slub.c 143.8 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
C
Christoph Lameter 已提交
2 3 4 5
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
6 7
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
8
 *
C
Christoph Lameter 已提交
9
 * (C) 2007 SGI, Christoph Lameter
10
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
11 12 13
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
14
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
15 16 17 18 19
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
20
#include "slab.h"
21
#include <linux/proc_fs.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
C
Christoph Lameter 已提交
24 25 26 27
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
28
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
29
#include <linux/kallsyms.h>
30
#include <linux/memory.h>
R
Roman Zippel 已提交
31
#include <linux/math64.h>
A
Akinobu Mita 已提交
32
#include <linux/fault-inject.h>
33
#include <linux/stacktrace.h>
34
#include <linux/prefetch.h>
35
#include <linux/memcontrol.h>
36
#include <linux/random.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
54
 *   have the ability to do a cmpxchg_double. It only protects:
55
 *	A. page->freelist	-> List of object free in a page
56 57 58
 *	B. page->inuse		-> Number of objects in use
 *	C. page->objects	-> Number of objects in page
 *	D. page->frozen		-> frozen state
59 60
 *
 *   If a slab is frozen then it is exempt from list management. It is not
61 62 63 64 65
 *   on any list except per cpu partial list. The processor that froze the
 *   slab is the one who can perform list operations on the page. Other
 *   processors may put objects onto the freelist but the processor that
 *   froze the slab is the only one that can retrieve the objects from the
 *   page's freelist.
C
Christoph Lameter 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
86 87
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
88
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
89 90
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
91 92 93 94 95
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
Y
Yu Zhao 已提交
96
 * page->frozen		The slab is frozen and exempt from list processing.
97 98 99 100 101 102 103 104 105 106 107
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
108
 * 			freelist that allows lockless access to
109 110
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
111
 *
Y
Yu Zhao 已提交
112
 * SLAB_DEBUG_FLAGS	Slab requires special handling due to debug
C
Christoph Lameter 已提交
113
 * 			options set. This moves	slab handling out of
114
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
115 116
 */

117 118
static inline int kmem_cache_debug(struct kmem_cache *s)
{
119
#ifdef CONFIG_SLUB_DEBUG
120
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
121
#else
122
	return 0;
123
#endif
124
}
125

126
void *fixup_red_left(struct kmem_cache *s, void *p)
J
Joonsoo Kim 已提交
127 128 129 130 131 132 133
{
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
		p += s->red_left_pad;

	return p;
}

134 135 136 137 138 139 140 141 142
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
143 144 145 146 147 148 149 150 151 152 153
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

154 155 156
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

157 158 159 160
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
161
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
162

163 164 165
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
166
 * sort the partial list by the number of objects in use.
167 168 169
 */
#define MAX_PARTIAL 10

170
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
171
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
172

173 174 175 176 177 178 179 180
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


181
/*
182 183 184
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
185
 */
186
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
187

188 189
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
190
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
191

C
Christoph Lameter 已提交
192
/* Internal SLUB flags */
193
/* Poison object */
194
#define __OBJECT_POISON		((slab_flags_t __force)0x80000000U)
195
/* Use cmpxchg_double */
196
#define __CMPXCHG_DOUBLE	((slab_flags_t __force)0x40000000U)
C
Christoph Lameter 已提交
197

198 199 200
/*
 * Tracking user of a slab.
 */
201
#define TRACK_ADDRS_COUNT 16
202
struct track {
203
	unsigned long addr;	/* Called from address */
204 205 206
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
207 208 209 210 211 212 213
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

214
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
215 216
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
217
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218
static void sysfs_slab_remove(struct kmem_cache *s);
C
Christoph Lameter 已提交
219
#else
220 221 222
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
223
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
225 226
#endif

227
static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 229
{
#ifdef CONFIG_SLUB_STATS
230 231 232 233 234
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
235 236 237
#endif
}

C
Christoph Lameter 已提交
238 239 240 241
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

242 243 244 245 246 247 248 249 250
/*
 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 * with an XOR of the address where the pointer is held and a per-cache
 * random number.
 */
static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
				 unsigned long ptr_addr)
{
#ifdef CONFIG_SLAB_FREELIST_HARDENED
251 252 253 254 255 256 257 258 259 260 261 262
	/*
	 * When CONFIG_KASAN_SW_TAGS is enabled, ptr_addr might be tagged.
	 * Normally, this doesn't cause any issues, as both set_freepointer()
	 * and get_freepointer() are called with a pointer with the same tag.
	 * However, there are some issues with CONFIG_SLUB_DEBUG code. For
	 * example, when __free_slub() iterates over objects in a cache, it
	 * passes untagged pointers to check_object(). check_object() in turns
	 * calls get_freepointer() with an untagged pointer, which causes the
	 * freepointer to be restored incorrectly.
	 */
	return (void *)((unsigned long)ptr ^ s->random ^
			(unsigned long)kasan_reset_tag((void *)ptr_addr));
263 264 265 266 267 268 269 270 271 272 273 274 275
#else
	return ptr;
#endif
}

/* Returns the freelist pointer recorded at location ptr_addr. */
static inline void *freelist_dereference(const struct kmem_cache *s,
					 void *ptr_addr)
{
	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
			    (unsigned long)ptr_addr);
}

276 277
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
278
	return freelist_dereference(s, object + s->offset);
279 280
}

281 282
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
283
	prefetch(object + s->offset);
284 285
}

286 287
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
288
	unsigned long freepointer_addr;
289 290
	void *p;

291
	if (!debug_pagealloc_enabled_static())
292 293
		return get_freepointer(s, object);

294 295 296
	freepointer_addr = (unsigned long)object + s->offset;
	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
	return freelist_ptr(s, p, freepointer_addr);
297 298
}

299 300
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
301 302
	unsigned long freeptr_addr = (unsigned long)object + s->offset;

303 304 305 306
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	BUG_ON(object == fp); /* naive detection of double free or corruption */
#endif

307
	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
308 309 310
}

/* Loop over all objects in a slab */
311
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
312 313 314
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
315 316

/* Determine object index from a given position */
317
static inline unsigned int slab_index(void *p, struct kmem_cache *s, void *addr)
318
{
319
	return (kasan_reset_tag(p) - addr) / s->size;
320 321
}

322
static inline unsigned int order_objects(unsigned int order, unsigned int size)
323
{
324
	return ((unsigned int)PAGE_SIZE << order) / size;
325 326
}

327
static inline struct kmem_cache_order_objects oo_make(unsigned int order,
328
		unsigned int size)
329 330
{
	struct kmem_cache_order_objects x = {
331
		(order << OO_SHIFT) + order_objects(order, size)
332 333 334 335 336
	};

	return x;
}

337
static inline unsigned int oo_order(struct kmem_cache_order_objects x)
338
{
339
	return x.x >> OO_SHIFT;
340 341
}

342
static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
343
{
344
	return x.x & OO_MASK;
345 346
}

347 348 349 350 351
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
352
	VM_BUG_ON_PAGE(PageTail(page), page);
353 354 355 356 357
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
358
	VM_BUG_ON_PAGE(PageTail(page), page);
359 360 361
	__bit_spin_unlock(PG_locked, &page->flags);
}

362 363 364 365 366 367 368
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
369 370
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
371
	if (s->flags & __CMPXCHG_DOUBLE) {
372
		if (cmpxchg_double(&page->freelist, &page->counters,
373 374
				   freelist_old, counters_old,
				   freelist_new, counters_new))
375
			return true;
376 377 378 379
	} else
#endif
	{
		slab_lock(page);
380 381
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
382
			page->freelist = freelist_new;
383
			page->counters = counters_new;
384
			slab_unlock(page);
385
			return true;
386 387 388 389 390 391 392 393
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
394
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
395 396
#endif

397
	return false;
398 399
}

400 401 402 403 404
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
405 406
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
407
	if (s->flags & __CMPXCHG_DOUBLE) {
408
		if (cmpxchg_double(&page->freelist, &page->counters,
409 410
				   freelist_old, counters_old,
				   freelist_new, counters_new))
411
			return true;
412 413 414
	} else
#endif
	{
415 416 417
		unsigned long flags;

		local_irq_save(flags);
418
		slab_lock(page);
419 420
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
421
			page->freelist = freelist_new;
422
			page->counters = counters_new;
423
			slab_unlock(page);
424
			local_irq_restore(flags);
425
			return true;
426
		}
427
		slab_unlock(page);
428
		local_irq_restore(flags);
429 430 431 432 433 434
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
435
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
436 437
#endif

438
	return false;
439 440
}

C
Christoph Lameter 已提交
441
#ifdef CONFIG_SLUB_DEBUG
442 443 444
static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
static DEFINE_SPINLOCK(object_map_lock);

445 446 447
/*
 * Determine a map of object in use on a page.
 *
448
 * Node listlock must be held to guarantee that the page does
449 450
 * not vanish from under us.
 */
451
static unsigned long *get_map(struct kmem_cache *s, struct page *page)
452 453 454 455
{
	void *p;
	void *addr = page_address(page);

456 457 458 459 460 461
	VM_BUG_ON(!irqs_disabled());

	spin_lock(&object_map_lock);

	bitmap_zero(object_map, page->objects);

462
	for (p = page->freelist; p; p = get_freepointer(s, p))
463 464 465 466 467 468 469 470 471 472 473
		set_bit(slab_index(p, s, addr), object_map);

	return object_map;
}

static void put_map(unsigned long *map)
{
	VM_BUG_ON(map != object_map);
	lockdep_assert_held(&object_map_lock);

	spin_unlock(&object_map_lock);
474 475
}

476
static inline unsigned int size_from_object(struct kmem_cache *s)
J
Joonsoo Kim 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
492 493 494
/*
 * Debug settings:
 */
495
#if defined(CONFIG_SLUB_DEBUG_ON)
496
static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
497
#else
498
static slab_flags_t slub_debug;
499
#endif
C
Christoph Lameter 已提交
500 501

static char *slub_debug_slabs;
502
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
503

504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
520 521 522
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
523 524 525 526 527 528 529 530 531 532 533

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
534
	object = kasan_reset_tag(object);
J
Joonsoo Kim 已提交
535 536 537 538 539 540 541 542 543
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

544 545
static void print_section(char *level, char *text, u8 *addr,
			  unsigned int length)
C
Christoph Lameter 已提交
546
{
547
	metadata_access_enable();
548
	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
549
			length, 1);
550
	metadata_access_disable();
C
Christoph Lameter 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
567
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
568
{
A
Akinobu Mita 已提交
569
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
570 571

	if (addr) {
572
#ifdef CONFIG_STACKTRACE
573
		unsigned int nr_entries;
574

575
		metadata_access_enable();
576
		nr_entries = stack_trace_save(p->addrs, TRACK_ADDRS_COUNT, 3);
577
		metadata_access_disable();
578

579 580
		if (nr_entries < TRACK_ADDRS_COUNT)
			p->addrs[nr_entries] = 0;
581
#endif
C
Christoph Lameter 已提交
582 583
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
584
		p->pid = current->pid;
C
Christoph Lameter 已提交
585
		p->when = jiffies;
586
	} else {
C
Christoph Lameter 已提交
587
		memset(p, 0, sizeof(struct track));
588
	}
C
Christoph Lameter 已提交
589 590 591 592
}

static void init_tracking(struct kmem_cache *s, void *object)
{
593 594 595
	if (!(s->flags & SLAB_STORE_USER))
		return;

596 597
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
598 599
}

600
static void print_track(const char *s, struct track *t, unsigned long pr_time)
C
Christoph Lameter 已提交
601 602 603 604
{
	if (!t->addr)
		return;

605
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
606
	       s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
607 608 609 610 611
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
612
				pr_err("\t%pS\n", (void *)t->addrs[i]);
613 614 615 616
			else
				break;
	}
#endif
617 618 619 620
}

static void print_tracking(struct kmem_cache *s, void *object)
{
621
	unsigned long pr_time = jiffies;
622 623 624
	if (!(s->flags & SLAB_STORE_USER))
		return;

625 626
	print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
	print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
627 628 629 630
}

static void print_page_info(struct page *page)
{
631
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
632
	       page, page->objects, page->inuse, page->freelist, page->flags);
633 634 635 636 637

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
638
	struct va_format vaf;
639 640 641
	va_list args;

	va_start(args, fmt);
642 643
	vaf.fmt = fmt;
	vaf.va = &args;
644
	pr_err("=============================================================================\n");
645
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
646
	pr_err("-----------------------------------------------------------------------------\n\n");
647

648
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
649
	va_end(args);
C
Christoph Lameter 已提交
650 651
}

652 653
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
654
	struct va_format vaf;
655 656 657
	va_list args;

	va_start(args, fmt);
658 659 660
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
661 662 663 664
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
665 666
{
	unsigned int off;	/* Offset of last byte */
667
	u8 *addr = page_address(page);
668 669 670 671 672

	print_tracking(s, p);

	print_page_info(page);

673 674
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
675

J
Joonsoo Kim 已提交
676
	if (s->flags & SLAB_RED_ZONE)
677 678
		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
			      s->red_left_pad);
J
Joonsoo Kim 已提交
679
	else if (p > addr + 16)
680
		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
681

682
	print_section(KERN_ERR, "Object ", p,
683
		      min_t(unsigned int, s->object_size, PAGE_SIZE));
C
Christoph Lameter 已提交
684
	if (s->flags & SLAB_RED_ZONE)
685
		print_section(KERN_ERR, "Redzone ", p + s->object_size,
686
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
687 688 689 690 691 692

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

693
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
694 695
		off += 2 * sizeof(struct track);

