slub.c 141.6 KB
Newer Older
C
Christoph Lameter 已提交
1 2 3 4
/*
 * SLUB: A slab allocator that limits cache line use instead of queuing
 * objects in per cpu and per node lists.
 *
5 6
 * The allocator synchronizes using per slab locks or atomic operatios
 * and only uses a centralized lock to manage a pool of partial slabs.
C
Christoph Lameter 已提交
7
 *
C
Christoph Lameter 已提交
8
 * (C) 2007 SGI, Christoph Lameter
9
 * (C) 2011 Linux Foundation, Christoph Lameter
C
Christoph Lameter 已提交
10 11 12
 */

#include <linux/mm.h>
N
Nick Piggin 已提交
13
#include <linux/swap.h> /* struct reclaim_state */
C
Christoph Lameter 已提交
14 15 16 17 18
#include <linux/module.h>
#include <linux/bit_spinlock.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/slab.h>
19
#include "slab.h"
20
#include <linux/proc_fs.h>
21
#include <linux/notifier.h>
C
Christoph Lameter 已提交
22
#include <linux/seq_file.h>
23
#include <linux/kasan.h>
V
Vegard Nossum 已提交
24
#include <linux/kmemcheck.h>
C
Christoph Lameter 已提交
25 26 27 28
#include <linux/cpu.h>
#include <linux/cpuset.h>
#include <linux/mempolicy.h>
#include <linux/ctype.h>
29
#include <linux/debugobjects.h>
C
Christoph Lameter 已提交
30
#include <linux/kallsyms.h>
31
#include <linux/memory.h>
R
Roman Zippel 已提交
32
#include <linux/math64.h>
A
Akinobu Mita 已提交
33
#include <linux/fault-inject.h>
34
#include <linux/stacktrace.h>
35
#include <linux/prefetch.h>
36
#include <linux/memcontrol.h>
37
#include <linux/random.h>
C
Christoph Lameter 已提交
38

39 40
#include <trace/events/kmem.h>

41 42
#include "internal.h"

C
Christoph Lameter 已提交
43 44
/*
 * Lock order:
45
 *   1. slab_mutex (Global Mutex)
46 47
 *   2. node->list_lock
 *   3. slab_lock(page) (Only on some arches and for debugging)
C
Christoph Lameter 已提交
48
 *
49
 *   slab_mutex
50
 *
51
 *   The role of the slab_mutex is to protect the list of all the slabs
52 53 54 55 56 57 58 59 60 61 62 63 64 65
 *   and to synchronize major metadata changes to slab cache structures.
 *
 *   The slab_lock is only used for debugging and on arches that do not
 *   have the ability to do a cmpxchg_double. It only protects the second
 *   double word in the page struct. Meaning
 *	A. page->freelist	-> List of object free in a page
 *	B. page->counters	-> Counters of objects
 *	C. page->frozen		-> frozen state
 *
 *   If a slab is frozen then it is exempt from list management. It is not
 *   on any list. The processor that froze the slab is the one who can
 *   perform list operations on the page. Other processors may put objects
 *   onto the freelist but the processor that froze the slab is the only
 *   one that can retrieve the objects from the page's freelist.
C
Christoph Lameter 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
 *
 *   The list_lock protects the partial and full list on each node and
 *   the partial slab counter. If taken then no new slabs may be added or
 *   removed from the lists nor make the number of partial slabs be modified.
 *   (Note that the total number of slabs is an atomic value that may be
 *   modified without taking the list lock).
 *
 *   The list_lock is a centralized lock and thus we avoid taking it as
 *   much as possible. As long as SLUB does not have to handle partial
 *   slabs, operations can continue without any centralized lock. F.e.
 *   allocating a long series of objects that fill up slabs does not require
 *   the list lock.
 *   Interrupts are disabled during allocation and deallocation in order to
 *   make the slab allocator safe to use in the context of an irq. In addition
 *   interrupts are disabled to ensure that the processor does not change
 *   while handling per_cpu slabs, due to kernel preemption.
 *
 * SLUB assigns one slab for allocation to each processor.
 * Allocations only occur from these slabs called cpu slabs.
 *
C
Christoph Lameter 已提交
86 87
 * Slabs with free elements are kept on a partial list and during regular
 * operations no list for full slabs is used. If an object in a full slab is
C
Christoph Lameter 已提交
88
 * freed then the slab will show up again on the partial lists.
C
Christoph Lameter 已提交
89 90
 * We track full slabs for debugging purposes though because otherwise we
 * cannot scan all objects.
C
Christoph Lameter 已提交
91 92 93 94 95 96 97
 *
 * Slabs are freed when they become empty. Teardown and setup is
 * minimal so we rely on the page allocators per cpu caches for
 * fast frees and allocs.
 *
 * Overloading of page flags that are otherwise used for LRU management.
 *
98 99 100 101 102 103 104 105 106 107 108 109
 * PageActive 		The slab is frozen and exempt from list processing.
 * 			This means that the slab is dedicated to a purpose
 * 			such as satisfying allocations for a specific
 * 			processor. Objects may be freed in the slab while
 * 			it is frozen but slab_free will then skip the usual
 * 			list operations. It is up to the processor holding
 * 			the slab to integrate the slab into the slab lists
 * 			when the slab is no longer needed.
 *
 * 			One use of this flag is to mark slabs that are
 * 			used for allocations. Then such a slab becomes a cpu
 * 			slab. The cpu slab may be equipped with an additional
110
 * 			freelist that allows lockless access to
111 112
 * 			free objects in addition to the regular freelist
 * 			that requires the slab lock.
C
Christoph Lameter 已提交
113 114 115
 *
 * PageError		Slab requires special handling due to debug
 * 			options set. This moves	slab handling out of
116
 * 			the fast path and disables lockless freelists.
C
Christoph Lameter 已提交
117 118
 */

119 120
static inline int kmem_cache_debug(struct kmem_cache *s)
{
121
#ifdef CONFIG_SLUB_DEBUG
122
	return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123
#else
124
	return 0;
125
#endif
126
}
127

