slub.c 145.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2 3 4 5
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
6 7
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
8
 *
C
Christoph Lameter 已提交
9
 * (C) 2007 SGI, Christoph Lameter
10
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
11 12 13
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
14
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
15 16 17 18 19
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
20
#include "slab.h"
21
#include <linux/proc_fs.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
36
#include <linux/random.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
54
 *   have the ability to do a cmpxchg_double. It only protects:
55
 *	A. page->freelist	-> List of object free in a page
56 57 58
 *	B. page->inuse		-> Number of objects in use
 *	C. page->objects	-> Number of objects in page
 *	D. page->frozen		-> frozen state
59 60
 *
 *   If a slab is frozen then it is exempt from list management. It is not
61 62 63 64 65
 *   on any list except per cpu partial list. The processor that froze the
 *   slab is the one who can perform list operations on the page. Other
 *   processors may put objects onto the freelist but the processor that
 *   froze the slab is the only one that can retrieve the objects from the
 *   page's freelist.
C
Christoph Lameter 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
86 87
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
88
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
89 90
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
Y
Yu Zhao 已提交
96
 * page->frozen		The slab is frozen and exempt from list processing.
97 98 99 100 101 102 103 104 105 106 107
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111
 *
Y
Yu Zhao 已提交
112
 * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
C
Christoph Lameter 已提交
113
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126
void *fixup_red_left(struct kmem_cache *s, void *p)
J
Joonsoo Kim 已提交
127 128 129 130 131 132 133
{
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
		p += s->red_left_pad;

	return p;
}

134 135 136 137 138 139 140 141 142
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
143 144 145 146 147 148 149 150 151 152 153
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

154 155 156
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

157 158 159 160
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
161
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
162

163 164 165
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
166
 * sort the partial list by the number of objects in use.
167 168 169
 */
#define MAX_PARTIAL 10

170
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
171
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
172

173 174 175 176 177 178 179 180
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


181
/*
182 183 184
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
185
 */
186
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
187

188 189
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
190
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
191

C
Christoph Lameter 已提交
192
/* Internal SLUB flags */
193
/* Poison object */
194
#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
195
/* Use cmpxchg_double */
196
#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
C
Christoph Lameter 已提交
197

198 199 200
/*
 * Tracking user of a slab.
 */
201
#define TRACK_ADDRS_COUNT 16
202
struct track {
203
	unsigned long addr;	/* Called from address */
204 205 206
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
207 208 209 210 211 212 213
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

214
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
215 216
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
217
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218
static void sysfs_slab_remove(struct kmem_cache *s);
C
Christoph Lameter 已提交
219
#else
220 221 222
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
223
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
225 226
#endif

227
static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 229
{
#ifdef CONFIG_SLUB_STATS
230 231 232 233 234
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
235 236 237
#endif
}

C
Christoph Lameter 已提交
238 239 240 241
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

242 243 244 245 246 247 248 249 250
/*
 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 * with an XOR of the address where the pointer is held and a per-cache
 * random number.
 */
static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
				 unsigned long ptr_addr)
{
#ifdef CONFIG_SLAB_FREELIST_HARDENED
251 252 253 254 255 256 257 258 259 260 261
	/*
	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
	 * Normally, this doesn't cause any issues, as both set_freepointer()
	 * and get_freepointer() are called with a pointer with the same tag.
	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
	 * example, when __free_slub() iterates over objects in a cache, it
	 * passes untagged pointers to check_object(). check_object() in turns
	 * calls get_freepointer() with an untagged pointer, which causes the
	 * freepointer to be restored incorrectly.
	 */
	return (void *)((unsigned long)ptr ^ s->random ^
262
			swab((unsigned long)kasan_reset_tag((void *)ptr_addr)));
263 264 265 266 267 268 269 270 271 272 273 274 275
#else
	return ptr;
#endif
}

/* Returns the freelist pointer recorded at location ptr_addr. */
static inline void *freelist_dereference(const struct kmem_cache *s,
					 void *ptr_addr)
{
	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
			    (unsigned long)ptr_addr);
}

276 277
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
278
	return freelist_dereference(s, object + s->offset);
279 280
}

281 282
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
283
	prefetch(object + s->offset);
284 285
}

286 287
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
288
	unsigned long freepointer_addr;
289 290
	void *p;

291
	if (!debug_pagealloc_enabled_static())
292 293
		return get_freepointer(s, object);

294 295 296
	freepointer_addr = (unsigned long)object + s->offset;
	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
	return freelist_ptr(s, p, freepointer_addr);
297 298
}

299 300
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
301 302
	unsigned long freeptr_addr = (unsigned long)object + s->offset;

303 304 305 306
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	BUG_ON(object == fp); /* naive detection of double free or corruption */
#endif

307
	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 309 310
}

/* Loop over all objects in a slab */
311
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
312 313 314
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
315 316

/* Determine object index from a given position */
317
static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
318
{
319
	return (kasan_reset_tag(p) - addr) / s->size;
320 321
}

322
static inline unsigned int order_objects(unsigned int order, unsigned int size)
323
{
324
	return ((unsigned int)PAGE_SIZE << order) / size;
325 326
}

327
static inline struct kmem_cache_order_objects oo_make(unsigned int order,
328
		unsigned int size)
329 330
{
	struct kmem_cache_order_objects x = {
331
		(order << OO_SHIFT) + order_objects(order, size)
332 333 334 335 336
	};

	return x;
}

337
static inline unsigned int oo_order(struct kmem_cache_order_objects x)
338
{
339
	return x.x >> OO_SHIFT;
340 341
}

342
static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
343
{
344
	return x.x & OO_MASK;
345 346
}

347 348 349 350 351
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
352
	VM_BUG_ON_PAGE(PageTail(page), page);
353 354 355 356 357
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
358
	VM_BUG_ON_PAGE(PageTail(page), page);
359 360 361
	__bit_spin_unlock(PG_locked, &page->flags);
}

362 363 364 365 366 367 368
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
369 370
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371
	if (s->flags & __CMPXCHG_DOUBLE) {
372
		if (cmpxchg_double(&page->freelist, &page->counters,
373 374
				   freelist_old, counters_old,
				   freelist_new, counters_new))
375
			return true;
376 377 378 379
	} else
#endif
	{
		slab_lock(page);
380 381
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
382
			page->freelist = freelist_new;
383
			page->counters = counters_new;
384
			slab_unlock(page);
385
			return true;
386 387 388 389 390 391 392 393
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
394
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
395 396
#endif

397
	return false;
398 399
}

400 401 402 403 404
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
405 406
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407
	if (s->flags & __CMPXCHG_DOUBLE) {
408
		if (cmpxchg_double(&page->freelist, &page->counters,
409 410
				   freelist_old, counters_old,
				   freelist_new, counters_new))
411
			return true;
412 413 414
	} else
#endif
	{
415 416 417
		unsigned long flags;

		local_irq_save(flags);
418
		slab_lock(page);
419 420
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
421
			page->freelist = freelist_new;
422
			page->counters = counters_new;
423
			slab_unlock(page);
424
			local_irq_restore(flags);
425
			return true;
426
		}
427
		slab_unlock(page);
428
		local_irq_restore(flags);
429 430 431 432 433 434
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
435
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
436 437
#endif

438
	return false;
439 440
}

C
Christoph Lameter 已提交
441
#ifdef CONFIG_SLUB_DEBUG
442 443 444
static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
static DEFINE_SPINLOCK(object_map_lock);

445 446 447
/*
 * Determine a map of object in use on a page.
 *
448
 * Node listlock must be held to guarantee that the page does
449 450
 * not vanish from under us.
 */
451
static unsigned long *get_map(struct kmem_cache *s, struct page *page)
452
	__acquires(&object_map_lock)
453 454 455 456
{
	void *p;
	void *addr = page_address(page);

457 458 459 460 461 462
	VM_BUG_ON(!irqs_disabled());

	spin_lock(&object_map_lock);

	bitmap_zero(object_map, page->objects);

463
	for (p = page->freelist; p; p = get_freepointer(s, p))
464 465 466 467 468
		set_bit(slab_index(p, s, addr), object_map);

	return object_map;
}

469
static void put_map(unsigned long *map) __releases(&object_map_lock)
470 471 472 473 474
{
	VM_BUG_ON(map != object_map);
	lockdep_assert_held(&object_map_lock);

	spin_unlock(&object_map_lock);
475 476
}

477
static inline unsigned int size_from_object(struct kmem_cache *s)
J
Joonsoo Kim 已提交
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
493 494 495
/*
 * Debug settings:
 */
496
#if defined(CONFIG_SLUB_DEBUG_ON)
497
static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
498
#else
499
static slab_flags_t slub_debug;
500
#endif
C
Christoph Lameter 已提交
501 502

static char *slub_debug_slabs;
503
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
504

505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
521 522 523
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
524 525 526 527 528 529 530 531 532 533 534

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
535
	object = kasan_reset_tag(object);
J
Joonsoo Kim 已提交
536 537 538 539 540 541 542 543 544
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

545 546
static void print_section(char *level, char *text, u8 *addr,
			  unsigned int length)
C
Christoph Lameter 已提交
547
{
548
	metadata_access_enable();
549
	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
550
			length, 1);
551
	metadata_access_disable();
C
Christoph Lameter 已提交
552 553
}

554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
/*
 * See comment in calculate_sizes().
 */
static inline bool freeptr_outside_object(struct kmem_cache *s)
{
	return s->offset >= s->inuse;
}

/*
 * Return offset of the end of info block which is inuse + free pointer if
 * not overlapping with object.
 */
static inline unsigned int get_info_end(struct kmem_cache *s)
{
	if (freeptr_outside_object(s))
		return s->inuse + sizeof(void *);
	else
		return s->inuse;
}

C
Christoph Lameter 已提交
574 575 576 577 578
static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

579
	p = object + get_info_end(s);
C
Christoph Lameter 已提交
580 581 582 583 584

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
585
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
586
{
A
Akinobu Mita 已提交
587
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
588 589

	if (addr) {
590
#ifdef CONFIG_STACKTRACE
591
		unsigned int nr_entries;
592

593
		metadata_access_enable();
594
		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
595
		metadata_access_disable();
596

597 598
		if (nr_entries < TRACK_ADDRS_COUNT)
			p->addrs[nr_entries] = 0;
599
#endif
C
Christoph Lameter 已提交
600 601
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
602
		p->pid = current->pid;
C
Christoph Lameter 已提交
603
		p->when = jiffies;
604
	} else {
C
Christoph Lameter 已提交
605
		memset(p, 0, sizeof(struct track));
606
	}
C
Christoph Lameter 已提交
607 608 609 610
}

static void init_tracking(struct kmem_cache *s, void *object)
{
611 612 613
	if (!(s->flags & SLAB_STORE_USER))
		return;

614 615
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
616 617
}

618
static void print_track(const char *s, struct track *t, unsigned long pr_time)
C
Christoph Lameter 已提交
619 620 621 622
{
	if (!t->addr)
		return;

623
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
624
	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
625 626 627 628 629
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
630
				pr_err("\t%pS\n", (void *)t->addrs[i]);
631 632 633 634
			else
				break;
	}
#endif
635 636 637 638
}

static void print_tracking(struct kmem_cache *s, void *object)
{
639
	unsigned long pr_time = jiffies;
640 641 642
	if (!(s->flags & SLAB_STORE_USER))
		return;

643 644
	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
645 646 647 648
}

static void print_page_info(struct page *page)
{
649
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
650
	       page, page->objects, page->inuse, page->freelist, page->flags);
651 652 653 654 655

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
656
	struct va_format vaf;
657 658 659
	va_list args;

	va_start(args, fmt);
660 661
	vaf.fmt = fmt;
	vaf.va = &args;
662
	pr_err("=============================================================================\n");
663
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
664
	pr_err("-----------------------------------------------------------------------------\n\n");
665

666
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
667
	va_end(args);
C
Christoph Lameter 已提交
668 669
}

670 671
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
672
	struct va_format vaf;
673 674 675
	va_list args;

	va_start(args, fmt);
676 677 678
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
679 680 681
	va_end(args);
}

682 683 684 685 686 687 688 689 690 691 692 693 694 695
static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
			       void *freelist, void *nextfree)
{
	if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
	    !check_valid_pointer(s, page, nextfree)) {
		object_err(s, page, freelist, "Freechain corrupt");
		freelist = NULL;
		slab_fix(s, "Isolate corrupted freechain");
		return true;
	}

	return false;
}

696
static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
697 698
{
	unsigned int off;	/* Offset of last byte */
699
	u8 *addr = page_address(page);
700 701 702 703 704

	print_tracking(s, p);

	print_page_info(page);

705 706
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
707

J
Joonsoo Kim 已提交
708
	if (s->flags & SLAB_RED_ZONE)
709 710
		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
			      s->red_left_pad);
J
Joonsoo Kim 已提交
711
	else if (p > addr + 16)
712
		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
713

714
	print_section(KERN_ERR, "Object ", p,
715
		      min_t(unsigned int, s->object_size, PAGE_SIZE));
C
Christoph Lameter 已提交
716
	if (s->flags & SLAB_RED_ZONE)
717
		print_section(KERN_ERR, "Redzone ", p + s->object_size,
718
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
719

720
	off = get_info_end(s);
C
Christoph Lameter 已提交
721

722
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
723 724
		off += 2 * sizeof(struct track);

725 726
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
727
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
728
		/* Beginning of the filler is the free pointer */
729 730
		print_section(KERN_ERR, "Padding ", p + off,
			      size_from_object(s) - off);
731 732

	dump_stack();
C
Christoph Lameter 已提交
733 734
}

735
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
736 737
			u8 *object, char *reason)
{
738
	slab_bug(s, "%s", reason);
739
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
740 741
}