696 697
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
698
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
699
		/* Beginning of the filler is the free pointer */
700 701
		print_section(KERN_ERR, "Padding ", p + off,
			      size_from_object(s) - off);
702 703

	dump_stack();
C
Christoph Lameter 已提交
704 705
}

706
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
707 708
			u8 *object, char *reason)
{
709
	slab_bug(s, "%s", reason);
710
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
711 712
}

713
static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page,
714
			const char *fmt, ...)
C
Christoph Lameter 已提交
715 716 717 718
{
	va_list args;
	char buf[100];

719 720
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
721
	va_end(args);
722
	slab_bug(s, "%s", buf);
723
	print_page_info(page);
C
Christoph Lameter 已提交
724 725 726
	dump_stack();
}

727
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
728 729 730
{
	u8 *p = object;

J
Joonsoo Kim 已提交
731 732 733
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
734
	if (s->flags & __OBJECT_POISON) {
735 736
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
737 738 739
	}

	if (s->flags & SLAB_RED_ZONE)
740
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
741 742
}

743 744 745 746 747 748 749 750 751
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
752
			u8 *start, unsigned int value, unsigned int bytes)
753 754 755
{
	u8 *fault;
	u8 *end;
756
	u8 *addr = page_address(page);
757

758
	metadata_access_enable();
759
	fault = memchr_inv(start, value, bytes);
760
	metadata_access_disable();
761 762 763 764 765 766 767 768
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
769 770 771
	pr_err("INFO: 0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
					fault, end - 1, fault - addr,
					fault[0], value);
772 773 774 775
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
776 777 778 779 780 781 782 783 784
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
785
 *
C
Christoph Lameter 已提交
786 787 788
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
789
 * object + s->object_size
C
Christoph Lameter 已提交
790
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
791
 * 	Padding is extended by another word if Redzoning is enabled and
792
 * 	object_size == inuse.
C
Christoph Lameter 已提交
793
 *
C
Christoph Lameter 已提交
794 795 796 797
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
798 799
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
800 801
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
802
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
803
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
804 805 806
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
807 808
 *
 * object + s->size
C
Christoph Lameter 已提交
809
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
810
 *
811
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
812
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

828 829
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
830
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
831 832
		return 1;

833
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
834
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
835 836
}

837
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
838 839
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
840 841 842
	u8 *start;
	u8 *fault;
	u8 *end;
843
	u8 *pad;
844 845
	int length;
	int remainder;
C
Christoph Lameter 已提交
846 847 848 849

	if (!(s->flags & SLAB_POISON))
		return 1;

850
	start = page_address(page);
851
	length = page_size(page);
852 853
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
854 855 856
	if (!remainder)
		return 1;

857
	pad = end - remainder;
858
	metadata_access_enable();
859
	fault = memchr_inv(pad, POISON_INUSE, remainder);
860
	metadata_access_disable();
861 862 863 864 865
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

866 867
	slab_err(s, page, "Padding overwritten. 0x%p-0x%p @offset=%tu",
			fault, end - 1, fault - start);
868
	print_section(KERN_ERR, "Padding ", pad, remainder);
869

870
	restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
871
	return 0;
C
Christoph Lameter 已提交
872 873 874
}

static int check_object(struct kmem_cache *s, struct page *page,
875
					void *object, u8 val)
C
Christoph Lameter 已提交
876 877
{
	u8 *p = object;
878
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
879 880

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
881 882 883 884
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

885
		if (!check_bytes_and_report(s, page, object, "Redzone",
886
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
887 888
			return 0;
	} else {
889
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
890
			check_bytes_and_report(s, page, p, "Alignment padding",
891 892
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
893
		}
C
Christoph Lameter 已提交
894 895 896
	}

	if (s->flags & SLAB_POISON) {
897
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
898
			(!check_bytes_and_report(s, page, p, "Poison", p,
899
					POISON_FREE, s->object_size - 1) ||
900
			 !check_bytes_and_report(s, page, p, "Poison",
901
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
902 903 904 905 906 907 908
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

909
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
910 911 912 913 914 915 916 917 918 919
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
920
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
921
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
922
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
923
		 */
924
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
925 926 927 928 929 930 931
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
932 933
	int maxobj;

C
Christoph Lameter 已提交
934 935 936
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
937
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
938 939
		return 0;
	}
940

941
	maxobj = order_objects(compound_order(page), s->size);
942 943
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
944
			page->objects, maxobj);
945 946 947
		return 0;
	}
	if (page->inuse > page->objects) {
948
		slab_err(s, page, "inuse %u > max %u",
949
			page->inuse, page->objects);
C
Christoph Lameter 已提交
950 951 952 953 954 955 956 957
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
958 959
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
960 961 962 963
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
964
	void *fp;
C
Christoph Lameter 已提交
965
	void *object = NULL;
966
	int max_objects;
C
Christoph Lameter 已提交
967

968
	fp = page->freelist;
969
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
970 971 972 973 974 975
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
976
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
977
			} else {
978
				slab_err(s, page, "Freepointer corrupt");
979
				page->freelist = NULL;
980
				page->inuse = page->objects;
981
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
982 983 984 985 986 987 988 989 990
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

991
	max_objects = order_objects(compound_order(page), s->size);
992 993
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
994 995

	if (page->objects != max_objects) {
J
Joe Perches 已提交
996 997
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
998 999 1000
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
1001
	if (page->inuse != page->objects - nr) {
J
Joe Perches 已提交
1002 1003
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
1004
		page->inuse = page->objects - nr;
1005
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
1006 1007 1008 1009
	}
	return search == NULL;
}

1010 1011
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
1012 1013
{
	if (s->flags & SLAB_TRACE) {
1014
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
1015 1016 1017 1018 1019 1020
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
1021
			print_section(KERN_INFO, "Object ", (void *)object,
1022
					s->object_size);
C
Christoph Lameter 已提交
1023 1024 1025 1026 1027

		dump_stack();
	}
}

1028
/*
C
Christoph Lameter 已提交
1029
 * Tracking of fully allocated slabs for debugging purposes.
1030
 */
1031 1032
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1033
{
1034 1035 1036
	if (!(s->flags & SLAB_STORE_USER))
		return;

1037
	lockdep_assert_held(&n->list_lock);
1038
	list_add(&page->slab_list, &n->full);
1039 1040
}

P
Peter Zijlstra 已提交
1041
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1042 1043 1044 1045
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1046
	lockdep_assert_held(&n->list_lock);
1047
	list_del(&page->slab_list);
1048 1049
}

1050 1051 1052 1053 1054 1055 1056 1057
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1058 1059 1060 1061 1062
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1063
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1064 1065 1066 1067 1068 1069 1070 1071 1072
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1073
	if (likely(n)) {
1074
		atomic_long_inc(&n->nr_slabs);
1075 1076
		atomic_long_add(objects, &n->total_objects);
	}
1077
}
1078
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1079 1080 1081 1082
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1083
	atomic_long_sub(objects, &n->total_objects);
1084 1085 1086
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1087 1088 1089 1090 1091 1092
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1093
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1094 1095 1096
	init_tracking(s, object);
}

1097 1098
static
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr)
1099 1100 1101 1102 1103
{
	if (!(s->flags & SLAB_POISON))
		return;

	metadata_access_enable();
1104
	memset(addr, POISON_INUSE, page_size(page));
1105 1106 1107
	metadata_access_disable();
}

1108
static inline int alloc_consistency_checks(struct kmem_cache *s,
1109
					struct page *page, void *object)
C
Christoph Lameter 已提交
1110 1111
{
	if (!check_slab(s, page))
1112
		return 0;
C
Christoph Lameter 已提交
1113 1114 1115

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1116
		return 0;
C
Christoph Lameter 已提交
1117 1118
	}

1119
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1130
		if (!alloc_consistency_checks(s, page, object))
1131 1132
			goto bad;
	}
C
Christoph Lameter 已提交
1133

C
Christoph Lameter 已提交
1134 1135 1136 1137
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1138
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1139
	return 1;
C
Christoph Lameter 已提交
1140

C
Christoph Lameter 已提交
1141 1142 1143 1144 1145
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1146
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1147
		 */
1148
		slab_fix(s, "Marking all objects used");
1149
		page->inuse = page->objects;
1150
		page->freelist = NULL;
C
Christoph Lameter 已提交
1151 1152 1153 1154
	}
	return 0;
}

1155 1156
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1157 1158
{
	if (!check_valid_pointer(s, page, object)) {
1159
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1160
		return 0;
C
Christoph Lameter 已提交
1161 1162 1163
	}

	if (on_freelist(s, page, object)) {
1164
		object_err(s, page, object, "Object already free");
1165
		return 0;
C
Christoph Lameter 已提交
1166 1167
	}

1168
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1169
		return 0;
C
Christoph Lameter 已提交
1170

1171
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1172
		if (!PageSlab(page)) {
J
Joe Perches 已提交
1173 1174
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
1175
		} else if (!page->slab_cache) {
1176 1177
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1178
			dump_stack();
P
Pekka Enberg 已提交
1179
		} else
1180 1181
			object_err(s, page, object,
					"page slab pointer corrupt.");
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
	unsigned long uninitialized_var(flags);
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1213
	}
C
Christoph Lameter 已提交
1214 1215 1216 1217

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1218
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1219
	init_object(s, object, SLUB_RED_INACTIVE);
1220 1221 1222 1223 1224 1225

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1226 1227
	ret = 1;

1228
out:
1229 1230 1231 1232
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1233
	slab_unlock(page);
1234
	spin_unlock_irqrestore(&n->list_lock, flags);
1235 1236 1237
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1238 1239
}

C
Christoph Lameter 已提交
1240 1241
static int __init setup_slub_debug(char *str)
{
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1266
	for (; *str && *str != ','; str++) {
1267 1268
		switch (tolower(*str)) {
		case 'f':
1269
			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1283 1284 1285
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1286 1287 1288 1289 1290 1291 1292
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1293
		default:
1294 1295
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1296
		}
C
Christoph Lameter 已提交
1297 1298
	}

1299
check_slabs:
C
Christoph Lameter 已提交
1300 1301
	if (*str == ',')
		slub_debug_slabs = str + 1;
1302
out:
1303 1304 1305 1306
	if ((static_branch_unlikely(&init_on_alloc) ||
	     static_branch_unlikely(&init_on_free)) &&
	    (slub_debug & SLAB_POISON))
		pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
C
Christoph Lameter 已提交
1307 1308 1309 1310 1311
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323
/*
 * kmem_cache_flags - apply debugging options to the cache
 * @object_size:	the size of an object without meta data
 * @flags:		flags to set
 * @name:		name of the cache
 * @ctor:		constructor function
 *
 * Debug option(s) are applied to @flags. In addition to the debug
 * option(s), if a slab name (or multiple) is specified i.e.
 * slub_debug=<Debug-Options>,<slab name1>,<slab name2> ...
 * then only the select slabs will receive the debug option(s).
 */
1324
slab_flags_t kmem_cache_flags(unsigned int object_size,
1325
	slab_flags_t flags, const char *name,
1326
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1327
{
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340
	char *iter;
	size_t len;

	/* If slub_debug = 0, it folds into the if conditional. */
	if (!slub_debug_slabs)
		return flags | slub_debug;

	len = strlen(name);
	iter = slub_debug_slabs;
	while (*iter) {
		char *end, *glob;
		size_t cmplen;

1341
		end = strchrnul(iter, ',');
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357

		glob = strnchr(iter, end - iter, '*');
		if (glob)
			cmplen = glob - iter;
		else
			cmplen = max_t(size_t, len, (end - iter));

		if (!strncmp(name, iter, cmplen)) {
			flags |= slub_debug;
			break;
		}

		if (!*end)
			break;
		iter = end + 1;
	}
1358 1359

	return flags;
C
Christoph Lameter 已提交
1360
}
1361
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1362 1363
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
1364 1365
static inline
void setup_page_debug(struct kmem_cache *s, struct page *page, void *addr) {}
C
Christoph Lameter 已提交
1366

C
Christoph Lameter 已提交
1367
static inline int alloc_debug_processing(struct kmem_cache *s,
1368
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1369

1370
static inline int free_debug_processing(
1371 1372
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1373
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1374 1375 1376 1377

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1378
			void *object, u8 val) { return 1; }
1379 1380
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1381 1382
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1383
slab_flags_t kmem_cache_flags(unsigned int object_size,
1384
	slab_flags_t flags, const char *name,
1385
	void (*ctor)(void *))
1386 1387 1388
{
	return flags;
}
C
Christoph Lameter 已提交
1389
#define slub_debug 0
1390

1391 1392
#define disable_higher_order_debug 0

1393 1394
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1395 1396
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1397 1398 1399 1400
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1401

1402 1403 1404 1405 1406 1407
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1408
static inline void *kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1409
{
1410
	ptr = kasan_kmalloc_large(ptr, size, flags);
1411
	/* As ptr might get tagged, call kmemleak hook after KASAN. */
1412
	kmemleak_alloc(ptr, size, 1, flags);
1413
	return ptr;
1414 1415
}

1416
static __always_inline void kfree_hook(void *x)
1417 1418
{
	kmemleak_free(x);
1419
	kasan_kfree_large(x, _RET_IP_);
1420 1421
}

1422
static __always_inline bool slab_free_hook(struct kmem_cache *s, void *x)
1423 1424
{
	kmemleak_free_recursive(x, s->flags);
1425

1426 1427 1428 1429 1430
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
1431
#ifdef CONFIG_LOCKDEP
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
	{
		unsigned long flags;

		local_irq_save(flags);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1442

1443 1444
	/* KASAN might put x into memory quarantine, delaying its reuse */
	return kasan_slab_free(s, x, _RET_IP_);
1445
}
1446

