slub.c 126.2 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
V
Vegard Nossum 已提交
23
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
36

37 38
#include <trace/events/kmem.h>

39 40
#include "internal.h"

C
Christoph Lameter 已提交
41 42
/*
 * Lock order:
43
 *   1. slab_mutex (Global Mutex)
44 45
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
46
 *
47
 *   slab_mutex
48
 *
49
 *   The role of the slab_mutex is to protect the list of all the slabs
50 51 52 53 54 55 56 57 58 59 60 61 62 63
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
84 85
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
86
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
87 88
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
89 90 91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
96 97 98 99 100 101 102 103 104 105 106 107
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111 112 113
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126 127 128 129 130 131 132 133 134
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
135 136 137 138 139 140 141 142 143 144 145
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

146 147 148
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

149 150 151 152
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
153
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
154

155 156 157
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
158
 * sort the partial list by the number of objects in use.
159 160 161
 */
#define MAX_PARTIAL 10

C
Christoph Lameter 已提交
162 163
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
164

165
/*
166 167 168
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
169
 */
170
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
171

C
Christoph Lameter 已提交
172 173 174 175
/*
 * Set of flags that will prevent slab merging
 */
#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
176 177
		SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
		SLAB_FAILSLAB)
C
Christoph Lameter 已提交
178 179

#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
V
Vegard Nossum 已提交
180
		SLAB_CACHE_DMA | SLAB_NOTRACK)
C
Christoph Lameter 已提交
181

182 183
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
184
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
185

C
Christoph Lameter 已提交
186
/* Internal SLUB flags */
C
Christoph Lameter 已提交
187
#define __OBJECT_POISON		0x80000000UL /* Poison object */
188
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
189 190 191 192 193

#ifdef CONFIG_SMP
static struct notifier_block slab_notifier;
#endif

194 195 196
/*
 * Tracking user of a slab.
 */
197
#define TRACK_ADDRS_COUNT 16
198
struct track {
199
	unsigned long addr;	/* Called from address */
200 201 202
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
203 204 205 206 207 208 209
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

210
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
211 212
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
213
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
214
#else
215 216 217
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
218
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
219 220
#endif

221
static inline void stat(const struct kmem_cache *s, enum stat_item si)
222 223
{
#ifdef CONFIG_SLUB_STATS
224 225 226 227 228
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
229 230 231
#endif
}

C
Christoph Lameter 已提交
232 233 234 235
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

C
Christoph Lameter 已提交
236
/* Verify that a pointer has an address that is valid within a slab page */
237 238 239 240 241
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, const void *object)
{
	void *base;

242
	if (!object)
243 244
		return 1;

245
	base = page_address(page);
246
	if (object < base || object >= base + page->objects * s->size ||
247 248 249 250 251 252 253
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

254 255 256 257 258
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

259 260 261 262 263
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

264 265 266 267 268 269 270 271 272 273 274 275
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

#ifdef CONFIG_DEBUG_PAGEALLOC
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
#else
	p = get_freepointer(s, object);
#endif
	return p;
}

276 277 278 279 280 281
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
282 283
#define for_each_object(__p, __s, __addr, __objects) \
	for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
284 285
			__p += (__s)->size)

286 287 288 289
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
	for (__p = (__addr), __idx = 1; __idx <= __objects;\
			__p += (__s)->size, __idx++)

290 291 292 293 294 295
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

296 297 298 299 300 301 302 303
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
304
		return s->object_size;
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

320 321 322 323 324
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

325
static inline struct kmem_cache_order_objects oo_make(int order,
326
		unsigned long size, int reserved)
327 328
{
	struct kmem_cache_order_objects x = {
329
		(order << OO_SHIFT) + order_objects(order, size, reserved)
330 331 332 333 334 335 336
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
337
	return x.x >> OO_SHIFT;
338 339 340 341
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
342
	return x.x & OO_MASK;
343 344
}

345 346 347 348 349 350 351 352 353 354 355 356 357
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
	__bit_spin_unlock(PG_locked, &page->flags);
}

358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
	 * as page->_count.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_count, so
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

373 374 375 376 377 378 379
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
380 381
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382
	if (s->flags & __CMPXCHG_DOUBLE) {
383
		if (cmpxchg_double(&page->freelist, &page->counters,
384 385 386
				   freelist_old, counters_old,
				   freelist_new, counters_new))
			return 1;
387 388 389 390
	} else
#endif
	{
		slab_lock(page);
391 392
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
393
			page->freelist = freelist_new;
394
			set_page_slub_counters(page, counters_new);
395 396 397 398 399 400 401 402 403 404
			slab_unlock(page);
			return 1;
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
405
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
406 407 408 409 410
#endif

	return 0;
}

411 412 413 414 415
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
416 417
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
418
	if (s->flags & __CMPXCHG_DOUBLE) {
419
		if (cmpxchg_double(&page->freelist, &page->counters,
420 421 422
				   freelist_old, counters_old,
				   freelist_new, counters_new))
			return 1;
423 424 425
	} else
#endif
	{
426 427 428
		unsigned long flags;

		local_irq_save(flags);
429
		slab_lock(page);
430 431
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
432
			page->freelist = freelist_new;
433
			set_page_slub_counters(page, counters_new);
434
			slab_unlock(page);
435
			local_irq_restore(flags);
436 437
			return 1;
		}
438
		slab_unlock(page);
439
		local_irq_restore(flags);
440 441 442 443 444 445
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
446
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
447 448 449 450 451
#endif

	return 0;
}

C
Christoph Lameter 已提交
452
#ifdef CONFIG_SLUB_DEBUG
453 454 455
/*
 * Determine a map of object in use on a page.
 *
456
 * Node listlock must be held to guarantee that the page does
457 458 459 460 461 462 463 464 465 466 467
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

C
Christoph Lameter 已提交
468 469 470
/*
 * Debug settings:
 */
471 472 473
#ifdef CONFIG_SLUB_DEBUG_ON
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
474
static int slub_debug;
475
#endif
C
Christoph Lameter 已提交
476 477

static char *slub_debug_slabs;
478
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
479

C
Christoph Lameter 已提交
480 481 482 483 484
/*
 * Object debugging
 */
static void print_section(char *text, u8 *addr, unsigned int length)
{
485 486
	print_hex_dump(KERN_ERR, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
			length, 1);
C
Christoph Lameter 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
503
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
504
{
A
Akinobu Mita 已提交
505
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
506 507

	if (addr) {
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
		save_stack_trace(&trace);

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
526 527
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
528
		p->pid = current->pid;
C
Christoph Lameter 已提交
529 530 531 532 533 534 535
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
536 537 538
	if (!(s->flags & SLAB_STORE_USER))
		return;

539 540
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
541 542 543 544 545 546 547
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

548 549
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
550 551 552 553 554
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
555
				pr_err("\t%pS\n", (void *)t->addrs[i]);
556 557 558 559
			else
				break;
	}
#endif
560 561 562 563 564 565 566 567 568 569 570 571 572
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
573
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
574
	       page, page->objects, page->inuse, page->freelist, page->flags);
575 576 577 578 579

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
580
	struct va_format vaf;
581 582 583
	va_list args;

	va_start(args, fmt);
584 585
	vaf.fmt = fmt;
	vaf.va = &args;
586
	pr_err("=============================================================================\n");
587
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
588
	pr_err("-----------------------------------------------------------------------------\n\n");
589

590
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
591
	va_end(args);
C
Christoph Lameter 已提交
592 593
}

594 595
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
596
	struct va_format vaf;
597 598 599
	va_list args;

	va_start(args, fmt);
600 601 602
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
603 604 605 606
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
607 608
{
	unsigned int off;	/* Offset of last byte */
609
	u8 *addr = page_address(page);
610 611 612 613 614

	print_tracking(s, p);

	print_page_info(page);

615 616
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
617 618

	if (p > addr + 16)
619
		print_section("Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
620

621
	print_section("Object ", p, min_t(unsigned long, s->object_size,
622
				PAGE_SIZE));
C
Christoph Lameter 已提交
623
	if (s->flags & SLAB_RED_ZONE)
624 625
		print_section("Redzone ", p + s->object_size,
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
626 627 628 629 630 631

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

632
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
633 634 635 636
		off += 2 * sizeof(struct track);

	if (off != s->size)
		/* Beginning of the filler is the free pointer */
637
		print_section("Padding ", p + off, s->size - off);
638 639

	dump_stack();
C
Christoph Lameter 已提交
640 641 642 643 644
}

static void object_err(struct kmem_cache *s, struct page *page,
			u8 *object, char *reason)
{
645
	slab_bug(s, "%s", reason);
646
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
647 648
}

649 650
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
651 652 653 654
{
	va_list args;
	char buf[100];

655 656
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
657
	va_end(args);
658
	slab_bug(s, "%s", buf);
659
	print_page_info(page);
C
Christoph Lameter 已提交
660 661 662
	dump_stack();
}

663
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
664 665 666 667
{
	u8 *p = object;

	if (s->flags & __OBJECT_POISON) {
668 669
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
670 671 672
	}

	if (s->flags & SLAB_RED_ZONE)
673
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
674 675
}

676 677 678 679 680 681 682 683 684
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
685
			u8 *start, unsigned int value, unsigned int bytes)
686 687 688 689
{
	u8 *fault;
	u8 *end;

690
	fault = memchr_inv(start, value, bytes);
691 692 693 694 695 696 697 698
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
699
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
700 701 702 703 704
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
705 706 707 708 709 710 711 712 713
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
714
 *
C
Christoph Lameter 已提交
715 716 717
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
718
 * object + s->object_size
C
Christoph Lameter 已提交
719
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
720
 * 	Padding is extended by another word if Redzoning is enabled and
721
 * 	object_size == inuse.
C
Christoph Lameter 已提交
722
 *
C
Christoph Lameter 已提交
723 724 725 726
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
727 728
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
729 730
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
731
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
732
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
733 734 735
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
736 737
 *
 * object + s->size
C
Christoph Lameter 已提交
738
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
739
 *
740
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
741
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

	if (s->size == off)
		return 1;

760 761
	return check_bytes_and_report(s, page, p, "Object padding",
				p + off, POISON_INUSE, s->size - off);
C
Christoph Lameter 已提交
762 763
}

764
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
765 766
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
767 768 769 770 771
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
772 773 774 775

	if (!(s->flags & SLAB_POISON))
		return 1;

776
	start = page_address(page);
777
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
778 779
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
780 781 782
	if (!remainder)
		return 1;

783
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
784 785 786 787 788 789
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
790
	print_section("Padding ", end - remainder, remainder);
791