128
void *fixup_red_left(struct kmem_cache *s, void *p)
J
Joonsoo Kim 已提交
129 130 131 132 133 134 135
{
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
		p += s->red_left_pad;

	return p;
}

136 137 138 139 140 141 142 143 144
static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	return !kmem_cache_debug(s);
#else
	return false;
#endif
}

C
Christoph Lameter 已提交
145 146 147 148 149 150 151 152 153 154 155
/*
 * Issues still to be resolved:
 *
 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 *
 * - Variable sizing of the per node arrays
 */

/* Enable to test recovery from slab corruption on boot */
#undef SLUB_RESILIENCY_TEST

156 157 158
/* Enable to log cmpxchg failures */
#undef SLUB_DEBUG_CMPXCHG

159 160 161 162
/*
 * Mininum number of partial slabs. These will be left on the partial
 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 */
C
Christoph Lameter 已提交
163
#define MIN_PARTIAL 5
C
Christoph Lameter 已提交
164

165 166 167
/*
 * Maximum number of desirable partial slabs.
 * The existence of more partial slabs makes kmem_cache_shrink
Z
Zhi Yong Wu 已提交
168
 * sort the partial list by the number of objects in use.
169 170 171
 */
#define MAX_PARTIAL 10

172
#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
C
Christoph Lameter 已提交
173
				SLAB_POISON | SLAB_STORE_USER)
C
Christoph Lameter 已提交
174

175 176 177 178 179 180 181 182
/*
 * These debug flags cannot use CMPXCHG because there might be consistency
 * issues when checking or reading debug information
 */
#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
				SLAB_TRACE)


183
/*
184 185 186
 * Debugging flags that require metadata to be stored in the slab.  These get
 * disabled when slub_debug=O is used and a cache's min order increases with
 * metadata.
187
 */
188
#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189

190 191
#define OO_SHIFT	16
#define OO_MASK		((1 << OO_SHIFT) - 1)
192
#define MAX_OBJS_PER_PAGE	32767 /* since page.objects is u15 */
193

C
Christoph Lameter 已提交
194
/* Internal SLUB flags */
C
Christoph Lameter 已提交
195
#define __OBJECT_POISON		0x80000000UL /* Poison object */
196
#define __CMPXCHG_DOUBLE	0x40000000UL /* Use cmpxchg_double */
C
Christoph Lameter 已提交
197

198 199 200
/*
 * Tracking user of a slab.
 */
201
#define TRACK_ADDRS_COUNT 16
202
struct track {
203
	unsigned long addr;	/* Called from address */
204 205 206
#ifdef CONFIG_STACKTRACE
	unsigned long addrs[TRACK_ADDRS_COUNT];	/* Called from address */
#endif
207 208 209 210 211 212 213
	int cpu;		/* Was running on cpu */
	int pid;		/* Pid context */
	unsigned long when;	/* When did the operation occur */
};

enum track_item { TRACK_ALLOC, TRACK_FREE };

214
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
215 216
static int sysfs_slab_add(struct kmem_cache *);
static int sysfs_slab_alias(struct kmem_cache *, const char *);
217
static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218
static void sysfs_slab_remove(struct kmem_cache *s);
C
Christoph Lameter 已提交
219
#else
220 221 222
static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
							{ return 0; }
223
static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224
static inline void sysfs_slab_remove(struct kmem_cache *s) { }
C
Christoph Lameter 已提交
225 226
#endif

227
static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 229
{
#ifdef CONFIG_SLUB_STATS
230 231 232 233 234
	/*
	 * The rmw is racy on a preemptible kernel but this is acceptable, so
	 * avoid this_cpu_add()'s irq-disable overhead.
	 */
	raw_cpu_inc(s->cpu_slab->stat[si]);
235 236 237
#endif
}

C
Christoph Lameter 已提交
238 239 240 241
/********************************************************************
 * 			Core slab cache functions
 *******************************************************************/

242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
/*
 * Returns freelist pointer (ptr). With hardening, this is obfuscated
 * with an XOR of the address where the pointer is held and a per-cache
 * random number.
 */
static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
				 unsigned long ptr_addr)
{
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
#else
	return ptr;
#endif
}

/* Returns the freelist pointer recorded at location ptr_addr. */
static inline void *freelist_dereference(const struct kmem_cache *s,
					 void *ptr_addr)
{
	return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
			    (unsigned long)ptr_addr);
}

265 266
static inline void *get_freepointer(struct kmem_cache *s, void *object)
{
267
	return freelist_dereference(s, object + s->offset);
268 269
}

270 271
static void prefetch_freepointer(const struct kmem_cache *s, void *object)
{
272 273
	if (object)
		prefetch(freelist_dereference(s, object + s->offset));
274 275
}

276 277
static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
{
278
	unsigned long freepointer_addr;
279 280
	void *p;

281 282 283
	if (!debug_pagealloc_enabled())
		return get_freepointer(s, object);

284 285 286
	freepointer_addr = (unsigned long)object + s->offset;
	probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
	return freelist_ptr(s, p, freepointer_addr);
287 288
}

289 290
static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
{
291 292 293
	unsigned long freeptr_addr = (unsigned long)object + s->offset;

	*(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
294 295 296
}

/* Loop over all objects in a slab */
297
#define for_each_object(__p, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
298 299 300
	for (__p = fixup_red_left(__s, __addr); \
		__p < (__addr) + (__objects) * (__s)->size; \
		__p += (__s)->size)
301

302
#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
J
Joonsoo Kim 已提交
303 304 305
	for (__p = fixup_red_left(__s, __addr), __idx = 1; \
		__idx <= __objects; \
		__p += (__s)->size, __idx++)
306

307 308 309 310 311 312
/* Determine object index from a given position */
static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
{
	return (p - addr) / s->size;
}

313 314 315 316 317
static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

318
static inline struct kmem_cache_order_objects oo_make(int order,
319
		unsigned long size, int reserved)
320 321
{
	struct kmem_cache_order_objects x = {
322
		(order << OO_SHIFT) + order_objects(order, size, reserved)
323 324 325 326 327 328 329
	};

	return x;
}

static inline int oo_order(struct kmem_cache_order_objects x)
{
330
	return x.x >> OO_SHIFT;
331 332 333 334
}

static inline int oo_objects(struct kmem_cache_order_objects x)
{
335
	return x.x & OO_MASK;
336 337
}