1447 1448
static inline bool slab_free_freelist_hook(struct kmem_cache *s,
					   void **head, void **tail)
1449
{
1450 1451 1452 1453 1454 1455

	void *object;
	void *next = *head;
	void *old_tail = *tail ? *tail : *head;
	int rsize;

1456 1457 1458
	/* Head and tail of the reconstructed freelist */
	*head = NULL;
	*tail = NULL;
1459

1460 1461 1462 1463 1464
	do {
		object = next;
		next = get_freepointer(s, object);

		if (slab_want_init_on_free(s)) {
1465 1466 1467 1468 1469 1470 1471 1472 1473
			/*
			 * Clear the object and the metadata, but don't touch
			 * the redzone.
			 */
			memset(object, 0, s->object_size);
			rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad
							   : 0;
			memset((char *)object + s->inuse, 0,
			       s->size - s->inuse - rsize);
1474

1475
		}
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
		/* If object's reuse doesn't have to be delayed */
		if (!slab_free_hook(s, object)) {
			/* Move object to the new freelist */
			set_freepointer(s, object, *head);
			*head = object;
			if (!*tail)
				*tail = object;
		}
	} while (object != old_tail);

	if (*head == *tail)
		*tail = NULL;

	return *head != NULL;
1490 1491
}

1492
static void *setup_object(struct kmem_cache *s, struct page *page,
1493 1494 1495
				void *object)
{
	setup_object_debug(s, page, object);
1496
	object = kasan_init_slab_obj(s, object);
1497 1498 1499 1500 1501
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
1502
	return object;
1503 1504
}

C
Christoph Lameter 已提交
1505 1506 1507
/*
 * Slab allocation and freeing
 */
1508 1509
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1510
{
1511
	struct page *page;
1512
	unsigned int order = oo_order(oo);
1513

1514
	if (node == NUMA_NO_NODE)
1515
		page = alloc_pages(flags, order);
1516
	else
1517
		page = __alloc_pages_node(node, flags, order);
1518

1519
	if (page && charge_slab_page(page, flags, order, s)) {
1520 1521 1522
		__free_pages(page, order);
		page = NULL;
	}
1523 1524

	return page;
1525 1526
}

T
Thomas Garnier 已提交
1527 1528 1529 1530
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
1531
	unsigned int count = oo_objects(s->oo);
T
Thomas Garnier 已提交
1532 1533
	int err;

1534 1535 1536 1537
	/* Bailout if already initialised */
	if (s->random_seq)
		return 0;

T
Thomas Garnier 已提交
1538 1539 1540 1541 1542 1543 1544 1545 1546
	err = cache_random_seq_create(s, count, GFP_KERNEL);
	if (err) {
		pr_err("SLUB: Unable to initialize free list for %s\n",
			s->name);
		return err;
	}

	/* Transform to an offset on the set of pages */
	if (s->random_seq) {
1547 1548
		unsigned int i;

T
Thomas Garnier 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
		for (i = 0; i < count; i++)
			s->random_seq[i] *= s->size;
	}
	return 0;
}

/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list)
		init_cache_random_seq(s);

	mutex_unlock(&slab_mutex);
}

/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
				unsigned long *pos, void *start,
				unsigned long page_limit,
				unsigned long freelist_count)
{
	unsigned int idx;

	/*
	 * If the target page allocation failed, the number of objects on the
	 * page might be smaller than the usual size defined by the cache.
	 */
	do {
		idx = s->random_seq[*pos];
		*pos += 1;
		if (*pos >= freelist_count)
			*pos = 0;
	} while (unlikely(idx >= page_limit));

	return (char *)start + idx;
}

/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	void *start;
	void *cur;
	void *next;
	unsigned long idx, pos, page_limit, freelist_count;

	if (page->objects < 2 || !s->random_seq)
		return false;

	freelist_count = oo_objects(s->oo);
	pos = get_random_int() % freelist_count;

	page_limit = page->objects * s->size;
	start = fixup_red_left(s, page_address(page));

	/* First entry is used as the base of the freelist */
	cur = next_freelist_entry(s, page, &pos, start, page_limit,
				freelist_count);
1610
	cur = setup_object(s, page, cur);
T
Thomas Garnier 已提交
1611 1612 1613 1614 1615
	page->freelist = cur;

	for (idx = 1; idx < page->objects; idx++) {
		next = next_freelist_entry(s, page, &pos, start, page_limit,
			freelist_count);
1616
		next = setup_object(s, page, next);
T
Thomas Garnier 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
		set_freepointer(s, cur, next);
		cur = next;
	}
	set_freepointer(s, cur, NULL);

	return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
	return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

C
Christoph Lameter 已提交
1636 1637
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1638
	struct page *page;
1639
	struct kmem_cache_order_objects oo = s->oo;
1640
	gfp_t alloc_gfp;
1641
	void *start, *p, *next;
1642
	int idx;
T
Thomas Garnier 已提交
1643
	bool shuffle;
C
Christoph Lameter 已提交
1644

1645 1646
	flags &= gfp_allowed_mask;

1647
	if (gfpflags_allow_blocking(flags))
1648 1649
		local_irq_enable();

1650
	flags |= s->allocflags;
1651

1652 1653 1654 1655 1656
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1657
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1658
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1659

1660
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1661 1662
	if (unlikely(!page)) {
		oo = s->min;
1663
		alloc_gfp = flags;
1664 1665 1666 1667
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1668
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1669 1670 1671
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1672
	}
V
Vegard Nossum 已提交
1673

1674
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1675

1676
	page->slab_cache = s;
1677
	__SetPageSlab(page);
1678
	if (page_is_pfmemalloc(page))
1679
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1680

1681
	kasan_poison_slab(page);
C
Christoph Lameter 已提交
1682

1683
	start = page_address(page);
C
Christoph Lameter 已提交
1684

1685
	setup_page_debug(s, page, start);
1686

T
Thomas Garnier 已提交
1687 1688 1689
	shuffle = shuffle_freelist(s, page);

	if (!shuffle) {
1690 1691 1692
		start = fixup_red_left(s, start);
		start = setup_object(s, page, start);
		page->freelist = start;
1693 1694 1695 1696 1697 1698 1699
		for (idx = 0, p = start; idx < page->objects - 1; idx++) {
			next = p + s->size;
			next = setup_object(s, page, next);
			set_freepointer(s, p, next);
			p = next;
		}
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
1700 1701
	}

1702
	page->inuse = page->objects;
1703
	page->frozen = 1;
1704

C
Christoph Lameter 已提交
1705
out:
1706
	if (gfpflags_allow_blocking(flags))
1707 1708 1709 1710 1711 1712
		local_irq_disable();
	if (!page)
		return NULL;

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1713 1714 1715
	return page;
}

1716 1717 1718
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1719
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1720 1721 1722
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
1723
		dump_stack();
1724 1725 1726 1727 1728 1729
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1730 1731
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1732 1733
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1734

1735
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
C
Christoph Lameter 已提交
1736 1737 1738
		void *p;

		slab_pad_check(s, page);
1739 1740
		for_each_object(p, s, page_address(page),
						page->objects)
1741
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1742 1743
	}

1744
	__ClearPageSlabPfmemalloc(page);
1745
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1746

1747
	page->mapping = NULL;
N
Nick Piggin 已提交
1748 1749
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1750
	uncharge_slab_page(page, order, s);
1751
	__free_pages(page, order);
C
Christoph Lameter 已提交
1752 1753 1754 1755
}

static void rcu_free_slab(struct rcu_head *h)
{
1756
	struct page *page = container_of(h, struct page, rcu_head);
1757

1758
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1759 1760 1761 1762
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
1763
	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1764
		call_rcu(&page->rcu_head, rcu_free_slab);
C
Christoph Lameter 已提交
1765 1766 1767 1768 1769 1770
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1771
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1772 1773 1774 1775
	free_slab(s, page);
}

/*
1776
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1777
 */
1778 1779
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1780
{
C
Christoph Lameter 已提交
1781
	n->nr_partial++;
1782
	if (tail == DEACTIVATE_TO_TAIL)
1783
		list_add_tail(&page->slab_list, &n->partial);
1784
	else
1785
		list_add(&page->slab_list, &n->partial);
C
Christoph Lameter 已提交
1786 1787
}

1788 1789
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1790
{
P
Peter Zijlstra 已提交
1791
	lockdep_assert_held(&n->list_lock);
1792 1793
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1794

1795 1796 1797 1798
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1799
	list_del(&page->slab_list);
1800
	n->nr_partial--;
1801 1802
}

C
Christoph Lameter 已提交
1803
/*
1804 1805
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1806
 *
1807
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1808
 */
1809
static inline void *acquire_slab(struct kmem_cache *s,
1810
		struct kmem_cache_node *n, struct page *page,
1811
		int mode, int *objects)
C
Christoph Lameter 已提交
1812
{
1813 1814 1815 1816
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1817 1818
	lockdep_assert_held(&n->list_lock);

1819 1820 1821 1822 1823
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1824 1825 1826
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1827
	*objects = new.objects - new.inuse;
1828
	if (mode) {
1829
		new.inuse = page->objects;
1830 1831 1832 1833
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1834

1835
	VM_BUG_ON(new.frozen);
1836
	new.frozen = 1;
1837

1838
	if (!__cmpxchg_double_slab(s, page,
1839
			freelist, counters,
1840
			new.freelist, new.counters,
1841 1842
			"acquire_slab"))
		return NULL;
1843 1844

	remove_partial(n, page);
1845
	WARN_ON(!freelist);
1846
	return freelist;
C
Christoph Lameter 已提交
1847 1848
}

1849
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1850
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1851

C
Christoph Lameter 已提交
1852
/*
C
Christoph Lameter 已提交
1853
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1854
 */
1855 1856
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1857
{
1858 1859
	struct page *page, *page2;
	void *object = NULL;
1860
	unsigned int available = 0;
1861
	int objects;
C
Christoph Lameter 已提交
1862 1863 1864 1865

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1866 1867
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1868 1869 1870 1871 1872
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1873
	list_for_each_entry_safe(page, page2, &n->partial, slab_list) {
1874
		void *t;
1875

1876 1877 1878
		if (!pfmemalloc_match(page, flags))
			continue;

1879
		t = acquire_slab(s, n, page, object == NULL, &objects);
1880 1881 1882
		if (!t)
			break;

1883
		available += objects;
1884
		if (!object) {
1885 1886 1887 1888
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1889
			put_cpu_partial(s, page, 0);
1890
			stat(s, CPU_PARTIAL_NODE);
1891
		}
1892
		if (!kmem_cache_has_cpu_partial(s)
1893
			|| available > slub_cpu_partial(s) / 2)
1894 1895
			break;

1896
	}
C
Christoph Lameter 已提交
1897
	spin_unlock(&n->list_lock);
1898
	return object;
C
Christoph Lameter 已提交
1899 1900 1901
}

/*
C
Christoph Lameter 已提交
1902
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1903
 */
1904
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1905
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1906 1907 1908
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1909
	struct zoneref *z;
1910 1911
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1912
	void *object;
1913
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1914 1915

	/*
C
Christoph Lameter 已提交
1916 1917 1918 1919
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1920
	 *
C
Christoph Lameter 已提交
1921 1922 1923 1924
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1925
	 *
1926 1927 1928 1929 1930
	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
	 * (which makes defrag_ratio = 1000) then every (well almost)
	 * allocation will first attempt to defrag slab caches on other nodes.
	 * This means scanning over all nodes to look for partial slabs which
	 * may be expensive if we do it every time we are trying to find a slab
C
Christoph Lameter 已提交
1931
	 * with available objects.
C
Christoph Lameter 已提交
1932
	 */
1933 1934
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1935 1936
		return NULL;

1937
	do {
1938
		cpuset_mems_cookie = read_mems_allowed_begin();
1939
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1940 1941 1942 1943 1944
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1945
			if (n && cpuset_zone_allowed(zone, flags) &&
1946
					n->nr_partial > s->min_partial) {
1947
				object = get_partial_node(s, n, c, flags);
1948 1949
				if (object) {
					/*
1950 1951 1952 1953 1954
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1955 1956 1957
					 */
					return object;
				}
1958
			}
C
Christoph Lameter 已提交
1959
		}
1960
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
1961
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
1962 1963 1964 1965 1966 1967
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1968
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1969
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1970
{
1971
	void *object;
1972 1973 1974 1975
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
C
Christoph Lameter 已提交
1976

1977
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1978 1979
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1980

1981
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1982 1983
}

1984
#ifdef CONFIG_PREEMPTION
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

2004
#ifdef SLUB_DEBUG_CMPXCHG
2005 2006 2007 2008 2009 2010 2011 2012 2013
static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}
2014
#endif
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

2027
	pr_info("%s %s: cmpxchg redo ", n, s->name);
2028

2029
#ifdef CONFIG_PREEMPTION
2030
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2031
		pr_warn("due to cpu change %d -> %d\n",
2032 2033 2034 2035
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
2036
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2037 2038
			tid_to_event(tid), tid_to_event(actual_tid));
	else
2039
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2040 2041
			actual_tid, tid, next_tid(tid));
#endif
2042
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2043 2044
}

2045
static void init_kmem_cache_cpus(struct kmem_cache *s)
2046 2047 2048 2049 2050 2051
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
2052

C
Christoph Lameter 已提交
2053 2054 2055
/*
 * Remove the cpu slab
 */
2056
static void deactivate_slab(struct kmem_cache *s, struct page *page,
2057
				void *freelist, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2058
{
2059 2060 2061 2062 2063
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
2064
	int tail = DEACTIVATE_TO_HEAD;
2065 2066 2067 2068
	struct page new;
	struct page old;

	if (page->freelist) {
2069
		stat(s, DEACTIVATE_REMOTE_FREES);
2070
		tail = DEACTIVATE_TO_TAIL;
2071 2072
	}

