slub.c 143.2 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2 3 4 5
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
6 7
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
8
 *
C
Christoph Lameter 已提交
9
 * (C) 2007 SGI, Christoph Lameter
10
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
11 12 13
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
14
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
15 16 17 18 19
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
20
#include "slab.h"
21
#include <linux/proc_fs.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
36
#include <linux/random.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
54
 *   have the ability to do a cmpxchg_double. It only protects:
55
 *	A. page->freelist	-> List of object free in a page
56 57 58
 *	B. page->inuse		-> Number of objects in use
 *	C. page->objects	-> Number of objects in page
 *	D. page->frozen		-> frozen state
59 60
 *
 *   If a slab is frozen then it is exempt from list management. It is not
61 62 63 64 65
 *   on any list except per cpu partial list. The processor that froze the
 *   slab is the one who can perform list operations on the page. Other
 *   processors may put objects onto the freelist but the processor that
 *   froze the slab is the only one that can retrieve the objects from the
 *   page's freelist.
C
Christoph Lameter 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
86 87
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
88
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
89 90
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
91 92 93 94 95 96 97
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
98 99 100 101 102 103 104 105 106 107 108 109
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
110
 * 			freelist that allows lockless access to
111 112
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
113 114 115
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
116
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
117 118
 */

119 120
static inline int kmem_cache_debug(struct kmem_cache *s)
{
121
#ifdef CONFIG_SLUB_DEBUG
122
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123
#else
124
	return 0;
125
#endif
126
}
127

128
void *fixup_red_left(struct kmem_cache *s, void *p)
J
Joonsoo Kim 已提交
129 130 131 132 133 134 135
{
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
		p += s->red_left_pad;

	return p;
}

136 137 138 139 140 141 142 143 144
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
145 146 147 148 149 150 151 152 153 154 155
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

156 157 158
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

159 160 161 162
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
163
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
164

165 166 167
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
168
 * sort the partial list by the number of objects in use.
169 170 171
 */
#define MAX_PARTIAL 10

172
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
173
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
174

175 176 177 178 179 180 181 182
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


183
/*
184 185 186
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
187
 */
188
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189

190 191
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
192
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193

C
Christoph Lameter 已提交
194
/* Internal SLUB flags */
195
/* Poison object */
196
#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
197
/* Use cmpxchg_double */
198
#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
C
Christoph Lameter 已提交
199

200 201 202
/*
 * Tracking user of a slab.
 */
203
#define TRACK_ADDRS_COUNT 16
204
struct track {
205
	unsigned long addr;	/* Called from address */
206 207 208
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
209 210 211 212 213 214 215
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

216
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
217 218
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
219
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220
static void sysfs_slab_remove(struct kmem_cache *s);
C
Christoph Lameter 已提交
221
#else
222 223 224
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
225
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
227 228
#endif

229
static inline void stat(const struct kmem_cache *s, enum stat_item si)
230 231
{
#ifdef CONFIG_SLUB_STATS
232 233 234 235 236
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
237 238 239
#endif
}

C
Christoph Lameter 已提交
240 241 242 243
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

244 245 246 247 248 249 250 251 252
/*
 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 * with an XOR of the address where the pointer is held and a per-cache
 * random number.
 */
static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
				 unsigned long ptr_addr)
{
#ifdef CONFIG_SLAB_FREELIST_HARDENED
253 254 255 256 257 258 259 260 261 262 263 264
	/*
	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
	 * Normally, this doesn't cause any issues, as both set_freepointer()
	 * and get_freepointer() are called with a pointer with the same tag.
	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
	 * example, when __free_slub() iterates over objects in a cache, it
	 * passes untagged pointers to check_object(). check_object() in turns
	 * calls get_freepointer() with an untagged pointer, which causes the
	 * freepointer to be restored incorrectly.
	 */
	return (void *)((unsigned long)ptr ^ s->random ^
			(unsigned long)kasan_reset_tag((void *)ptr_addr));
265 266 267 268 269 270 271 272 273 274 275 276 277
#else
	return ptr;
#endif
}

/* Returns the freelist pointer recorded at location ptr_addr. */
static inline void *freelist_dereference(const struct kmem_cache *s,
					 void *ptr_addr)
{
	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
			    (unsigned long)ptr_addr);
}

278 279
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
280
	return freelist_dereference(s, object + s->offset);
281 282
}

283 284
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
285
	prefetch(object + s->offset);
286 287
}

288 289
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
290
	unsigned long freepointer_addr;
291 292
	void *p;

293 294 295
	if (!debug_pagealloc_enabled())
		return get_freepointer(s, object);

296 297 298
	freepointer_addr = (unsigned long)object + s->offset;
	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
	return freelist_ptr(s, p, freepointer_addr);
299 300
}

301 302
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
303 304
	unsigned long freeptr_addr = (unsigned long)object + s->offset;

305 306 307 308
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	BUG_ON(object == fp); /* naive detection of double free or corruption */
#endif

309
	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
310 311 312
}

/* Loop over all objects in a slab */
313
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
314 315 316
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
317 318

/* Determine object index from a given position */
319
static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
320
{
321
	return (kasan_reset_tag(p) - addr) / s->size;
322 323
}

324
static inline unsigned int order_objects(unsigned int order, unsigned int size)
325
{
326
	return ((unsigned int)PAGE_SIZE << order) / size;
327 328
}

329
static inline struct kmem_cache_order_objects oo_make(unsigned int order,
330
		unsigned int size)
331 332
{
	struct kmem_cache_order_objects x = {
333
		(order << OO_SHIFT) + order_objects(order, size)
334 335 336 337 338
	};

	return x;
}

339
static inline unsigned int oo_order(struct kmem_cache_order_objects x)
340
{
341
	return x.x >> OO_SHIFT;
342 343
}

344
static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
345
{
346
	return x.x & OO_MASK;
347 348
}

349 350 351 352 353
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
354
	VM_BUG_ON_PAGE(PageTail(page), page);
355 356 357 358 359
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
360
	VM_BUG_ON_PAGE(PageTail(page), page);
361 362 363
	__bit_spin_unlock(PG_locked, &page->flags);
}

364 365 366 367 368 369 370
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
371 372
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
373
	if (s->flags & __CMPXCHG_DOUBLE) {
374
		if (cmpxchg_double(&page->freelist, &page->counters,
375 376
				   freelist_old, counters_old,
				   freelist_new, counters_new))
377
			return true;
378 379 380 381
	} else
#endif
	{
		slab_lock(page);
382 383
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
384
			page->freelist = freelist_new;
385
			page->counters = counters_new;
386
			slab_unlock(page);
387
			return true;
388 389 390 391 392 393 394 395
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
396
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
397 398
#endif

399
	return false;
400 401
}

402 403 404 405 406
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
407 408
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
409
	if (s->flags & __CMPXCHG_DOUBLE) {
410
		if (cmpxchg_double(&page->freelist, &page->counters,
411 412
				   freelist_old, counters_old,
				   freelist_new, counters_new))
413
			return true;
414 415 416
	} else
#endif
	{
417 418 419
		unsigned long flags;

		local_irq_save(flags);
420
		slab_lock(page);
421 422
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
423
			page->freelist = freelist_new;
424
			page->counters = counters_new;
425
			slab_unlock(page);
426
			local_irq_restore(flags);
427
			return true;
428
		}
429
		slab_unlock(page);
430
		local_irq_restore(flags);
431 432 433 434 435 436
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
437
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
438 439
#endif

440
	return false;
441 442
}

C
Christoph Lameter 已提交
443
#ifdef CONFIG_SLUB_DEBUG
444 445 446
/*
 * Determine a map of object in use on a page.
 *
447
 * Node listlock must be held to guarantee that the page does
448 449 450 451 452 453 454 455 456 457 458
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

459
static inline unsigned int size_from_object(struct kmem_cache *s)
J
Joonsoo Kim 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
475 476 477
/*
 * Debug settings:
 */
478
#if defined(CONFIG_SLUB_DEBUG_ON)
479
static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
480
#else
481
static slab_flags_t slub_debug;
482
#endif
C
Christoph Lameter 已提交
483 484

static char *slub_debug_slabs;
485
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
486

487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
503 504 505
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
506 507 508 509 510 511 512 513 514 515 516

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
517
	object = kasan_reset_tag(object);
J
Joonsoo Kim 已提交
518 519 520 521 522 523 524 525 526
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

527 528
static void print_section(char *level, char *text, u8 *addr,
			  unsigned int length)
C
Christoph Lameter 已提交
529
{
530
	metadata_access_enable();
531
	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
532
			length, 1);
533
	metadata_access_disable();
C
Christoph Lameter 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
550
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
551
{
A
Akinobu Mita 已提交
552
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
553 554

	if (addr) {
555
#ifdef CONFIG_STACKTRACE
556
		unsigned int nr_entries;
557

558
		metadata_access_enable();
559
		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
560
		metadata_access_disable();
561

562 563
		if (nr_entries < TRACK_ADDRS_COUNT)
			p->addrs[nr_entries] = 0;
564
#endif
C
Christoph Lameter 已提交
565 566
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
567
		p->pid = current->pid;
C
Christoph Lameter 已提交
568
		p->when = jiffies;
569
	} else {
C
Christoph Lameter 已提交
570
		memset(p, 0, sizeof(struct track));
571
	}
C
Christoph Lameter 已提交
572 573 574 575
}

static void init_tracking(struct kmem_cache *s, void *object)
{
576 577 578
	if (!(s->flags & SLAB_STORE_USER))
		return;

579 580
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
581 582
}

583
static void print_track(const char *s, struct track *t, unsigned long pr_time)
C
Christoph Lameter 已提交
584 585 586 587
{
	if (!t->addr)
		return;

588
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
589
	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
590 591 592 593 594
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
595
				pr_err("\t%pS\n", (void *)t->addrs[i]);
596 597 598 599
			else
				break;
	}
#endif
600 601 602 603
}

static void print_tracking(struct kmem_cache *s, void *object)
{
604
	unsigned long pr_time = jiffies;
605 606 607
	if (!(s->flags & SLAB_STORE_USER))
		return;

608 609
	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
610 611 612 613
}

static void print_page_info(struct page *page)
{
614
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
615
	       page, page->objects, page->inuse, page->freelist, page->flags);
616 617 618 619 620

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
621
	struct va_format vaf;
622 623 624
	va_list args;

	va_start(args, fmt);
625 626
	vaf.fmt = fmt;
	vaf.va = &args;
627
	pr_err("=============================================================================\n");
628
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
629
	pr_err("-----------------------------------------------------------------------------\n\n");
630

631
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
632
	va_end(args);
C
Christoph Lameter 已提交
633 634
}

635 636
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
637
	struct va_format vaf;
638 639 640
	va_list args;

	va_start(args, fmt);
641 642 643
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
644 645 646 647
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
648 649
{
	unsigned int off;	/* Offset of last byte */
650
	u8 *addr = page_address(page);
651 652 653 654 655

	print_tracking(s, p);

	print_page_info(page);

656 657
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
658

J
Joonsoo Kim 已提交
659
	if (s->flags & SLAB_RED_ZONE)
660 661
		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
			      s->red_left_pad);
J
Joonsoo Kim 已提交
662
	else if (p > addr + 16)
663
		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
664

665
	print_section(KERN_ERR, "Object ", p,
666
		      min_t(unsigned int, s->object_size, PAGE_SIZE));
C
Christoph Lameter 已提交
667
	if (s->flags & SLAB_RED_ZONE)
668
		print_section(KERN_ERR, "Redzone ", p + s->object_size,
669
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
670 671 672 673 674 675

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

676
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
677 678
		off += 2 * sizeof(struct track);

679 680
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
681
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
682
		/* Beginning of the filler is the free pointer */
683 684
		print_section(KERN_ERR, "Padding ", p + off,
			      size_from_object(s) - off);
685 686

	dump_stack();
C
Christoph Lameter 已提交
687 688
}

689
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
690 691
			u8 *object, char *reason)
{
692
	slab_bug(s, "%s", reason);
693
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
694 695
}

696
static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
697
			const char *fmt, ...)
C
Christoph Lameter 已提交
698 699 700 701
{
	va_list args;
	char buf[100];

702 703
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
704
	va_end(args);
705
	slab_bug(s, "%s", buf);
706
	print_page_info(page);
C
Christoph Lameter 已提交
707 708 709
	dump_stack();
}

710
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
711 712 713
{
	u8 *p = object;

J
Joonsoo Kim 已提交
714 715 716
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
717
	if (s->flags & __OBJECT_POISON) {
718 719
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
720 721 722
	}

	if (s->flags & SLAB_RED_ZONE)
723
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
724 725
}