338 339 340 341 342
/*
 * Per slab locking using the pagelock
 */
static __always_inline void slab_lock(struct page *page)
{
343
	VM_BUG_ON_PAGE(PageTail(page), page);
344 345 346 347 348
	bit_spin_lock(PG_locked, &page->flags);
}

static __always_inline void slab_unlock(struct page *page)
{
349
	VM_BUG_ON_PAGE(PageTail(page), page);
350 351 352
	__bit_spin_unlock(PG_locked, &page->flags);
}

353 354 355 356 357 358
static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
{
	struct page tmp;
	tmp.counters = counters_new;
	/*
	 * page->counters can cover frozen/inuse/objects as well
359 360
	 * as page->_refcount.  If we assign to ->counters directly
	 * we run the risk of losing updates to page->_refcount, so
361 362 363 364 365 366 367
	 * be careful and only assign to the fields we need.
	 */
	page->frozen  = tmp.frozen;
	page->inuse   = tmp.inuse;
	page->objects = tmp.objects;
}

368 369 370 371 372 373 374
/* Interrupts must be disabled (for the fallback code to work right) */
static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
	VM_BUG_ON(!irqs_disabled());
375 376
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
377
	if (s->flags & __CMPXCHG_DOUBLE) {
378
		if (cmpxchg_double(&page->freelist, &page->counters,
379 380
				   freelist_old, counters_old,
				   freelist_new, counters_new))
381
			return true;
382 383 384 385
	} else
#endif
	{
		slab_lock(page);
386 387
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
388
			page->freelist = freelist_new;
389
			set_page_slub_counters(page, counters_new);
390
			slab_unlock(page);
391
			return true;
392 393 394 395 396 397 398 399
		}
		slab_unlock(page);
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
400
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
401 402
#endif

403
	return false;
404 405
}

406 407 408 409 410
static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
		void *freelist_old, unsigned long counters_old,
		void *freelist_new, unsigned long counters_new,
		const char *n)
{
411 412
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
413
	if (s->flags & __CMPXCHG_DOUBLE) {
414
		if (cmpxchg_double(&page->freelist, &page->counters,
415 416
				   freelist_old, counters_old,
				   freelist_new, counters_new))
417
			return true;
418 419 420
	} else
#endif
	{
421 422 423
		unsigned long flags;

		local_irq_save(flags);
424
		slab_lock(page);
425 426
		if (page->freelist == freelist_old &&
					page->counters == counters_old) {
427
			page->freelist = freelist_new;
428
			set_page_slub_counters(page, counters_new);
429
			slab_unlock(page);
430
			local_irq_restore(flags);
431
			return true;
432
		}
433
		slab_unlock(page);
434
		local_irq_restore(flags);
435 436 437 438 439 440
	}

	cpu_relax();
	stat(s, CMPXCHG_DOUBLE_FAIL);

#ifdef SLUB_DEBUG_CMPXCHG
441
	pr_info("%s %s: cmpxchg double redo ", n, s->name);
442 443
#endif

444
	return false;
445 446
}

C
Christoph Lameter 已提交
447
#ifdef CONFIG_SLUB_DEBUG
448 449 450
/*
 * Determine a map of object in use on a page.
 *
451
 * Node listlock must be held to guarantee that the page does
452 453 454 455 456 457 458 459 460 461 462
 * not vanish from under us.
 */
static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
{
	void *p;
	void *addr = page_address(page);

	for (p = page->freelist; p; p = get_freepointer(s, p))
		set_bit(slab_index(p, s, addr), map);
}

J
Joonsoo Kim 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
static inline int size_from_object(struct kmem_cache *s)
{
	if (s->flags & SLAB_RED_ZONE)
		return s->size - s->red_left_pad;

	return s->size;
}

static inline void *restore_red_left(struct kmem_cache *s, void *p)
{
	if (s->flags & SLAB_RED_ZONE)
		p -= s->red_left_pad;

	return p;
}

C
Christoph Lameter 已提交
479 480 481
/*
 * Debug settings:
 */
482
#if defined(CONFIG_SLUB_DEBUG_ON)
483 484
static int slub_debug = DEBUG_DEFAULT_FLAGS;
#else
C
Christoph Lameter 已提交
485
static int slub_debug;
486
#endif
C
Christoph Lameter 已提交
487 488

static char *slub_debug_slabs;
489
static int disable_higher_order_debug;
C
Christoph Lameter 已提交
490

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
/*
 * slub is about to manipulate internal object metadata.  This memory lies
 * outside the range of the allocated object, so accessing it would normally
 * be reported by kasan as a bounds error.  metadata_access_enable() is used
 * to tell kasan that these accesses are OK.
 */
static inline void metadata_access_enable(void)
{
	kasan_disable_current();
}

static inline void metadata_access_disable(void)
{
	kasan_enable_current();
}

C
Christoph Lameter 已提交
507 508 509
/*
 * Object debugging
 */
J
Joonsoo Kim 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529

/* Verify that a pointer has an address that is valid within a slab page */
static inline int check_valid_pointer(struct kmem_cache *s,
				struct page *page, void *object)
{
	void *base;

	if (!object)
		return 1;

	base = page_address(page);
	object = restore_red_left(s, object);
	if (object < base || object >= base + page->objects * s->size ||
		(object - base) % s->size) {
		return 0;
	}

	return 1;
}

530 531
static void print_section(char *level, char *text, u8 *addr,
			  unsigned int length)
C
Christoph Lameter 已提交
532
{
533
	metadata_access_enable();
534
	print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
535
			length, 1);
536
	metadata_access_disable();
C
Christoph Lameter 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
}

static struct track *get_track(struct kmem_cache *s, void *object,
	enum track_item alloc)
{
	struct track *p;