742
static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
743
			const char *fmt, ...)
C
Christoph Lameter 已提交
744 745 746 747
{
	va_list args;
	char buf[100];

748 749
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
750
	va_end(args);
751
	slab_bug(s, "%s", buf);
752
	print_page_info(page);
C
Christoph Lameter 已提交
753 754 755
	dump_stack();
}

756
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
757 758 759
{
	u8 *p = object;

J
Joonsoo Kim 已提交
760 761 762
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
763
	if (s->flags & __OBJECT_POISON) {
764 765
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
766 767 768
	}

	if (s->flags & SLAB_RED_ZONE)
769
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
770 771
}

772 773 774 775 776 777 778 779 780
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
781
			u8 *start, unsigned int value, unsigned int bytes)
782 783 784
{
	u8 *fault;
	u8 *end;
785
	u8 *addr = page_address(page);
786

787
	metadata_access_enable();
788
	fault = memchr_inv(start, value, bytes);
789
	metadata_access_disable();
790 791 792 793 794 795 796 797
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
798 799 800
	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault - addr,
					fault[0], value);
801 802 803 804
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
805 806 807 808 809 810 811 812
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
813
 *	pointer is at the middle of the object.
C
Christoph Lameter 已提交
814
 *
C
Christoph Lameter 已提交
815 816 817
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
818
 * object + s->object_size
C
Christoph Lameter 已提交
819
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
820
 * 	Padding is extended by another word if Redzoning is enabled and
821
 * 	object_size == inuse.
C
Christoph Lameter 已提交
822
 *
C
Christoph Lameter 已提交
823 824 825 826
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
827 828
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
829 830
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
831
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
832
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
833 834 835
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
836 837
 *
 * object + s->size
C
Christoph Lameter 已提交
838
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
839
 *
840
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
841
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
842 843 844 845 846
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
847
	unsigned long off = get_info_end(s);	/* The end of info */
C
Christoph Lameter 已提交
848 849 850 851 852

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

853 854
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
855
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
856 857
		return 1;

858
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
859
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
860 861
}

862
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
863 864
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
865 866 867
	u8 *start;
	u8 *fault;
	u8 *end;
868
	u8 *pad;
869 870
	int length;
	int remainder;
C
Christoph Lameter 已提交
871 872 873 874

	if (!(s->flags & SLAB_POISON))
		return 1;

875
	start = page_address(page);
876
	length = page_size(page);
877 878
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
879 880 881
	if (!remainder)
		return 1;

882
	pad = end - remainder;
883
	metadata_access_enable();
884
	fault = memchr_inv(pad, POISON_INUSE, remainder);
885
	metadata_access_disable();
886 887 888 889 890
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

891 892
	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
			fault, end - 1, fault - start);
893
	print_section(KERN_ERR, "Padding ", pad, remainder);
894

895
	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
896
	return 0;
C
Christoph Lameter 已提交
897 898 899
}

static int check_object(struct kmem_cache *s, struct page *page,
900
					void *object, u8 val)
C
Christoph Lameter 已提交
901 902
{
	u8 *p = object;
903
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
904 905

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
906 907 908 909
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

910
		if (!check_bytes_and_report(s, page, object, "Redzone",
911
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
912 913
			return 0;
	} else {
914
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
915
			check_bytes_and_report(s, page, p, "Alignment padding",
916 917
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
918
		}
C
Christoph Lameter 已提交
919 920 921
	}

	if (s->flags & SLAB_POISON) {
922
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
923
			(!check_bytes_and_report(s, page, p, "Poison", p,
924
					POISON_FREE, s->object_size - 1) ||
925
			 !check_bytes_and_report(s, page, p, "Poison",
926
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
927 928 929 930 931 932 933
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

934
	if (!freeptr_outside_object(s) && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
935 936 937 938 939 940 941 942 943 944
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
945
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
946
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
947
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
948
		 */
949
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
950 951 952 953 954 955 956
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
957 958
	int maxobj;

C
Christoph Lameter 已提交
959 960 961
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
962
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
963 964
		return 0;
	}
965

966
	maxobj = order_objects(compound_order(page), s->size);
967 968
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
969
			page->objects, maxobj);
970 971 972
		return 0;
	}
	if (page->inuse > page->objects) {
973
		slab_err(s, page, "inuse %u > max %u",
974
			page->inuse, page->objects);
C
Christoph Lameter 已提交
975 976 977 978 979 980 981 982
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
983 984
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
985 986 987 988
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
989
	void *fp;
C
Christoph Lameter 已提交
990
	void *object = NULL;
991
	int max_objects;
C
Christoph Lameter 已提交
992

993
	fp = page->freelist;
994
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
995 996 997 998 999 1000
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
1001
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
1002
			} else {
1003
				slab_err(s, page, "Freepointer corrupt");
1004
				page->freelist = NULL;
1005
				page->inuse = page->objects;
1006
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

1016
	max_objects = order_objects(compound_order(page), s->size);
1017 1018
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
1019 1020

	if (page->objects != max_objects) {
J
Joe Perches 已提交
1021 1022
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
1023 1024 1025
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
1026
	if (page->inuse != page->objects - nr) {
J
Joe Perches 已提交
1027 1028
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
1029
		page->inuse = page->objects - nr;
1030
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
1031 1032 1033 1034
	}
	return search == NULL;
}

1035 1036
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
1037 1038
{
	if (s->flags & SLAB_TRACE) {
1039
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
1040 1041 1042 1043 1044 1045
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
1046
			print_section(KERN_INFO, "Object ", (void *)object,
1047
					s->object_size);
C
Christoph Lameter 已提交
1048 1049 1050 1051 1052

		dump_stack();
	}
}

1053
/*
C
Christoph Lameter 已提交
1054
 * Tracking of fully allocated slabs for debugging purposes.
1055
 */
1056 1057
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1058
{
1059 1060 1061
	if (!(s->flags & SLAB_STORE_USER))
		return;

1062
	lockdep_assert_held(&n->list_lock);
1063
	list_add(&page->slab_list, &n->full);
1064 1065
}

P
Peter Zijlstra 已提交
1066
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1067 1068 1069 1070
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1071
	lockdep_assert_held(&n->list_lock);
1072
	list_del(&page->slab_list);
1073 1074
}

1075 1076 1077 1078 1079 1080 1081 1082
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1083 1084 1085 1086 1087
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1088
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1089 1090 1091 1092 1093 1094 1095 1096 1097
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1098
	if (likely(n)) {
1099
		atomic_long_inc(&n->nr_slabs);
1100 1101
		atomic_long_add(objects, &n->total_objects);
	}
1102
}
1103
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1104 1105 1106 1107
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1108
	atomic_long_sub(objects, &n->total_objects);
1109 1110 1111
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1112 1113 1114 1115 1116 1117
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1118
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1119 1120 1121
	init_tracking(s, object);
}

1122 1123
static
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1124 1125 1126 1127 1128
{
	if (!(s->flags & SLAB_POISON))
		return;

	metadata_access_enable();
1129
	memset(addr, POISON_INUSE, page_size(page));
1130 1131 1132
	metadata_access_disable();
}

1133
static inline int alloc_consistency_checks(struct kmem_cache *s,
1134
					struct page *page, void *object)
C
Christoph Lameter 已提交
1135 1136
{
	if (!check_slab(s, page))
1137
		return 0;
C
Christoph Lameter 已提交
1138 1139 1140

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1141
		return 0;
C
Christoph Lameter 已提交
1142 1143
	}

1144
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1155
		if (!alloc_consistency_checks(s, page, object))
1156 1157
			goto bad;
	}
C
Christoph Lameter 已提交
1158

C
Christoph Lameter 已提交
1159 1160 1161 1162
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1163
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1164
	return 1;
C
Christoph Lameter 已提交
1165

C
Christoph Lameter 已提交
1166 1167 1168 1169 1170
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1171
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1172
		 */
1173
		slab_fix(s, "Marking all objects used");
1174
		page->inuse = page->objects;
1175
		page->freelist = NULL;
C
Christoph Lameter 已提交
1176 1177 1178 1179
	}
	return 0;
}

1180 1181
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1182 1183
{
	if (!check_valid_pointer(s, page, object)) {
1184
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1185
		return 0;
C
Christoph Lameter 已提交
1186 1187 1188
	}

	if (on_freelist(s, page, object)) {
1189
		object_err(s, page, object, "Object already free");
1190
		return 0;
C
Christoph Lameter 已提交
1191 1192
	}

1193
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1194
		return 0;
C
Christoph Lameter 已提交
1195

1196
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1197
		if (!PageSlab(page)) {
J
Joe Perches 已提交
1198 1199
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
1200
		} else if (!page->slab_cache) {
1201 1202
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1203
			dump_stack();
P
Pekka Enberg 已提交
1204
		} else
1205 1206
			object_err(s, page, object,
					"page slab pointer corrupt.");
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
	unsigned long uninitialized_var(flags);
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1238
	}
C
Christoph Lameter 已提交
1239 1240 1241 1242

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1243
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1244
	init_object(s, object, SLUB_RED_INACTIVE);
1245 1246 1247 1248 1249 1250

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1251 1252
	ret = 1;

1253
out:
1254 1255 1256 1257
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1258
	slab_unlock(page);
1259
	spin_unlock_irqrestore(&n->list_lock, flags);
1260 1261 1262
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1263 1264
}

C
Christoph Lameter 已提交
1265 1266
static int __init setup_slub_debug(char *str)
{
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1291
	for (; *str && *str != ','; str++) {
1292 1293
		switch (tolower(*str)) {
		case 'f':
1294
			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1308 1309 1310
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1311 1312 1313 1314 1315 1316 1317
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1318
		default:
1319 1320
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1321
		}
C
Christoph Lameter 已提交
1322 1323
	}

1324
check_slabs:
C
Christoph Lameter 已提交
1325 1326
	if (*str == ',')
		slub_debug_slabs = str + 1;
1327
out:
1328 1329 1330 1331
	if ((static_branch_unlikely(&init_on_alloc) ||
	     static_branch_unlikely(&init_on_free)) &&
	    (slub_debug & SLAB_POISON))
		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
C
Christoph Lameter 已提交
1332 1333 1334 1335 1336
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
/*
 * kmem_cache_flags - apply debugging options to the cache
 * @object_size:	the size of an object without meta data
 * @flags:		flags to set
 * @name:		name of the cache
 * @ctor:		constructor function
 *
 * Debug option(s) are applied to @flags. In addition to the debug
 * option(s), if a slab name (or multiple) is specified i.e.
 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
 * then only the select slabs will receive the debug option(s).
 */
1349
slab_flags_t kmem_cache_flags(unsigned int object_size,
1350
	slab_flags_t flags, const char *name,
1351
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1352
{
1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
	char *iter;
	size_t len;

	/* If slub_debug = 0, it folds into the if conditional. */
	if (!slub_debug_slabs)
		return flags | slub_debug;

	len = strlen(name);
	iter = slub_debug_slabs;
	while (*iter) {
		char *end, *glob;
		size_t cmplen;

1366
		end = strchrnul(iter, ',');
1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382

		glob = strnchr(iter, end - iter, '*');
		if (glob)
			cmplen = glob - iter;
		else
			cmplen = max_t(size_t, len, (end - iter));

		if (!strncmp(name, iter, cmplen)) {
			flags |= slub_debug;
			break;
		}

		if (!*end)
			break;
		iter = end + 1;
	}
1383 1384

	return flags;
C
Christoph Lameter 已提交
1385
}
1386
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1387 1388
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
1389 1390
static inline
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
C
Christoph Lameter 已提交
1391

C
Christoph Lameter 已提交
1392
static inline int alloc_debug_processing(struct kmem_cache *s,
1393
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1394

1395
static inline int free_debug_processing(
1396 1397
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1398
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1399 1400 1401 1402

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1403
			void *object, u8 val) { return 1; }
1404 1405
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1406 1407
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1408
slab_flags_t kmem_cache_flags(unsigned int object_size,
1409
	slab_flags_t flags, const char *name,
1410
	void (*ctor)(void *))
1411 1412 1413
{
	return flags;
}
C
Christoph Lameter 已提交
1414
#define slub_debug 0
1415

1416 1417
#define disable_higher_order_debug 0

1418 1419
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1420 1421
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1422 1423 1424 1425
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1426

1427 1428 1429 1430 1431
static bool freelist_corrupted(struct kmem_cache *s, struct page *page,
			       void *freelist, void *nextfree)
{
	return false;
}
1432 1433 1434 1435 1436 1437
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1438
static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1439
{
1440
	ptr = kasan_kmalloc_large(ptr, size, flags);
1441
	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1442
	kmemleak_alloc(ptr, size, 1, flags);
1443
	return ptr;
1444 1445
}

1446
static __always_inline void kfree_hook(void *x)
1447 1448
{
	kmemleak_free(x);
1449
	kasan_kfree_large(x, _RET_IP_);
1450 1451
}

1452
static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1453 1454
{
	kmemleak_free_recursive(x, s->flags);
1455

1456 1457 1458 1459 1460
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
1461
#ifdef CONFIG_LOCKDEP
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
	{
		unsigned long flags;

		local_irq_save(flags);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1472

1473 1474
	/* KASAN might put x into memory quarantine, delaying its reuse */
	return kasan_slab_free(s, x, _RET_IP_);
1475
}
1476

1477 1478
static inline bool slab_free_freelist_hook(struct kmem_cache *s,
					   void **head, void **tail)
1479
{
1480 1481 1482 1483 1484 1485

	void *object;
	void *next = *head;
	void *old_tail = *tail ? *tail : *head;
	int rsize;