2073
	/*
2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
2091
			VM_BUG_ON(!new.frozen);
2092

2093
		} while (!__cmpxchg_double_slab(s, page,
2094 2095 2096 2097 2098 2099 2100
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

2101
	/*
2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
2114
	 */
2115
redo:
2116

2117 2118
	old.freelist = page->freelist;
	old.counters = page->counters;
2119
	VM_BUG_ON(!old.frozen);
2120

2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

2132
	if (!new.inuse && n->nr_partial >= s->min_partial)
2133 2134 2135 2136 2137 2138
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
W
Wei Yang 已提交
2139
			 * Taking the spinlock removes the possibility
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {
		if (l == M_PARTIAL)
			remove_partial(n, page);
		else if (l == M_FULL)
P
Peter Zijlstra 已提交
2162
			remove_full(s, n, page);
2163

2164
		if (m == M_PARTIAL)
2165
			add_partial(n, page, tail);
2166
		else if (m == M_FULL)
2167 2168 2169 2170
			add_full(s, n, page);
	}

	l = m;
2171
	if (!__cmpxchg_double_slab(s, page,
2172 2173 2174 2175 2176 2177 2178 2179
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

2180 2181 2182 2183 2184
	if (m == M_PARTIAL)
		stat(s, tail);
	else if (m == M_FULL)
		stat(s, DEACTIVATE_FULL);
	else if (m == M_FREE) {
2185 2186 2187
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2188
	}
2189 2190 2191

	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2192 2193
}

2194 2195 2196
/*
 * Unfreeze all the cpu partial slabs.
 *
2197 2198 2199
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2200
 */
2201 2202
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2203
{
2204
#ifdef CONFIG_SLUB_CPU_PARTIAL
2205
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2206
	struct page *page, *discard_page = NULL;
2207

2208
	while ((page = slub_percpu_partial(c))) {
2209 2210 2211
		struct page new;
		struct page old;

2212
		slub_set_percpu_partial(c, page);
2213 2214 2215 2216 2217 2218 2219 2220 2221

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2222 2223 2224 2225 2226

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2227
			VM_BUG_ON(!old.frozen);
2228 2229 2230 2231 2232 2233

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2234
		} while (!__cmpxchg_double_slab(s, page,
2235 2236 2237 2238
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2239
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2240 2241
			page->next = discard_page;
			discard_page = page;
2242 2243 2244
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2245 2246 2247 2248 2249
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2250 2251 2252 2253 2254 2255 2256 2257 2258

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2259
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2260 2261 2262
}

/*
2263 2264
 * Put a page that was just frozen (in __slab_free|get_partial_node) into a
 * partial page slot if available.
2265 2266 2267 2268
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2269
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2270
{
2271
#ifdef CONFIG_SLUB_CPU_PARTIAL
2272 2273 2274 2275
	struct page *oldpage;
	int pages;
	int pobjects;

2276
	preempt_disable();
2277 2278 2279 2280 2281 2282 2283 2284
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
2285
			if (drain && pobjects > slub_cpu_partial(s)) {
2286 2287 2288 2289 2290 2291
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2292
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2293
				local_irq_restore(flags);
2294
				oldpage = NULL;
2295 2296
				pobjects = 0;
				pages = 0;
2297
				stat(s, CPU_PARTIAL_DRAIN);
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2308 2309
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2310
	if (unlikely(!slub_cpu_partial(s))) {
2311 2312 2313 2314 2315 2316 2317
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2318
#endif	/* CONFIG_SLUB_CPU_PARTIAL */
2319 2320
}

2321
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2322
{
2323
	stat(s, CPUSLAB_FLUSH);
2324
	deactivate_slab(s, c->page, c->freelist, c);
2325 2326

	c->tid = next_tid(c->tid);
C
Christoph Lameter 已提交
2327 2328 2329 2330
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2331
 *
C
Christoph Lameter 已提交
2332 2333
 * Called from IPI handler with interrupts disabled.
 */
2334
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2335
{
2336
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2337

2338 2339
	if (c->page)
		flush_slab(s, c);
2340

2341
	unfreeze_partials(s, c);
C
Christoph Lameter 已提交
2342 2343 2344 2345 2346 2347
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2348
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2349 2350
}

2351 2352 2353 2354 2355
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2356
	return c->page || slub_percpu_partial(c);
2357 2358
}

C
Christoph Lameter 已提交
2359 2360
static void flush_all(struct kmem_cache *s)
{
2361
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1);
C
Christoph Lameter 已提交
2362 2363
}

2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slub_cpu_dead(unsigned int cpu)
{
	struct kmem_cache *s;
	unsigned long flags;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		local_irq_save(flags);
		__flush_cpu_slab(s, cpu);
		local_irq_restore(flags);
	}
	mutex_unlock(&slab_mutex);
	return 0;
}

2383 2384 2385 2386
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2387
static inline int node_match(struct page *page, int node)
2388 2389
{
#ifdef CONFIG_NUMA
2390
	if (node != NUMA_NO_NODE && page_to_nid(page) != node)
2391 2392 2393 2394 2395
		return 0;
#endif
	return 1;
}

2396
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2397 2398 2399 2400 2401
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2402 2403 2404 2405 2406 2407 2408
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2409 2410 2411 2412 2413 2414 2415 2416
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
2417
	list_for_each_entry(page, &n->partial, slab_list)
P
Pekka Enberg 已提交
2418 2419 2420 2421
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2422
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2423

P
Pekka Enberg 已提交
2424 2425 2426
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2427 2428 2429
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2430
	int node;
C
Christoph Lameter 已提交
2431
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2432

2433 2434 2435
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2436 2437
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2438
	pr_warn("  cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
2439 2440
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2441

2442
	if (oo_order(s->min) > get_order(s->object_size))
2443 2444
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2445

C
Christoph Lameter 已提交
2446
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2447 2448 2449 2450
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2451 2452 2453
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2454

2455
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2456 2457
			node, nr_slabs, nr_objs, nr_free);
	}
2458
#endif
P
Pekka Enberg 已提交
2459 2460
}

2461 2462 2463
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2464
	void *freelist;
2465 2466
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2467

2468 2469
	WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));

2470
	freelist = get_partial(s, flags, node, c);
2471

2472 2473 2474 2475
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2476
	if (page) {
2477
		c = raw_cpu_ptr(s->cpu_slab);
2478 2479 2480 2481 2482 2483 2484
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2485
		freelist = page->freelist;
2486 2487 2488 2489 2490
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
2491
	}
2492

2493
	return freelist;
2494 2495
}

2496 2497 2498 2499 2500 2501 2502 2503
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2504
/*
2505 2506
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2507 2508 2509 2510
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2511 2512
 *
 * This function must be called with interrupt disabled.
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2523

2524
		new.counters = counters;
2525
		VM_BUG_ON(!new.frozen);
2526 2527 2528 2529

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2530
	} while (!__cmpxchg_double_slab(s, page,
2531 2532 2533 2534 2535 2536 2537
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2538
/*
2539 2540 2541 2542 2543 2544
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2545
 *
2546 2547 2548
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2549
 *
2550
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2551 2552
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2553 2554 2555
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2556
 */
2557
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2558
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2559
{
2560
	void *freelist;
2561
	struct page *page;
C
Christoph Lameter 已提交
2562

2563
	page = c->page;
2564 2565 2566 2567 2568 2569 2570 2571
	if (!page) {
		/*
		 * if the node is not online or has no normal memory, just
		 * ignore the node constraint
		 */
		if (unlikely(node != NUMA_NO_NODE &&
			     !node_state(node, N_NORMAL_MEMORY)))
			node = NUMA_NO_NODE;
C
Christoph Lameter 已提交
2572
		goto new_slab;
2573
	}
2574
redo:
2575

2576
	if (unlikely(!node_match(page, node))) {
2577 2578 2579 2580 2581 2582 2583 2584
		/*
		 * same as above but node_match() being false already
		 * implies node != NUMA_NO_NODE
		 */
		if (!node_state(node, N_NORMAL_MEMORY)) {
			node = NUMA_NO_NODE;
			goto redo;
		} else {
2585
			stat(s, ALLOC_NODE_MISMATCH);
2586
			deactivate_slab(s, page, c->freelist, c);
2587 2588
			goto new_slab;
		}
2589
	}
C
Christoph Lameter 已提交
2590

2591 2592 2593 2594 2595 2596
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2597
		deactivate_slab(s, page, c->freelist, c);
2598 2599 2600
		goto new_slab;
	}

2601
	/* must check again c->freelist in case of cpu migration or IRQ */
2602 2603
	freelist = c->freelist;
	if (freelist)
2604
		goto load_freelist;
2605

2606
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2607

2608
	if (!freelist) {
2609 2610
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2611
		goto new_slab;
2612
	}
C
Christoph Lameter 已提交
2613

2614
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2615

2616
load_freelist:
2617 2618 2619 2620 2621
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2622
	VM_BUG_ON(!c->page->frozen);
2623
	c->freelist = get_freepointer(s, freelist);
2624
	c->tid = next_tid(c->tid);
2625
	return freelist;
C
Christoph Lameter 已提交
2626 2627

new_slab:
2628

2629 2630 2631
	if (slub_percpu_partial(c)) {
		page = c->page = slub_percpu_partial(c);
		slub_set_percpu_partial(c, page);
2632 2633
		stat(s, CPU_PARTIAL_ALLOC);
		goto redo;
C
Christoph Lameter 已提交
2634 2635
	}

2636
	freelist = new_slab_objects(s, gfpflags, node, &c);
2637

2638
	if (unlikely(!freelist)) {
2639
		slab_out_of_memory(s, gfpflags, node);
2640
		return NULL;
C
Christoph Lameter 已提交
2641
	}
2642

2643
	page = c->page;
2644
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2645
		goto load_freelist;
2646

2647
	/* Only entered in the debug case */
2648 2649
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2650
		goto new_slab;	/* Slab failed checks. Next slab needed */
2651

2652
	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2653
	return freelist;
2654 2655
}

2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
2667
#ifdef CONFIG_PREEMPTION
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691
/*
 * If the object has been wiped upon free, make sure it's fully initialized by
 * zeroing out freelist pointer.
 */
static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
						   void *obj)
{
	if (unlikely(slab_want_init_on_free(s)) && obj)
		memset((void *)((char *)obj + s->offset), 0, sizeof(void *));
}

2692 2693 2694 2695 2696 2697 2698 2699 2700 2701
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2702
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2703
		gfp_t gfpflags, int node, unsigned long addr)
2704
{
2705
	void *object;
2706
	struct kmem_cache_cpu *c;
2707
	struct page *page;
2708
	unsigned long tid;
2709

2710 2711
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2712
		return NULL;
2713 2714 2715 2716 2717 2718
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2719
	 *
2720
	 * We should guarantee that tid and kmem_cache are retrieved on
2721
	 * the same cpu. It could be different if CONFIG_PREEMPTION so we need
2722
	 * to check if it is matched or not.
2723
	 */
2724 2725 2726
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2727
	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
2728
		 unlikely(tid != READ_ONCE(c->tid)));
2729 2730 2731 2732 2733 2734 2735 2736 2737 2738

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2739 2740 2741 2742 2743 2744 2745 2746

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2747
	object = c->freelist;
2748
	page = c->page;
D
Dave Hansen 已提交
2749
	if (unlikely(!object || !node_match(page, node))) {
2750
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2751 2752
		stat(s, ALLOC_SLOWPATH);
	} else {
2753 2754
		void *next_object = get_freepointer_safe(s, object);

2755
		/*
L
Lucas De Marchi 已提交
2756
		 * The cmpxchg will only match if there was no additional
2757 2758
		 * operation and if we are on the right processor.
		 *
2759 2760
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2761 2762 2763 2764
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2765 2766 2767
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2768
		 */
2769
		if (unlikely(!this_cpu_cmpxchg_double(
2770 2771
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2772
				next_object, next_tid(tid)))) {
2773 2774 2775 2776

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2777
		prefetch_freepointer(s, next_object);
2778
		stat(s, ALLOC_FASTPATH);
2779
	}
2780 2781

	maybe_wipe_obj_freeptr(s, object);
2782

2783
	if (unlikely(slab_want_init_on_alloc(gfpflags, s)) && object)
2784
		memset(object, 0, s->object_size);
2785

2786
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2787

2788
	return object;
C
Christoph Lameter 已提交
2789 2790
}

2791 2792 2793 2794 2795 2796
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2797 2798
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2799
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2800

2801 2802
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2803 2804

	return ret;
C
Christoph Lameter 已提交
2805 2806 2807
}
EXPORT_SYMBOL(kmem_cache_alloc);

2808
#ifdef CONFIG_TRACING
2809 2810
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2811
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2812
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2813
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2814 2815 2816
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2817 2818
#endif

C
Christoph Lameter 已提交
2819 2820 2821
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2822
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2823

2824
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2825
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2826 2827

	return ret;
C
Christoph Lameter 已提交
2828 2829 2830
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2831
#ifdef CONFIG_TRACING
2832
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2833
				    gfp_t gfpflags,
2834
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2835
{
2836
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2837 2838 2839

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2840

2841
	ret = kasan_kmalloc(s, ret, size, gfpflags);
2842
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2843
}
2844
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2845
#endif
2846
#endif	/* CONFIG_NUMA */
E
Eduard - Gabriel Munteanu 已提交
2847

C
Christoph Lameter 已提交
2848
/*
K
Kim Phillips 已提交
2849
 * Slow path handling. This may still be called frequently since objects
2850
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2851
 *
2852 2853 2854
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2855
 */
2856
static void __slab_free(struct kmem_cache *s, struct page *page,
2857 2858 2859
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2860 2861
{
	void *prior;
2862 2863 2864 2865
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2866
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2867

