != zone->zone_pgdat)
3697
			wakeup_kswapd(zone, order, ac->high_zoneidx);
3698 3699
		last_pgdat = zone->zone_pgdat;
	}
3700 3701
}

3702
static inline unsigned int
3703 3704
gfp_to_alloc_flags(gfp_t gfp_mask)
{
3705
	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
L
Linus Torvalds 已提交
3706

3707
	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3708
	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3709

3710 3711 3712 3713
	/*
	 * The caller may dip into page reserves a bit more if the caller
	 * cannot run direct reclaim, or if the caller has realtime scheduling
	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3714
	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3715
	 */
3716
	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
L
Linus Torvalds 已提交
3717

3718
	if (gfp_mask & __GFP_ATOMIC) {
3719
		/*
3720 3721
		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
		 * if it can't schedule.
3722
		 */
3723
		if (!(gfp_mask & __GFP_NOMEMALLOC))
3724
			alloc_flags |= ALLOC_HARDER;
3725
		/*
3726
		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3727
		 * comment for __cpuset_node_allowed().
3728
		 */
3729
		alloc_flags &= ~ALLOC_CPUSET;
3730
	} else if (unlikely(rt_task(current)) && !in_interrupt())
3731 3732
		alloc_flags |= ALLOC_HARDER;

3733
#ifdef CONFIG_CMA
3734
	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3735 3736
		alloc_flags |= ALLOC_CMA;
#endif
3737 3738 3739
	return alloc_flags;
}

3740
static bool oom_reserves_allowed(struct task_struct *tsk)
3741
{
3742 3743 3744 3745 3746 3747 3748 3749
	if (!tsk_is_oom_victim(tsk))
		return false;

	/*
	 * !MMU doesn't have oom reaper so give access to memory reserves
	 * only to the thread with TIF_MEMDIE set
	 */
	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3750 3751
		return false;

3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762
	return true;
}

/*
 * Distinguish requests which really need access to full memory
 * reserves from oom victims which can live with a portion of it
 */
static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
{
	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
		return 0;
3763
	if (gfp_mask & __GFP_MEMALLOC)
3764
		return ALLOC_NO_WATERMARKS;
3765
	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3766 3767 3768 3769 3770 3771 3772
		return ALLOC_NO_WATERMARKS;
	if (!in_interrupt()) {
		if (current->flags & PF_MEMALLOC)
			return ALLOC_NO_WATERMARKS;
		else if (oom_reserves_allowed(current))
			return ALLOC_OOM;
	}
3773

3774 3775 3776 3777 3778 3779
	return 0;
}

bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
{
	return !!__gfp_pfmemalloc_flags(gfp_mask);
3780 3781
}

M
Michal Hocko 已提交
3782 3783 3784
/*
 * Checks whether it makes sense to retry the reclaim to make a forward progress
 * for the given allocation request.
3785 3786 3787 3788
 *
 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
 * without success, or when we couldn't even meet the watermark if we
 * reclaimed all remaining pages on the LRU lists.
M
Michal Hocko 已提交
3789 3790 3791 3792 3793 3794
 *
 * Returns true if a retry is viable or false to enter the oom path.
 */
static inline bool
should_reclaim_retry(gfp_t gfp_mask, unsigned order,
		     struct alloc_context *ac, int alloc_flags,
3795
		     bool did_some_progress, int *no_progress_loops)
M
Michal Hocko 已提交
3796 3797 3798 3799
{
	struct zone *zone;
	struct zoneref *z;

3800 3801 3802 3803 3804 3805 3806 3807 3808 3809
	/*
	 * Costly allocations might have made a progress but this doesn't mean
	 * their order will become available due to high fragmentation so
	 * always increment the no progress counter for them
	 */
	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
		*no_progress_loops = 0;
	else
		(*no_progress_loops)++;

M
Michal Hocko 已提交
3810 3811 3812 3813
	/*
	 * Make sure we converge to OOM if we cannot make any progress
	 * several times in the row.
	 */
3814 3815
	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
		/* Before OOM, exhaust highatomic_reserve */
3816
		return unreserve_highatomic_pageblock(ac, true);
3817
	}
M
Michal Hocko 已提交
3818

3819 3820 3821 3822 3823
	/*
	 * Keep reclaiming pages while there is a chance this will lead
	 * somewhere.  If none of the target zones can satisfy our allocation
	 * request even if all reclaimable pages are considered then we are
	 * screwed and have to go OOM.
M
Michal Hocko 已提交
3824 3825 3826 3827
	 */
	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
					ac->nodemask) {
		unsigned long available;
3828
		unsigned long reclaimable;
3829 3830
		unsigned long min_wmark = min_wmark_pages(zone);
		bool wmark;
M
Michal Hocko 已提交
3831

3832 3833
		available = reclaimable = zone_reclaimable_pages(zone);
		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
M
Michal Hocko 已提交
3834 3835

		/*
3836 3837
		 * Would the allocation succeed if we reclaimed all
		 * reclaimable pages?
M
Michal Hocko 已提交
3838
		 */
3839 3840 3841 3842 3843
		wmark = __zone_watermark_ok(zone, order, min_wmark,
				ac_classzone_idx(ac), alloc_flags, available);
		trace_reclaim_retry_zone(z, order, reclaimable,
				available, min_wmark, *no_progress_loops, wmark);
		if (wmark) {
3844 3845 3846 3847 3848 3849 3850
			/*
			 * If we didn't make any progress and have a lot of
			 * dirty + writeback pages then we should wait for
			 * an IO to complete to slow down the reclaim and
			 * prevent from pre mature OOM
			 */
			if (!did_some_progress) {
3851
				unsigned long write_pending;
3852

3853 3854
				write_pending = zone_page_state_snapshot(zone,
							NR_ZONE_WRITE_PENDING);
3855

3856
				if (2 * write_pending > reclaimable) {
3857 3858 3859 3860
					congestion_wait(BLK_RW_ASYNC, HZ/10);
					return true;
				}
			}
3861

3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
			/*
			 * Memory allocation/reclaim might be called from a WQ
			 * context and the current implementation of the WQ
			 * concurrency control doesn't recognize that
			 * a particular WQ is congested if the worker thread is
			 * looping without ever sleeping. Therefore we have to
			 * do a short sleep here rather than calling
			 * cond_resched().
			 */
			if (current->flags & PF_WQ_WORKER)
				schedule_timeout_uninterruptible(1);
			else
				cond_resched();

M
Michal Hocko 已提交
3876 3877 3878 3879 3880 3881 3882
			return true;
		}
	}

	return false;
}

3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915
static inline bool
check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
{
	/*
	 * It's possible that cpuset's mems_allowed and the nodemask from
	 * mempolicy don't intersect. This should be normally dealt with by
	 * policy_nodemask(), but it's possible to race with cpuset update in
	 * such a way the check therein was true, and then it became false
	 * before we got our cpuset_mems_cookie here.
	 * This assumes that for all allocations, ac->nodemask can come only
	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
	 * when it does not intersect with the cpuset restrictions) or the
	 * caller can deal with a violated nodemask.
	 */
	if (cpusets_enabled() && ac->nodemask &&
			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
		ac->nodemask = NULL;
		return true;
	}

	/*
	 * When updating a task's mems_allowed or mempolicy nodemask, it is
	 * possible to race with parallel threads in such a way that our
	 * allocation can fail while the mask is being updated. If we are about
	 * to fail, check if the cpuset changed during allocation and if so,
	 * retry.
	 */
	if (read_mems_allowed_retry(cpuset_mems_cookie))
		return true;

	return false;
}

3916 3917
static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3918
						struct alloc_context *ac)
3919
{
3920
	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3921
	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3922
	struct page *page = NULL;
3923
	unsigned int alloc_flags;
3924
	unsigned long did_some_progress;
3925
	enum compact_priority compact_priority;
3926
	enum compact_result compact_result;
3927 3928 3929
	int compaction_retries;
	int no_progress_loops;
	unsigned int cpuset_mems_cookie;
3930
	int reserve_flags;
L
Linus Torvalds 已提交
3931

3932 3933 3934 3935 3936 3937
	/*
	 * In the slowpath, we sanity check order to avoid ever trying to
	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
	 * be using allocators in order of preference for an area that is
	 * too large.
	 */
3938 3939
	if (order >= MAX_ORDER) {
		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3940
		return NULL;
3941
	}
L
Linus Torvalds 已提交
3942

3943 3944 3945 3946 3947 3948 3949 3950
	/*
	 * We also sanity check to catch abuse of atomic reserves being used by
	 * callers that are not in atomic context.
	 */
	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
		gfp_mask &= ~__GFP_ATOMIC;

3951 3952 3953 3954 3955
retry_cpuset:
	compaction_retries = 0;
	no_progress_loops = 0;
	compact_priority = DEF_COMPACT_PRIORITY;
	cpuset_mems_cookie = read_mems_allowed_begin();
3956 3957 3958 3959 3960 3961 3962 3963

	/*
	 * The fast path uses conservative alloc_flags to succeed only until
	 * kswapd needs to be woken up, and to avoid the cost of setting up
	 * alloc_flags precisely. So we do that now.
	 */
	alloc_flags = gfp_to_alloc_flags(gfp_mask);

3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974
	/*
	 * We need to recalculate the starting point for the zonelist iterator
	 * because we might have used different nodemask in the fast path, or
	 * there was a cpuset modification and we are retrying - otherwise we
	 * could end up iterating over non-eligible zones endlessly.
	 */
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	if (!ac->preferred_zoneref->zone)
		goto nopage;

3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

	/*
	 * The adjusted alloc_flags might result in immediate success, so try
	 * that first
	 */
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
	if (page)
		goto got_pg;

3986 3987
	/*
	 * For costly allocations, try direct compaction first, as it's likely
3988 3989 3990 3991 3992 3993
	 * that we have enough base pages and don't need to reclaim. For non-
	 * movable high-order allocations, do that as well, as compaction will
	 * try prevent permanent fragmentation by migrating from blocks of the
	 * same migratetype.
	 * Don't try this for allocations that are allowed to ignore
	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3994
	 */
3995 3996 3997 3998
	if (can_direct_reclaim &&
			(costly_order ||
			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3999 4000
		page = __alloc_pages_direct_compact(gfp_mask, order,
						alloc_flags, ac,
4001
						INIT_COMPACT_PRIORITY,
4002 4003 4004 4005
						&compact_result);
		if (page)
			goto got_pg;

4006 4007 4008 4009
		/*
		 * Checks for costly allocations with __GFP_NORETRY, which
		 * includes THP page fault allocations
		 */
4010
		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022
			/*
			 * If compaction is deferred for high-order allocations,
			 * it is because sync compaction recently failed. If
			 * this is the case and the caller requested a THP
			 * allocation, we do not want to heavily disrupt the
			 * system, so we fail the allocation instead of entering
			 * direct reclaim.
			 */
			if (compact_result == COMPACT_DEFERRED)
				goto nopage;

			/*
4023 4024
			 * Looks like reclaim/compaction is worth trying, but
			 * sync compaction could be very expensive, so keep
4025
			 * using async compaction.
4026
			 */
4027
			compact_priority = INIT_COMPACT_PRIORITY;
4028 4029
		}
	}
4030

4031
retry:
4032
	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4033 4034 4035
	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
		wake_all_kswapds(order, ac);

4036 4037 4038
	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
	if (reserve_flags)
		alloc_flags = reserve_flags;
4039

4040 4041 4042 4043 4044
	/*
	 * Reset the zonelist iterators if memory policies can be ignored.
	 * These allocations are high priority and system rather than user
	 * orientated.
	 */
4045
	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4046 4047 4048 4049 4050
		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
	}

4051
	/* Attempt with potentially adjusted zonelist and alloc_flags */
4052
	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
R
Rohit Seth 已提交
4053 4054
	if (page)
		goto got_pg;
L
Linus Torvalds 已提交
4055

4056
	/* Caller is not willing to reclaim, we can't balance anything */
4057
	if (!can_direct_reclaim)
L
Linus Torvalds 已提交
4058 4059
		goto nopage;

4060 4061
	/* Avoid recursion of direct reclaim */
	if (current->flags & PF_MEMALLOC)
4062 4063
		goto nopage;

4064 4065 4066 4067 4068 4069 4070
	/* Try direct reclaim and then allocating */
	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
							&did_some_progress);
	if (page)
		goto got_pg;

	/* Try direct compaction and then allocating */
4071
	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4072
					compact_priority, &compact_result);
4073 4074
	if (page)
		goto got_pg;
4075

4076 4077
	/* Do not loop if specifically requested */
	if (gfp_mask & __GFP_NORETRY)
4078
		goto nopage;
4079

M
Michal Hocko 已提交
4080 4081
	/*
	 * Do not retry costly high order allocations unless they are
4082
	 * __GFP_RETRY_MAYFAIL
M
Michal Hocko 已提交
4083
	 */
4084
	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4085
		goto nopage;
M
Michal Hocko 已提交
4086 4087

	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4088
				 did_some_progress > 0, &no_progress_loops))
M
Michal Hocko 已提交
4089 4090
		goto retry;

4091 4092 4093 4094 4095 4096 4097
	/*
	 * It doesn't make any sense to retry for the compaction if the order-0
	 * reclaim is not able to make any progress because the current
	 * implementation of the compaction depends on the sufficient amount
	 * of free memory (see __compaction_suitable)
	 */
	if (did_some_progress > 0 &&
4098
			should_compact_retry(ac, order, alloc_flags,
4099
				compact_result, &compact_priority,
4100
				&compaction_retries))
4101 4102
		goto retry;

4103 4104 4105

	/* Deal with possible cpuset update races before we start OOM killing */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4106 4107
		goto retry_cpuset;

4108 4109 4110 4111 4112
	/* Reclaim has failed us, start killing things */
	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
	if (page)
		goto got_pg;

4113
	/* Avoid allocations with no watermarks from looping endlessly */
4114 4115
	if (tsk_is_oom_victim(current) &&
	    (alloc_flags == ALLOC_OOM ||
4116
	     (gfp_mask & __GFP_NOMEMALLOC)))
4117 4118
		goto nopage;

4119
	/* Retry as long as the OOM killer is making progress */
M
Michal Hocko 已提交
4120 4121
	if (did_some_progress) {
		no_progress_loops = 0;
4122
		goto retry;
M
Michal Hocko 已提交
4123
	}
4124

L
Linus Torvalds 已提交
4125
nopage:
4126 4127
	/* Deal with possible cpuset update races before we fail */
	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4128 4129
		goto retry_cpuset;

4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	/*
	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
	 * we always retry
	 */
	if (gfp_mask & __GFP_NOFAIL) {
		/*
		 * All existing users of the __GFP_NOFAIL are blockable, so warn
		 * of any new users that actually require GFP_NOWAIT
		 */
		if (WARN_ON_ONCE(!can_direct_reclaim))
			goto fail;

		/*
		 * PF_MEMALLOC request from this context is rather bizarre
		 * because we cannot reclaim anything and only can loop waiting
		 * for somebody to do a work for us
		 */
		WARN_ON_ONCE(current->flags & PF_MEMALLOC);

		/*
		 * non failing costly orders are a hard requirement which we
		 * are not prepared for much so let's warn about these users
		 * so that we can identify them and convert them to something
		 * else.
		 */
		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);

4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
		/*
		 * Help non-failing allocations by giving them access to memory
		 * reserves but do not use ALLOC_NO_WATERMARKS because this
		 * could deplete whole memory reserves which would just make
		 * the situation worse
		 */
		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
		if (page)
			goto got_pg;

4167 4168 4169 4170
		cond_resched();
		goto retry;
	}
fail:
4171
	warn_alloc(gfp_mask, ac->nodemask,
4172
			"page allocation failure: order:%u", order);
L
Linus Torvalds 已提交
4173
got_pg:
4174
	return page;
L
Linus Torvalds 已提交
4175
}
4176

4177
static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4178
		int preferred_nid, nodemask_t *nodemask,
4179 4180
		struct alloc_context *ac, gfp_t *alloc_mask,
		unsigned int *alloc_flags)
4181
{
4182
	ac->high_zoneidx = gfp_zone(gfp_mask);
4183
	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4184 4185
	ac->nodemask = nodemask;
	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4186

4187
	if (cpusets_enabled()) {
4188 4189 4190
		*alloc_mask |= __GFP_HARDWALL;
		if (!ac->nodemask)
			ac->nodemask = &cpuset_current_mems_allowed;
4191 4192
		else
			*alloc_flags |= ALLOC_CPUSET;
4193 4194
	}

4195 4196
	fs_reclaim_acquire(gfp_mask);
	fs_reclaim_release(gfp_mask);
4197

4198
	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4199 4200

	if (should_fail_alloc_page(gfp_mask, order))
4201
		return false;
4202

4203 4204 4205 4206 4207
	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
		*alloc_flags |= ALLOC_CMA;

	return true;
}
4208

4209 4210 4211 4212
/* Determine whether to spread dirty pages and what the first usable zone */
static inline void finalise_ac(gfp_t gfp_mask,
		unsigned int order, struct alloc_context *ac)
{
4213
	/* Dirty zone balancing only done in the fast path */
4214
	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4215

4216 4217 4218 4219 4220
	/*
	 * The preferred zone is used for statistics but crucially it is
	 * also used as the starting point for the zonelist iterator. It
	 * may get reset for allocations that ignore memory policies.
	 */
4221 4222 4223 4224 4225 4226 4227 4228
	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
					ac->high_zoneidx, ac->nodemask);
}

/*
 * This is the 'heart' of the zoned buddy allocator.
 */
struct page *
4229 4230
__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
							nodemask_t *nodemask)
4231 4232 4233
{
	struct page *page;
	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4234
	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4235 4236 4237
	struct alloc_context ac = { };

	gfp_mask &= gfp_allowed_mask;
4238
	alloc_mask = gfp_mask;
4239
	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4240 4241 4242
		return NULL;

	finalise_ac(gfp_mask, order, &ac);
4243

4244
	/* First allocation attempt */
4245
	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4246 4247
	if (likely(page))
		goto out;
4248