726 727 728 729 730 731 732 733 734
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
735
			u8 *start, unsigned int value, unsigned int bytes)
736 737 738 739
{
	u8 *fault;
	u8 *end;

740
	metadata_access_enable();
741
	fault = memchr_inv(start, value, bytes);
742
	metadata_access_disable();
743 744 745 746 747 748 749 750
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
751
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
752 753 754 755 756
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
757 758 759 760 761 762 763 764 765
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
766
 *
C
Christoph Lameter 已提交
767 768 769
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
770
 * object + s->object_size
C
Christoph Lameter 已提交
771
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
772
 * 	Padding is extended by another word if Redzoning is enabled and
773
 * 	object_size == inuse.
C
Christoph Lameter 已提交
774
 *
C
Christoph Lameter 已提交
775 776 777 778
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
779 780
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
781 782
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
783
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
784
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
785 786 787
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
788 789
 *
 * object + s->size
C
Christoph Lameter 已提交
790
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
791
 *
792
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
793
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

809 810
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
811
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
812 813
		return 1;

814
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
815
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
816 817
}

818
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
819 820
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
821 822 823
	u8 *start;
	u8 *fault;
	u8 *end;
824
	u8 *pad;
825 826
	int length;
	int remainder;
C
Christoph Lameter 已提交
827 828 829 830

	if (!(s->flags & SLAB_POISON))
		return 1;

831
	start = page_address(page);
832
	length = PAGE_SIZE << compound_order(page);
833 834
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
835 836 837
	if (!remainder)
		return 1;

838
	pad = end - remainder;
839
	metadata_access_enable();
840
	fault = memchr_inv(pad, POISON_INUSE, remainder);
841
	metadata_access_disable();
842 843 844 845 846 847
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
848
	print_section(KERN_ERR, "Padding ", pad, remainder);
849

850
	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
851
	return 0;
C
Christoph Lameter 已提交
852 853 854
}

static int check_object(struct kmem_cache *s, struct page *page,
855
					void *object, u8 val)
C
Christoph Lameter 已提交
856 857
{
	u8 *p = object;
858
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
859 860

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
861 862 863 864
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

865
		if (!check_bytes_and_report(s, page, object, "Redzone",
866
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
867 868
			return 0;
	} else {
869
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
870
			check_bytes_and_report(s, page, p, "Alignment padding",
871 872
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
873
		}
C
Christoph Lameter 已提交
874 875 876
	}

	if (s->flags & SLAB_POISON) {
877
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
878
			(!check_bytes_and_report(s, page, p, "Poison", p,
879
					POISON_FREE, s->object_size - 1) ||
880
			 !check_bytes_and_report(s, page, p, "Poison",
881
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
882 883 884 885 886 887 888
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

889
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
890 891 892 893 894 895 896 897 898 899
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
900
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
901
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
902
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
903
		 */
904
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
905 906 907 908 909 910 911
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
912 913
	int maxobj;

C
Christoph Lameter 已提交
914 915 916
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
917
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
918 919
		return 0;
	}
920

921
	maxobj = order_objects(compound_order(page), s->size);
922 923
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
924
			page->objects, maxobj);
925 926 927
		return 0;
	}
	if (page->inuse > page->objects) {
928
		slab_err(s, page, "inuse %u > max %u",
929
			page->inuse, page->objects);
C
Christoph Lameter 已提交
930 931 932 933 934 935 936 937
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
938 939
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
940 941 942 943
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
944
	void *fp;
C
Christoph Lameter 已提交
945
	void *object = NULL;
946
	int max_objects;
C
Christoph Lameter 已提交
947

948
	fp = page->freelist;
949
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
950 951 952 953 954 955
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
956
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
957
			} else {
958
				slab_err(s, page, "Freepointer corrupt");
959
				page->freelist = NULL;
960
				page->inuse = page->objects;
961
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
962 963 964 965 966 967 968 969 970
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

971
	max_objects = order_objects(compound_order(page), s->size);
972 973
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
974 975

	if (page->objects != max_objects) {
J
Joe Perches 已提交
976 977
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
978 979 980
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
981
	if (page->inuse != page->objects - nr) {
J
Joe Perches 已提交
982 983
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
984
		page->inuse = page->objects - nr;
985
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
986 987 988 989
	}
	return search == NULL;
}

990 991
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
992 993
{
	if (s->flags & SLAB_TRACE) {
994
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
995 996 997 998 999 1000
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
1001
			print_section(KERN_INFO, "Object ", (void *)object,
1002
					s->object_size);
C
Christoph Lameter 已提交
1003 1004 1005 1006 1007

		dump_stack();
	}
}

1008
/*
C
Christoph Lameter 已提交
1009
 * Tracking of fully allocated slabs for debugging purposes.
1010
 */
1011 1012
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1013
{
1014 1015 1016
	if (!(s->flags & SLAB_STORE_USER))
		return;

1017
	lockdep_assert_held(&n->list_lock);
1018
	list_add(&page->slab_list, &n->full);
1019 1020
}

P
Peter Zijlstra 已提交
1021
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1022 1023 1024 1025
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1026
	lockdep_assert_held(&n->list_lock);
1027
	list_del(&page->slab_list);
1028 1029
}

1030 1031 1032 1033 1034 1035 1036 1037
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1038 1039 1040 1041 1042
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1043
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1044 1045 1046 1047 1048 1049 1050 1051 1052
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1053
	if (likely(n)) {
1054
		atomic_long_inc(&n->nr_slabs);
1055 1056
		atomic_long_add(objects, &n->total_objects);
	}
1057
}
1058
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1059 1060 1061 1062
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1063
	atomic_long_sub(objects, &n->total_objects);
1064 1065 1066
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1067 1068 1069 1070 1071 1072
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1073
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1074 1075 1076
	init_tracking(s, object);
}

1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
static void setup_page_debug(struct kmem_cache *s, void *addr, int order)
{
	if (!(s->flags & SLAB_POISON))
		return;

	metadata_access_enable();
	memset(addr, POISON_INUSE, PAGE_SIZE << order);
	metadata_access_disable();
}

1087
static inline int alloc_consistency_checks(struct kmem_cache *s,
1088
					struct page *page, void *object)
C
Christoph Lameter 已提交
1089 1090
{
	if (!check_slab(s, page))
1091
		return 0;
C
Christoph Lameter 已提交
1092 1093 1094

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1095
		return 0;
C
Christoph Lameter 已提交
1096 1097
	}

1098
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1109
		if (!alloc_consistency_checks(s, page, object))
1110 1111
			goto bad;
	}
C
Christoph Lameter 已提交
1112

C
Christoph Lameter 已提交
1113 1114 1115 1116
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1117
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1118
	return 1;
C
Christoph Lameter 已提交
1119

C
Christoph Lameter 已提交
1120 1121 1122 1123 1124
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1125
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1126
		 */
1127
		slab_fix(s, "Marking all objects used");
1128
		page->inuse = page->objects;
1129
		page->freelist = NULL;
C
Christoph Lameter 已提交
1130 1131 1132 1133
	}
	return 0;
}

1134 1135
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1136 1137
{
	if (!check_valid_pointer(s, page, object)) {
1138
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1139
		return 0;
C
Christoph Lameter 已提交
1140 1141 1142
	}

	if (on_freelist(s, page, object)) {
1143
		object_err(s, page, object, "Object already free");
1144
		return 0;
C
Christoph Lameter 已提交
1145 1146
	}

1147
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1148
		return 0;
C
Christoph Lameter 已提交
1149

1150
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1151
		if (!PageSlab(page)) {
J
Joe Perches 已提交
1152 1153
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
1154
		} else if (!page->slab_cache) {
1155 1156
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1157
			dump_stack();
P
Pekka Enberg 已提交
1158
		} else
1159 1160
			object_err(s, page, object,
					"page slab pointer corrupt.");
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
	unsigned long uninitialized_var(flags);
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1192
	}
C
Christoph Lameter 已提交
1193 1194 1195 1196

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1197
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1198
	init_object(s, object, SLUB_RED_INACTIVE);
1199 1200 1201 1202 1203 1204

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1205 1206
	ret = 1;

1207
out:
1208 1209 1210 1211
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1212
	slab_unlock(page);
1213
	spin_unlock_irqrestore(&n->list_lock, flags);
1214 1215 1216
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1217 1218
}

C
Christoph Lameter 已提交
1219 1220
static int __init setup_slub_debug(char *str)
{
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1245
	for (; *str && *str != ','; str++) {
1246 1247
		switch (tolower(*str)) {
		case 'f':
1248
			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1262 1263 1264
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1265 1266 1267 1268 1269 1270 1271
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1272
		default:
1273 1274
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1275
		}
C
Christoph Lameter 已提交
1276 1277
	}

1278
check_slabs:
C
Christoph Lameter 已提交
1279 1280
	if (*str == ',')
		slub_debug_slabs = str + 1;
1281
out:
C
Christoph Lameter 已提交
1282 1283 1284 1285 1286
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
/*
 * kmem_cache_flags - apply debugging options to the cache
 * @object_size:	the size of an object without meta data
 * @flags:		flags to set
 * @name:		name of the cache
 * @ctor:		constructor function
 *
 * Debug option(s) are applied to @flags. In addition to the debug
 * option(s), if a slab name (or multiple) is specified i.e.
 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
 * then only the select slabs will receive the debug option(s).
 */
1299
slab_flags_t kmem_cache_flags(unsigned int object_size,
1300
	slab_flags_t flags, const char *name,
1301
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1302
{
1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334
	char *iter;
	size_t len;

	/* If slub_debug = 0, it folds into the if conditional. */
	if (!slub_debug_slabs)
		return flags | slub_debug;

	len = strlen(name);
	iter = slub_debug_slabs;
	while (*iter) {
		char *end, *glob;
		size_t cmplen;

		end = strchr(iter, ',');
		if (!end)
			end = iter + strlen(iter);

		glob = strnchr(iter, end - iter, '*');
		if (glob)
			cmplen = glob - iter;
		else
			cmplen = max_t(size_t, len, (end - iter));

		if (!strncmp(name, iter, cmplen)) {
			flags |= slub_debug;
			break;
		}

		if (!*end)
			break;
		iter = end + 1;
	}
1335 1336

	return flags;
C
Christoph Lameter 已提交
1337
}
1338
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1339 1340
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
1341 1342
static inline void setup_page_debug(struct kmem_cache *s,
			void *addr, int order) {}
C
Christoph Lameter 已提交
1343

C
Christoph Lameter 已提交
1344
static inline int alloc_debug_processing(struct kmem_cache *s,
1345
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1346

1347
static inline int free_debug_processing(
1348 1349
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1350
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1351 1352 1353 1354

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1355
			void *object, u8 val) { return 1; }
1356 1357
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1358 1359
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1360
slab_flags_t kmem_cache_flags(unsigned int object_size,
1361
	slab_flags_t flags, const char *name,
1362
	void (*ctor)(void *))
1363 1364 1365
{
	return flags;
}
C
Christoph Lameter 已提交
1366
#define slub_debug 0
1367

1368 1369
#define disable_higher_order_debug 0

1370 1371
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1372 1373
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1374 1375 1376 1377
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1378

1379 1380 1381 1382 1383 1384
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1385
static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1386
{
1387
	ptr = kasan_kmalloc_large(ptr, size, flags);
1388
	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1389
	kmemleak_alloc(ptr, size, 1, flags);
1390
	return ptr;
1391 1392
}

1393
static __always_inline void kfree_hook(void *x)
1394 1395
{
	kmemleak_free(x);
1396
	kasan_kfree_large(x, _RET_IP_);
1397 1398
}

1399
static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1400 1401
{
	kmemleak_free_recursive(x, s->flags);
1402

1403 1404 1405 1406 1407
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
1408
#ifdef CONFIG_LOCKDEP
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418
	{
		unsigned long flags;

		local_irq_save(flags);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1419

1420 1421
	/* KASAN might put x into memory quarantine, delaying its reuse */
	return kasan_slab_free(s, x, _RET_IP_);
1422
}
1423

1424 1425
static inline bool slab_free_freelist_hook(struct kmem_cache *s,
					   void **head, void **tail)
1426 1427 1428 1429 1430
{
/*
 * Compiler cannot detect this function can be removed if slab_free_hook()
 * evaluates to nothing.  Thus, catch all relevant config debug options here.
 */
1431
#if defined(CONFIG_LOCKDEP)	||		\
1432 1433 1434 1435
	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
	defined(CONFIG_KASAN)

1436 1437 1438 1439 1440 1441 1442
	void *object;
	void *next = *head;
	void *old_tail = *tail ? *tail : *head;