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	return p + alloc;
}

static void set_track(struct kmem_cache *s, void *object,
553
			enum track_item alloc, unsigned long addr)
C
Christoph Lameter 已提交
554
{
A
Akinobu Mita 已提交
555
	struct track *p = get_track(s, object, alloc);
C
Christoph Lameter 已提交
556 557

	if (addr) {
558 559 560 561 562 563 564 565
#ifdef CONFIG_STACKTRACE
		struct stack_trace trace;
		int i;

		trace.nr_entries = 0;
		trace.max_entries = TRACK_ADDRS_COUNT;
		trace.entries = p->addrs;
		trace.skip = 3;
566
		metadata_access_enable();
567
		save_stack_trace(&trace);
568
		metadata_access_disable();
569 570 571 572 573 574 575 576 577

		/* See rant in lockdep.c */
		if (trace.nr_entries != 0 &&
		    trace.entries[trace.nr_entries - 1] == ULONG_MAX)
			trace.nr_entries--;

		for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
			p->addrs[i] = 0;
#endif
C
Christoph Lameter 已提交
578 579
		p->addr = addr;
		p->cpu = smp_processor_id();
A
Alexey Dobriyan 已提交
580
		p->pid = current->pid;
C
Christoph Lameter 已提交
581 582 583 584 585 586 587
		p->when = jiffies;
	} else
		memset(p, 0, sizeof(struct track));
}

static void init_tracking(struct kmem_cache *s, void *object)
{
588 589 590
	if (!(s->flags & SLAB_STORE_USER))
		return;

591 592
	set_track(s, object, TRACK_FREE, 0UL);
	set_track(s, object, TRACK_ALLOC, 0UL);
C
Christoph Lameter 已提交
593 594 595 596 597 598 599
}

static void print_track(const char *s, struct track *t)
{
	if (!t->addr)
		return;

600 601
	pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
	       s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
602 603 604 605 606
#ifdef CONFIG_STACKTRACE
	{
		int i;
		for (i = 0; i < TRACK_ADDRS_COUNT; i++)
			if (t->addrs[i])
607
				pr_err("\t%pS\n", (void *)t->addrs[i]);
608 609 610 611
			else
				break;
	}
#endif
612 613 614 615 616 617 618 619 620 621 622 623 624
}

static void print_tracking(struct kmem_cache *s, void *object)
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

	print_track("Allocated", get_track(s, object, TRACK_ALLOC));
	print_track("Freed", get_track(s, object, TRACK_FREE));
}

static void print_page_info(struct page *page)
{
625
	pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
626
	       page, page->objects, page->inuse, page->freelist, page->flags);
627 628 629 630 631

}

static void slab_bug(struct kmem_cache *s, char *fmt, ...)
{
632
	struct va_format vaf;
633 634 635
	va_list args;

	va_start(args, fmt);
636 637
	vaf.fmt = fmt;
	vaf.va = &args;
638
	pr_err("=============================================================================\n");
639
	pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
640
	pr_err("-----------------------------------------------------------------------------\n\n");
641

642
	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
643
	va_end(args);
C
Christoph Lameter 已提交
644 645
}

646 647
static void slab_fix(struct kmem_cache *s, char *fmt, ...)
{
648
	struct va_format vaf;
649 650 651
	va_list args;

	va_start(args, fmt);
652 653 654
	vaf.fmt = fmt;
	vaf.va = &args;
	pr_err("FIX %s: %pV\n", s->name, &vaf);
655 656 657 658
	va_end(args);
}

static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
C
Christoph Lameter 已提交
659 660
{
	unsigned int off;	/* Offset of last byte */
661
	u8 *addr = page_address(page);
662 663 664 665 666

	print_tracking(s, p);

	print_page_info(page);

667 668
	pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
	       p, p - addr, get_freepointer(s, p));
669

J
Joonsoo Kim 已提交
670
	if (s->flags & SLAB_RED_ZONE)
671 672
		print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
			      s->red_left_pad);
J
Joonsoo Kim 已提交
673
	else if (p > addr + 16)
674
		print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
C
Christoph Lameter 已提交
675

676 677
	print_section(KERN_ERR, "Object ", p,
		      min_t(unsigned long, s->object_size, PAGE_SIZE));
C
Christoph Lameter 已提交
678
	if (s->flags & SLAB_RED_ZONE)
679
		print_section(KERN_ERR, "Redzone ", p + s->object_size,
680
			s->inuse - s->object_size);
C
Christoph Lameter 已提交
681 682 683 684 685 686

	if (s->offset)
		off = s->offset + sizeof(void *);
	else
		off = s->inuse;

687
	if (s->flags & SLAB_STORE_USER)
C
Christoph Lameter 已提交
688 689
		off += 2 * sizeof(struct track);

690 691
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
692
	if (off != size_from_object(s))
C
Christoph Lameter 已提交
693
		/* Beginning of the filler is the free pointer */
694 695
		print_section(KERN_ERR, "Padding ", p + off,
			      size_from_object(s) - off);
696 697

	dump_stack();
C
Christoph Lameter 已提交
698 699
}

700
void object_err(struct kmem_cache *s, struct page *page,
C
Christoph Lameter 已提交
701 702
			u8 *object, char *reason)
{
703
	slab_bug(s, "%s", reason);
704
	print_trailer(s, page, object);
C
Christoph Lameter 已提交
705 706
}

707 708
static void slab_err(struct kmem_cache *s, struct page *page,
			const char *fmt, ...)
C
Christoph Lameter 已提交
709 710 711 712
{
	va_list args;
	char buf[100];

713 714
	va_start(args, fmt);
	vsnprintf(buf, sizeof(buf), fmt, args);
C
Christoph Lameter 已提交
715
	va_end(args);
716
	slab_bug(s, "%s", buf);
717
	print_page_info(page);
C
Christoph Lameter 已提交
718 719 720
	dump_stack();
}

721
static void init_object(struct kmem_cache *s, void *object, u8 val)
C
Christoph Lameter 已提交
722 723 724
{
	u8 *p = object;

J
Joonsoo Kim 已提交
725 726 727
	if (s->flags & SLAB_RED_ZONE)
		memset(p - s->red_left_pad, val, s->red_left_pad);