E
Eric Dumazet 已提交
792
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
793
	return 0;
C
Christoph Lameter 已提交
794 795 796
}

static int check_object(struct kmem_cache *s, struct page *page,
797
					void *object, u8 val)
C
Christoph Lameter 已提交
798 799
{
	u8 *p = object;
800
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
801 802

	if (s->flags & SLAB_RED_ZONE) {
803
		if (!check_bytes_and_report(s, page, object, "Redzone",
804
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
805 806
			return 0;
	} else {
807
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
808
			check_bytes_and_report(s, page, p, "Alignment padding",
809 810
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
811
		}
C
Christoph Lameter 已提交
812 813 814
	}

	if (s->flags & SLAB_POISON) {
815
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
816
			(!check_bytes_and_report(s, page, p, "Poison", p,
817
					POISON_FREE, s->object_size - 1) ||
818
			 !check_bytes_and_report(s, page, p, "Poison",
819
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
820 821 822 823 824 825 826
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

827
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
828 829 830 831 832 833 834 835 836 837
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
838
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
839
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
840
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
841
		 */
842
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
843 844 845 846 847 848 849
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
850 851
	int maxobj;

C
Christoph Lameter 已提交
852 853 854
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
855
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
856 857
		return 0;
	}
858

859
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
860 861 862 863 864 865
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
		return 0;
	}
	if (page->inuse > page->objects) {
866
		slab_err(s, page, "inuse %u > max %u",
867
			s->name, page->inuse, page->objects);
C
Christoph Lameter 已提交
868 869 870 871 872 873 874 875
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
876 877
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
878 879 880 881
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
882
	void *fp;
C
Christoph Lameter 已提交
883
	void *object = NULL;
884
	unsigned long max_objects;
C
Christoph Lameter 已提交
885

886
	fp = page->freelist;
887
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
888 889 890 891 892 893
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
894
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
895
			} else {
896
				slab_err(s, page, "Freepointer corrupt");
897
				page->freelist = NULL;
898
				page->inuse = page->objects;
899
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
900 901 902 903 904 905 906 907 908
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

909
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
910 911
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
912 913 914 915 916 917 918

	if (page->objects != max_objects) {
		slab_err(s, page, "Wrong number of objects. Found %d but "
			"should be %d", page->objects, max_objects);
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
919
	if (page->inuse != page->objects - nr) {
920
		slab_err(s, page, "Wrong object count. Counter is %d but "
921 922
			"counted were %d", page->inuse, page->objects - nr);
		page->inuse = page->objects - nr;
923
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
924 925 926 927
	}
	return search == NULL;
}

928 929
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
930 931
{
	if (s->flags & SLAB_TRACE) {
932
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
933 934 935 936 937 938
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
939 940
			print_section("Object ", (void *)object,
					s->object_size);
C
Christoph Lameter 已提交
941 942 943 944 945

		dump_stack();
	}
}

946
/*
C
Christoph Lameter 已提交
947
 * Tracking of fully allocated slabs for debugging purposes.
948
 */
949 950
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
951
{
952 953 954
	if (!(s->flags & SLAB_STORE_USER))
		return;

955
	lockdep_assert_held(&n->list_lock);
956 957 958
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
959
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
960 961 962 963
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

964
	lockdep_assert_held(&n->list_lock);
965 966 967
	list_del(&page->lru);
}

968 969 970 971 972 973 974 975
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

976 977 978 979 980
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

981
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
982 983 984 985 986 987 988 989 990
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
991
	if (likely(n)) {
992
		atomic_long_inc(&n->nr_slabs);
993 994
		atomic_long_add(objects, &n->total_objects);
	}
995
}
996
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
997 998 999 1000
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1001
	atomic_long_sub(objects, &n->total_objects);
1002 1003 1004
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1005 1006 1007 1008 1009 1010
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1011
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1012 1013 1014
	init_tracking(s, object);
}

1015 1016
static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
1017
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1018 1019 1020 1021 1022 1023
{
	if (!check_slab(s, page))
		goto bad;

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1024
		goto bad;
C
Christoph Lameter 已提交
1025 1026
	}

1027
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
C
Christoph Lameter 已提交
1028 1029
		goto bad;

C
Christoph Lameter 已提交
1030 1031 1032 1033
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1034
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1035
	return 1;
C
Christoph Lameter 已提交
1036

C
Christoph Lameter 已提交
1037 1038 1039 1040 1041
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1042
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1043
		 */
1044
		slab_fix(s, "Marking all objects used");
1045
		page->inuse = page->objects;
1046
		page->freelist = NULL;
C
Christoph Lameter 已提交
1047 1048 1049 1050
	}
	return 0;
}

1051 1052 1053
static noinline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags)
C
Christoph Lameter 已提交
1054
{
1055
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1056

1057
	spin_lock_irqsave(&n->list_lock, *flags);
1058 1059
	slab_lock(page);

C
Christoph Lameter 已提交
1060 1061 1062 1063
	if (!check_slab(s, page))
		goto fail;

	if (!check_valid_pointer(s, page, object)) {
1064
		slab_err(s, page, "Invalid object pointer 0x%p", object);
C
Christoph Lameter 已提交
1065 1066 1067 1068
		goto fail;
	}

	if (on_freelist(s, page, object)) {
1069
		object_err(s, page, object, "Object already free");
C
Christoph Lameter 已提交
1070 1071 1072
		goto fail;
	}

1073
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1074
		goto out;
C
Christoph Lameter 已提交
1075

1076
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1077
		if (!PageSlab(page)) {
1078 1079
			slab_err(s, page, "Attempt to free object(0x%p) "
				"outside of slab", object);
1080
		} else if (!page->slab_cache) {
1081 1082
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1083
			dump_stack();
P
Pekka Enberg 已提交
1084
		} else
1085 1086
			object_err(s, page, object,
					"page slab pointer corrupt.");
C
Christoph Lameter 已提交
1087 1088
		goto fail;
	}
C
Christoph Lameter 已提交
1089 1090 1091 1092

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1093
	init_object(s, object, SLUB_RED_INACTIVE);
1094
out:
1095
	slab_unlock(page);
1096 1097 1098 1099 1100
	/*
	 * Keep node_lock to preserve integrity
	 * until the object is actually freed
	 */
	return n;
C
Christoph Lameter 已提交
1101

C
Christoph Lameter 已提交
1102
fail:
1103 1104
	slab_unlock(page);
	spin_unlock_irqrestore(&n->list_lock, *flags);
1105
	slab_fix(s, "Object at 0x%p not freed", object);
1106
	return NULL;
C
Christoph Lameter 已提交
1107 1108
}

C
Christoph Lameter 已提交
1109 1110
static int __init setup_slub_debug(char *str)
{
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

1125 1126 1127 1128 1129 1130 1131 1132 1133
	if (tolower(*str) == 'o') {
		/*
		 * Avoid enabling debugging on caches if its minimum order
		 * would increase as a result.
		 */
		disable_higher_order_debug = 1;
		goto out;
	}

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1144
	for (; *str && *str != ','; str++) {
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		switch (tolower(*str)) {
		case 'f':
			slub_debug |= SLAB_DEBUG_FREE;
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1161 1162 1163
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1164
		default:
1165 1166
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1167
		}
C
Christoph Lameter 已提交
1168 1169
	}

1170
check_slabs:
C
Christoph Lameter 已提交
1171 1172
	if (*str == ',')
		slub_debug_slabs = str + 1;
1173
out:
C
Christoph Lameter 已提交
1174 1175 1176 1177 1178
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1179
static unsigned long kmem_cache_flags(unsigned long object_size,
1180
	unsigned long flags, const char *name,
1181
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1182 1183
{
	/*
1184
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1185
	 */
1186 1187
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1188
		flags |= slub_debug;
1189 1190

	return flags;
C
Christoph Lameter 已提交
1191 1192
}
#else
C
Christoph Lameter 已提交
1193 1194
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1195

C
Christoph Lameter 已提交
1196
static inline int alloc_debug_processing(struct kmem_cache *s,
1197
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1198

1199 1200 1201
static inline struct kmem_cache_node *free_debug_processing(
	struct kmem_cache *s, struct page *page, void *object,
	unsigned long addr, unsigned long *flags) { return NULL; }
C
Christoph Lameter 已提交
1202 1203 1204 1205

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1206
			void *object, u8 val) { return 1; }
1207 1208
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1209 1210
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1211
static inline unsigned long kmem_cache_flags(unsigned long object_size,
1212
	unsigned long flags, const char *name,
1213
	void (*ctor)(void *))
1214 1215 1216
{
	return flags;
}
C
Christoph Lameter 已提交
1217
#define slub_debug 0
1218

1219 1220
#define disable_higher_order_debug 0

1221 1222
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1223 1224
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1225 1226 1227 1228
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1229

1230 1231 1232 1233 1234 1235
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
}

1246
static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1247 1248 1249 1250
{
	flags &= gfp_allowed_mask;
	lockdep_trace_alloc(flags);
	might_sleep_if(flags & __GFP_WAIT);
1251

1252 1253 1254 1255 1256
	return should_failslab(s->object_size, flags, s->flags);
}

static inline void slab_post_alloc_hook(struct kmem_cache *s,
					gfp_t flags, void *object)
1257
{
1258 1259 1260
	flags &= gfp_allowed_mask;
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
	kmemleak_alloc_recursive(object, s->object_size, 1, s->flags, flags);
1261
}
1262

1263 1264 1265
static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
1266

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
}
1285

C
Christoph Lameter 已提交
1286 1287 1288
/*
 * Slab allocation and freeing
 */
1289 1290
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1291
{
1292
	struct page *page;
1293 1294
	int order = oo_order(oo);

1295 1296
	flags |= __GFP_NOTRACK;

1297 1298 1299
	if (memcg_charge_slab(s, flags, order))
		return NULL;

1300
	if (node == NUMA_NO_NODE)
1301
		page = alloc_pages(flags, order);
1302
	else
1303 1304 1305 1306 1307 1308
		page = alloc_pages_exact_node(node, flags, order);

	if (!page)
		memcg_uncharge_slab(s, order);

	return page;
1309 1310
}

C
Christoph Lameter 已提交
1311 1312
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1313
	struct page *page;
1314
	struct kmem_cache_order_objects oo = s->oo;
1315
	gfp_t alloc_gfp;
C
Christoph Lameter 已提交
1316

1317 1318 1319 1320 1321
	flags &= gfp_allowed_mask;

	if (flags & __GFP_WAIT)
		local_irq_enable();

1322
	flags |= s->allocflags;
1323

1324 1325 1326 1327 1328 1329
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;

1330
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1331 1332
	if (unlikely(!page)) {
		oo = s->min;
1333
		alloc_gfp = flags;
1334 1335 1336 1337
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1338
		page = alloc_slab_page(s, alloc_gfp, node, oo);
C
Christoph Lameter 已提交
1339

1340 1341
		if (page)
			stat(s, ORDER_FALLBACK);
1342
	}
V
Vegard Nossum 已提交
1343