1486 1487 1488
	/* Head and tail of the reconstructed freelist */
	*head = NULL;
	*tail = NULL;
1489

1490 1491 1492 1493 1494
	do {
		object = next;
		next = get_freepointer(s, object);

		if (slab_want_init_on_free(s)) {
1495 1496 1497 1498 1499 1500 1501 1502 1503
			/*
			 * Clear the object and the metadata, but don't touch
			 * the redzone.
			 */
			memset(object, 0, s->object_size);
			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
							   : 0;
			memset((char *)object + s->inuse, 0,
			       s->size - s->inuse - rsize);
1504

1505
		}
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
		/* If object's reuse doesn't have to be delayed */
		if (!slab_free_hook(s, object)) {
			/* Move object to the new freelist */
			set_freepointer(s, object, *head);
			*head = object;
			if (!*tail)
				*tail = object;
		}
	} while (object != old_tail);

	if (*head == *tail)
		*tail = NULL;

	return *head != NULL;
1520 1521
}

1522
static void *setup_object(struct kmem_cache *s, struct page *page,
1523 1524 1525
				void *object)
{
	setup_object_debug(s, page, object);
1526
	object = kasan_init_slab_obj(s, object);
1527 1528 1529 1530 1531
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
1532
	return object;
1533 1534
}

C
Christoph Lameter 已提交
1535 1536 1537
/*
 * Slab allocation and freeing
 */
1538 1539
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1540
{
1541
	struct page *page;
1542
	unsigned int order = oo_order(oo);
1543

1544
	if (node == NUMA_NO_NODE)
1545
		page = alloc_pages(flags, order);
1546
	else
1547
		page = __alloc_pages_node(node, flags, order);
1548

1549
	if (page && charge_slab_page(page, flags, order, s)) {
1550 1551 1552
		__free_pages(page, order);
		page = NULL;
	}
1553 1554

	return page;
1555 1556
}

T
Thomas Garnier 已提交
1557 1558 1559 1560
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
1561
	unsigned int count = oo_objects(s->oo);
T
Thomas Garnier 已提交
1562 1563
	int err;

1564 1565 1566 1567
	/* Bailout if already initialised */
	if (s->random_seq)
		return 0;

T
Thomas Garnier 已提交
1568 1569 1570 1571 1572 1573 1574 1575 1576
	err = cache_random_seq_create(s, count, GFP_KERNEL);
	if (err) {
		pr_err("SLUB: Unable to initialize free list for %s\n",
			s->name);
		return err;
	}

	/* Transform to an offset on the set of pages */
	if (s->random_seq) {
1577 1578
		unsigned int i;

T
Thomas Garnier 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
		for (i = 0; i < count; i++)
			s->random_seq[i] *= s->size;
	}
	return 0;
}

/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list)
		init_cache_random_seq(s);

	mutex_unlock(&slab_mutex);
}

/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
				unsigned long *pos, void *start,
				unsigned long page_limit,
				unsigned long freelist_count)
{
	unsigned int idx;

	/*
	 * If the target page allocation failed, the number of objects on the
	 * page might be smaller than the usual size defined by the cache.
	 */
	do {
		idx = s->random_seq[*pos];
		*pos += 1;
		if (*pos >= freelist_count)
			*pos = 0;
	} while (unlikely(idx >= page_limit));

	return (char *)start + idx;
}

/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	void *start;
	void *cur;
	void *next;
	unsigned long idx, pos, page_limit, freelist_count;

	if (page->objects < 2 || !s->random_seq)
		return false;

	freelist_count = oo_objects(s->oo);
	pos = get_random_int() % freelist_count;

	page_limit = page->objects * s->size;
	start = fixup_red_left(s, page_address(page));

	/* First entry is used as the base of the freelist */
	cur = next_freelist_entry(s, page, &pos, start, page_limit,
				freelist_count);
1640
	cur = setup_object(s, page, cur);
T
Thomas Garnier 已提交
1641 1642 1643 1644 1645
	page->freelist = cur;

	for (idx = 1; idx < page->objects; idx++) {
		next = next_freelist_entry(s, page, &pos, start, page_limit,
			freelist_count);
1646
		next = setup_object(s, page, next);
T
Thomas Garnier 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665
		set_freepointer(s, cur, next);
		cur = next;
	}
	set_freepointer(s, cur, NULL);

	return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
	return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

C
Christoph Lameter 已提交
1666 1667
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1668
	struct page *page;
1669
	struct kmem_cache_order_objects oo = s->oo;
1670
	gfp_t alloc_gfp;
1671
	void *start, *p, *next;
1672
	int idx;
T
Thomas Garnier 已提交
1673
	bool shuffle;
C
Christoph Lameter 已提交
1674

1675 1676
	flags &= gfp_allowed_mask;

1677
	if (gfpflags_allow_blocking(flags))
1678 1679
		local_irq_enable();

1680
	flags |= s->allocflags;
1681

1682 1683 1684 1685 1686
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1687
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1688
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1689

1690
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1691 1692
	if (unlikely(!page)) {
		oo = s->min;
1693
		alloc_gfp = flags;
1694 1695 1696 1697
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1698
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1699 1700 1701
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1702
	}
V
Vegard Nossum 已提交
1703

1704
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1705

1706
	page->slab_cache = s;
1707
	__SetPageSlab(page);
1708
	if (page_is_pfmemalloc(page))
1709
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1710

1711
	kasan_poison_slab(page);
C
Christoph Lameter 已提交
1712

1713
	start = page_address(page);
C
Christoph Lameter 已提交
1714

1715
	setup_page_debug(s, page, start);
1716

T
Thomas Garnier 已提交
1717 1718 1719
	shuffle = shuffle_freelist(s, page);

	if (!shuffle) {
1720 1721 1722
		start = fixup_red_left(s, start);
		start = setup_object(s, page, start);
		page->freelist = start;
1723 1724 1725 1726 1727 1728 1729
		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
			next = p + s->size;
			next = setup_object(s, page, next);
			set_freepointer(s, p, next);
			p = next;
		}
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1730 1731
	}

1732
	page->inuse = page->objects;
1733
	page->frozen = 1;
1734

C
Christoph Lameter 已提交
1735
out:
1736
	if (gfpflags_allow_blocking(flags))
1737 1738 1739 1740 1741 1742
		local_irq_disable();
	if (!page)
		return NULL;

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1743 1744 1745
	return page;
}

1746 1747 1748
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1749
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1750 1751 1752
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
1753
		dump_stack();
1754 1755 1756 1757 1758 1759
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1760 1761
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1762 1763
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1764

1765
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
C
Christoph Lameter 已提交
1766 1767 1768
		void *p;

		slab_pad_check(s, page);
1769 1770
		for_each_object(p, s, page_address(page),
						page->objects)
1771
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1772 1773
	}

1774
	__ClearPageSlabPfmemalloc(page);
1775
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1776

1777
	page->mapping = NULL;
N
Nick Piggin 已提交
1778 1779
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1780
	uncharge_slab_page(page, order, s);
1781
	__free_pages(page, order);
C
Christoph Lameter 已提交
1782 1783 1784 1785
}

static void rcu_free_slab(struct rcu_head *h)
{
1786
	struct page *page = container_of(h, struct page, rcu_head);
1787

1788
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1789 1790 1791 1792
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
1793
	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1794
		call_rcu(&page->rcu_head, rcu_free_slab);
C
Christoph Lameter 已提交
1795 1796 1797 1798 1799 1800
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1801
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1802 1803 1804 1805
	free_slab(s, page);
}

/*
1806
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1807
 */
1808 1809
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1810
{
C
Christoph Lameter 已提交
1811
	n->nr_partial++;
1812
	if (tail == DEACTIVATE_TO_TAIL)
1813
		list_add_tail(&page->slab_list, &n->partial);
1814
	else
1815
		list_add(&page->slab_list, &n->partial);
C
Christoph Lameter 已提交
1816 1817
}

1818 1819
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1820
{
P
Peter Zijlstra 已提交
1821
	lockdep_assert_held(&n->list_lock);
1822 1823
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1824

1825 1826 1827 1828
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1829
	list_del(&page->slab_list);
1830
	n->nr_partial--;
1831 1832
}

C
Christoph Lameter 已提交
1833
/*
1834 1835
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1836
 *
1837
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1838
 */
1839
static inline void *acquire_slab(struct kmem_cache *s,
1840
		struct kmem_cache_node *n, struct page *page,
1841
		int mode, int *objects)
C
Christoph Lameter 已提交
1842
{
1843 1844 1845 1846
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1847 1848
	lockdep_assert_held(&n->list_lock);

1849 1850 1851 1852 1853
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1854 1855 1856
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1857
	*objects = new.objects - new.inuse;
1858
	if (mode) {
1859
		new.inuse = page->objects;
1860 1861 1862 1863
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1864

1865
	VM_BUG_ON(new.frozen);
1866
	new.frozen = 1;
1867

1868
	if (!__cmpxchg_double_slab(s, page,
1869
			freelist, counters,
1870
			new.freelist, new.counters,
1871 1872
			"acquire_slab"))
		return NULL;
1873 1874

	remove_partial(n, page);
1875
	WARN_ON(!freelist);
1876
	return freelist;
C
Christoph Lameter 已提交
1877 1878
}

1879
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1880
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1881

C
Christoph Lameter 已提交
1882
/*
C
Christoph Lameter 已提交
1883
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1884
 */
1885 1886
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1887
{
1888 1889
	struct page *page, *page2;
	void *object = NULL;
1890
	unsigned int available = 0;
1891
	int objects;
C
Christoph Lameter 已提交
1892 1893 1894 1895

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1896 1897
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1898 1899 1900 1901 1902
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1903
	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1904
		void *t;
1905

1906 1907 1908
		if (!pfmemalloc_match(page, flags))
			continue;

1909
		t = acquire_slab(s, n, page, object == NULL, &objects);
1910 1911 1912
		if (!t)
			break;

1913
		available += objects;
1914
		if (!object) {
1915 1916 1917 1918
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1919
			put_cpu_partial(s, page, 0);
1920
			stat(s, CPU_PARTIAL_NODE);
1921
		}
1922
		if (!kmem_cache_has_cpu_partial(s)
1923
			|| available > slub_cpu_partial(s) / 2)
1924 1925
			break;

1926
	}
C
Christoph Lameter 已提交
1927
	spin_unlock(&n->list_lock);
1928
	return object;
C
Christoph Lameter 已提交
1929 1930 1931
}

/*
C
Christoph Lameter 已提交
1932
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1933
 */
1934
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1935
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1936 1937 1938
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1939
	struct zoneref *z;
1940 1941
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1942
	void *object;
1943
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1944 1945

	/*
C
Christoph Lameter 已提交
1946 1947 1948 1949
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1950
	 *
C
Christoph Lameter 已提交
1951 1952 1953 1954
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1955
	 *
1956 1957 1958 1959 1960
	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
	 * (which makes defrag_ratio = 1000) then every (well almost)
	 * allocation will first attempt to defrag slab caches on other nodes.
	 * This means scanning over all nodes to look for partial slabs which
	 * may be expensive if we do it every time we are trying to find a slab
C
Christoph Lameter 已提交
1961
	 * with available objects.
C
Christoph Lameter 已提交
1962
	 */
1963 1964
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1965 1966
		return NULL;

1967
	do {
1968
		cpuset_mems_cookie = read_mems_allowed_begin();
1969
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1970 1971 1972 1973 1974
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1975
			if (n && cpuset_zone_allowed(zone, flags) &&
1976
					n->nr_partial > s->min_partial) {
1977
				object = get_partial_node(s, n, c, flags);
1978 1979
				if (object) {
					/*
1980 1981 1982 1983 1984
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1985 1986 1987
					 */
					return object;
				}
1988
			}
C
Christoph Lameter 已提交
1989
		}
1990
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1991
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
1992 1993 1994 1995 1996 1997
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1998
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1999
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2000
{
2001
	void *object;
2002 2003 2004 2005
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
C
Christoph Lameter 已提交
2006

2007
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
2008 2009
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
2010

2011
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
2012 2013
}

2014
#ifdef CONFIG_PREEMPTION
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

2034
#ifdef SLUB_DEBUG_CMPXCHG
2035 2036 2037 2038 2039 2040 2041 2042 2043
static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}
2044
#endif
2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

2057
	pr_info("%s %s: cmpxchg redo ", n, s->name);
2058

2059
#ifdef CONFIG_PREEMPTION
2060
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2061
		pr_warn("due to cpu change %d -> %d\n",
2062 2063 2064 2065
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
2066
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2067 2068
			tid_to_event(tid), tid_to_event(actual_tid));
	else
2069
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2070 2071
			actual_tid, tid, next_tid(tid));
#endif
2072
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2073 2074
}

2075
static void init_kmem_cache_cpus(struct kmem_cache *s)
2076 2077 2078 2079 2080 2081
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
2082

C
Christoph Lameter 已提交
2083 2084 2085
/*
 * Remove the cpu slab
 */
2086
static void deactivate_slab(struct kmem_cache *s, struct page *page,
2087
				void *freelist, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2088
{
2089 2090 2091 2092 2093
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
2094
	int tail = DEACTIVATE_TO_HEAD;
2095 2096 2097 2098
	struct page new;
	struct page old;

	if (page->freelist) {
2099
		stat(s, DEACTIVATE_REMOTE_FREES);
2100
		tail = DEACTIVATE_TO_TAIL;
2101 2102
	}

2103
	/*
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

2115 2116 2117 2118 2119 2120 2121 2122
		/*
		 * If 'nextfree' is invalid, it is possible that the object at
		 * 'freelist' is already corrupted.  So isolate all objects
		 * starting at 'freelist'.
		 */
		if (freelist_corrupted(s, page, freelist, nextfree))
			break;