4249
	/*
4250 4251 4252 4253
	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
	 * resp. GFP_NOIO which has to be inherited for all allocation requests
	 * from a particular context which has been marked by
	 * memalloc_no{fs,io}_{save,restore}.
4254
	 */
4255
	alloc_mask = current_gfp_context(gfp_mask);
4256
	ac.spread_dirty_pages = false;
4257

4258 4259 4260 4261
	/*
	 * Restore the original nodemask if it was potentially replaced with
	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
	 */
4262
	if (unlikely(ac.nodemask != nodemask))
4263
		ac.nodemask = nodemask;
4264

4265
	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4266

4267
out:
4268 4269 4270 4271
	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
		__free_pages(page, order);
		page = NULL;
4272 4273
	}

4274 4275
	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);

4276
	return page;
L
Linus Torvalds 已提交
4277
}
4278
EXPORT_SYMBOL(__alloc_pages_nodemask);
L
Linus Torvalds 已提交
4279 4280 4281 4282

/*
 * Common helper functions.
 */
H
Harvey Harrison 已提交
4283
unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
L
Linus Torvalds 已提交
4284
{
4285 4286 4287
	struct page *page;

	/*
4288
	 * __get_free_pages() returns a virtual address, which cannot represent
4289 4290 4291 4292
	 * a highmem page
	 */
	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);

L
Linus Torvalds 已提交
4293 4294 4295 4296 4297 4298 4299
	page = alloc_pages(gfp_mask, order);
	if (!page)
		return 0;
	return (unsigned long) page_address(page);
}
EXPORT_SYMBOL(__get_free_pages);

H
Harvey Harrison 已提交
4300
unsigned long get_zeroed_page(gfp_t gfp_mask)
L
Linus Torvalds 已提交
4301
{
4302
	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
L
Linus Torvalds 已提交
4303 4304 4305
}
EXPORT_SYMBOL(get_zeroed_page);

H
Harvey Harrison 已提交
4306
void __free_pages(struct page *page, unsigned int order)
L
Linus Torvalds 已提交
4307
{
N
Nick Piggin 已提交
4308
	if (put_page_testzero(page)) {
L
Linus Torvalds 已提交
4309
		if (order == 0)
4310
			free_unref_page(page);
L
Linus Torvalds 已提交
4311 4312 4313 4314 4315 4316 4317
		else
			__free_pages_ok(page, order);
	}
}

EXPORT_SYMBOL(__free_pages);

H
Harvey Harrison 已提交
4318
void free_pages(unsigned long addr, unsigned int order)
L
Linus Torvalds 已提交
4319 4320
{
	if (addr != 0) {
N
Nick Piggin 已提交
4321
		VM_BUG_ON(!virt_addr_valid((void *)addr));
L
Linus Torvalds 已提交
4322 4323 4324 4325 4326 4327
		__free_pages(virt_to_page((void *)addr), order);
	}
}

EXPORT_SYMBOL(free_pages);

4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338
/*
 * Page Fragment:
 *  An arbitrary-length arbitrary-offset area of memory which resides
 *  within a 0 or higher order page.  Multiple fragments within that page
 *  are individually refcounted, in the page's reference counter.
 *
 * The page_frag functions below provide a simple allocation framework for
 * page fragments.  This is used by the network stack and network device
 * drivers to provide a backing region of memory for use as either an
 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
 */
4339 4340
static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
					     gfp_t gfp_mask)
4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359
{
	struct page *page = NULL;
	gfp_t gfp = gfp_mask;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
		    __GFP_NOMEMALLOC;
	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
				PAGE_FRAG_CACHE_MAX_ORDER);
	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
#endif
	if (unlikely(!page))
		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);

	nc->va = page ? page_address(page) : NULL;

	return page;
}

4360
void __page_frag_cache_drain(struct page *page, unsigned int count)
4361 4362 4363 4364
{
	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);

	if (page_ref_sub_and_test(page, count)) {
4365 4366
		unsigned int order = compound_order(page);

4367
		if (order == 0)
4368
			free_unref_page(page);
4369 4370 4371 4372
		else
			__free_pages_ok(page, order);
	}
}
4373
EXPORT_SYMBOL(__page_frag_cache_drain);
4374

4375 4376
void *page_frag_alloc(struct page_frag_cache *nc,
		      unsigned int fragsz, gfp_t gfp_mask)
4377 4378 4379 4380 4381 4382 4383
{
	unsigned int size = PAGE_SIZE;
	struct page *page;
	int offset;

	if (unlikely(!nc->va)) {
refill:
4384
		page = __page_frag_cache_refill(nc, gfp_mask);
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394
		if (!page)
			return NULL;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* Even if we own the page, we do not use atomic_set().
		 * This would break get_page_unless_zero() users.
		 */
4395
		page_ref_add(page, size - 1);
4396 4397

		/* reset page count bias and offset to start of new frag */
4398
		nc->pfmemalloc = page_is_pfmemalloc(page);
4399 4400 4401 4402 4403 4404 4405 4406
		nc->pagecnt_bias = size;
		nc->offset = size;
	}

	offset = nc->offset - fragsz;
	if (unlikely(offset < 0)) {
		page = virt_to_page(nc->va);

4407
		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4408 4409 4410 4411 4412 4413 4414
			goto refill;

#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
		/* if size can vary use size else just use PAGE_SIZE */
		size = nc->size;
#endif
		/* OK, page count is 0, we can safely set it */
4415
		set_page_count(page, size);
4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426

		/* reset page count bias and offset to start of new frag */
		nc->pagecnt_bias = size;
		offset = size - fragsz;
	}

	nc->pagecnt_bias--;
	nc->offset = offset;

	return nc->va + offset;
}
4427
EXPORT_SYMBOL(page_frag_alloc);
4428 4429 4430 4431

/*
 * Frees a page fragment allocated out of either a compound or order 0 page.
 */
4432
void page_frag_free(void *addr)
4433 4434 4435 4436 4437 4438
{
	struct page *page = virt_to_head_page(addr);

	if (unlikely(put_page_testzero(page)))
		__free_pages_ok(page, compound_order(page));
}
4439
EXPORT_SYMBOL(page_frag_free);
4440

4441 4442
static void *make_alloc_exact(unsigned long addr, unsigned int order,
		size_t size)
A
Andi Kleen 已提交
4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
{
	if (addr) {
		unsigned long alloc_end = addr + (PAGE_SIZE << order);
		unsigned long used = addr + PAGE_ALIGN(size);

		split_page(virt_to_page((void *)addr), order);
		while (used < alloc_end) {
			free_page(used);
			used += PAGE_SIZE;
		}
	}
	return (void *)addr;
}

4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475
/**
 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * This function is similar to alloc_pages(), except that it allocates the
 * minimum number of pages to satisfy the request.  alloc_pages() can only
 * allocate memory in power-of-two pages.
 *
 * This function is also limited by MAX_ORDER.
 *
 * Memory allocated by this function must be released by free_pages_exact().
 */
void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
{
	unsigned int order = get_order(size);
	unsigned long addr;

	addr = __get_free_pages(gfp_mask, order);
A
Andi Kleen 已提交
4476
	return make_alloc_exact(addr, order, size);
4477 4478 4479
}
EXPORT_SYMBOL(alloc_pages_exact);

A
Andi Kleen 已提交
4480 4481 4482
/**
 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
 *			   pages on a node.
4483
 * @nid: the preferred node ID where memory should be allocated
A
Andi Kleen 已提交
4484 4485 4486 4487 4488 4489
 * @size: the number of bytes to allocate
 * @gfp_mask: GFP flags for the allocation
 *
 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
 * back.
 */
4490
void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
A
Andi Kleen 已提交
4491
{
4492
	unsigned int order = get_order(size);
A
Andi Kleen 已提交
4493 4494 4495 4496 4497 4498
	struct page *p = alloc_pages_node(nid, gfp_mask, order);
	if (!p)
		return NULL;
	return make_alloc_exact((unsigned long)page_address(p), order, size);
}

4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517
/**
 * free_pages_exact - release memory allocated via alloc_pages_exact()
 * @virt: the value returned by alloc_pages_exact.
 * @size: size of allocation, same value as passed to alloc_pages_exact().
 *
 * Release the memory allocated by a previous call to alloc_pages_exact.
 */
void free_pages_exact(void *virt, size_t size)
{
	unsigned long addr = (unsigned long)virt;
	unsigned long end = addr + PAGE_ALIGN(size);

	while (addr < end) {
		free_page(addr);
		addr += PAGE_SIZE;
	}
}
EXPORT_SYMBOL(free_pages_exact);

4518 4519 4520 4521 4522 4523 4524
/**
 * nr_free_zone_pages - count number of pages beyond high watermark
 * @offset: The zone index of the highest zone
 *
 * nr_free_zone_pages() counts the number of counts pages which are beyond the
 * high watermark within all zones at or below a given zone index.  For each
 * zone, the number of pages is calculated as:
4525 4526
 *
 *     nr_free_zone_pages = managed_pages - high_pages
4527
 */
4528
static unsigned long nr_free_zone_pages(int offset)
L
Linus Torvalds 已提交
4529
{
4530
	struct zoneref *z;
4531 4532
	struct zone *zone;

4533
	/* Just pick one node, since fallback list is circular */
4534
	unsigned long sum = 0;
L
Linus Torvalds 已提交
4535

4536
	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
L
Linus Torvalds 已提交
4537

4538
	for_each_zone_zonelist(zone, z, zonelist, offset) {
4539
		unsigned long size = zone->managed_pages;
4540
		unsigned long high = high_wmark_pages(zone);
4541 4542
		if (size > high)
			sum += size - high;
L
Linus Torvalds 已提交
4543 4544 4545 4546 4547
	}

	return sum;
}

4548 4549 4550 4551 4552
/**
 * nr_free_buffer_pages - count number of pages beyond high watermark
 *
 * nr_free_buffer_pages() counts the number of pages which are beyond the high
 * watermark within ZONE_DMA and ZONE_NORMAL.
L
Linus Torvalds 已提交
4553
 */
4554
unsigned long nr_free_buffer_pages(void)
L
Linus Torvalds 已提交
4555
{
A
Al Viro 已提交
4556
	return nr_free_zone_pages(gfp_zone(GFP_USER));
L
Linus Torvalds 已提交
4557
}
4558
EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
L
Linus Torvalds 已提交
4559

4560 4561 4562 4563 4564
/**
 * nr_free_pagecache_pages - count number of pages beyond high watermark
 *
 * nr_free_pagecache_pages() counts the number of pages which are beyond the
 * high watermark within all zones.
L
Linus Torvalds 已提交
4565
 */
4566
unsigned long nr_free_pagecache_pages(void)
L
Linus Torvalds 已提交
4567
{
M
Mel Gorman 已提交
4568
	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
L
Linus Torvalds 已提交
4569
}
4570 4571

static inline void show_node(struct zone *zone)
L
Linus Torvalds 已提交
4572
{
4573
	if (IS_ENABLED(CONFIG_NUMA))
4574
		printk("Node %d ", zone_to_nid(zone));
L
Linus Torvalds 已提交
4575 4576
}

4577 4578 4579 4580 4581 4582 4583 4584 4585 4586
long si_mem_available(void)
{
	long available;
	unsigned long pagecache;
	unsigned long wmark_low = 0;
	unsigned long pages[NR_LRU_LISTS];
	struct zone *zone;
	int lru;

	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4587
		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4588 4589 4590 4591 4592 4593 4594 4595

	for_each_zone(zone)
		wmark_low += zone->watermark[WMARK_LOW];

	/*
	 * Estimate the amount of memory available for userspace allocations,
	 * without causing swapping.
	 */
4596
	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610

	/*
	 * Not all the page cache can be freed, otherwise the system will
	 * start swapping. Assume at least half of the page cache, or the
	 * low watermark worth of cache, needs to stay.
	 */
	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
	pagecache -= min(pagecache / 2, wmark_low);
	available += pagecache;

	/*
	 * Part of the reclaimable slab consists of items that are in use,
	 * and cannot be freed. Cap this estimate at the low watermark.
	 */
4611 4612 4613
	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
			 wmark_low);
4614 4615 4616 4617 4618 4619 4620

	if (available < 0)
		available = 0;
	return available;
}
EXPORT_SYMBOL_GPL(si_mem_available);

L
Linus Torvalds 已提交
4621 4622 4623
void si_meminfo(struct sysinfo *val)
{
	val->totalram = totalram_pages;
4624
	val->sharedram = global_node_page_state(NR_SHMEM);
4625
	val->freeram = global_zone_page_state(NR_FREE_PAGES);
L
Linus Torvalds 已提交
4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636
	val->bufferram = nr_blockdev_pages();
	val->totalhigh = totalhigh_pages;
	val->freehigh = nr_free_highpages();
	val->mem_unit = PAGE_SIZE;
}

EXPORT_SYMBOL(si_meminfo);

#ifdef CONFIG_NUMA
void si_meminfo_node(struct sysinfo *val, int nid)
{
4637 4638
	int zone_type;		/* needs to be signed */
	unsigned long managed_pages = 0;
4639 4640
	unsigned long managed_highpages = 0;
	unsigned long free_highpages = 0;
L
Linus Torvalds 已提交
4641 4642
	pg_data_t *pgdat = NODE_DATA(nid);

4643 4644 4645
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
		managed_pages += pgdat->node_zones[zone_type].managed_pages;
	val->totalram = managed_pages;
4646
	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4647
	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4648
#ifdef CONFIG_HIGHMEM
4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
		struct zone *zone = &pgdat->node_zones[zone_type];

		if (is_highmem(zone)) {
			managed_highpages += zone->managed_pages;
			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
		}
	}
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4659
#else
4660 4661
	val->totalhigh = managed_highpages;
	val->freehigh = free_highpages;
4662
#endif
L
Linus Torvalds 已提交
4663 4664 4665 4666
	val->mem_unit = PAGE_SIZE;
}
#endif

4667
/*
4668 4669
 * Determine whether the node should be displayed or not, depending on whether
 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4670
 */
4671
static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4672 4673
{
	if (!(flags & SHOW_MEM_FILTER_NODES))
4674
		return false;
4675

4676 4677 4678 4679 4680 4681 4682 4683 4684
	/*
	 * no node mask - aka implicit memory numa policy. Do not bother with
	 * the synchronization - read_mems_allowed_begin - because we do not
	 * have to be precise here.
	 */
	if (!nodemask)
		nodemask = &cpuset_current_mems_allowed;

	return !node_isset(nid, *nodemask);
4685 4686
}

L
Linus Torvalds 已提交
4687 4688
#define K(x) ((x) << (PAGE_SHIFT-10))

4689 4690 4691 4692 4693
static void show_migration_types(unsigned char type)
{
	static const char types[MIGRATE_TYPES] = {
		[MIGRATE_UNMOVABLE]	= 'U',
		[MIGRATE_MOVABLE]	= 'M',
4694 4695
		[MIGRATE_RECLAIMABLE]	= 'E',
		[MIGRATE_HIGHATOMIC]	= 'H',
4696 4697 4698
#ifdef CONFIG_CMA
		[MIGRATE_CMA]		= 'C',
#endif
4699
#ifdef CONFIG_MEMORY_ISOLATION
4700
		[MIGRATE_ISOLATE]	= 'I',
4701
#endif
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
	};
	char tmp[MIGRATE_TYPES + 1];
	char *p = tmp;
	int i;

	for (i = 0; i < MIGRATE_TYPES; i++) {
		if (type & (1 << i))
			*p++ = types[i];
	}

	*p = '\0';
4713
	printk(KERN_CONT "(%s) ", tmp);
4714 4715
}

L
Linus Torvalds 已提交
4716 4717 4718 4719
/*
 * Show free area list (used inside shift_scroll-lock stuff)
 * We also calculate the percentage fragmentation. We do this by counting the
 * memory on each free list with the exception of the first item on the list.
4720 4721 4722 4723
 *
 * Bits in @filter:
 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
 *   cpuset.
L
Linus Torvalds 已提交
4724
 */
4725
void show_free_areas(unsigned int filter, nodemask_t *nodemask)
L
Linus Torvalds 已提交
4726
{
4727
	unsigned long free_pcp = 0;
4728
	int cpu;
L
Linus Torvalds 已提交
4729
	struct zone *zone;
M
Mel Gorman 已提交
4730
	pg_data_t *pgdat;
L
Linus Torvalds 已提交
4731

4732
	for_each_populated_zone(zone) {
4733
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4734
			continue;
4735

4736 4737
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
L
Linus Torvalds 已提交
4738 4739
	}

K
KOSAKI Motohiro 已提交
4740 4741
	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4742 4743
		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4744
		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4745
		" free:%lu free_pcp:%lu free_cma:%lu\n",
M
Mel Gorman 已提交
4746 4747 4748 4749 4750 4751 4752
		global_node_page_state(NR_ACTIVE_ANON),
		global_node_page_state(NR_INACTIVE_ANON),
		global_node_page_state(NR_ISOLATED_ANON),
		global_node_page_state(NR_ACTIVE_FILE),
		global_node_page_state(NR_INACTIVE_FILE),
		global_node_page_state(NR_ISOLATED_FILE),
		global_node_page_state(NR_UNEVICTABLE),
4753 4754 4755
		global_node_page_state(NR_FILE_DIRTY),
		global_node_page_state(NR_WRITEBACK),
		global_node_page_state(NR_UNSTABLE_NFS),
4756 4757
		global_node_page_state(NR_SLAB_RECLAIMABLE),
		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4758
		global_node_page_state(NR_FILE_MAPPED),
4759
		global_node_page_state(NR_SHMEM),
4760 4761 4762
		global_zone_page_state(NR_PAGETABLE),
		global_zone_page_state(NR_BOUNCE),
		global_zone_page_state(NR_FREE_PAGES),
4763
		free_pcp,
4764
		global_zone_page_state(NR_FREE_CMA_PAGES));
L
Linus Torvalds 已提交
4765

