slub.c 138.1 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
V
Vegard Nossum 已提交
24
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
29
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
30
#include <linux/kallsyms.h>
31
#include <linux/memory.h>
R
Roman Zippel 已提交
32
#include <linux/math64.h>
A
Akinobu Mita 已提交
33
#include <linux/fault-inject.h>
34
#include <linux/stacktrace.h>
35
#include <linux/prefetch.h>
36
#include <linux/memcontrol.h>
C
Christoph Lameter 已提交
37

38 39
#include <trace/events/kmem.h>

40 41
#include "internal.h"

C
Christoph Lameter 已提交
42 43
/*
 * Lock order:
44
 *   1. slab_mutex (Global Mutex)
45 46
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
47
 *
48
 *   slab_mutex
49
 *
50
 *   The role of the slab_mutex is to protect the list of all the slabs
51 52 53 54 55 56 57 58 59 60 61 62 63 64
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
85 86
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
87
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
88 89
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
90 91 92 93 94 95 96
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
97 98 99 100 101 102 103 104 105 106 107 108
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
109
 * 			freelist that allows lockless access to
110 111
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
112 113 114
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
115
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
116 117
 */

118 119
static inline int kmem_cache_debug(struct kmem_cache *s)
{
120
#ifdef CONFIG_SLUB_DEBUG
121
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
122
#else
123
	return 0;
124
#endif
125
}
126

127
void *fixup_red_left(struct kmem_cache *s, void *p)
J
Joonsoo Kim 已提交
128 129 130 131 132 133 134
{
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
		p += s->red_left_pad;

	return p;
}

135 136 137 138 139 140 141 142 143
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
144 145 146 147 148 149 150 151 152 153 154
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

155 156 157
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

158 159 160 161
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
162
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
163

164 165 166
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
167
 * sort the partial list by the number of objects in use.
168 169 170
 */
#define MAX_PARTIAL 10

171
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
172
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
173

174 175 176 177 178 179 180 181
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


182
/*
183 184 185
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
186
 */
187
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
188

189 190
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
191
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
192

C
Christoph Lameter 已提交
193
/* Internal SLUB flags */
C
Christoph Lameter 已提交
194
#define __OBJECT_POISON		0x80000000UL /* Poison object */
195
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
196

197 198 199
/*
 * Tracking user of a slab.
 */
200
#define TRACK_ADDRS_COUNT 16
201
struct track {
202
	unsigned long addr;	/* Called from address */
203 204 205
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
206 207 208 209 210 211 212
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

213
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
214 215
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
216
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
C
Christoph Lameter 已提交
217
#else
218 219 220
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
221
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
222 223
#endif

224
static inline void stat(const struct kmem_cache *s, enum stat_item si)
225 226
{
#ifdef CONFIG_SLUB_STATS
227 228 229 230 231
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
232 233 234
#endif
}

C
Christoph Lameter 已提交
235 236 237 238
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

239 240 241 242 243
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
	return *(void **)(object + s->offset);
}

244 245 246 247 248
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
	prefetch(object + s->offset);
}

249 250 251 252
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
	void *p;

253 254 255
	if (!debug_pagealloc_enabled())
		return get_freepointer(s, object);

256 257 258 259
	probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
	return p;
}

260 261 262 263 264 265
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
	*(void **)(object + s->offset) = fp;
}

/* Loop over all objects in a slab */
266
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
267 268 269
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
270

271
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
272 273 274
	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
		__idx <= __objects; \
		__p += (__s)->size, __idx++)
275

276 277 278 279 280 281
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

282 283 284 285 286
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

287
static inline struct kmem_cache_order_objects oo_make(int order,
288
		unsigned long size, int reserved)
289 290
{
	struct kmem_cache_order_objects x = {
291
		(order << OO_SHIFT) + order_objects(order, size, reserved)
292 293 294 295 296 297 298
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
299
	return x.x >> OO_SHIFT;
300 301 302 303
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
304
	return x.x & OO_MASK;
305 306
}

307 308 309 310 311
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
312
	VM_BUG_ON_PAGE(PageTail(page), page);
313 314 315 316 317
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
318
	VM_BUG_ON_PAGE(PageTail(page), page);
319 320 321
	__bit_spin_unlock(PG_locked, &page->flags);
}

322 323 324 325 326 327
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
328 329
	 * as page->_refcount.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_refcount, so
330 331 332 333 334 335 336
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

337 338 339 340 341 342 343
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
344 345
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
346
	if (s->flags & __CMPXCHG_DOUBLE) {
347
		if (cmpxchg_double(&page->freelist, &page->counters,
348 349
				   freelist_old, counters_old,
				   freelist_new, counters_new))
350
			return true;
351 352 353 354
	} else
#endif
	{
		slab_lock(page);
355 356
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
357
			page->freelist = freelist_new;
358
			set_page_slub_counters(page, counters_new);
359
			slab_unlock(page);
360
			return true;
361 362 363 364 365 366 367 368
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
369
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
370 371
#endif

372
	return false;
373 374
}

375 376 377 378 379
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
380 381
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
382
	if (s->flags & __CMPXCHG_DOUBLE) {
383
		if (cmpxchg_double(&page->freelist, &page->counters,
384 385
				   freelist_old, counters_old,
				   freelist_new, counters_new))
386
			return true;
387 388 389
	} else
#endif
	{
390 391 392
		unsigned long flags;

		local_irq_save(flags);
393
		slab_lock(page);
394 395
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
396
			page->freelist = freelist_new;
397
			set_page_slub_counters(page, counters_new);
398
			slab_unlock(page);
399
			local_irq_restore(flags);
400
			return true;
401
		}
402
		slab_unlock(page);
403
		local_irq_restore(flags);
404 405 406 407 408 409
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
410
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
411 412
#endif

413
	return false;
414 415
}

C
Christoph Lameter 已提交
416
#ifdef CONFIG_SLUB_DEBUG
417 418 419
/*
 * Determine a map of object in use on a page.
 *
420
 * Node listlock must be held to guarantee that the page does
421 422 423 424 425 426 427 428 429 430 431
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

J
Joonsoo Kim 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
static inline int size_from_object(struct kmem_cache *s)
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
448 449 450
/*
 * Debug settings:
 */
451
#if defined(CONFIG_SLUB_DEBUG_ON)
452 453
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
454
static int slub_debug;
455
#endif
C
Christoph Lameter 已提交
456 457

static char *slub_debug_slabs;
458
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
459

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
476 477 478
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

499 500
static void print_section(char *level, char *text, u8 *addr,
			  unsigned int length)
C
Christoph Lameter 已提交
501
{
502
	metadata_access_enable();
503
	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
504
			length, 1);
505
	metadata_access_disable();
C
Christoph Lameter 已提交
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
522
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
523
{
A
Akinobu Mita 已提交
524
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
525 526

	if (addr) {
527 528 529 530 531 532 533 534
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
535
		metadata_access_enable();
536
		save_stack_trace(&trace);
537
		metadata_access_disable();
538 539 540 541 542 543 544 545 546

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
547 548
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
549
		p->pid = current->pid;
C
Christoph Lameter 已提交
550 551 552 553 554 555 556
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
557 558 559
	if (!(s->flags & SLAB_STORE_USER))
		return;

560 561
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
562 563 564 565 566 567 568
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

569 570
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
571 572 573 574 575
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
576
				pr_err("\t%pS\n", (void *)t->addrs[i]);
577 578 579 580
			else
				break;
	}
#endif
581 582 583 584 585 586 587 588 589 590 591 592 593
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
594
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
595
	       page, page->objects, page->inuse, page->freelist, page->flags);
596 597 598 599 600

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
601
	struct va_format vaf;
602 603 604
	va_list args;

	va_start(args, fmt);
605 606
	vaf.fmt = fmt;
	vaf.va = &args;
607
	pr_err("=============================================================================\n");
608
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
609
	pr_err("-----------------------------------------------------------------------------\n\n");
610

611
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
612
	va_end(args);
C
Christoph Lameter 已提交
613 614
}

615 616
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
617
	struct va_format vaf;
618 619 620
	va_list args;

	va_start(args, fmt);
621 622 623
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
624 625 626 627
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
628 629
{
	unsigned int off;	/* Offset of last byte */
630
	u8 *addr = page_address(page);
631 632 633 634 635

	print_tracking(s, p);

	print_page_info(page);

636 637
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
638

J
Joonsoo Kim 已提交
639
	if (s->flags & SLAB_RED_ZONE)
640 641
		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
			      s->red_left_pad);
J
Joonsoo Kim 已提交
642
	else if (p > addr + 16)
643
		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
644

645 646
	print_section(KERN_ERR, "Object ", p,
		      min_t(unsigned long, s->object_size, PAGE_SIZE));
C
Christoph Lameter 已提交
647
	if (s->flags & SLAB_RED_ZONE)
648
		print_section(KERN_ERR, "Redzone ", p + s->object_size,
649
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
650 651 652 653 654 655

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

656
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
657 658
		off += 2 * sizeof(struct track);

659 660
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
661
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
662
		/* Beginning of the filler is the free pointer */
663 664
		print_section(KERN_ERR, "Padding ", p + off,
			      size_from_object(s) - off);
665 666

	dump_stack();
C
Christoph Lameter 已提交
667 668
}

669
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
670 671
			u8 *object, char *reason)
{
672
	slab_bug(s, "%s", reason);
673
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
674 675
}

676 677
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
678 679 680 681
{
	va_list args;
	char buf[100];

682 683
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
684
	va_end(args);
685
	slab_bug(s, "%s", buf);
686
	print_page_info(page);
C
Christoph Lameter 已提交
687 688 689
	dump_stack();
}

690
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
691 692 693
{
	u8 *p = object;

J
Joonsoo Kim 已提交
694 695 696
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
697
	if (s->flags & __OBJECT_POISON) {
698 699
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
700 701 702
	}

	if (s->flags & SLAB_RED_ZONE)
703
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
704 705
}

706 707 708 709 710 711 712 713 714
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
715
			u8 *start, unsigned int value, unsigned int bytes)
716 717 718 719
{
	u8 *fault;
	u8 *end;

720
	metadata_access_enable();
721
	fault = memchr_inv(start, value, bytes);
722
	metadata_access_disable();
723 724 725 726 727 728 729 730
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
731
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
732 733 734 735 736
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
737 738 739 740 741 742 743 744 745
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
746
 *
C
Christoph Lameter 已提交
747 748 749
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
750
 * object + s->object_size
C
Christoph Lameter 已提交
751
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
752
 * 	Padding is extended by another word if Redzoning is enabled and
753
 * 	object_size == inuse.
C
Christoph Lameter 已提交
754
 *
C
Christoph Lameter 已提交
755 756 757 758
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
759 760
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
761 762
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
763
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
764
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
765 766 767
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
768 769
 *
 * object + s->size
C
Christoph Lameter 已提交
770
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
771
 *
772
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
773
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