2123 2124 2125 2126 2127 2128
		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
2129
			VM_BUG_ON(!new.frozen);
2130

2131
		} while (!__cmpxchg_double_slab(s, page,
2132 2133 2134 2135 2136 2137 2138
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

2139
	/*
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
2152
	 */
2153
redo:
2154

2155 2156
	old.freelist = page->freelist;
	old.counters = page->counters;
2157
	VM_BUG_ON(!old.frozen);
2158

2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

2170
	if (!new.inuse && n->nr_partial >= s->min_partial)
2171 2172 2173 2174 2175 2176
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
W
Wei Yang 已提交
2177
			 * Taking the spinlock removes the possibility
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {
		if (l == M_PARTIAL)
			remove_partial(n, page);
		else if (l == M_FULL)
P
Peter Zijlstra 已提交
2200
			remove_full(s, n, page);
2201

2202
		if (m == M_PARTIAL)
2203
			add_partial(n, page, tail);
2204
		else if (m == M_FULL)
2205 2206 2207 2208
			add_full(s, n, page);
	}

	l = m;
2209
	if (!__cmpxchg_double_slab(s, page,
2210 2211 2212 2213 2214 2215 2216 2217
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

2218 2219 2220 2221 2222
	if (m == M_PARTIAL)
		stat(s, tail);
	else if (m == M_FULL)
		stat(s, DEACTIVATE_FULL);
	else if (m == M_FREE) {
2223 2224 2225
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2226
	}
2227 2228 2229

	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2230 2231
}

2232 2233 2234
/*
 * Unfreeze all the cpu partial slabs.
 *
2235 2236 2237
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2238
 */
2239 2240
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2241
{
2242
#ifdef CONFIG_SLUB_CPU_PARTIAL
2243
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2244
	struct page *page, *discard_page = NULL;
2245

2246
	while ((page = slub_percpu_partial(c))) {
2247 2248 2249
		struct page new;
		struct page old;

2250
		slub_set_percpu_partial(c, page);
2251 2252 2253 2254 2255 2256 2257 2258 2259

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2260 2261 2262 2263 2264

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2265
			VM_BUG_ON(!old.frozen);
2266 2267 2268 2269 2270 2271

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2272
		} while (!__cmpxchg_double_slab(s, page,
2273 2274 2275 2276
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2277
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2278 2279
			page->next = discard_page;
			discard_page = page;
2280 2281 2282
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2283 2284 2285 2286 2287
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2288 2289 2290 2291 2292 2293 2294 2295 2296

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2297
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2298 2299 2300
}

/*
2301 2302
 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
 * partial page slot if available.
2303 2304 2305 2306
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2307
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2308
{
2309
#ifdef CONFIG_SLUB_CPU_PARTIAL
2310 2311 2312 2313
	struct page *oldpage;
	int pages;
	int pobjects;

2314
	preempt_disable();
2315 2316 2317 2318 2319 2320 2321 2322
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
2323
			if (drain && pobjects > slub_cpu_partial(s)) {
2324 2325 2326 2327 2328 2329
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2330
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2331
				local_irq_restore(flags);
2332
				oldpage = NULL;
2333 2334
				pobjects = 0;
				pages = 0;
2335
				stat(s, CPU_PARTIAL_DRAIN);
2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2346 2347
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2348
	if (unlikely(!slub_cpu_partial(s))) {
2349 2350 2351 2352 2353 2354 2355
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2356
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2357 2358
}

2359
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2360
{
2361
	stat(s, CPUSLAB_FLUSH);
2362
	deactivate_slab(s, c->page, c->freelist, c);
2363 2364

	c->tid = next_tid(c->tid);
C
Christoph Lameter 已提交
2365 2366 2367 2368
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2369
 *
C
Christoph Lameter 已提交
2370 2371
 * Called from IPI handler with interrupts disabled.
 */
2372
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2373
{
2374
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2375

2376 2377
	if (c->page)
		flush_slab(s, c);
2378

2379
	unfreeze_partials(s, c);
C
Christoph Lameter 已提交
2380 2381 2382 2383 2384 2385
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2386
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2387 2388
}

2389 2390 2391 2392 2393
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2394
	return c->page || slub_percpu_partial(c);
2395 2396
}

C
Christoph Lameter 已提交
2397 2398
static void flush_all(struct kmem_cache *s)
{
2399
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
C
Christoph Lameter 已提交
2400 2401
}

2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slub_cpu_dead(unsigned int cpu)
{
	struct kmem_cache *s;
	unsigned long flags;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		local_irq_save(flags);
		__flush_cpu_slab(s, cpu);
		local_irq_restore(flags);
	}
	mutex_unlock(&slab_mutex);
	return 0;
}

2421 2422 2423 2424
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2425
static inline int node_match(struct page *page, int node)
2426 2427
{
#ifdef CONFIG_NUMA
2428
	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2429 2430 2431 2432 2433
		return 0;
#endif
	return 1;
}

2434
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2435 2436 2437 2438 2439
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2440 2441 2442 2443 2444 2445 2446
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2447 2448 2449 2450 2451 2452 2453 2454
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
2455
	list_for_each_entry(page, &n->partial, slab_list)
P
Pekka Enberg 已提交
2456 2457 2458 2459
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2460
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2461

P
Pekka Enberg 已提交
2462 2463 2464
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2465 2466 2467
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2468
	int node;
C
Christoph Lameter 已提交
2469
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2470

2471 2472 2473
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2474 2475
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2476
	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2477 2478
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2479

2480
	if (oo_order(s->min) > get_order(s->object_size))
2481 2482
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2483

C
Christoph Lameter 已提交
2484
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2485 2486 2487 2488
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2489 2490 2491
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2492

2493
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2494 2495
			node, nr_slabs, nr_objs, nr_free);
	}
2496
#endif
P
Pekka Enberg 已提交
2497 2498
}

2499 2500 2501
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2502
	void *freelist;
2503 2504
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2505

2506 2507
	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));

2508
	freelist = get_partial(s, flags, node, c);
2509

2510 2511 2512 2513
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2514
	if (page) {
2515
		c = raw_cpu_ptr(s->cpu_slab);
2516 2517 2518 2519 2520 2521 2522
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2523
		freelist = page->freelist;
2524 2525 2526 2527 2528
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
2529
	}
2530

2531
	return freelist;
2532 2533
}

2534 2535 2536 2537 2538 2539 2540 2541
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2542
/*
2543 2544
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2545 2546 2547 2548
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2549 2550
 *
 * This function must be called with interrupt disabled.
2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2561

2562
		new.counters = counters;
2563
		VM_BUG_ON(!new.frozen);
2564 2565 2566 2567

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2568
	} while (!__cmpxchg_double_slab(s, page,
2569 2570 2571 2572 2573 2574 2575
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2576
/*
2577 2578 2579 2580 2581 2582
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2583
 *
2584 2585 2586
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2587
 *
2588
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2589 2590
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2591 2592 2593
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2594
 */
2595
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2596
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2597
{
2598
	void *freelist;
2599
	struct page *page;
C
Christoph Lameter 已提交
2600

2601
	page = c->page;
2602 2603 2604 2605 2606 2607 2608 2609
	if (!page) {
		/*
		 * if the node is not online or has no normal memory, just
		 * ignore the node constraint
		 */
		if (unlikely(node != NUMA_NO_NODE &&
			     !node_state(node, N_NORMAL_MEMORY)))
			node = NUMA_NO_NODE;
C
Christoph Lameter 已提交
2610
		goto new_slab;
2611
	}
2612
redo:
2613

2614
	if (unlikely(!node_match(page, node))) {
2615 2616 2617 2618 2619 2620 2621 2622
		/*
		 * same as above but node_match() being false already
		 * implies node != NUMA_NO_NODE
		 */
		if (!node_state(node, N_NORMAL_MEMORY)) {
			node = NUMA_NO_NODE;
			goto redo;
		} else {
2623
			stat(s, ALLOC_NODE_MISMATCH);
2624
			deactivate_slab(s, page, c->freelist, c);
2625 2626
			goto new_slab;
		}
2627
	}
C
Christoph Lameter 已提交
2628

2629 2630 2631 2632 2633 2634
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2635
		deactivate_slab(s, page, c->freelist, c);
2636 2637 2638
		goto new_slab;
	}

2639
	/* must check again c->freelist in case of cpu migration or IRQ */
2640 2641
	freelist = c->freelist;
	if (freelist)
2642
		goto load_freelist;
2643

2644
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2645

2646
	if (!freelist) {
2647 2648
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2649
		goto new_slab;
2650
	}
C
Christoph Lameter 已提交
2651

2652
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2653

2654
load_freelist:
2655 2656 2657 2658 2659
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2660
	VM_BUG_ON(!c->page->frozen);
2661
	c->freelist = get_freepointer(s, freelist);
2662
	c->tid = next_tid(c->tid);
2663
	return freelist;
C
Christoph Lameter 已提交
2664 2665

new_slab:
2666

2667 2668 2669
	if (slub_percpu_partial(c)) {
		page = c->page = slub_percpu_partial(c);
		slub_set_percpu_partial(c, page);
2670 2671
		stat(s, CPU_PARTIAL_ALLOC);
		goto redo;
C
Christoph Lameter 已提交
2672 2673
	}

2674
	freelist = new_slab_objects(s, gfpflags, node, &c);
2675

2676
	if (unlikely(!freelist)) {
2677
		slab_out_of_memory(s, gfpflags, node);
2678
		return NULL;
C
Christoph Lameter 已提交
2679
	}
2680

2681
	page = c->page;
2682
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2683
		goto load_freelist;
2684

2685
	/* Only entered in the debug case */
2686 2687
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2688
		goto new_slab;	/* Slab failed checks. Next slab needed */
2689

2690
	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2691
	return freelist;
2692 2693
}

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
2705
#ifdef CONFIG_PREEMPTION
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729
/*
 * If the object has been wiped upon free, make sure it's fully initialized by
 * zeroing out freelist pointer.
 */
static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
						   void *obj)
{
	if (unlikely(slab_want_init_on_free(s)) && obj)
		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
}

2730 2731 2732 2733 2734 2735 2736 2737 2738 2739
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2740
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2741
		gfp_t gfpflags, int node, unsigned long addr)
2742
{
2743
	void *object;
2744
	struct kmem_cache_cpu *c;
2745
	struct page *page;
2746
	unsigned long tid;
2747

2748 2749
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2750
		return NULL;
2751 2752 2753 2754 2755 2756
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2757
	 *
2758
	 * We should guarantee that tid and kmem_cache are retrieved on
2759
	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2760
	 * to check if it is matched or not.
2761
	 */
2762 2763 2764
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2765
	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2766
		 unlikely(tid != READ_ONCE(c->tid)));
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2777 2778 2779 2780 2781 2782 2783 2784

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2785
	object = c->freelist;
2786
	page = c->page;
D
Dave Hansen 已提交
2787
	if (unlikely(!object || !node_match(page, node))) {
2788
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2789 2790
		stat(s, ALLOC_SLOWPATH);
	} else {
2791 2792
		void *next_object = get_freepointer_safe(s, object);

2793
		/*
L
Lucas De Marchi 已提交
2794
		 * The cmpxchg will only match if there was no additional
2795 2796
		 * operation and if we are on the right processor.
		 *
2797 2798
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2799 2800 2801 2802
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2803 2804 2805
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2806
		 */
2807
		if (unlikely(!this_cpu_cmpxchg_double(
2808 2809
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2810
				next_object, next_tid(tid)))) {
2811 2812 2813 2814

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2815
		prefetch_freepointer(s, next_object);
2816
		stat(s, ALLOC_FASTPATH);
2817
	}
2818 2819

	maybe_wipe_obj_freeptr(s, object);
2820

2821
	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2822
		memset(object, 0, s->object_size);
2823

2824
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2825

2826
	return object;
C
Christoph Lameter 已提交
2827 2828
}

2829 2830 2831 2832 2833 2834
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2835 2836
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2837
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2838

2839 2840
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2841 2842

	return ret;
C
Christoph Lameter 已提交
2843 2844 2845
}
EXPORT_SYMBOL(kmem_cache_alloc);

2846
#ifdef CONFIG_TRACING
2847 2848
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2849
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2850
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2851
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2852 2853 2854
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2855 2856
#endif

C
Christoph Lameter 已提交
2857 2858 2859
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2860
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2861

2862
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2863
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2864 2865

	return ret;
C
Christoph Lameter 已提交
2866 2867 2868
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2869
#ifdef CONFIG_TRACING
2870
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2871
				    gfp_t gfpflags,
2872
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2873
{
2874
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2875 2876 2877

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2878

2879
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2880
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2881
}
2882
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2883
#endif
2884
#endif	/* CONFIG_NUMA */
E
Eduard - Gabriel Munteanu 已提交
2885

C
Christoph Lameter 已提交
2886
/*
K
Kim Phillips 已提交
2887
 * Slow path handling. This may still be called frequently since objects
2888
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2889
 *
2890 2891 2892
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2893
 */
2894
static void __slab_free(struct kmem_cache *s, struct page *page,
2895 2896 2897
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2898 2899
{
	void *prior;
2900 2901 2902 2903
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2904
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2905

2906
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2907

2908
	if (kmem_cache_debug(s) &&
2909
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2910
		return;
C
Christoph Lameter 已提交
2911

2912
	do {
2913 2914 2915 2916
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2917 2918
		prior = page->freelist;
		counters = page->counters;
2919
		set_freepointer(s, tail, prior);
2920 2921
		new.counters = counters;
		was_frozen = new.frozen;
2922
		new.inuse -= cnt;
2923
		if ((!new.inuse || !prior) && !was_frozen) {
2924