M
Mel Gorman 已提交
4766
	for_each_online_pgdat(pgdat) {
4767
		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4768 4769
			continue;

M
Mel Gorman 已提交
4770 4771 4772 4773 4774 4775 4776 4777
		printk("Node %d"
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
			" isolated(anon):%lukB"
			" isolated(file):%lukB"
4778
			" mapped:%lukB"
4779 4780 4781 4782 4783 4784 4785 4786 4787 4788
			" dirty:%lukB"
			" writeback:%lukB"
			" shmem:%lukB"
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			" shmem_thp: %lukB"
			" shmem_pmdmapped: %lukB"
			" anon_thp: %lukB"
#endif
			" writeback_tmp:%lukB"
			" unstable:%lukB"
M
Mel Gorman 已提交
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798
			" all_unreclaimable? %s"
			"\n",
			pgdat->node_id,
			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
			K(node_page_state(pgdat, NR_UNEVICTABLE)),
			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4799
			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4800 4801
			K(node_page_state(pgdat, NR_FILE_DIRTY)),
			K(node_page_state(pgdat, NR_WRITEBACK)),
4802
			K(node_page_state(pgdat, NR_SHMEM)),
4803 4804 4805 4806 4807 4808 4809 4810
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
					* HPAGE_PMD_NR),
			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
#endif
			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4811 4812
			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
				"yes" : "no");
M
Mel Gorman 已提交
4813 4814
	}

4815
	for_each_populated_zone(zone) {
L
Linus Torvalds 已提交
4816 4817
		int i;

4818
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4819
			continue;
4820 4821 4822 4823 4824

		free_pcp = 0;
		for_each_online_cpu(cpu)
			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;

L
Linus Torvalds 已提交
4825
		show_node(zone);
4826 4827
		printk(KERN_CONT
			"%s"
L
Linus Torvalds 已提交
4828 4829 4830 4831
			" free:%lukB"
			" min:%lukB"
			" low:%lukB"
			" high:%lukB"
M
Minchan Kim 已提交
4832 4833 4834 4835 4836
			" active_anon:%lukB"
			" inactive_anon:%lukB"
			" active_file:%lukB"
			" inactive_file:%lukB"
			" unevictable:%lukB"
4837
			" writepending:%lukB"
L
Linus Torvalds 已提交
4838
			" present:%lukB"
4839
			" managed:%lukB"
4840
			" mlocked:%lukB"
4841
			" kernel_stack:%lukB"
4842 4843
			" pagetables:%lukB"
			" bounce:%lukB"
4844 4845
			" free_pcp:%lukB"
			" local_pcp:%ukB"
4846
			" free_cma:%lukB"
L
Linus Torvalds 已提交
4847 4848
			"\n",
			zone->name,
4849
			K(zone_page_state(zone, NR_FREE_PAGES)),
4850 4851 4852
			K(min_wmark_pages(zone)),
			K(low_wmark_pages(zone)),
			K(high_wmark_pages(zone)),
M
Minchan Kim 已提交
4853 4854 4855 4856 4857
			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4858
			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
L
Linus Torvalds 已提交
4859
			K(zone->present_pages),
4860
			K(zone->managed_pages),
4861
			K(zone_page_state(zone, NR_MLOCK)),
4862
			zone_page_state(zone, NR_KERNEL_STACK_KB),
4863 4864
			K(zone_page_state(zone, NR_PAGETABLE)),
			K(zone_page_state(zone, NR_BOUNCE)),
4865 4866
			K(free_pcp),
			K(this_cpu_read(zone->pageset->pcp.count)),
4867
			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
L
Linus Torvalds 已提交
4868 4869
		printk("lowmem_reserve[]:");
		for (i = 0; i < MAX_NR_ZONES; i++)
4870 4871
			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
		printk(KERN_CONT "\n");
L
Linus Torvalds 已提交
4872 4873
	}

4874
	for_each_populated_zone(zone) {
4875 4876
		unsigned int order;
		unsigned long nr[MAX_ORDER], flags, total = 0;
4877
		unsigned char types[MAX_ORDER];
L
Linus Torvalds 已提交
4878

4879
		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4880
			continue;
L
Linus Torvalds 已提交
4881
		show_node(zone);
4882
		printk(KERN_CONT "%s: ", zone->name);
L
Linus Torvalds 已提交
4883 4884 4885

		spin_lock_irqsave(&zone->lock, flags);
		for (order = 0; order < MAX_ORDER; order++) {
4886 4887 4888 4889
			struct free_area *area = &zone->free_area[order];
			int type;

			nr[order] = area->nr_free;
4890
			total += nr[order] << order;
4891 4892 4893 4894 4895 4896

			types[order] = 0;
			for (type = 0; type < MIGRATE_TYPES; type++) {
				if (!list_empty(&area->free_list[type]))
					types[order] |= 1 << type;
			}
L
Linus Torvalds 已提交
4897 4898
		}
		spin_unlock_irqrestore(&zone->lock, flags);
4899
		for (order = 0; order < MAX_ORDER; order++) {
4900 4901
			printk(KERN_CONT "%lu*%lukB ",
			       nr[order], K(1UL) << order);
4902 4903 4904
			if (nr[order])
				show_migration_types(types[order]);
		}
4905
		printk(KERN_CONT "= %lukB\n", K(total));
L
Linus Torvalds 已提交
4906 4907
	}

4908 4909
	hugetlb_show_meminfo();

4910
	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4911

L
Linus Torvalds 已提交
4912 4913 4914
	show_swap_cache_info();
}

4915 4916 4917 4918 4919 4920
static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
{
	zoneref->zone = zone;
	zoneref->zone_idx = zone_idx(zone);
}

L
Linus Torvalds 已提交
4921 4922
/*
 * Builds allocation fallback zone lists.
4923 4924
 *
 * Add all populated zones of a node to the zonelist.
L
Linus Torvalds 已提交
4925
 */
4926
static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
L
Linus Torvalds 已提交
4927
{
4928
	struct zone *zone;
4929
	enum zone_type zone_type = MAX_NR_ZONES;
4930
	int nr_zones = 0;
4931 4932

	do {
4933
		zone_type--;
4934
		zone = pgdat->node_zones + zone_type;
4935
		if (managed_zone(zone)) {
4936
			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4937
			check_highest_zone(zone_type);
L
Linus Torvalds 已提交
4938
		}
4939
	} while (zone_type);
4940

4941
	return nr_zones;
L
Linus Torvalds 已提交
4942 4943 4944
}

#ifdef CONFIG_NUMA
4945 4946 4947

static int __parse_numa_zonelist_order(char *s)
{
4948 4949 4950 4951 4952 4953 4954 4955
	/*
	 * We used to support different zonlists modes but they turned
	 * out to be just not useful. Let's keep the warning in place
	 * if somebody still use the cmd line parameter so that we do
	 * not fail it silently
	 */
	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4956 4957 4958 4959 4960 4961 4962
		return -EINVAL;
	}
	return 0;
}

static __init int setup_numa_zonelist_order(char *s)
{
4963 4964 4965
	if (!s)
		return 0;

4966
	return __parse_numa_zonelist_order(s);
4967 4968 4969
}
early_param("numa_zonelist_order", setup_numa_zonelist_order);

4970 4971
char numa_zonelist_order[] = "Node";

4972 4973 4974
/*
 * sysctl handler for numa_zonelist_order
 */
4975
int numa_zonelist_order_handler(struct ctl_table *table, int write,
4976
		void __user *buffer, size_t *length,
4977 4978
		loff_t *ppos)
{
4979
	char *str;
4980 4981
	int ret;

4982 4983 4984 4985 4986
	if (!write)
		return proc_dostring(table, write, buffer, length, ppos);
	str = memdup_user_nul(buffer, 16);
	if (IS_ERR(str))
		return PTR_ERR(str);
4987

4988 4989
	ret = __parse_numa_zonelist_order(str);
	kfree(str);
4990
	return ret;
4991 4992 4993
}


4994
#define MAX_NODE_LOAD (nr_online_nodes)
4995 4996
static int node_load[MAX_NUMNODES];

L
Linus Torvalds 已提交
4997
/**
4998
 * find_next_best_node - find the next node that should appear in a given node's fallback list
L
Linus Torvalds 已提交
4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010
 * @node: node whose fallback list we're appending
 * @used_node_mask: nodemask_t of already used nodes
 *
 * We use a number of factors to determine which is the next node that should
 * appear on a given node's fallback list.  The node should not have appeared
 * already in @node's fallback list, and it should be the next closest node
 * according to the distance array (which contains arbitrary distance values
 * from each node to each node in the system), and should also prefer nodes
 * with no CPUs, since presumably they'll have very little allocation pressure
 * on them otherwise.
 * It returns -1 if no node is found.
 */
5011
static int find_next_best_node(int node, nodemask_t *used_node_mask)
L
Linus Torvalds 已提交
5012
{
5013
	int n, val;
L
Linus Torvalds 已提交
5014
	int min_val = INT_MAX;
D
David Rientjes 已提交
5015
	int best_node = NUMA_NO_NODE;
5016
	const struct cpumask *tmp = cpumask_of_node(0);
L
Linus Torvalds 已提交
5017

5018 5019 5020 5021 5022
	/* Use the local node if we haven't already */
	if (!node_isset(node, *used_node_mask)) {
		node_set(node, *used_node_mask);
		return node;
	}
L
Linus Torvalds 已提交
5023

5024
	for_each_node_state(n, N_MEMORY) {
L
Linus Torvalds 已提交
5025 5026 5027 5028 5029 5030 5031 5032

		/* Don't want a node to appear more than once */
		if (node_isset(n, *used_node_mask))
			continue;

		/* Use the distance array to find the distance */
		val = node_distance(node, n);

5033 5034 5035
		/* Penalize nodes under us ("prefer the next node") */
		val += (n < node);

L
Linus Torvalds 已提交
5036
		/* Give preference to headless and unused nodes */
5037 5038
		tmp = cpumask_of_node(n);
		if (!cpumask_empty(tmp))
L
Linus Torvalds 已提交
5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056
			val += PENALTY_FOR_NODE_WITH_CPUS;

		/* Slight preference for less loaded node */
		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
		val += node_load[n];

		if (val < min_val) {
			min_val = val;
			best_node = n;
		}
	}

	if (best_node >= 0)
		node_set(best_node, *used_node_mask);

	return best_node;
}

5057 5058 5059 5060 5061 5062

/*
 * Build zonelists ordered by node and zones within node.
 * This results in maximum locality--normal zone overflows into local
 * DMA zone, if any--but risks exhausting DMA zone.
 */
5063 5064
static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
		unsigned nr_nodes)
L
Linus Torvalds 已提交
5065
{
5066 5067 5068 5069 5070 5071 5072 5073 5074
	struct zoneref *zonerefs;
	int i;

	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;

	for (i = 0; i < nr_nodes; i++) {
		int nr_zones;

		pg_data_t *node = NODE_DATA(node_order[i]);
5075

5076 5077 5078 5079 5080
		nr_zones = build_zonerefs_node(node, zonerefs);
		zonerefs += nr_zones;
	}
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5081 5082
}

5083 5084 5085 5086 5087
/*
 * Build gfp_thisnode zonelists
 */
static void build_thisnode_zonelists(pg_data_t *pgdat)
{
5088 5089
	struct zoneref *zonerefs;
	int nr_zones;
5090

5091 5092 5093 5094 5095
	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
5096 5097
}

5098 5099 5100 5101 5102 5103 5104 5105 5106
/*
 * Build zonelists ordered by zone and nodes within zones.
 * This results in conserving DMA zone[s] until all Normal memory is
 * exhausted, but results in overflowing to remote node while memory
 * may still exist in local DMA zone.
 */

static void build_zonelists(pg_data_t *pgdat)
{
5107 5108
	static int node_order[MAX_NUMNODES];
	int node, load, nr_nodes = 0;
L
Linus Torvalds 已提交
5109
	nodemask_t used_mask;
5110
	int local_node, prev_node;
L
Linus Torvalds 已提交
5111 5112 5113

	/* NUMA-aware ordering of nodes */
	local_node = pgdat->node_id;
5114
	load = nr_online_nodes;
L
Linus Torvalds 已提交
5115 5116
	prev_node = local_node;
	nodes_clear(used_mask);
5117 5118

	memset(node_order, 0, sizeof(node_order));
L
Linus Torvalds 已提交
5119 5120 5121 5122 5123 5124
	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
		/*
		 * We don't want to pressure a particular node.
		 * So adding penalty to the first node in same
		 * distance group to make it round-robin.
		 */
5125 5126
		if (node_distance(local_node, node) !=
		    node_distance(local_node, prev_node))
5127 5128
			node_load[node] = load;

5129
		node_order[nr_nodes++] = node;
L
Linus Torvalds 已提交
5130 5131 5132
		prev_node = node;
		load--;
	}
5133

5134
	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5135
	build_thisnode_zonelists(pgdat);
L
Linus Torvalds 已提交
5136 5137
}

5138 5139 5140 5141 5142 5143 5144 5145 5146
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
/*
 * Return node id of node used for "local" allocations.
 * I.e., first node id of first zone in arg node's generic zonelist.
 * Used for initializing percpu 'numa_mem', which is used primarily
 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
 */
int local_memory_node(int node)
{
5147
	struct zoneref *z;
5148

5149
	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5150
				   gfp_zone(GFP_KERNEL),
5151 5152
				   NULL);
	return z->zone->node;
5153 5154
}
#endif
5155

5156 5157
static void setup_min_unmapped_ratio(void);
static void setup_min_slab_ratio(void);
L
Linus Torvalds 已提交
5158 5159
#else	/* CONFIG_NUMA */

5160
static void build_zonelists(pg_data_t *pgdat)
L
Linus Torvalds 已提交
5161
{
5162
	int node, local_node;
5163 5164
	struct zoneref *zonerefs;
	int nr_zones;
L
Linus Torvalds 已提交
5165 5166 5167

	local_node = pgdat->node_id;

5168 5169 5170
	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
	nr_zones = build_zonerefs_node(pgdat, zonerefs);
	zonerefs += nr_zones;
L
Linus Torvalds 已提交
5171

5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
	/*
	 * Now we build the zonelist so that it contains the zones
	 * of all the other nodes.
	 * We don't want to pressure a particular node, so when
	 * building the zones for node N, we make sure that the
	 * zones coming right after the local ones are those from
	 * node N+1 (modulo N)
	 */
	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
		if (!node_online(node))
			continue;
5183 5184
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
L
Linus Torvalds 已提交
5185
	}
5186 5187 5188
	for (node = 0; node < local_node; node++) {
		if (!node_online(node))
			continue;
5189 5190
		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
		zonerefs += nr_zones;
5191 5192
	}

5193 5194
	zonerefs->zone = NULL;
	zonerefs->zone_idx = 0;
L
Linus Torvalds 已提交
5195 5196 5197 5198
}

#endif	/* CONFIG_NUMA */

5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
/*
 * Boot pageset table. One per cpu which is going to be used for all
 * zones and all nodes. The parameters will be set in such a way
 * that an item put on a list will immediately be handed over to
 * the buddy list. This is safe since pageset manipulation is done
 * with interrupts disabled.
 *
 * The boot_pagesets must be kept even after bootup is complete for
 * unused processors and/or zones. They do play a role for bootstrapping
 * hotplugged processors.
 *
 * zoneinfo_show() and maybe other functions do
 * not check if the processor is online before following the pageset pointer.
 * Other parts of the kernel may not check if the zone is available.
 */
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5216
static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5217

5218
static void __build_all_zonelists(void *data)
L
Linus Torvalds 已提交
5219
{
5220
	int nid;
5221
	int __maybe_unused cpu;
5222
	pg_data_t *self = data;
5223 5224 5225
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
5226

5227 5228 5229
#ifdef CONFIG_NUMA
	memset(node_load, 0, sizeof(node_load));
#endif
5230

5231 5232 5233 5234
	/*
	 * This node is hotadded and no memory is yet present.   So just
	 * building zonelists is fine - no need to touch other nodes.
	 */
5235 5236
	if (self && !node_online(self->node_id)) {
		build_zonelists(self);
5237 5238 5239
	} else {
		for_each_online_node(nid) {
			pg_data_t *pgdat = NODE_DATA(nid);
5240

5241 5242
			build_zonelists(pgdat);
		}
5243

5244 5245 5246 5247 5248 5249 5250 5251 5252
#ifdef CONFIG_HAVE_MEMORYLESS_NODES
		/*
		 * We now know the "local memory node" for each node--
		 * i.e., the node of the first zone in the generic zonelist.
		 * Set up numa_mem percpu variable for on-line cpus.  During
		 * boot, only the boot cpu should be on-line;  we'll init the
		 * secondary cpus' numa_mem as they come on-line.  During
		 * node/memory hotplug, we'll fixup all on-line cpus.
		 */
5253
		for_each_online_cpu(cpu)
5254
			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5255
#endif
5256
	}
5257 5258

	spin_unlock(&lock);
5259 5260
}

5261 5262 5263
static noinline void __init
build_all_zonelists_init(void)
{
5264 5265
	int cpu;

5266
	__build_all_zonelists(NULL);
5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283

	/*
	 * Initialize the boot_pagesets that are going to be used
	 * for bootstrapping processors. The real pagesets for
	 * each zone will be allocated later when the per cpu
	 * allocator is available.
	 *
	 * boot_pagesets are used also for bootstrapping offline
	 * cpus if the system is already booted because the pagesets
	 * are needed to initialize allocators on a specific cpu too.
	 * F.e. the percpu allocator needs the page allocator which
	 * needs the percpu allocator in order to allocate its pagesets
	 * (a chicken-egg dilemma).
	 */
	for_each_possible_cpu(cpu)
		setup_pageset(&per_cpu(boot_pageset, cpu), 0);

5284 5285 5286 5287
	mminit_verify_zonelist();
	cpuset_init_current_mems_allowed();
}