	/* Head and tail of the reconstructed freelist */
	*head = NULL;
	*tail = NULL;
1443 1444

	do {
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
		object = next;
		next = get_freepointer(s, object);
		/* If object's reuse doesn't have to be delayed */
		if (!slab_free_hook(s, object)) {
			/* Move object to the new freelist */
			set_freepointer(s, object, *head);
			*head = object;
			if (!*tail)
				*tail = object;
		}
	} while (object != old_tail);

	if (*head == *tail)
		*tail = NULL;

	return *head != NULL;
#else
	return true;
1463 1464 1465
#endif
}

1466
static void *setup_object(struct kmem_cache *s, struct page *page,
1467 1468 1469
				void *object)
{
	setup_object_debug(s, page, object);
1470
	object = kasan_init_slab_obj(s, object);
1471 1472 1473 1474 1475
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
1476
	return object;
1477 1478
}

C
Christoph Lameter 已提交
1479 1480 1481
/*
 * Slab allocation and freeing
 */
1482 1483
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1484
{
1485
	struct page *page;
1486
	unsigned int order = oo_order(oo);
1487

1488
	if (node == NUMA_NO_NODE)
1489
		page = alloc_pages(flags, order);
1490
	else
1491
		page = __alloc_pages_node(node, flags, order);
1492

1493 1494 1495 1496
	if (page && memcg_charge_slab(page, flags, order, s)) {
		__free_pages(page, order);
		page = NULL;
	}
1497 1498

	return page;
1499 1500
}

T
Thomas Garnier 已提交
1501 1502 1503 1504
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
1505
	unsigned int count = oo_objects(s->oo);
T
Thomas Garnier 已提交
1506 1507
	int err;

1508 1509 1510 1511
	/* Bailout if already initialised */
	if (s->random_seq)
		return 0;

T
Thomas Garnier 已提交
1512 1513 1514 1515 1516 1517 1518 1519 1520
	err = cache_random_seq_create(s, count, GFP_KERNEL);
	if (err) {
		pr_err("SLUB: Unable to initialize free list for %s\n",
			s->name);
		return err;
	}

	/* Transform to an offset on the set of pages */
	if (s->random_seq) {
1521 1522
		unsigned int i;

T
Thomas Garnier 已提交
1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
		for (i = 0; i < count; i++)
			s->random_seq[i] *= s->size;
	}
	return 0;
}

/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list)
		init_cache_random_seq(s);

	mutex_unlock(&slab_mutex);
}

/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
				unsigned long *pos, void *start,
				unsigned long page_limit,
				unsigned long freelist_count)
{
	unsigned int idx;

	/*
	 * If the target page allocation failed, the number of objects on the
	 * page might be smaller than the usual size defined by the cache.
	 */
	do {
		idx = s->random_seq[*pos];
		*pos += 1;
		if (*pos >= freelist_count)
			*pos = 0;
	} while (unlikely(idx >= page_limit));

	return (char *)start + idx;
}

/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	void *start;
	void *cur;
	void *next;
	unsigned long idx, pos, page_limit, freelist_count;

	if (page->objects < 2 || !s->random_seq)
		return false;

	freelist_count = oo_objects(s->oo);
	pos = get_random_int() % freelist_count;

	page_limit = page->objects * s->size;
	start = fixup_red_left(s, page_address(page));

	/* First entry is used as the base of the freelist */
	cur = next_freelist_entry(s, page, &pos, start, page_limit,
				freelist_count);
1584
	cur = setup_object(s, page, cur);
T
Thomas Garnier 已提交
1585 1586 1587 1588 1589
	page->freelist = cur;

	for (idx = 1; idx < page->objects; idx++) {
		next = next_freelist_entry(s, page, &pos, start, page_limit,
			freelist_count);
1590
		next = setup_object(s, page, next);
T
Thomas Garnier 已提交
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		set_freepointer(s, cur, next);
		cur = next;
	}
	set_freepointer(s, cur, NULL);

	return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
	return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

C
Christoph Lameter 已提交
1610 1611
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1612
	struct page *page;
1613
	struct kmem_cache_order_objects oo = s->oo;
1614
	gfp_t alloc_gfp;
1615
	void *start, *p, *next;
1616
	int idx, order;
T
Thomas Garnier 已提交
1617
	bool shuffle;
C
Christoph Lameter 已提交
1618

1619 1620
	flags &= gfp_allowed_mask;

1621
	if (gfpflags_allow_blocking(flags))
1622 1623
		local_irq_enable();

1624
	flags |= s->allocflags;
1625

1626 1627 1628 1629 1630
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1631
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1632
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1633

1634
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1635 1636
	if (unlikely(!page)) {
		oo = s->min;
1637
		alloc_gfp = flags;
1638 1639 1640 1641
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1642
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1643 1644 1645
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1646
	}
V
Vegard Nossum 已提交
1647

1648
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1649

G
Glauber Costa 已提交
1650
	order = compound_order(page);
1651
	page->slab_cache = s;
1652
	__SetPageSlab(page);
1653
	if (page_is_pfmemalloc(page))
1654
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1655

1656
	kasan_poison_slab(page);
C
Christoph Lameter 已提交
1657

1658
	start = page_address(page);
C
Christoph Lameter 已提交
1659

1660
	setup_page_debug(s, start, order);
1661

T
Thomas Garnier 已提交
1662 1663 1664
	shuffle = shuffle_freelist(s, page);

	if (!shuffle) {
1665 1666 1667
		start = fixup_red_left(s, start);
		start = setup_object(s, page, start);
		page->freelist = start;
1668 1669 1670 1671 1672 1673 1674
		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
			next = p + s->size;
			next = setup_object(s, page, next);
			set_freepointer(s, p, next);
			p = next;
		}
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1675 1676
	}

1677
	page->inuse = page->objects;
1678
	page->frozen = 1;
1679

C
Christoph Lameter 已提交
1680
out:
1681
	if (gfpflags_allow_blocking(flags))
1682 1683 1684 1685
		local_irq_disable();
	if (!page)
		return NULL;

1686
	mod_lruvec_page_state(page,
1687 1688 1689 1690 1691 1692
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		1 << oo_order(oo));

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1693 1694 1695
	return page;
}

1696 1697 1698
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1699
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1700 1701 1702
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
1703
		dump_stack();
1704 1705 1706 1707 1708 1709
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1710 1711
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1712 1713
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1714

1715
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
C
Christoph Lameter 已提交
1716 1717 1718
		void *p;

		slab_pad_check(s, page);
1719 1720
		for_each_object(p, s, page_address(page),
						page->objects)
1721
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1722 1723
	}

1724
	mod_lruvec_page_state(page,
C
Christoph Lameter 已提交
1725 1726
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1727
		-pages);
C
Christoph Lameter 已提交
1728

1729
	__ClearPageSlabPfmemalloc(page);
1730
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1731

1732
	page->mapping = NULL;
N
Nick Piggin 已提交
1733 1734
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1735 1736
	memcg_uncharge_slab(page, order, s);
	__free_pages(page, order);
C
Christoph Lameter 已提交
1737 1738 1739 1740
}

static void rcu_free_slab(struct rcu_head *h)
{
1741
	struct page *page = container_of(h, struct page, rcu_head);
1742

1743
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1744 1745 1746 1747
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
1748
	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1749
		call_rcu(&page->rcu_head, rcu_free_slab);
C
Christoph Lameter 已提交
1750 1751 1752 1753 1754 1755
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1756
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1757 1758 1759 1760
	free_slab(s, page);
}

/*
1761
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1762
 */
1763 1764
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1765
{
C
Christoph Lameter 已提交
1766
	n->nr_partial++;
1767
	if (tail == DEACTIVATE_TO_TAIL)
1768
		list_add_tail(&page->slab_list, &n->partial);
1769
	else
1770
		list_add(&page->slab_list, &n->partial);
C
Christoph Lameter 已提交
1771 1772
}

1773 1774
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1775
{
P
Peter Zijlstra 已提交
1776
	lockdep_assert_held(&n->list_lock);
1777 1778
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1779

1780 1781 1782 1783
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1784
	list_del(&page->slab_list);
1785
	n->nr_partial--;
1786 1787
}

C
Christoph Lameter 已提交
1788
/*
1789 1790
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1791
 *
1792
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1793
 */
1794
static inline void *acquire_slab(struct kmem_cache *s,
1795
		struct kmem_cache_node *n, struct page *page,
1796
		int mode, int *objects)
C
Christoph Lameter 已提交
1797
{
1798 1799 1800 1801
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1802 1803
	lockdep_assert_held(&n->list_lock);

1804 1805 1806 1807 1808
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1809 1810 1811
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1812
	*objects = new.objects - new.inuse;
1813
	if (mode) {
1814
		new.inuse = page->objects;
1815 1816 1817 1818
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1819

1820
	VM_BUG_ON(new.frozen);
1821
	new.frozen = 1;
1822

1823
	if (!__cmpxchg_double_slab(s, page,
1824
			freelist, counters,
1825
			new.freelist, new.counters,
1826 1827
			"acquire_slab"))
		return NULL;
1828 1829

	remove_partial(n, page);
1830
	WARN_ON(!freelist);
1831
	return freelist;
C
Christoph Lameter 已提交
1832 1833
}

1834
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1835
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1836

C
Christoph Lameter 已提交
1837
/*
C
Christoph Lameter 已提交
1838
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1839
 */
1840 1841
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1842
{
1843 1844
	struct page *page, *page2;
	void *object = NULL;
1845
	unsigned int available = 0;
1846
	int objects;
C
Christoph Lameter 已提交
1847 1848 1849 1850

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1851 1852
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1853 1854 1855 1856 1857
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1858
	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1859
		void *t;
1860

1861 1862 1863
		if (!pfmemalloc_match(page, flags))
			continue;

1864
		t = acquire_slab(s, n, page, object == NULL, &objects);
1865 1866 1867
		if (!t)
			break;

1868
		available += objects;
1869
		if (!object) {
1870 1871 1872 1873
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1874
			put_cpu_partial(s, page, 0);
1875
			stat(s, CPU_PARTIAL_NODE);
1876
		}
1877
		if (!kmem_cache_has_cpu_partial(s)
1878
			|| available > slub_cpu_partial(s) / 2)
1879 1880
			break;

1881
	}
C
Christoph Lameter 已提交
1882
	spin_unlock(&n->list_lock);
1883
	return object;
C
Christoph Lameter 已提交
1884 1885 1886
}

/*
C
Christoph Lameter 已提交
1887
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1888
 */
1889
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1890
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1891 1892 1893
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1894
	struct zoneref *z;
1895 1896
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1897
	void *object;
1898
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1899 1900

	/*
C
Christoph Lameter 已提交
1901 1902 1903 1904
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1905
	 *
C
Christoph Lameter 已提交
1906 1907 1908 1909
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1910
	 *
1911 1912 1913 1914 1915
	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
	 * (which makes defrag_ratio = 1000) then every (well almost)
	 * allocation will first attempt to defrag slab caches on other nodes.
	 * This means scanning over all nodes to look for partial slabs which
	 * may be expensive if we do it every time we are trying to find a slab
C
Christoph Lameter 已提交
1916
	 * with available objects.
C
Christoph Lameter 已提交
1917
	 */
1918 1919
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1920 1921
		return NULL;

1922
	do {
1923
		cpuset_mems_cookie = read_mems_allowed_begin();
1924
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1925 1926 1927 1928 1929
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1930
			if (n && cpuset_zone_allowed(zone, flags) &&
1931
					n->nr_partial > s->min_partial) {
1932
				object = get_partial_node(s, n, c, flags);
1933 1934
				if (object) {
					/*
1935 1936 1937 1938 1939
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1940 1941 1942
					 */
					return object;
				}
1943
			}
C
Christoph Lameter 已提交
1944
		}
1945
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1946
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
1947 1948 1949 1950 1951 1952
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1953
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1954
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1955
{
1956
	void *object;
1957 1958 1959 1960 1961 1962
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1963

1964
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1965 1966
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1967

1968
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1969 1970
}

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

2012
	pr_info("%s %s: cmpxchg redo ", n, s->name);
2013 2014 2015

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2016
		pr_warn("due to cpu change %d -> %d\n",
2017 2018 2019 2020
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
2021
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2022 2023
			tid_to_event(tid), tid_to_event(actual_tid));
	else
2024
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2025 2026
			actual_tid, tid, next_tid(tid));
#endif
2027
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2028 2029
}

2030
static void init_kmem_cache_cpus(struct kmem_cache *s)
2031 2032 2033 2034 2035 2036
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
2037

C
Christoph Lameter 已提交
2038 2039 2040
/*
 * Remove the cpu slab
 */
2041
static void deactivate_slab(struct kmem_cache *s, struct page *page,
2042
				void *freelist, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2043
{
2044 2045 2046 2047 2048
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
2049
	int tail = DEACTIVATE_TO_HEAD;
2050 2051 2052 2053
	struct page new;
	struct page old;

	if (page->freelist) {
2054
		stat(s, DEACTIVATE_REMOTE_FREES);
2055
		tail = DEACTIVATE_TO_TAIL;
2056 2057
	}