789 790
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
791
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
792 793
		return 1;

794
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
795
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
796 797
}

798
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
799 800
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
801 802 803 804 805
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
806 807 808 809

	if (!(s->flags & SLAB_POISON))
		return 1;

810
	start = page_address(page);
811
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
812 813
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
814 815 816
	if (!remainder)
		return 1;

817
	metadata_access_enable();
818
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
819
	metadata_access_disable();
820 821 822 823 824 825
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
826
	print_section(KERN_ERR, "Padding ", end - remainder, remainder);
827

E
Eric Dumazet 已提交
828
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
829
	return 0;
C
Christoph Lameter 已提交
830 831 832
}

static int check_object(struct kmem_cache *s, struct page *page,
833
					void *object, u8 val)
C
Christoph Lameter 已提交
834 835
{
	u8 *p = object;
836
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
837 838

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
839 840 841 842
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

843
		if (!check_bytes_and_report(s, page, object, "Redzone",
844
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
845 846
			return 0;
	} else {
847
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
848
			check_bytes_and_report(s, page, p, "Alignment padding",
849 850
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
851
		}
C
Christoph Lameter 已提交
852 853 854
	}

	if (s->flags & SLAB_POISON) {
855
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
856
			(!check_bytes_and_report(s, page, p, "Poison", p,
857
					POISON_FREE, s->object_size - 1) ||
858
			 !check_bytes_and_report(s, page, p, "Poison",
859
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
860 861 862 863 864 865 866
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

867
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
868 869 870 871 872 873 874 875 876 877
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
878
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
879
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
880
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
881
		 */
882
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
883 884 885 886 887 888 889
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
890 891
	int maxobj;

C
Christoph Lameter 已提交
892 893 894
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
895
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
896 897
		return 0;
	}
898

899
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
900 901
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
902
			page->objects, maxobj);
903 904 905
		return 0;
	}
	if (page->inuse > page->objects) {
906
		slab_err(s, page, "inuse %u > max %u",
907
			page->inuse, page->objects);
C
Christoph Lameter 已提交
908 909 910 911 912 913 914 915
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
916 917
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
918 919 920 921
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
922
	void *fp;
C
Christoph Lameter 已提交
923
	void *object = NULL;
924
	int max_objects;
C
Christoph Lameter 已提交
925

926
	fp = page->freelist;
927
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
928 929 930 931 932 933
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
934
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
935
			} else {
936
				slab_err(s, page, "Freepointer corrupt");
937
				page->freelist = NULL;
938
				page->inuse = page->objects;
939
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
940 941 942 943 944 945 946 947 948
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

949
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
950 951
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
952 953

	if (page->objects != max_objects) {
J
Joe Perches 已提交
954 955
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
956 957 958
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
959
	if (page->inuse != page->objects - nr) {
J
Joe Perches 已提交
960 961
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
962
		page->inuse = page->objects - nr;
963
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
964 965 966 967
	}
	return search == NULL;
}

968 969
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
970 971
{
	if (s->flags & SLAB_TRACE) {
972
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
973 974 975 976 977 978
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
979
			print_section(KERN_INFO, "Object ", (void *)object,
980
					s->object_size);
C
Christoph Lameter 已提交
981 982 983 984 985

		dump_stack();
	}
}

986
/*
C
Christoph Lameter 已提交
987
 * Tracking of fully allocated slabs for debugging purposes.
988
 */
989 990
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
991
{
992 993 994
	if (!(s->flags & SLAB_STORE_USER))
		return;

995
	lockdep_assert_held(&n->list_lock);
996 997 998
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
999
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1000 1001 1002 1003
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1004
	lockdep_assert_held(&n->list_lock);
1005 1006 1007
	list_del(&page->lru);
}

1008 1009 1010 1011 1012 1013 1014 1015
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1016 1017 1018 1019 1020
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1021
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1022 1023 1024 1025 1026 1027 1028 1029 1030
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1031
	if (likely(n)) {
1032
		atomic_long_inc(&n->nr_slabs);
1033 1034
		atomic_long_add(objects, &n->total_objects);
	}
1035
}
1036
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1037 1038 1039 1040
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1041
	atomic_long_sub(objects, &n->total_objects);
1042 1043 1044
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1045 1046 1047 1048 1049 1050
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1051
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1052 1053 1054
	init_tracking(s, object);
}

1055
static inline int alloc_consistency_checks(struct kmem_cache *s,
1056
					struct page *page,
1057
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1058 1059
{
	if (!check_slab(s, page))
1060
		return 0;
C
Christoph Lameter 已提交
1061 1062 1063

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1064
		return 0;
C
Christoph Lameter 已提交
1065 1066
	}

1067
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!alloc_consistency_checks(s, page, object, addr))
			goto bad;
	}
C
Christoph Lameter 已提交
1081

C
Christoph Lameter 已提交
1082 1083 1084 1085
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1086
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1087
	return 1;
C
Christoph Lameter 已提交
1088

C
Christoph Lameter 已提交
1089 1090 1091 1092 1093
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1094
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1095
		 */
1096
		slab_fix(s, "Marking all objects used");
1097
		page->inuse = page->objects;
1098
		page->freelist = NULL;
C
Christoph Lameter 已提交
1099 1100 1101 1102
	}
	return 0;
}

1103 1104
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1105 1106
{
	if (!check_valid_pointer(s, page, object)) {
1107
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1108
		return 0;
C
Christoph Lameter 已提交
1109 1110 1111
	}

	if (on_freelist(s, page, object)) {
1112
		object_err(s, page, object, "Object already free");
1113
		return 0;
C
Christoph Lameter 已提交
1114 1115
	}

1116
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1117
		return 0;
C
Christoph Lameter 已提交
1118

1119
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1120
		if (!PageSlab(page)) {
J
Joe Perches 已提交
1121 1122
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
1123
		} else if (!page->slab_cache) {
1124 1125
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1126
			dump_stack();
P
Pekka Enberg 已提交
1127
		} else
1128 1129
			object_err(s, page, object,
					"page slab pointer corrupt.");
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
	unsigned long uninitialized_var(flags);
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1161
	}
C
Christoph Lameter 已提交
1162 1163 1164 1165

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1166
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1167
	init_object(s, object, SLUB_RED_INACTIVE);
1168 1169 1170 1171 1172 1173

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1174 1175
	ret = 1;

1176
out:
1177 1178 1179 1180
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1181
	slab_unlock(page);
1182
	spin_unlock_irqrestore(&n->list_lock, flags);
1183 1184 1185
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1186 1187
}

C
Christoph Lameter 已提交
1188 1189
static int __init setup_slub_debug(char *str)
{
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1214
	for (; *str && *str != ','; str++) {
1215 1216
		switch (tolower(*str)) {
		case 'f':
1217
			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1231 1232 1233
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1234 1235 1236 1237 1238 1239 1240
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1241
		default:
1242 1243
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1244
		}
C
Christoph Lameter 已提交
1245 1246
	}

1247
check_slabs:
C
Christoph Lameter 已提交
1248 1249
	if (*str == ',')
		slub_debug_slabs = str + 1;
1250
out:
C
Christoph Lameter 已提交
1251 1252 1253 1254 1255
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1256
unsigned long kmem_cache_flags(unsigned long object_size,
1257
	unsigned long flags, const char *name,
1258
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1259 1260
{
	/*
1261
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1262
	 */
1263 1264
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1265
		flags |= slub_debug;
1266 1267

	return flags;
C
Christoph Lameter 已提交
1268
}
1269
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1270 1271
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1272

C
Christoph Lameter 已提交
1273
static inline int alloc_debug_processing(struct kmem_cache *s,
1274
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1275

1276
static inline int free_debug_processing(
1277 1278
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1279
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1280 1281 1282 1283

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1284
			void *object, u8 val) { return 1; }
1285 1286
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1287 1288
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1289
unsigned long kmem_cache_flags(unsigned long object_size,
1290
	unsigned long flags, const char *name,
1291
	void (*ctor)(void *))
1292 1293 1294
{
	return flags;
}
C
Christoph Lameter 已提交
1295
#define slub_debug 0
1296

1297 1298
#define disable_higher_order_debug 0

1299 1300
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1301 1302
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1303 1304 1305 1306
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1307

1308 1309 1310 1311 1312 1313
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1314 1315 1316
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1317
	kasan_kmalloc_large(ptr, size, flags);
1318 1319 1320 1321 1322
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
1323
	kasan_kfree_large(x);
1324 1325
}

1326
static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1327
{
1328 1329
	void *freeptr;

1330
	kmemleak_free_recursive(x, s->flags);
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1349

1350 1351 1352 1353 1354
	freeptr = get_freepointer(s, x);
	/*
	 * kasan_slab_free() may put x into memory quarantine, delaying its
	 * reuse. In this case the object's freelist pointer is changed.
	 */
1355
	kasan_slab_free(s, x);
1356
	return freeptr;
1357
}
1358

1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
static inline void slab_free_freelist_hook(struct kmem_cache *s,
					   void *head, void *tail)
{
/*
 * Compiler cannot detect this function can be removed if slab_free_hook()
 * evaluates to nothing.  Thus, catch all relevant config debug options here.
 */
#if defined(CONFIG_KMEMCHECK) ||		\
	defined(CONFIG_LOCKDEP)	||		\
	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
	defined(CONFIG_KASAN)

	void *object = head;
	void *tail_obj = tail ? : head;
1374
	void *freeptr;
1375 1376

	do {
1377 1378
		freeptr = slab_free_hook(s, object);
	} while ((object != tail_obj) && (object = freeptr));
1379 1380 1381
#endif
}

1382 1383 1384 1385
static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	setup_object_debug(s, page, object);
1386
	kasan_init_slab_obj(s, object);
1387 1388 1389 1390 1391 1392 1393
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
}

C
Christoph Lameter 已提交
1394 1395 1396
/*
 * Slab allocation and freeing
 */
1397 1398
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1399
{
1400
	struct page *page;
1401 1402
	int order = oo_order(oo);

1403 1404
	flags |= __GFP_NOTRACK;

1405
	if (node == NUMA_NO_NODE)
1406
		page = alloc_pages(flags, order);
1407
	else
1408
		page = __alloc_pages_node(node, flags, order);
1409

1410 1411 1412 1413
	if (page && memcg_charge_slab(page, flags, order, s)) {
		__free_pages(page, order);
		page = NULL;
	}
1414 1415

	return page;
1416 1417
}

T
Thomas Garnier 已提交
1418 1419 1420 1421 1422 1423 1424
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
	int err;
	unsigned long i, count = oo_objects(s->oo);

1425 1426 1427 1428
	/* Bailout if already initialised */
	if (s->random_seq)
		return 0;