C
Christoph Lameter 已提交
728
	if (s->flags & __OBJECT_POISON) {
729 730
		memset(p, POISON_FREE, s->object_size - 1);
		p[s->object_size - 1] = POISON_END;
C
Christoph Lameter 已提交
731 732 733
	}

	if (s->flags & SLAB_RED_ZONE)
734
		memset(p + s->object_size, val, s->inuse - s->object_size);
C
Christoph Lameter 已提交
735 736
}

737 738 739 740 741 742 743 744 745
static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
						void *from, void *to)
{
	slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
	memset(from, data, to - from);
}

static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
			u8 *object, char *what,
P
Pekka Enberg 已提交
746
			u8 *start, unsigned int value, unsigned int bytes)
747 748 749 750
{
	u8 *fault;
	u8 *end;

751
	metadata_access_enable();
752
	fault = memchr_inv(start, value, bytes);
753
	metadata_access_disable();
754 755 756 757 758 759 760 761
	if (!fault)
		return 1;

	end = start + bytes;
	while (end > fault && end[-1] == value)
		end--;

	slab_bug(s, "%s overwritten", what);
762
	pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
763 764 765 766 767
					fault, end - 1, fault[0], value);
	print_trailer(s, page, object);

	restore_bytes(s, what, value, fault, end);
	return 0;
C
Christoph Lameter 已提交
768 769 770 771 772 773 774 775 776
}

/*
 * Object layout:
 *
 * object address
 * 	Bytes of the object to be managed.
 * 	If the freepointer may overlay the object then the free
 * 	pointer is the first word of the object.
C
Christoph Lameter 已提交
777
 *
C
Christoph Lameter 已提交
778 779 780
 * 	Poisoning uses 0x6b (POISON_FREE) and the last byte is
 * 	0xa5 (POISON_END)
 *
781
 * object + s->object_size
C
Christoph Lameter 已提交
782
 * 	Padding to reach word boundary. This is also used for Redzoning.
C
Christoph Lameter 已提交
783
 * 	Padding is extended by another word if Redzoning is enabled and
784
 * 	object_size == inuse.
C
Christoph Lameter 已提交
785
 *
C
Christoph Lameter 已提交
786 787 788 789
 * 	We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 * 	0xcc (RED_ACTIVE) for objects in use.
 *
 * object + s->inuse
C
Christoph Lameter 已提交
790 791
 * 	Meta data starts here.
 *
C
Christoph Lameter 已提交
792 793
 * 	A. Free pointer (if we cannot overwrite object on free)
 * 	B. Tracking data for SLAB_STORE_USER
C
Christoph Lameter 已提交
794
 * 	C. Padding to reach required alignment boundary or at mininum
C
Christoph Lameter 已提交
795
 * 		one word if debugging is on to be able to detect writes
C
Christoph Lameter 已提交
796 797 798
 * 		before the word boundary.
 *
 *	Padding is done using 0x5a (POISON_INUSE)
C
Christoph Lameter 已提交
799 800
 *
 * object + s->size
C
Christoph Lameter 已提交
801
 * 	Nothing is used beyond s->size.
C
Christoph Lameter 已提交
802
 *
803
 * If slabcaches are merged then the object_size and inuse boundaries are mostly
C
Christoph Lameter 已提交
804
 * ignored. And therefore no slab options that rely on these boundaries
C
Christoph Lameter 已提交
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
 * may be used with merged slabcaches.
 */

static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
{
	unsigned long off = s->inuse;	/* The end of info */

	if (s->offset)
		/* Freepointer is placed after the object. */
		off += sizeof(void *);

	if (s->flags & SLAB_STORE_USER)
		/* We also have user information there */
		off += 2 * sizeof(struct track);

820 821
	off += kasan_metadata_size(s);

J
Joonsoo Kim 已提交
822
	if (size_from_object(s) == off)
C
Christoph Lameter 已提交
823 824
		return 1;

825
	return check_bytes_and_report(s, page, p, "Object padding",
J
Joonsoo Kim 已提交
826
			p + off, POISON_INUSE, size_from_object(s) - off);
C
Christoph Lameter 已提交
827 828
}

829
/* Check the pad bytes at the end of a slab page */
C
Christoph Lameter 已提交
830 831
static int slab_pad_check(struct kmem_cache *s, struct page *page)
{
832 833 834 835 836
	u8 *start;
	u8 *fault;
	u8 *end;
	int length;
	int remainder;
C
Christoph Lameter 已提交
837 838 839 840

	if (!(s->flags & SLAB_POISON))
		return 1;

841
	start = page_address(page);
842
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
843 844
	end = start + length;
	remainder = length % s->size;
C
Christoph Lameter 已提交
845 846 847
	if (!remainder)
		return 1;

848
	metadata_access_enable();
849
	fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
850
	metadata_access_disable();
851 852 853 854 855 856
	if (!fault)
		return 1;
	while (end > fault && end[-1] == POISON_INUSE)
		end--;

	slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
857
	print_section(KERN_ERR, "Padding ", end - remainder, remainder);
858

E
Eric Dumazet 已提交
859
	restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
860
	return 0;
C
Christoph Lameter 已提交
861 862 863
}

static int check_object(struct kmem_cache *s, struct page *page,
864
					void *object, u8 val)
C
Christoph Lameter 已提交
865 866
{
	u8 *p = object;
867
	u8 *endobject = object + s->object_size;
C
Christoph Lameter 已提交
868 869

	if (s->flags & SLAB_RED_ZONE) {
J
Joonsoo Kim 已提交
870 871 872 873
		if (!check_bytes_and_report(s, page, object, "Redzone",
			object - s->red_left_pad, val, s->red_left_pad))
			return 0;