5288 5289
/*
 * unless system_state == SYSTEM_BOOTING.
5290
 *
5291
 * __ref due to call of __init annotated helper build_all_zonelists_init
5292
 * [protected by SYSTEM_BOOTING].
5293
 */
5294
void __ref build_all_zonelists(pg_data_t *pgdat)
5295 5296
{
	if (system_state == SYSTEM_BOOTING) {
5297
		build_all_zonelists_init();
5298
	} else {
5299
		__build_all_zonelists(pgdat);
5300 5301
		/* cpuset refresh routine should be here */
	}
5302
	vm_total_pages = nr_free_pagecache_pages();
5303 5304 5305 5306 5307 5308 5309
	/*
	 * Disable grouping by mobility if the number of pages in the
	 * system is too low to allow the mechanism to work. It would be
	 * more accurate, but expensive to check per-zone. This check is
	 * made on memory-hotadd so a system can start with mobility
	 * disabled and enable it later
	 */
5310
	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5311 5312 5313 5314
		page_group_by_mobility_disabled = 1;
	else
		page_group_by_mobility_disabled = 0;

5315
	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
J
Joe Perches 已提交
5316 5317 5318
		nr_online_nodes,
		page_group_by_mobility_disabled ? "off" : "on",
		vm_total_pages);
5319
#ifdef CONFIG_NUMA
5320
	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5321
#endif
L
Linus Torvalds 已提交
5322 5323 5324 5325 5326 5327 5328
}

/*
 * Initially all pages are reserved - free ones are freed
 * up by free_all_bootmem() once the early boot process is
 * done. Non-atomic initialization, single-pass.
 */
5329
void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5330 5331
		unsigned long start_pfn, enum memmap_context context,
		struct vmem_altmap *altmap)
L
Linus Torvalds 已提交
5332
{
A
Andy Whitcroft 已提交
5333
	unsigned long end_pfn = start_pfn + size;
5334
	pg_data_t *pgdat = NODE_DATA(nid);
A
Andy Whitcroft 已提交
5335
	unsigned long pfn;
5336
	unsigned long nr_initialised = 0;
5337 5338 5339
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	struct memblock_region *r = NULL, *tmp;
#endif
L
Linus Torvalds 已提交
5340

5341 5342 5343
	if (highest_memmap_pfn < end_pfn - 1)
		highest_memmap_pfn = end_pfn - 1;

5344 5345 5346 5347 5348 5349 5350
	/*
	 * Honor reservation requested by the driver for this ZONE_DEVICE
	 * memory
	 */
	if (altmap && start_pfn == altmap->base_pfn)
		start_pfn += altmap->reserve;

5351
	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
D
Dave Hansen 已提交
5352
		/*
5353 5354
		 * There can be holes in boot-time mem_map[]s handed to this
		 * function.  They do not exist on hotplugged memory.
D
Dave Hansen 已提交
5355
		 */
5356 5357 5358
		if (context != MEMMAP_EARLY)
			goto not_early;

5359 5360 5361 5362 5363
		if (!early_pfn_valid(pfn)) {
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
			/*
			 * Skip to the pfn preceding the next valid one (or
			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5364
			 * on our next iteration of the loop.
5365
			 */
5366
			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5367
#endif
5368
			continue;
5369
		}
5370 5371 5372 5373
		if (!early_pfn_in_nid(pfn, nid))
			continue;
		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
			break;
5374 5375

#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
		/*
		 * Check given memblock attribute by firmware which can affect
		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
		 * mirrored, it's an overlapped memmap init. skip it.
		 */
		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
				for_each_memblock(memory, tmp)
					if (pfn < memblock_region_memory_end_pfn(tmp))
						break;
				r = tmp;
			}
			if (pfn >= memblock_region_memory_base_pfn(r) &&
			    memblock_is_mirror(r)) {
				/* already initialized as NORMAL */
				pfn = memblock_region_memory_end_pfn(r);
				continue;
5393
			}
D
Dave Hansen 已提交
5394
		}
5395
#endif
5396

5397
not_early:
5398 5399 5400 5401 5402
		/*
		 * Mark the block movable so that blocks are reserved for
		 * movable at startup. This will force kernel allocations
		 * to reserve their blocks rather than leaking throughout
		 * the address space during boot when many long-lived
5403
		 * kernel allocations are made.
5404 5405 5406 5407 5408
		 *
		 * bitmap is created for zone's valid pfn range. but memmap
		 * can be created for invalid pages (for alignment)
		 * check here not to call set_pageblock_migratetype() against
		 * pfn out of zone.
5409 5410 5411
		 *
		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
		 * because this is done early in sparse_add_one_section
5412 5413 5414 5415
		 */
		if (!(pfn & (pageblock_nr_pages - 1))) {
			struct page *page = pfn_to_page(pfn);

5416 5417
			__init_single_page(page, pfn, zone, nid,
					context != MEMMAP_HOTPLUG);
5418
			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5419
			cond_resched();
5420
		} else {
5421 5422
			__init_single_pfn(pfn, zone, nid,
					context != MEMMAP_HOTPLUG);
5423
		}
L
Linus Torvalds 已提交
5424 5425 5426
	}
}

5427
static void __meminit zone_init_free_lists(struct zone *zone)
L
Linus Torvalds 已提交
5428
{
5429
	unsigned int order, t;
5430 5431
	for_each_migratetype_order(order, t) {
		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
L
Linus Torvalds 已提交
5432 5433 5434 5435 5436 5437
		zone->free_area[order].nr_free = 0;
	}
}

#ifndef __HAVE_ARCH_MEMMAP_INIT
#define memmap_init(size, nid, zone, start_pfn) \
5438
	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
L
Linus Torvalds 已提交
5439 5440
#endif

5441
static int zone_batchsize(struct zone *zone)
5442
{
5443
#ifdef CONFIG_MMU
5444 5445 5446 5447
	int batch;

	/*
	 * The per-cpu-pages pools are set to around 1000th of the
5448
	 * size of the zone.  But no more than 1/2 of a meg.
5449 5450 5451
	 *
	 * OK, so we don't know how big the cache is.  So guess.
	 */
5452
	batch = zone->managed_pages / 1024;
5453 5454
	if (batch * PAGE_SIZE > 512 * 1024)
		batch = (512 * 1024) / PAGE_SIZE;
5455 5456 5457 5458 5459
	batch /= 4;		/* We effectively *= 4 below */
	if (batch < 1)
		batch = 1;

	/*
5460 5461 5462
	 * Clamp the batch to a 2^n - 1 value. Having a power
	 * of 2 value was found to be more likely to have
	 * suboptimal cache aliasing properties in some cases.
5463
	 *
5464 5465 5466 5467
	 * For example if 2 tasks are alternately allocating
	 * batches of pages, one task can end up with a lot
	 * of pages of one half of the possible page colors
	 * and the other with pages of the other colors.
5468
	 */
5469
	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5470

5471
	return batch;
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488

#else
	/* The deferral and batching of frees should be suppressed under NOMMU
	 * conditions.
	 *
	 * The problem is that NOMMU needs to be able to allocate large chunks
	 * of contiguous memory as there's no hardware page translation to
	 * assemble apparent contiguous memory from discontiguous pages.
	 *
	 * Queueing large contiguous runs of pages for batching, however,
	 * causes the pages to actually be freed in smaller chunks.  As there
	 * can be a significant delay between the individual batches being
	 * recycled, this leads to the once large chunks of space being
	 * fragmented and becoming unavailable for high-order allocations.
	 */
	return 0;
#endif
5489 5490
}

5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517
/*
 * pcp->high and pcp->batch values are related and dependent on one another:
 * ->batch must never be higher then ->high.
 * The following function updates them in a safe manner without read side
 * locking.
 *
 * Any new users of pcp->batch and pcp->high should ensure they can cope with
 * those fields changing asynchronously (acording the the above rule).
 *
 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
 * outside of boot time (or some other assurance that no concurrent updaters
 * exist).
 */
static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
		unsigned long batch)
{
       /* start with a fail safe value for batch */
	pcp->batch = 1;
	smp_wmb();

       /* Update high, then batch, in order */
	pcp->high = high;
	smp_wmb();

	pcp->batch = batch;
}

5518
/* a companion to pageset_set_high() */
5519 5520
static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
{
5521
	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5522 5523
}

5524
static void pageset_init(struct per_cpu_pageset *p)
5525 5526
{
	struct per_cpu_pages *pcp;
5527
	int migratetype;
5528

5529 5530
	memset(p, 0, sizeof(*p));

5531
	pcp = &p->pcp;
5532
	pcp->count = 0;
5533 5534
	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5535 5536
}

5537 5538 5539 5540 5541 5542
static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
{
	pageset_init(p);
	pageset_set_batch(p, batch);
}

5543
/*
5544
 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5545 5546
 * to the value high for the pageset p.
 */
5547
static void pageset_set_high(struct per_cpu_pageset *p,
5548 5549
				unsigned long high)
{
5550 5551 5552
	unsigned long batch = max(1UL, high / 4);
	if ((high / 4) > (PAGE_SHIFT * 8))
		batch = PAGE_SHIFT * 8;
5553

5554
	pageset_update(&p->pcp, high, batch);
5555 5556
}

5557 5558
static void pageset_set_high_and_batch(struct zone *zone,
				       struct per_cpu_pageset *pcp)
5559 5560
{
	if (percpu_pagelist_fraction)
5561
		pageset_set_high(pcp,
5562 5563 5564 5565 5566 5567
			(zone->managed_pages /
				percpu_pagelist_fraction));
	else
		pageset_set_batch(pcp, zone_batchsize(zone));
}

5568 5569 5570 5571 5572 5573 5574 5575
static void __meminit zone_pageset_init(struct zone *zone, int cpu)
{
	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);

	pageset_init(pcp);
	pageset_set_high_and_batch(zone, pcp);
}

5576
void __meminit setup_zone_pageset(struct zone *zone)
5577 5578 5579
{
	int cpu;
	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5580 5581
	for_each_possible_cpu(cpu)
		zone_pageset_init(zone, cpu);
5582 5583
}

5584
/*
5585 5586
 * Allocate per cpu pagesets and initialize them.
 * Before this call only boot pagesets were available.
5587
 */
5588
void __init setup_per_cpu_pageset(void)
5589
{
5590
	struct pglist_data *pgdat;
5591
	struct zone *zone;
5592

5593 5594
	for_each_populated_zone(zone)
		setup_zone_pageset(zone);
5595 5596 5597 5598

	for_each_online_pgdat(pgdat)
		pgdat->per_cpu_nodestats =
			alloc_percpu(struct per_cpu_nodestat);
5599 5600
}

5601
static __meminit void zone_pcp_init(struct zone *zone)
5602
{
5603 5604 5605 5606 5607 5608
	/*
	 * per cpu subsystem is not up at this point. The following code
	 * relies on the ability of the linker to provide the
	 * offset of a (static) per cpu variable into the per cpu area.
	 */
	zone->pageset = &boot_pageset;
5609

5610
	if (populated_zone(zone))
5611 5612 5613
		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
			zone->name, zone->present_pages,
					 zone_batchsize(zone));
5614 5615
}

5616
void __meminit init_currently_empty_zone(struct zone *zone,
5617
					unsigned long zone_start_pfn,
5618
					unsigned long size)
5619 5620
{
	struct pglist_data *pgdat = zone->zone_pgdat;
5621

5622 5623 5624 5625
	pgdat->nr_zones = zone_idx(zone) + 1;

	zone->zone_start_pfn = zone_start_pfn;

5626 5627 5628 5629 5630 5631
	mminit_dprintk(MMINIT_TRACE, "memmap_init",
			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
			pgdat->node_id,
			(unsigned long)zone_idx(zone),
			zone_start_pfn, (zone_start_pfn + size));

5632
	zone_init_free_lists(zone);
5633
	zone->initialized = 1;
5634 5635
}

T
Tejun Heo 已提交
5636
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5637
#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5638

5639 5640 5641
/*
 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
 */
5642 5643
int __meminit __early_pfn_to_nid(unsigned long pfn,
					struct mminit_pfnnid_cache *state)
5644
{
5645
	unsigned long start_pfn, end_pfn;
5646
	int nid;
5647

5648 5649
	if (state->last_start <= pfn && pfn < state->last_end)
		return state->last_nid;
5650

5651 5652
	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
	if (nid != -1) {
5653 5654 5655
		state->last_start = start_pfn;
		state->last_end = end_pfn;
		state->last_nid = nid;
5656 5657 5658
	}

	return nid;
5659 5660 5661 5662
}
#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */

/**
5663
 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5664
 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5665
 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5666
 *
5667 5668 5669
 * If an architecture guarantees that all ranges registered contain no holes
 * and may be freed, this this function may be used instead of calling
 * memblock_free_early_nid() manually.
5670
 */
5671
void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5672
{
5673 5674
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5675

5676 5677 5678
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
		start_pfn = min(start_pfn, max_low_pfn);
		end_pfn = min(end_pfn, max_low_pfn);
5679

5680
		if (start_pfn < end_pfn)
5681 5682 5683
			memblock_free_early_nid(PFN_PHYS(start_pfn),
					(end_pfn - start_pfn) << PAGE_SHIFT,
					this_nid);
5684 5685 5686
	}
}

5687 5688
/**
 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5689
 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5690
 *
5691 5692
 * If an architecture guarantees that all ranges registered contain no holes and may
 * be freed, this function may be used instead of calling memory_present() manually.
5693 5694 5695
 */
void __init sparse_memory_present_with_active_regions(int nid)
{
5696 5697
	unsigned long start_pfn, end_pfn;
	int i, this_nid;
5698

5699 5700
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
		memory_present(this_nid, start_pfn, end_pfn);
5701 5702 5703 5704
}

/**
 * get_pfn_range_for_nid - Return the start and end page frames for a node
5705 5706 5707
 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5708 5709
 *
 * It returns the start and end page frame of a node based on information
5710
 * provided by memblock_set_node(). If called for a node
5711
 * with no available memory, a warning is printed and the start and end
5712
 * PFNs will be 0.
5713
 */
5714
void __meminit get_pfn_range_for_nid(unsigned int nid,
5715 5716
			unsigned long *start_pfn, unsigned long *end_pfn)
{
5717
	unsigned long this_start_pfn, this_end_pfn;
5718
	int i;
5719

5720 5721 5722
	*start_pfn = -1UL;
	*end_pfn = 0;

5723 5724 5725
	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
		*start_pfn = min(*start_pfn, this_start_pfn);
		*end_pfn = max(*end_pfn, this_end_pfn);
5726 5727
	}

5728
	if (*start_pfn == -1UL)
5729 5730 5731
		*start_pfn = 0;
}

M
Mel Gorman 已提交
5732 5733 5734 5735 5736
/*
 * This finds a zone that can be used for ZONE_MOVABLE pages. The
 * assumption is made that zones within a node are ordered in monotonic
 * increasing memory addresses so that the "highest" populated zone is used
 */
A
Adrian Bunk 已提交
5737
static void __init find_usable_zone_for_movable(void)
M
Mel Gorman 已提交
5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754
{
	int zone_index;
	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
		if (zone_index == ZONE_MOVABLE)
			continue;

		if (arch_zone_highest_possible_pfn[zone_index] >
				arch_zone_lowest_possible_pfn[zone_index])
			break;
	}

	VM_BUG_ON(zone_index == -1);
	movable_zone = zone_index;
}

/*
 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
L
Lucas De Marchi 已提交
5755
 * because it is sized independent of architecture. Unlike the other zones,
M
Mel Gorman 已提交
5756 5757 5758 5759 5760 5761 5762
 * the starting point for ZONE_MOVABLE is not fixed. It may be different
 * in each node depending on the size of each node and how evenly kernelcore
 * is distributed. This helper function adjusts the zone ranges
 * provided by the architecture for a given node by using the end of the
 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
 * zones within a node are in order of monotonic increases memory addresses
 */
A
Adrian Bunk 已提交
5763
static void __meminit adjust_zone_range_for_zone_movable(int nid,
M
Mel Gorman 已提交
5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777
					unsigned long zone_type,
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn)
{
	/* Only adjust if ZONE_MOVABLE is on this node */
	if (zone_movable_pfn[nid]) {
		/* Size ZONE_MOVABLE */
		if (zone_type == ZONE_MOVABLE) {
			*zone_start_pfn = zone_movable_pfn[nid];
			*zone_end_pfn = min(node_end_pfn,
				arch_zone_highest_possible_pfn[movable_zone]);

5778 5779 5780 5781 5782 5783
		/* Adjust for ZONE_MOVABLE starting within this range */
		} else if (!mirrored_kernelcore &&
			*zone_start_pfn < zone_movable_pfn[nid] &&
			*zone_end_pfn > zone_movable_pfn[nid]) {
			*zone_end_pfn = zone_movable_pfn[nid];

M
Mel Gorman 已提交
5784 5785 5786 5787 5788 5789
		/* Check if this whole range is within ZONE_MOVABLE */
		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
			*zone_start_pfn = *zone_end_pfn;
	}
}

5790 5791 5792 5793
/*
 * Return the number of pages a zone spans in a node, including holes
 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
 */
P
Paul Mundt 已提交
5794
static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5795
					unsigned long zone_type,
5796 5797
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5798 5799
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5800 5801
					unsigned long *ignored)
{
5802
	/* When hotadd a new node from cpu_up(), the node should be empty */
5803 5804 5805
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5806
	/* Get the start and end of the zone */
5807 5808
	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
M
Mel Gorman 已提交
5809 5810
	adjust_zone_range_for_zone_movable(nid, zone_type,
				node_start_pfn, node_end_pfn,
5811
				zone_start_pfn, zone_end_pfn);
5812 5813

	/* Check that this node has pages within the zone's required range */
5814
	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5815 5816 5817
		return 0;

	/* Move the zone boundaries inside the node if necessary */
5818 5819
	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5820 5821

	/* Return the spanned pages */
5822
	return *zone_end_pfn - *zone_start_pfn;
5823 5824 5825 5826
}