2868
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2869

2870
	if (kmem_cache_debug(s) &&
2871
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2872
		return;
C
Christoph Lameter 已提交
2873

2874
	do {
2875 2876 2877 2878
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2879 2880
		prior = page->freelist;
		counters = page->counters;
2881
		set_freepointer(s, tail, prior);
2882 2883
		new.counters = counters;
		was_frozen = new.frozen;
2884
		new.inuse -= cnt;
2885
		if ((!new.inuse || !prior) && !was_frozen) {
2886

P
Peter Zijlstra 已提交
2887
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2888 2889

				/*
2890 2891 2892 2893
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2894 2895 2896
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2897
			} else { /* Needs to be taken off a list */
2898

2899
				n = get_node(s, page_to_nid(page));
2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2911
		}
C
Christoph Lameter 已提交
2912

2913 2914
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2915
		head, new.counters,
2916
		"__slab_free"));
C
Christoph Lameter 已提交
2917

2918
	if (likely(!n)) {
2919 2920 2921 2922 2923

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2924
		if (new.frozen && !was_frozen) {
2925
			put_cpu_partial(s, page, 1);
2926 2927
			stat(s, CPU_PARTIAL_FREE);
		}
2928
		/*
2929 2930 2931
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2932 2933 2934 2935
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2936

2937
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2938 2939
		goto slab_empty;

C
Christoph Lameter 已提交
2940
	/*
2941 2942
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2943
	 */
2944
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2945
		remove_full(s, n, page);
2946 2947
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2948
	}
2949
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2950 2951 2952
	return;

slab_empty:
2953
	if (prior) {
C
Christoph Lameter 已提交
2954
		/*
2955
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2956
		 */
2957
		remove_partial(n, page);
2958
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2959
	} else {
2960
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2961 2962
		remove_full(s, n, page);
	}
2963

2964
	spin_unlock_irqrestore(&n->list_lock, flags);
2965
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2966 2967 2968
	discard_slab(s, page);
}

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
2979 2980 2981 2982
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
2983
 */
2984 2985 2986
static __always_inline void do_slab_free(struct kmem_cache *s,
				struct page *page, void *head, void *tail,
				int cnt, unsigned long addr)
2987
{
2988
	void *tail_obj = tail ? : head;
2989
	struct kmem_cache_cpu *c;
2990 2991 2992 2993 2994 2995
	unsigned long tid;
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2996
	 * during the cmpxchg then the free will succeed.
2997
	 */
2998 2999 3000
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
3001
	} while (IS_ENABLED(CONFIG_PREEMPTION) &&
3002
		 unlikely(tid != READ_ONCE(c->tid)));
3003

3004 3005
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
3006

3007
	if (likely(page == c->page)) {
3008 3009 3010
		void **freelist = READ_ONCE(c->freelist);

		set_freepointer(s, tail_obj, freelist);
3011

3012
		if (unlikely(!this_cpu_cmpxchg_double(
3013
				s->cpu_slab->freelist, s->cpu_slab->tid,
3014
				freelist, tid,
3015
				head, next_tid(tid)))) {
3016 3017 3018 3019

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
3020
		stat(s, FREE_FASTPATH);
3021
	} else
3022
		__slab_free(s, page, head, tail_obj, cnt, addr);
3023 3024 3025

}

3026 3027 3028 3029 3030
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	/*
3031 3032
	 * With KASAN enabled slab_free_freelist_hook modifies the freelist
	 * to remove objects, whose reuse must be delayed.
3033
	 */
3034 3035
	if (slab_free_freelist_hook(s, &head, &tail))
		do_slab_free(s, page, head, tail, cnt, addr);
3036 3037
}

3038
#ifdef CONFIG_KASAN_GENERIC
3039 3040 3041 3042 3043 3044
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif

C
Christoph Lameter 已提交
3045 3046
void kmem_cache_free(struct kmem_cache *s, void *x)
{
3047 3048
	s = cache_from_obj(s, x);
	if (!s)
3049
		return;
3050
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3051
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
3052 3053 3054
}
EXPORT_SYMBOL(kmem_cache_free);

3055
struct detached_freelist {
3056
	struct page *page;
3057 3058 3059
	void *tail;
	void *freelist;
	int cnt;
3060
	struct kmem_cache *s;
3061
};
3062

3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
3075 3076 3077
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
3078 3079 3080 3081
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
3082
	struct page *page;
3083

3084 3085
	/* Always re-init detached_freelist */
	df->page = NULL;
3086

3087 3088
	do {
		object = p[--size];
3089
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3090
	} while (!object && size);
3091

3092 3093
	if (!object)
		return 0;
3094

3095 3096 3097 3098 3099 3100
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
3101
			__free_pages(page, compound_order(page));
3102 3103 3104 3105 3106 3107 3108 3109
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
3110

3111
	/* Start new detached freelist */
3112
	df->page = page;
3113
	set_freepointer(df->s, object, NULL);
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
3127
			set_freepointer(df->s, object, df->freelist);
3128 3129 3130 3131 3132
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
3133
		}
3134 3135 3136 3137 3138 3139 3140

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
3141
	}
3142 3143 3144 3145 3146

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
3147
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3148 3149 3150 3151 3152 3153 3154 3155
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
A
Arnd Bergmann 已提交
3156
		if (!df.page)
3157 3158
			continue;

3159
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3160
	} while (likely(size));
3161 3162 3163
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

3164
/* Note that interrupts must be enabled when calling this function. */
3165 3166
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
3167
{
3168 3169 3170
	struct kmem_cache_cpu *c;
	int i;

3171 3172 3173 3174
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

3186
		if (unlikely(!object)) {
3187 3188 3189 3190 3191 3192 3193 3194 3195
			/*
			 * We may have removed an object from c->freelist using
			 * the fastpath in the previous iteration; in that case,
			 * c->tid has not been bumped yet.
			 * Since ___slab_alloc() may reenable interrupts while
			 * allocating memory, we should bump c->tid now.
			 */
			c->tid = next_tid(c->tid);

3196 3197 3198 3199
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
3200
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3201
					    _RET_IP_, c);
3202 3203 3204
			if (unlikely(!p[i]))
				goto error;

3205
			c = this_cpu_ptr(s->cpu_slab);
3206 3207
			maybe_wipe_obj_freeptr(s, p[i]);

3208 3209
			continue; /* goto for-loop */
		}
3210 3211
		c->freelist = get_freepointer(s, object);
		p[i] = object;
3212
		maybe_wipe_obj_freeptr(s, p[i]);
3213 3214 3215 3216 3217
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
3218
	if (unlikely(slab_want_init_on_alloc(flags, s))) {
3219 3220 3221 3222 3223 3224
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

3225 3226
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
3227
	return i;
3228 3229
error:
	local_irq_enable();
3230 3231
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
3232
	return 0;
3233 3234 3235 3236
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
3237
/*
C
Christoph Lameter 已提交
3238 3239 3240 3241
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3242 3243 3244 3245
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3246
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3247 3248 3249 3250 3251 3252 3253 3254 3255
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
3256 3257 3258
static unsigned int slub_min_order;
static unsigned int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
static unsigned int slub_min_objects;
C
Christoph Lameter 已提交
3259 3260 3261 3262

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3263 3264 3265 3266
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3267
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3268 3269 3270 3271 3272 3273
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3274
 *
C
Christoph Lameter 已提交
3275 3276 3277 3278
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3279
 *
C
Christoph Lameter 已提交
3280 3281 3282 3283
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3284
 */
3285 3286
static inline unsigned int slab_order(unsigned int size,
		unsigned int min_objects, unsigned int max_order,
3287
		unsigned int fract_leftover)
C
Christoph Lameter 已提交
3288
{
3289 3290
	unsigned int min_order = slub_min_order;
	unsigned int order;
C
Christoph Lameter 已提交
3291

3292
	if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
3293
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3294

3295
	for (order = max(min_order, (unsigned int)get_order(min_objects * size));
3296
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3297

3298 3299
		unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
		unsigned int rem;
C
Christoph Lameter 已提交
3300

3301
		rem = slab_size % size;
C
Christoph Lameter 已提交
3302

3303
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3304 3305
			break;
	}
C
Christoph Lameter 已提交
3306

C
Christoph Lameter 已提交
3307 3308 3309
	return order;
}

3310
static inline int calculate_order(unsigned int size)
3311
{
3312 3313 3314
	unsigned int order;
	unsigned int min_objects;
	unsigned int max_objects;
3315 3316 3317 3318 3319 3320

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3321
	 * First we increase the acceptable waste in a slab. Then
3322 3323 3324
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3325 3326
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3327
	max_objects = order_objects(slub_max_order, size);
3328 3329
	min_objects = min(min_objects, max_objects);

3330
	while (min_objects > 1) {
3331 3332
		unsigned int fraction;

C
Christoph Lameter 已提交
3333
		fraction = 16;
3334 3335
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3336
					slub_max_order, fraction);
3337 3338 3339 3340
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3341
		min_objects--;
3342 3343 3344 3345 3346 3347
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3348
	order = slab_order(size, 1, slub_max_order, 1);
3349 3350 3351 3352 3353 3354
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3355
	order = slab_order(size, 1, MAX_ORDER, 1);
D
David Rientjes 已提交
3356
	if (order < MAX_ORDER)
3357 3358 3359 3360
		return order;
	return -ENOSYS;
}

3361
static void
3362
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3363 3364 3365 3366
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3367
#ifdef CONFIG_SLUB_DEBUG
3368
	atomic_long_set(&n->nr_slabs, 0);
3369
	atomic_long_set(&n->total_objects, 0);
3370
	INIT_LIST_HEAD(&n->full);
3371
#endif
C
Christoph Lameter 已提交
3372 3373
}

3374
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3375
{
3376
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3377
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3378

3379
	/*
3380 3381
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3382
	 */
3383 3384
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3385 3386 3387 3388 3389

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3390

3391
	return 1;
3392 3393
}

3394 3395
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3396 3397 3398 3399 3400
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3401 3402
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3403
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3404
 */
3405
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3406 3407 3408 3409
{
	struct page *page;
	struct kmem_cache_node *n;

3410
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3411

3412
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3413 3414

	BUG_ON(!page);
3415
	if (page_to_nid(page) != node) {
3416 3417
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3418 3419
	}

C
Christoph Lameter 已提交
3420 3421
	n = page->freelist;
	BUG_ON(!n);
3422
#ifdef CONFIG_SLUB_DEBUG
3423
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3424
	init_tracking(kmem_cache_node, n);
3425
#endif
3426
	n = kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3427
		      GFP_KERNEL);
3428 3429 3430 3431
	page->freelist = get_freepointer(kmem_cache_node, n);
	page->inuse = 1;
	page->frozen = 0;
	kmem_cache_node->node[node] = n;
3432
	init_kmem_cache_node(n);
3433
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3434

3435
	/*
3436 3437
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3438
	 */
3439
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3440 3441 3442 3443 3444
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3445
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3446

C
Christoph Lameter 已提交
3447
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3448
		s->node[node] = NULL;
3449
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3450 3451 3452
	}
}

3453 3454
void __kmem_cache_release(struct kmem_cache *s)
{
T
Thomas Garnier 已提交
3455
	cache_random_seq_destroy(s);
3456 3457 3458 3459
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3460
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3461 3462 3463
{
	int node;

C
Christoph Lameter 已提交
3464
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3465 3466
		struct kmem_cache_node *n;

3467
		if (slab_state == DOWN) {
3468
			early_kmem_cache_node_alloc(node);
3469 3470
			continue;
		}
3471
		n = kmem_cache_alloc_node(kmem_cache_node,
3472
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3473

3474 3475 3476
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3477
		}
3478

3479
		init_kmem_cache_node(n);
3480
		s->node[node] = n;
C
Christoph Lameter 已提交
3481 3482 3483 3484
	}
	return 1;
}

3485
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3486 3487 3488 3489 3490 3491 3492 3493
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
	 * B) The number of objects in cpu partial slabs to extract from the
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
	 */
	if (!kmem_cache_has_cpu_partial(s))
3515
		slub_set_cpu_partial(s, 0);
3516
	else if (s->size >= PAGE_SIZE)
3517
		slub_set_cpu_partial(s, 2);
3518
	else if (s->size >= 1024)
3519
		slub_set_cpu_partial(s, 6);
3520
	else if (s->size >= 256)
3521
		slub_set_cpu_partial(s, 13);
3522
	else
3523
		slub_set_cpu_partial(s, 30);
3524 3525 3526
#endif
}

C
Christoph Lameter 已提交
3527 3528 3529 3530
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3531
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3532
{
3533
	slab_flags_t flags = s->flags;
3534
	unsigned int size = s->object_size;
3535
	unsigned int order;
C
Christoph Lameter 已提交
3536

3537 3538 3539 3540 3541 3542 3543 3544
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3545 3546 3547 3548 3549
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
3550
	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3551
			!s->ctor)
C
Christoph Lameter 已提交
3552 3553 3554 3555 3556 3557
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3558
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3559
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3560
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3561
	 */
3562
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3563
		size += sizeof(void *);
C
Christoph Lameter 已提交
3564
#endif
C
Christoph Lameter 已提交
3565 3566

	/*
C
Christoph Lameter 已提交
3567 3568
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3569 3570 3571
	 */
	s->inuse = size;

3572
	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3573
		s->ctor)) {
C
Christoph Lameter 已提交
3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3586
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3587 3588 3589 3590 3591 3592
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);
3593
#endif
C
Christoph Lameter 已提交
3594

3595 3596
	kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
J
Joonsoo Kim 已提交
3597
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3598 3599 3600 3601
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3602
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3603 3604 3605
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3606 3607 3608 3609 3610