2058
	/*
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
2076
			VM_BUG_ON(!new.frozen);
2077

2078
		} while (!__cmpxchg_double_slab(s, page,
2079 2080 2081 2082 2083 2084 2085
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

2086
	/*
2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
2099
	 */
2100
redo:
2101

2102 2103
	old.freelist = page->freelist;
	old.counters = page->counters;
2104
	VM_BUG_ON(!old.frozen);
2105

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

2117
	if (!new.inuse && n->nr_partial >= s->min_partial)
2118 2119 2120 2121 2122 2123
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
W
Wei Yang 已提交
2124
			 * Taking the spinlock removes the possibility
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {
		if (l == M_PARTIAL)
			remove_partial(n, page);
		else if (l == M_FULL)
P
Peter Zijlstra 已提交
2147
			remove_full(s, n, page);
2148

2149
		if (m == M_PARTIAL)
2150
			add_partial(n, page, tail);
2151
		else if (m == M_FULL)
2152 2153 2154 2155
			add_full(s, n, page);
	}

	l = m;
2156
	if (!__cmpxchg_double_slab(s, page,
2157 2158 2159 2160 2161 2162 2163 2164
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

2165 2166 2167 2168 2169
	if (m == M_PARTIAL)
		stat(s, tail);
	else if (m == M_FULL)
		stat(s, DEACTIVATE_FULL);
	else if (m == M_FREE) {
2170 2171 2172
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2173
	}
2174 2175 2176

	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2177 2178
}

2179 2180 2181
/*
 * Unfreeze all the cpu partial slabs.
 *
2182 2183 2184
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2185
 */
2186 2187
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2188
{
2189
#ifdef CONFIG_SLUB_CPU_PARTIAL
2190
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2191
	struct page *page, *discard_page = NULL;
2192 2193 2194 2195 2196 2197

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
2198 2199 2200 2201 2202 2203 2204 2205 2206

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2207 2208 2209 2210 2211

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2212
			VM_BUG_ON(!old.frozen);
2213 2214 2215 2216 2217 2218

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2219
		} while (!__cmpxchg_double_slab(s, page,
2220 2221 2222 2223
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2224
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2225 2226
			page->next = discard_page;
			discard_page = page;
2227 2228 2229
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2230 2231 2232 2233 2234
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2235 2236 2237 2238 2239 2240 2241 2242 2243

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2244
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2245 2246 2247
}

/*
2248 2249
 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
 * partial page slot if available.
2250 2251 2252 2253
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2254
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2255
{
2256
#ifdef CONFIG_SLUB_CPU_PARTIAL
2257 2258 2259 2260
	struct page *oldpage;
	int pages;
	int pobjects;

2261
	preempt_disable();
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2277
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2278
				local_irq_restore(flags);
2279
				oldpage = NULL;
2280 2281
				pobjects = 0;
				pages = 0;
2282
				stat(s, CPU_PARTIAL_DRAIN);
2283 2284 2285 2286 2287 2288 2289 2290 2291 2292
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2293 2294
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2295 2296 2297 2298 2299 2300 2301 2302
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2303
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2304 2305
}

2306
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2307
{
2308
	stat(s, CPUSLAB_FLUSH);
2309
	deactivate_slab(s, c->page, c->freelist, c);
2310 2311

	c->tid = next_tid(c->tid);
C
Christoph Lameter 已提交
2312 2313 2314 2315
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2316
 *
C
Christoph Lameter 已提交
2317 2318
 * Called from IPI handler with interrupts disabled.
 */
2319
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2320
{
2321
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2322

2323 2324
	if (c->page)
		flush_slab(s, c);
2325

2326
	unfreeze_partials(s, c);
C
Christoph Lameter 已提交
2327 2328 2329 2330 2331 2332
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2333
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2334 2335
}

2336 2337 2338 2339 2340
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2341
	return c->page || slub_percpu_partial(c);
2342 2343
}

C
Christoph Lameter 已提交
2344 2345
static void flush_all(struct kmem_cache *s)
{
2346
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2347 2348
}

2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slub_cpu_dead(unsigned int cpu)
{
	struct kmem_cache *s;
	unsigned long flags;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		local_irq_save(flags);
		__flush_cpu_slab(s, cpu);
		local_irq_restore(flags);
	}
	mutex_unlock(&slab_mutex);
	return 0;
}

2368 2369 2370 2371
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2372
static inline int node_match(struct page *page, int node)
2373 2374
{
#ifdef CONFIG_NUMA
2375
	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2376 2377 2378 2379 2380
		return 0;
#endif
	return 1;
}

2381
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2382 2383 2384 2385 2386
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2387 2388 2389 2390 2391 2392 2393
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2394 2395 2396 2397 2398 2399 2400 2401
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
2402
	list_for_each_entry(page, &n->partial, slab_list)
P
Pekka Enberg 已提交
2403 2404 2405 2406
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2407
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2408

P
Pekka Enberg 已提交
2409 2410 2411
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2412 2413 2414
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2415
	int node;
C
Christoph Lameter 已提交
2416
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2417

2418 2419 2420
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2421 2422
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2423
	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2424 2425
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2426

2427
	if (oo_order(s->min) > get_order(s->object_size))
2428 2429
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2430

C
Christoph Lameter 已提交
2431
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2432 2433 2434 2435
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2436 2437 2438
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2439

2440
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2441 2442
			node, nr_slabs, nr_objs, nr_free);
	}
2443
#endif
P
Pekka Enberg 已提交
2444 2445
}

2446 2447 2448
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2449
	void *freelist;
2450 2451
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2452

2453 2454
	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));

2455
	freelist = get_partial(s, flags, node, c);
2456

2457 2458 2459 2460
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2461
	if (page) {
2462
		c = raw_cpu_ptr(s->cpu_slab);
2463 2464 2465 2466 2467 2468 2469
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2470
		freelist = page->freelist;
2471 2472 2473 2474 2475
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
2476
	}
2477

2478
	return freelist;
2479 2480
}

2481 2482 2483 2484 2485 2486 2487 2488
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2489
/*
2490 2491
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2492 2493 2494 2495
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2496 2497
 *
 * This function must be called with interrupt disabled.
2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2508

2509
		new.counters = counters;
2510
		VM_BUG_ON(!new.frozen);
2511 2512 2513 2514

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2515
	} while (!__cmpxchg_double_slab(s, page,
2516 2517 2518 2519 2520 2521 2522
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2523
/*
2524 2525 2526 2527 2528 2529
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2530
 *
2531 2532 2533
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2534
 *
2535
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2536 2537
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2538 2539 2540
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2541
 */
2542
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2543
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2544
{
2545
	void *freelist;
2546
	struct page *page;
C
Christoph Lameter 已提交
2547

2548 2549
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2550
		goto new_slab;
2551
redo:
2552

2553
	if (unlikely(!node_match(page, node))) {
2554 2555 2556 2557 2558 2559 2560
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
2561
			deactivate_slab(s, page, c->freelist, c);
2562 2563
			goto new_slab;
		}
2564
	}
C
Christoph Lameter 已提交
2565

2566 2567 2568 2569 2570 2571
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2572
		deactivate_slab(s, page, c->freelist, c);
2573 2574 2575
		goto new_slab;
	}

2576
	/* must check again c->freelist in case of cpu migration or IRQ */
2577 2578
	freelist = c->freelist;
	if (freelist)
2579
		goto load_freelist;
2580

2581
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2582

2583
	if (!freelist) {
2584 2585
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2586
		goto new_slab;
2587
	}
C
Christoph Lameter 已提交
2588

2589
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2590

2591
load_freelist:
2592 2593 2594 2595 2596
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2597
	VM_BUG_ON(!c->page->frozen);
2598
	c->freelist = get_freepointer(s, freelist);
2599
	c->tid = next_tid(c->tid);
2600
	return freelist;
C
Christoph Lameter 已提交
2601 2602

new_slab:
2603

2604 2605 2606
	if (slub_percpu_partial(c)) {
		page = c->page = slub_percpu_partial(c);
		slub_set_percpu_partial(c, page);
2607 2608
		stat(s, CPU_PARTIAL_ALLOC);
		goto redo;
C
Christoph Lameter 已提交
2609 2610
	}

2611
	freelist = new_slab_objects(s, gfpflags, node, &c);
2612

2613
	if (unlikely(!freelist)) {
2614
		slab_out_of_memory(s, gfpflags, node);
2615
		return NULL;
C
Christoph Lameter 已提交
2616
	}
2617

2618
	page = c->page;
2619
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2620
		goto load_freelist;
2621

2622
	/* Only entered in the debug case */
2623 2624
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2625
		goto new_slab;	/* Slab failed checks. Next slab needed */
2626

2627
	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2628
	return freelist;
2629 2630
}

2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2666
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2667
		gfp_t gfpflags, int node, unsigned long addr)
2668
{
2669
	void *object;
2670
	struct kmem_cache_cpu *c;
2671
	struct page *page;
2672
	unsigned long tid;
2673

2674 2675
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2676
		return NULL;
2677 2678 2679 2680 2681 2682
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2683
	 *
2684 2685 2686
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2687
	 */
2688 2689 2690
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2691 2692
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2703 2704 2705 2706 2707 2708 2709 2710

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2711
	object = c->freelist;
2712
	page = c->page;
D
Dave Hansen 已提交
2713
	if (unlikely(!object || !node_match(page, node))) {
2714
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2715 2716
		stat(s, ALLOC_SLOWPATH);
	} else {
2717 2718
		void *next_object = get_freepointer_safe(s, object);

2719
		/*
L
Lucas De Marchi 已提交
2720
		 * The cmpxchg will only match if there was no additional
2721 2722
		 * operation and if we are on the right processor.
		 *
2723 2724
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2725 2726 2727 2728
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2729 2730 2731
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2732
		 */
2733
		if (unlikely(!this_cpu_cmpxchg_double(
2734 2735
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2736
				next_object, next_tid(tid)))) {
2737 2738 2739 2740

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2741
		prefetch_freepointer(s, next_object);
2742
		stat(s, ALLOC_FASTPATH);
2743
	}
2744

2745
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2746
		memset(object, 0, s->object_size);
2747

2748
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2749

2750
	return object;
C
Christoph Lameter 已提交
2751 2752
}

2753 2754 2755 2756 2757 2758
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2759 2760
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2761
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2762

2763 2764
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2765 2766

	return ret;
C
Christoph Lameter 已提交
2767 2768 2769
}
EXPORT_SYMBOL(kmem_cache_alloc);

2770
#ifdef CONFIG_TRACING
2771 2772
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2773
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2774
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2775
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2776 2777 2778
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2779 2780
#endif

C
Christoph Lameter 已提交
2781 2782 2783
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2784
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2785

2786
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2787
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2788 2789

	return ret;
C
Christoph Lameter 已提交
2790 2791 2792
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2793
#ifdef CONFIG_TRACING
2794
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2795
				    gfp_t gfpflags,
2796
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2797
{
2798
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2799 2800 2801

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2802

2803
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2804
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2805
}
2806
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2807
#endif
2808
#endif	/* CONFIG_NUMA */
E
Eduard - Gabriel Munteanu 已提交
2809

C
Christoph Lameter 已提交
2810
/*
K
Kim Phillips 已提交
2811
 * Slow path handling. This may still be called frequently since objects
2812
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2813
 *
2814 2815 2816
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2817
 */
2818
static void __slab_free(struct kmem_cache *s, struct page *page,
2819 2820 2821
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2822 2823
{
	void *prior;
2824 2825 2826 2827
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2828
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2829

2830
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2831

2832
	if (kmem_cache_debug(s) &&
2833
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2834
		return;
C
Christoph Lameter 已提交
2835

2836
	do {
2837 2838 2839 2840
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2841 2842
		prior = page->freelist;
		counters = page->counters;
2843
		set_freepointer(s, tail, prior);
2844 2845
		new.counters = counters;
		was_frozen = new.frozen;
2846
		new.inuse -= cnt;
2847
		if ((!new.inuse || !prior) && !was_frozen) {
2848

P
Peter Zijlstra 已提交
2849
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2850 2851

				/*
2852 2853 2854 2855
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2856 2857 2858
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2859
			} else { /* Needs to be taken off a list */
2860

2861
				n = get_node(s, page_to_nid(page));
2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2873
		}
C
Christoph Lameter 已提交
2874

2875 2876
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2877
		head, new.counters,
2878
		"__slab_free"));
C
Christoph Lameter 已提交
2879