/*
 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5827
 * then all holes in the requested range will be accounted for.
5828
 */
5829
unsigned long __meminit __absent_pages_in_range(int nid,
5830 5831 5832
				unsigned long range_start_pfn,
				unsigned long range_end_pfn)
{
5833 5834 5835
	unsigned long nr_absent = range_end_pfn - range_start_pfn;
	unsigned long start_pfn, end_pfn;
	int i;
5836

5837 5838 5839 5840
	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
		nr_absent -= end_pfn - start_pfn;
5841
	}
5842
	return nr_absent;
5843 5844 5845 5846 5847 5848 5849
}

/**
 * absent_pages_in_range - Return number of page frames in holes within a range
 * @start_pfn: The start PFN to start searching for holes
 * @end_pfn: The end PFN to stop searching for holes
 *
5850
 * It returns the number of pages frames in memory holes within a range.
5851 5852 5853 5854 5855 5856 5857 5858
 */
unsigned long __init absent_pages_in_range(unsigned long start_pfn,
							unsigned long end_pfn)
{
	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
}

/* Return the number of page frames in holes in a zone on a node */
P
Paul Mundt 已提交
5859
static unsigned long __meminit zone_absent_pages_in_node(int nid,
5860
					unsigned long zone_type,
5861 5862
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5863 5864
					unsigned long *ignored)
{
5865 5866
	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5867
	unsigned long zone_start_pfn, zone_end_pfn;
5868
	unsigned long nr_absent;
5869

5870
	/* When hotadd a new node from cpu_up(), the node should be empty */
5871 5872 5873
	if (!node_start_pfn && !node_end_pfn)
		return 0;

5874 5875
	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5876

M
Mel Gorman 已提交
5877 5878 5879
	adjust_zone_range_for_zone_movable(nid, zone_type,
			node_start_pfn, node_end_pfn,
			&zone_start_pfn, &zone_end_pfn);
5880 5881 5882 5883 5884 5885 5886
	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);

	/*
	 * ZONE_MOVABLE handling.
	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
	 * and vice versa.
	 */
5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903
	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
		unsigned long start_pfn, end_pfn;
		struct memblock_region *r;

		for_each_memblock(memory, r) {
			start_pfn = clamp(memblock_region_memory_base_pfn(r),
					  zone_start_pfn, zone_end_pfn);
			end_pfn = clamp(memblock_region_memory_end_pfn(r),
					zone_start_pfn, zone_end_pfn);

			if (zone_type == ZONE_MOVABLE &&
			    memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;

			if (zone_type == ZONE_NORMAL &&
			    !memblock_is_mirror(r))
				nr_absent += end_pfn - start_pfn;
5904 5905 5906 5907
		}
	}

	return nr_absent;
5908
}
5909

T
Tejun Heo 已提交
5910
#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
P
Paul Mundt 已提交
5911
static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5912
					unsigned long zone_type,
5913 5914
					unsigned long node_start_pfn,
					unsigned long node_end_pfn,
5915 5916
					unsigned long *zone_start_pfn,
					unsigned long *zone_end_pfn,
5917 5918
					unsigned long *zones_size)
{
5919 5920 5921 5922 5923 5924 5925 5926
	unsigned int zone;

	*zone_start_pfn = node_start_pfn;
	for (zone = 0; zone < zone_type; zone++)
		*zone_start_pfn += zones_size[zone];

	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];

5927 5928 5929
	return zones_size[zone_type];
}

P
Paul Mundt 已提交
5930
static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5931
						unsigned long zone_type,
5932 5933
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
5934 5935 5936 5937 5938 5939 5940
						unsigned long *zholes_size)
{
	if (!zholes_size)
		return 0;

	return zholes_size[zone_type];
}
5941

T
Tejun Heo 已提交
5942
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5943

5944
static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5945 5946 5947 5948
						unsigned long node_start_pfn,
						unsigned long node_end_pfn,
						unsigned long *zones_size,
						unsigned long *zholes_size)
5949
{
5950
	unsigned long realtotalpages = 0, totalpages = 0;
5951 5952
	enum zone_type i;

5953 5954
	for (i = 0; i < MAX_NR_ZONES; i++) {
		struct zone *zone = pgdat->node_zones + i;
5955
		unsigned long zone_start_pfn, zone_end_pfn;
5956
		unsigned long size, real_size;
5957

5958 5959 5960
		size = zone_spanned_pages_in_node(pgdat->node_id, i,
						  node_start_pfn,
						  node_end_pfn,
5961 5962
						  &zone_start_pfn,
						  &zone_end_pfn,
5963 5964
						  zones_size);
		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5965 5966
						  node_start_pfn, node_end_pfn,
						  zholes_size);
5967 5968 5969 5970
		if (size)
			zone->zone_start_pfn = zone_start_pfn;
		else
			zone->zone_start_pfn = 0;
5971 5972 5973 5974 5975 5976 5977 5978
		zone->spanned_pages = size;
		zone->present_pages = real_size;

		totalpages += size;
		realtotalpages += real_size;
	}

	pgdat->node_spanned_pages = totalpages;
5979 5980 5981 5982 5983
	pgdat->node_present_pages = realtotalpages;
	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
							realtotalpages);
}

5984 5985 5986
#ifndef CONFIG_SPARSEMEM
/*
 * Calculate the size of the zone->blockflags rounded to an unsigned long
5987 5988
 * Start by making sure zonesize is a multiple of pageblock_order by rounding
 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5989 5990 5991
 * round what is now in bits to nearest long in bits, then return it in
 * bytes.
 */
5992
static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5993 5994 5995
{
	unsigned long usemapsize;

5996
	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5997 5998
	usemapsize = roundup(zonesize, pageblock_nr_pages);
	usemapsize = usemapsize >> pageblock_order;
5999 6000 6001 6002 6003 6004 6005
	usemapsize *= NR_PAGEBLOCK_BITS;
	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));

	return usemapsize / 8;
}

static void __init setup_usemap(struct pglist_data *pgdat,
6006 6007 6008
				struct zone *zone,
				unsigned long zone_start_pfn,
				unsigned long zonesize)
6009
{
6010
	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6011
	zone->pageblock_flags = NULL;
6012
	if (usemapsize)
6013 6014 6015
		zone->pageblock_flags =
			memblock_virt_alloc_node_nopanic(usemapsize,
							 pgdat->node_id);
6016 6017
}
#else
6018 6019
static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
				unsigned long zone_start_pfn, unsigned long zonesize) {}
6020 6021
#endif /* CONFIG_SPARSEMEM */

6022
#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6023

6024
/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6025
void __paginginit set_pageblock_order(void)
6026
{
6027 6028
	unsigned int order;

6029 6030 6031 6032
	/* Check that pageblock_nr_pages has not already been setup */
	if (pageblock_order)
		return;

6033 6034 6035 6036 6037
	if (HPAGE_SHIFT > PAGE_SHIFT)
		order = HUGETLB_PAGE_ORDER;
	else
		order = MAX_ORDER - 1;

6038 6039
	/*
	 * Assume the largest contiguous order of interest is a huge page.
6040 6041
	 * This value may be variable depending on boot parameters on IA64 and
	 * powerpc.
6042 6043 6044 6045 6046
	 */
	pageblock_order = order;
}
#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6047 6048
/*
 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6049 6050 6051
 * is unused as pageblock_order is set at compile-time. See
 * include/linux/pageblock-flags.h for the values of pageblock_order based on
 * the kernel config
6052
 */
6053
void __paginginit set_pageblock_order(void)
6054 6055
{
}
6056 6057 6058

#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */

6059 6060 6061 6062 6063 6064 6065 6066 6067 6068
static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
						   unsigned long present_pages)
{
	unsigned long pages = spanned_pages;

	/*
	 * Provide a more accurate estimation if there are holes within
	 * the zone and SPARSEMEM is in use. If there are holes within the
	 * zone, each populated memory region may cost us one or two extra
	 * memmap pages due to alignment because memmap pages for each
6069
	 * populated regions may not be naturally aligned on page boundary.
6070 6071 6072 6073 6074 6075 6076 6077 6078
	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
	 */
	if (spanned_pages > present_pages + (present_pages >> 4) &&
	    IS_ENABLED(CONFIG_SPARSEMEM))
		pages = present_pages;

	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
}

L
Linus Torvalds 已提交
6079 6080 6081 6082 6083
/*
 * Set up the zone data structures:
 *   - mark all pages reserved
 *   - mark all memory queues empty
 *   - clear the memory bitmaps
6084 6085
 *
 * NOTE: pgdat should get zeroed by caller.
L
Linus Torvalds 已提交
6086
 */
6087
static void __paginginit free_area_init_core(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6088
{
6089
	enum zone_type j;
6090
	int nid = pgdat->node_id;
L
Linus Torvalds 已提交
6091

6092
	pgdat_resize_init(pgdat);
6093 6094 6095 6096
#ifdef CONFIG_NUMA_BALANCING
	spin_lock_init(&pgdat->numabalancing_migrate_lock);
	pgdat->numabalancing_migrate_nr_pages = 0;
	pgdat->numabalancing_migrate_next_window = jiffies;
6097 6098 6099 6100 6101
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
	spin_lock_init(&pgdat->split_queue_lock);
	INIT_LIST_HEAD(&pgdat->split_queue);
	pgdat->split_queue_len = 0;
6102
#endif
L
Linus Torvalds 已提交
6103
	init_waitqueue_head(&pgdat->kswapd_wait);
6104
	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6105 6106 6107
#ifdef CONFIG_COMPACTION
	init_waitqueue_head(&pgdat->kcompactd_wait);
#endif
6108
	pgdat_page_ext_init(pgdat);
6109
	spin_lock_init(&pgdat->lru_lock);
6110
	lruvec_init(node_lruvec(pgdat));
6111

6112 6113
	pgdat->per_cpu_nodestats = &boot_nodestats;

L
Linus Torvalds 已提交
6114 6115
	for (j = 0; j < MAX_NR_ZONES; j++) {
		struct zone *zone = pgdat->node_zones + j;
6116
		unsigned long size, realsize, freesize, memmap_pages;
6117
		unsigned long zone_start_pfn = zone->zone_start_pfn;
L
Linus Torvalds 已提交
6118

6119 6120
		size = zone->spanned_pages;
		realsize = freesize = zone->present_pages;
L
Linus Torvalds 已提交
6121

6122
		/*
6123
		 * Adjust freesize so that it accounts for how much memory
6124 6125 6126
		 * is used by this zone for memmap. This affects the watermark
		 * and per-cpu initialisations
		 */
6127
		memmap_pages = calc_memmap_size(size, realsize);
6128 6129 6130 6131 6132 6133 6134 6135
		if (!is_highmem_idx(j)) {
			if (freesize >= memmap_pages) {
				freesize -= memmap_pages;
				if (memmap_pages)
					printk(KERN_DEBUG
					       "  %s zone: %lu pages used for memmap\n",
					       zone_names[j], memmap_pages);
			} else
6136
				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6137 6138
					zone_names[j], memmap_pages, freesize);
		}
6139

6140
		/* Account for reserved pages */
6141 6142
		if (j == 0 && freesize > dma_reserve) {
			freesize -= dma_reserve;
Y
Yinghai Lu 已提交
6143
			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6144
					zone_names[0], dma_reserve);
6145 6146
		}

6147
		if (!is_highmem_idx(j))
6148
			nr_kernel_pages += freesize;
6149 6150 6151
		/* Charge for highmem memmap if there are enough kernel pages */
		else if (nr_kernel_pages > memmap_pages * 2)
			nr_kernel_pages -= memmap_pages;
6152
		nr_all_pages += freesize;
L
Linus Torvalds 已提交
6153

6154 6155 6156 6157 6158 6159
		/*
		 * Set an approximate value for lowmem here, it will be adjusted
		 * when the bootmem allocator frees pages into the buddy system.
		 * And all highmem pages will be managed by the buddy system.
		 */
		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6160
#ifdef CONFIG_NUMA
6161
		zone->node = nid;
6162
#endif
L
Linus Torvalds 已提交
6163
		zone->name = zone_names[j];
6164
		zone->zone_pgdat = pgdat;
L
Linus Torvalds 已提交
6165
		spin_lock_init(&zone->lock);
6166
		zone_seqlock_init(zone);
6167
		zone_pcp_init(zone);
6168

L
Linus Torvalds 已提交
6169 6170 6171
		if (!size)
			continue;

6172
		set_pageblock_order();
6173
		setup_usemap(pgdat, zone, zone_start_pfn, size);
6174
		init_currently_empty_zone(zone, zone_start_pfn, size);
6175
		memmap_init(size, nid, j, zone_start_pfn);
L
Linus Torvalds 已提交
6176 6177 6178
	}
}

6179
#ifdef CONFIG_FLAT_NODE_MEM_MAP
6180
static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
L
Linus Torvalds 已提交
6181
{
6182
	unsigned long __maybe_unused start = 0;
L
Laura Abbott 已提交
6183 6184
	unsigned long __maybe_unused offset = 0;

L
Linus Torvalds 已提交
6185 6186 6187 6188
	/* Skip empty nodes */
	if (!pgdat->node_spanned_pages)
		return;

6189 6190
	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
	offset = pgdat->node_start_pfn - start;
L
Linus Torvalds 已提交
6191 6192
	/* ia64 gets its own node_mem_map, before this, without bootmem */
	if (!pgdat->node_mem_map) {
6193
		unsigned long size, end;
A
Andy Whitcroft 已提交
6194 6195
		struct page *map;

6196 6197 6198 6199 6200
		/*
		 * The zone's endpoints aren't required to be MAX_ORDER
		 * aligned but the node_mem_map endpoints must be in order
		 * for the buddy allocator to function correctly.
		 */
6201
		end = pgdat_end_pfn(pgdat);
6202 6203
		end = ALIGN(end, MAX_ORDER_NR_PAGES);
		size =  (end - start) * sizeof(struct page);
6204 6205
		map = alloc_remap(pgdat->node_id, size);
		if (!map)
6206 6207
			map = memblock_virt_alloc_node_nopanic(size,
							       pgdat->node_id);
L
Laura Abbott 已提交
6208
		pgdat->node_mem_map = map + offset;
L
Linus Torvalds 已提交
6209
	}
6210 6211 6212
	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
				__func__, pgdat->node_id, (unsigned long)pgdat,
				(unsigned long)pgdat->node_mem_map);
6213
#ifndef CONFIG_NEED_MULTIPLE_NODES
L
Linus Torvalds 已提交
6214 6215 6216
	/*
	 * With no DISCONTIG, the global mem_map is just set as node 0's
	 */
6217
	if (pgdat == NODE_DATA(0)) {
L
Linus Torvalds 已提交
6218
		mem_map = NODE_DATA(0)->node_mem_map;
L
Laura Abbott 已提交
6219
#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6220
		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
L
Laura Abbott 已提交
6221
			mem_map -= offset;
T
Tejun Heo 已提交
6222
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6223
	}
L
Linus Torvalds 已提交
6224 6225
#endif
}
6226 6227 6228
#else
static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
#endif /* CONFIG_FLAT_NODE_MEM_MAP */
L
Linus Torvalds 已提交
6229

6230 6231
void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
		unsigned long node_start_pfn, unsigned long *zholes_size)
L
Linus Torvalds 已提交
6232
{
6233
	pg_data_t *pgdat = NODE_DATA(nid);
6234 6235
	unsigned long start_pfn = 0;
	unsigned long end_pfn = 0;
6236

6237
	/* pg_data_t should be reset to zero when it's allocated */
6238
	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6239

L
Linus Torvalds 已提交
6240 6241
	pgdat->node_id = nid;
	pgdat->node_start_pfn = node_start_pfn;
6242
	pgdat->per_cpu_nodestats = NULL;
6243 6244
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6245
	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6246 6247
		(u64)start_pfn << PAGE_SHIFT,
		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6248 6249
#else
	start_pfn = node_start_pfn;
6250 6251 6252
#endif
	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
				  zones_size, zholes_size);
L
Linus Torvalds 已提交
6253 6254 6255

	alloc_node_mem_map(pgdat);

6256
	reset_deferred_meminit(pgdat);
6257
	free_area_init_core(pgdat);
L
Linus Torvalds 已提交
6258 6259
}

6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280
#ifdef CONFIG_HAVE_MEMBLOCK
/*
 * Only struct pages that are backed by physical memory are zeroed and
 * initialized by going through __init_single_page(). But, there are some
 * struct pages which are reserved in memblock allocator and their fields
 * may be accessed (for example page_to_pfn() on some configuration accesses
 * flags). We must explicitly zero those struct pages.
 */
void __paginginit zero_resv_unavail(void)
{
	phys_addr_t start, end;
	unsigned long pfn;
	u64 i, pgcnt;

	/*
	 * Loop through ranges that are reserved, but do not have reported
	 * physical memory backing.
	 */
	pgcnt = 0;
	for_each_resv_unavail_range(i, &start, &end) {
		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6281 6282
			if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages)))
				continue;
6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299
			mm_zero_struct_page(pfn_to_page(pfn));
			pgcnt++;
		}
	}

	/*
	 * Struct pages that do not have backing memory. This could be because
	 * firmware is using some of this memory, or for some other reasons.
	 * Once memblock is changed so such behaviour is not allowed: i.e.
	 * list of "reserved" memory must be a subset of list of "memory", then
	 * this code can be removed.
	 */
	if (pgcnt)
		pr_info("Reserved but unavailable: %lld pages", pgcnt);
}
#endif /* CONFIG_HAVE_MEMBLOCK */

T
Tejun Heo 已提交
6300
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
M
Miklos Szeredi 已提交
6301 6302 6303 6304 6305

#if MAX_NUMNODES > 1
/*
 * Figure out the number of possible node ids.
 */
6306
void __init setup_nr_node_ids(void)
M
Miklos Szeredi 已提交
6307
{
6308
	unsigned int highest;
M
Miklos Szeredi 已提交
6309

6310
	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
M
Miklos Szeredi 已提交
6311 6312 6313 6314
	nr_node_ids = highest + 1;
}
#endif