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3611
#endif
C
Christoph Lameter 已提交
3612

C
Christoph Lameter 已提交
3613 3614 3615 3616 3617
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3618
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3619
	s->size = size;
3620 3621 3622
	if (forced_order >= 0)
		order = forced_order;
	else
3623
		order = calculate_order(size);
C
Christoph Lameter 已提交
3624

3625
	if ((int)order < 0)
C
Christoph Lameter 已提交
3626 3627
		return 0;

3628
	s->allocflags = 0;
3629
	if (order)
3630 3631 3632
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3633
		s->allocflags |= GFP_DMA;
3634

3635 3636 3637
	if (s->flags & SLAB_CACHE_DMA32)
		s->allocflags |= GFP_DMA32;

3638 3639 3640
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3641 3642 3643
	/*
	 * Determine the number of objects per slab
	 */
3644 3645
	s->oo = oo_make(order, size);
	s->min = oo_make(get_order(size), size);
3646 3647
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3648

3649
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3650 3651
}

3652
static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
C
Christoph Lameter 已提交
3653
{
3654
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3655 3656 3657
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	s->random = get_random_long();
#endif
C
Christoph Lameter 已提交
3658

3659
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3660
		goto error;
3661 3662 3663 3664 3665
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3666
		if (get_order(s->size) > get_order(s->object_size)) {
3667 3668 3669 3670 3671 3672
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3673

3674 3675
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3676
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3677 3678 3679 3680
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3681 3682 3683 3684
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3685 3686
	set_min_partial(s, ilog2(s->size) / 2);

3687
	set_cpu_partial(s);
3688

C
Christoph Lameter 已提交
3689
#ifdef CONFIG_NUMA
3690
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3691
#endif
T
Thomas Garnier 已提交
3692 3693 3694 3695 3696 3697 3698

	/* Initialize the pre-computed randomized freelist if slab is up */
	if (slab_state >= UP) {
		if (init_cache_random_seq(s))
			goto error;
	}

3699
	if (!init_kmem_cache_nodes(s))
3700
		goto error;
C
Christoph Lameter 已提交
3701

3702
	if (alloc_kmem_cache_cpus(s))
3703
		return 0;
3704

3705
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3706
error:
3707
	return -EINVAL;
C
Christoph Lameter 已提交
3708 3709
}

3710 3711 3712 3713 3714 3715
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
3716 3717
	unsigned long *map;

3718
	slab_err(s, page, text, s->name);
3719 3720
	slab_lock(page);

3721
	map = get_map(s, page);
3722 3723 3724
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3725
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3726 3727 3728
			print_tracking(s, p);
		}
	}
3729 3730
	put_map(map);

3731 3732 3733 3734
	slab_unlock(page);
#endif
}

C
Christoph Lameter 已提交
3735
/*
C
Christoph Lameter 已提交
3736
 * Attempt to free all partial slabs on a node.
3737 3738
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3739
 */
C
Christoph Lameter 已提交
3740
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3741
{
3742
	LIST_HEAD(discard);
C
Christoph Lameter 已提交
3743 3744
	struct page *page, *h;

3745 3746
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3747
	list_for_each_entry_safe(page, h, &n->partial, slab_list) {
C
Christoph Lameter 已提交
3748
		if (!page->inuse) {
3749
			remove_partial(n, page);
3750
			list_add(&page->slab_list, &discard);
3751 3752
		} else {
			list_slab_objects(s, page,
3753
			"Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3754
		}
3755
	}
3756
	spin_unlock_irq(&n->list_lock);
3757

3758
	list_for_each_entry_safe(page, h, &discard, slab_list)
3759
		discard_slab(s, page);
C
Christoph Lameter 已提交
3760 3761
}

3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772
bool __kmem_cache_empty(struct kmem_cache *s)
{
	int node;
	struct kmem_cache_node *n;

	for_each_kmem_cache_node(s, node, n)
		if (n->nr_partial || slabs_node(s, node))
			return false;
	return true;
}

C
Christoph Lameter 已提交
3773
/*
C
Christoph Lameter 已提交
3774
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3775
 */
3776
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3777 3778
{
	int node;
C
Christoph Lameter 已提交
3779
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3780 3781 3782

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3783
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3784 3785
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3786 3787
			return 1;
	}
3788
	sysfs_slab_remove(s);
C
Christoph Lameter 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
3798
	get_option(&str, (int *)&slub_min_order);
C
Christoph Lameter 已提交
3799 3800 3801 3802 3803 3804 3805 3806

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
3807 3808
	get_option(&str, (int *)&slub_max_order);
	slub_max_order = min(slub_max_order, (unsigned int)MAX_ORDER - 1);
C
Christoph Lameter 已提交
3809 3810 3811 3812 3813 3814 3815 3816

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
3817
	get_option(&str, (int *)&slub_min_objects);
C
Christoph Lameter 已提交
3818 3819 3820 3821 3822 3823 3824 3825

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3826
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3827
	void *ret;
C
Christoph Lameter 已提交
3828

3829
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3830
		return kmalloc_large(size, flags);
3831

3832
	s = kmalloc_slab(size, flags);
3833 3834

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3835 3836
		return s;

3837
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3838

3839
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3840

3841
	ret = kasan_kmalloc(s, ret, size, flags);
3842

E
Eduard - Gabriel Munteanu 已提交
3843
	return ret;
C
Christoph Lameter 已提交
3844 3845 3846
}
EXPORT_SYMBOL(__kmalloc);

3847
#ifdef CONFIG_NUMA
3848 3849
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3850
	struct page *page;
3851
	void *ptr = NULL;
3852
	unsigned int order = get_order(size);
3853

3854
	flags |= __GFP_COMP;
3855 3856
	page = alloc_pages_node(node, flags, order);
	if (page) {
3857
		ptr = page_address(page);
3858 3859 3860
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
				    1 << order);
	}
3861

3862
	return kmalloc_large_node_hook(ptr, size, flags);
3863 3864
}

C
Christoph Lameter 已提交
3865 3866
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3867
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3868
	void *ret;
C
Christoph Lameter 已提交
3869

3870
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3871 3872
		ret = kmalloc_large_node(size, flags, node);

3873 3874 3875
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3876 3877 3878

		return ret;
	}
3879

3880
	s = kmalloc_slab(size, flags);
3881 3882

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3883 3884
		return s;

3885
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3886

3887
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3888

3889
	ret = kasan_kmalloc(s, ret, size, flags);
3890

E
Eduard - Gabriel Munteanu 已提交
3891
	return ret;
C
Christoph Lameter 已提交
3892 3893
}
EXPORT_SYMBOL(__kmalloc_node);
3894
#endif	/* CONFIG_NUMA */
C
Christoph Lameter 已提交
3895

K
Kees Cook 已提交
3896 3897
#ifdef CONFIG_HARDENED_USERCOPY
/*
3898 3899 3900
 * Rejects incorrectly sized objects and objects that are to be copied
 * to/from userspace but do not fall entirely within the containing slab
 * cache's usercopy region.
K
Kees Cook 已提交
3901 3902 3903 3904
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
3905 3906
void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
			 bool to_user)
K
Kees Cook 已提交
3907 3908
{
	struct kmem_cache *s;
A
Alexey Dobriyan 已提交
3909
	unsigned int offset;
K
Kees Cook 已提交
3910 3911
	size_t object_size;

3912 3913
	ptr = kasan_reset_tag(ptr);

K
Kees Cook 已提交
3914 3915 3916 3917 3918
	/* Find object and usable object size. */
	s = page->slab_cache;

	/* Reject impossible pointers. */
	if (ptr < page_address(page))
3919 3920
		usercopy_abort("SLUB object not in SLUB page?!", NULL,
			       to_user, 0, n);
K
Kees Cook 已提交
3921 3922 3923 3924 3925 3926 3927

	/* Find offset within object. */
	offset = (ptr - page_address(page)) % s->size;

	/* Adjust for redzone and reject if within the redzone. */
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
		if (offset < s->red_left_pad)
3928 3929
			usercopy_abort("SLUB object in left red zone",
				       s->name, to_user, offset, n);
K
Kees Cook 已提交
3930 3931 3932
		offset -= s->red_left_pad;
	}

3933 3934 3935 3936
	/* Allow address range falling entirely within usercopy region. */
	if (offset >= s->useroffset &&
	    offset - s->useroffset <= s->usersize &&
	    n <= s->useroffset - offset + s->usersize)
3937
		return;
K
Kees Cook 已提交
3938

3939 3940 3941 3942 3943 3944 3945
	/*
	 * If the copy is still within the allocated object, produce
	 * a warning instead of rejecting the copy. This is intended
	 * to be a temporary method to find any missing usercopy
	 * whitelists.
	 */
	object_size = slab_ksize(s);
3946 3947
	if (usercopy_fallback &&
	    offset <= object_size && n <= object_size - offset) {
3948 3949 3950
		usercopy_warn("SLUB object", s->name, to_user, offset, n);
		return;
	}
K
Kees Cook 已提交
3951

3952
	usercopy_abort("SLUB object", s->name, to_user, offset, n);
K
Kees Cook 已提交
3953 3954 3955
}
#endif /* CONFIG_HARDENED_USERCOPY */

3956
size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3957
{
3958
	struct page *page;
C
Christoph Lameter 已提交
3959

3960
	if (unlikely(object == ZERO_SIZE_PTR))
3961 3962
		return 0;

3963 3964
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3965 3966
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3967
		return page_size(page);
P
Pekka Enberg 已提交
3968
	}
C
Christoph Lameter 已提交
3969

3970
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3971
}
3972
EXPORT_SYMBOL(__ksize);
C
Christoph Lameter 已提交
3973 3974 3975 3976

void kfree(const void *x)
{
	struct page *page;
3977
	void *object = (void *)x;
C
Christoph Lameter 已提交
3978

3979 3980
	trace_kfree(_RET_IP_, x);

3981
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3982 3983
		return;

3984
	page = virt_to_head_page(x);
3985
	if (unlikely(!PageSlab(page))) {
3986 3987
		unsigned int order = compound_order(page);

3988
		BUG_ON(!PageCompound(page));
3989
		kfree_hook(object);
3990 3991 3992
		mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE,
				    -(1 << order));
		__free_pages(page, order);
3993 3994
		return;
	}
3995
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
3996 3997 3998
}
EXPORT_SYMBOL(kfree);

3999 4000
#define SHRINK_PROMOTE_MAX 32

4001
/*
4002 4003 4004
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
4005 4006 4007 4008
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
4009
 */
4010
int __kmem_cache_shrink(struct kmem_cache *s)
4011 4012 4013 4014 4015 4016
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
4017 4018
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
4019
	unsigned long flags;
4020
	int ret = 0;
4021 4022

	flush_all(s);
C
Christoph Lameter 已提交
4023
	for_each_kmem_cache_node(s, node, n) {
4024 4025 4026
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
4027 4028 4029 4030

		spin_lock_irqsave(&n->list_lock, flags);

		/*
4031
		 * Build lists of slabs to discard or promote.
4032
		 *
C
Christoph Lameter 已提交
4033 4034
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
4035
		 */
4036
		list_for_each_entry_safe(page, t, &n->partial, slab_list) {
4037 4038 4039 4040 4041 4042 4043 4044 4045
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
4046
				list_move(&page->slab_list, &discard);
4047
				n->nr_partial--;
4048
			} else if (free <= SHRINK_PROMOTE_MAX)
4049
				list_move(&page->slab_list, promote + free - 1);
4050 4051 4052
		}

		/*
4053 4054
		 * Promote the slabs filled up most to the head of the
		 * partial list.
4055
		 */
4056 4057
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
4058 4059

		spin_unlock_irqrestore(&n->list_lock, flags);
4060 4061

		/* Release empty slabs */
4062
		list_for_each_entry_safe(page, t, &discard, slab_list)
4063
			discard_slab(s, page);
4064 4065 4066

		if (slabs_node(s, node))
			ret = 1;
4067 4068
	}

4069
	return ret;
4070 4071
}

4072
#ifdef CONFIG_MEMCG
4073
void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s)
4074
{
4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088
	/*
	 * Called with all the locks held after a sched RCU grace period.
	 * Even if @s becomes empty after shrinking, we can't know that @s
	 * doesn't have allocations already in-flight and thus can't
	 * destroy @s until the associated memcg is released.
	 *
	 * However, let's remove the sysfs files for empty caches here.
	 * Each cache has a lot of interface files which aren't
	 * particularly useful for empty draining caches; otherwise, we can
	 * easily end up with millions of unnecessary sysfs files on
	 * systems which have a lot of memory and transient cgroups.
	 */
	if (!__kmem_cache_shrink(s))
		sysfs_slab_remove(s);
4089 4090
}

4091 4092 4093 4094 4095 4096
void __kmemcg_cache_deactivate(struct kmem_cache *s)
{
	/*
	 * Disable empty slabs caching. Used to avoid pinning offline
	 * memory cgroups by kmem pages that can be freed.
	 */
4097
	slub_set_cpu_partial(s, 0);
4098 4099
	s->min_partial = 0;
}
4100
#endif	/* CONFIG_MEMCG */
4101

4102 4103 4104 4105
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

4106
	mutex_lock(&slab_mutex);
4107
	list_for_each_entry(s, &slab_caches, list)
4108
		__kmem_cache_shrink(s);
4109
	mutex_unlock(&slab_mutex);
4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

4121
	offline_node = marg->status_change_nid_normal;
4122 4123 4124 4125 4126 4127 4128 4129