P
Peter Zijlstra 已提交
2925
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2926 2927

				/*
2928 2929 2930 2931
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2932 2933 2934
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2935
			} else { /* Needs to be taken off a list */
2936

2937
				n = get_node(s, page_to_nid(page));
2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2949
		}
C
Christoph Lameter 已提交
2950

2951 2952
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2953
		head, new.counters,
2954
		"__slab_free"));
C
Christoph Lameter 已提交
2955

2956
	if (likely(!n)) {
2957 2958 2959 2960 2961

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2962
		if (new.frozen && !was_frozen) {
2963
			put_cpu_partial(s, page, 1);
2964 2965
			stat(s, CPU_PARTIAL_FREE);
		}
2966
		/*
2967 2968 2969
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2970 2971 2972 2973
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2974

2975
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2976 2977
		goto slab_empty;

C
Christoph Lameter 已提交
2978
	/*
2979 2980
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2981
	 */
2982
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2983
		remove_full(s, n, page);
2984 2985
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2986
	}
2987
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2988 2989 2990
	return;

slab_empty:
2991
	if (prior) {
C
Christoph Lameter 已提交
2992
		/*
2993
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2994
		 */
2995
		remove_partial(n, page);
2996
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2997
	} else {
2998
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2999 3000
		remove_full(s, n, page);
	}
3001

3002
	spin_unlock_irqrestore(&n->list_lock, flags);
3003
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
3004 3005 3006
	discard_slab(s, page);
}

3007 3008 3009 3010 3011 3012 3013 3014 3015 3016
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
3017 3018 3019 3020
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
3021
 */
3022 3023 3024
static __always_inline void do_slab_free(struct kmem_cache *s,
				struct page *page, void *head, void *tail,
				int cnt, unsigned long addr)
3025
{
3026
	void *tail_obj = tail ? : head;
3027
	struct kmem_cache_cpu *c;
3028 3029 3030 3031 3032 3033
	unsigned long tid;
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
3034
	 * during the cmpxchg then the free will succeed.
3035
	 */
3036 3037 3038
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
3039
	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3040
		 unlikely(tid != READ_ONCE(c->tid)));
3041

3042 3043
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
3044

3045
	if (likely(page == c->page)) {
3046 3047 3048
		void **freelist = READ_ONCE(c->freelist);

		set_freepointer(s, tail_obj, freelist);
3049

3050
		if (unlikely(!this_cpu_cmpxchg_double(
3051
				s->cpu_slab->freelist, s->cpu_slab->tid,
3052
				freelist, tid,
3053
				head, next_tid(tid)))) {
3054 3055 3056 3057

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
3058
		stat(s, FREE_FASTPATH);
3059
	} else
3060
		__slab_free(s, page, head, tail_obj, cnt, addr);
3061 3062 3063

}

3064 3065 3066 3067 3068
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	/*
3069 3070
	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
	 * to remove objects, whose reuse must be delayed.
3071
	 */
3072 3073
	if (slab_free_freelist_hook(s, &head, &tail))
		do_slab_free(s, page, head, tail, cnt, addr);
3074 3075
}

3076
#ifdef CONFIG_KASAN_GENERIC
3077 3078 3079 3080 3081 3082
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif

C
Christoph Lameter 已提交
3083 3084
void kmem_cache_free(struct kmem_cache *s, void *x)
{
3085 3086
	s = cache_from_obj(s, x);
	if (!s)
3087
		return;
3088
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3089
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
3090 3091 3092
}
EXPORT_SYMBOL(kmem_cache_free);

3093
struct detached_freelist {
3094
	struct page *page;
3095 3096 3097
	void *tail;
	void *freelist;
	int cnt;
3098
	struct kmem_cache *s;
3099
};
3100

3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
3113 3114 3115
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
3116 3117 3118 3119
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
3120
	struct page *page;
3121

3122 3123
	/* Always re-init detached_freelist */
	df->page = NULL;
3124

3125 3126
	do {
		object = p[--size];
3127
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3128
	} while (!object && size);
3129

3130 3131
	if (!object)
		return 0;
3132

3133 3134 3135 3136 3137 3138
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
3139
			__free_pages(page, compound_order(page));
3140 3141 3142 3143 3144 3145 3146 3147
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
3148

3149
	/* Start new detached freelist */
3150
	df->page = page;
3151
	set_freepointer(df->s, object, NULL);
3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
3165
			set_freepointer(df->s, object, df->freelist);
3166 3167 3168 3169 3170
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
3171
		}
3172 3173 3174 3175 3176 3177 3178

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
3179
	}
3180 3181 3182 3183 3184

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
3185
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3186 3187 3188 3189 3190 3191 3192 3193
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
A
Arnd Bergmann 已提交
3194
		if (!df.page)
3195 3196
			continue;

3197
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3198
	} while (likely(size));
3199 3200 3201
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

3202
/* Note that interrupts must be enabled when calling this function. */
3203 3204
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
3205
{
3206 3207 3208
	struct kmem_cache_cpu *c;
	int i;

3209 3210 3211 3212
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

3224
		if (unlikely(!object)) {
3225 3226 3227 3228 3229 3230 3231 3232 3233
			/*
			 * We may have removed an object from c->freelist using
			 * the fastpath in the previous iteration; in that case,
			 * c->tid has not been bumped yet.
			 * Since ___slab_alloc() may reenable interrupts while
			 * allocating memory, we should bump c->tid now.
			 */
			c->tid = next_tid(c->tid);

3234 3235 3236 3237
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
3238
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3239
					    _RET_IP_, c);
3240 3241 3242
			if (unlikely(!p[i]))
				goto error;

3243
			c = this_cpu_ptr(s->cpu_slab);
3244 3245
			maybe_wipe_obj_freeptr(s, p[i]);

3246 3247
			continue; /* goto for-loop */
		}
3248 3249
		c->freelist = get_freepointer(s, object);
		p[i] = object;
3250
		maybe_wipe_obj_freeptr(s, p[i]);
3251 3252 3253 3254 3255
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
3256
	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3257 3258 3259 3260 3261 3262
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

3263 3264
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
3265
	return i;
3266 3267
error:
	local_irq_enable();
3268 3269
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
3270
	return 0;
3271 3272 3273 3274
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
3275
/*
C
Christoph Lameter 已提交
3276 3277 3278 3279
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3280 3281 3282 3283
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3284
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3285 3286 3287 3288 3289 3290 3291 3292 3293
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
3294 3295 3296
static unsigned int slub_min_order;
static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
static unsigned int slub_min_objects;
C
Christoph Lameter 已提交
3297 3298 3299 3300

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3301 3302 3303 3304
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3305
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3306 3307 3308 3309 3310 3311
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3312
 *
C
Christoph Lameter 已提交
3313 3314 3315 3316
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3317
 *
C
Christoph Lameter 已提交
3318 3319 3320 3321
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3322
 */
3323 3324
static inline unsigned int slab_order(unsigned int size,
		unsigned int min_objects, unsigned int max_order,
3325
		unsigned int fract_leftover)
C
Christoph Lameter 已提交
3326
{
3327 3328
	unsigned int min_order = slub_min_order;
	unsigned int order;
C
Christoph Lameter 已提交
3329

3330
	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3331
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3332

3333
	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3334
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3335

3336 3337
		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
		unsigned int rem;
C
Christoph Lameter 已提交
3338

3339
		rem = slab_size % size;
C
Christoph Lameter 已提交
3340

3341
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3342 3343
			break;
	}
C
Christoph Lameter 已提交
3344

C
Christoph Lameter 已提交
3345 3346 3347
	return order;
}

3348
static inline int calculate_order(unsigned int size)
3349
{
3350 3351 3352
	unsigned int order;
	unsigned int min_objects;
	unsigned int max_objects;
3353 3354 3355 3356 3357 3358

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3359
	 * First we increase the acceptable waste in a slab. Then
3360 3361 3362
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3363 3364
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3365
	max_objects = order_objects(slub_max_order, size);
3366 3367
	min_objects = min(min_objects, max_objects);

3368
	while (min_objects > 1) {
3369 3370
		unsigned int fraction;

C
Christoph Lameter 已提交
3371
		fraction = 16;
3372 3373
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3374
					slub_max_order, fraction);
3375 3376 3377 3378
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3379
		min_objects--;
3380 3381 3382 3383 3384 3385
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3386
	order = slab_order(size, 1, slub_max_order, 1);
3387 3388 3389 3390 3391 3392
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3393
	order = slab_order(size, 1, MAX_ORDER, 1);
D
David Rientjes 已提交
3394
	if (order < MAX_ORDER)
3395 3396 3397 3398
		return order;
	return -ENOSYS;
}

3399
static void
3400
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3401 3402 3403 3404
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3405
#ifdef CONFIG_SLUB_DEBUG
3406
	atomic_long_set(&n->nr_slabs, 0);
3407
	atomic_long_set(&n->total_objects, 0);
3408
	INIT_LIST_HEAD(&n->full);
3409
#endif
C
Christoph Lameter 已提交
3410 3411
}

3412
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3413
{
3414
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3415
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3416

3417
	/*
3418 3419
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3420
	 */
3421 3422
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3423 3424 3425 3426 3427

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3428

3429
	return 1;
3430 3431
}

3432 3433
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3434 3435 3436 3437 3438
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3439 3440
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3441
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3442
 */
3443
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3444 3445 3446 3447
{
	struct page *page;
	struct kmem_cache_node *n;

3448
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3449

3450
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3451 3452

	BUG_ON(!page);
3453
	if (page_to_nid(page) != node) {
3454 3455
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3456 3457
	}

C
Christoph Lameter 已提交
3458 3459
	n = page->freelist;
	BUG_ON(!n);
3460
#ifdef CONFIG_SLUB_DEBUG
3461
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3462
	init_tracking(kmem_cache_node, n);
3463
#endif
3464
	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3465
		      GFP_KERNEL);
3466 3467 3468 3469
	page->freelist = get_freepointer(kmem_cache_node, n);
	page->inuse = 1;
	page->frozen = 0;
	kmem_cache_node->node[node] = n;
3470
	init_kmem_cache_node(n);
3471
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3472

3473
	/*
3474 3475
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3476
	 */
3477
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3478 3479 3480 3481 3482
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3483
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3484

C
Christoph Lameter 已提交
3485
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3486
		s->node[node] = NULL;
3487
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3488 3489 3490
	}
}

3491 3492
void __kmem_cache_release(struct kmem_cache *s)
{
T
Thomas Garnier 已提交
3493
	cache_random_seq_destroy(s);
3494 3495 3496 3497
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3498
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3499 3500 3501
{
	int node;

C
Christoph Lameter 已提交
3502
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3503 3504
		struct kmem_cache_node *n;

3505
		if (slab_state == DOWN) {
3506
			early_kmem_cache_node_alloc(node);
3507 3508
			continue;
		}
3509
		n = kmem_cache_alloc_node(kmem_cache_node,
3510
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3511

3512 3513 3514
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3515
		}
3516

3517
		init_kmem_cache_node(n);
3518
		s->node[node] = n;
C
Christoph Lameter 已提交
3519 3520 3521 3522
	}
	return 1;
}

3523
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3524 3525 3526 3527 3528 3529 3530 3531
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
	 * B) The number of objects in cpu partial slabs to extract from the
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
	 */
	if (!kmem_cache_has_cpu_partial(s))
3553
		slub_set_cpu_partial(s, 0);
3554
	else if (s->size >= PAGE_SIZE)
3555
		slub_set_cpu_partial(s, 2);
3556
	else if (s->size >= 1024)
3557
		slub_set_cpu_partial(s, 6);
3558
	else if (s->size >= 256)
3559
		slub_set_cpu_partial(s, 13);
3560
	else
3561
		slub_set_cpu_partial(s, 30);
3562 3563 3564
#endif
}

C
Christoph Lameter 已提交
3565 3566 3567 3568
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3569
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3570
{
3571
	slab_flags_t flags = s->flags;
3572
	unsigned int size = s->object_size;
3573
	unsigned int freepointer_area;
3574
	unsigned int order;
C
Christoph Lameter 已提交
3575

3576 3577 3578 3579 3580 3581
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));
3582 3583 3584 3585 3586 3587 3588
	/*
	 * This is the area of the object where a freepointer can be
	 * safely written. If redzoning adds more to the inuse size, we
	 * can't use that portion for writing the freepointer, so
	 * s->offset must be limited within this for the general case.
	 */
	freepointer_area = size;
3589 3590

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3591 3592 3593 3594 3595
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
3596
	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3597
			!s->ctor)
C
Christoph Lameter 已提交
3598 3599 3600 3601 3602 3603
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3604
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3605
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3606
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3607
	 */
3608
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3609
		size += sizeof(void *);
C
Christoph Lameter 已提交
3610
#endif
C
Christoph Lameter 已提交
3611 3612

	/*
C
Christoph Lameter 已提交
3613 3614
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3615 3616 3617
	 */
	s->inuse = size;

3618
	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3619
		s->ctor)) {
C
Christoph Lameter 已提交
3620 3621 3622 3623 3624 3625 3626
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
3627 3628 3629 3630 3631
		 *
		 * The assumption that s->offset >= s->inuse means free
		 * pointer is outside of the object is used in the
		 * freeptr_outside_object() function. If that is no
		 * longer true, the function needs to be modified.
C
Christoph Lameter 已提交
3632 3633 3634
		 */
		s->offset = size;
		size += sizeof(void *);
3635
	} else if (freepointer_area > sizeof(void *)) {
3636 3637 3638 3639 3640
		/*
		 * Store freelist pointer near middle of object to keep
		 * it away from the edges of the object to avoid small
		 * sized over/underflows from neighboring allocations.
		 */
3641
		s->offset = ALIGN(freepointer_area / 2, sizeof(void *));
C
Christoph Lameter 已提交
3642 3643
	}