6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336
/**
 * node_map_pfn_alignment - determine the maximum internode alignment
 *
 * This function should be called after node map is populated and sorted.
 * It calculates the maximum power of two alignment which can distinguish
 * all the nodes.
 *
 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
 * shifted, 1GiB is enough and this function will indicate so.
 *
 * This is used to test whether pfn -> nid mapping of the chosen memory
 * model has fine enough granularity to avoid incorrect mapping for the
 * populated node map.
 *
 * Returns the determined alignment in pfn's.  0 if there is no alignment
 * requirement (single node).
 */
unsigned long __init node_map_pfn_alignment(void)
{
	unsigned long accl_mask = 0, last_end = 0;
6337
	unsigned long start, end, mask;
6338
	int last_nid = -1;
6339
	int i, nid;
6340

6341
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364
		if (!start || last_nid < 0 || last_nid == nid) {
			last_nid = nid;
			last_end = end;
			continue;
		}

		/*
		 * Start with a mask granular enough to pin-point to the
		 * start pfn and tick off bits one-by-one until it becomes
		 * too coarse to separate the current node from the last.
		 */
		mask = ~((1 << __ffs(start)) - 1);
		while (mask && last_end <= (start & (mask << 1)))
			mask <<= 1;

		/* accumulate all internode masks */
		accl_mask |= mask;
	}

	/* convert mask to number of pages */
	return ~accl_mask + 1;
}

6365
/* Find the lowest pfn for a node */
A
Adrian Bunk 已提交
6366
static unsigned long __init find_min_pfn_for_node(int nid)
6367
{
6368
	unsigned long min_pfn = ULONG_MAX;
6369 6370
	unsigned long start_pfn;
	int i;
6371

6372 6373
	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
		min_pfn = min(min_pfn, start_pfn);
6374

6375
	if (min_pfn == ULONG_MAX) {
6376
		pr_warn("Could not find start_pfn for node %d\n", nid);
6377 6378 6379 6380
		return 0;
	}

	return min_pfn;
6381 6382 6383 6384 6385 6386
}

/**
 * find_min_pfn_with_active_regions - Find the minimum PFN registered
 *
 * It returns the minimum PFN based on information provided via
6387
 * memblock_set_node().
6388 6389 6390 6391 6392 6393
 */
unsigned long __init find_min_pfn_with_active_regions(void)
{
	return find_min_pfn_for_node(MAX_NUMNODES);
}

6394 6395 6396
/*
 * early_calculate_totalpages()
 * Sum pages in active regions for movable zone.
6397
 * Populate N_MEMORY for calculating usable_nodes.
6398
 */
A
Adrian Bunk 已提交
6399
static unsigned long __init early_calculate_totalpages(void)
6400 6401
{
	unsigned long totalpages = 0;
6402 6403 6404 6405 6406
	unsigned long start_pfn, end_pfn;
	int i, nid;

	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
		unsigned long pages = end_pfn - start_pfn;
6407

6408 6409
		totalpages += pages;
		if (pages)
6410
			node_set_state(nid, N_MEMORY);
6411
	}
6412
	return totalpages;
6413 6414
}

M
Mel Gorman 已提交
6415 6416 6417 6418 6419 6420
/*
 * Find the PFN the Movable zone begins in each node. Kernel memory
 * is spread evenly between nodes as long as the nodes have enough
 * memory. When they don't, some nodes will have more kernelcore than
 * others
 */
6421
static void __init find_zone_movable_pfns_for_nodes(void)
M
Mel Gorman 已提交
6422 6423 6424 6425
{
	int i, nid;
	unsigned long usable_startpfn;
	unsigned long kernelcore_node, kernelcore_remaining;
6426
	/* save the state before borrow the nodemask */
6427
	nodemask_t saved_node_state = node_states[N_MEMORY];
6428
	unsigned long totalpages = early_calculate_totalpages();
6429
	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
E
Emil Medve 已提交
6430
	struct memblock_region *r;
6431 6432 6433 6434 6435 6436 6437 6438 6439

	/* Need to find movable_zone earlier when movable_node is specified. */
	find_usable_zone_for_movable();

	/*
	 * If movable_node is specified, ignore kernelcore and movablecore
	 * options.
	 */
	if (movable_node_is_enabled()) {
E
Emil Medve 已提交
6440 6441
		for_each_memblock(memory, r) {
			if (!memblock_is_hotpluggable(r))
6442 6443
				continue;

E
Emil Medve 已提交
6444
			nid = r->nid;
6445

E
Emil Medve 已提交
6446
			usable_startpfn = PFN_DOWN(r->base);
6447 6448 6449 6450 6451 6452 6453
			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		goto out2;
	}
M
Mel Gorman 已提交
6454

6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484
	/*
	 * If kernelcore=mirror is specified, ignore movablecore option
	 */
	if (mirrored_kernelcore) {
		bool mem_below_4gb_not_mirrored = false;

		for_each_memblock(memory, r) {
			if (memblock_is_mirror(r))
				continue;

			nid = r->nid;

			usable_startpfn = memblock_region_memory_base_pfn(r);

			if (usable_startpfn < 0x100000) {
				mem_below_4gb_not_mirrored = true;
				continue;
			}

			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
				min(usable_startpfn, zone_movable_pfn[nid]) :
				usable_startpfn;
		}

		if (mem_below_4gb_not_mirrored)
			pr_warn("This configuration results in unmirrored kernel memory.");

		goto out2;
	}

6485
	/*
6486
	 * If movablecore=nn[KMG] was specified, calculate what size of
6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501
	 * kernelcore that corresponds so that memory usable for
	 * any allocation type is evenly spread. If both kernelcore
	 * and movablecore are specified, then the value of kernelcore
	 * will be used for required_kernelcore if it's greater than
	 * what movablecore would have allowed.
	 */
	if (required_movablecore) {
		unsigned long corepages;

		/*
		 * Round-up so that ZONE_MOVABLE is at least as large as what
		 * was requested by the user
		 */
		required_movablecore =
			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6502
		required_movablecore = min(totalpages, required_movablecore);
6503 6504 6505 6506 6507
		corepages = totalpages - required_movablecore;

		required_kernelcore = max(required_kernelcore, corepages);
	}

6508 6509 6510 6511 6512
	/*
	 * If kernelcore was not specified or kernelcore size is larger
	 * than totalpages, there is no ZONE_MOVABLE.
	 */
	if (!required_kernelcore || required_kernelcore >= totalpages)
6513
		goto out;
M
Mel Gorman 已提交
6514 6515 6516 6517 6518 6519 6520

	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];

restart:
	/* Spread kernelcore memory as evenly as possible throughout nodes */
	kernelcore_node = required_kernelcore / usable_nodes;
6521
	for_each_node_state(nid, N_MEMORY) {
6522 6523
		unsigned long start_pfn, end_pfn;

M
Mel Gorman 已提交
6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
		/*
		 * Recalculate kernelcore_node if the division per node
		 * now exceeds what is necessary to satisfy the requested
		 * amount of memory for the kernel
		 */
		if (required_kernelcore < kernelcore_node)
			kernelcore_node = required_kernelcore / usable_nodes;

		/*
		 * As the map is walked, we track how much memory is usable
		 * by the kernel using kernelcore_remaining. When it is
		 * 0, the rest of the node is usable by ZONE_MOVABLE
		 */
		kernelcore_remaining = kernelcore_node;

		/* Go through each range of PFNs within this node */
6540
		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
M
Mel Gorman 已提交
6541 6542
			unsigned long size_pages;

6543
			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
M
Mel Gorman 已提交
6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585
			if (start_pfn >= end_pfn)
				continue;

			/* Account for what is only usable for kernelcore */
			if (start_pfn < usable_startpfn) {
				unsigned long kernel_pages;
				kernel_pages = min(end_pfn, usable_startpfn)
								- start_pfn;

				kernelcore_remaining -= min(kernel_pages,
							kernelcore_remaining);
				required_kernelcore -= min(kernel_pages,
							required_kernelcore);

				/* Continue if range is now fully accounted */
				if (end_pfn <= usable_startpfn) {

					/*
					 * Push zone_movable_pfn to the end so
					 * that if we have to rebalance
					 * kernelcore across nodes, we will
					 * not double account here
					 */
					zone_movable_pfn[nid] = end_pfn;
					continue;
				}
				start_pfn = usable_startpfn;
			}

			/*
			 * The usable PFN range for ZONE_MOVABLE is from
			 * start_pfn->end_pfn. Calculate size_pages as the
			 * number of pages used as kernelcore
			 */
			size_pages = end_pfn - start_pfn;
			if (size_pages > kernelcore_remaining)
				size_pages = kernelcore_remaining;
			zone_movable_pfn[nid] = start_pfn + size_pages;

			/*
			 * Some kernelcore has been met, update counts and
			 * break if the kernelcore for this node has been
6586
			 * satisfied
M
Mel Gorman 已提交
6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599
			 */
			required_kernelcore -= min(required_kernelcore,
								size_pages);
			kernelcore_remaining -= size_pages;
			if (!kernelcore_remaining)
				break;
		}
	}

	/*
	 * If there is still required_kernelcore, we do another pass with one
	 * less node in the count. This will push zone_movable_pfn[nid] further
	 * along on the nodes that still have memory until kernelcore is
6600
	 * satisfied
M
Mel Gorman 已提交
6601 6602 6603 6604 6605
	 */
	usable_nodes--;
	if (usable_nodes && required_kernelcore > usable_nodes)
		goto restart;

6606
out2:
M
Mel Gorman 已提交
6607 6608 6609 6610
	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
	for (nid = 0; nid < MAX_NUMNODES; nid++)
		zone_movable_pfn[nid] =
			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6611

6612
out:
6613
	/* restore the node_state */
6614
	node_states[N_MEMORY] = saved_node_state;
M
Mel Gorman 已提交
6615 6616
}

6617 6618
/* Any regular or high memory on that node ? */
static void check_for_memory(pg_data_t *pgdat, int nid)
6619 6620 6621
{
	enum zone_type zone_type;

6622 6623 6624 6625
	if (N_MEMORY == N_NORMAL_MEMORY)
		return;

	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6626
		struct zone *zone = &pgdat->node_zones[zone_type];
6627
		if (populated_zone(zone)) {
6628 6629 6630 6631
			node_set_state(nid, N_HIGH_MEMORY);
			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
			    zone_type <= ZONE_NORMAL)
				node_set_state(nid, N_NORMAL_MEMORY);
6632 6633
			break;
		}
6634 6635 6636
	}
}

6637 6638
/**
 * free_area_init_nodes - Initialise all pg_data_t and zone data
6639
 * @max_zone_pfn: an array of max PFNs for each zone
6640 6641
 *
 * This will call free_area_init_node() for each active node in the system.
6642
 * Using the page ranges provided by memblock_set_node(), the size of each
6643 6644 6645 6646 6647 6648 6649 6650 6651
 * zone in each node and their holes is calculated. If the maximum PFN
 * between two adjacent zones match, it is assumed that the zone is empty.
 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
 * starts where the previous one ended. For example, ZONE_DMA32 starts
 * at arch_max_dma_pfn.
 */
void __init free_area_init_nodes(unsigned long *max_zone_pfn)
{
6652 6653
	unsigned long start_pfn, end_pfn;
	int i, nid;
6654

6655 6656 6657 6658 6659
	/* Record where the zone boundaries are */
	memset(arch_zone_lowest_possible_pfn, 0,
				sizeof(arch_zone_lowest_possible_pfn));
	memset(arch_zone_highest_possible_pfn, 0,
				sizeof(arch_zone_highest_possible_pfn));
6660 6661 6662 6663

	start_pfn = find_min_pfn_with_active_regions();

	for (i = 0; i < MAX_NR_ZONES; i++) {
M
Mel Gorman 已提交
6664 6665
		if (i == ZONE_MOVABLE)
			continue;
6666 6667 6668 6669 6670 6671

		end_pfn = max(max_zone_pfn[i], start_pfn);
		arch_zone_lowest_possible_pfn[i] = start_pfn;
		arch_zone_highest_possible_pfn[i] = end_pfn;

		start_pfn = end_pfn;
6672
	}
M
Mel Gorman 已提交
6673 6674 6675

	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6676
	find_zone_movable_pfns_for_nodes();
6677 6678

	/* Print out the zone ranges */
6679
	pr_info("Zone ranges:\n");
M
Mel Gorman 已提交
6680 6681 6682
	for (i = 0; i < MAX_NR_ZONES; i++) {
		if (i == ZONE_MOVABLE)
			continue;
6683
		pr_info("  %-8s ", zone_names[i]);
6684 6685
		if (arch_zone_lowest_possible_pfn[i] ==
				arch_zone_highest_possible_pfn[i])
6686
			pr_cont("empty\n");
6687
		else
6688 6689 6690 6691
			pr_cont("[mem %#018Lx-%#018Lx]\n",
				(u64)arch_zone_lowest_possible_pfn[i]
					<< PAGE_SHIFT,
				((u64)arch_zone_highest_possible_pfn[i]
6692
					<< PAGE_SHIFT) - 1);
M
Mel Gorman 已提交
6693 6694 6695
	}

	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6696
	pr_info("Movable zone start for each node\n");
M
Mel Gorman 已提交
6697 6698
	for (i = 0; i < MAX_NUMNODES; i++) {
		if (zone_movable_pfn[i])
6699 6700
			pr_info("  Node %d: %#018Lx\n", i,
			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
M
Mel Gorman 已提交
6701
	}
6702

6703
	/* Print out the early node map */
6704
	pr_info("Early memory node ranges\n");
6705
	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6706 6707 6708
		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
			(u64)start_pfn << PAGE_SHIFT,
			((u64)end_pfn << PAGE_SHIFT) - 1);
6709 6710

	/* Initialise every node */
6711
	mminit_verify_pageflags_layout();
6712
	setup_nr_node_ids();
6713 6714
	for_each_online_node(nid) {
		pg_data_t *pgdat = NODE_DATA(nid);
6715
		free_area_init_node(nid, NULL,
6716
				find_min_pfn_for_node(nid), NULL);
6717 6718 6719

		/* Any memory on that node */
		if (pgdat->node_present_pages)
6720 6721
			node_set_state(nid, N_MEMORY);
		check_for_memory(pgdat, nid);
6722
	}
6723
	zero_resv_unavail();
6724
}
M
Mel Gorman 已提交
6725

6726
static int __init cmdline_parse_core(char *p, unsigned long *core)
M
Mel Gorman 已提交
6727 6728 6729 6730 6731 6732
{
	unsigned long long coremem;
	if (!p)
		return -EINVAL;

	coremem = memparse(p, &p);
6733
	*core = coremem >> PAGE_SHIFT;
M
Mel Gorman 已提交
6734

6735
	/* Paranoid check that UL is enough for the coremem value */
M
Mel Gorman 已提交
6736 6737 6738 6739
	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);

	return 0;
}
M
Mel Gorman 已提交
6740

6741 6742 6743 6744 6745 6746
/*
 * kernelcore=size sets the amount of memory for use for allocations that
 * cannot be reclaimed or migrated.
 */
static int __init cmdline_parse_kernelcore(char *p)
{
6747 6748 6749 6750 6751 6752
	/* parse kernelcore=mirror */
	if (parse_option_str(p, "mirror")) {
		mirrored_kernelcore = true;
		return 0;
	}

6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
	return cmdline_parse_core(p, &required_kernelcore);
}

/*
 * movablecore=size sets the amount of memory for use for allocations that
 * can be reclaimed or migrated.
 */
static int __init cmdline_parse_movablecore(char *p)
{
	return cmdline_parse_core(p, &required_movablecore);
}

M
Mel Gorman 已提交
6765
early_param("kernelcore", cmdline_parse_kernelcore);
6766
early_param("movablecore", cmdline_parse_movablecore);
M
Mel Gorman 已提交
6767

T
Tejun Heo 已提交
6768
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6769

6770 6771 6772 6773 6774
void adjust_managed_page_count(struct page *page, long count)
{
	spin_lock(&managed_page_count_lock);
	page_zone(page)->managed_pages += count;
	totalram_pages += count;
6775 6776 6777 6778
#ifdef CONFIG_HIGHMEM
	if (PageHighMem(page))
		totalhigh_pages += count;
#endif
6779 6780
	spin_unlock(&managed_page_count_lock);
}
6781
EXPORT_SYMBOL(adjust_managed_page_count);
6782

6783
unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6784
{
6785 6786
	void *pos;
	unsigned long pages = 0;
6787

6788 6789 6790
	start = (void *)PAGE_ALIGN((unsigned long)start);
	end = (void *)((unsigned long)end & PAGE_MASK);
	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6791
		if ((unsigned int)poison <= 0xFF)
6792 6793
			memset(pos, poison, PAGE_SIZE);
		free_reserved_page(virt_to_page(pos));
6794 6795 6796
	}

	if (pages && s)
6797 6798
		pr_info("Freeing %s memory: %ldK\n",
			s, pages << (PAGE_SHIFT - 10));
6799 6800 6801

	return pages;
}
6802
EXPORT_SYMBOL(free_reserved_area);
6803

6804 6805 6806 6807 6808
#ifdef	CONFIG_HIGHMEM
void free_highmem_page(struct page *page)
{
	__free_reserved_page(page);
	totalram_pages++;
6809
	page_zone(page)->managed_pages++;
6810 6811 6812 6813
	totalhigh_pages++;
}
#endif

6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835

void __init mem_init_print_info(const char *str)
{
	unsigned long physpages, codesize, datasize, rosize, bss_size;
	unsigned long init_code_size, init_data_size;

	physpages = get_num_physpages();
	codesize = _etext - _stext;
	datasize = _edata - _sdata;
	rosize = __end_rodata - __start_rodata;
	bss_size = __bss_stop - __bss_start;
	init_data_size = __init_end - __init_begin;
	init_code_size = _einittext - _sinittext;