874
		if (!check_bytes_and_report(s, page, object, "Redzone",
875
			endobject, val, s->inuse - s->object_size))
C
Christoph Lameter 已提交
876 877
			return 0;
	} else {
878
		if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
I
Ingo Molnar 已提交
879
			check_bytes_and_report(s, page, p, "Alignment padding",
880 881
				endobject, POISON_INUSE,
				s->inuse - s->object_size);
I
Ingo Molnar 已提交
882
		}
C
Christoph Lameter 已提交
883 884 885
	}

	if (s->flags & SLAB_POISON) {
886
		if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
887
			(!check_bytes_and_report(s, page, p, "Poison", p,
888
					POISON_FREE, s->object_size - 1) ||
889
			 !check_bytes_and_report(s, page, p, "Poison",
890
				p + s->object_size - 1, POISON_END, 1)))
C
Christoph Lameter 已提交
891 892 893 894 895 896 897
			return 0;
		/*
		 * check_pad_bytes cleans up on its own.
		 */
		check_pad_bytes(s, page, p);
	}

898
	if (!s->offset && val == SLUB_RED_ACTIVE)
C
Christoph Lameter 已提交
899 900 901 902 903 904 905 906 907 908
		/*
		 * Object and freepointer overlap. Cannot check
		 * freepointer while object is allocated.
		 */
		return 1;

	/* Check free pointer validity */
	if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
		object_err(s, page, p, "Freepointer corrupt");
		/*
N
Nick Andrew 已提交
909
		 * No choice but to zap it and thus lose the remainder
C
Christoph Lameter 已提交
910
		 * of the free objects in this slab. May cause
C
Christoph Lameter 已提交
911
		 * another error because the object count is now wrong.
C
Christoph Lameter 已提交
912
		 */
913
		set_freepointer(s, p, NULL);
C
Christoph Lameter 已提交
914 915 916 917 918 919 920
		return 0;
	}
	return 1;
}

static int check_slab(struct kmem_cache *s, struct page *page)
{
921 922
	int maxobj;

C
Christoph Lameter 已提交
923 924 925
	VM_BUG_ON(!irqs_disabled());

	if (!PageSlab(page)) {
926
		slab_err(s, page, "Not a valid slab page");
C
Christoph Lameter 已提交
927 928
		return 0;
	}
929

930
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
931 932
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
933
			page->objects, maxobj);
934 935 936
		return 0;
	}
	if (page->inuse > page->objects) {
937
		slab_err(s, page, "inuse %u > max %u",
938
			page->inuse, page->objects);
C
Christoph Lameter 已提交
939 940 941 942 943 944 945 946
		return 0;
	}
	/* Slab_pad_check fixes things up after itself */
	slab_pad_check(s, page);
	return 1;
}

/*
C
Christoph Lameter 已提交
947 948
 * Determine if a certain object on a page is on the freelist. Must hold the
 * slab lock to guarantee that the chains are in a consistent state.
C
Christoph Lameter 已提交
949 950 951 952
 */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{
	int nr = 0;
953
	void *fp;
C
Christoph Lameter 已提交
954
	void *object = NULL;
955
	int max_objects;
C
Christoph Lameter 已提交
956

957
	fp = page->freelist;
958
	while (fp && nr <= page->objects) {
C
Christoph Lameter 已提交
959 960 961 962 963 964
		if (fp == search)
			return 1;
		if (!check_valid_pointer(s, page, fp)) {
			if (object) {
				object_err(s, page, object,
					"Freechain corrupt");
965
				set_freepointer(s, object, NULL);
C
Christoph Lameter 已提交
966
			} else {
967
				slab_err(s, page, "Freepointer corrupt");
968
				page->freelist = NULL;
969
				page->inuse = page->objects;
970
				slab_fix(s, "Freelist cleared");
C
Christoph Lameter 已提交
971 972 973 974 975 976 977 978 979
				return 0;
			}
			break;
		}
		object = fp;
		fp = get_freepointer(s, object);
		nr++;
	}

980
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
981 982
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;
983 984

	if (page->objects != max_objects) {
J
Joe Perches 已提交
985 986
		slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
			 page->objects, max_objects);
987 988 989
		page->objects = max_objects;
		slab_fix(s, "Number of objects adjusted.");
	}
990
	if (page->inuse != page->objects - nr) {
J
Joe Perches 已提交
991 992
		slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
			 page->inuse, page->objects - nr);
993
		page->inuse = page->objects - nr;
994
		slab_fix(s, "Object count adjusted.");
C
Christoph Lameter 已提交
995 996 997 998
	}
	return search == NULL;
}

999 1000
static void trace(struct kmem_cache *s, struct page *page, void *object,
								int alloc)
C
Christoph Lameter 已提交
1001 1002
{
	if (s->flags & SLAB_TRACE) {
1003
		pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
C
Christoph Lameter 已提交
1004 1005 1006 1007 1008 1009
			s->name,
			alloc ? "alloc" : "free",
			object, page->inuse,
			page->freelist);

		if (!alloc)
1010
			print_section(KERN_INFO, "Object ", (void *)object,
1011
					s->object_size);
C
Christoph Lameter 已提交
1012 1013 1014 1015 1016

		dump_stack();
	}
}

1017
/*
C
Christoph Lameter 已提交
1018
 * Tracking of fully allocated slabs for debugging purposes.
1019
 */
1020 1021
static void add_full(struct kmem_cache *s,
	struct kmem_cache_node *n, struct page *page)
1022
{
1023 1024 1025
	if (!(s->flags & SLAB_STORE_USER))
		return;

1026
	lockdep_assert_held(&n->list_lock);
1027 1028 1029
	list_add(&page->lru, &n->full);
}

P
Peter Zijlstra 已提交
1030
static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1031 1032 1033 1034
{
	if (!(s->flags & SLAB_STORE_USER))
		return;

1035
	lockdep_assert_held(&n->list_lock);
1036 1037 1038
	list_del(&page->lru);
}

1039 1040 1041 1042 1043 1044 1045 1046
/* Tracking of the number of slabs for debugging purposes */
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
{
	struct kmem_cache_node *n = get_node(s, node);

	return atomic_long_read(&n->nr_slabs);
}

1047 1048 1049 1050 1051
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->nr_slabs);
}

1052
static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1053 1054 1055 1056 1057 1058 1059 1060 1061
{
	struct kmem_cache_node *n = get_node(s, node);