T
Thomas Garnier 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
	err = cache_random_seq_create(s, count, GFP_KERNEL);
	if (err) {
		pr_err("SLUB: Unable to initialize free list for %s\n",
			s->name);
		return err;
	}

	/* Transform to an offset on the set of pages */
	if (s->random_seq) {
		for (i = 0; i < count; i++)
			s->random_seq[i] *= s->size;
	}
	return 0;
}

/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list)
		init_cache_random_seq(s);

	mutex_unlock(&slab_mutex);
}

/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
				unsigned long *pos, void *start,
				unsigned long page_limit,
				unsigned long freelist_count)
{
	unsigned int idx;

	/*
	 * If the target page allocation failed, the number of objects on the
	 * page might be smaller than the usual size defined by the cache.
	 */
	do {
		idx = s->random_seq[*pos];
		*pos += 1;
		if (*pos >= freelist_count)
			*pos = 0;
	} while (unlikely(idx >= page_limit));

	return (char *)start + idx;
}

/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	void *start;
	void *cur;
	void *next;
	unsigned long idx, pos, page_limit, freelist_count;

	if (page->objects < 2 || !s->random_seq)
		return false;

	freelist_count = oo_objects(s->oo);
	pos = get_random_int() % freelist_count;

	page_limit = page->objects * s->size;
	start = fixup_red_left(s, page_address(page));

	/* First entry is used as the base of the freelist */
	cur = next_freelist_entry(s, page, &pos, start, page_limit,
				freelist_count);
	page->freelist = cur;

	for (idx = 1; idx < page->objects; idx++) {
		setup_object(s, page, cur);
		next = next_freelist_entry(s, page, &pos, start, page_limit,
			freelist_count);
		set_freepointer(s, cur, next);
		cur = next;
	}
	setup_object(s, page, cur);
	set_freepointer(s, cur, NULL);

	return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
	return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

C
Christoph Lameter 已提交
1525 1526
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1527
	struct page *page;
1528
	struct kmem_cache_order_objects oo = s->oo;
1529
	gfp_t alloc_gfp;
1530 1531
	void *start, *p;
	int idx, order;
T
Thomas Garnier 已提交
1532
	bool shuffle;
C
Christoph Lameter 已提交
1533

1534 1535
	flags &= gfp_allowed_mask;

1536
	if (gfpflags_allow_blocking(flags))
1537 1538
		local_irq_enable();

1539
	flags |= s->allocflags;
1540

1541 1542 1543 1544 1545
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1546
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1547
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1548

1549
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1550 1551
	if (unlikely(!page)) {
		oo = s->min;
1552
		alloc_gfp = flags;
1553 1554 1555 1556
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1557
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1558 1559 1560
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1561
	}
V
Vegard Nossum 已提交
1562

1563 1564
	if (kmemcheck_enabled &&
	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1565 1566
		int pages = 1 << oo_order(oo);

1567
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1568 1569 1570 1571 1572 1573 1574 1575 1576

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1577 1578
	}

1579
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1580

G
Glauber Costa 已提交
1581
	order = compound_order(page);
1582
	page->slab_cache = s;
1583
	__SetPageSlab(page);
1584
	if (page_is_pfmemalloc(page))
1585
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1586 1587 1588 1589

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1590
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1591

1592 1593
	kasan_poison_slab(page);

T
Thomas Garnier 已提交
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	shuffle = shuffle_freelist(s, page);

	if (!shuffle) {
		for_each_object_idx(p, idx, s, start, page->objects) {
			setup_object(s, page, p);
			if (likely(idx < page->objects))
				set_freepointer(s, p, p + s->size);
			else
				set_freepointer(s, p, NULL);
		}
		page->freelist = fixup_red_left(s, start);
C
Christoph Lameter 已提交
1605 1606
	}

1607
	page->inuse = page->objects;
1608
	page->frozen = 1;
1609

C
Christoph Lameter 已提交
1610
out:
1611
	if (gfpflags_allow_blocking(flags))
1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622
		local_irq_disable();
	if (!page)
		return NULL;

	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		1 << oo_order(oo));

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1623 1624 1625
	return page;
}

1626 1627 1628
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1629
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1630 1631 1632
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
1633 1634 1635 1636 1637 1638
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1639 1640
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1641 1642
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1643

1644
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
C
Christoph Lameter 已提交
1645 1646 1647
		void *p;

		slab_pad_check(s, page);
1648 1649
		for_each_object(p, s, page_address(page),
						page->objects)
1650
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1651 1652
	}

1653
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1654

C
Christoph Lameter 已提交
1655 1656 1657
	mod_zone_page_state(page_zone(page),
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1658
		-pages);
C
Christoph Lameter 已提交
1659

1660
	__ClearPageSlabPfmemalloc(page);
1661
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1662

1663
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1664 1665
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1666 1667
	memcg_uncharge_slab(page, order, s);
	__free_pages(page, order);
C
Christoph Lameter 已提交
1668 1669
}

1670 1671 1672
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1673 1674 1675 1676
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1677 1678 1679 1680 1681
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1682
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1683 1684 1685 1686 1687
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1688 1689 1690 1691 1692 1693 1694 1695 1696
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
1697
			head = &page->rcu_head;
1698
		}
C
Christoph Lameter 已提交
1699 1700 1701 1702 1703 1704 1705 1706

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1707
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1708 1709 1710 1711
	free_slab(s, page);
}

/*
1712
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1713
 */
1714 1715
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1716
{
C
Christoph Lameter 已提交
1717
	n->nr_partial++;
1718
	if (tail == DEACTIVATE_TO_TAIL)
1719 1720 1721
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1722 1723
}

1724 1725
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1726
{
P
Peter Zijlstra 已提交
1727
	lockdep_assert_held(&n->list_lock);
1728 1729
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1730

1731 1732 1733 1734
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1735 1736
	list_del(&page->lru);
	n->nr_partial--;
1737 1738
}

C
Christoph Lameter 已提交
1739
/*
1740 1741
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1742
 *
1743
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1744
 */
1745
static inline void *acquire_slab(struct kmem_cache *s,
1746
		struct kmem_cache_node *n, struct page *page,
1747
		int mode, int *objects)
C
Christoph Lameter 已提交
1748
{
1749 1750 1751 1752
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1753 1754
	lockdep_assert_held(&n->list_lock);

1755 1756 1757 1758 1759
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1760 1761 1762
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1763
	*objects = new.objects - new.inuse;
1764
	if (mode) {
1765
		new.inuse = page->objects;
1766 1767 1768 1769
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1770

1771
	VM_BUG_ON(new.frozen);
1772
	new.frozen = 1;
1773

1774
	if (!__cmpxchg_double_slab(s, page,
1775
			freelist, counters,
1776
			new.freelist, new.counters,
1777 1778
			"acquire_slab"))
		return NULL;
1779 1780

	remove_partial(n, page);
1781
	WARN_ON(!freelist);
1782
	return freelist;
C
Christoph Lameter 已提交
1783 1784
}

1785
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1786
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1787

C
Christoph Lameter 已提交
1788
/*
C
Christoph Lameter 已提交
1789
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1790
 */
1791 1792
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1793
{
1794 1795
	struct page *page, *page2;
	void *object = NULL;
1796 1797
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1798 1799 1800 1801

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1802 1803
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1804 1805 1806 1807 1808
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1809
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1810
		void *t;
1811

1812 1813 1814
		if (!pfmemalloc_match(page, flags))
			continue;

1815
		t = acquire_slab(s, n, page, object == NULL, &objects);
1816 1817 1818
		if (!t)
			break;

1819
		available += objects;
1820
		if (!object) {
1821 1822 1823 1824
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1825
			put_cpu_partial(s, page, 0);
1826
			stat(s, CPU_PARTIAL_NODE);
1827
		}
1828 1829
		if (!kmem_cache_has_cpu_partial(s)
			|| available > s->cpu_partial / 2)
1830 1831
			break;

1832
	}
C
Christoph Lameter 已提交
1833
	spin_unlock(&n->list_lock);
1834
	return object;
C
Christoph Lameter 已提交
1835 1836 1837
}

/*
C
Christoph Lameter 已提交
1838
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1839
 */
1840
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1841
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1842 1843 1844
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1845
	struct zoneref *z;
1846 1847
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1848
	void *object;
1849
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1850 1851

	/*
C
Christoph Lameter 已提交
1852 1853 1854 1855
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1856
	 *
C
Christoph Lameter 已提交
1857 1858 1859 1860
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1861
	 *
1862 1863 1864 1865 1866
	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
	 * (which makes defrag_ratio = 1000) then every (well almost)
	 * allocation will first attempt to defrag slab caches on other nodes.
	 * This means scanning over all nodes to look for partial slabs which
	 * may be expensive if we do it every time we are trying to find a slab
C
Christoph Lameter 已提交
1867
	 * with available objects.
C
Christoph Lameter 已提交
1868
	 */
1869 1870
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1871 1872
		return NULL;

1873
	do {
1874
		cpuset_mems_cookie = read_mems_allowed_begin();
1875
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1876 1877 1878 1879 1880
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1881
			if (n && cpuset_zone_allowed(zone, flags) &&
1882
					n->nr_partial > s->min_partial) {
1883
				object = get_partial_node(s, n, c, flags);
1884 1885
				if (object) {
					/*
1886 1887 1888 1889 1890
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1891 1892 1893
					 */
					return object;
				}
1894
			}
C
Christoph Lameter 已提交
1895
		}
1896
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1897 1898 1899 1900 1901 1902 1903
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1904
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1905
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1906
{
1907
	void *object;
1908 1909 1910 1911 1912 1913
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1914

1915
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1916 1917
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1918

1919
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1920 1921
}

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1963
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1964 1965 1966

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1967
		pr_warn("due to cpu change %d -> %d\n",
1968 1969 1970 1971
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
1972
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
1973 1974
			tid_to_event(tid), tid_to_event(actual_tid));
	else
1975
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1976 1977
			actual_tid, tid, next_tid(tid));
#endif
1978
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1979 1980
}

1981
static void init_kmem_cache_cpus(struct kmem_cache *s)
1982 1983 1984 1985 1986 1987
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
1988

C
Christoph Lameter 已提交
1989 1990 1991
/*
 * Remove the cpu slab
 */
1992 1993
static void deactivate_slab(struct kmem_cache *s, struct page *page,
				void *freelist)
C
Christoph Lameter 已提交
1994
{
1995 1996 1997 1998 1999
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
2000
	int tail = DEACTIVATE_TO_HEAD;
2001 2002 2003 2004
	struct page new;
	struct page old;

	if (page->freelist) {
2005
		stat(s, DEACTIVATE_REMOTE_FREES);
2006
		tail = DEACTIVATE_TO_TAIL;
2007 2008
	}

2009
	/*
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
2027
			VM_BUG_ON(!new.frozen);
2028