	/*
	 * Detect special cases and adjust section sizes accordingly:
	 * 1) .init.* may be embedded into .data sections
	 * 2) .init.text.* may be out of [__init_begin, __init_end],
	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
	 * 3) .rodata.* may be embedded into .text or .data sections.
	 */
#define adj_init_size(start, end, size, pos, adj) \
6836 6837 6838 6839
	do { \
		if (start <= pos && pos < end && size > adj) \
			size -= adj; \
	} while (0)
6840 6841 6842 6843 6844 6845 6846 6847 6848 6849

	adj_init_size(__init_begin, __init_end, init_data_size,
		     _sinittext, init_code_size);
	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);

#undef	adj_init_size

J
Joe Perches 已提交
6850
	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6851
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6852
		", %luK highmem"
6853
#endif
J
Joe Perches 已提交
6854 6855 6856 6857 6858 6859 6860
		"%s%s)\n",
		nr_free_pages() << (PAGE_SHIFT - 10),
		physpages << (PAGE_SHIFT - 10),
		codesize >> 10, datasize >> 10, rosize >> 10,
		(init_data_size + init_code_size) >> 10, bss_size >> 10,
		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
		totalcma_pages << (PAGE_SHIFT - 10),
6861
#ifdef	CONFIG_HIGHMEM
J
Joe Perches 已提交
6862
		totalhigh_pages << (PAGE_SHIFT - 10),
6863
#endif
J
Joe Perches 已提交
6864
		str ? ", " : "", str ? str : "");
6865 6866
}

6867
/**
6868 6869
 * set_dma_reserve - set the specified number of pages reserved in the first zone
 * @new_dma_reserve: The number of pages to mark reserved
6870
 *
6871
 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6872 6873
 * In the DMA zone, a significant percentage may be consumed by kernel image
 * and other unfreeable allocations which can skew the watermarks badly. This
6874 6875 6876
 * function may optionally be used to account for unfreeable pages in the
 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
 * smaller per-cpu batchsize.
6877 6878 6879 6880 6881 6882
 */
void __init set_dma_reserve(unsigned long new_dma_reserve)
{
	dma_reserve = new_dma_reserve;
}

L
Linus Torvalds 已提交
6883 6884
void __init free_area_init(unsigned long *zones_size)
{
6885
	free_area_init_node(0, zones_size,
L
Linus Torvalds 已提交
6886
			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6887
	zero_resv_unavail();
L
Linus Torvalds 已提交
6888 6889
}

6890
static int page_alloc_cpu_dead(unsigned int cpu)
L
Linus Torvalds 已提交
6891 6892
{

6893 6894
	lru_add_drain_cpu(cpu);
	drain_pages(cpu);
6895

6896 6897 6898 6899 6900 6901 6902
	/*
	 * Spill the event counters of the dead processor
	 * into the current processors event counters.
	 * This artificially elevates the count of the current
	 * processor.
	 */
	vm_events_fold_cpu(cpu);
6903

6904 6905 6906 6907 6908 6909 6910 6911 6912
	/*
	 * Zero the differential counters of the dead processor
	 * so that the vm statistics are consistent.
	 *
	 * This is only okay since the processor is dead and cannot
	 * race with what we are doing.
	 */
	cpu_vm_stats_fold(cpu);
	return 0;
L
Linus Torvalds 已提交
6913 6914 6915 6916
}

void __init page_alloc_init(void)
{
6917 6918 6919 6920 6921 6922
	int ret;

	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
					"mm/page_alloc:dead", NULL,
					page_alloc_cpu_dead);
	WARN_ON(ret < 0);
L
Linus Torvalds 已提交
6923 6924
}

6925
/*
6926
 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6927 6928 6929 6930 6931 6932
 *	or min_free_kbytes changes.
 */
static void calculate_totalreserve_pages(void)
{
	struct pglist_data *pgdat;
	unsigned long reserve_pages = 0;
6933
	enum zone_type i, j;
6934 6935

	for_each_online_pgdat(pgdat) {
6936 6937 6938

		pgdat->totalreserve_pages = 0;

6939 6940
		for (i = 0; i < MAX_NR_ZONES; i++) {
			struct zone *zone = pgdat->node_zones + i;
6941
			long max = 0;
6942 6943 6944 6945 6946 6947 6948

			/* Find valid and maximum lowmem_reserve in the zone */
			for (j = i; j < MAX_NR_ZONES; j++) {
				if (zone->lowmem_reserve[j] > max)
					max = zone->lowmem_reserve[j];
			}

6949 6950
			/* we treat the high watermark as reserved pages. */
			max += high_wmark_pages(zone);
6951

6952 6953
			if (max > zone->managed_pages)
				max = zone->managed_pages;
6954

6955
			pgdat->totalreserve_pages += max;
6956

6957 6958 6959 6960 6961 6962
			reserve_pages += max;
		}
	}
	totalreserve_pages = reserve_pages;
}

L
Linus Torvalds 已提交
6963 6964
/*
 * setup_per_zone_lowmem_reserve - called whenever
6965
 *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
L
Linus Torvalds 已提交
6966 6967 6968 6969 6970 6971
 *	has a correct pages reserved value, so an adequate number of
 *	pages are left in the zone after a successful __alloc_pages().
 */
static void setup_per_zone_lowmem_reserve(void)
{
	struct pglist_data *pgdat;
6972
	enum zone_type j, idx;
L
Linus Torvalds 已提交
6973

6974
	for_each_online_pgdat(pgdat) {
L
Linus Torvalds 已提交
6975 6976
		for (j = 0; j < MAX_NR_ZONES; j++) {
			struct zone *zone = pgdat->node_zones + j;
6977
			unsigned long managed_pages = zone->managed_pages;
L
Linus Torvalds 已提交
6978 6979 6980

			zone->lowmem_reserve[j] = 0;

6981 6982
			idx = j;
			while (idx) {
L
Linus Torvalds 已提交
6983 6984
				struct zone *lower_zone;

6985 6986
				idx--;

L
Linus Torvalds 已提交
6987 6988 6989 6990
				if (sysctl_lowmem_reserve_ratio[idx] < 1)
					sysctl_lowmem_reserve_ratio[idx] = 1;

				lower_zone = pgdat->node_zones + idx;
6991
				lower_zone->lowmem_reserve[j] = managed_pages /
L
Linus Torvalds 已提交
6992
					sysctl_lowmem_reserve_ratio[idx];
6993
				managed_pages += lower_zone->managed_pages;
L
Linus Torvalds 已提交
6994 6995 6996
			}
		}
	}
6997 6998 6999

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7000 7001
}

7002
static void __setup_per_zone_wmarks(void)
L
Linus Torvalds 已提交
7003 7004 7005 7006 7007 7008 7009 7010 7011
{
	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
	unsigned long lowmem_pages = 0;
	struct zone *zone;
	unsigned long flags;

	/* Calculate total number of !ZONE_HIGHMEM pages */
	for_each_zone(zone) {
		if (!is_highmem(zone))
7012
			lowmem_pages += zone->managed_pages;
L
Linus Torvalds 已提交
7013 7014 7015
	}

	for_each_zone(zone) {
7016 7017
		u64 tmp;

7018
		spin_lock_irqsave(&zone->lock, flags);
7019
		tmp = (u64)pages_min * zone->managed_pages;
7020
		do_div(tmp, lowmem_pages);
L
Linus Torvalds 已提交
7021 7022
		if (is_highmem(zone)) {
			/*
N
Nick Piggin 已提交
7023 7024 7025 7026
			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
			 * need highmem pages, so cap pages_min to a small
			 * value here.
			 *
7027
			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
Y
Yaowei Bai 已提交
7028
			 * deltas control asynch page reclaim, and so should
N
Nick Piggin 已提交
7029
			 * not be capped for highmem.
L
Linus Torvalds 已提交
7030
			 */
7031
			unsigned long min_pages;
L
Linus Torvalds 已提交
7032

7033
			min_pages = zone->managed_pages / 1024;
7034
			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7035
			zone->watermark[WMARK_MIN] = min_pages;
L
Linus Torvalds 已提交
7036
		} else {
N
Nick Piggin 已提交
7037 7038
			/*
			 * If it's a lowmem zone, reserve a number of pages
L
Linus Torvalds 已提交
7039 7040
			 * proportionate to the zone's size.
			 */
7041
			zone->watermark[WMARK_MIN] = tmp;
L
Linus Torvalds 已提交
7042 7043
		}

7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054
		/*
		 * Set the kswapd watermarks distance according to the
		 * scale factor in proportion to available memory, but
		 * ensure a minimum size on small systems.
		 */
		tmp = max_t(u64, tmp >> 2,
			    mult_frac(zone->managed_pages,
				      watermark_scale_factor, 10000));

		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7055

7056
		spin_unlock_irqrestore(&zone->lock, flags);
L
Linus Torvalds 已提交
7057
	}
7058 7059 7060

	/* update totalreserve_pages */
	calculate_totalreserve_pages();
L
Linus Torvalds 已提交
7061 7062
}

7063 7064 7065 7066 7067 7068 7069 7070 7071
/**
 * setup_per_zone_wmarks - called when min_free_kbytes changes
 * or when memory is hot-{added|removed}
 *
 * Ensures that the watermark[min,low,high] values for each zone are set
 * correctly with respect to min_free_kbytes.
 */
void setup_per_zone_wmarks(void)
{
7072 7073 7074
	static DEFINE_SPINLOCK(lock);

	spin_lock(&lock);
7075
	__setup_per_zone_wmarks();
7076
	spin_unlock(&lock);
7077 7078
}

L
Linus Torvalds 已提交
7079 7080 7081 7082 7083 7084 7085
/*
 * Initialise min_free_kbytes.
 *
 * For small machines we want it small (128k min).  For large machines
 * we want it large (64MB max).  But it is not linear, because network
 * bandwidth does not increase linearly with machine size.  We use
 *
7086
 *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
L
Linus Torvalds 已提交
7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102
 *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
 *
 * which yields
 *
 * 16MB:	512k
 * 32MB:	724k
 * 64MB:	1024k
 * 128MB:	1448k
 * 256MB:	2048k
 * 512MB:	2896k
 * 1024MB:	4096k
 * 2048MB:	5792k
 * 4096MB:	8192k
 * 8192MB:	11584k
 * 16384MB:	16384k
 */
7103
int __meminit init_per_zone_wmark_min(void)
L
Linus Torvalds 已提交
7104 7105
{
	unsigned long lowmem_kbytes;
7106
	int new_min_free_kbytes;
L
Linus Torvalds 已提交
7107 7108

	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120
	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);

	if (new_min_free_kbytes > user_min_free_kbytes) {
		min_free_kbytes = new_min_free_kbytes;
		if (min_free_kbytes < 128)
			min_free_kbytes = 128;
		if (min_free_kbytes > 65536)
			min_free_kbytes = 65536;
	} else {
		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
				new_min_free_kbytes, user_min_free_kbytes);
	}
7121
	setup_per_zone_wmarks();
7122
	refresh_zone_stat_thresholds();
L
Linus Torvalds 已提交
7123
	setup_per_zone_lowmem_reserve();
7124 7125 7126 7127 7128 7129

#ifdef CONFIG_NUMA
	setup_min_unmapped_ratio();
	setup_min_slab_ratio();
#endif

L
Linus Torvalds 已提交
7130 7131
	return 0;
}
7132
core_initcall(init_per_zone_wmark_min)
L
Linus Torvalds 已提交
7133 7134

/*
7135
 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
L
Linus Torvalds 已提交
7136 7137 7138
 *	that we can call two helper functions whenever min_free_kbytes
 *	changes.
 */
7139
int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7140
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7141
{
7142 7143 7144 7145 7146 7147
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

7148 7149
	if (write) {
		user_min_free_kbytes = min_free_kbytes;
7150
		setup_per_zone_wmarks();
7151
	}
L
Linus Torvalds 已提交
7152 7153 7154
	return 0;
}

7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169
int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	if (write)
		setup_per_zone_wmarks();

	return 0;
}

7170
#ifdef CONFIG_NUMA
7171
static void setup_min_unmapped_ratio(void)
7172
{
7173
	pg_data_t *pgdat;
7174 7175
	struct zone *zone;

7176
	for_each_online_pgdat(pgdat)
7177
		pgdat->min_unmapped_pages = 0;
7178

7179
	for_each_zone(zone)
7180
		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7181 7182
				sysctl_min_unmapped_ratio) / 100;
}
7183

7184 7185

int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7186
	void __user *buffer, size_t *length, loff_t *ppos)
7187 7188 7189
{
	int rc;

7190
	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7191 7192 7193
	if (rc)
		return rc;

7194 7195 7196 7197 7198 7199 7200 7201 7202 7203
	setup_min_unmapped_ratio();

	return 0;
}

static void setup_min_slab_ratio(void)
{
	pg_data_t *pgdat;
	struct zone *zone;

7204 7205 7206
	for_each_online_pgdat(pgdat)
		pgdat->min_slab_pages = 0;

7207
	for_each_zone(zone)
7208
		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7209
				sysctl_min_slab_ratio) / 100;
7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222
}

int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
	void __user *buffer, size_t *length, loff_t *ppos)
{
	int rc;

	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
	if (rc)
		return rc;

	setup_min_slab_ratio();

7223 7224
	return 0;
}
7225 7226
#endif

L
Linus Torvalds 已提交
7227 7228 7229 7230 7231 7232
/*
 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
 *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
 *	whenever sysctl_lowmem_reserve_ratio changes.
 *
 * The reserve ratio obviously has absolutely no relation with the
7233
 * minimum watermarks. The lowmem reserve ratio can only make sense
L
Linus Torvalds 已提交
7234 7235
 * if in function of the boot time zone sizes.
 */
7236
int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7237
	void __user *buffer, size_t *length, loff_t *ppos)
L
Linus Torvalds 已提交
7238
{
7239
	proc_dointvec_minmax(table, write, buffer, length, ppos);
L
Linus Torvalds 已提交
7240 7241 7242 7243
	setup_per_zone_lowmem_reserve();
	return 0;
}

7244 7245
/*
 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7246 7247
 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
 * pagelist can have before it gets flushed back to buddy allocator.
7248
 */
7249
int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7250
	void __user *buffer, size_t *length, loff_t *ppos)
7251 7252
{
	struct zone *zone;
7253
	int old_percpu_pagelist_fraction;
7254 7255
	int ret;

7256 7257 7258
	mutex_lock(&pcp_batch_high_lock);
	old_percpu_pagelist_fraction = percpu_pagelist_fraction;

7259
	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273
	if (!write || ret < 0)
		goto out;

	/* Sanity checking to avoid pcp imbalance */
	if (percpu_pagelist_fraction &&
	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
		ret = -EINVAL;
		goto out;
	}

	/* No change? */
	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
		goto out;
7274

7275
	for_each_populated_zone(zone) {
7276 7277
		unsigned int cpu;

7278
		for_each_possible_cpu(cpu)
7279 7280
			pageset_set_high_and_batch(zone,
					per_cpu_ptr(zone->pageset, cpu));
7281
	}
7282
out:
7283
	mutex_unlock(&pcp_batch_high_lock);
7284
	return ret;
7285 7286
}

7287
#ifdef CONFIG_NUMA
7288
int hashdist = HASHDIST_DEFAULT;
L
Linus Torvalds 已提交
7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299

static int __init set_hashdist(char *str)
{
	if (!str)
		return 0;
	hashdist = simple_strtoul(str, &str, 0);
	return 1;
}
__setup("hashdist=", set_hashdist);
#endif

7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310
#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
/*
 * Returns the number of pages that arch has reserved but
 * is not known to alloc_large_system_hash().
 */
static unsigned long __init arch_reserved_kernel_pages(void)
{
	return 0;
}
#endif

P
Pavel Tatashin 已提交
7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325
/*
 * Adaptive scale is meant to reduce sizes of hash tables on large memory
 * machines. As memory size is increased the scale is also increased but at
 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
 * quadruples the scale is increased by one, which means the size of hash table
 * only doubles, instead of quadrupling as well.
 * Because 32-bit systems cannot have large physical memory, where this scaling
 * makes sense, it is disabled on such platforms.
 */
#if __BITS_PER_LONG > 32
#define ADAPT_SCALE_BASE	(64ul << 30)
#define ADAPT_SCALE_SHIFT	2
#define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
#endif

L
Linus Torvalds 已提交
7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338
/*
 * allocate a large system hash table from bootmem
 * - it is assumed that the hash table must contain an exact power-of-2
 *   quantity of entries
 * - limit is the number of hash buckets, not the total allocation size
 */
void *__init alloc_large_system_hash(const char *tablename,
				     unsigned long bucketsize,
				     unsigned long numentries,
				     int scale,
				     int flags,
				     unsigned int *_hash_shift,
				     unsigned int *_hash_mask,
7339 7340
				     unsigned long low_limit,
				     unsigned long high_limit)
L
Linus Torvalds 已提交
7341
{
7342
	unsigned long long max = high_limit;
L
Linus Torvalds 已提交
7343 7344
	unsigned long log2qty, size;
	void *table = NULL;
7345
	gfp_t gfp_flags;
L
Linus Torvalds 已提交
7346 7347 7348 7349

	/* allow the kernel cmdline to have a say */
	if (!numentries) {
		/* round applicable memory size up to nearest megabyte */
A
Andrew Morton 已提交
7350
		numentries = nr_kernel_pages;
7351
		numentries -= arch_reserved_kernel_pages();
7352 7353 7354 7355

		/* It isn't necessary when PAGE_SIZE >= 1MB */
		if (PAGE_SHIFT < 20)
			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
L
Linus Torvalds 已提交
7356

P
Pavel Tatashin 已提交
7357 7358 7359 7360 7361 7362 7363 7364 7365 7366
#if __BITS_PER_LONG > 32
		if (!high_limit) {
			unsigned long adapt;

			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
			     adapt <<= ADAPT_SCALE_SHIFT)
				scale++;
		}
#endif

L
Linus Torvalds 已提交
7367 7368 7369 7370 7371
		/* limit to 1 bucket per 2^scale bytes of low memory */
		if (scale > PAGE_SHIFT)
			numentries >>= (scale - PAGE_SHIFT);
		else
			numentries <<= (PAGE_SHIFT - scale);
7372 7373