1344
	if (kmemcheck_enabled && page
1345
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1346 1347
		int pages = 1 << oo_order(oo);

1348
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1349 1350 1351 1352 1353 1354 1355 1356 1357

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1358 1359
	}

1360 1361 1362 1363 1364
	if (flags & __GFP_WAIT)
		local_irq_disable();
	if (!page)
		return NULL;

1365
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1366 1367 1368
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1369
		1 << oo_order(oo));
C
Christoph Lameter 已提交
1370 1371 1372 1373 1374 1375 1376

	return page;
}

static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
C
Christoph Lameter 已提交
1377
	setup_object_debug(s, page, object);
1378
	if (unlikely(s->ctor))
1379
		s->ctor(object);
C
Christoph Lameter 已提交
1380 1381 1382 1383 1384 1385 1386
}

static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	struct page *page;
	void *start;
	void *p;
G
Glauber Costa 已提交
1387
	int order;
1388
	int idx;
C
Christoph Lameter 已提交
1389

C
Christoph Lameter 已提交
1390
	BUG_ON(flags & GFP_SLAB_BUG_MASK);
C
Christoph Lameter 已提交
1391

C
Christoph Lameter 已提交
1392 1393
	page = allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
C
Christoph Lameter 已提交
1394 1395 1396
	if (!page)
		goto out;

G
Glauber Costa 已提交
1397
	order = compound_order(page);
1398
	inc_slabs_node(s, page_to_nid(page), page->objects);
1399
	page->slab_cache = s;
1400
	__SetPageSlab(page);
1401 1402
	if (page->pfmemalloc)
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1403 1404 1405 1406

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1407
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1408

1409 1410 1411 1412 1413 1414
	for_each_object_idx(p, idx, s, start, page->objects) {
		setup_object(s, page, p);
		if (likely(idx < page->objects))
			set_freepointer(s, p, p + s->size);
		else
			set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1415 1416 1417
	}

	page->freelist = start;
1418
	page->inuse = page->objects;
1419
	page->frozen = 1;
C
Christoph Lameter 已提交
1420 1421 1422 1423 1424 1425
out:
	return page;
}

static void __free_slab(struct kmem_cache *s, struct page *page)
{
1426 1427
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1428

1429
	if (kmem_cache_debug(s)) {
C
Christoph Lameter 已提交
1430 1431 1432
		void *p;

		slab_pad_check(s, page);
1433 1434
		for_each_object(p, s, page_address(page),
						page->objects)
1435
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1436 1437
	}

1438
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1439

C
Christoph Lameter 已提交
1440 1441 1442
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1443
		-pages);
C
Christoph Lameter 已提交
1444

1445
	__ClearPageSlabPfmemalloc(page);
1446
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1447

1448
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1449 1450
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1451 1452
	__free_pages(page, order);
	memcg_uncharge_slab(s, order);
C
Christoph Lameter 已提交
1453 1454
}

1455 1456 1457
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1458 1459 1460 1461
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1462 1463 1464 1465 1466
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1467
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1468 1469 1470 1471 1472
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
			head = (void *)&page->lru;
		}
C
Christoph Lameter 已提交
1487 1488 1489 1490 1491 1492 1493 1494

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1495
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1496 1497 1498 1499
	free_slab(s, page);
}

/*
1500
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1501
 */
1502 1503
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1504
{
C
Christoph Lameter 已提交
1505
	n->nr_partial++;
1506
	if (tail == DEACTIVATE_TO_TAIL)
1507 1508 1509
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1510 1511
}

1512 1513
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1514
{
P
Peter Zijlstra 已提交
1515
	lockdep_assert_held(&n->list_lock);
1516 1517
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1518

1519 1520 1521
static inline void
__remove_partial(struct kmem_cache_node *n, struct page *page)
{
1522 1523 1524 1525
	list_del(&page->lru);
	n->nr_partial--;
}

1526 1527 1528 1529 1530 1531 1532
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
	__remove_partial(n, page);
}

C
Christoph Lameter 已提交
1533
/*
1534 1535
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1536
 *
1537
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1538
 */
1539
static inline void *acquire_slab(struct kmem_cache *s,
1540
		struct kmem_cache_node *n, struct page *page,
1541
		int mode, int *objects)
C
Christoph Lameter 已提交
1542
{
1543 1544 1545 1546
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1547 1548
	lockdep_assert_held(&n->list_lock);

1549 1550 1551 1552 1553
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1554 1555 1556
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1557
	*objects = new.objects - new.inuse;
1558
	if (mode) {
1559
		new.inuse = page->objects;
1560 1561 1562 1563
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1564

1565
	VM_BUG_ON(new.frozen);
1566
	new.frozen = 1;
1567

1568
	if (!__cmpxchg_double_slab(s, page,
1569
			freelist, counters,
1570
			new.freelist, new.counters,
1571 1572
			"acquire_slab"))
		return NULL;
1573 1574

	remove_partial(n, page);
1575
	WARN_ON(!freelist);
1576
	return freelist;
C
Christoph Lameter 已提交
1577 1578
}

1579
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1580
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1581

C
Christoph Lameter 已提交
1582
/*
C
Christoph Lameter 已提交
1583
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1584
 */
1585 1586
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1587
{
1588 1589
	struct page *page, *page2;
	void *object = NULL;
1590 1591
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1592 1593 1594 1595

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1596 1597
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1598 1599 1600 1601 1602
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1603
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1604
		void *t;
1605

1606 1607 1608
		if (!pfmemalloc_match(page, flags))
			continue;

1609
		t = acquire_slab(s, n, page, object == NULL, &objects);
1610 1611 1612
		if (!t)
			break;

1613
		available += objects;
1614
		if (!object) {
1615 1616 1617 1618
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1619
			put_cpu_partial(s, page, 0);
1620
			stat(s, CPU_PARTIAL_NODE);
1621
		}
1622 1623
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1624 1625
			break;

1626
	}
C
Christoph Lameter 已提交
1627
	spin_unlock(&n->list_lock);
1628
	return object;
C
Christoph Lameter 已提交
1629 1630 1631
}

/*
C
Christoph Lameter 已提交
1632
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1633
 */
1634
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1635
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1636 1637 1638
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1639
	struct zoneref *z;
1640 1641
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1642
	void *object;
1643
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1644 1645

	/*
C
Christoph Lameter 已提交
1646 1647 1648 1649
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1650
	 *
C
Christoph Lameter 已提交
1651 1652 1653 1654
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1655
	 *
C
Christoph Lameter 已提交
1656
	 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
C
Christoph Lameter 已提交
1657 1658 1659 1660 1661
	 * defrag_ratio = 1000) then every (well almost) allocation will
	 * first attempt to defrag slab caches on other nodes. This means
	 * scanning over all nodes to look for partial slabs which may be
	 * expensive if we do it every time we are trying to find a slab
	 * with available objects.
C
Christoph Lameter 已提交
1662
	 */
1663 1664
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1665 1666
		return NULL;

1667
	do {
1668
		cpuset_mems_cookie = read_mems_allowed_begin();
1669
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1670 1671 1672 1673 1674 1675 1676
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

			if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
					n->nr_partial > s->min_partial) {
1677
				object = get_partial_node(s, n, c, flags);
1678 1679
				if (object) {
					/*
1680 1681 1682 1683 1684
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1685 1686 1687
					 */
					return object;
				}
1688
			}
C
Christoph Lameter 已提交
1689
		}
1690
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1691 1692 1693 1694 1695 1696 1697
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1698
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1699
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1700
{
1701
	void *object;
1702
	int searchnode = (node == NUMA_NO_NODE) ? numa_mem_id() : node;
C
Christoph Lameter 已提交
1703

1704
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1705 1706
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1707

1708
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1709 1710
}

1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1752
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1753 1754 1755

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1756
		pr_warn("due to cpu change %d -> %d\n",
1757 1758 1759 1760
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1761
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1762 1763
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1764
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1765 1766
			actual_tid, tid, next_tid(tid));
#endif
1767
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1768 1769
}

1770
static void init_kmem_cache_cpus(struct kmem_cache *s)
1771 1772 1773 1774 1775 1776
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1777

C
Christoph Lameter 已提交
1778 1779 1780
/*
 * Remove the cpu slab
 */
1781 1782
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1783
{
1784 1785 1786 1787 1788
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
1789
	int tail = DEACTIVATE_TO_HEAD;
1790 1791 1792 1793
	struct page new;
	struct page old;

	if (page->freelist) {
1794
		stat(s, DEACTIVATE_REMOTE_FREES);
1795
		tail = DEACTIVATE_TO_TAIL;
1796 1797
	}

1798
	/*
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
1816
			VM_BUG_ON(!new.frozen);
1817

1818
		} while (!__cmpxchg_double_slab(s, page,
1819 1820 1821 1822 1823 1824 1825
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

1826
	/*
1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
1839
	 */
1840
redo:
1841

1842 1843
	old.freelist = page->freelist;
	old.counters = page->counters;
1844
	VM_BUG_ON(!old.frozen);
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

1857
	if (!new.inuse && n->nr_partial >= s->min_partial)
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
1890

P
Peter Zijlstra 已提交
1891
			remove_full(s, n, page);
1892 1893 1894 1895

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
1896
			stat(s, tail);
1897 1898

		} else if (m == M_FULL) {
1899

1900 1901 1902 1903 1904 1905 1906
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
1907
	if (!__cmpxchg_double_slab(s, page,
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
1920
	}
C
Christoph Lameter 已提交
1921 1922
}

1923 1924 1925
/*
 * Unfreeze all the cpu partial slabs.
 *
1926 1927 1928
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
1929
 */
1930 1931
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
1932
{
1933
#ifdef CONFIG_SLUB_CPU_PARTIAL
1934
	struct kmem_cache_node *n = NULL, *n2 = NULL;
1935
	struct page *page, *discard_page = NULL;
1936 1937 1938 1939 1940 1941

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
1942 1943 1944 1945 1946 1947 1948 1949 1950

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
1951 1952 1953 1954 1955

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
1956
			VM_BUG_ON(!old.frozen);
1957 1958 1959 1960 1961 1962

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

1963
		} while (!__cmpxchg_double_slab(s, page,
1964 1965 1966 1967
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

1968
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
1969 1970
			page->next = discard_page;
			discard_page = page;
1971 1972 1973
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
1974 1975 1976 1977 1978
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
1979 1980 1981 1982 1983 1984 1985 1986 1987

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
1988
#endif
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2000
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2001
{
2002
#ifdef CONFIG_SLUB_CPU_PARTIAL
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
	struct page *oldpage;
	int pages;
	int pobjects;