2029
		} while (!__cmpxchg_double_slab(s, page,
2030 2031 2032 2033 2034 2035 2036
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

2037
	/*
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
2050
	 */
2051
redo:
2052

2053 2054
	old.freelist = page->freelist;
	old.counters = page->counters;
2055
	VM_BUG_ON(!old.frozen);
2056

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

2068
	if (!new.inuse && n->nr_partial >= s->min_partial)
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
2101

P
Peter Zijlstra 已提交
2102
			remove_full(s, n, page);
2103 2104 2105 2106

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
2107
			stat(s, tail);
2108 2109

		} else if (m == M_FULL) {
2110

2111 2112 2113 2114 2115 2116 2117
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
2118
	if (!__cmpxchg_double_slab(s, page,
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2131
	}
C
Christoph Lameter 已提交
2132 2133
}

2134 2135 2136
/*
 * Unfreeze all the cpu partial slabs.
 *
2137 2138 2139
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2140
 */
2141 2142
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2143
{
2144
#ifdef CONFIG_SLUB_CPU_PARTIAL
2145
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2146
	struct page *page, *discard_page = NULL;
2147 2148 2149 2150 2151 2152

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
2153 2154 2155 2156 2157 2158 2159 2160 2161

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2162 2163 2164 2165 2166

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2167
			VM_BUG_ON(!old.frozen);
2168 2169 2170 2171 2172 2173

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2174
		} while (!__cmpxchg_double_slab(s, page,
2175 2176 2177 2178
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2179
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2180 2181
			page->next = discard_page;
			discard_page = page;
2182 2183 2184
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2185 2186 2187 2188 2189
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2190 2191 2192 2193 2194 2195 2196 2197 2198

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2199
#endif
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2211
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2212
{
2213
#ifdef CONFIG_SLUB_CPU_PARTIAL
2214 2215 2216 2217
	struct page *oldpage;
	int pages;
	int pobjects;

2218
	preempt_disable();
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2234
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2235
				local_irq_restore(flags);
2236
				oldpage = NULL;
2237 2238
				pobjects = 0;
				pages = 0;
2239
				stat(s, CPU_PARTIAL_DRAIN);
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2250 2251
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2252 2253 2254 2255 2256 2257 2258 2259
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2260
#endif
2261 2262
}

2263
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2264
{
2265
	stat(s, CPUSLAB_FLUSH);
2266 2267 2268 2269 2270
	deactivate_slab(s, c->page, c->freelist);

	c->tid = next_tid(c->tid);
	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2271 2272 2273 2274
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2275
 *
C
Christoph Lameter 已提交
2276 2277
 * Called from IPI handler with interrupts disabled.
 */
2278
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2279
{
2280
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2281

2282 2283 2284 2285
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2286
		unfreeze_partials(s, c);
2287
	}
C
Christoph Lameter 已提交
2288 2289 2290 2291 2292 2293
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2294
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2295 2296
}

2297 2298 2299 2300 2301
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2302
	return c->page || c->partial;
2303 2304
}

C
Christoph Lameter 已提交
2305 2306
static void flush_all(struct kmem_cache *s)
{
2307
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2308 2309
}

2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slub_cpu_dead(unsigned int cpu)
{
	struct kmem_cache *s;
	unsigned long flags;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		local_irq_save(flags);
		__flush_cpu_slab(s, cpu);
		local_irq_restore(flags);
	}
	mutex_unlock(&slab_mutex);
	return 0;
}

2329 2330 2331 2332
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2333
static inline int node_match(struct page *page, int node)
2334 2335
{
#ifdef CONFIG_NUMA
2336
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2337 2338 2339 2340 2341
		return 0;
#endif
	return 1;
}

2342
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2343 2344 2345 2346 2347
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2348 2349 2350 2351 2352 2353 2354
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2368
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2369

P
Pekka Enberg 已提交
2370 2371 2372
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2373 2374 2375
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2376
	int node;
C
Christoph Lameter 已提交
2377
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2378

2379 2380 2381
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2382 2383
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2384 2385 2386
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2387

2388
	if (oo_order(s->min) > get_order(s->object_size))
2389 2390
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2391

C
Christoph Lameter 已提交
2392
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2393 2394 2395 2396
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2397 2398 2399
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2400

2401
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2402 2403
			node, nr_slabs, nr_objs, nr_free);
	}
2404
#endif
P
Pekka Enberg 已提交
2405 2406
}

2407 2408 2409
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2410
	void *freelist;
2411 2412
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2413

2414
	freelist = get_partial(s, flags, node, c);
2415

2416 2417 2418 2419
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2420
	if (page) {
2421
		c = raw_cpu_ptr(s->cpu_slab);
2422 2423 2424 2425 2426 2427 2428
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2429
		freelist = page->freelist;
2430 2431 2432 2433 2434 2435
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2436
		freelist = NULL;
2437

2438
	return freelist;
2439 2440
}

2441 2442 2443 2444 2445 2446 2447 2448
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2449
/*
2450 2451
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2452 2453 2454 2455
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2456 2457
 *
 * This function must be called with interrupt disabled.
2458 2459 2460 2461 2462 2463 2464 2465 2466 2467
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2468

2469
		new.counters = counters;
2470
		VM_BUG_ON(!new.frozen);
2471 2472 2473 2474

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2475
	} while (!__cmpxchg_double_slab(s, page,
2476 2477 2478 2479 2480 2481 2482
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2483
/*
2484 2485 2486 2487 2488 2489
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2490
 *
2491 2492 2493
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2494
 *
2495
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2496 2497
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2498 2499 2500
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2501
 */
2502
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2503
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2504
{
2505
	void *freelist;
2506
	struct page *page;
C
Christoph Lameter 已提交
2507

2508 2509
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2510
		goto new_slab;
2511
redo:
2512

2513
	if (unlikely(!node_match(page, node))) {
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
			deactivate_slab(s, page, c->freelist);
			c->page = NULL;
			c->freelist = NULL;
			goto new_slab;
		}
2526
	}
C
Christoph Lameter 已提交
2527

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
		deactivate_slab(s, page, c->freelist);
		c->page = NULL;
		c->freelist = NULL;
		goto new_slab;
	}

2540
	/* must check again c->freelist in case of cpu migration or IRQ */
2541 2542
	freelist = c->freelist;
	if (freelist)
2543
		goto load_freelist;
2544

2545
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2546

2547
	if (!freelist) {
2548 2549
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2550
		goto new_slab;
2551
	}
C
Christoph Lameter 已提交
2552

2553
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2554

2555
load_freelist:
2556 2557 2558 2559 2560
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2561
	VM_BUG_ON(!c->page->frozen);
2562
	c->freelist = get_freepointer(s, freelist);
2563
	c->tid = next_tid(c->tid);
2564
	return freelist;
C
Christoph Lameter 已提交
2565 2566

new_slab:
2567

2568
	if (c->partial) {
2569 2570
		page = c->page = c->partial;
		c->partial = page->next;
2571 2572 2573
		stat(s, CPU_PARTIAL_ALLOC);
		c->freelist = NULL;
		goto redo;
C
Christoph Lameter 已提交
2574 2575
	}

2576
	freelist = new_slab_objects(s, gfpflags, node, &c);
2577

2578
	if (unlikely(!freelist)) {
2579
		slab_out_of_memory(s, gfpflags, node);
2580
		return NULL;
C
Christoph Lameter 已提交
2581
	}
2582

2583
	page = c->page;
2584
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2585
		goto load_freelist;
2586

2587
	/* Only entered in the debug case */
2588 2589
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2590
		goto new_slab;	/* Slab failed checks. Next slab needed */
2591

2592
	deactivate_slab(s, page, get_freepointer(s, freelist));
2593 2594
	c->page = NULL;
	c->freelist = NULL;
2595
	return freelist;
2596 2597
}

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2623 2624 2625 2626 2627 2628 2629 2630 2631 2632
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2633
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2634
		gfp_t gfpflags, int node, unsigned long addr)
2635
{
2636
	void *object;
2637
	struct kmem_cache_cpu *c;
2638
	struct page *page;
2639
	unsigned long tid;
2640

2641 2642
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2643
		return NULL;
2644 2645 2646 2647 2648 2649
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2650
	 *
2651 2652 2653
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2654
	 */
2655 2656 2657
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2658 2659
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2660 2661 2662 2663 2664 2665 2666 2667 2668 2669

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2670 2671 2672 2673 2674 2675 2676 2677

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2678
	object = c->freelist;
2679
	page = c->page;
D
Dave Hansen 已提交
2680
	if (unlikely(!object || !node_match(page, node))) {
2681
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2682 2683
		stat(s, ALLOC_SLOWPATH);
	} else {
2684 2685
		void *next_object = get_freepointer_safe(s, object);

2686
		/*
L
Lucas De Marchi 已提交
2687
		 * The cmpxchg will only match if there was no additional
2688 2689
		 * operation and if we are on the right processor.
		 *
2690 2691
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2692 2693 2694 2695
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2696 2697 2698
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2699
		 */
2700
		if (unlikely(!this_cpu_cmpxchg_double(
2701 2702
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2703
				next_object, next_tid(tid)))) {
2704 2705 2706 2707

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2708
		prefetch_freepointer(s, next_object);
2709
		stat(s, ALLOC_FASTPATH);
2710
	}
2711

2712
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2713
		memset(object, 0, s->object_size);
2714

2715
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2716

2717
	return object;
C
Christoph Lameter 已提交
2718 2719
}

2720 2721 2722 2723 2724 2725
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2726 2727
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2728
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2729

2730 2731
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2732 2733

	return ret;
C
Christoph Lameter 已提交
2734 2735 2736
}
EXPORT_SYMBOL(kmem_cache_alloc);

2737
#ifdef CONFIG_TRACING
2738 2739
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2740
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2741
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2742
	kasan_kmalloc(s, ret, size, gfpflags);
2743 2744 2745
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2746 2747
#endif

C
Christoph Lameter 已提交
2748 2749 2750
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2751
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2752

2753
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2754
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2755 2756

	return ret;
C
Christoph Lameter 已提交
2757 2758 2759
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2760
#ifdef CONFIG_TRACING
2761
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2762
				    gfp_t gfpflags,
2763
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2764
{
2765
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2766 2767 2768

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2769

2770
	kasan_kmalloc(s, ret, size, gfpflags);
2771
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2772
}
2773
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2774
#endif
2775
#endif
E
Eduard - Gabriel Munteanu 已提交
2776

C
Christoph Lameter 已提交
2777
/*
K
Kim Phillips 已提交
2778
 * Slow path handling. This may still be called frequently since objects
2779
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2780
 *
2781 2782 2783
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2784
 */
2785
static void __slab_free(struct kmem_cache *s, struct page *page,
2786 2787 2788
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2789 2790
{
	void *prior;
2791 2792 2793 2794
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2795
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2796