3644
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3645 3646 3647 3648 3649 3650
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);
3651
#endif
C
Christoph Lameter 已提交
3652

3653 3654
	kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
J
Joonsoo Kim 已提交
3655
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3656 3657 3658 3659
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3660
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3661 3662 3663
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3664 3665 3666 3667 3668

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3669
#endif
C
Christoph Lameter 已提交
3670

C
Christoph Lameter 已提交
3671 3672 3673 3674 3675
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3676
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3677
	s->size = size;
3678 3679 3680
	if (forced_order >= 0)
		order = forced_order;
	else
3681
		order = calculate_order(size);
C
Christoph Lameter 已提交
3682

3683
	if ((int)order < 0)
C
Christoph Lameter 已提交
3684 3685
		return 0;

3686
	s->allocflags = 0;
3687
	if (order)
3688 3689 3690
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3691
		s->allocflags |= GFP_DMA;
3692

3693 3694 3695
	if (s->flags & SLAB_CACHE_DMA32)
		s->allocflags |= GFP_DMA32;

3696 3697 3698
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3699 3700 3701
	/*
	 * Determine the number of objects per slab
	 */
3702 3703
	s->oo = oo_make(order, size);
	s->min = oo_make(get_order(size), size);
3704 3705
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3706

3707
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3708 3709
}

3710
static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
C
Christoph Lameter 已提交
3711
{
3712
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3713 3714 3715
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	s->random = get_random_long();
#endif
C
Christoph Lameter 已提交
3716

3717
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3718
		goto error;
3719 3720 3721 3722 3723
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3724
		if (get_order(s->size) > get_order(s->object_size)) {
3725 3726 3727 3728 3729 3730
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3731

3732 3733
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3734
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3735 3736 3737 3738
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3739 3740 3741 3742
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3743 3744
	set_min_partial(s, ilog2(s->size) / 2);

3745
	set_cpu_partial(s);
3746

C
Christoph Lameter 已提交
3747
#ifdef CONFIG_NUMA
3748
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3749
#endif
T
Thomas Garnier 已提交
3750 3751 3752 3753 3754 3755 3756

	/* Initialize the pre-computed randomized freelist if slab is up */
	if (slab_state >= UP) {
		if (init_cache_random_seq(s))
			goto error;
	}

3757
	if (!init_kmem_cache_nodes(s))
3758
		goto error;
C
Christoph Lameter 已提交
3759

3760
	if (alloc_kmem_cache_cpus(s))
3761
		return 0;
3762

3763
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3764
error:
3765
	return -EINVAL;
C
Christoph Lameter 已提交
3766 3767
}

3768
static void list_slab_objects(struct kmem_cache *s, struct page *page,
3769
			      const char *text, unsigned long *map)
3770 3771 3772 3773
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
3774 3775 3776

	if (!map)
		return;
3777

3778
	slab_err(s, page, text, s->name);
3779 3780
	slab_lock(page);

3781
	map = get_map(s, page);
3782 3783 3784
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3785
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3786 3787 3788 3789 3790 3791 3792
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
#endif
}

C
Christoph Lameter 已提交
3793
/*
C
Christoph Lameter 已提交
3794
 * Attempt to free all partial slabs on a node.
3795 3796
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3797
 */
C
Christoph Lameter 已提交
3798
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3799
{
3800
	LIST_HEAD(discard);
C
Christoph Lameter 已提交
3801
	struct page *page, *h;
3802 3803 3804 3805 3806
	unsigned long *map = NULL;

#ifdef CONFIG_SLUB_DEBUG
	map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
#endif
C
Christoph Lameter 已提交
3807

3808 3809
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3810
	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
C
Christoph Lameter 已提交
3811
		if (!page->inuse) {
3812
			remove_partial(n, page);
3813
			list_add(&page->slab_list, &discard);
3814 3815
		} else {
			list_slab_objects(s, page,
3816 3817
			  "Objects remaining in %s on __kmem_cache_shutdown()",
			  map);
C
Christoph Lameter 已提交
3818
		}
3819
	}
3820
	spin_unlock_irq(&n->list_lock);
3821

3822 3823 3824 3825
#ifdef CONFIG_SLUB_DEBUG
	bitmap_free(map);
#endif

3826
	list_for_each_entry_safe(page, h, &discard, slab_list)
3827
		discard_slab(s, page);
C
Christoph Lameter 已提交
3828 3829
}

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (n->nr_partial || slabs_node(s, node))
			return false;
	return true;
}

C
Christoph Lameter 已提交
3841
/*
C
Christoph Lameter 已提交
3842
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3843
 */
3844
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3845 3846
{
	int node;
C
Christoph Lameter 已提交
3847
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3848 3849 3850

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3851
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3852 3853
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3854 3855
			return 1;
	}
3856
	sysfs_slab_remove(s);
C
Christoph Lameter 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
3866
	get_option(&str, (int *)&slub_min_order);
C
Christoph Lameter 已提交
3867 3868 3869 3870 3871 3872 3873 3874

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
3875 3876
	get_option(&str, (int *)&slub_max_order);
	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
C
Christoph Lameter 已提交
3877 3878 3879 3880 3881 3882 3883 3884

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
3885
	get_option(&str, (int *)&slub_min_objects);
C
Christoph Lameter 已提交
3886 3887 3888 3889 3890 3891 3892 3893

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3894
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3895
	void *ret;
C
Christoph Lameter 已提交
3896

3897
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3898
		return kmalloc_large(size, flags);
3899

3900
	s = kmalloc_slab(size, flags);
3901 3902

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3903 3904
		return s;

3905
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3906

3907
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3908

3909
	ret = kasan_kmalloc(s, ret, size, flags);
3910

E
Eduard - Gabriel Munteanu 已提交
3911
	return ret;
C
Christoph Lameter 已提交
3912 3913 3914
}
EXPORT_SYMBOL(__kmalloc);

3915
#ifdef CONFIG_NUMA
3916 3917
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3918
	struct page *page;
3919
	void *ptr = NULL;
3920
	unsigned int order = get_order(size);
3921

3922
	flags |= __GFP_COMP;
3923 3924
	page = alloc_pages_node(node, flags, order);
	if (page) {
3925
		ptr = page_address(page);
3926 3927 3928
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
				    1 << order);
	}
3929

3930
	return kmalloc_large_node_hook(ptr, size, flags);
3931 3932
}

C
Christoph Lameter 已提交
3933 3934
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3935
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3936
	void *ret;
C
Christoph Lameter 已提交
3937

3938
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3939 3940
		ret = kmalloc_large_node(size, flags, node);

3941 3942 3943
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3944 3945 3946

		return ret;
	}
3947

3948
	s = kmalloc_slab(size, flags);
3949 3950

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3951 3952
		return s;

3953
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3954

3955
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3956

3957
	ret = kasan_kmalloc(s, ret, size, flags);
3958

E
Eduard - Gabriel Munteanu 已提交
3959
	return ret;
C
Christoph Lameter 已提交
3960 3961
}
EXPORT_SYMBOL(__kmalloc_node);
3962
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
3963

K
Kees Cook 已提交
3964 3965
#ifdef CONFIG_HARDENED_USERCOPY
/*
3966 3967 3968
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
3969 3970 3971 3972
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
3973 3974
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
3975 3976
{
	struct kmem_cache *s;
A
Alexey Dobriyan 已提交
3977
	unsigned int offset;
K
Kees Cook 已提交
3978 3979
	size_t object_size;

3980 3981
	ptr = kasan_reset_tag(ptr);

K
Kees Cook 已提交
3982 3983 3984 3985 3986
	/* Find object and usable object size. */
	s = page->slab_cache;

	/* Reject impossible pointers. */
	if (ptr < page_address(page))
3987 3988
		usercopy_abort("SLUB object not in SLUB page?!", NULL,
			       to_user, 0, n);
K
Kees Cook 已提交
3989 3990 3991 3992 3993 3994 3995

	/* Find offset within object. */
	offset = (ptr - page_address(page)) % s->size;

	/* Adjust for redzone and reject if within the redzone. */
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
		if (offset < s->red_left_pad)
3996 3997
			usercopy_abort("SLUB object in left red zone",
				       s->name, to_user, offset, n);
K
Kees Cook 已提交
3998 3999 4000
		offset -= s->red_left_pad;
	}

4001 4002 4003 4004
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= s->useroffset &&
	    offset - s->useroffset <= s->usersize &&
	    n <= s->useroffset - offset + s->usersize)
4005
		return;
K
Kees Cook 已提交
4006

4007 4008 4009 4010 4011 4012 4013
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
	object_size = slab_ksize(s);
4014 4015
	if (usercopy_fallback &&
	    offset <= object_size && n <= object_size - offset) {
4016 4017 4018
		usercopy_warn("SLUB object", s->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
4019

4020
	usercopy_abort("SLUB object", s->name, to_user, offset, n);
K
Kees Cook 已提交
4021 4022 4023
}
#endif /* CONFIG_HARDENED_USERCOPY */

4024
size_t __ksize(const void *object)
C
Christoph Lameter 已提交
4025
{
4026
	struct page *page;
C
Christoph Lameter 已提交
4027

4028
	if (unlikely(object == ZERO_SIZE_PTR))
4029 4030
		return 0;

4031 4032
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
4033 4034
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
4035
		return page_size(page);
P
Pekka Enberg 已提交
4036
	}
C
Christoph Lameter 已提交
4037

4038
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
4039
}
4040
EXPORT_SYMBOL(__ksize);
C
Christoph Lameter 已提交
4041 4042 4043 4044

void kfree(const void *x)
{
	struct page *page;
4045
	void *object = (void *)x;
C
Christoph Lameter 已提交
4046

4047 4048
	trace_kfree(_RET_IP_, x);

4049
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
4050 4051
		return;

4052
	page = virt_to_head_page(x);
4053
	if (unlikely(!PageSlab(page))) {
4054 4055
		unsigned int order = compound_order(page);

4056
		BUG_ON(!PageCompound(page));
4057
		kfree_hook(object);
4058 4059 4060
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
				    -(1 << order));
		__free_pages(page, order);
4061 4062
		return;
	}
4063
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
4064 4065 4066
}
EXPORT_SYMBOL(kfree);

4067 4068
#define SHRINK_PROMOTE_MAX 32

4069
/*
4070 4071 4072
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
4073 4074 4075 4076
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
4077
 */
4078
int __kmem_cache_shrink(struct kmem_cache *s)
4079 4080 4081 4082 4083 4084
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
4085 4086
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
4087
	unsigned long flags;
4088
	int ret = 0;
4089 4090

	flush_all(s);
C
Christoph Lameter 已提交
4091
	for_each_kmem_cache_node(s, node, n) {
4092 4093 4094
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
4095 4096 4097 4098

		spin_lock_irqsave(&n->list_lock, flags);

		/*
4099
		 * Build lists of slabs to discard or promote.
4100
		 *
C
Christoph Lameter 已提交
4101 4102
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
4103
		 */
4104
		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4105 4106 4107 4108 4109 4110 4111 4112 4113
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
4114
				list_move(&page->slab_list, &discard);
4115
				n->nr_partial--;
4116
			} else if (free <= SHRINK_PROMOTE_MAX)
4117
				list_move(&page->slab_list, promote + free - 1);
4118 4119 4120
		}

		/*
4121 4122
		 * Promote the slabs filled up most to the head of the
		 * partial list.
4123
		 */
4124 4125
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
4126 4127

		spin_unlock_irqrestore(&n->list_lock, flags);
4128 4129

		/* Release empty slabs */
4130
		list_for_each_entry_safe(page, t, &discard, slab_list)
4131
			discard_slab(s, page);
4132 4133 4134

		if (slabs_node(s, node))
			ret = 1;
4135 4136
	}

4137
	return ret;
4138 4139
}

4140
#ifdef CONFIG_MEMCG
4141
void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4142
{
4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156
	/*
	 * Called with all the locks held after a sched RCU grace period.
	 * Even if @s becomes empty after shrinking, we can't know that @s
	 * doesn't have allocations already in-flight and thus can't
	 * destroy @s until the associated memcg is released.
	 *
	 * However, let's remove the sysfs files for empty caches here.
	 * Each cache has a lot of interface files which aren't
	 * particularly useful for empty draining caches; otherwise, we can
	 * easily end up with millions of unnecessary sysfs files on
	 * systems which have a lot of memory and transient cgroups.
	 */
	if (!__kmem_cache_shrink(s))
		sysfs_slab_remove(s);
4157 4158
}

4159 4160 4161 4162 4163 4164
void __kmemcg_cache_deactivate(struct kmem_cache *s)
{
	/*
	 * Disable empty slabs caching. Used to avoid pinning offline
	 * memory cgroups by kmem pages that can be freed.
	 */
4165
	slub_set_cpu_partial(s, 0);
4166 4167
	s->min_partial = 0;
}
4168
#endif	/* CONFIG_MEMCG */
4169

4170 4171 4172 4173
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

4174
	mutex_lock(&slab_mutex);
4175
	list_for_each_entry(s, &slab_caches, list)
4176
		__kmem_cache_shrink(s);
4177
	mutex_unlock(&slab_mutex);
4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

4189
	offline_node = marg->status_change_nid_normal;
4190 4191 4192 4193 4194 4195 4196 4197