	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2022
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2023
				local_irq_restore(flags);
2024
				oldpage = NULL;
2025 2026
				pobjects = 0;
				pages = 0;
2027
				stat(s, CPU_PARTIAL_DRAIN);
2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2038 2039
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2040
#endif
2041 2042
}

2043
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2044
{
2045
	stat(s, CPUSLAB_FLUSH);
2046 2047 2048 2049 2050
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2051 2052 2053 2054
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2055
 *
C
Christoph Lameter 已提交
2056 2057
 * Called from IPI handler with interrupts disabled.
 */
2058
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2059
{
2060
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2061

2062 2063 2064 2065
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2066
		unfreeze_partials(s, c);
2067
	}
C
Christoph Lameter 已提交
2068 2069 2070 2071 2072 2073
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2074
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2075 2076
}

2077 2078 2079 2080 2081
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2082
	return c->page || c->partial;
2083 2084
}

C
Christoph Lameter 已提交
2085 2086
static void flush_all(struct kmem_cache *s)
{
2087
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2088 2089
}

2090 2091 2092 2093
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2094
static inline int node_match(struct page *page, int node)
2095 2096
{
#ifdef CONFIG_NUMA
2097
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2098 2099 2100 2101 2102
		return 0;
#endif
	return 1;
}

2103
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2104 2105 2106 2107 2108
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2109 2110 2111 2112 2113 2114 2115
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2129
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2130

P
Pekka Enberg 已提交
2131 2132 2133
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2134 2135 2136
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2137
	int node;
C
Christoph Lameter 已提交
2138
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2139

2140 2141 2142
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2143
	pr_warn("SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
P
Pekka Enberg 已提交
2144
		nid, gfpflags);
2145 2146 2147
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2148

2149
	if (oo_order(s->min) > get_order(s->object_size))
2150 2151
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2152

C
Christoph Lameter 已提交
2153
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2154 2155 2156 2157
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2158 2159 2160
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2161

2162
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2163 2164
			node, nr_slabs, nr_objs, nr_free);
	}
2165
#endif
P
Pekka Enberg 已提交
2166 2167
}

2168 2169 2170
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2171
	void *freelist;
2172 2173
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2174

2175
	freelist = get_partial(s, flags, node, c);
2176

2177 2178 2179 2180
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2181
	if (page) {
2182
		c = raw_cpu_ptr(s->cpu_slab);
2183 2184 2185 2186 2187 2188 2189
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2190
		freelist = page->freelist;
2191 2192 2193 2194 2195 2196
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2197
		freelist = NULL;
2198

2199
	return freelist;
2200 2201
}

2202 2203 2204 2205 2206 2207 2208 2209
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2210
/*
2211 2212
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2213 2214 2215 2216
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2217 2218
 *
 * This function must be called with interrupt disabled.
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2229

2230
		new.counters = counters;
2231
		VM_BUG_ON(!new.frozen);
2232 2233 2234 2235

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2236
	} while (!__cmpxchg_double_slab(s, page,
2237 2238 2239 2240 2241 2242 2243
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2244
/*
2245 2246 2247 2248 2249 2250
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2251
 *
2252 2253 2254
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2255
 *
2256
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2257 2258
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
C
Christoph Lameter 已提交
2259
 */
2260 2261
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2262
{
2263
	void *freelist;
2264
	struct page *page;
2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
C
Christoph Lameter 已提交
2276

2277 2278
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2279
		goto new_slab;
2280
redo:
2281

2282
	if (unlikely(!node_match(page, node))) {
2283
		stat(s, ALLOC_NODE_MISMATCH);
2284
		deactivate_slab(s, page, c->freelist);
2285 2286
		c->page = NULL;
		c->freelist = NULL;
2287 2288
		goto new_slab;
	}
C
Christoph Lameter 已提交
2289

2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2302
	/* must check again c->freelist in case of cpu migration or IRQ */
2303 2304
	freelist = c->freelist;
	if (freelist)
2305
		goto load_freelist;
2306

2307
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2308

2309
	if (!freelist) {
2310 2311
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2312
		goto new_slab;
2313
	}
C
Christoph Lameter 已提交
2314

2315
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2316

2317
load_freelist:
2318 2319 2320 2321 2322
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2323
	VM_BUG_ON(!c->page->frozen);
2324
	c->freelist = get_freepointer(s, freelist);
2325 2326
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
2327
	return freelist;
C
Christoph Lameter 已提交
2328 2329

new_slab:
2330

2331
	if (c->partial) {
2332 2333
		page = c->page = c->partial;
		c->partial = page->next;
2334 2335 2336
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2337 2338
	}

2339
	freelist = new_slab_objects(s, gfpflags, node, &c);
2340

2341
	if (unlikely(!freelist)) {
2342
		slab_out_of_memory(s, gfpflags, node);
2343 2344
		local_irq_restore(flags);
		return NULL;
C
Christoph Lameter 已提交
2345
	}
2346

2347
	page = c->page;
2348
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2349
		goto load_freelist;
2350

2351
	/* Only entered in the debug case */
2352 2353
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2354
		goto new_slab;	/* Slab failed checks. Next slab needed */
2355

2356
	deactivate_slab(s, page, get_freepointer(s, freelist));
2357 2358
	c->page = NULL;
	c->freelist = NULL;
2359
	local_irq_restore(flags);
2360
	return freelist;
2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372
}

/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2373
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2374
		gfp_t gfpflags, int node, unsigned long addr)
2375 2376
{
	void **object;
2377
	struct kmem_cache_cpu *c;
2378
	struct page *page;
2379
	unsigned long tid;
2380

2381
	if (slab_pre_alloc_hook(s, gfpflags))
A
Akinobu Mita 已提交
2382
		return NULL;
2383

2384
	s = memcg_kmem_get_cache(s, gfpflags);
2385 2386 2387 2388 2389 2390
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2391 2392 2393 2394 2395
	 *
	 * Preemption is disabled for the retrieval of the tid because that
	 * must occur from the current processor. We cannot allow rescheduling
	 * on a different processor between the determination of the pointer
	 * and the retrieval of the tid.
2396
	 */
2397
	preempt_disable();
2398
	c = this_cpu_ptr(s->cpu_slab);
2399 2400 2401 2402 2403 2404 2405 2406

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
2407
	preempt_enable();
2408

2409
	object = c->freelist;
2410
	page = c->page;
D
Dave Hansen 已提交
2411
	if (unlikely(!object || !node_match(page, node))) {
2412
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2413 2414
		stat(s, ALLOC_SLOWPATH);
	} else {
2415 2416
		void *next_object = get_freepointer_safe(s, object);

2417
		/*
L
Lucas De Marchi 已提交
2418
		 * The cmpxchg will only match if there was no additional
2419 2420
		 * operation and if we are on the right processor.
		 *
2421 2422
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2423 2424 2425 2426
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2427 2428 2429
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2430
		 */
2431
		if (unlikely(!this_cpu_cmpxchg_double(
2432 2433
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2434
				next_object, next_tid(tid)))) {
2435 2436 2437 2438

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2439
		prefetch_freepointer(s, next_object);
2440
		stat(s, ALLOC_FASTPATH);
2441
	}
2442

2443
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2444
		memset(object, 0, s->object_size);
2445

2446
	slab_post_alloc_hook(s, gfpflags, object);
V
Vegard Nossum 已提交
2447

2448
	return object;
C
Christoph Lameter 已提交
2449 2450
}

2451 2452 2453 2454 2455 2456
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2457 2458
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2459
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2460

2461 2462
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2463 2464

	return ret;
C
Christoph Lameter 已提交
2465 2466 2467
}
EXPORT_SYMBOL(kmem_cache_alloc);

2468
#ifdef CONFIG_TRACING
2469 2470
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2471
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2472 2473 2474 2475
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2476 2477
#endif

C
Christoph Lameter 已提交
2478 2479 2480
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2481
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2482

2483
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2484
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2485 2486

	return ret;
C
Christoph Lameter 已提交
2487 2488 2489
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2490
#ifdef CONFIG_TRACING
2491
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2492
				    gfp_t gfpflags,
2493
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2494
{
2495
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2496 2497 2498 2499

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2500
}
2501
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2502
#endif
2503
#endif
E
Eduard - Gabriel Munteanu 已提交
2504

C
Christoph Lameter 已提交
2505
/*
2506 2507
 * Slow patch handling. This may still be called frequently since objects
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2508
 *
2509 2510 2511
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2512
 */
2513
static void __slab_free(struct kmem_cache *s, struct page *page,
2514
			void *x, unsigned long addr)
C
Christoph Lameter 已提交
2515 2516 2517
{
	void *prior;
	void **object = (void *)x;
2518 2519 2520 2521
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2522
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2523

2524
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2525

2526 2527
	if (kmem_cache_debug(s) &&
		!(n = free_debug_processing(s, page, x, addr, &flags)))
2528
		return;
C
Christoph Lameter 已提交
2529

2530
	do {
2531 2532 2533 2534
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2535 2536 2537 2538 2539 2540
		prior = page->freelist;
		counters = page->counters;
		set_freepointer(s, object, prior);
		new.counters = counters;
		was_frozen = new.frozen;
		new.inuse--;
2541
		if ((!new.inuse || !prior) && !was_frozen) {
2542

P
Peter Zijlstra 已提交
2543
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2544 2545

				/*
2546 2547 2548 2549
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2550 2551 2552
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2553
			} else { /* Needs to be taken off a list */
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566

	                        n = get_node(s, page_to_nid(page));
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2567
		}
C
Christoph Lameter 已提交
2568

2569 2570 2571 2572
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
		object, new.counters,
		"__slab_free"));
C
Christoph Lameter 已提交
2573

2574
	if (likely(!n)) {
2575 2576 2577 2578 2579

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2580
		if (new.frozen && !was_frozen) {
2581
			put_cpu_partial(s, page, 1);
2582 2583
			stat(s, CPU_PARTIAL_FREE);
		}
2584
		/*
2585 2586 2587 2588 2589
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
                if (was_frozen)
                        stat(s, FREE_FROZEN);
2590
                return;
2591
        }
C
Christoph Lameter 已提交
2592

2593
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2594 2595
		goto slab_empty;

C
Christoph Lameter 已提交
2596
	/*
2597 2598
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2599
	 */
2600 2601
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2602
			remove_full(s, n, page);
2603 2604
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2605
	}
2606
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2607 2608 2609
	return;

slab_empty:
2610
	if (prior) {
C
Christoph Lameter 已提交
2611
		/*
2612
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2613
		 */
2614
		remove_partial(n, page);
2615
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2616
	} else {
2617
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2618 2619
		remove_full(s, n, page);
	}
2620

2621
	spin_unlock_irqrestore(&n->list_lock, flags);
2622
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2623 2624 2625
	discard_slab(s, page);
}