2797
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2798

2799
	if (kmem_cache_debug(s) &&
2800
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2801
		return;
C
Christoph Lameter 已提交
2802

2803
	do {
2804 2805 2806 2807
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2808 2809
		prior = page->freelist;
		counters = page->counters;
2810
		set_freepointer(s, tail, prior);
2811 2812
		new.counters = counters;
		was_frozen = new.frozen;
2813
		new.inuse -= cnt;
2814
		if ((!new.inuse || !prior) && !was_frozen) {
2815

P
Peter Zijlstra 已提交
2816
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2817 2818

				/*
2819 2820 2821 2822
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2823 2824 2825
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2826
			} else { /* Needs to be taken off a list */
2827

2828
				n = get_node(s, page_to_nid(page));
2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2840
		}
C
Christoph Lameter 已提交
2841

2842 2843
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2844
		head, new.counters,
2845
		"__slab_free"));
C
Christoph Lameter 已提交
2846

2847
	if (likely(!n)) {
2848 2849 2850 2851 2852

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2853
		if (new.frozen && !was_frozen) {
2854
			put_cpu_partial(s, page, 1);
2855 2856
			stat(s, CPU_PARTIAL_FREE);
		}
2857
		/*
2858 2859 2860
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2861 2862 2863 2864
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2865

2866
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2867 2868
		goto slab_empty;

C
Christoph Lameter 已提交
2869
	/*
2870 2871
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2872
	 */
2873 2874
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2875
			remove_full(s, n, page);
2876 2877
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2878
	}
2879
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2880 2881 2882
	return;

slab_empty:
2883
	if (prior) {
C
Christoph Lameter 已提交
2884
		/*
2885
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2886
		 */
2887
		remove_partial(n, page);
2888
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2889
	} else {
2890
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2891 2892
		remove_full(s, n, page);
	}
2893

2894
	spin_unlock_irqrestore(&n->list_lock, flags);
2895
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2896 2897 2898
	discard_slab(s, page);
}

2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
2909 2910 2911 2912
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
2913
 */
2914 2915 2916
static __always_inline void do_slab_free(struct kmem_cache *s,
				struct page *page, void *head, void *tail,
				int cnt, unsigned long addr)
2917
{
2918
	void *tail_obj = tail ? : head;
2919
	struct kmem_cache_cpu *c;
2920 2921 2922 2923 2924 2925
	unsigned long tid;
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2926
	 * during the cmpxchg then the free will succeed.
2927
	 */
2928 2929 2930
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2931 2932
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2933

2934 2935
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2936

2937
	if (likely(page == c->page)) {
2938
		set_freepointer(s, tail_obj, c->freelist);
2939

2940
		if (unlikely(!this_cpu_cmpxchg_double(
2941 2942
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
2943
				head, next_tid(tid)))) {
2944 2945 2946 2947

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2948
		stat(s, FREE_FASTPATH);
2949
	} else
2950
		__slab_free(s, page, head, tail_obj, cnt, addr);
2951 2952 2953

}

2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	slab_free_freelist_hook(s, head, tail);
	/*
	 * slab_free_freelist_hook() could have put the items into quarantine.
	 * If so, no need to free them.
	 */
	if (s->flags & SLAB_KASAN && !(s->flags & SLAB_DESTROY_BY_RCU))
		return;
	do_slab_free(s, page, head, tail, cnt, addr);
}

#ifdef CONFIG_KASAN
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif

C
Christoph Lameter 已提交
2975 2976
void kmem_cache_free(struct kmem_cache *s, void *x)
{
2977 2978
	s = cache_from_obj(s, x);
	if (!s)
2979
		return;
2980
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2981
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
2982 2983 2984
}
EXPORT_SYMBOL(kmem_cache_free);

2985
struct detached_freelist {
2986
	struct page *page;
2987 2988 2989
	void *tail;
	void *freelist;
	int cnt;
2990
	struct kmem_cache *s;
2991
};
2992

2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
3005 3006 3007
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
3008 3009 3010 3011
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
3012
	struct page *page;
3013

3014 3015
	/* Always re-init detached_freelist */
	df->page = NULL;
3016

3017 3018
	do {
		object = p[--size];
3019
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3020
	} while (!object && size);
3021

3022 3023
	if (!object)
		return 0;
3024

3025 3026 3027 3028 3029 3030
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
3031
			__free_pages(page, compound_order(page));
3032 3033 3034 3035 3036 3037 3038 3039
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
3040

3041
	/* Start new detached freelist */
3042
	df->page = page;
3043
	set_freepointer(df->s, object, NULL);
3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
3057
			set_freepointer(df->s, object, df->freelist);
3058 3059 3060 3061 3062
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
3063
		}
3064 3065 3066 3067 3068 3069 3070

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
3071
	}
3072 3073 3074 3075 3076

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
3077
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3078 3079 3080 3081 3082 3083 3084 3085
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
A
Arnd Bergmann 已提交
3086
		if (!df.page)
3087 3088
			continue;

3089
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3090
	} while (likely(size));
3091 3092 3093
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

3094
/* Note that interrupts must be enabled when calling this function. */
3095 3096
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
3097
{
3098 3099 3100
	struct kmem_cache_cpu *c;
	int i;

3101 3102 3103 3104
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

3116 3117 3118 3119 3120
		if (unlikely(!object)) {
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
3121
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3122
					    _RET_IP_, c);
3123 3124 3125
			if (unlikely(!p[i]))
				goto error;

3126 3127 3128
			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142
		c->freelist = get_freepointer(s, object);
		p[i] = object;
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

3143 3144
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
3145
	return i;
3146 3147
error:
	local_irq_enable();
3148 3149
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
3150
	return 0;
3151 3152 3153 3154
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
3155
/*
C
Christoph Lameter 已提交
3156 3157 3158 3159
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3160 3161 3162 3163
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3164
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3165 3166 3167 3168 3169 3170 3171 3172 3173 3174
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
3175
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3176
static int slub_min_objects;
C
Christoph Lameter 已提交
3177 3178 3179 3180

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3181 3182 3183 3184
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3185
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3186 3187 3188 3189 3190 3191
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3192
 *
C
Christoph Lameter 已提交
3193 3194 3195 3196
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3197
 *
C
Christoph Lameter 已提交
3198 3199 3200 3201
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3202
 */
3203
static inline int slab_order(int size, int min_objects,
3204
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
3205 3206 3207
{
	int order;
	int rem;
3208
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
3209

3210
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3211
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3212

3213
	for (order = max(min_order, get_order(min_objects * size + reserved));
3214
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3215

3216
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
3217

3218
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
3219

3220
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3221 3222
			break;
	}
C
Christoph Lameter 已提交
3223

C
Christoph Lameter 已提交
3224 3225 3226
	return order;
}

3227
static inline int calculate_order(int size, int reserved)
3228 3229 3230 3231
{
	int order;
	int min_objects;
	int fraction;
3232
	int max_objects;
3233 3234 3235 3236 3237 3238

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3239
	 * First we increase the acceptable waste in a slab. Then
3240 3241 3242
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3243 3244
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3245
	max_objects = order_objects(slub_max_order, size, reserved);
3246 3247
	min_objects = min(min_objects, max_objects);

3248
	while (min_objects > 1) {
C
Christoph Lameter 已提交
3249
		fraction = 16;
3250 3251
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3252
					slub_max_order, fraction, reserved);
3253 3254 3255 3256
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3257
		min_objects--;
3258 3259 3260 3261 3262 3263
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3264
	order = slab_order(size, 1, slub_max_order, 1, reserved);
3265 3266 3267 3268 3269 3270
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3271
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
3272
	if (order < MAX_ORDER)
3273 3274 3275 3276
		return order;
	return -ENOSYS;
}

3277
static void
3278
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3279 3280 3281 3282
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3283
#ifdef CONFIG_SLUB_DEBUG
3284
	atomic_long_set(&n->nr_slabs, 0);
3285
	atomic_long_set(&n->total_objects, 0);
3286
	INIT_LIST_HEAD(&n->full);
3287
#endif
C
Christoph Lameter 已提交
3288 3289
}

3290
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3291
{
3292
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3293
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3294

3295
	/*
3296 3297
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3298
	 */
3299 3300
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3301 3302 3303 3304 3305

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3306

3307
	return 1;
3308 3309
}

3310 3311
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3312 3313 3314 3315 3316
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3317 3318
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3319
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3320
 */
3321
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3322 3323 3324 3325
{
	struct page *page;
	struct kmem_cache_node *n;

3326
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3327

3328
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3329 3330

	BUG_ON(!page);
3331
	if (page_to_nid(page) != node) {
3332 3333
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3334 3335
	}

C
Christoph Lameter 已提交
3336 3337
	n = page->freelist;
	BUG_ON(!n);
3338
	page->freelist = get_freepointer(kmem_cache_node, n);
3339
	page->inuse = 1;
3340
	page->frozen = 0;
3341
	kmem_cache_node->node[node] = n;
3342
#ifdef CONFIG_SLUB_DEBUG
3343
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3344
	init_tracking(kmem_cache_node, n);
3345
#endif
3346 3347
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
		      GFP_KERNEL);
3348
	init_kmem_cache_node(n);
3349
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3350

3351
	/*
3352 3353
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3354
	 */
3355
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3356 3357 3358 3359 3360
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3361
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3362

C
Christoph Lameter 已提交
3363 3364
	for_each_kmem_cache_node(s, node, n) {
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3365 3366 3367 3368
		s->node[node] = NULL;
	}
}

3369 3370
void __kmem_cache_release(struct kmem_cache *s)
{
T
Thomas Garnier 已提交
3371
	cache_random_seq_destroy(s);
3372 3373 3374 3375
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3376
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3377 3378 3379
{
	int node;

C
Christoph Lameter 已提交
3380
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3381 3382
		struct kmem_cache_node *n;

3383
		if (slab_state == DOWN) {
3384
			early_kmem_cache_node_alloc(node);
3385 3386
			continue;
		}
3387
		n = kmem_cache_alloc_node(kmem_cache_node,
3388
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3389

3390 3391 3392
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3393
		}
3394

C
Christoph Lameter 已提交
3395
		s->node[node] = n;
3396
		init_kmem_cache_node(n);
C
Christoph Lameter 已提交
3397 3398 3399 3400
	}
	return 1;
}

3401
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3402 3403 3404 3405 3406 3407 3408 3409
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

C
Christoph Lameter 已提交
3410 3411 3412 3413
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3414
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3415 3416
{
	unsigned long flags = s->flags;
3417
	size_t size = s->object_size;
3418
	int order;
C
Christoph Lameter 已提交
3419