	/*
	 * May be called early in order to allocate a slab for the
	 * kmem_cache_node structure. Solve the chicken-egg
	 * dilemma by deferring the increment of the count during
	 * bootstrap (see early_kmem_cache_node_alloc).
	 */
1062
	if (likely(n)) {
1063
		atomic_long_inc(&n->nr_slabs);
1064 1065
		atomic_long_add(objects, &n->total_objects);
	}
1066
}
1067
static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1068 1069 1070 1071
{
	struct kmem_cache_node *n = get_node(s, node);

	atomic_long_dec(&n->nr_slabs);
1072
	atomic_long_sub(objects, &n->total_objects);
1073 1074 1075
}

/* Object debug checks for alloc/free paths */
C
Christoph Lameter 已提交
1076 1077 1078 1079 1080 1081
static void setup_object_debug(struct kmem_cache *s, struct page *page,
								void *object)
{
	if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
		return;

1082
	init_object(s, object, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1083 1084 1085
	init_tracking(s, object);
}

1086
static inline int alloc_consistency_checks(struct kmem_cache *s,
1087
					struct page *page,
1088
					void *object, unsigned long addr)
C
Christoph Lameter 已提交
1089 1090
{
	if (!check_slab(s, page))
1091
		return 0;
C
Christoph Lameter 已提交
1092 1093 1094

	if (!check_valid_pointer(s, page, object)) {
		object_err(s, page, object, "Freelist Pointer check fails");
1095
		return 0;
C
Christoph Lameter 已提交
1096 1097
	}

1098
	if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
		return 0;

	return 1;
}

static noinline int alloc_debug_processing(struct kmem_cache *s,
					struct page *page,
					void *object, unsigned long addr)
{
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!alloc_consistency_checks(s, page, object, addr))
			goto bad;
	}
C
Christoph Lameter 已提交
1112

C
Christoph Lameter 已提交
1113 1114 1115 1116
	/* Success perform special debug activities for allocs */
	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_ALLOC, addr);
	trace(s, page, object, 1);
1117
	init_object(s, object, SLUB_RED_ACTIVE);
C
Christoph Lameter 已提交
1118
	return 1;
C
Christoph Lameter 已提交
1119

C
Christoph Lameter 已提交
1120 1121 1122 1123 1124
bad:
	if (PageSlab(page)) {
		/*
		 * If this is a slab page then lets do the best we can
		 * to avoid issues in the future. Marking all objects
C
Christoph Lameter 已提交
1125
		 * as used avoids touching the remaining objects.
C
Christoph Lameter 已提交
1126
		 */
1127
		slab_fix(s, "Marking all objects used");
1128
		page->inuse = page->objects;
1129
		page->freelist = NULL;
C
Christoph Lameter 已提交
1130 1131 1132 1133
	}
	return 0;
}

1134 1135
static inline int free_consistency_checks(struct kmem_cache *s,
		struct page *page, void *object, unsigned long addr)
C
Christoph Lameter 已提交
1136 1137
{
	if (!check_valid_pointer(s, page, object)) {
1138
		slab_err(s, page, "Invalid object pointer 0x%p", object);
1139
		return 0;
C
Christoph Lameter 已提交
1140 1141 1142
	}

	if (on_freelist(s, page, object)) {
1143
		object_err(s, page, object, "Object already free");
1144
		return 0;
C
Christoph Lameter 已提交
1145 1146
	}

1147
	if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1148
		return 0;
C
Christoph Lameter 已提交
1149

1150
	if (unlikely(s != page->slab_cache)) {
I
Ingo Molnar 已提交
1151
		if (!PageSlab(page)) {
J
Joe Perches 已提交
1152 1153
			slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
				 object);
1154
		} else if (!page->slab_cache) {
1155 1156
			pr_err("SLUB <none>: no slab for object 0x%p.\n",
			       object);
1157
			dump_stack();
P
Pekka Enberg 已提交
1158
		} else
1159 1160
			object_err(s, page, object,
					"page slab pointer corrupt.");
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
		return 0;
	}
	return 1;
}

/* Supports checking bulk free of a constructed freelist */
static noinline int free_debug_processing(
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
	unsigned long addr)
{
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	void *object = head;
	int cnt = 0;
	unsigned long uninitialized_var(flags);
	int ret = 0;

	spin_lock_irqsave(&n->list_lock, flags);
	slab_lock(page);

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!check_slab(s, page))
			goto out;
	}

next_object:
	cnt++;

	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
		if (!free_consistency_checks(s, page, object, addr))
			goto out;
C
Christoph Lameter 已提交
1192
	}
C
Christoph Lameter 已提交
1193 1194 1195 1196

	if (s->flags & SLAB_STORE_USER)
		set_track(s, object, TRACK_FREE, addr);
	trace(s, page, object, 0);
1197
	/* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1198
	init_object(s, object, SLUB_RED_INACTIVE);
1199 1200 1201 1202 1203 1204

	/* Reached end of constructed freelist yet? */
	if (object != tail) {
		object = get_freepointer(s, object);
		goto next_object;
	}
1205 1206
	ret = 1;

1207
out:
1208 1209 1210 1211
	if (cnt != bulk_cnt)
		slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
			 bulk_cnt, cnt);

1212
	slab_unlock(page);
1213
	spin_unlock_irqrestore(&n->list_lock, flags);
1214 1215 1216
	if (!ret)
		slab_fix(s, "Object at 0x%p not freed", object);
	return ret;
C
Christoph Lameter 已提交
1217 1218
}

C
Christoph Lameter 已提交
1219 1220
static int __init setup_slub_debug(char *str)
{
1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
	slub_debug = DEBUG_DEFAULT_FLAGS;
	if (*str++ != '=' || !*str)
		/*
		 * No options specified. Switch on full debugging.
		 */
		goto out;

	if (*str == ',')
		/*
		 * No options but restriction on slabs. This means full
		 * debugging for slabs matching a pattern.
		 */
		goto check_slabs;

	slub_debug = 0;
	if (*str == '-')
		/*
		 * Switch off all debugging measures.
		 */
		goto out;