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
 */
P
Pekka Enberg 已提交
2637
static __always_inline void slab_free(struct kmem_cache *s,
2638
			struct page *page, void *x, unsigned long addr)
2639 2640
{
	void **object = (void *)x;
2641
	struct kmem_cache_cpu *c;
2642
	unsigned long tid;
2643

2644 2645
	slab_free_hook(s, x);

2646 2647 2648 2649 2650 2651 2652
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
2653
	preempt_disable();
2654
	c = this_cpu_ptr(s->cpu_slab);
2655

2656
	tid = c->tid;
2657
	preempt_enable();
2658

2659
	if (likely(page == c->page)) {
2660
		set_freepointer(s, object, c->freelist);
2661

2662
		if (unlikely(!this_cpu_cmpxchg_double(
2663 2664 2665 2666 2667 2668 2669
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2670
		stat(s, FREE_FASTPATH);
2671
	} else
2672
		__slab_free(s, page, x, addr);
2673 2674 2675

}

C
Christoph Lameter 已提交
2676 2677
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2678 2679
	s = cache_from_obj(s, x);
	if (!s)
2680
		return;
2681
	slab_free(s, virt_to_head_page(x), x, _RET_IP_);
2682
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2683 2684 2685 2686
}
EXPORT_SYMBOL(kmem_cache_free);

/*
C
Christoph Lameter 已提交
2687 2688 2689 2690
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
2691 2692 2693 2694
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
2695
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
2706
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
2707
static int slub_min_objects;
C
Christoph Lameter 已提交
2708 2709 2710

/*
 * Merge control. If this is set then no merging of slab caches will occur.
C
Christoph Lameter 已提交
2711
 * (Could be removed. This was introduced to pacify the merge skeptics.)
C
Christoph Lameter 已提交
2712 2713 2714 2715 2716 2717
 */
static int slub_nomerge;

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
2718 2719 2720 2721
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
2722
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
2723 2724 2725 2726 2727 2728
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
2729
 *
C
Christoph Lameter 已提交
2730 2731 2732 2733
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
2734
 *
C
Christoph Lameter 已提交
2735 2736 2737 2738
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
2739
 */
2740
static inline int slab_order(int size, int min_objects,
2741
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
2742 2743 2744
{
	int order;
	int rem;
2745
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
2746

2747
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
2748
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
2749

2750
	for (order = max(min_order,
2751 2752
				fls(min_objects * size - 1) - PAGE_SHIFT);
			order <= max_order; order++) {
C
Christoph Lameter 已提交
2753

2754
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
2755

2756
		if (slab_size < min_objects * size + reserved)
C
Christoph Lameter 已提交
2757 2758
			continue;

2759
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
2760

2761
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
2762 2763 2764
			break;

	}
C
Christoph Lameter 已提交
2765

C
Christoph Lameter 已提交
2766 2767 2768
	return order;
}

2769
static inline int calculate_order(int size, int reserved)
2770 2771 2772 2773
{
	int order;
	int min_objects;
	int fraction;
2774
	int max_objects;
2775 2776 2777 2778 2779 2780 2781 2782 2783 2784

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
	 * First we reduce the acceptable waste in a slab. Then
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
2785 2786
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
2787
	max_objects = order_objects(slub_max_order, size, reserved);
2788 2789
	min_objects = min(min_objects, max_objects);

2790
	while (min_objects > 1) {
C
Christoph Lameter 已提交
2791
		fraction = 16;
2792 2793
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
2794
					slub_max_order, fraction, reserved);
2795 2796 2797 2798
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
2799
		min_objects--;
2800 2801 2802 2803 2804 2805
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
2806
	order = slab_order(size, 1, slub_max_order, 1, reserved);
2807 2808 2809 2810 2811 2812
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
2813
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
2814
	if (order < MAX_ORDER)
2815 2816 2817 2818
		return order;
	return -ENOSYS;
}

2819
static void
2820
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
2821 2822 2823 2824
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
2825
#ifdef CONFIG_SLUB_DEBUG
2826
	atomic_long_set(&n->nr_slabs, 0);
2827
	atomic_long_set(&n->total_objects, 0);
2828
	INIT_LIST_HEAD(&n->full);
2829
#endif
C
Christoph Lameter 已提交
2830 2831
}

2832
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2833
{
2834
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2835
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
2836

2837
	/*
2838 2839
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
2840
	 */
2841 2842
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
2843 2844 2845 2846 2847

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
2848

2849
	return 1;
2850 2851
}

2852 2853
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
2854 2855 2856 2857 2858
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
2859 2860
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
2861
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
2862
 */
2863
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
2864 2865 2866 2867
{
	struct page *page;
	struct kmem_cache_node *n;

2868
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
2869

2870
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
2871 2872

	BUG_ON(!page);
2873
	if (page_to_nid(page) != node) {
2874 2875
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
2876 2877
	}

C
Christoph Lameter 已提交
2878 2879
	n = page->freelist;
	BUG_ON(!n);
2880
	page->freelist = get_freepointer(kmem_cache_node, n);
2881
	page->inuse = 1;
2882
	page->frozen = 0;
2883
	kmem_cache_node->node[node] = n;
2884
#ifdef CONFIG_SLUB_DEBUG
2885
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2886
	init_tracking(kmem_cache_node, n);
2887
#endif
2888
	init_kmem_cache_node(n);
2889
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
2890

2891
	/*
2892 2893
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
2894
	 */
2895
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
2896 2897 2898 2899 2900
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
2901
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
2902

C
Christoph Lameter 已提交
2903 2904
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
2905 2906 2907 2908
		s->node[node] = NULL;
	}
}

2909
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
2910 2911 2912
{
	int node;

C
Christoph Lameter 已提交
2913
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
2914 2915
		struct kmem_cache_node *n;

2916
		if (slab_state == DOWN) {
2917
			early_kmem_cache_node_alloc(node);
2918 2919
			continue;
		}
2920
		n = kmem_cache_alloc_node(kmem_cache_node,
2921
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
2922

2923 2924 2925
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
2926
		}
2927

C
Christoph Lameter 已提交
2928
		s->node[node] = n;
2929
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
2930 2931 2932 2933
	}
	return 1;
}

2934
static void set_min_partial(struct kmem_cache *s, unsigned long min)
2935 2936 2937 2938 2939 2940 2941 2942
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
2943 2944 2945 2946
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
2947
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
2948 2949
{
	unsigned long flags = s->flags;
2950
	unsigned long size = s->object_size;
2951
	int order;
C
Christoph Lameter 已提交
2952

2953 2954 2955 2956 2957 2958 2959 2960
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
2961 2962 2963 2964 2965 2966
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2967
			!s->ctor)
C
Christoph Lameter 已提交
2968 2969 2970 2971 2972 2973
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
2974
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
2975
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
2976
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
2977
	 */
2978
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
2979
		size += sizeof(void *);
C
Christoph Lameter 已提交
2980
#endif
C
Christoph Lameter 已提交
2981 2982

	/*
C
Christoph Lameter 已提交
2983 2984
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
2985 2986 2987 2988
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2989
		s->ctor)) {
C
Christoph Lameter 已提交
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3002
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3003 3004 3005 3006 3007 3008 3009
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);

3010
	if (flags & SLAB_RED_ZONE)
C
Christoph Lameter 已提交
3011 3012 3013 3014
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3015
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3016 3017 3018
		 * of the object.
		 */
		size += sizeof(void *);
C
Christoph Lameter 已提交
3019
#endif
C
Christoph Lameter 已提交
3020

C
Christoph Lameter 已提交
3021 3022 3023 3024 3025
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3026
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3027
	s->size = size;
3028 3029 3030
	if (forced_order >= 0)
		order = forced_order;
	else
3031
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3032

3033
	if (order < 0)
C
Christoph Lameter 已提交
3034 3035
		return 0;

3036
	s->allocflags = 0;
3037
	if (order)
3038 3039 3040
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3041
		s->allocflags |= GFP_DMA;
3042 3043 3044 3045

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3046 3047 3048
	/*
	 * Determine the number of objects per slab
	 */
3049 3050
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3051 3052
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3053

3054
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3055 3056
}

3057
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3058
{
3059
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3060
	s->reserved = 0;
C
Christoph Lameter 已提交
3061

3062 3063
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3064

3065
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3066
		goto error;
3067 3068 3069 3070 3071
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3072
		if (get_order(s->size) > get_order(s->object_size)) {
3073 3074 3075 3076 3077 3078
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3079

3080 3081
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3082 3083 3084 3085 3086
	if (system_has_cmpxchg_double() && (s->flags & SLAB_DEBUG_FLAGS) == 0)
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3087 3088 3089 3090
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3106
	 * B) The number of objects in cpu partial slabs to extract from the
3107 3108
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3109
	 */
3110
	if (!kmem_cache_has_cpu_partial(s))
3111 3112
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3113 3114 3115 3116 3117 3118 3119 3120
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3121
#ifdef CONFIG_NUMA
3122
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3123
#endif
3124
	if (!init_kmem_cache_nodes(s))
3125
		goto error;
C
Christoph Lameter 已提交
3126

3127
	if (alloc_kmem_cache_cpus(s))
3128
		return 0;
3129

3130
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3131 3132 3133 3134
error:
	if (flags & SLAB_PANIC)
		panic("Cannot create slab %s size=%lu realsize=%u "
			"order=%u offset=%u flags=%lx\n",
3135 3136
			s->name, (unsigned long)s->size, s->size,
			oo_order(s->oo), s->offset, flags);
3137
	return -EINVAL;
C
Christoph Lameter 已提交
3138 3139
}

3140 3141 3142 3143 3144 3145
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3146 3147
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3148 3149
	if (!map)
		return;
3150
	slab_err(s, page, text, s->name);
3151 3152
	slab_lock(page);

3153
	get_map(s, page, map);
3154 3155 3156
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3157
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3158 3159 3160 3161
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3162
	kfree(map);
3163 3164 3165
#endif
}

C
Christoph Lameter 已提交
3166
/*
C
Christoph Lameter 已提交
3167
 * Attempt to free all partial slabs on a node.
3168 3169
 * This is called from kmem_cache_close(). We must be the last thread
 * using the cache and therefore we do not need to lock anymore.
C
Christoph Lameter 已提交
3170
 */
C
Christoph Lameter 已提交
3171
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3172 3173 3174
{
	struct page *page, *h;

3175
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3176
		if (!page->inuse) {
3177
			__remove_partial(n, page);
C
Christoph Lameter 已提交
3178
			discard_slab(s, page);
3179 3180
		} else {
			list_slab_objects(s, page,
3181
			"Objects remaining in %s on kmem_cache_close()");
C
Christoph Lameter 已提交
3182
		}
3183
	}
C
Christoph Lameter 已提交
3184 3185 3186
}