3420 3421 3422 3423 3424 3425 3426 3427
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3428 3429 3430 3431 3432 3433
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
	if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
3434
			!s->ctor)
C
Christoph Lameter 已提交
3435 3436 3437 3438 3439 3440
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3441
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3442
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3443
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3444
	 */
3445
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3446
		size += sizeof(void *);
C
Christoph Lameter 已提交
3447
#endif
C
Christoph Lameter 已提交
3448 3449

	/*
C
Christoph Lameter 已提交
3450 3451
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3452 3453 3454 3455
	 */
	s->inuse = size;

	if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
3456
		s->ctor)) {
C
Christoph Lameter 已提交
3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3469
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3470 3471 3472 3473 3474 3475
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);
3476
#endif
C
Christoph Lameter 已提交
3477

3478 3479
	kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
J
Joonsoo Kim 已提交
3480
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3481 3482 3483 3484
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3485
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3486 3487 3488
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3489 3490 3491 3492 3493

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3494
#endif
C
Christoph Lameter 已提交
3495

C
Christoph Lameter 已提交
3496 3497 3498 3499 3500
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3501
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3502
	s->size = size;
3503 3504 3505
	if (forced_order >= 0)
		order = forced_order;
	else
3506
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3507

3508
	if (order < 0)
C
Christoph Lameter 已提交
3509 3510
		return 0;

3511
	s->allocflags = 0;
3512
	if (order)
3513 3514 3515
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3516
		s->allocflags |= GFP_DMA;
3517 3518 3519 3520

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3521 3522 3523
	/*
	 * Determine the number of objects per slab
	 */
3524 3525
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3526 3527
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3528

3529
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3530 3531
}

3532
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3533
{
3534
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3535
	s->reserved = 0;
C
Christoph Lameter 已提交
3536

3537 3538
	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3539

3540
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3541
		goto error;
3542 3543 3544 3545 3546
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3547
		if (get_order(s->size) > get_order(s->object_size)) {
3548 3549 3550 3551 3552 3553
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3554

3555 3556
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3557
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3558 3559 3560 3561
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3562 3563 3564 3565
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
	set_min_partial(s, ilog2(s->size) / 2);

	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
3581
	 * B) The number of objects in cpu partial slabs to extract from the
3582 3583
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
3584
	 */
3585
	if (!kmem_cache_has_cpu_partial(s))
3586 3587
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
3588 3589 3590 3591 3592 3593 3594 3595
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;

C
Christoph Lameter 已提交
3596
#ifdef CONFIG_NUMA
3597
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3598
#endif
T
Thomas Garnier 已提交
3599 3600 3601 3602 3603 3604 3605

	/* Initialize the pre-computed randomized freelist if slab is up */
	if (slab_state >= UP) {
		if (init_cache_random_seq(s))
			goto error;
	}

3606
	if (!init_kmem_cache_nodes(s))
3607
		goto error;
C
Christoph Lameter 已提交
3608

3609
	if (alloc_kmem_cache_cpus(s))
3610
		return 0;
3611

3612
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3613 3614
error:
	if (flags & SLAB_PANIC)
J
Joe Perches 已提交
3615 3616 3617
		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
		      s->name, (unsigned long)s->size, s->size,
		      oo_order(s->oo), s->offset, flags);
3618
	return -EINVAL;
C
Christoph Lameter 已提交
3619 3620
}

3621 3622 3623 3624 3625 3626
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3627 3628
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3629 3630
	if (!map)
		return;
3631
	slab_err(s, page, text, s->name);
3632 3633
	slab_lock(page);

3634
	get_map(s, page, map);
3635 3636 3637
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3638
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3639 3640 3641 3642
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3643
	kfree(map);
3644 3645 3646
#endif
}

C
Christoph Lameter 已提交
3647
/*
C
Christoph Lameter 已提交
3648
 * Attempt to free all partial slabs on a node.
3649 3650
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3651
 */
C
Christoph Lameter 已提交
3652
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3653
{
3654
	LIST_HEAD(discard);
C
Christoph Lameter 已提交
3655 3656
	struct page *page, *h;

3657 3658
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3659
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3660
		if (!page->inuse) {
3661
			remove_partial(n, page);
3662
			list_add(&page->lru, &discard);
3663 3664
		} else {
			list_slab_objects(s, page,
3665
			"Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3666
		}
3667
	}
3668
	spin_unlock_irq(&n->list_lock);
3669 3670 3671

	list_for_each_entry_safe(page, h, &discard, lru)
		discard_slab(s, page);
C
Christoph Lameter 已提交
3672 3673 3674
}

/*
C
Christoph Lameter 已提交
3675
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3676
 */
3677
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3678 3679
{
	int node;
C
Christoph Lameter 已提交
3680
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3681 3682 3683

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3684
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3685 3686
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697
			return 1;
	}
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3698
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3699 3700 3701 3702 3703 3704 3705 3706

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3707
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3708
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3709 3710 3711 3712 3713 3714 3715 3716

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3717
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3718 3719 3720 3721 3722 3723 3724 3725

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3726
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3727
	void *ret;
C
Christoph Lameter 已提交
3728

3729
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3730
		return kmalloc_large(size, flags);
3731

3732
	s = kmalloc_slab(size, flags);
3733 3734

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3735 3736
		return s;

3737
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3738

3739
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3740

3741
	kasan_kmalloc(s, ret, size, flags);
3742

E
Eduard - Gabriel Munteanu 已提交
3743
	return ret;
C
Christoph Lameter 已提交
3744 3745 3746
}
EXPORT_SYMBOL(__kmalloc);

3747
#ifdef CONFIG_NUMA
3748 3749
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3750
	struct page *page;
3751
	void *ptr = NULL;
3752

V
Vladimir Davydov 已提交
3753
	flags |= __GFP_COMP | __GFP_NOTRACK;
3754
	page = alloc_pages_node(node, flags, get_order(size));
3755
	if (page)
3756 3757
		ptr = page_address(page);

3758
	kmalloc_large_node_hook(ptr, size, flags);
3759
	return ptr;
3760 3761
}

C
Christoph Lameter 已提交
3762 3763
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3764
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3765
	void *ret;
C
Christoph Lameter 已提交
3766

3767
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3768 3769
		ret = kmalloc_large_node(size, flags, node);

3770 3771 3772
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3773 3774 3775

		return ret;
	}
3776

3777
	s = kmalloc_slab(size, flags);
3778 3779

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3780 3781
		return s;

3782
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3783

3784
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3785

3786
	kasan_kmalloc(s, ret, size, flags);
3787

E
Eduard - Gabriel Munteanu 已提交
3788
	return ret;
C
Christoph Lameter 已提交
3789 3790 3791 3792
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

K
Kees Cook 已提交
3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
#ifdef CONFIG_HARDENED_USERCOPY
/*
 * Rejects objects that are incorrectly sized.
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
const char *__check_heap_object(const void *ptr, unsigned long n,
				struct page *page)
{
	struct kmem_cache *s;
	unsigned long offset;
	size_t object_size;

	/* Find object and usable object size. */
	s = page->slab_cache;
	object_size = slab_ksize(s);

	/* Reject impossible pointers. */
	if (ptr < page_address(page))
		return s->name;

	/* Find offset within object. */
	offset = (ptr - page_address(page)) % s->size;

	/* Adjust for redzone and reject if within the redzone. */
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
		if (offset < s->red_left_pad)
			return s->name;
		offset -= s->red_left_pad;
	}

	/* Allow address range falling entirely within object size. */
	if (offset <= object_size && n <= object_size - offset)
		return NULL;

	return s->name;
}
#endif /* CONFIG_HARDENED_USERCOPY */

3833
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3834
{
3835
	struct page *page;
C
Christoph Lameter 已提交
3836

3837
	if (unlikely(object == ZERO_SIZE_PTR))
3838 3839
		return 0;

3840 3841
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3842 3843
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3844
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3845
	}
C
Christoph Lameter 已提交
3846

3847
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3848
}
3849 3850 3851 3852 3853

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
3854 3855 3856
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(object, size);
3857 3858
	return size;
}
K
Kirill A. Shutemov 已提交
3859
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3860 3861 3862 3863

void kfree(const void *x)
{
	struct page *page;
3864
	void *object = (void *)x;
C
Christoph Lameter 已提交
3865

3866 3867
	trace_kfree(_RET_IP_, x);

3868
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3869 3870
		return;

3871
	page = virt_to_head_page(x);
3872
	if (unlikely(!PageSlab(page))) {
3873
		BUG_ON(!PageCompound(page));
3874
		kfree_hook(x);
3875
		__free_pages(page, compound_order(page));
3876 3877
		return;
	}
3878
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
3879 3880 3881
}
EXPORT_SYMBOL(kfree);

3882 3883
#define SHRINK_PROMOTE_MAX 32

3884
/*
3885 3886 3887
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3888 3889 3890 3891
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3892
 */
3893
int __kmem_cache_shrink(struct kmem_cache *s)
3894 3895 3896 3897 3898 3899
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3900 3901
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3902
	unsigned long flags;
3903
	int ret = 0;
3904 3905

	flush_all(s);
C
Christoph Lameter 已提交
3906
	for_each_kmem_cache_node(s, node, n) {
3907 3908 3909
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3910 3911 3912 3913

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3914
		 * Build lists of slabs to discard or promote.
3915
		 *
C
Christoph Lameter 已提交
3916 3917
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3918 3919
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3930
				n->nr_partial--;
3931 3932
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3933 3934 3935
		}

		/*
3936 3937
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3938
		 */
3939 3940
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3941 3942

		spin_unlock_irqrestore(&n->list_lock, flags);
3943 3944

		/* Release empty slabs */
3945
		list_for_each_entry_safe(page, t, &discard, lru)
3946
			discard_slab(s, page);
3947 3948 3949

		if (slabs_node(s, node))
			ret = 1;
3950 3951
	}

3952
	return ret;
3953 3954
}

3955 3956 3957 3958
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

3959
	mutex_lock(&slab_mutex);
3960
	list_for_each_entry(s, &slab_caches, list)
3961
		__kmem_cache_shrink(s);
3962
	mutex_unlock(&slab_mutex);
3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

3974
	offline_node = marg->status_change_nid_normal;
3975 3976 3977 3978 3979 3980 3981 3982

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

3983
	mutex_lock(&slab_mutex);
3984 3985 3986 3987 3988 3989
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
3990
			 * and offline_pages() function shouldn't call this
3991 3992
			 * callback. So, we must fail.
			 */
3993
			BUG_ON(slabs_node(s, offline_node));
3994 3995

			s->node[offline_node] = NULL;
3996
			kmem_cache_free(kmem_cache_node, n);
3997 3998
		}
	}
3999
	mutex_unlock(&slab_mutex);
4000 4001 4002 4003 4004 4005 4006
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
4007
	int nid = marg->status_change_nid_normal;
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
4018
	 * We are bringing a node online. No memory is available yet. We must
4019 4020 4021
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
4022
	mutex_lock(&slab_mutex);
4023 4024 4025 4026 4027 4028
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
4029
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4030 4031 4032 4033
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
4034
		init_kmem_cache_node(n);
4035 4036 4037
		s->node[nid] = n;
	}
out:
4038
	mutex_unlock(&slab_mutex);
4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
4062 4063 4064 4065
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
4066 4067 4068
	return ret;
}