2880
	if (likely(!n)) {
2881 2882 2883 2884 2885

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2886
		if (new.frozen && !was_frozen) {
2887
			put_cpu_partial(s, page, 1);
2888 2889
			stat(s, CPU_PARTIAL_FREE);
		}
2890
		/*
2891 2892 2893
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2894 2895 2896 2897
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2898

2899
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2900 2901
		goto slab_empty;

C
Christoph Lameter 已提交
2902
	/*
2903 2904
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2905
	 */
2906
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2907
		remove_full(s, n, page);
2908 2909
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2910
	}
2911
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2912 2913 2914
	return;

slab_empty:
2915
	if (prior) {
C
Christoph Lameter 已提交
2916
		/*
2917
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2918
		 */
2919
		remove_partial(n, page);
2920
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2921
	} else {
2922
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2923 2924
		remove_full(s, n, page);
	}
2925

2926
	spin_unlock_irqrestore(&n->list_lock, flags);
2927
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2928 2929 2930
	discard_slab(s, page);
}

2931 2932 2933 2934 2935 2936 2937 2938 2939 2940
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
2941 2942 2943 2944
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
2945
 */
2946 2947 2948
static __always_inline void do_slab_free(struct kmem_cache *s,
				struct page *page, void *head, void *tail,
				int cnt, unsigned long addr)
2949
{
2950
	void *tail_obj = tail ? : head;
2951
	struct kmem_cache_cpu *c;
2952 2953 2954 2955 2956 2957
	unsigned long tid;
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2958
	 * during the cmpxchg then the free will succeed.
2959
	 */
2960 2961 2962
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2963 2964
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2965

2966 2967
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2968

2969
	if (likely(page == c->page)) {
2970
		set_freepointer(s, tail_obj, c->freelist);
2971

2972
		if (unlikely(!this_cpu_cmpxchg_double(
2973 2974
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
2975
				head, next_tid(tid)))) {
2976 2977 2978 2979

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2980
		stat(s, FREE_FASTPATH);
2981
	} else
2982
		__slab_free(s, page, head, tail_obj, cnt, addr);
2983 2984 2985

}

2986 2987 2988 2989 2990
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	/*
2991 2992
	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
	 * to remove objects, whose reuse must be delayed.
2993
	 */
2994 2995
	if (slab_free_freelist_hook(s, &head, &tail))
		do_slab_free(s, page, head, tail, cnt, addr);
2996 2997
}

2998
#ifdef CONFIG_KASAN_GENERIC
2999 3000 3001 3002 3003 3004
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif

C
Christoph Lameter 已提交
3005 3006
void kmem_cache_free(struct kmem_cache *s, void *x)
{
3007 3008
	s = cache_from_obj(s, x);
	if (!s)
3009
		return;
3010
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3011
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
3012 3013 3014
}
EXPORT_SYMBOL(kmem_cache_free);

3015
struct detached_freelist {
3016
	struct page *page;
3017 3018 3019
	void *tail;
	void *freelist;
	int cnt;
3020
	struct kmem_cache *s;
3021
};
3022

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
3035 3036 3037
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
3038 3039 3040 3041
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
3042
	struct page *page;
3043

3044 3045
	/* Always re-init detached_freelist */
	df->page = NULL;
3046

3047 3048
	do {
		object = p[--size];
3049
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3050
	} while (!object && size);
3051

3052 3053
	if (!object)
		return 0;
3054

3055 3056 3057 3058 3059 3060
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
3061
			__free_pages(page, compound_order(page));
3062 3063 3064 3065 3066 3067 3068 3069
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
3070

3071
	/* Start new detached freelist */
3072
	df->page = page;
3073
	set_freepointer(df->s, object, NULL);
3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
3087
			set_freepointer(df->s, object, df->freelist);
3088 3089 3090 3091 3092
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
3093
		}
3094 3095 3096 3097 3098 3099 3100

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
3101
	}
3102 3103 3104 3105 3106

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
3107
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3108 3109 3110 3111 3112 3113 3114 3115
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
A
Arnd Bergmann 已提交
3116
		if (!df.page)
3117 3118
			continue;

3119
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3120
	} while (likely(size));
3121 3122 3123
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

3124
/* Note that interrupts must be enabled when calling this function. */
3125 3126
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
3127
{
3128 3129 3130
	struct kmem_cache_cpu *c;
	int i;

3131 3132 3133 3134
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

3146 3147 3148 3149 3150
		if (unlikely(!object)) {
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
3151
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3152
					    _RET_IP_, c);
3153 3154 3155
			if (unlikely(!p[i]))
				goto error;

3156 3157 3158
			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
		c->freelist = get_freepointer(s, object);
		p[i] = object;
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

3173 3174
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
3175
	return i;
3176 3177
error:
	local_irq_enable();
3178 3179
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
3180
	return 0;
3181 3182 3183 3184
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
3185
/*
C
Christoph Lameter 已提交
3186 3187 3188 3189
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3190 3191 3192 3193
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3194
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3195 3196 3197 3198 3199 3200 3201 3202 3203
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
3204 3205 3206
static unsigned int slub_min_order;
static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
static unsigned int slub_min_objects;
C
Christoph Lameter 已提交
3207 3208 3209 3210

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3211 3212 3213 3214
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3215
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3216 3217 3218 3219 3220 3221
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3222
 *
C
Christoph Lameter 已提交
3223 3224 3225 3226
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3227
 *
C
Christoph Lameter 已提交
3228 3229 3230 3231
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3232
 */
3233 3234
static inline unsigned int slab_order(unsigned int size,
		unsigned int min_objects, unsigned int max_order,
3235
		unsigned int fract_leftover)
C
Christoph Lameter 已提交
3236
{
3237 3238
	unsigned int min_order = slub_min_order;
	unsigned int order;
C
Christoph Lameter 已提交
3239

3240
	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3241
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3242

3243
	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3244
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3245

3246 3247
		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
		unsigned int rem;
C
Christoph Lameter 已提交
3248

3249
		rem = slab_size % size;
C
Christoph Lameter 已提交
3250

3251
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3252 3253
			break;
	}
C
Christoph Lameter 已提交
3254

C
Christoph Lameter 已提交
3255 3256 3257
	return order;
}

3258
static inline int calculate_order(unsigned int size)
3259
{
3260 3261 3262
	unsigned int order;
	unsigned int min_objects;
	unsigned int max_objects;
3263 3264 3265 3266 3267 3268

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3269
	 * First we increase the acceptable waste in a slab. Then
3270 3271 3272
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3273 3274
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3275
	max_objects = order_objects(slub_max_order, size);
3276 3277
	min_objects = min(min_objects, max_objects);

3278
	while (min_objects > 1) {
3279 3280
		unsigned int fraction;

C
Christoph Lameter 已提交
3281
		fraction = 16;
3282 3283
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3284
					slub_max_order, fraction);
3285 3286 3287 3288
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3289
		min_objects--;
3290 3291 3292 3293 3294 3295
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3296
	order = slab_order(size, 1, slub_max_order, 1);
3297 3298 3299 3300 3301 3302
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3303
	order = slab_order(size, 1, MAX_ORDER, 1);
D
David Rientjes 已提交
3304
	if (order < MAX_ORDER)
3305 3306 3307 3308
		return order;
	return -ENOSYS;
}

3309
static void
3310
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3311 3312 3313 3314
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3315
#ifdef CONFIG_SLUB_DEBUG
3316
	atomic_long_set(&n->nr_slabs, 0);
3317
	atomic_long_set(&n->total_objects, 0);
3318
	INIT_LIST_HEAD(&n->full);
3319
#endif
C
Christoph Lameter 已提交
3320 3321
}

3322
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3323
{
3324
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3325
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3326

3327
	/*
3328 3329
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3330
	 */
3331 3332
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3333 3334 3335 3336 3337

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3338

3339
	return 1;
3340 3341
}

3342 3343
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3344 3345 3346 3347 3348
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3349 3350
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3351
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3352
 */
3353
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3354 3355 3356 3357
{
	struct page *page;
	struct kmem_cache_node *n;

3358
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3359

3360
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3361 3362

	BUG_ON(!page);
3363
	if (page_to_nid(page) != node) {
3364 3365
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3366 3367
	}

C
Christoph Lameter 已提交
3368 3369
	n = page->freelist;
	BUG_ON(!n);
3370
#ifdef CONFIG_SLUB_DEBUG
3371
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3372
	init_tracking(kmem_cache_node, n);
3373
#endif
3374
	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3375
		      GFP_KERNEL);
3376 3377 3378 3379
	page->freelist = get_freepointer(kmem_cache_node, n);
	page->inuse = 1;
	page->frozen = 0;
	kmem_cache_node->node[node] = n;
3380
	init_kmem_cache_node(n);
3381
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3382

3383
	/*
3384 3385
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3386
	 */
3387
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3388 3389 3390 3391 3392
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3393
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3394

C
Christoph Lameter 已提交
3395
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3396
		s->node[node] = NULL;
3397
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3398 3399 3400
	}
}

3401 3402
void __kmem_cache_release(struct kmem_cache *s)
{
T
Thomas Garnier 已提交
3403
	cache_random_seq_destroy(s);
3404 3405 3406 3407
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3408
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3409 3410 3411
{
	int node;

C
Christoph Lameter 已提交
3412
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3413 3414
		struct kmem_cache_node *n;

3415
		if (slab_state == DOWN) {
3416
			early_kmem_cache_node_alloc(node);
3417 3418
			continue;
		}
3419
		n = kmem_cache_alloc_node(kmem_cache_node,
3420
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3421

3422 3423 3424
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3425
		}
3426

3427
		init_kmem_cache_node(n);
3428
		s->node[node] = n;
C
Christoph Lameter 已提交
3429 3430 3431 3432
	}
	return 1;
}

3433
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3434 3435 3436 3437 3438 3439 3440 3441
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
	 * B) The number of objects in cpu partial slabs to extract from the
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
	 */
	if (!kmem_cache_has_cpu_partial(s))
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;
#endif
}

C
Christoph Lameter 已提交
3475 3476 3477 3478
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3479
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3480
{
3481
	slab_flags_t flags = s->flags;
3482
	unsigned int size = s->object_size;
3483
	unsigned int order;
C
Christoph Lameter 已提交
3484

3485 3486 3487 3488 3489 3490 3491 3492
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3493 3494 3495 3496 3497
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
3498
	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3499
			!s->ctor)
C
Christoph Lameter 已提交
3500 3501 3502 3503 3504 3505
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3506
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3507
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3508
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3509
	 */
3510
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3511
		size += sizeof(void *);
C
Christoph Lameter 已提交
3512
#endif
C
Christoph Lameter 已提交
3513 3514

	/*
C
Christoph Lameter 已提交
3515 3516
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3517 3518 3519
	 */
	s->inuse = size;

3520
	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3521
		s->ctor)) {
C
Christoph Lameter 已提交
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3534
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3535 3536 3537 3538 3539 3540
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);
3541
#endif
C
Christoph Lameter 已提交
3542

3543 3544
	kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
J
Joonsoo Kim 已提交
3545
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3546 3547 3548 3549
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3550
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3551 3552 3553
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3554 3555 3556 3557 3558

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3559
#endif
C
Christoph Lameter 已提交
3560

C
Christoph Lameter 已提交
3561 3562 3563 3564 3565
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3566
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3567
	s->size = size;
3568 3569 3570
	if (forced_order >= 0)
		order = forced_order;
	else
3571
		order = calculate_order(size);
C
Christoph Lameter 已提交
3572

3573
	if ((int)order < 0)
C
Christoph Lameter 已提交
3574 3575
		return 0;

3576
	s->allocflags = 0;
3577
	if (order)
3578 3579 3580
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3581
		s->allocflags |= GFP_DMA;
3582

3583 3584 3585
	if (s->flags & SLAB_CACHE_DMA32)
		s->allocflags |= GFP_DMA32;

3586 3587 3588
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3589 3590 3591
	/*
	 * Determine the number of objects per slab
	 */
3592 3593
	s->oo = oo_make(order, size);
	s->min = oo_make(get_order(size), size);
3594 3595
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3596

3597
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3598 3599
}

3600
static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
C
Christoph Lameter 已提交
3601
{
3602
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3603 3604 3605
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	s->random = get_random_long();
#endif
C
Christoph Lameter 已提交
3606

3607
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3608
		goto error;
3609 3610 3611 3612 3613
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3614
		if (get_order(s->size) > get_order(s->object_size)) {
3615 3616 3617 3618 3619 3620
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3621

3622 3623
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3624
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3625 3626 3627 3628
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3629 3630 3631 3632
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3633 3634
	set_min_partial(s, ilog2(s->size) / 2);

3635
	set_cpu_partial(s);
3636

C
Christoph Lameter 已提交
3637
#ifdef CONFIG_NUMA
3638
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3639
#endif
T
Thomas Garnier 已提交
3640 3641 3642 3643 3644 3645 3646