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

4198
	mutex_lock(&slab_mutex);
4199 4200 4201 4202 4203 4204
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
4205
			 * and offline_pages() function shouldn't call this
4206 4207
			 * callback. So, we must fail.
			 */
4208
			BUG_ON(slabs_node(s, offline_node));
4209 4210

			s->node[offline_node] = NULL;
4211
			kmem_cache_free(kmem_cache_node, n);
4212 4213
		}
	}
4214
	mutex_unlock(&slab_mutex);
4215 4216 4217 4218 4219 4220 4221
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
4222
	int nid = marg->status_change_nid_normal;
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
4233
	 * We are bringing a node online. No memory is available yet. We must
4234 4235 4236
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
4237
	mutex_lock(&slab_mutex);
4238 4239 4240 4241 4242 4243
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
4244
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4245 4246 4247 4248
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
4249
		init_kmem_cache_node(n);
4250 4251 4252
		s->node[nid] = n;
	}
out:
4253
	mutex_unlock(&slab_mutex);
4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
4277 4278 4279 4280
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
4281 4282 4283
	return ret;
}

4284 4285 4286 4287
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
4288

C
Christoph Lameter 已提交
4289 4290 4291 4292
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

4293 4294
/*
 * Used for early kmem_cache structures that were allocated using
4295 4296
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
4297 4298
 */

4299
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4300 4301
{
	int node;
4302
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
4303
	struct kmem_cache_node *n;
4304

4305
	memcpy(s, static_cache, kmem_cache->object_size);
4306

4307 4308 4309 4310 4311 4312
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
4313
	for_each_kmem_cache_node(s, node, n) {
4314 4315
		struct page *p;

4316
		list_for_each_entry(p, &n->partial, slab_list)
C
Christoph Lameter 已提交
4317
			p->slab_cache = s;
4318

L
Li Zefan 已提交
4319
#ifdef CONFIG_SLUB_DEBUG
4320
		list_for_each_entry(p, &n->full, slab_list)
C
Christoph Lameter 已提交
4321
			p->slab_cache = s;
4322 4323
#endif
	}
4324
	slab_init_memcg_params(s);
4325
	list_add(&s->list, &slab_caches);
4326
	memcg_link_cache(s, NULL);
4327
	return s;
4328 4329
}

C
Christoph Lameter 已提交
4330 4331
void __init kmem_cache_init(void)
{
4332 4333
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
4334

4335 4336 4337
	if (debug_guardpage_minorder())
		slub_max_order = 0;

4338 4339
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
4340

4341
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4342
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4343

4344
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
4345 4346 4347 4348

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

4349 4350 4351
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
4352
		       SLAB_HWCACHE_ALIGN, 0, 0);
4353

4354 4355
	kmem_cache = bootstrap(&boot_kmem_cache);
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4356 4357

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4358
	setup_kmalloc_cache_index_table();
4359
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
4360

T
Thomas Garnier 已提交
4361 4362 4363
	/* Setup random freelists for each cache */
	init_freelist_randomization();

4364 4365
	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
				  slub_cpu_dead);
C
Christoph Lameter 已提交
4366

4367
	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4368
		cache_line_size(),
C
Christoph Lameter 已提交
4369 4370 4371 4372
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

4373 4374 4375 4376
void __init kmem_cache_init_late(void)
{
}

4377
struct kmem_cache *
4378
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4379
		   slab_flags_t flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
4380
{
4381
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
4382

4383
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
4384 4385
	if (s) {
		s->refcount++;
4386

C
Christoph Lameter 已提交
4387 4388 4389 4390
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
4391
		s->object_size = max(s->object_size, size);
4392
		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
4393

4394
		for_each_memcg_cache(c, s) {
4395
			c->object_size = s->object_size;
4396
			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4397 4398
		}

4399 4400
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
4401
			s = NULL;
4402
		}
4403
	}
C
Christoph Lameter 已提交
4404

4405 4406
	return s;
}
P
Pekka Enberg 已提交
4407

4408
int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4409
{
4410 4411 4412 4413 4414
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4415

4416 4417 4418 4419
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4420
	memcg_propagate_slab_attrs(s);
4421 4422
	err = sysfs_slab_add(s);
	if (err)
4423
		__kmem_cache_release(s);
4424

4425
	return err;
C
Christoph Lameter 已提交
4426 4427
}

4428
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4429
{
4430
	struct kmem_cache *s;
4431
	void *ret;
4432

4433
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4434 4435
		return kmalloc_large(size, gfpflags);

4436
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4437

4438
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4439
		return s;
C
Christoph Lameter 已提交
4440

4441
	ret = slab_alloc(s, gfpflags, caller);
4442

L
Lucas De Marchi 已提交
4443
	/* Honor the call site pointer we received. */
4444
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4445 4446

	return ret;
C
Christoph Lameter 已提交
4447
}
4448
EXPORT_SYMBOL(__kmalloc_track_caller);
C
Christoph Lameter 已提交
4449

4450
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4451
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4452
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4453
{
4454
	struct kmem_cache *s;
4455
	void *ret;
4456

4457
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4458 4459 4460 4461 4462 4463 4464 4465
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4466

4467
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4468

4469
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4470
		return s;
C
Christoph Lameter 已提交
4471

4472
	ret = slab_alloc_node(s, gfpflags, node, caller);
4473

L
Lucas De Marchi 已提交
4474
	/* Honor the call site pointer we received. */
4475
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4476 4477

	return ret;
C
Christoph Lameter 已提交
4478
}
4479
EXPORT_SYMBOL(__kmalloc_node_track_caller);
4480
#endif
C
Christoph Lameter 已提交
4481

4482
#ifdef CONFIG_SYSFS
4483 4484 4485 4486 4487 4488 4489 4490 4491
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4492
#endif
4493

4494
#ifdef CONFIG_SLUB_DEBUG
4495
static void validate_slab(struct kmem_cache *s, struct page *page)
4496 4497
{
	void *p;
4498
	void *addr = page_address(page);
4499 4500 4501
	unsigned long *map;

	slab_lock(page);
4502

Y
Yu Zhao 已提交
4503
	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4504
		goto unlock;
4505 4506

	/* Now we know that a valid freelist exists */
4507
	map = get_map(s, page);
4508
	for_each_object(p, s, addr, page->objects) {
Y
Yu Zhao 已提交
4509 4510
		u8 val = test_bit(slab_index(p, s, addr), map) ?
			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4511

Y
Yu Zhao 已提交
4512 4513 4514
		if (!check_object(s, page, p, val))
			break;
	}
4515 4516
	put_map(map);
unlock:
4517
	slab_unlock(page);
4518 4519
}

4520
static int validate_slab_node(struct kmem_cache *s,
4521
		struct kmem_cache_node *n)
4522 4523 4524 4525 4526 4527 4528
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

4529
	list_for_each_entry(page, &n->partial, slab_list) {
4530
		validate_slab(s, page);
4531 4532 4533
		count++;
	}
	if (count != n->nr_partial)
4534 4535
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4536 4537 4538 4539

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

4540
	list_for_each_entry(page, &n->full, slab_list) {
4541
		validate_slab(s, page);
4542 4543 4544
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4545 4546
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4547 4548 4549 4550 4551 4552

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4553
static long validate_slab_cache(struct kmem_cache *s)
4554 4555 4556
{
	int node;
	unsigned long count = 0;
C
Christoph Lameter 已提交
4557
	struct kmem_cache_node *n;
4558 4559

	flush_all(s);
C
Christoph Lameter 已提交
4560
	for_each_kmem_cache_node(s, node, n)
4561 4562
		count += validate_slab_node(s, n);

4563 4564
	return count;
}
4565
/*
C
Christoph Lameter 已提交
4566
 * Generate lists of code addresses where slabcache objects are allocated
4567 4568 4569 4570 4571
 * and freed.
 */

struct location {
	unsigned long count;
4572
	unsigned long addr;
4573 4574 4575 4576 4577
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4578
	DECLARE_BITMAP(cpus, NR_CPUS);
4579
	nodemask_t nodes;
4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4595
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4596 4597 4598 4599 4600 4601
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4602
	l = (void *)__get_free_pages(flags, order);
4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4616
				const struct track *track)
4617 4618 4619
{
	long start, end, pos;
	struct location *l;
4620
	unsigned long caddr;
4621
	unsigned long age = jiffies - track->when;
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4653 4654
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4655 4656
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4657 4658 4659
			return 1;
		}

4660
		if (track->addr < caddr)
4661 4662 4663 4664 4665 4666
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4667
	 * Not found. Insert new tracking element.
4668
	 */
4669
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4670 4671 4672 4673 4674 4675 4676 4677
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4678 4679 4680 4681 4682 4683
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4684 4685
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4686 4687
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4688 4689 4690 4691
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
4692
		struct page *page, enum track_item alloc)
4693
{
4694
	void *addr = page_address(page);
4695
	void *p;
4696
	unsigned long *map;
4697

4698
	map = get_map(s, page);
4699
	for_each_object(p, s, addr, page->objects)
4700 4701
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4702
	put_map(map);
4703 4704 4705 4706 4707
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4708
	int len = 0;
4709
	unsigned long i;
4710
	struct loc_track t = { 0, 0, NULL };
4711
	int node;
C
Christoph Lameter 已提交
4712
	struct kmem_cache_node *n;
4713

4714 4715
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
			     GFP_KERNEL)) {
4716
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4717
	}
4718 4719 4720
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4721
	for_each_kmem_cache_node(s, node, n) {
4722 4723 4724
		unsigned long flags;
		struct page *page;

4725
		if (!atomic_long_read(&n->nr_slabs))
4726 4727 4728
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
4729
		list_for_each_entry(page, &n->partial, slab_list)
4730
			process_slab(&t, s, page, alloc);
4731
		list_for_each_entry(page, &n->full, slab_list)
4732
			process_slab(&t, s, page, alloc);
4733 4734 4735 4736
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4737
		struct location *l = &t.loc[i];
4738

H
Hugh Dickins 已提交
4739
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4740
			break;
4741
		len += sprintf(buf + len, "%7ld ", l->count);
4742 4743

		if (l->addr)
J
Joe Perches 已提交
4744
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4745
		else
4746
			len += sprintf(buf + len, "<not-available>");
4747 4748

		if (l->sum_time != l->min_time) {
4749
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4750 4751 4752
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4753
		} else
4754
			len += sprintf(buf + len, " age=%ld",
4755 4756 4757
				l->min_time);

		if (l->min_pid != l->max_pid)
4758
			len += sprintf(buf + len, " pid=%ld-%ld",
4759 4760
				l->min_pid, l->max_pid);
		else
4761
			len += sprintf(buf + len, " pid=%ld",
4762 4763
				l->min_pid);

R
Rusty Russell 已提交
4764 4765
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4766 4767 4768 4769
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4770

4771
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4772 4773 4774 4775
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4776

4777
		len += sprintf(buf + len, "\n");
4778 4779 4780 4781
	}

	free_loc_track(&t);
	if (!t.count)
4782 4783
		len += sprintf(buf, "No data\n");
	return len;
4784
}
4785
#endif	/* CONFIG_SLUB_DEBUG */
4786

4787
#ifdef SLUB_RESILIENCY_TEST
4788
static void __init resiliency_test(void)
4789 4790
{
	u8 *p;
4791
	int type = KMALLOC_NORMAL;
4792

4793
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4794

4795 4796 4797
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4798 4799 4800

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4801 4802
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4803

4804
	validate_slab_cache(kmalloc_caches[type][4]);
4805 4806 4807 4808

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4809 4810 4811
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4812

4813
	validate_slab_cache(kmalloc_caches[type][5]);
4814 4815 4816
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4817 4818 4819
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4820
	validate_slab_cache(kmalloc_caches[type][6]);
4821

4822
	pr_err("\nB. Corruption after free\n");
4823 4824 4825
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4826
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4827
	validate_slab_cache(kmalloc_caches[type][7]);
4828 4829 4830 4831

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4832
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4833
	validate_slab_cache(kmalloc_caches[type][8]);
4834 4835 4836 4837

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4838
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4839
	validate_slab_cache(kmalloc_caches[type][9]);
4840 4841 4842 4843 4844
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
4845
#endif	/* SLUB_RESILIENCY_TEST */
4846

4847
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4848
enum slab_stat_type {
4849 4850 4851 4852 4853
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4854 4855
};

4856
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4857 4858 4859
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4860
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4861

4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
#ifdef CONFIG_MEMCG
static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);

static int __init setup_slub_memcg_sysfs(char *str)
{
	int v;

	if (get_option(&str, &v) > 0)
		memcg_sysfs_enabled = v;

	return 1;
}

__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
#endif

4878 4879
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4880 4881 4882 4883 4884 4885
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

K
Kees Cook 已提交
4886
	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4887 4888
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4889

4890 4891
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4892

4893
		for_each_possible_cpu(cpu) {
4894 4895
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4896
			int node;
4897
			struct page *page;
4898

4899
			page = READ_ONCE(c->page);
4900 4901
			if (!page)
				continue;
4902

4903 4904 4905 4906 4907 4908 4909
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4910

4911 4912 4913
			total += x;
			nodes[node] += x;

4914
			page = slub_percpu_partial_read_once(c);
4915
			if (page) {
L
Li Zefan 已提交
4916 4917 4918 4919 4920 4921 4922
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4923 4924
				total += x;
				nodes[node] += x;
4925
			}
C
Christoph Lameter 已提交
4926 4927 4928
		}
	}

4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
	/*
	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
	 * already held which will conflict with an existing lock order:
	 *
	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
	 *
	 * We don't really need mem_hotplug_lock (to hold off
	 * slab_mem_going_offline_callback) here because slab's memory hot
	 * unplug code doesn't destroy the kmem_cache->node[] data.
	 */

4940
#ifdef CONFIG_SLUB_DEBUG
4941
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4942 4943 4944
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4945

4946 4947 4948 4949 4950
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4951
			else
4952
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4953 4954 4955 4956
			total += x;
			nodes[node] += x;
		}