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

4130
	mutex_lock(&slab_mutex);
4131 4132 4133 4134 4135 4136
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
4137
			 * and offline_pages() function shouldn't call this
4138 4139
			 * callback. So, we must fail.
			 */
4140
			BUG_ON(slabs_node(s, offline_node));
4141 4142

			s->node[offline_node] = NULL;
4143
			kmem_cache_free(kmem_cache_node, n);
4144 4145
		}
	}
4146
	mutex_unlock(&slab_mutex);
4147 4148 4149 4150 4151 4152 4153
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
4154
	int nid = marg->status_change_nid_normal;
4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
4165
	 * We are bringing a node online. No memory is available yet. We must
4166 4167 4168
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
4169
	mutex_lock(&slab_mutex);
4170 4171 4172 4173 4174 4175
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
4176
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4177 4178 4179 4180
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
4181
		init_kmem_cache_node(n);
4182 4183 4184
		s->node[nid] = n;
	}
out:
4185
	mutex_unlock(&slab_mutex);
4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
4209 4210 4211 4212
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
4213 4214 4215
	return ret;
}

4216 4217 4218 4219
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
4220

C
Christoph Lameter 已提交
4221 4222 4223 4224
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

4225 4226
/*
 * Used for early kmem_cache structures that were allocated using
4227 4228
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
4229 4230
 */

4231
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4232 4233
{
	int node;
4234
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
4235
	struct kmem_cache_node *n;
4236

4237
	memcpy(s, static_cache, kmem_cache->object_size);
4238

4239 4240 4241 4242 4243 4244
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
4245
	for_each_kmem_cache_node(s, node, n) {
4246 4247
		struct page *p;

4248
		list_for_each_entry(p, &n->partial, slab_list)
C
Christoph Lameter 已提交
4249
			p->slab_cache = s;
4250

L
Li Zefan 已提交
4251
#ifdef CONFIG_SLUB_DEBUG
4252
		list_for_each_entry(p, &n->full, slab_list)
C
Christoph Lameter 已提交
4253
			p->slab_cache = s;
4254 4255
#endif
	}
4256
	slab_init_memcg_params(s);
4257
	list_add(&s->list, &slab_caches);
4258
	memcg_link_cache(s, NULL);
4259
	return s;
4260 4261
}

C
Christoph Lameter 已提交
4262 4263
void __init kmem_cache_init(void)
{
4264 4265
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
4266

4267 4268 4269
	if (debug_guardpage_minorder())
		slub_max_order = 0;

4270 4271
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
4272

4273
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
4274
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4275

4276
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
4277 4278 4279 4280

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

4281 4282 4283
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
4284
		       SLAB_HWCACHE_ALIGN, 0, 0);
4285

4286 4287
	kmem_cache = bootstrap(&boot_kmem_cache);
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4288 4289

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4290
	setup_kmalloc_cache_index_table();
4291
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
4292

T
Thomas Garnier 已提交
4293 4294 4295
	/* Setup random freelists for each cache */
	init_freelist_randomization();

4296 4297
	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
				  slub_cpu_dead);
C
Christoph Lameter 已提交
4298

4299
	pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
4300
		cache_line_size(),
C
Christoph Lameter 已提交
4301 4302 4303 4304
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

4305 4306 4307 4308
void __init kmem_cache_init_late(void)
{
}

4309
struct kmem_cache *
4310
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
4311
		   slab_flags_t flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
4312
{
4313
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
4314

4315
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
4316 4317
	if (s) {
		s->refcount++;
4318

C
Christoph Lameter 已提交
4319 4320 4321 4322
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
4323
		s->object_size = max(s->object_size, size);
4324
		s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
4325

4326
		for_each_memcg_cache(c, s) {
4327
			c->object_size = s->object_size;
4328
			c->inuse = max(c->inuse, ALIGN(size, sizeof(void *)));
4329 4330
		}

4331 4332
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
4333
			s = NULL;
4334
		}
4335
	}
C
Christoph Lameter 已提交
4336

4337 4338
	return s;
}
P
Pekka Enberg 已提交
4339

4340
int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4341
{
4342 4343 4344 4345 4346
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4347

4348 4349 4350 4351
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4352
	memcg_propagate_slab_attrs(s);
4353 4354
	err = sysfs_slab_add(s);
	if (err)
4355
		__kmem_cache_release(s);
4356

4357
	return err;
C
Christoph Lameter 已提交
4358 4359
}

4360
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4361
{
4362
	struct kmem_cache *s;
4363
	void *ret;
4364

4365
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4366 4367
		return kmalloc_large(size, gfpflags);

4368
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4369

4370
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4371
		return s;
C
Christoph Lameter 已提交
4372

4373
	ret = slab_alloc(s, gfpflags, caller);
4374

L
Lucas De Marchi 已提交
4375
	/* Honor the call site pointer we received. */
4376
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4377 4378

	return ret;
C
Christoph Lameter 已提交
4379 4380
}

4381
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4382
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4383
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4384
{
4385
	struct kmem_cache *s;
4386
	void *ret;
4387

4388
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4389 4390 4391 4392 4393 4394 4395 4396
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4397

4398
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4399

4400
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4401
		return s;
C
Christoph Lameter 已提交
4402

4403
	ret = slab_alloc_node(s, gfpflags, node, caller);
4404

L
Lucas De Marchi 已提交
4405
	/* Honor the call site pointer we received. */
4406
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4407 4408

	return ret;
C
Christoph Lameter 已提交
4409
}
4410
#endif
C
Christoph Lameter 已提交
4411

4412
#ifdef CONFIG_SYSFS
4413 4414 4415 4416 4417 4418 4419 4420 4421
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4422
#endif
4423

4424
#ifdef CONFIG_SLUB_DEBUG
4425
static void validate_slab(struct kmem_cache *s, struct page *page)
4426 4427
{
	void *p;
4428
	void *addr = page_address(page);
4429 4430 4431
	unsigned long *map;

	slab_lock(page);
4432

Y
Yu Zhao 已提交
4433
	if (!check_slab(s, page) || !on_freelist(s, page, NULL))
4434
		goto unlock;
4435 4436

	/* Now we know that a valid freelist exists */
4437
	map = get_map(s, page);
4438
	for_each_object(p, s, addr, page->objects) {
Y
Yu Zhao 已提交
4439 4440
		u8 val = test_bit(slab_index(p, s, addr), map) ?
			 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
4441

Y
Yu Zhao 已提交
4442 4443 4444
		if (!check_object(s, page, p, val))
			break;
	}
4445 4446
	put_map(map);
unlock:
4447
	slab_unlock(page);
4448 4449
}

4450
static int validate_slab_node(struct kmem_cache *s,
4451
		struct kmem_cache_node *n)
4452 4453 4454 4455 4456 4457 4458
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

4459
	list_for_each_entry(page, &n->partial, slab_list) {
4460
		validate_slab(s, page);
4461 4462 4463
		count++;
	}
	if (count != n->nr_partial)
4464 4465
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4466 4467 4468 4469

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

4470
	list_for_each_entry(page, &n->full, slab_list) {
4471
		validate_slab(s, page);
4472 4473 4474
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4475 4476
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4477 4478 4479 4480 4481 4482

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4483
static long validate_slab_cache(struct kmem_cache *s)
4484 4485 4486
{
	int node;
	unsigned long count = 0;
C
Christoph Lameter 已提交
4487
	struct kmem_cache_node *n;
4488 4489

	flush_all(s);
C
Christoph Lameter 已提交
4490
	for_each_kmem_cache_node(s, node, n)
4491 4492
		count += validate_slab_node(s, n);

4493 4494
	return count;
}
4495
/*
C
Christoph Lameter 已提交
4496
 * Generate lists of code addresses where slabcache objects are allocated
4497 4498 4499 4500 4501
 * and freed.
 */

struct location {
	unsigned long count;
4502
	unsigned long addr;
4503 4504 4505 4506 4507
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4508
	DECLARE_BITMAP(cpus, NR_CPUS);
4509
	nodemask_t nodes;
4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4525
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4526 4527 4528 4529 4530 4531
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4532
	l = (void *)__get_free_pages(flags, order);
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4546
				const struct track *track)
4547 4548 4549
{
	long start, end, pos;
	struct location *l;
4550
	unsigned long caddr;
4551
	unsigned long age = jiffies - track->when;
4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4583 4584
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4585 4586
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4587 4588 4589
			return 1;
		}

4590
		if (track->addr < caddr)
4591 4592 4593 4594 4595 4596
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4597
	 * Not found. Insert new tracking element.
4598
	 */
4599
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4600 4601 4602 4603 4604 4605 4606 4607
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4608 4609 4610 4611 4612 4613
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4614 4615
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4616 4617
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4618 4619 4620 4621
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
4622
		struct page *page, enum track_item alloc)
4623
{
4624
	void *addr = page_address(page);
4625
	void *p;
4626
	unsigned long *map;
4627

4628
	map = get_map(s, page);
4629
	for_each_object(p, s, addr, page->objects)
4630 4631
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4632
	put_map(map);
4633 4634 4635 4636 4637
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4638
	int len = 0;
4639
	unsigned long i;
4640
	struct loc_track t = { 0, 0, NULL };
4641
	int node;
C
Christoph Lameter 已提交
4642
	struct kmem_cache_node *n;
4643

4644 4645
	if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
			     GFP_KERNEL)) {
4646
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4647
	}
4648 4649 4650
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4651
	for_each_kmem_cache_node(s, node, n) {
4652 4653 4654
		unsigned long flags;
		struct page *page;

4655
		if (!atomic_long_read(&n->nr_slabs))
4656 4657 4658
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
4659
		list_for_each_entry(page, &n->partial, slab_list)
4660
			process_slab(&t, s, page, alloc);
4661
		list_for_each_entry(page, &n->full, slab_list)
4662
			process_slab(&t, s, page, alloc);
4663 4664 4665 4666
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4667
		struct location *l = &t.loc[i];
4668

H
Hugh Dickins 已提交
4669
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4670
			break;
4671
		len += sprintf(buf + len, "%7ld ", l->count);
4672 4673

		if (l->addr)
J
Joe Perches 已提交
4674
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4675
		else
4676
			len += sprintf(buf + len, "<not-available>");
4677 4678

		if (l->sum_time != l->min_time) {
4679
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4680 4681 4682
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4683
		} else
4684
			len += sprintf(buf + len, " age=%ld",
4685 4686 4687
				l->min_time);

		if (l->min_pid != l->max_pid)
4688
			len += sprintf(buf + len, " pid=%ld-%ld",
4689 4690
				l->min_pid, l->max_pid);
		else
4691
			len += sprintf(buf + len, " pid=%ld",
4692 4693
				l->min_pid);

R
Rusty Russell 已提交
4694 4695
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4696 4697 4698 4699
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4700

4701
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4702 4703 4704 4705
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4706

4707
		len += sprintf(buf + len, "\n");
4708 4709 4710 4711
	}

	free_loc_track(&t);
	if (!t.count)
4712 4713
		len += sprintf(buf, "No data\n");
	return len;
4714
}
4715
#endif	/* CONFIG_SLUB_DEBUG */
4716

4717
#ifdef SLUB_RESILIENCY_TEST
4718
static void __init resiliency_test(void)
4719 4720
{
	u8 *p;
4721
	int type = KMALLOC_NORMAL;
4722

4723
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4724

4725 4726 4727
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4728 4729 4730

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4731 4732
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4733

4734
	validate_slab_cache(kmalloc_caches[type][4]);
4735 4736 4737 4738

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4739 4740 4741
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4742

4743
	validate_slab_cache(kmalloc_caches[type][5]);
4744 4745 4746
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4747 4748 4749
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4750
	validate_slab_cache(kmalloc_caches[type][6]);
4751

4752
	pr_err("\nB. Corruption after free\n");
4753 4754 4755
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4756
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4757
	validate_slab_cache(kmalloc_caches[type][7]);
4758 4759 4760 4761

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4762
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4763
	validate_slab_cache(kmalloc_caches[type][8]);
4764 4765 4766 4767

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4768
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4769
	validate_slab_cache(kmalloc_caches[type][9]);
4770 4771 4772 4773 4774
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
4775
#endif	/* SLUB_RESILIENCY_TEST */
4776

4777
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4778
enum slab_stat_type {
4779 4780 4781 4782 4783
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4784 4785
};

4786
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4787 4788 4789
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4790
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4791

4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807
#ifdef CONFIG_MEMCG
static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);

static int __init setup_slub_memcg_sysfs(char *str)
{
	int v;

	if (get_option(&str, &v) > 0)
		memcg_sysfs_enabled = v;

	return 1;
}

__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
#endif

4808 4809
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4810 4811 4812 4813 4814 4815
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

K
Kees Cook 已提交
4816
	nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
4817 4818
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4819

4820 4821
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4822

4823
		for_each_possible_cpu(cpu) {
4824 4825
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4826
			int node;
4827
			struct page *page;
4828

4829
			page = READ_ONCE(c->page);
4830 4831
			if (!page)
				continue;
4832

4833 4834 4835 4836 4837 4838 4839
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4840

4841 4842 4843
			total += x;
			nodes[node] += x;

4844
			page = slub_percpu_partial_read_once(c);
4845
			if (page) {
L
Li Zefan 已提交
4846 4847 4848 4849 4850 4851 4852
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4853 4854
				total += x;
				nodes[node] += x;
4855
			}
C
Christoph Lameter 已提交
4856 4857 4858
		}
	}

4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
	/*
	 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
	 * already held which will conflict with an existing lock order:
	 *
	 * mem_hotplug_lock->slab_mutex->kernfs_mutex
	 *
	 * We don't really need mem_hotplug_lock (to hold off
	 * slab_mem_going_offline_callback) here because slab's memory hot
	 * unplug code doesn't destroy the kmem_cache->node[] data.
	 */