	/* Initialize the pre-computed randomized freelist if slab is up */
	if (slab_state >= UP) {
		if (init_cache_random_seq(s))
			goto error;
	}

3647
	if (!init_kmem_cache_nodes(s))
3648
		goto error;
C
Christoph Lameter 已提交
3649

3650
	if (alloc_kmem_cache_cpus(s))
3651
		return 0;
3652

3653
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3654 3655
error:
	if (flags & SLAB_PANIC)
A
Alexey Dobriyan 已提交
3656 3657
		panic("Cannot create slab %s size=%u realsize=%u order=%u offset=%u flags=%lx\n",
		      s->name, s->size, s->size,
3658
		      oo_order(s->oo), s->offset, (unsigned long)flags);
3659
	return -EINVAL;
C
Christoph Lameter 已提交
3660 3661
}

3662 3663 3664 3665 3666 3667
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
3668
	unsigned long *map = bitmap_zalloc(page->objects, GFP_ATOMIC);
E
Eric Dumazet 已提交
3669 3670
	if (!map)
		return;
3671
	slab_err(s, page, text, s->name);
3672 3673
	slab_lock(page);

3674
	get_map(s, page, map);
3675 3676 3677
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3678
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3679 3680 3681 3682
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
3683
	bitmap_free(map);
3684 3685 3686
#endif
}

C
Christoph Lameter 已提交
3687
/*
C
Christoph Lameter 已提交
3688
 * Attempt to free all partial slabs on a node.
3689 3690
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3691
 */
C
Christoph Lameter 已提交
3692
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3693
{
3694
	LIST_HEAD(discard);
C
Christoph Lameter 已提交
3695 3696
	struct page *page, *h;

3697 3698
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3699
	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
C
Christoph Lameter 已提交
3700
		if (!page->inuse) {
3701
			remove_partial(n, page);
3702
			list_add(&page->slab_list, &discard);
3703 3704
		} else {
			list_slab_objects(s, page,
3705
			"Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3706
		}
3707
	}
3708
	spin_unlock_irq(&n->list_lock);
3709

3710
	list_for_each_entry_safe(page, h, &discard, slab_list)
3711
		discard_slab(s, page);
C
Christoph Lameter 已提交
3712 3713
}

3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (n->nr_partial || slabs_node(s, node))
			return false;
	return true;
}

C
Christoph Lameter 已提交
3725
/*
C
Christoph Lameter 已提交
3726
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3727
 */
3728
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3729 3730
{
	int node;
C
Christoph Lameter 已提交
3731
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3732 3733 3734

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3735
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3736 3737
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3738 3739
			return 1;
	}
3740
	sysfs_slab_remove(s);
C
Christoph Lameter 已提交
3741 3742 3743 3744 3745 3746 3747 3748 3749
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
3750
	get_option(&str, (int *)&slub_min_order);
C
Christoph Lameter 已提交
3751 3752 3753 3754 3755 3756 3757 3758

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
3759 3760
	get_option(&str, (int *)&slub_max_order);
	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
C
Christoph Lameter 已提交
3761 3762 3763 3764 3765 3766 3767 3768

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
3769
	get_option(&str, (int *)&slub_min_objects);
C
Christoph Lameter 已提交
3770 3771 3772 3773 3774 3775 3776 3777

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3778
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3779
	void *ret;
C
Christoph Lameter 已提交
3780

3781
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3782
		return kmalloc_large(size, flags);
3783

3784
	s = kmalloc_slab(size, flags);
3785 3786

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3787 3788
		return s;

3789
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3790

3791
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3792

3793
	ret = kasan_kmalloc(s, ret, size, flags);
3794

E
Eduard - Gabriel Munteanu 已提交
3795
	return ret;
C
Christoph Lameter 已提交
3796 3797 3798
}
EXPORT_SYMBOL(__kmalloc);

3799
#ifdef CONFIG_NUMA
3800 3801
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3802
	struct page *page;
3803
	void *ptr = NULL;
3804

3805
	flags |= __GFP_COMP;
3806
	page = alloc_pages_node(node, flags, get_order(size));
3807
	if (page)
3808 3809
		ptr = page_address(page);

3810
	return kmalloc_large_node_hook(ptr, size, flags);
3811 3812
}

C
Christoph Lameter 已提交
3813 3814
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3815
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3816
	void *ret;
C
Christoph Lameter 已提交
3817

3818
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3819 3820
		ret = kmalloc_large_node(size, flags, node);

3821 3822 3823
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3824 3825 3826

		return ret;
	}
3827

3828
	s = kmalloc_slab(size, flags);
3829 3830

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3831 3832
		return s;

3833
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3834

3835
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3836

3837
	ret = kasan_kmalloc(s, ret, size, flags);
3838

E
Eduard - Gabriel Munteanu 已提交
3839
	return ret;
C
Christoph Lameter 已提交
3840 3841
}
EXPORT_SYMBOL(__kmalloc_node);
3842
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
3843

K
Kees Cook 已提交
3844 3845
#ifdef CONFIG_HARDENED_USERCOPY
/*
3846 3847 3848
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
3849 3850 3851 3852
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
3853 3854
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
3855 3856
{
	struct kmem_cache *s;
A
Alexey Dobriyan 已提交
3857
	unsigned int offset;
K
Kees Cook 已提交
3858 3859
	size_t object_size;

3860 3861
	ptr = kasan_reset_tag(ptr);

K
Kees Cook 已提交
3862 3863 3864 3865 3866
	/* Find object and usable object size. */
	s = page->slab_cache;

	/* Reject impossible pointers. */
	if (ptr < page_address(page))
3867 3868
		usercopy_abort("SLUB object not in SLUB page?!", NULL,
			       to_user, 0, n);
K
Kees Cook 已提交
3869 3870 3871 3872 3873 3874 3875

	/* Find offset within object. */
	offset = (ptr - page_address(page)) % s->size;

	/* Adjust for redzone and reject if within the redzone. */
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
		if (offset < s->red_left_pad)
3876 3877
			usercopy_abort("SLUB object in left red zone",
				       s->name, to_user, offset, n);
K
Kees Cook 已提交
3878 3879 3880
		offset -= s->red_left_pad;
	}

3881 3882 3883 3884
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= s->useroffset &&
	    offset - s->useroffset <= s->usersize &&
	    n <= s->useroffset - offset + s->usersize)
3885
		return;
K
Kees Cook 已提交
3886

3887 3888 3889 3890 3891 3892 3893
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
	object_size = slab_ksize(s);
3894 3895
	if (usercopy_fallback &&
	    offset <= object_size && n <= object_size - offset) {
3896 3897 3898
		usercopy_warn("SLUB object", s->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
3899

3900
	usercopy_abort("SLUB object", s->name, to_user, offset, n);
K
Kees Cook 已提交
3901 3902 3903
}
#endif /* CONFIG_HARDENED_USERCOPY */

3904
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3905
{
3906
	struct page *page;
C
Christoph Lameter 已提交
3907

3908
	if (unlikely(object == ZERO_SIZE_PTR))
3909 3910
		return 0;

3911 3912
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3913 3914
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3915
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3916
	}
C
Christoph Lameter 已提交
3917

3918
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3919
}
3920 3921 3922 3923 3924

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
3925 3926 3927
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(object, size);
3928 3929
	return size;
}
K
Kirill A. Shutemov 已提交
3930
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3931 3932 3933 3934

void kfree(const void *x)
{
	struct page *page;
3935
	void *object = (void *)x;
C
Christoph Lameter 已提交
3936

3937 3938
	trace_kfree(_RET_IP_, x);

3939
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3940 3941
		return;

3942
	page = virt_to_head_page(x);
3943
	if (unlikely(!PageSlab(page))) {
3944
		BUG_ON(!PageCompound(page));
3945
		kfree_hook(object);
3946
		__free_pages(page, compound_order(page));
3947 3948
		return;
	}
3949
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
3950 3951 3952
}
EXPORT_SYMBOL(kfree);

3953 3954
#define SHRINK_PROMOTE_MAX 32

3955
/*
3956 3957 3958
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3959 3960 3961 3962
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3963
 */
3964
int __kmem_cache_shrink(struct kmem_cache *s)
3965 3966 3967 3968 3969 3970
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3971 3972
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3973
	unsigned long flags;
3974
	int ret = 0;
3975 3976

	flush_all(s);
C
Christoph Lameter 已提交
3977
	for_each_kmem_cache_node(s, node, n) {
3978 3979 3980
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3981 3982 3983 3984

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3985
		 * Build lists of slabs to discard or promote.
3986
		 *
C
Christoph Lameter 已提交
3987 3988
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3989
		 */
3990
		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
3991 3992 3993 3994 3995 3996 3997 3998 3999
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
4000
				list_move(&page->slab_list, &discard);
4001
				n->nr_partial--;
4002
			} else if (free <= SHRINK_PROMOTE_MAX)
4003
				list_move(&page->slab_list, promote + free - 1);
4004 4005 4006
		}

		/*
4007 4008
		 * Promote the slabs filled up most to the head of the
		 * partial list.
4009
		 */
4010 4011
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
4012 4013

		spin_unlock_irqrestore(&n->list_lock, flags);
4014 4015

		/* Release empty slabs */
4016
		list_for_each_entry_safe(page, t, &discard, slab_list)
4017
			discard_slab(s, page);
4018 4019 4020

		if (slabs_node(s, node))
			ret = 1;
4021 4022
	}

4023
	return ret;
4024 4025
}

4026
#ifdef CONFIG_MEMCG
4027 4028
static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
{
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042
	/*
	 * Called with all the locks held after a sched RCU grace period.
	 * Even if @s becomes empty after shrinking, we can't know that @s
	 * doesn't have allocations already in-flight and thus can't
	 * destroy @s until the associated memcg is released.
	 *
	 * However, let's remove the sysfs files for empty caches here.
	 * Each cache has a lot of interface files which aren't
	 * particularly useful for empty draining caches; otherwise, we can
	 * easily end up with millions of unnecessary sysfs files on
	 * systems which have a lot of memory and transient cgroups.
	 */
	if (!__kmem_cache_shrink(s))
		sysfs_slab_remove(s);
4043 4044
}

4045 4046 4047 4048 4049 4050
void __kmemcg_cache_deactivate(struct kmem_cache *s)
{
	/*
	 * Disable empty slabs caching. Used to avoid pinning offline
	 * memory cgroups by kmem pages that can be freed.
	 */
4051
	slub_set_cpu_partial(s, 0);
4052 4053 4054 4055
	s->min_partial = 0;

	/*
	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4056
	 * we have to make sure the change is visible before shrinking.
4057
	 */
4058
	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4059
}
4060
#endif	/* CONFIG_MEMCG */
4061

4062 4063 4064 4065
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

4066
	mutex_lock(&slab_mutex);
4067
	list_for_each_entry(s, &slab_caches, list)
4068
		__kmem_cache_shrink(s);
4069
	mutex_unlock(&slab_mutex);
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

4081
	offline_node = marg->status_change_nid_normal;
4082 4083 4084 4085 4086 4087 4088 4089

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

4090
	mutex_lock(&slab_mutex);
4091 4092 4093 4094 4095 4096
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
4097
			 * and offline_pages() function shouldn't call this
4098 4099
			 * callback. So, we must fail.
			 */
4100
			BUG_ON(slabs_node(s, offline_node));
4101 4102

			s->node[offline_node] = NULL;
4103
			kmem_cache_free(kmem_cache_node, n);
4104 4105
		}
	}
4106
	mutex_unlock(&slab_mutex);
4107 4108 4109 4110 4111 4112 4113
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
4114
	int nid = marg->status_change_nid_normal;
4115 4116 4117 4118 4119 4120 4121 4122 4123 4124
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
4125
	 * We are bringing a node online. No memory is available yet. We must
4126 4127 4128
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
4129
	mutex_lock(&slab_mutex);
4130 4131 4132 4133 4134 4135
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
4136
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4137 4138 4139 4140
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
4141
		init_kmem_cache_node(n);
4142 4143 4144
		s->node[nid] = n;
	}
out:
4145
	mutex_unlock(&slab_mutex);
4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
4169 4170 4171 4172
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
4173 4174 4175
	return ret;
}

4176 4177 4178 4179
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
4180

C
Christoph Lameter 已提交
4181 4182 4183 4184
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

4185 4186
/*
 * Used for early kmem_cache structures that were allocated using
4187 4188
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
4189 4190
 */

4191
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4192 4193
{
	int node;
4194
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
4195
	struct kmem_cache_node *n;
4196

4197
	memcpy(s, static_cache, kmem_cache->object_size);
4198

4199 4200 4201 4202 4203 4204
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
4205
	for_each_kmem_cache_node(s, node, n) {
4206 4207
		struct page *p;