4069 4070 4071 4072
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
4073

C
Christoph Lameter 已提交
4074 4075 4076 4077
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

4078 4079
/*
 * Used for early kmem_cache structures that were allocated using
4080 4081
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
4082 4083
 */

4084
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4085 4086
{
	int node;
4087
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
4088
	struct kmem_cache_node *n;
4089

4090
	memcpy(s, static_cache, kmem_cache->object_size);
4091

4092 4093 4094 4095 4096 4097
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
4098
	for_each_kmem_cache_node(s, node, n) {
4099 4100
		struct page *p;

C
Christoph Lameter 已提交
4101 4102
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
4103

L
Li Zefan 已提交
4104
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4105 4106
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
4107 4108
#endif
	}
4109
	slab_init_memcg_params(s);
4110 4111
	list_add(&s->list, &slab_caches);
	return s;
4112 4113
}

C
Christoph Lameter 已提交
4114 4115
void __init kmem_cache_init(void)
{
4116 4117
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
4118

4119 4120 4121
	if (debug_guardpage_minorder())
		slub_max_order = 0;

4122 4123
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
4124

4125 4126
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4127

4128
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
4129 4130 4131 4132

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

4133 4134 4135 4136
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
4137

4138
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
4139

4140 4141 4142 4143 4144
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
4145
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4146 4147

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4148
	setup_kmalloc_cache_index_table();
4149
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
4150

T
Thomas Garnier 已提交
4151 4152 4153
	/* Setup random freelists for each cache */
	init_freelist_randomization();

4154 4155
	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
				  slub_cpu_dead);
C
Christoph Lameter 已提交
4156

4157
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4158
		cache_line_size(),
C
Christoph Lameter 已提交
4159 4160 4161 4162
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

4163 4164 4165 4166
void __init kmem_cache_init_late(void)
{
}

4167
struct kmem_cache *
4168 4169
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
4170
{
4171
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
4172

4173
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
4174 4175
	if (s) {
		s->refcount++;
4176

C
Christoph Lameter 已提交
4177 4178 4179 4180
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
4181
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
4182
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
4183

4184
		for_each_memcg_cache(c, s) {
4185 4186 4187 4188 4189
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

4190 4191
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
4192
			s = NULL;
4193
		}
4194
	}
C
Christoph Lameter 已提交
4195

4196 4197
	return s;
}
P
Pekka Enberg 已提交
4198

4199
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4200
{
4201 4202 4203 4204 4205
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4206

4207 4208 4209 4210
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4211
	memcg_propagate_slab_attrs(s);
4212 4213
	err = sysfs_slab_add(s);
	if (err)
4214
		__kmem_cache_release(s);
4215

4216
	return err;
C
Christoph Lameter 已提交
4217 4218
}

4219
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4220
{
4221
	struct kmem_cache *s;
4222
	void *ret;
4223

4224
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4225 4226
		return kmalloc_large(size, gfpflags);

4227
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4228

4229
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4230
		return s;
C
Christoph Lameter 已提交
4231

4232
	ret = slab_alloc(s, gfpflags, caller);
4233

L
Lucas De Marchi 已提交
4234
	/* Honor the call site pointer we received. */
4235
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4236 4237

	return ret;
C
Christoph Lameter 已提交
4238 4239
}

4240
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4241
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4242
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4243
{
4244
	struct kmem_cache *s;
4245
	void *ret;
4246

4247
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4248 4249 4250 4251 4252 4253 4254 4255
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4256

4257
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4258

4259
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4260
		return s;
C
Christoph Lameter 已提交
4261

4262
	ret = slab_alloc_node(s, gfpflags, node, caller);
4263

L
Lucas De Marchi 已提交
4264
	/* Honor the call site pointer we received. */
4265
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4266 4267

	return ret;
C
Christoph Lameter 已提交
4268
}
4269
#endif
C
Christoph Lameter 已提交
4270

4271
#ifdef CONFIG_SYSFS
4272 4273 4274 4275 4276 4277 4278 4279 4280
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4281
#endif
4282

4283
#ifdef CONFIG_SLUB_DEBUG
4284 4285
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4286 4287
{
	void *p;
4288
	void *addr = page_address(page);
4289 4290 4291 4292 4293 4294

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
4295
	bitmap_zero(map, page->objects);
4296

4297 4298 4299 4300 4301
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
4302 4303
	}

4304
	for_each_object(p, s, addr, page->objects)
4305
		if (!test_bit(slab_index(p, s, addr), map))
4306
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4307 4308 4309 4310
				return 0;
	return 1;
}

4311 4312
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4313
{
4314 4315 4316
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4317 4318
}

4319 4320
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4321 4322 4323 4324 4325 4326 4327 4328
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4329
		validate_slab_slab(s, page, map);
4330 4331 4332
		count++;
	}
	if (count != n->nr_partial)
4333 4334
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4335 4336 4337 4338 4339

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4340
		validate_slab_slab(s, page, map);
4341 4342 4343
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4344 4345
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4346 4347 4348 4349 4350 4351

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4352
static long validate_slab_cache(struct kmem_cache *s)
4353 4354 4355
{
	int node;
	unsigned long count = 0;
4356
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4357
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4358
	struct kmem_cache_node *n;
4359 4360 4361

	if (!map)
		return -ENOMEM;
4362 4363

	flush_all(s);
C
Christoph Lameter 已提交
4364
	for_each_kmem_cache_node(s, node, n)
4365 4366
		count += validate_slab_node(s, n, map);
	kfree(map);
4367 4368
	return count;
}
4369
/*
C
Christoph Lameter 已提交
4370
 * Generate lists of code addresses where slabcache objects are allocated
4371 4372 4373 4374 4375
 * and freed.
 */

struct location {
	unsigned long count;
4376
	unsigned long addr;
4377 4378 4379 4380 4381
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4382
	DECLARE_BITMAP(cpus, NR_CPUS);
4383
	nodemask_t nodes;
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4399
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4400 4401 4402 4403 4404 4405
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4406
	l = (void *)__get_free_pages(flags, order);
4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4420
				const struct track *track)
4421 4422 4423
{
	long start, end, pos;
	struct location *l;
4424
	unsigned long caddr;
4425
	unsigned long age = jiffies - track->when;
4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4457 4458
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4459 4460
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4461 4462 4463
			return 1;
		}

4464
		if (track->addr < caddr)
4465 4466 4467 4468 4469 4470
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4471
	 * Not found. Insert new tracking element.
4472
	 */
4473
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4474 4475 4476 4477 4478 4479 4480 4481
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4482 4483 4484 4485 4486 4487
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4488 4489
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4490 4491
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4492 4493 4494 4495
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4496
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4497
		unsigned long *map)
4498
{
4499
	void *addr = page_address(page);
4500 4501
	void *p;

4502
	bitmap_zero(map, page->objects);
4503
	get_map(s, page, map);
4504

4505
	for_each_object(p, s, addr, page->objects)
4506 4507
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4508 4509 4510 4511 4512
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4513
	int len = 0;
4514
	unsigned long i;
4515
	struct loc_track t = { 0, 0, NULL };
4516
	int node;
E
Eric Dumazet 已提交
4517 4518
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4519
	struct kmem_cache_node *n;
4520

E
Eric Dumazet 已提交
4521 4522 4523
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4524
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4525
	}
4526 4527 4528
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4529
	for_each_kmem_cache_node(s, node, n) {
4530 4531 4532
		unsigned long flags;
		struct page *page;

4533
		if (!atomic_long_read(&n->nr_slabs))
4534 4535 4536 4537
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4538
			process_slab(&t, s, page, alloc, map);
4539
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4540
			process_slab(&t, s, page, alloc, map);
4541 4542 4543 4544
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4545
		struct location *l = &t.loc[i];
4546

H
Hugh Dickins 已提交
4547
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4548
			break;
4549
		len += sprintf(buf + len, "%7ld ", l->count);
4550 4551

		if (l->addr)
J
Joe Perches 已提交
4552
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4553
		else
4554
			len += sprintf(buf + len, "<not-available>");
4555 4556

		if (l->sum_time != l->min_time) {
4557
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4558 4559 4560
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4561
		} else
4562
			len += sprintf(buf + len, " age=%ld",
4563 4564 4565
				l->min_time);

		if (l->min_pid != l->max_pid)
4566
			len += sprintf(buf + len, " pid=%ld-%ld",
4567 4568
				l->min_pid, l->max_pid);
		else
4569
			len += sprintf(buf + len, " pid=%ld",
4570 4571
				l->min_pid);

R
Rusty Russell 已提交
4572 4573
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4574 4575 4576 4577
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4578

4579
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4580 4581 4582 4583
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4584

4585
		len += sprintf(buf + len, "\n");
4586 4587 4588
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4589
	kfree(map);
4590
	if (!t.count)
4591 4592
		len += sprintf(buf, "No data\n");
	return len;
4593
}
4594
#endif
4595

4596
#ifdef SLUB_RESILIENCY_TEST
4597
static void __init resiliency_test(void)
4598 4599 4600
{
	u8 *p;

4601
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4602

4603 4604 4605
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4606 4607 4608

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4609 4610
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4611 4612 4613 4614 4615 4616

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4617 4618 4619
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4620 4621 4622 4623 4624

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4625 4626 4627
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4628 4629
	validate_slab_cache(kmalloc_caches[6]);

4630
	pr_err("\nB. Corruption after free\n");
4631 4632 4633
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4634
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4635 4636 4637 4638 4639
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4640
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4641 4642 4643 4644 4645
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4646
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4647 4648 4649 4650 4651 4652 4653 4654
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4655
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4656
enum slab_stat_type {
4657 4658 4659 4660 4661
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4662 4663
};

4664
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4665 4666 4667
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4668
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4669

4670 4671
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4672 4673 4674 4675 4676 4677
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4678
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4679 4680
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4681

4682 4683
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4684

4685
		for_each_possible_cpu(cpu) {
4686 4687
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4688
			int node;
4689
			struct page *page;
4690

4691
			page = READ_ONCE(c->page);
4692 4693
			if (!page)
				continue;
4694

4695 4696 4697 4698 4699 4700 4701
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4702

4703 4704 4705
			total += x;
			nodes[node] += x;

4706
			page = READ_ONCE(c->partial);
4707
			if (page) {
L
Li Zefan 已提交
4708 4709 4710 4711 4712 4713 4714
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4715 4716
				total += x;
				nodes[node] += x;
4717
			}
C
Christoph Lameter 已提交
4718 4719 4720
		}
	}