		/* Make sure we've got at least a 0-order allocation.. */
7374 7375 7376 7377 7378 7379 7380 7381
		if (unlikely(flags & HASH_SMALL)) {
			/* Makes no sense without HASH_EARLY */
			WARN_ON(!(flags & HASH_EARLY));
			if (!(numentries >> *_hash_shift)) {
				numentries = 1UL << *_hash_shift;
				BUG_ON(!numentries);
			}
		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7382
			numentries = PAGE_SIZE / bucketsize;
L
Linus Torvalds 已提交
7383
	}
7384
	numentries = roundup_pow_of_two(numentries);
L
Linus Torvalds 已提交
7385 7386 7387 7388 7389 7390

	/* limit allocation size to 1/16 total memory by default */
	if (max == 0) {
		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
		do_div(max, bucketsize);
	}
7391
	max = min(max, 0x80000000ULL);
L
Linus Torvalds 已提交
7392

7393 7394
	if (numentries < low_limit)
		numentries = low_limit;
L
Linus Torvalds 已提交
7395 7396 7397
	if (numentries > max)
		numentries = max;

7398
	log2qty = ilog2(numentries);
L
Linus Torvalds 已提交
7399

7400
	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
L
Linus Torvalds 已提交
7401 7402
	do {
		size = bucketsize << log2qty;
7403 7404 7405 7406 7407 7408
		if (flags & HASH_EARLY) {
			if (flags & HASH_ZERO)
				table = memblock_virt_alloc_nopanic(size, 0);
			else
				table = memblock_virt_alloc_raw(size, 0);
		} else if (hashdist) {
7409
			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7410
		} else {
7411 7412
			/*
			 * If bucketsize is not a power-of-two, we may free
7413 7414
			 * some pages at the end of hash table which
			 * alloc_pages_exact() automatically does
7415
			 */
7416
			if (get_order(size) < MAX_ORDER) {
7417 7418
				table = alloc_pages_exact(size, gfp_flags);
				kmemleak_alloc(table, size, 1, gfp_flags);
7419
			}
L
Linus Torvalds 已提交
7420 7421 7422 7423 7424 7425
		}
	} while (!table && size > PAGE_SIZE && --log2qty);

	if (!table)
		panic("Failed to allocate %s hash table\n", tablename);

7426 7427
	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
L
Linus Torvalds 已提交
7428 7429 7430 7431 7432 7433 7434 7435

	if (_hash_shift)
		*_hash_shift = log2qty;
	if (_hash_mask)
		*_hash_mask = (1 << log2qty) - 1;

	return table;
}
7436

K
KAMEZAWA Hiroyuki 已提交
7437
/*
7438 7439 7440
 * This function checks whether pageblock includes unmovable pages or not.
 * If @count is not zero, it is okay to include less @count unmovable pages
 *
7441
 * PageLRU check without isolation or lru_lock could race so that
7442 7443 7444
 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
 * check without lock_page also may miss some movable non-lru pages at
 * race condition. So you can't expect this function should be exact.
K
KAMEZAWA Hiroyuki 已提交
7445
 */
7446
bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7447
			 int migratetype,
7448
			 bool skip_hwpoisoned_pages)
7449 7450
{
	unsigned long pfn, iter, found;
7451

7452 7453
	/*
	 * For avoiding noise data, lru_add_drain_all() should be called
7454
	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7455 7456
	 */
	if (zone_idx(zone) == ZONE_MOVABLE)
7457
		return false;
7458

7459 7460 7461 7462 7463 7464 7465 7466 7467
	/*
	 * CMA allocations (alloc_contig_range) really need to mark isolate
	 * CMA pageblocks even when they are not movable in fact so consider
	 * them movable here.
	 */
	if (is_migrate_cma(migratetype) &&
			is_migrate_cma(get_pageblock_migratetype(page)))
		return false;

7468 7469 7470 7471
	pfn = page_to_pfn(page);
	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
		unsigned long check = pfn + iter;

7472
		if (!pfn_valid_within(check))
7473
			continue;
7474

7475
		page = pfn_to_page(check);
7476

7477 7478 7479
		if (PageReserved(page))
			return true;

7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
		/*
		 * Hugepages are not in LRU lists, but they're movable.
		 * We need not scan over tail pages bacause we don't
		 * handle each tail page individually in migration.
		 */
		if (PageHuge(page)) {
			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
			continue;
		}

7490 7491 7492 7493
		/*
		 * We can't use page_count without pin a page
		 * because another CPU can free compound page.
		 * This check already skips compound tails of THP
7494
		 * because their page->_refcount is zero at all time.
7495
		 */
7496
		if (!page_ref_count(page)) {
7497 7498 7499 7500
			if (PageBuddy(page))
				iter += (1 << page_order(page)) - 1;
			continue;
		}
7501

7502 7503 7504 7505 7506 7507 7508
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (skip_hwpoisoned_pages && PageHWPoison(page))
			continue;

7509 7510 7511
		if (__PageMovable(page))
			continue;

7512 7513 7514
		if (!PageLRU(page))
			found++;
		/*
7515 7516 7517
		 * If there are RECLAIMABLE pages, we need to check
		 * it.  But now, memory offline itself doesn't call
		 * shrink_node_slabs() and it still to be fixed.
7518 7519 7520 7521 7522 7523 7524 7525 7526 7527
		 */
		/*
		 * If the page is not RAM, page_count()should be 0.
		 * we don't need more check. This is an _used_ not-movable page.
		 *
		 * The problematic thing here is PG_reserved pages. PG_reserved
		 * is set to both of a memory hole page and a _used_ kernel
		 * page at boot.
		 */
		if (found > count)
7528
			return true;
7529
	}
7530
	return false;
7531 7532 7533 7534
}

bool is_pageblock_removable_nolock(struct page *page)
{
7535 7536
	struct zone *zone;
	unsigned long pfn;
7537 7538 7539 7540 7541

	/*
	 * We have to be careful here because we are iterating over memory
	 * sections which are not zone aware so we might end up outside of
	 * the zone but still within the section.
7542 7543
	 * We have to take care about the node as well. If the node is offline
	 * its NODE_DATA will be NULL - see page_zone.
7544
	 */
7545 7546 7547 7548 7549
	if (!node_online(page_to_nid(page)))
		return false;

	zone = page_zone(page);
	pfn = page_to_pfn(page);
7550
	if (!zone_spans_pfn(zone, pfn))
7551 7552
		return false;

7553
	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
K
KAMEZAWA Hiroyuki 已提交
7554
}
K
KAMEZAWA Hiroyuki 已提交
7555

7556
#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570

static unsigned long pfn_max_align_down(unsigned long pfn)
{
	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
			     pageblock_nr_pages) - 1);
}

static unsigned long pfn_max_align_up(unsigned long pfn)
{
	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
				pageblock_nr_pages));
}

/* [start, end) must belong to a single zone. */
7571 7572
static int __alloc_contig_migrate_range(struct compact_control *cc,
					unsigned long start, unsigned long end)
7573 7574
{
	/* This function is based on compact_zone() from compaction.c. */
7575
	unsigned long nr_reclaimed;
7576 7577 7578 7579
	unsigned long pfn = start;
	unsigned int tries = 0;
	int ret = 0;

7580
	migrate_prep();
7581

7582
	while (pfn < end || !list_empty(&cc->migratepages)) {
7583 7584 7585 7586 7587
		if (fatal_signal_pending(current)) {
			ret = -EINTR;
			break;
		}

7588 7589
		if (list_empty(&cc->migratepages)) {
			cc->nr_migratepages = 0;
7590
			pfn = isolate_migratepages_range(cc, pfn, end);
7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
			if (!pfn) {
				ret = -EINTR;
				break;
			}
			tries = 0;
		} else if (++tries == 5) {
			ret = ret < 0 ? ret : -EBUSY;
			break;
		}

7601 7602 7603
		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
							&cc->migratepages);
		cc->nr_migratepages -= nr_reclaimed;
7604

7605
		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7606
				    NULL, 0, cc->mode, MR_CMA);
7607
	}
7608 7609 7610 7611 7612
	if (ret < 0) {
		putback_movable_pages(&cc->migratepages);
		return ret;
	}
	return 0;
7613 7614 7615 7616 7617 7618
}

/**
 * alloc_contig_range() -- tries to allocate given range of pages
 * @start:	start PFN to allocate
 * @end:	one-past-the-last PFN to allocate
7619 7620 7621 7622
 * @migratetype:	migratetype of the underlaying pageblocks (either
 *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
 *			in range must have the same migratetype and it must
 *			be either of the two.
7623
 * @gfp_mask:	GFP mask to use during compaction
7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635
 *
 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
 * aligned, however it's the caller's responsibility to guarantee that
 * we are the only thread that changes migrate type of pageblocks the
 * pages fall in.
 *
 * The PFN range must belong to a single zone.
 *
 * Returns zero on success or negative error code.  On success all
 * pages which PFN is in [start, end) are allocated for the caller and
 * need to be freed with free_contig_range().
 */
7636
int alloc_contig_range(unsigned long start, unsigned long end,
7637
		       unsigned migratetype, gfp_t gfp_mask)
7638 7639
{
	unsigned long outer_start, outer_end;
7640 7641
	unsigned int order;
	int ret = 0;
7642

7643 7644 7645 7646
	struct compact_control cc = {
		.nr_migratepages = 0,
		.order = -1,
		.zone = page_zone(pfn_to_page(start)),
7647
		.mode = MIGRATE_SYNC,
7648
		.ignore_skip_hint = true,
7649
		.no_set_skip_hint = true,
7650
		.gfp_mask = current_gfp_context(gfp_mask),
7651 7652 7653
	};
	INIT_LIST_HEAD(&cc.migratepages);

7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678
	/*
	 * What we do here is we mark all pageblocks in range as
	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
	 * have different sizes, and due to the way page allocator
	 * work, we align the range to biggest of the two pages so
	 * that page allocator won't try to merge buddies from
	 * different pageblocks and change MIGRATE_ISOLATE to some
	 * other migration type.
	 *
	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
	 * migrate the pages from an unaligned range (ie. pages that
	 * we are interested in).  This will put all the pages in
	 * range back to page allocator as MIGRATE_ISOLATE.
	 *
	 * When this is done, we take the pages in range from page
	 * allocator removing them from the buddy system.  This way
	 * page allocator will never consider using them.
	 *
	 * This lets us mark the pageblocks back as
	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
	 * aligned range but not in the unaligned, original range are
	 * put back to page allocator so that buddy can use them.
	 */

	ret = start_isolate_page_range(pfn_max_align_down(start),
7679 7680
				       pfn_max_align_up(end), migratetype,
				       false);
7681
	if (ret)
7682
		return ret;
7683

7684 7685
	/*
	 * In case of -EBUSY, we'd like to know which page causes problem.
7686 7687 7688 7689 7690 7691 7692
	 * So, just fall through. test_pages_isolated() has a tracepoint
	 * which will report the busy page.
	 *
	 * It is possible that busy pages could become available before
	 * the call to test_pages_isolated, and the range will actually be
	 * allocated.  So, if we fall through be sure to clear ret so that
	 * -EBUSY is not accidentally used or returned to caller.
7693
	 */
7694
	ret = __alloc_contig_migrate_range(&cc, start, end);
7695
	if (ret && ret != -EBUSY)
7696
		goto done;
7697
	ret =0;
7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716

	/*
	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
	 * more, all pages in [start, end) are free in page allocator.
	 * What we are going to do is to allocate all pages from
	 * [start, end) (that is remove them from page allocator).
	 *
	 * The only problem is that pages at the beginning and at the
	 * end of interesting range may be not aligned with pages that
	 * page allocator holds, ie. they can be part of higher order
	 * pages.  Because of this, we reserve the bigger range and
	 * once this is done free the pages we are not interested in.
	 *
	 * We don't have to hold zone->lock here because the pages are
	 * isolated thus they won't get removed from buddy.
	 */

	lru_add_drain_all();
7717
	drain_all_pages(cc.zone);
7718 7719 7720 7721 7722

	order = 0;
	outer_start = start;
	while (!PageBuddy(pfn_to_page(outer_start))) {
		if (++order >= MAX_ORDER) {
7723 7724
			outer_start = start;
			break;
7725 7726 7727 7728
		}
		outer_start &= ~0UL << order;
	}

7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741
	if (outer_start != start) {
		order = page_order(pfn_to_page(outer_start));

		/*
		 * outer_start page could be small order buddy page and
		 * it doesn't include start page. Adjust outer_start
		 * in this case to report failed page properly
		 * on tracepoint in test_pages_isolated()
		 */
		if (outer_start + (1UL << order) <= start)
			outer_start = start;
	}

7742
	/* Make sure the range is really isolated. */
7743
	if (test_pages_isolated(outer_start, end, false)) {
7744
		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7745
			__func__, outer_start, end);
7746 7747 7748 7749
		ret = -EBUSY;
		goto done;
	}

7750
	/* Grab isolated pages from freelists. */
7751
	outer_end = isolate_freepages_range(&cc, outer_start, end);
7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764
	if (!outer_end) {
		ret = -EBUSY;
		goto done;
	}

	/* Free head and tail (if any) */
	if (start != outer_start)
		free_contig_range(outer_start, start - outer_start);
	if (end != outer_end)
		free_contig_range(end, outer_end - end);

done:
	undo_isolate_page_range(pfn_max_align_down(start),
7765
				pfn_max_align_up(end), migratetype);
7766 7767 7768 7769 7770
	return ret;
}

void free_contig_range(unsigned long pfn, unsigned nr_pages)
{
7771 7772 7773 7774 7775 7776 7777 7778 7779
	unsigned int count = 0;

	for (; nr_pages--; pfn++) {
		struct page *page = pfn_to_page(pfn);

		count += page_count(page) != 1;
		__free_page(page);
	}
	WARN(count != 0, "%d pages are still in use!\n", count);
7780 7781 7782
}
#endif

7783
#ifdef CONFIG_MEMORY_HOTPLUG
7784 7785 7786 7787
/*
 * The zone indicated has a new number of managed_pages; batch sizes and percpu
 * page high values need to be recalulated.
 */
7788 7789
void __meminit zone_pcp_update(struct zone *zone)
{
7790
	unsigned cpu;
7791
	mutex_lock(&pcp_batch_high_lock);
7792
	for_each_possible_cpu(cpu)
7793 7794
		pageset_set_high_and_batch(zone,
				per_cpu_ptr(zone->pageset, cpu));
7795
	mutex_unlock(&pcp_batch_high_lock);
7796 7797 7798
}
#endif

7799 7800 7801
void zone_pcp_reset(struct zone *zone)
{
	unsigned long flags;
7802 7803
	int cpu;
	struct per_cpu_pageset *pset;
7804 7805 7806 7807

	/* avoid races with drain_pages()  */
	local_irq_save(flags);
	if (zone->pageset != &boot_pageset) {
7808 7809 7810 7811
		for_each_online_cpu(cpu) {
			pset = per_cpu_ptr(zone->pageset, cpu);
			drain_zonestat(zone, pset);
		}
7812 7813 7814 7815 7816 7817
		free_percpu(zone->pageset);
		zone->pageset = &boot_pageset;
	}
	local_irq_restore(flags);
}

7818
#ifdef CONFIG_MEMORY_HOTREMOVE
K
KAMEZAWA Hiroyuki 已提交
7819
/*
7820 7821
 * All pages in the range must be in a single zone and isolated
 * before calling this.
K
KAMEZAWA Hiroyuki 已提交
7822 7823 7824 7825 7826 7827
 */
void
__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
{
	struct page *page;
	struct zone *zone;
7828
	unsigned int order, i;
K
KAMEZAWA Hiroyuki 已提交
7829 7830 7831 7832 7833 7834 7835 7836
	unsigned long pfn;
	unsigned long flags;
	/* find the first valid pfn */
	for (pfn = start_pfn; pfn < end_pfn; pfn++)
		if (pfn_valid(pfn))
			break;
	if (pfn == end_pfn)
		return;
7837
	offline_mem_sections(pfn, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7838 7839 7840 7841 7842 7843 7844 7845 7846
	zone = page_zone(pfn_to_page(pfn));
	spin_lock_irqsave(&zone->lock, flags);
	pfn = start_pfn;
	while (pfn < end_pfn) {
		if (!pfn_valid(pfn)) {
			pfn++;
			continue;
		}
		page = pfn_to_page(pfn);
7847 7848 7849 7850 7851 7852 7853 7854 7855 7856
		/*
		 * The HWPoisoned page may be not in buddy system, and
		 * page_count() is not 0.
		 */
		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
			pfn++;
			SetPageReserved(page);
			continue;
		}

K
KAMEZAWA Hiroyuki 已提交
7857 7858 7859 7860
		BUG_ON(page_count(page));
		BUG_ON(!PageBuddy(page));
		order = page_order(page);
#ifdef CONFIG_DEBUG_VM
7861 7862
		pr_info("remove from free list %lx %d %lx\n",
			pfn, 1 << order, end_pfn);
K
KAMEZAWA Hiroyuki 已提交
7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873
#endif
		list_del(&page->lru);
		rmv_page_order(page);
		zone->free_area[order].nr_free--;
		for (i = 0; i < (1 << order); i++)
			SetPageReserved((page+i));
		pfn += (1 << order);
	}
	spin_unlock_irqrestore(&zone->lock, flags);
}
#endif
7874 7875 7876 7877 7878 7879

bool is_free_buddy_page(struct page *page)
{
	struct zone *zone = page_zone(page);
	unsigned long pfn = page_to_pfn(page);
	unsigned long flags;
7880
	unsigned int order;
7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892

	spin_lock_irqsave(&zone->lock, flags);
	for (order = 0; order < MAX_ORDER; order++) {
		struct page *page_head = page - (pfn & ((1 << order) - 1));

		if (PageBuddy(page_head) && page_order(page_head) >= order)
			break;
	}
	spin_unlock_irqrestore(&zone->lock, flags);

	return order < MAX_ORDER;
}