4208
		list_for_each_entry(p, &n->partial, slab_list)
C
Christoph Lameter 已提交
4209
			p->slab_cache = s;
4210

L
Li Zefan 已提交
4211
#ifdef CONFIG_SLUB_DEBUG
4212
		list_for_each_entry(p, &n->full, slab_list)
C
Christoph Lameter 已提交
4213
			p->slab_cache = s;
4214 4215
#endif
	}
4216
	slab_init_memcg_params(s);
4217
	list_add(&s->list, &slab_caches);
4218
	memcg_link_cache(s);
4219
	return s;
4220 4221
}

C
Christoph Lameter 已提交
4222 4223
void __init kmem_cache_init(void)
{
4224 4225
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
4226

4227 4228 4229
	if (debug_guardpage_minorder())
		slub_max_order = 0;

4230 4231
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
4232

4233
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4234
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4235

4236
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
4237 4238 4239 4240

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

4241 4242 4243
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
4244
		       SLAB_HWCACHE_ALIGN, 0, 0);
4245

4246 4247
	kmem_cache = bootstrap(&boot_kmem_cache);
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4248 4249

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4250
	setup_kmalloc_cache_index_table();
4251
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
4252

T
Thomas Garnier 已提交
4253 4254 4255
	/* Setup random freelists for each cache */
	init_freelist_randomization();

4256 4257
	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
				  slub_cpu_dead);
C
Christoph Lameter 已提交
4258

4259
	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4260
		cache_line_size(),
C
Christoph Lameter 已提交
4261 4262 4263 4264
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

4265 4266 4267 4268
void __init kmem_cache_init_late(void)
{
}

4269
struct kmem_cache *
4270
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4271
		   slab_flags_t flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
4272
{
4273
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
4274

4275
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
4276 4277
	if (s) {
		s->refcount++;
4278

C
Christoph Lameter 已提交
4279 4280 4281 4282
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
4283
		s->object_size = max(s->object_size, size);
4284
		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
4285

4286
		for_each_memcg_cache(c, s) {
4287
			c->object_size = s->object_size;
4288
			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4289 4290
		}

4291 4292
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
4293
			s = NULL;
4294
		}
4295
	}
C
Christoph Lameter 已提交
4296

4297 4298
	return s;
}
P
Pekka Enberg 已提交
4299

4300
int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4301
{
4302 4303 4304 4305 4306
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4307

4308 4309 4310 4311
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4312
	memcg_propagate_slab_attrs(s);
4313 4314
	err = sysfs_slab_add(s);
	if (err)
4315
		__kmem_cache_release(s);
4316

4317
	return err;
C
Christoph Lameter 已提交
4318 4319
}

4320
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4321
{
4322
	struct kmem_cache *s;
4323
	void *ret;
4324

4325
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4326 4327
		return kmalloc_large(size, gfpflags);

4328
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4329

4330
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4331
		return s;
C
Christoph Lameter 已提交
4332

4333
	ret = slab_alloc(s, gfpflags, caller);
4334

L
Lucas De Marchi 已提交
4335
	/* Honor the call site pointer we received. */
4336
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4337 4338

	return ret;
C
Christoph Lameter 已提交
4339 4340
}

4341
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4342
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4343
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4344
{
4345
	struct kmem_cache *s;
4346
	void *ret;
4347

4348
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4349 4350 4351 4352 4353 4354 4355 4356
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4357

4358
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4359

4360
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4361
		return s;
C
Christoph Lameter 已提交
4362

4363
	ret = slab_alloc_node(s, gfpflags, node, caller);
4364

L
Lucas De Marchi 已提交
4365
	/* Honor the call site pointer we received. */
4366
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4367 4368

	return ret;
C
Christoph Lameter 已提交
4369
}
4370
#endif
C
Christoph Lameter 已提交
4371

4372
#ifdef CONFIG_SYSFS
4373 4374 4375 4376 4377 4378 4379 4380 4381
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4382
#endif
4383

4384
#ifdef CONFIG_SLUB_DEBUG
4385 4386
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4387 4388
{
	void *p;
4389
	void *addr = page_address(page);
4390 4391 4392 4393 4394 4395

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
4396
	bitmap_zero(map, page->objects);
4397

4398 4399 4400 4401 4402
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
4403 4404
	}

4405
	for_each_object(p, s, addr, page->objects)
4406
		if (!test_bit(slab_index(p, s, addr), map))
4407
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4408 4409 4410 4411
				return 0;
	return 1;
}

4412 4413
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4414
{
4415 4416 4417
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4418 4419
}

4420 4421
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4422 4423 4424 4425 4426 4427 4428
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

4429
	list_for_each_entry(page, &n->partial, slab_list) {
4430
		validate_slab_slab(s, page, map);
4431 4432 4433
		count++;
	}
	if (count != n->nr_partial)
4434 4435
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4436 4437 4438 4439

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

4440
	list_for_each_entry(page, &n->full, slab_list) {
4441
		validate_slab_slab(s, page, map);
4442 4443 4444
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4445 4446
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4447 4448 4449 4450 4451 4452

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4453
static long validate_slab_cache(struct kmem_cache *s)
4454 4455 4456
{
	int node;
	unsigned long count = 0;
C
Christoph Lameter 已提交
4457
	struct kmem_cache_node *n;
4458
	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4459 4460 4461

	if (!map)
		return -ENOMEM;
4462 4463

	flush_all(s);
C
Christoph Lameter 已提交
4464
	for_each_kmem_cache_node(s, node, n)
4465
		count += validate_slab_node(s, n, map);
4466
	bitmap_free(map);
4467 4468
	return count;
}
4469
/*
C
Christoph Lameter 已提交
4470
 * Generate lists of code addresses where slabcache objects are allocated
4471 4472 4473 4474 4475
 * and freed.
 */

struct location {
	unsigned long count;
4476
	unsigned long addr;
4477 4478 4479 4480 4481
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4482
	DECLARE_BITMAP(cpus, NR_CPUS);
4483
	nodemask_t nodes;
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4499
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4500 4501 4502 4503 4504 4505
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4506
	l = (void *)__get_free_pages(flags, order);
4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4520
				const struct track *track)
4521 4522 4523
{
	long start, end, pos;
	struct location *l;
4524
	unsigned long caddr;
4525
	unsigned long age = jiffies - track->when;
4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4557 4558
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4559 4560
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4561 4562 4563
			return 1;
		}

4564
		if (track->addr < caddr)
4565 4566 4567 4568 4569 4570
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4571
	 * Not found. Insert new tracking element.
4572
	 */
4573
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4574 4575 4576 4577 4578 4579 4580 4581
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4582 4583 4584 4585 4586 4587
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4588 4589
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4590 4591
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4592 4593 4594 4595
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4596
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4597
		unsigned long *map)
4598
{
4599
	void *addr = page_address(page);
4600 4601
	void *p;

4602
	bitmap_zero(map, page->objects);
4603
	get_map(s, page, map);
4604

4605
	for_each_object(p, s, addr, page->objects)
4606 4607
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4608 4609 4610 4611 4612
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4613
	int len = 0;
4614
	unsigned long i;
4615
	struct loc_track t = { 0, 0, NULL };
4616
	int node;
C
Christoph Lameter 已提交
4617
	struct kmem_cache_node *n;
4618
	unsigned long *map = bitmap_alloc(oo_objects(s->max), GFP_KERNEL);
4619

E
Eric Dumazet 已提交
4620
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4621
				     GFP_KERNEL)) {
4622
		bitmap_free(map);
4623
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4624
	}
4625 4626 4627
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4628
	for_each_kmem_cache_node(s, node, n) {
4629 4630 4631
		unsigned long flags;
		struct page *page;

4632
		if (!atomic_long_read(&n->nr_slabs))
4633 4634 4635
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
4636
		list_for_each_entry(page, &n->partial, slab_list)
E
Eric Dumazet 已提交
4637
			process_slab(&t, s, page, alloc, map);
4638
		list_for_each_entry(page, &n->full, slab_list)
E
Eric Dumazet 已提交
4639
			process_slab(&t, s, page, alloc, map);
4640 4641 4642 4643
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4644
		struct location *l = &t.loc[i];
4645

H
Hugh Dickins 已提交
4646
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4647
			break;
4648
		len += sprintf(buf + len, "%7ld ", l->count);
4649 4650

		if (l->addr)
J
Joe Perches 已提交
4651
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4652
		else
4653
			len += sprintf(buf + len, "<not-available>");
4654 4655

		if (l->sum_time != l->min_time) {
4656
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4657 4658 4659
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4660
		} else
4661
			len += sprintf(buf + len, " age=%ld",
4662 4663 4664
				l->min_time);

		if (l->min_pid != l->max_pid)
4665
			len += sprintf(buf + len, " pid=%ld-%ld",
4666 4667
				l->min_pid, l->max_pid);
		else
4668
			len += sprintf(buf + len, " pid=%ld",
4669 4670
				l->min_pid);

R
Rusty Russell 已提交
4671 4672
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4673 4674 4675 4676
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4677

4678
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4679 4680 4681 4682
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4683

4684
		len += sprintf(buf + len, "\n");
4685 4686 4687
	}

	free_loc_track(&t);
4688
	bitmap_free(map);
4689
	if (!t.count)
4690 4691
		len += sprintf(buf, "No data\n");
	return len;
4692
}
4693
#endif	/* CONFIG_SLUB_DEBUG */
4694

4695
#ifdef SLUB_RESILIENCY_TEST
4696
static void __init resiliency_test(void)
4697 4698
{
	u8 *p;
4699
	int type = KMALLOC_NORMAL;
4700

4701
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4702

4703 4704 4705
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4706 4707 4708

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4709 4710
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4711

4712
	validate_slab_cache(kmalloc_caches[type][4]);
4713 4714 4715 4716

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4717 4718 4719
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4720

4721
	validate_slab_cache(kmalloc_caches[type][5]);
4722 4723 4724
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4725 4726 4727
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4728
	validate_slab_cache(kmalloc_caches[type][6]);
4729

4730
	pr_err("\nB. Corruption after free\n");
4731 4732 4733
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4734
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4735
	validate_slab_cache(kmalloc_caches[type][7]);
4736 4737 4738 4739

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4740
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4741
	validate_slab_cache(kmalloc_caches[type][8]);
4742 4743 4744 4745

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4746
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4747
	validate_slab_cache(kmalloc_caches[type][9]);
4748 4749 4750 4751 4752
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
4753
#endif	/* SLUB_RESILIENCY_TEST */
4754

4755
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4756
enum slab_stat_type {
4757 4758 4759 4760 4761
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4762 4763
};

4764
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4765 4766 4767
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4768
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4769

4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785
#ifdef CONFIG_MEMCG
static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);

static int __init setup_slub_memcg_sysfs(char *str)
{
	int v;

	if (get_option(&str, &v) > 0)
		memcg_sysfs_enabled = v;

	return 1;
}

__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
#endif

4786 4787
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4788 4789 4790 4791 4792 4793
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

K
Kees Cook 已提交
4794
	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4795 4796
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4797

4798 4799
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4800

4801
		for_each_possible_cpu(cpu) {
4802 4803
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4804
			int node;
4805
			struct page *page;
4806

4807
			page = READ_ONCE(c->page);
4808 4809
			if (!page)
				continue;
4810

4811 4812 4813 4814 4815 4816 4817
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4818

4819 4820 4821
			total += x;
			nodes[node] += x;

4822
			page = slub_percpu_partial_read_once(c);
4823
			if (page) {
L
Li Zefan 已提交
4824 4825 4826 4827 4828 4829 4830
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4831 4832
				total += x;
				nodes[node] += x;
4833
			}
C
Christoph Lameter 已提交
4834 4835 4836
		}
	}

4837
	get_online_mems();
4838
#ifdef CONFIG_SLUB_DEBUG
4839
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4840 4841 4842
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4843

4844 4845 4846 4847 4848
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4849
			else
4850
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4851 4852 4853 4854
			total += x;
			nodes[node] += x;
		}

4855 4856 4857
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4858
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4859

C
Christoph Lameter 已提交
4860
		for_each_kmem_cache_node(s, node, n) {
4861 4862 4863 4864
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4865
			else
4866
				x = n->nr_partial;
C
Christoph Lameter 已提交
4867 4868 4869 4870 4871 4872
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4873
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4874 4875 4876 4877
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4878
	put_online_mems();
C
Christoph Lameter 已提交
4879 4880 4881 4882
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4883
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4884 4885 4886
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4887
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4888

C
Christoph Lameter 已提交
4889
	for_each_kmem_cache_node(s, node, n)
4890
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4891
			return 1;
C
Christoph Lameter 已提交
4892