/*
C
Christoph Lameter 已提交
3187
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3188
 */
3189
static inline int kmem_cache_close(struct kmem_cache *s)
C
Christoph Lameter 已提交
3190 3191
{
	int node;
C
Christoph Lameter 已提交
3192
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3193 3194 3195

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3196
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3197 3198
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3199 3200
			return 1;
	}
3201
	free_percpu(s->cpu_slab);
C
Christoph Lameter 已提交
3202 3203 3204 3205
	free_kmem_cache_nodes(s);
	return 0;
}

3206
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3207
{
3208
	return kmem_cache_close(s);
C
Christoph Lameter 已提交
3209 3210 3211 3212 3213 3214 3215 3216
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3217
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3218 3219 3220 3221 3222 3223 3224 3225

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3226
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3227
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3228 3229 3230 3231 3232 3233 3234 3235

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3236
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

static int __init setup_slub_nomerge(char *str)
{
	slub_nomerge = 1;
	return 1;
}

__setup("slub_nomerge", setup_slub_nomerge);

void *__kmalloc(size_t size, gfp_t flags)
{
3253
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3254
	void *ret;
C
Christoph Lameter 已提交
3255

3256
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3257
		return kmalloc_large(size, flags);
3258

3259
	s = kmalloc_slab(size, flags);
3260 3261

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3262 3263
		return s;

3264
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3265

3266
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3267 3268

	return ret;
C
Christoph Lameter 已提交
3269 3270 3271
}
EXPORT_SYMBOL(__kmalloc);

3272
#ifdef CONFIG_NUMA
3273 3274
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3275
	struct page *page;
3276
	void *ptr = NULL;
3277

V
Vladimir Davydov 已提交
3278 3279
	flags |= __GFP_COMP | __GFP_NOTRACK;
	page = alloc_kmem_pages_node(node, flags, get_order(size));
3280
	if (page)
3281 3282
		ptr = page_address(page);

3283
	kmalloc_large_node_hook(ptr, size, flags);
3284
	return ptr;
3285 3286
}

C
Christoph Lameter 已提交
3287 3288
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3289
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3290
	void *ret;
C
Christoph Lameter 已提交
3291

3292
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3293 3294
		ret = kmalloc_large_node(size, flags, node);

3295 3296 3297
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3298 3299 3300

		return ret;
	}
3301

3302
	s = kmalloc_slab(size, flags);
3303 3304

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3305 3306
		return s;

3307
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3308

3309
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3310 3311

	return ret;
C
Christoph Lameter 已提交
3312 3313 3314 3315 3316 3317
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

size_t ksize(const void *object)
{
3318
	struct page *page;
C
Christoph Lameter 已提交
3319

3320
	if (unlikely(object == ZERO_SIZE_PTR))
3321 3322
		return 0;

3323 3324
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3325 3326
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3327
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3328
	}
C
Christoph Lameter 已提交
3329

3330
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3331
}
K
Kirill A. Shutemov 已提交
3332
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3333 3334 3335 3336

void kfree(const void *x)
{
	struct page *page;
3337
	void *object = (void *)x;
C
Christoph Lameter 已提交
3338

3339 3340
	trace_kfree(_RET_IP_, x);

3341
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3342 3343
		return;

3344
	page = virt_to_head_page(x);
3345
	if (unlikely(!PageSlab(page))) {
3346
		BUG_ON(!PageCompound(page));
3347
		kfree_hook(x);
V
Vladimir Davydov 已提交
3348
		__free_kmem_pages(page, compound_order(page));
3349 3350
		return;
	}
3351
	slab_free(page->slab_cache, page, object, _RET_IP_);
C
Christoph Lameter 已提交
3352 3353 3354
}
EXPORT_SYMBOL(kfree);

3355
/*
C
Christoph Lameter 已提交
3356 3357 3358 3359 3360 3361 3362 3363
 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
 * the remaining slabs by the number of items in use. The slabs with the
 * most items in use come first. New allocations will then fill those up
 * and thus they can be removed from the partial lists.
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3364
 */
3365
int __kmem_cache_shrink(struct kmem_cache *s)
3366 3367 3368 3369 3370 3371
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3372
	int objects = oo_objects(s->max);
3373
	struct list_head *slabs_by_inuse =
3374
		kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
3375 3376 3377 3378 3379 3380
	unsigned long flags;

	if (!slabs_by_inuse)
		return -ENOMEM;

	flush_all(s);
C
Christoph Lameter 已提交
3381
	for_each_kmem_cache_node(s, node, n) {
3382 3383 3384
		if (!n->nr_partial)
			continue;

3385
		for (i = 0; i < objects; i++)
3386 3387 3388 3389 3390
			INIT_LIST_HEAD(slabs_by_inuse + i);

		spin_lock_irqsave(&n->list_lock, flags);

		/*
C
Christoph Lameter 已提交
3391
		 * Build lists indexed by the items in use in each slab.
3392
		 *
C
Christoph Lameter 已提交
3393 3394
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3395 3396
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3397 3398 3399
			list_move(&page->lru, slabs_by_inuse + page->inuse);
			if (!page->inuse)
				n->nr_partial--;
3400 3401 3402
		}

		/*
C
Christoph Lameter 已提交
3403 3404
		 * Rebuild the partial list with the slabs filled up most
		 * first and the least used slabs at the end.
3405
		 */
3406
		for (i = objects - 1; i > 0; i--)
3407 3408 3409
			list_splice(slabs_by_inuse + i, n->partial.prev);

		spin_unlock_irqrestore(&n->list_lock, flags);
3410 3411 3412 3413

		/* Release empty slabs */
		list_for_each_entry_safe(page, t, slabs_by_inuse, lru)
			discard_slab(s, page);
3414 3415 3416 3417 3418 3419
	}

	kfree(slabs_by_inuse);
	return 0;
}

3420 3421 3422 3423
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3424
	mutex_lock(&slab_mutex);
3425
	list_for_each_entry(s, &slab_caches, list)
3426
		__kmem_cache_shrink(s);
3427
	mutex_unlock(&slab_mutex);
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3439
	offline_node = marg->status_change_nid_normal;
3440 3441 3442 3443 3444 3445 3446 3447

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3448
	mutex_lock(&slab_mutex);
3449 3450 3451 3452 3453 3454
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3455
			 * and offline_pages() function shouldn't call this
3456 3457
			 * callback. So, we must fail.
			 */
3458
			BUG_ON(slabs_node(s, offline_node));
3459 3460

			s->node[offline_node] = NULL;
3461
			kmem_cache_free(kmem_cache_node, n);
3462 3463
		}
	}
3464
	mutex_unlock(&slab_mutex);
3465 3466 3467 3468 3469 3470 3471
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
3472
	int nid = marg->status_change_nid_normal;
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
3483
	 * We are bringing a node online. No memory is available yet. We must
3484 3485 3486
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
3487
	mutex_lock(&slab_mutex);
3488 3489 3490 3491 3492 3493
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
3494
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
3495 3496 3497 3498
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
3499
		init_kmem_cache_node(n);
3500 3501 3502
		s->node[nid] = n;
	}
out:
3503
	mutex_unlock(&slab_mutex);
3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
3527 3528 3529 3530
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
3531 3532 3533
	return ret;
}

3534 3535 3536 3537
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
3538

C
Christoph Lameter 已提交
3539 3540 3541 3542
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

3543 3544
/*
 * Used for early kmem_cache structures that were allocated using
3545 3546
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
3547 3548
 */

3549
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
3550 3551
{
	int node;
3552
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
3553
	struct kmem_cache_node *n;
3554

3555
	memcpy(s, static_cache, kmem_cache->object_size);
3556

3557 3558 3559 3560 3561 3562
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
3563
	for_each_kmem_cache_node(s, node, n) {
3564 3565
		struct page *p;

C
Christoph Lameter 已提交
3566 3567
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
3568

L
Li Zefan 已提交
3569
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3570 3571
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
3572 3573
#endif
	}
3574 3575
	list_add(&s->list, &slab_caches);
	return s;
3576 3577
}

C
Christoph Lameter 已提交
3578 3579
void __init kmem_cache_init(void)
{
3580 3581
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
3582

3583 3584 3585
	if (debug_guardpage_minorder())
		slub_max_order = 0;

3586 3587
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
3588

3589 3590
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
3591

3592
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
3593 3594 3595 3596

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

3597 3598 3599 3600
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
3601

3602
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
3603

3604 3605 3606 3607 3608
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
3609
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
3610 3611

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
3612
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
3613 3614 3615

#ifdef CONFIG_SMP
	register_cpu_notifier(&slab_notifier);
3616
#endif
C
Christoph Lameter 已提交
3617

3618
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
3619
		cache_line_size(),
C
Christoph Lameter 已提交
3620 3621 3622 3623
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

3624 3625 3626 3627
void __init kmem_cache_init_late(void)
{
}

C
Christoph Lameter 已提交
3628 3629 3630 3631 3632 3633 3634 3635
/*
 * Find a mergeable slab cache
 */
static int slab_unmergeable(struct kmem_cache *s)
{
	if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
		return 1;

3636 3637 3638
	if (!is_root_cache(s))
		return 1;

3639
	if (s->ctor)
C
Christoph Lameter 已提交
3640 3641
		return 1;

3642 3643 3644 3645 3646 3647
	/*
	 * We may have set a slab to be unmergeable during bootstrap.
	 */
	if (s->refcount < 0)
		return 1;

C
Christoph Lameter 已提交
3648 3649 3650
	return 0;
}

3651 3652
static struct kmem_cache *find_mergeable(size_t size, size_t align,
		unsigned long flags, const char *name, void (*ctor)(void *))
C
Christoph Lameter 已提交
3653
{
3654
	struct kmem_cache *s;
C
Christoph Lameter 已提交
3655 3656 3657 3658

	if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
		return NULL;

3659
	if (ctor)
C
Christoph Lameter 已提交
3660 3661 3662 3663 3664
		return NULL;

	size = ALIGN(size, sizeof(void *));
	align = calculate_alignment(flags, align, size);
	size = ALIGN(size, align);
3665
	flags = kmem_cache_flags(size, flags, name, NULL);
C
Christoph Lameter 已提交
3666

3667
	list_for_each_entry(s, &slab_caches, list) {
C
Christoph Lameter 已提交
3668 3669 3670 3671 3672 3673
		if (slab_unmergeable(s))
			continue;

		if (size > s->size)
			continue;

3674
		if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3675
			continue;
C
Christoph Lameter 已提交
3676 3677 3678 3679
		/*
		 * Check if alignment is compatible.
		 * Courtesy of Adrian Drzewiecki
		 */
P
Pekka Enberg 已提交
3680
		if ((s->size & ~(align - 1)) != s->size)
C
Christoph Lameter 已提交
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690
			continue;

		if (s->size - size >= sizeof(void *))
			continue;

		return s;
	}
	return NULL;
}

3691
struct kmem_cache *
3692 3693
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
3694 3695 3696
{
	struct kmem_cache *s;