4870
#ifdef CONFIG_SLUB_DEBUG
4871
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4872 4873 4874
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4875

4876 4877 4878 4879 4880
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4881
			else
4882
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4883 4884 4885 4886
			total += x;
			nodes[node] += x;
		}

4887 4888 4889
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4890
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4891

C
Christoph Lameter 已提交
4892
		for_each_kmem_cache_node(s, node, n) {
4893 4894 4895 4896
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4897
			else
4898
				x = n->nr_partial;
C
Christoph Lameter 已提交
4899 4900 4901 4902 4903 4904
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4905
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4906 4907 4908 4909 4910 4911 4912 4913
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4914
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4915 4916 4917
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4918
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4919

C
Christoph Lameter 已提交
4920
	for_each_kmem_cache_node(s, node, n)
4921
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4922
			return 1;
C
Christoph Lameter 已提交
4923

C
Christoph Lameter 已提交
4924 4925
	return 0;
}
4926
#endif
C
Christoph Lameter 已提交
4927 4928

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4929
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4930 4931 4932 4933 4934 4935 4936 4937

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4938 4939
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4940 4941 4942

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4943
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4944 4945 4946

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
A
Alexey Dobriyan 已提交
4947
	return sprintf(buf, "%u\n", s->size);
C
Christoph Lameter 已提交
4948 4949 4950 4951 4952
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
4953
	return sprintf(buf, "%u\n", s->align);
C
Christoph Lameter 已提交
4954 4955 4956 4957 4958
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4959
	return sprintf(buf, "%u\n", s->object_size);
C
Christoph Lameter 已提交
4960 4961 4962 4963 4964
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4965
	return sprintf(buf, "%u\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4966 4967 4968
}
SLAB_ATTR_RO(objs_per_slab);

4969 4970 4971
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4972
	unsigned int order;
4973 4974
	int err;

4975
	err = kstrtouint(buf, 10, &order);
4976 4977
	if (err)
		return err;
4978 4979 4980 4981 4982 4983 4984 4985

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4986 4987
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4988
	return sprintf(buf, "%u\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4989
}
4990
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4991

4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

5003
	err = kstrtoul(buf, 10, &min);
5004 5005 5006
	if (err)
		return err;

5007
	set_min_partial(s, min);
5008 5009 5010 5011
	return length;
}
SLAB_ATTR(min_partial);

5012 5013
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
5014
	return sprintf(buf, "%u\n", slub_cpu_partial(s));
5015 5016 5017 5018 5019
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
5020
	unsigned int objects;
5021 5022
	int err;

5023
	err = kstrtouint(buf, 10, &objects);
5024 5025
	if (err)
		return err;
5026
	if (objects && !kmem_cache_has_cpu_partial(s))
5027
		return -EINVAL;
5028

5029
	slub_set_cpu_partial(s, objects);
5030 5031 5032 5033 5034
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
5035 5036
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
5037 5038 5039
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
5040 5041 5042 5043 5044
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
5045
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
5046 5047 5048 5049 5050
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
5051
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
5052 5053 5054 5055 5056
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
5057
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
5058 5059 5060 5061 5062
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
5063
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
5064 5065 5066
}
SLAB_ATTR_RO(objects);

5067 5068 5069 5070 5071 5072
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

5073 5074 5075 5076 5077 5078 5079 5080
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
5081 5082 5083
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
5095 5096 5097
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5098 5099 5100 5101 5102 5103 5104 5105 5106 5107

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

5137 5138
static ssize_t usersize_show(struct kmem_cache *s, char *buf)
{
5139
	return sprintf(buf, "%u\n", s->usersize);
5140 5141 5142
}
SLAB_ATTR_RO(usersize);

5143 5144
static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
5145
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5146 5147 5148
}
SLAB_ATTR_RO(destroy_by_rcu);

5149
#ifdef CONFIG_SLUB_DEBUG
5150 5151 5152 5153 5154 5155
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

5156 5157 5158 5159 5160 5161
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
5162 5163
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
5164
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
5165 5166 5167 5168 5169
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
5170
	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5171 5172
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
5173
		s->flags |= SLAB_CONSISTENCY_CHECKS;
5174
	}
C
Christoph Lameter 已提交
5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5187 5188 5189 5190 5191 5192 5193 5194
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
5195
	s->flags &= ~SLAB_TRACE;
5196 5197
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5198
		s->flags |= SLAB_TRACE;
5199
	}
C
Christoph Lameter 已提交
5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
5216
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5217
		s->flags |= SLAB_RED_ZONE;
5218
	}
5219
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
5236
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5237
		s->flags |= SLAB_POISON;
5238
	}
5239
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
5256 5257
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5258
		s->flags |= SLAB_STORE_USER;
5259
	}
5260
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5261 5262 5263 5264
	return length;
}
SLAB_ATTR(store_user);

5265 5266 5267 5268 5269 5270 5271 5272
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5273 5274 5275 5276 5277 5278 5279 5280
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
5281 5282
}
SLAB_ATTR(validate);
5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5310 5311 5312
	if (s->refcount > 1)
		return -EINVAL;

5313 5314 5315 5316 5317 5318
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
5319
#endif
5320

5321 5322 5323 5324 5325 5326 5327 5328
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5329
	if (buf[0] == '1')
5330
		kmem_cache_shrink_all(s);
5331
	else
5332 5333 5334 5335 5336
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5337
#ifdef CONFIG_NUMA
5338
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5339
{
5340
	return sprintf(buf, "%u\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5341 5342
}

5343
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5344 5345
				const char *buf, size_t length)
{
5346
	unsigned int ratio;
5347 5348
	int err;

5349
	err = kstrtouint(buf, 10, &ratio);
5350 5351
	if (err)
		return err;
5352 5353
	if (ratio > 100)
		return -ERANGE;
5354

5355
	s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5356 5357 5358

	return length;
}
5359
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5360 5361
#endif

5362 5363 5364 5365 5366 5367
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
5368
	int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
5369 5370 5371 5372 5373

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5374
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5375 5376 5377 5378 5379 5380 5381

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5382
#ifdef CONFIG_SMP
5383 5384
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5385
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5386
	}
5387
#endif
5388 5389 5390 5391
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5392 5393 5394 5395 5396
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5397
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5398 5399
}

5400 5401 5402 5403 5404
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5405 5406 5407 5408 5409 5410 5411 5412 5413
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5425
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5426 5427 5428 5429 5430 5431 5432
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5433
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5434
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5435 5436
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5437 5438
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5439 5440
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5441
#endif	/* CONFIG_SLUB_STATS */
5442

P
Pekka Enberg 已提交
5443
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5444 5445 5446 5447
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5448
	&min_partial_attr.attr,
5449
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5450
	&objects_attr.attr,
5451
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5452 5453 5454 5455 5456 5457 5458 5459
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5460
	&shrink_attr.attr,
5461
	&slabs_cpu_partial_attr.attr,
5462
#ifdef CONFIG_SLUB_DEBUG
5463 5464 5465 5466
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5467 5468 5469
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5470
	&validate_attr.attr,
5471 5472
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5473
#endif
C
Christoph Lameter 已提交
5474 5475 5476 5477
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5478
	&remote_node_defrag_ratio_attr.attr,
5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5491
	&alloc_node_mismatch_attr.attr,
5492 5493 5494 5495 5496 5497 5498
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5499
	&deactivate_bypass_attr.attr,
5500
	&order_fallback_attr.attr,
5501 5502
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5503 5504
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5505 5506
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5507
#endif
5508 5509 5510
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif
5511
	&usersize_attr.attr,
5512

C
Christoph Lameter 已提交
5513 5514 5515
	NULL
};

5516
static const struct attribute_group slab_attr_group = {
C
Christoph Lameter 已提交
5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5554
#ifdef CONFIG_MEMCG
5555
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5556
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5557

5558 5559 5560 5561
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5579 5580
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5581 5582 5583
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5584 5585 5586
	return err;
}

5587 5588
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5589
#ifdef CONFIG_MEMCG
5590 5591
	int i;
	char *buffer = NULL;
5592
	struct kmem_cache *root_cache;
5593

5594
	if (is_root_cache(s))
5595 5596
		return;

5597
	root_cache = s->memcg_params.root_cache;
5598

5599 5600 5601 5602
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5603
	if (!root_cache->max_attr_size)
5604 5605 5606 5607 5608 5609
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5610
		ssize_t len;
5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5626
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5627 5628 5629 5630 5631 5632 5633 5634
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5635 5636 5637
		len = attr->show(root_cache, buf);
		if (len > 0)
			attr->store(s, buf, len);
5638 5639 5640 5641
	}

	if (buffer)
		free_page((unsigned long)buffer);
5642
#endif	/* CONFIG_MEMCG */
5643 5644
}

5645 5646 5647 5648 5649
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5650
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5651 5652 5653 5654 5655 5656
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5657
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5669
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5670 5671 5672
	.filter = uevent_filter,
};

5673
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5674

5675 5676
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5677
#ifdef CONFIG_MEMCG
5678
	if (!is_root_cache(s))
5679
		return s->memcg_params.root_cache->memcg_kset;
5680 5681 5682 5683
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5684 5685 5686
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5687 5688
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
5707 5708
	if (s->flags & SLAB_CACHE_DMA32)
		*p++ = 'D';
C
Christoph Lameter 已提交
5709 5710
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5711
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5712
		*p++ = 'F';
V
Vladimir Davydov 已提交
5713 5714
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5715 5716
	if (p != name + 1)
		*p++ = '-';
A
Alexey Dobriyan 已提交
5717
	p += sprintf(p, "%07u", s->size);
5718

C
Christoph Lameter 已提交
5719 5720 5721 5722
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734
static void sysfs_slab_remove_workfn(struct work_struct *work)
{
	struct kmem_cache *s =
		container_of(work, struct kmem_cache, kobj_remove_work);

	if (!s->kobj.state_in_sysfs)
		/*
		 * For a memcg cache, this may be called during
		 * deactivation and again on shutdown.  Remove only once.
		 * A cache is never shut down before deactivation is
		 * complete, so no need to worry about synchronization.
		 */
5735
		goto out;
5736 5737 5738 5739 5740

#ifdef CONFIG_MEMCG
	kset_unregister(s->memcg_kset);
#endif
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
5741
out:
5742 5743 5744
	kobject_put(&s->kobj);
}

C
Christoph Lameter 已提交
5745 5746 5747 5748
static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5749
	struct kset *kset = cache_kset(s);
5750
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5751

5752 5753
	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);

5754 5755 5756 5757 5758
	if (!kset) {
		kobject_init(&s->kobj, &slab_ktype);
		return 0;
	}

5759 5760 5761 5762
	if (!unmergeable && disable_higher_order_debug &&
			(slub_debug & DEBUG_METADATA_FLAGS))
		unmergeable = 1;

C
Christoph Lameter 已提交
5763 5764 5765 5766 5767 5768
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5769
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5770 5771 5772 5773 5774 5775 5776 5777 5778
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5779
	s->kobj.kset = kset;
5780
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5781
	if (err)
5782
		goto out;
C
Christoph Lameter 已提交
5783 5784

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5785 5786
	if (err)
		goto out_del_kobj;
5787

5788
#ifdef CONFIG_MEMCG
5789
	if (is_root_cache(s) && memcg_sysfs_enabled) {
5790 5791
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5792 5793
			err = -ENOMEM;
			goto out_del_kobj;
5794 5795 5796 5797
		}
	}
#endif

C
Christoph Lameter 已提交
5798 5799 5800 5801 5802
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5803 5804 5805 5806 5807 5808 5809
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5810 5811
}

5812
static void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5813
{
5814
	if (slab_state < FULL)
5815 5816 5817 5818 5819 5820
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5821 5822
	kobject_get(&s->kobj);
	schedule_work(&s->kobj_remove_work);
5823 5824
}

5825 5826 5827 5828 5829 5830
void sysfs_slab_unlink(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_del(&s->kobj);
}

5831 5832 5833 5834
void sysfs_slab_release(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5835 5836 5837 5838
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5839
 * available lest we lose that information.
C
Christoph Lameter 已提交
5840 5841 5842 5843 5844 5845 5846
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5847
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5848 5849 5850 5851 5852

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5853
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5854 5855 5856
		/*
		 * If we have a leftover link then remove it.
		 */
5857 5858
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5874
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5875 5876
	int err;

5877
	mutex_lock(&slab_mutex);
5878

5879
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5880
	if (!slab_kset) {
5881
		mutex_unlock(&slab_mutex);
5882
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5883 5884 5885
		return -ENOSYS;
	}

5886
	slab_state = FULL;
5887

5888
	list_for_each_entry(s, &slab_caches, list) {
5889
		err = sysfs_slab_add(s);
5890
		if (err)
5891 5892
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5893
	}
C
Christoph Lameter 已提交
5894 5895 5896 5897 5898 5899

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5900
		if (err)
5901 5902
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5903 5904 5905
		kfree(al);
	}

5906
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5907 5908 5909 5910 5911
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5912
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5913 5914 5915 5916

/*
 * The /proc/slabinfo ABI
 */
Y
Yang Shi 已提交
5917
#ifdef CONFIG_SLUB_DEBUG
5918
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5919 5920
{
	unsigned long nr_slabs = 0;
5921 5922
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5923
	int node;
C
Christoph Lameter 已提交
5924
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5925

C
Christoph Lameter 已提交
5926
	for_each_kmem_cache_node(s, node, n) {
5927 5928
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5929
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5930 5931
	}

5932 5933 5934 5935 5936 5937
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5938 5939
}

5940
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5941 5942 5943
{
}

5944 5945
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5946
{
5947
	return -EIO;
5948
}
Y
Yang Shi 已提交
5949
#endif /* CONFIG_SLUB_DEBUG */