C
Christoph Lameter 已提交
4893 4894
	return 0;
}
4895
#endif
C
Christoph Lameter 已提交
4896 4897

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4898
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4899 4900 4901 4902 4903 4904 4905 4906

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4907 4908
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4909 4910 4911

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4912
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4913 4914 4915

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
A
Alexey Dobriyan 已提交
4916
	return sprintf(buf, "%u\n", s->size);
C
Christoph Lameter 已提交
4917 4918 4919 4920 4921
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
4922
	return sprintf(buf, "%u\n", s->align);
C
Christoph Lameter 已提交
4923 4924 4925 4926 4927
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4928
	return sprintf(buf, "%u\n", s->object_size);
C
Christoph Lameter 已提交
4929 4930 4931 4932 4933
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4934
	return sprintf(buf, "%u\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4935 4936 4937
}
SLAB_ATTR_RO(objs_per_slab);

4938 4939 4940
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4941
	unsigned int order;
4942 4943
	int err;

4944
	err = kstrtouint(buf, 10, &order);
4945 4946
	if (err)
		return err;
4947 4948 4949 4950 4951 4952 4953 4954

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4955 4956
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4957
	return sprintf(buf, "%u\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4958
}
4959
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4960

4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4972
	err = kstrtoul(buf, 10, &min);
4973 4974 4975
	if (err)
		return err;

4976
	set_min_partial(s, min);
4977 4978 4979 4980
	return length;
}
SLAB_ATTR(min_partial);

4981 4982
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
4983
	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4984 4985 4986 4987 4988
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
4989
	unsigned int objects;
4990 4991
	int err;

4992
	err = kstrtouint(buf, 10, &objects);
4993 4994
	if (err)
		return err;
4995
	if (objects && !kmem_cache_has_cpu_partial(s))
4996
		return -EINVAL;
4997

4998
	slub_set_cpu_partial(s, objects);
4999 5000 5001 5002 5003
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
5004 5005
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
5006 5007 5008
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
5009 5010 5011 5012 5013
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
5014
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
5015 5016 5017 5018 5019
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
5020
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
5021 5022 5023 5024 5025
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
5026
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
5027 5028 5029 5030 5031
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
5032
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
5033 5034 5035
}
SLAB_ATTR_RO(objects);

5036 5037 5038 5039 5040 5041
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

5042 5043 5044 5045 5046 5047 5048 5049
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
5050 5051 5052
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
5064 5065 5066
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5067 5068 5069 5070 5071 5072 5073 5074 5075 5076

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

5106 5107
static ssize_t usersize_show(struct kmem_cache *s, char *buf)
{
5108
	return sprintf(buf, "%u\n", s->usersize);
5109 5110 5111
}
SLAB_ATTR_RO(usersize);

5112 5113
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
5114
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5115 5116 5117
}
SLAB_ATTR_RO(destroy_by_rcu);

5118
#ifdef CONFIG_SLUB_DEBUG
5119 5120 5121 5122 5123 5124
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

5125 5126 5127 5128 5129 5130
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
5131 5132
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
5133
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
5134 5135 5136 5137 5138
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
5139
	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5140 5141
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
5142
		s->flags |= SLAB_CONSISTENCY_CHECKS;
5143
	}
C
Christoph Lameter 已提交
5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5156 5157 5158 5159 5160 5161 5162 5163
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
5164
	s->flags &= ~SLAB_TRACE;
5165 5166
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5167
		s->flags |= SLAB_TRACE;
5168
	}
C
Christoph Lameter 已提交
5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
5185
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5186
		s->flags |= SLAB_RED_ZONE;
5187
	}
5188
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
5205
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5206
		s->flags |= SLAB_POISON;
5207
	}
5208
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
5225 5226
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5227
		s->flags |= SLAB_STORE_USER;
5228
	}
5229
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5230 5231 5232 5233
	return length;
}
SLAB_ATTR(store_user);

5234 5235 5236 5237 5238 5239 5240 5241
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5242 5243 5244 5245 5246 5247 5248 5249
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
5250 5251
}
SLAB_ATTR(validate);
5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5279 5280 5281
	if (s->refcount > 1)
		return -EINVAL;

5282 5283 5284 5285 5286 5287
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
5288
#endif
5289

5290 5291 5292 5293 5294 5295 5296 5297
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5298 5299 5300
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
5301 5302 5303 5304 5305
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5306
#ifdef CONFIG_NUMA
5307
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5308
{
5309
	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5310 5311
}

5312
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5313 5314
				const char *buf, size_t length)
{
5315
	unsigned int ratio;
5316 5317
	int err;

5318
	err = kstrtouint(buf, 10, &ratio);
5319 5320
	if (err)
		return err;
5321 5322
	if (ratio > 100)
		return -ERANGE;
5323

5324
	s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5325 5326 5327

	return length;
}
5328
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5329 5330
#endif

5331 5332 5333 5334 5335 5336
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
5337
	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5338 5339 5340 5341 5342

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5343
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5344 5345 5346 5347 5348 5349 5350

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5351
#ifdef CONFIG_SMP
5352 5353
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5354
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5355
	}
5356
#endif
5357 5358 5359 5360
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5361 5362 5363 5364 5365
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5366
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5367 5368
}

5369 5370 5371 5372 5373
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5374 5375 5376 5377 5378 5379 5380 5381 5382
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5394
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5395 5396 5397 5398 5399 5400 5401
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5402
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5403
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5404 5405
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5406 5407
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5408 5409
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5410
#endif	/* CONFIG_SLUB_STATS */
5411

P
Pekka Enberg 已提交
5412
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5413 5414 5415 5416
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5417
	&min_partial_attr.attr,
5418
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5419
	&objects_attr.attr,
5420
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5421 5422 5423 5424 5425 5426 5427 5428
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5429
	&shrink_attr.attr,
5430
	&slabs_cpu_partial_attr.attr,
5431
#ifdef CONFIG_SLUB_DEBUG
5432 5433 5434 5435
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5436 5437 5438
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5439
	&validate_attr.attr,
5440 5441
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5442
#endif
C
Christoph Lameter 已提交
5443 5444 5445 5446
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5447
	&remote_node_defrag_ratio_attr.attr,
5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5460
	&alloc_node_mismatch_attr.attr,
5461 5462 5463 5464 5465 5466 5467
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5468
	&deactivate_bypass_attr.attr,
5469
	&order_fallback_attr.attr,
5470 5471
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5472 5473
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5474 5475
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5476
#endif
5477 5478 5479
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif
5480
	&usersize_attr.attr,
5481

C
Christoph Lameter 已提交
5482 5483 5484
	NULL
};

5485
static const struct attribute_group slab_attr_group = {
C
Christoph Lameter 已提交
5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5523
#ifdef CONFIG_MEMCG
5524
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5525
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5526

5527 5528 5529 5530
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5548 5549
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5550 5551 5552
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5553 5554 5555
	return err;
}

5556 5557
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5558
#ifdef CONFIG_MEMCG
5559 5560
	int i;
	char *buffer = NULL;
5561
	struct kmem_cache *root_cache;
5562

5563
	if (is_root_cache(s))
5564 5565
		return;

5566
	root_cache = s->memcg_params.root_cache;
5567

5568 5569 5570 5571
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5572
	if (!root_cache->max_attr_size)
5573 5574 5575 5576 5577 5578
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5579
		ssize_t len;
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5595
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5596 5597 5598 5599 5600 5601 5602 5603
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5604 5605 5606
		len = attr->show(root_cache, buf);
		if (len > 0)
			attr->store(s, buf, len);
5607 5608 5609 5610
	}

	if (buffer)
		free_page((unsigned long)buffer);
5611
#endif	/* CONFIG_MEMCG */
5612 5613
}

5614 5615 5616 5617 5618
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5619
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5620 5621 5622 5623 5624 5625
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5626
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5638
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5639 5640 5641
	.filter = uevent_filter,
};

5642
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5643

5644 5645
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5646
#ifdef CONFIG_MEMCG
5647
	if (!is_root_cache(s))
5648
		return s->memcg_params.root_cache->memcg_kset;
5649 5650 5651 5652
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5653 5654 5655
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5656 5657
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
5676 5677
	if (s->flags & SLAB_CACHE_DMA32)
		*p++ = 'D';
C
Christoph Lameter 已提交
5678 5679
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5680
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5681
		*p++ = 'F';
V
Vladimir Davydov 已提交
5682 5683
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5684 5685
	if (p != name + 1)
		*p++ = '-';
A
Alexey Dobriyan 已提交
5686
	p += sprintf(p, "%07u", s->size);
5687

C
Christoph Lameter 已提交
5688 5689 5690 5691
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703
static void sysfs_slab_remove_workfn(struct work_struct *work)
{
	struct kmem_cache *s =
		container_of(work, struct kmem_cache, kobj_remove_work);

	if (!s->kobj.state_in_sysfs)
		/*
		 * For a memcg cache, this may be called during
		 * deactivation and again on shutdown.  Remove only once.
		 * A cache is never shut down before deactivation is
		 * complete, so no need to worry about synchronization.
		 */
5704
		goto out;
5705 5706 5707 5708 5709

#ifdef CONFIG_MEMCG
	kset_unregister(s->memcg_kset);
#endif
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5710
out:
5711 5712 5713
	kobject_put(&s->kobj);
}

C
Christoph Lameter 已提交
5714 5715 5716 5717
static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5718
	struct kset *kset = cache_kset(s);
5719
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5720

5721 5722
	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);

5723 5724 5725 5726 5727
	if (!kset) {
		kobject_init(&s->kobj, &slab_ktype);
		return 0;
	}

5728 5729 5730 5731
	if (!unmergeable && disable_higher_order_debug &&
			(slub_debug & DEBUG_METADATA_FLAGS))
		unmergeable = 1;

C
Christoph Lameter 已提交
5732 5733 5734 5735 5736 5737
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5738
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5739 5740 5741 5742 5743 5744 5745 5746 5747
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5748
	s->kobj.kset = kset;
5749
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5750
	if (err)
5751
		goto out;
C
Christoph Lameter 已提交
5752 5753

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5754 5755
	if (err)
		goto out_del_kobj;
5756

5757
#ifdef CONFIG_MEMCG
5758
	if (is_root_cache(s) && memcg_sysfs_enabled) {
5759 5760
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5761 5762
			err = -ENOMEM;
			goto out_del_kobj;
5763 5764 5765 5766
		}
	}
#endif

C
Christoph Lameter 已提交
5767 5768 5769 5770 5771
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5772 5773 5774 5775 5776 5777 5778
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5779 5780
}

5781
static void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5782
{
5783
	if (slab_state < FULL)
5784 5785 5786 5787 5788 5789
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5790 5791
	kobject_get(&s->kobj);
	schedule_work(&s->kobj_remove_work);
5792 5793
}

5794 5795 5796 5797 5798 5799
void sysfs_slab_unlink(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_del(&s->kobj);
}

5800 5801 5802 5803
void sysfs_slab_release(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5804 5805 5806 5807
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5808
 * available lest we lose that information.
C
Christoph Lameter 已提交
5809 5810 5811 5812 5813 5814 5815
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5816
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5817 5818 5819 5820 5821

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5822
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5823 5824 5825
		/*
		 * If we have a leftover link then remove it.
		 */
5826 5827
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5843
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5844 5845
	int err;

5846
	mutex_lock(&slab_mutex);
5847

5848
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5849
	if (!slab_kset) {
5850
		mutex_unlock(&slab_mutex);
5851
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5852 5853 5854
		return -ENOSYS;
	}

5855
	slab_state = FULL;
5856

5857
	list_for_each_entry(s, &slab_caches, list) {
5858
		err = sysfs_slab_add(s);
5859
		if (err)
5860 5861
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5862
	}
C
Christoph Lameter 已提交
5863 5864 5865 5866 5867 5868

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5869
		if (err)
5870 5871
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5872 5873 5874
		kfree(al);
	}

5875
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5876 5877 5878 5879 5880
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5881
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5882 5883 5884 5885

/*
 * The /proc/slabinfo ABI
 */
Y
Yang Shi 已提交
5886
#ifdef CONFIG_SLUB_DEBUG
5887
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5888 5889
{
	unsigned long nr_slabs = 0;
5890 5891
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5892
	int node;
C
Christoph Lameter 已提交
5893
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5894

C
Christoph Lameter 已提交
5895
	for_each_kmem_cache_node(s, node, n) {
5896 5897
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5898
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5899 5900
	}

5901 5902 5903 5904 5905 5906
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5907 5908
}

5909
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5910 5911 5912
{
}

5913 5914
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5915
{
5916
	return -EIO;
5917
}
Y
Yang Shi 已提交
5918
#endif /* CONFIG_SLUB_DEBUG */