4957 4958 4959
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4960
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4961

C
Christoph Lameter 已提交
4962
		for_each_kmem_cache_node(s, node, n) {
4963 4964 4965 4966
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4967
			else
4968
				x = n->nr_partial;
C
Christoph Lameter 已提交
4969 4970 4971 4972 4973 4974
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4975
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4976 4977 4978 4979 4980 4981 4982 4983
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4984
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4985 4986 4987
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4988
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4989

C
Christoph Lameter 已提交
4990
	for_each_kmem_cache_node(s, node, n)
4991
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4992
			return 1;
C
Christoph Lameter 已提交
4993

C
Christoph Lameter 已提交
4994 4995
	return 0;
}
4996
#endif
C
Christoph Lameter 已提交
4997 4998

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4999
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
5000 5001 5002 5003 5004 5005 5006 5007

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
5008 5009
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
5010 5011 5012

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
5013
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
5014 5015 5016

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
A
Alexey Dobriyan 已提交
5017
	return sprintf(buf, "%u\n", s->size);
C
Christoph Lameter 已提交
5018 5019 5020 5021 5022
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
5023
	return sprintf(buf, "%u\n", s->align);
C
Christoph Lameter 已提交
5024 5025 5026 5027 5028
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
5029
	return sprintf(buf, "%u\n", s->object_size);
C
Christoph Lameter 已提交
5030 5031 5032 5033 5034
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
5035
	return sprintf(buf, "%u\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
5036 5037 5038
}
SLAB_ATTR_RO(objs_per_slab);

5039 5040 5041
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
5042
	unsigned int order;
5043 5044
	int err;

5045
	err = kstrtouint(buf, 10, &order);
5046 5047
	if (err)
		return err;
5048 5049 5050 5051 5052 5053 5054 5055

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
5056 5057
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
5058
	return sprintf(buf, "%u\n", oo_order(s->oo));
C
Christoph Lameter 已提交
5059
}
5060
SLAB_ATTR(order);
C
Christoph Lameter 已提交
5061

5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

5073
	err = kstrtoul(buf, 10, &min);
5074 5075 5076
	if (err)
		return err;

5077
	set_min_partial(s, min);
5078 5079 5080 5081
	return length;
}
SLAB_ATTR(min_partial);

5082 5083
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
5084
	return sprintf(buf, "%u\n", slub_cpu_partial(s));
5085 5086 5087 5088 5089
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
5090
	unsigned int objects;
5091 5092
	int err;

5093
	err = kstrtouint(buf, 10, &objects);
5094 5095
	if (err)
		return err;
5096
	if (objects && !kmem_cache_has_cpu_partial(s))
5097
		return -EINVAL;
5098

5099
	slub_set_cpu_partial(s, objects);
5100 5101 5102 5103 5104
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
5105 5106
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
5107 5108 5109
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
5110 5111 5112 5113 5114
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
5115
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
5116 5117 5118 5119 5120
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
5121
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
5122 5123 5124 5125 5126
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
5127
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
5128 5129 5130 5131 5132
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
5133
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
5134 5135 5136
}
SLAB_ATTR_RO(objects);

5137 5138 5139 5140 5141 5142
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

5143 5144 5145 5146 5147 5148 5149 5150
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
5151 5152 5153
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
5165 5166 5167
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5168 5169 5170 5171 5172 5173 5174 5175 5176 5177

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

5207 5208
static ssize_t usersize_show(struct kmem_cache *s, char *buf)
{
5209
	return sprintf(buf, "%u\n", s->usersize);
5210 5211 5212
}
SLAB_ATTR_RO(usersize);

5213 5214
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
5215
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5216 5217 5218
}
SLAB_ATTR_RO(destroy_by_rcu);

5219
#ifdef CONFIG_SLUB_DEBUG
5220 5221 5222 5223 5224 5225
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

5226 5227 5228 5229 5230 5231
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
5232 5233
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
5234
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
5235 5236 5237 5238 5239
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
5240
	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5241 5242
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
5243
		s->flags |= SLAB_CONSISTENCY_CHECKS;
5244
	}
C
Christoph Lameter 已提交
5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5257 5258 5259 5260 5261 5262 5263 5264
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
5265
	s->flags &= ~SLAB_TRACE;
5266 5267
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5268
		s->flags |= SLAB_TRACE;
5269
	}
C
Christoph Lameter 已提交
5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
5286
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5287
		s->flags |= SLAB_RED_ZONE;
5288
	}
5289
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
5306
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5307
		s->flags |= SLAB_POISON;
5308
	}
5309
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
5326 5327
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5328
		s->flags |= SLAB_STORE_USER;
5329
	}
5330
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5331 5332 5333 5334
	return length;
}
SLAB_ATTR(store_user);

5335 5336 5337 5338 5339 5340 5341 5342
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5343 5344 5345 5346 5347 5348 5349 5350
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
5351 5352
}
SLAB_ATTR(validate);
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5380 5381 5382
	if (s->refcount > 1)
		return -EINVAL;

5383 5384 5385 5386 5387 5388
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
5389
#endif
5390

5391 5392 5393 5394 5395 5396 5397 5398
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5399
	if (buf[0] == '1')
5400
		kmem_cache_shrink_all(s);
5401
	else
5402 5403 5404 5405 5406
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5407
#ifdef CONFIG_NUMA
5408
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5409
{
5410
	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5411 5412
}

5413
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5414 5415
				const char *buf, size_t length)
{
5416
	unsigned int ratio;
5417 5418
	int err;

5419
	err = kstrtouint(buf, 10, &ratio);
5420 5421
	if (err)
		return err;
5422 5423
	if (ratio > 100)
		return -ERANGE;
5424

5425
	s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5426 5427 5428

	return length;
}
5429
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5430 5431
#endif

5432 5433 5434 5435 5436 5437
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
5438
	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5439 5440 5441 5442 5443

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5444
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5445 5446 5447 5448 5449 5450 5451

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5452
#ifdef CONFIG_SMP
5453 5454
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5455
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5456
	}
5457
#endif
5458 5459 5460 5461
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5462 5463 5464 5465 5466
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5467
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5468 5469
}

5470 5471 5472 5473 5474
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5475 5476 5477 5478 5479 5480 5481 5482 5483
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5495
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5496 5497 5498 5499 5500 5501 5502
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5503
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5504
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5505 5506
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5507 5508
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5509 5510
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5511
#endif	/* CONFIG_SLUB_STATS */
5512

P
Pekka Enberg 已提交
5513
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5514 5515 5516 5517
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5518
	&min_partial_attr.attr,
5519
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5520
	&objects_attr.attr,
5521
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5522 5523 5524 5525 5526 5527 5528 5529
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5530
	&shrink_attr.attr,
5531
	&slabs_cpu_partial_attr.attr,
5532
#ifdef CONFIG_SLUB_DEBUG
5533 5534 5535 5536
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5537 5538 5539
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5540
	&validate_attr.attr,
5541 5542
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5543
#endif
C
Christoph Lameter 已提交
5544 5545 5546 5547
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5548
	&remote_node_defrag_ratio_attr.attr,
5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5561
	&alloc_node_mismatch_attr.attr,
5562 5563 5564 5565 5566 5567 5568
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5569
	&deactivate_bypass_attr.attr,
5570
	&order_fallback_attr.attr,
5571 5572
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5573 5574
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5575 5576
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5577
#endif
5578 5579 5580
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif
5581
	&usersize_attr.attr,
5582

C
Christoph Lameter 已提交
5583 5584 5585
	NULL
};

5586
static const struct attribute_group slab_attr_group = {
C
Christoph Lameter 已提交
5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5624
#ifdef CONFIG_MEMCG
5625
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5626
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5627

5628 5629 5630 5631
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5649 5650
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5651 5652 5653
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5654 5655 5656
	return err;
}

5657 5658
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5659
#ifdef CONFIG_MEMCG
5660 5661
	int i;
	char *buffer = NULL;
5662
	struct kmem_cache *root_cache;
5663

5664
	if (is_root_cache(s))
5665 5666
		return;

5667
	root_cache = s->memcg_params.root_cache;
5668

5669 5670 5671 5672
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5673
	if (!root_cache->max_attr_size)
5674 5675 5676 5677 5678 5679
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5680
		ssize_t len;
5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5696 5697
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf) &&
			 !IS_ENABLED(CONFIG_SLUB_STATS))
5698 5699 5700 5701 5702 5703 5704 5705
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5706 5707 5708
		len = attr->show(root_cache, buf);
		if (len > 0)
			attr->store(s, buf, len);
5709 5710 5711 5712
	}

	if (buffer)
		free_page((unsigned long)buffer);
5713
#endif	/* CONFIG_MEMCG */
5714 5715
}

5716 5717 5718 5719 5720
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5721
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5722 5723 5724 5725 5726 5727
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5728
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5729 5730
};

5731
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5732

5733 5734
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5735
#ifdef CONFIG_MEMCG
5736
	if (!is_root_cache(s))
5737
		return s->memcg_params.root_cache->memcg_kset;
5738 5739 5740 5741
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5742 5743 5744
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5745 5746
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
5765 5766
	if (s->flags & SLAB_CACHE_DMA32)
		*p++ = 'D';
C
Christoph Lameter 已提交
5767 5768
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5769
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5770
		*p++ = 'F';
V
Vladimir Davydov 已提交
5771 5772
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5773 5774
	if (p != name + 1)
		*p++ = '-';
A
Alexey Dobriyan 已提交
5775
	p += sprintf(p, "%07u", s->size);
5776

C
Christoph Lameter 已提交
5777 5778 5779 5780
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792
static void sysfs_slab_remove_workfn(struct work_struct *work)
{
	struct kmem_cache *s =
		container_of(work, struct kmem_cache, kobj_remove_work);

	if (!s->kobj.state_in_sysfs)
		/*
		 * For a memcg cache, this may be called during
		 * deactivation and again on shutdown.  Remove only once.
		 * A cache is never shut down before deactivation is
		 * complete, so no need to worry about synchronization.
		 */
5793
		goto out;
5794 5795 5796 5797

#ifdef CONFIG_MEMCG
	kset_unregister(s->memcg_kset);
#endif
5798
out:
5799 5800 5801
	kobject_put(&s->kobj);
}

C
Christoph Lameter 已提交
5802 5803 5804 5805
static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5806
	struct kset *kset = cache_kset(s);
5807
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5808

5809 5810
	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);

5811 5812 5813 5814 5815
	if (!kset) {
		kobject_init(&s->kobj, &slab_ktype);
		return 0;
	}

5816 5817 5818 5819
	if (!unmergeable && disable_higher_order_debug &&
			(slub_debug & DEBUG_METADATA_FLAGS))
		unmergeable = 1;

C
Christoph Lameter 已提交
5820 5821 5822 5823 5824 5825
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5826
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5827 5828 5829 5830 5831 5832 5833 5834 5835
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5836
	s->kobj.kset = kset;
5837
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5838
	if (err)
5839
		goto out;
C
Christoph Lameter 已提交
5840 5841

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5842 5843
	if (err)
		goto out_del_kobj;
5844

5845
#ifdef CONFIG_MEMCG
5846
	if (is_root_cache(s) && memcg_sysfs_enabled) {
5847 5848
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5849 5850
			err = -ENOMEM;
			goto out_del_kobj;
5851 5852 5853 5854
		}
	}
#endif

C
Christoph Lameter 已提交
5855 5856 5857 5858
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5859 5860 5861 5862 5863 5864 5865
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5866 5867
}

5868
static void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5869
{
5870
	if (slab_state < FULL)
5871 5872 5873 5874 5875 5876
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5877 5878
	kobject_get(&s->kobj);
	schedule_work(&s->kobj_remove_work);
5879 5880
}

5881 5882 5883 5884 5885 5886
void sysfs_slab_unlink(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_del(&s->kobj);
}

5887 5888 5889 5890
void sysfs_slab_release(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5891 5892 5893 5894
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5895
 * available lest we lose that information.
C
Christoph Lameter 已提交
5896 5897 5898 5899 5900 5901 5902
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5903
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5904 5905 5906 5907 5908

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5909
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5910 5911 5912
		/*
		 * If we have a leftover link then remove it.
		 */
5913 5914
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5930
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5931 5932
	int err;

5933
	mutex_lock(&slab_mutex);
5934

5935
	slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
5936
	if (!slab_kset) {
5937
		mutex_unlock(&slab_mutex);
5938
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5939 5940 5941
		return -ENOSYS;
	}

5942
	slab_state = FULL;
5943

5944
	list_for_each_entry(s, &slab_caches, list) {
5945
		err = sysfs_slab_add(s);
5946
		if (err)
5947 5948
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5949
	}
C
Christoph Lameter 已提交
5950 5951 5952 5953 5954 5955

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5956
		if (err)
5957 5958
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5959 5960 5961
		kfree(al);
	}

5962
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5963 5964 5965 5966 5967
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5968
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5969 5970 5971 5972

/*
 * The /proc/slabinfo ABI
 */
Y
Yang Shi 已提交
5973
#ifdef CONFIG_SLUB_DEBUG
5974
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5975 5976
{
	unsigned long nr_slabs = 0;
5977 5978
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5979
	int node;
C
Christoph Lameter 已提交
5980
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5981

C
Christoph Lameter 已提交
5982
	for_each_kmem_cache_node(s, node, n) {
5983 5984
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5985
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5986 5987
	}

5988 5989 5990 5991 5992 5993
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5994 5995
}

5996
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5997 5998 5999
{
}

6000 6001
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
6002
{
6003
	return -EIO;
6004
}
Y
Yang Shi 已提交
6005
#endif /* CONFIG_SLUB_DEBUG */