3697
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
3698
	if (s) {
3699 3700 3701
		int i;
		struct kmem_cache *c;

C
Christoph Lameter 已提交
3702
		s->refcount++;
3703

C
Christoph Lameter 已提交
3704 3705 3706 3707
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
3708
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
3709
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
3710

3711 3712 3713 3714 3715 3716 3717 3718 3719
		for_each_memcg_cache_index(i) {
			c = cache_from_memcg_idx(s, i);
			if (!c)
				continue;
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

3720 3721
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
3722
			s = NULL;
3723
		}
3724
	}
C
Christoph Lameter 已提交
3725

3726 3727
	return s;
}
P
Pekka Enberg 已提交
3728

3729
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
3730
{
3731 3732 3733 3734 3735
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
3736

3737 3738 3739 3740
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

3741
	memcg_propagate_slab_attrs(s);
3742 3743 3744
	err = sysfs_slab_add(s);
	if (err)
		kmem_cache_close(s);
3745

3746
	return err;
C
Christoph Lameter 已提交
3747 3748 3749 3750
}

#ifdef CONFIG_SMP
/*
C
Christoph Lameter 已提交
3751 3752
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
C
Christoph Lameter 已提交
3753
 */
3754
static int slab_cpuup_callback(struct notifier_block *nfb,
C
Christoph Lameter 已提交
3755 3756 3757
		unsigned long action, void *hcpu)
{
	long cpu = (long)hcpu;
3758 3759
	struct kmem_cache *s;
	unsigned long flags;
C
Christoph Lameter 已提交
3760 3761 3762

	switch (action) {
	case CPU_UP_CANCELED:
3763
	case CPU_UP_CANCELED_FROZEN:
C
Christoph Lameter 已提交
3764
	case CPU_DEAD:
3765
	case CPU_DEAD_FROZEN:
3766
		mutex_lock(&slab_mutex);
3767 3768 3769 3770 3771
		list_for_each_entry(s, &slab_caches, list) {
			local_irq_save(flags);
			__flush_cpu_slab(s, cpu);
			local_irq_restore(flags);
		}
3772
		mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
3773 3774 3775 3776 3777 3778 3779
		break;
	default:
		break;
	}
	return NOTIFY_OK;
}

3780
static struct notifier_block slab_notifier = {
I
Ingo Molnar 已提交
3781
	.notifier_call = slab_cpuup_callback
P
Pekka Enberg 已提交
3782
};
C
Christoph Lameter 已提交
3783 3784 3785

#endif

3786
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
3787
{
3788
	struct kmem_cache *s;
3789
	void *ret;
3790

3791
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3792 3793
		return kmalloc_large(size, gfpflags);

3794
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3795

3796
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3797
		return s;
C
Christoph Lameter 已提交
3798

3799
	ret = slab_alloc(s, gfpflags, caller);
3800

L
Lucas De Marchi 已提交
3801
	/* Honor the call site pointer we received. */
3802
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
3803 3804

	return ret;
C
Christoph Lameter 已提交
3805 3806
}

3807
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
3808
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3809
					int node, unsigned long caller)
C
Christoph Lameter 已提交
3810
{
3811
	struct kmem_cache *s;
3812
	void *ret;
3813

3814
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3815 3816 3817 3818 3819 3820 3821 3822
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
3823

3824
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
3825

3826
	if (unlikely(ZERO_OR_NULL_PTR(s)))
3827
		return s;
C
Christoph Lameter 已提交
3828

3829
	ret = slab_alloc_node(s, gfpflags, node, caller);
3830

L
Lucas De Marchi 已提交
3831
	/* Honor the call site pointer we received. */
3832
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3833 3834

	return ret;
C
Christoph Lameter 已提交
3835
}
3836
#endif
C
Christoph Lameter 已提交
3837

3838
#ifdef CONFIG_SYSFS
3839 3840 3841 3842 3843 3844 3845 3846 3847
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
3848
#endif
3849

3850
#ifdef CONFIG_SLUB_DEBUG
3851 3852
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3853 3854
{
	void *p;
3855
	void *addr = page_address(page);
3856 3857 3858 3859 3860 3861

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
3862
	bitmap_zero(map, page->objects);
3863

3864 3865 3866 3867 3868
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
3869 3870
	}

3871
	for_each_object(p, s, addr, page->objects)
3872
		if (!test_bit(slab_index(p, s, addr), map))
3873
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
3874 3875 3876 3877
				return 0;
	return 1;
}

3878 3879
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
3880
{
3881 3882 3883
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
3884 3885
}

3886 3887
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
3888 3889 3890 3891 3892 3893 3894 3895
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
3896
		validate_slab_slab(s, page, map);
3897 3898 3899
		count++;
	}
	if (count != n->nr_partial)
3900 3901
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
3902 3903 3904 3905 3906

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
3907
		validate_slab_slab(s, page, map);
3908 3909 3910
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
3911 3912
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
3913 3914 3915 3916 3917 3918

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

3919
static long validate_slab_cache(struct kmem_cache *s)
3920 3921 3922
{
	int node;
	unsigned long count = 0;
3923
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3924
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
3925
	struct kmem_cache_node *n;
3926 3927 3928

	if (!map)
		return -ENOMEM;
3929 3930

	flush_all(s);
C
Christoph Lameter 已提交
3931
	for_each_kmem_cache_node(s, node, n)
3932 3933
		count += validate_slab_node(s, n, map);
	kfree(map);
3934 3935
	return count;
}
3936
/*
C
Christoph Lameter 已提交
3937
 * Generate lists of code addresses where slabcache objects are allocated
3938 3939 3940 3941 3942
 * and freed.
 */

struct location {
	unsigned long count;
3943
	unsigned long addr;
3944 3945 3946 3947 3948
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
3949
	DECLARE_BITMAP(cpus, NR_CPUS);
3950
	nodemask_t nodes;
3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

3966
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3967 3968 3969 3970 3971 3972
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

3973
	l = (void *)__get_free_pages(flags, order);
3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
3987
				const struct track *track)
3988 3989 3990
{
	long start, end, pos;
	struct location *l;
3991
	unsigned long caddr;
3992
	unsigned long age = jiffies - track->when;
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4024 4025
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4026 4027
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4028 4029 4030
			return 1;
		}

4031
		if (track->addr < caddr)
4032 4033 4034 4035 4036 4037
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4038
	 * Not found. Insert new tracking element.
4039
	 */
4040
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4041 4042 4043 4044 4045 4046 4047 4048
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4049 4050 4051 4052 4053 4054
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4055 4056
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4057 4058
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4059 4060 4061 4062
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4063
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4064
		unsigned long *map)
4065
{
4066
	void *addr = page_address(page);
4067 4068
	void *p;

4069
	bitmap_zero(map, page->objects);
4070
	get_map(s, page, map);
4071

4072
	for_each_object(p, s, addr, page->objects)
4073 4074
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4075 4076 4077 4078 4079
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4080
	int len = 0;
4081
	unsigned long i;
4082
	struct loc_track t = { 0, 0, NULL };
4083
	int node;
E
Eric Dumazet 已提交
4084 4085
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4086
	struct kmem_cache_node *n;
4087

E
Eric Dumazet 已提交
4088 4089 4090
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4091
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4092
	}
4093 4094 4095
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4096
	for_each_kmem_cache_node(s, node, n) {
4097 4098 4099
		unsigned long flags;
		struct page *page;

4100
		if (!atomic_long_read(&n->nr_slabs))
4101 4102 4103 4104
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4105
			process_slab(&t, s, page, alloc, map);
4106
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4107
			process_slab(&t, s, page, alloc, map);
4108 4109 4110 4111
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4112
		struct location *l = &t.loc[i];
4113

H
Hugh Dickins 已提交
4114
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4115
			break;
4116
		len += sprintf(buf + len, "%7ld ", l->count);
4117 4118

		if (l->addr)
J
Joe Perches 已提交
4119
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4120
		else
4121
			len += sprintf(buf + len, "<not-available>");
4122 4123

		if (l->sum_time != l->min_time) {
4124
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4125 4126 4127
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4128
		} else
4129
			len += sprintf(buf + len, " age=%ld",
4130 4131 4132
				l->min_time);

		if (l->min_pid != l->max_pid)
4133
			len += sprintf(buf + len, " pid=%ld-%ld",
4134 4135
				l->min_pid, l->max_pid);
		else
4136
			len += sprintf(buf + len, " pid=%ld",
4137 4138
				l->min_pid);

R
Rusty Russell 已提交
4139 4140
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4141 4142
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " cpus=");
4143 4144
			len += cpulist_scnprintf(buf + len,
						 PAGE_SIZE - len - 50,
R
Rusty Russell 已提交
4145
						 to_cpumask(l->cpus));
4146 4147
		}

4148
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4149 4150
				len < PAGE_SIZE - 60) {
			len += sprintf(buf + len, " nodes=");
4151 4152 4153
			len += nodelist_scnprintf(buf + len,
						  PAGE_SIZE - len - 50,
						  l->nodes);
4154 4155
		}

4156
		len += sprintf(buf + len, "\n");
4157 4158 4159
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4160
	kfree(map);
4161
	if (!t.count)
4162 4163
		len += sprintf(buf, "No data\n");
	return len;
4164
}
4165
#endif
4166

4167
#ifdef SLUB_RESILIENCY_TEST
4168
static void __init resiliency_test(void)
4169 4170 4171
{
	u8 *p;

4172
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4173

4174 4175 4176
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4177 4178 4179

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4180 4181
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4182 4183 4184 4185 4186 4187

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4188 4189 4190
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4191 4192 4193 4194 4195

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4196 4197 4198
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4199 4200
	validate_slab_cache(kmalloc_caches[6]);

4201
	pr_err("\nB. Corruption after free\n");
4202 4203 4204
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4205
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4206 4207 4208 4209 4210
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4211
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4212 4213 4214 4215 4216
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4217
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4218 4219 4220 4221 4222 4223 4224 4225
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4226
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4227
enum slab_stat_type {
4228 4229 4230 4231 4232
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4233 4234
};

4235
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4236 4237 4238
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4239
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4240

4241 4242
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4243 4244 4245 4246 4247 4248
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4249
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4250 4251
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4252

4253 4254
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4255

4256
		for_each_possible_cpu(cpu) {
4257 4258
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4259
			int node;
4260
			struct page *page;
4261

4262
			page = ACCESS_ONCE(c->page);
4263 4264
			if (!page)
				continue;
4265

4266 4267 4268 4269 4270 4271 4272
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4273