4721
	get_online_mems();
4722
#ifdef CONFIG_SLUB_DEBUG
4723
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4724 4725 4726
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4727

4728 4729 4730 4731 4732
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4733
			else
4734
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4735 4736 4737 4738
			total += x;
			nodes[node] += x;
		}

4739 4740 4741
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4742
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4743

C
Christoph Lameter 已提交
4744
		for_each_kmem_cache_node(s, node, n) {
4745 4746 4747 4748
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4749
			else
4750
				x = n->nr_partial;
C
Christoph Lameter 已提交
4751 4752 4753 4754 4755 4756
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4757
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4758 4759 4760 4761
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4762
	put_online_mems();
C
Christoph Lameter 已提交
4763 4764 4765 4766
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4767
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4768 4769 4770
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4771
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4772

C
Christoph Lameter 已提交
4773
	for_each_kmem_cache_node(s, node, n)
4774
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4775
			return 1;
C
Christoph Lameter 已提交
4776

C
Christoph Lameter 已提交
4777 4778
	return 0;
}
4779
#endif
C
Christoph Lameter 已提交
4780 4781

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4782
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4783 4784 4785 4786 4787 4788 4789 4790

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4791 4792
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4793 4794 4795

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4796
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4812
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4813 4814 4815 4816 4817
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4818
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4819 4820 4821
}
SLAB_ATTR_RO(objs_per_slab);

4822 4823 4824
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4825 4826 4827
	unsigned long order;
	int err;

4828
	err = kstrtoul(buf, 10, &order);
4829 4830
	if (err)
		return err;
4831 4832 4833 4834 4835 4836 4837 4838

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4839 4840
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4841
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4842
}
4843
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4844

4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4856
	err = kstrtoul(buf, 10, &min);
4857 4858 4859
	if (err)
		return err;

4860
	set_min_partial(s, min);
4861 4862 4863 4864
	return length;
}
SLAB_ATTR(min_partial);

4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%u\n", s->cpu_partial);
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4876
	err = kstrtoul(buf, 10, &objects);
4877 4878
	if (err)
		return err;
4879
	if (objects && !kmem_cache_has_cpu_partial(s))
4880
		return -EINVAL;
4881 4882 4883 4884 4885 4886 4887

	s->cpu_partial = objects;
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4888 4889
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4890 4891 4892
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4893 4894 4895 4896 4897
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4898
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4899 4900 4901 4902 4903
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4904
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4905 4906 4907 4908 4909
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
4910
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
4911 4912 4913 4914 4915
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
4916
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
4917 4918 4919
}
SLAB_ATTR_RO(objects);

4920 4921 4922 4923 4924 4925
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu)->partial;

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
		struct page *page = per_cpu_ptr(s->cpu_slab, cpu) ->partial;

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
}
SLAB_ATTR_RO(destroy_by_rcu);

4992 4993 4994 4995 4996 4997
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

4998
#ifdef CONFIG_SLUB_DEBUG
4999 5000 5001 5002 5003 5004
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

5005 5006 5007 5008 5009 5010
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
5011 5012
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
5013
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
5014 5015 5016 5017 5018
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
5019
	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5020 5021
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
5022
		s->flags |= SLAB_CONSISTENCY_CHECKS;
5023
	}
C
Christoph Lameter 已提交
5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5036 5037 5038 5039 5040 5041 5042 5043
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
5044
	s->flags &= ~SLAB_TRACE;
5045 5046
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5047
		s->flags |= SLAB_TRACE;
5048
	}
C
Christoph Lameter 已提交
5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
5065
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5066
		s->flags |= SLAB_RED_ZONE;
5067
	}
5068
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
5085
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5086
		s->flags |= SLAB_POISON;
5087
	}
5088
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
5105 5106
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5107
		s->flags |= SLAB_STORE_USER;
5108
	}
5109
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5110 5111 5112 5113
	return length;
}
SLAB_ATTR(store_user);

5114 5115 5116 5117 5118 5119 5120 5121
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5122 5123 5124 5125 5126 5127 5128 5129
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
5130 5131
}
SLAB_ATTR(validate);
5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5159 5160 5161
	if (s->refcount > 1)
		return -EINVAL;

5162 5163 5164 5165 5166 5167
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
5168
#endif
5169

5170 5171 5172 5173 5174 5175 5176 5177
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5178 5179 5180
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
5181 5182 5183 5184 5185
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5186
#ifdef CONFIG_NUMA
5187
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5188
{
5189
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5190 5191
}

5192
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5193 5194
				const char *buf, size_t length)
{
5195 5196 5197
	unsigned long ratio;
	int err;

5198
	err = kstrtoul(buf, 10, &ratio);
5199 5200 5201
	if (err)
		return err;

5202
	if (ratio <= 100)
5203
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5204 5205 5206

	return length;
}
5207
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5208 5209
#endif

5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5222
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5223 5224 5225 5226 5227 5228 5229

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5230
#ifdef CONFIG_SMP
5231 5232
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5233
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5234
	}
5235
#endif
5236 5237 5238 5239
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5240 5241 5242 5243 5244
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5245
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5246 5247
}

5248 5249 5250 5251 5252
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5253 5254 5255 5256 5257 5258 5259 5260 5261
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5273
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5274 5275 5276 5277 5278 5279 5280
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5281
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5282
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5283 5284
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5285 5286
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5287 5288
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5289 5290
#endif

P
Pekka Enberg 已提交
5291
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5292 5293 5294 5295
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5296
	&min_partial_attr.attr,
5297
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5298
	&objects_attr.attr,
5299
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5300 5301 5302 5303 5304 5305 5306 5307
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5308
	&shrink_attr.attr,
5309
	&reserved_attr.attr,
5310
	&slabs_cpu_partial_attr.attr,
5311
#ifdef CONFIG_SLUB_DEBUG
5312 5313 5314 5315
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5316 5317 5318
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5319
	&validate_attr.attr,
5320 5321
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5322
#endif
C
Christoph Lameter 已提交
5323 5324 5325 5326
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5327
	&remote_node_defrag_ratio_attr.attr,
5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5340
	&alloc_node_mismatch_attr.attr,
5341 5342 5343 5344 5345 5346 5347
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5348
	&deactivate_bypass_attr.attr,
5349
	&order_fallback_attr.attr,
5350 5351
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5352 5353
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5354 5355
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5356
#endif
5357 5358 5359 5360
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5402
#ifdef CONFIG_MEMCG
5403
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5404
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5405

5406 5407 5408 5409
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5427 5428
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5429 5430 5431
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5432 5433 5434
	return err;
}

5435 5436
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5437
#ifdef CONFIG_MEMCG
5438 5439
	int i;
	char *buffer = NULL;
5440
	struct kmem_cache *root_cache;
5441

5442
	if (is_root_cache(s))
5443 5444
		return;

5445
	root_cache = s->memcg_params.root_cache;
5446

5447 5448 5449 5450
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5451
	if (!root_cache->max_attr_size)
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5473
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5474 5475 5476 5477 5478 5479 5480 5481
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5482
		attr->show(root_cache, buf);
5483 5484 5485 5486 5487 5488 5489 5490
		attr->store(s, buf, strlen(buf));
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5491 5492 5493 5494 5495
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5496
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5497 5498 5499 5500 5501 5502
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5503
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5515
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5516 5517 5518
	.filter = uevent_filter,
};

5519
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5520

5521 5522
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5523
#ifdef CONFIG_MEMCG
5524
	if (!is_root_cache(s))
5525
		return s->memcg_params.root_cache->memcg_kset;
5526 5527 5528 5529
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5530 5531 5532
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5533 5534
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5555
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5556
		*p++ = 'F';
V
Vegard Nossum 已提交
5557 5558
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
V
Vladimir Davydov 已提交
5559 5560
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5561 5562 5563
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5564

C
Christoph Lameter 已提交
5565 5566 5567 5568 5569 5570 5571 5572
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5573
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5574 5575 5576 5577 5578 5579 5580

	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5581
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5582 5583 5584 5585 5586 5587 5588 5589 5590
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5591
	s->kobj.kset = cache_kset(s);
5592
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5593
	if (err)
5594
		goto out;
C
Christoph Lameter 已提交
5595 5596

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5597 5598
	if (err)
		goto out_del_kobj;
5599

5600
#ifdef CONFIG_MEMCG
5601 5602 5603
	if (is_root_cache(s)) {
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5604 5605
			err = -ENOMEM;
			goto out_del_kobj;
5606 5607 5608 5609
		}
	}
#endif

C
Christoph Lameter 已提交
5610 5611 5612 5613 5614
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5615 5616 5617 5618 5619 5620 5621
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5622 5623
}

5624
void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5625
{
5626
	if (slab_state < FULL)
5627 5628 5629 5630 5631 5632
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5633
#ifdef CONFIG_MEMCG
5634 5635
	kset_unregister(s->memcg_kset);
#endif
C
Christoph Lameter 已提交
5636 5637
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
C
Christoph Lameter 已提交
5638
	kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5639 5640 5641 5642
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5643
 * available lest we lose that information.
C
Christoph Lameter 已提交
5644 5645 5646 5647 5648 5649 5650
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5651
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5652 5653 5654 5655 5656

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5657
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5658 5659 5660
		/*
		 * If we have a leftover link then remove it.
		 */
5661 5662
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5678
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5679 5680
	int err;

5681
	mutex_lock(&slab_mutex);
5682

5683
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5684
	if (!slab_kset) {
5685
		mutex_unlock(&slab_mutex);
5686
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5687 5688 5689
		return -ENOSYS;
	}

5690
	slab_state = FULL;
5691

5692
	list_for_each_entry(s, &slab_caches, list) {
5693
		err = sysfs_slab_add(s);
5694
		if (err)
5695 5696
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5697
	}
C
Christoph Lameter 已提交
5698 5699 5700 5701 5702 5703

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5704
		if (err)
5705 5706
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5707 5708 5709
		kfree(al);
	}

5710
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5711 5712 5713 5714 5715
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5716
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5717 5718 5719 5720

/*
 * The /proc/slabinfo ABI
 */
5721
#ifdef CONFIG_SLABINFO
5722
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5723 5724
{
	unsigned long nr_slabs = 0;
5725 5726
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5727
	int node;
C
Christoph Lameter 已提交
5728
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5729

C
Christoph Lameter 已提交
5730
	for_each_kmem_cache_node(s, node, n) {
5731 5732
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5733
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5734 5735
	}

5736 5737 5738 5739 5740 5741
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5742 5743
}

5744
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5745 5746 5747
{
}

5748 5749
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5750
{
5751
	return -EIO;
5752
}
5753
#endif /* CONFIG_SLABINFO */