4274 4275 4276 4277
			total += x;
			nodes[node] += x;

			page = ACCESS_ONCE(c->partial);
4278
			if (page) {
L
Li Zefan 已提交
4279 4280 4281 4282 4283 4284 4285
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4286 4287
				total += x;
				nodes[node] += x;
4288
			}
C
Christoph Lameter 已提交
4289 4290 4291
		}
	}

4292
	get_online_mems();
4293
#ifdef CONFIG_SLUB_DEBUG
4294
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4295 4296 4297
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4298

4299 4300 4301 4302 4303
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4304
			else
4305
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4306 4307 4308 4309
			total += x;
			nodes[node] += x;
		}

4310 4311 4312
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4313
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4314

C
Christoph Lameter 已提交
4315
		for_each_kmem_cache_node(s, node, n) {
4316 4317 4318 4319
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4320
			else
4321
				x = n->nr_partial;
C
Christoph Lameter 已提交
4322 4323 4324 4325 4326 4327
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4328
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4329 4330 4331 4332
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4333
	put_online_mems();
C
Christoph Lameter 已提交
4334 4335 4336 4337
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4338
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4339 4340 4341
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4342
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4343

C
Christoph Lameter 已提交
4344
	for_each_kmem_cache_node(s, node, n)
4345
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4346
			return 1;
C
Christoph Lameter 已提交
4347

C
Christoph Lameter 已提交
4348 4349
	return 0;
}
4350
#endif
C
Christoph Lameter 已提交
4351 4352

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4353
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4354 4355 4356 4357 4358 4359 4360 4361

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4362 4363
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4364 4365 4366

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4367
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4383
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4384 4385 4386 4387 4388
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4389
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4390 4391 4392
}
SLAB_ATTR_RO(objs_per_slab);

4393 4394 4395
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4396 4397 4398
	unsigned long order;
	int err;

4399
	err = kstrtoul(buf, 10, &order);
4400 4401
	if (err)
		return err;
4402 4403 4404 4405 4406 4407 4408 4409

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4410 4411
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4412
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4413
}
4414
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4415

4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4427
	err = kstrtoul(buf, 10, &min);
4428 4429 4430
	if (err)
		return err;

4431
	set_min_partial(s, min);
4432 4433 4434 4435
	return length;
}
SLAB_ATTR(min_partial);

4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4447
	err = kstrtoul(buf, 10, &objects);
4448 4449
	if (err)
		return err;
4450
	if (objects && !kmem_cache_has_cpu_partial(s))
4451
		return -EINVAL;
4452 4453 4454 4455 4456 4457 4458

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4459 4460
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4461 4462 4463
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4464 4465 4466 4467 4468
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4469
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4470 4471 4472 4473 4474
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4475
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4476 4477 4478 4479 4480
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4481
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4482 4483 4484 4485 4486
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4487
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4488 4489 4490
}
SLAB_ATTR_RO(objects);

4491 4492 4493 4494 4495 4496
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4563 4564 4565 4566 4567 4568
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4569
#ifdef CONFIG_SLUB_DEBUG
4570 4571 4572 4573 4574 4575
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

4576 4577 4578 4579 4580 4581
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
4582 4583 4584 4585 4586 4587 4588 4589 4590
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_DEBUG_FREE;
4591 4592
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4593
		s->flags |= SLAB_DEBUG_FREE;
4594
	}
C
Christoph Lameter 已提交
4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_TRACE;
4608 4609
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4610
		s->flags |= SLAB_TRACE;
4611
	}
C
Christoph Lameter 已提交
4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
4628 4629
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4630
		s->flags |= SLAB_RED_ZONE;
4631
	}
4632
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
4649 4650
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4651
		s->flags |= SLAB_POISON;
4652
	}
4653
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
4670 4671
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
4672
		s->flags |= SLAB_STORE_USER;
4673
	}
4674
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
4675 4676 4677 4678
	return length;
}
SLAB_ATTR(store_user);

4679 4680 4681 4682 4683 4684 4685 4686
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
4687 4688 4689 4690 4691 4692 4693 4694
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
4695 4696
}
SLAB_ATTR(validate);
4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
4730
#endif
4731

4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
	if (buf[0] == '1') {
		int rc = kmem_cache_shrink(s);

		if (rc)
			return rc;
	} else
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
4751
#ifdef CONFIG_NUMA
4752
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
4753
{
4754
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
4755 4756
}

4757
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
4758 4759
				const char *buf, size_t length)
{
4760 4761 4762
	unsigned long ratio;
	int err;

4763
	err = kstrtoul(buf, 10, &ratio);
4764 4765 4766
	if (err)
		return err;

4767
	if (ratio <= 100)
4768
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
4769 4770 4771

	return length;
}
4772
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
4773 4774
#endif

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
4787
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4788 4789 4790 4791 4792 4793 4794

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

4795
#ifdef CONFIG_SMP
4796 4797
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
4798
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4799
	}
4800
#endif
4801 4802 4803 4804
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
4805 4806 4807 4808 4809
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
4810
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
4811 4812
}

4813 4814 4815 4816 4817
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
4818 4819 4820 4821 4822 4823 4824 4825 4826
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
4838
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
4839 4840 4841 4842 4843 4844 4845
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4846
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
4847
STAT_ATTR(ORDER_FALLBACK, order_fallback);
4848 4849
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
4850 4851
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
4852 4853
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
4854 4855
#endif

P
Pekka Enberg 已提交
4856
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
4857 4858 4859 4860
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
4861
	&min_partial_attr.attr,
4862
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
4863
	&objects_attr.attr,
4864
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
4865 4866 4867 4868 4869 4870 4871 4872
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
4873
	&shrink_attr.attr,
4874
	&reserved_attr.attr,
4875
	&slabs_cpu_partial_attr.attr,
4876
#ifdef CONFIG_SLUB_DEBUG
4877 4878 4879 4880
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
4881 4882 4883
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
4884
	&validate_attr.attr,
4885 4886
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
4887
#endif
C
Christoph Lameter 已提交
4888 4889 4890 4891
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
4892
	&remote_node_defrag_ratio_attr.attr,
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
4905
	&alloc_node_mismatch_attr.attr,
4906 4907 4908 4909 4910 4911 4912
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
4913
	&deactivate_bypass_attr.attr,
4914
	&order_fallback_attr.attr,
4915 4916
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
4917 4918
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
4919 4920
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
4921
#endif
4922 4923 4924 4925
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
4967 4968 4969
#ifdef CONFIG_MEMCG_KMEM
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
		int i;
C
Christoph Lameter 已提交
4970

4971 4972 4973 4974
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
4992
		for_each_memcg_cache_index(i) {
4993
			struct kmem_cache *c = cache_from_memcg_idx(s, i);
4994 4995 4996 4997 4998 4999
			if (c)
				attribute->store(c, buf, len);
		}
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5000 5001 5002
	return err;
}

5003 5004 5005 5006 5007
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	int i;
	char *buffer = NULL;
5008
	struct kmem_cache *root_cache;
5009

5010
	if (is_root_cache(s))
5011 5012
		return;

5013 5014
	root_cache = s->memcg_params->root_cache;

5015 5016 5017 5018
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5019
	if (!root_cache->max_attr_size)
5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5041
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5042 5043 5044 5045 5046 5047 5048 5049
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5050
		attr->show(root_cache, buf);
5051 5052 5053 5054 5055 5056 5057 5058
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5059 5060 5061 5062 5063
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5064
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5065 5066 5067 5068 5069 5070
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5071
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5083
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5084 5085 5086
	.filter = uevent_filter,
};

5087
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5088

5089 5090 5091 5092 5093 5094 5095 5096 5097
static inline struct kset *cache_kset(struct kmem_cache *s)
{
#ifdef CONFIG_MEMCG_KMEM
	if (!is_root_cache(s))
		return s->memcg_params->root_cache->memcg_kset;
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5098 5099 5100
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5101 5102
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
	if (s->flags & SLAB_DEBUG_FREE)
		*p++ = 'F';
V
Vegard Nossum 已提交
5125 5126
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
C
Christoph Lameter 已提交
5127 5128 5129
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5130

C
Christoph Lameter 已提交
5131 5132 5133 5134 5135 5136 5137 5138
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5139
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5140 5141 5142 5143 5144 5145 5146

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5147
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5148 5149 5150 5151 5152 5153 5154 5155 5156
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5157
	s->kobj.kset = cache_kset(s);
5158
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5159 5160
	if (err)
		goto out_put_kobj;
C
Christoph Lameter 已提交
5161 5162

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5163 5164
	if (err)
		goto out_del_kobj;
5165 5166 5167 5168 5169

#ifdef CONFIG_MEMCG_KMEM
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5170 5171
			err = -ENOMEM;
			goto out_del_kobj;
5172 5173 5174 5175
		}
	}
#endif

C
Christoph Lameter 已提交
5176 5177 5178 5179 5180
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5181 5182 5183 5184 5185 5186 5187 5188 5189
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
out_put_kobj:
	kobject_put(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5190 5191
}

5192
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5193
{
5194
	if (slab_state < FULL)
5195 5196 5197 5198 5199 5200
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5201 5202 5203
#ifdef CONFIG_MEMCG_KMEM
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5204 5205
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5206
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5207 5208 5209 5210
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5211
 * available lest we lose that information.
C
Christoph Lameter 已提交
5212 5213 5214 5215 5216 5217 5218
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5219
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5220 5221 5222 5223 5224

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5225
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5226 5227 5228
		/*
		 * If we have a leftover link then remove it.
		 */
5229 5230
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5246
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5247 5248
	int err;

5249
	mutex_lock(&slab_mutex);
5250

5251
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5252
	if (!slab_kset) {
5253
		mutex_unlock(&slab_mutex);
5254
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5255 5256 5257
		return -ENOSYS;
	}

5258
	slab_state = FULL;
5259

5260
	list_for_each_entry(s, &slab_caches, list) {
5261
		err = sysfs_slab_add(s);
5262
		if (err)
5263 5264
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5265
	}
C
Christoph Lameter 已提交
5266 5267 5268 5269 5270 5271

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5272
		if (err)
5273 5274
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5275 5276 5277
		kfree(al);
	}

5278
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5279 5280 5281 5282 5283
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5284
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5285 5286 5287 5288

/*
 * The /proc/slabinfo ABI
 */
5289
#ifdef CONFIG_SLABINFO
5290
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5291 5292
{
	unsigned long nr_slabs = 0;
5293 5294
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5295
	int node;
C
Christoph Lameter 已提交
5296
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5297

C
Christoph Lameter 已提交
5298
	for_each_kmem_cache_node(s, node, n) {
5299 5300
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5301
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5302 5303
	}

5304 5305 5306 5307 5308 5309
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5310 5311
}

5312
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5313 5314 5315
{
}

5316 5317
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5318
{
5319
	return -EIO;
5320
}
5321
#endif /* CONFIG_SLABINFO */