	/*
	 * Determine which debug features should be switched on
	 */
P
Pekka Enberg 已提交
1245
	for (; *str && *str != ','; str++) {
1246 1247
		switch (tolower(*str)) {
		case 'f':
1248
			slub_debug |= SLAB_CONSISTENCY_CHECKS;
1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
			break;
		case 'z':
			slub_debug |= SLAB_RED_ZONE;
			break;
		case 'p':
			slub_debug |= SLAB_POISON;
			break;
		case 'u':
			slub_debug |= SLAB_STORE_USER;
			break;
		case 't':
			slub_debug |= SLAB_TRACE;
			break;
1262 1263 1264
		case 'a':
			slub_debug |= SLAB_FAILSLAB;
			break;
1265 1266 1267 1268 1269 1270 1271
		case 'o':
			/*
			 * Avoid enabling debugging on caches if its minimum
			 * order would increase as a result.
			 */
			disable_higher_order_debug = 1;
			break;
1272
		default:
1273 1274
			pr_err("slub_debug option '%c' unknown. skipped\n",
			       *str);
1275
		}
C
Christoph Lameter 已提交
1276 1277
	}

1278
check_slabs:
C
Christoph Lameter 已提交
1279 1280
	if (*str == ',')
		slub_debug_slabs = str + 1;
1281
out:
C
Christoph Lameter 已提交
1282 1283 1284 1285 1286
	return 1;
}

__setup("slub_debug", setup_slub_debug);

1287
unsigned long kmem_cache_flags(unsigned long object_size,
1288
	unsigned long flags, const char *name,
1289
	void (*ctor)(void *))
C
Christoph Lameter 已提交
1290 1291
{
	/*
1292
	 * Enable debugging if selected on the kernel commandline.
C
Christoph Lameter 已提交
1293
	 */
1294 1295
	if (slub_debug && (!slub_debug_slabs || (name &&
		!strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1296
		flags |= slub_debug;
1297 1298

	return flags;
C
Christoph Lameter 已提交
1299
}
1300
#else /* !CONFIG_SLUB_DEBUG */
C
Christoph Lameter 已提交
1301 1302
static inline void setup_object_debug(struct kmem_cache *s,
			struct page *page, void *object) {}
C
Christoph Lameter 已提交
1303

C
Christoph Lameter 已提交
1304
static inline int alloc_debug_processing(struct kmem_cache *s,
1305
	struct page *page, void *object, unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1306

1307
static inline int free_debug_processing(
1308 1309
	struct kmem_cache *s, struct page *page,
	void *head, void *tail, int bulk_cnt,
1310
	unsigned long addr) { return 0; }
C
Christoph Lameter 已提交
1311 1312 1313 1314

static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
			{ return 1; }
static inline int check_object(struct kmem_cache *s, struct page *page,
1315
			void *object, u8 val) { return 1; }
1316 1317
static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
P
Peter Zijlstra 已提交
1318 1319
static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
					struct page *page) {}
1320
unsigned long kmem_cache_flags(unsigned long object_size,
1321
	unsigned long flags, const char *name,
1322
	void (*ctor)(void *))
1323 1324 1325
{
	return flags;
}
C
Christoph Lameter 已提交
1326
#define slub_debug 0
1327

1328 1329
#define disable_higher_order_debug 0

1330 1331
static inline unsigned long slabs_node(struct kmem_cache *s, int node)
							{ return 0; }
1332 1333
static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
							{ return 0; }
1334 1335 1336 1337
static inline void inc_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
static inline void dec_slabs_node(struct kmem_cache *s, int node,
							int objects) {}
1338

1339 1340 1341 1342 1343 1344
#endif /* CONFIG_SLUB_DEBUG */

/*
 * Hooks for other subsystems that check memory allocations. In a typical
 * production configuration these hooks all should produce no code at all.
 */
1345 1346 1347
static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
{
	kmemleak_alloc(ptr, size, 1, flags);
1348
	kasan_kmalloc_large(ptr, size, flags);
1349 1350 1351 1352 1353
}

static inline void kfree_hook(const void *x)
{
	kmemleak_free(x);
1354
	kasan_kfree_large(x);
1355 1356
}

1357
static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1358
{
1359 1360
	void *freeptr;

1361
	kmemleak_free_recursive(x, s->flags);
1362

1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
	/*
	 * Trouble is that we may no longer disable interrupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->object_size);
		debug_check_no_locks_freed(x, s->object_size);
		local_irq_restore(flags);
	}
#endif
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(x, s->object_size);
1380

1381 1382 1383 1384 1385
	freeptr = get_freepointer(s, x);
	/*
	 * kasan_slab_free() may put x into memory quarantine, delaying its
	 * reuse. In this case the object's freelist pointer is changed.
	 */
1386
	kasan_slab_free(s, x);
1387
	return freeptr;
1388
}
1389

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
static inline void slab_free_freelist_hook(struct kmem_cache *s,
					   void *head, void *tail)
{
/*
 * Compiler cannot detect this function can be removed if slab_free_hook()
 * evaluates to nothing.  Thus, catch all relevant config debug options here.
 */
#if defined(CONFIG_KMEMCHECK) ||		\
	defined(CONFIG_LOCKDEP)	||		\
	defined(CONFIG_DEBUG_KMEMLEAK) ||	\
	defined(CONFIG_DEBUG_OBJECTS_FREE) ||	\
	defined(CONFIG_KASAN)

	void *object = head;
	void *tail_obj = tail ? : head;
1405
	void *freeptr;
1406 1407

	do {
1408 1409
		freeptr = slab_free_hook(s, object);
	} while ((object != tail_obj) && (object = freeptr));
1410 1411 1412
#endif
}

1413 1414 1415 1416
static void setup_object(struct kmem_cache *s, struct page *page,
				void *object)
{
	setup_object_debug(s, page, object);
1417
	kasan_init_slab_obj(s, object);
1418 1419 1420 1421 1422 1423 1424
	if (unlikely(s->ctor)) {
		kasan_unpoison_object_data(s, object);
		s->ctor(object);
		kasan_poison_object_data(s, object);
	}
}

C
Christoph Lameter 已提交
1425 1426 1427
/*
 * Slab allocation and freeing
 */
1428 1429
static inline struct page *alloc_slab_page(struct kmem_cache *s,
		gfp_t flags, int node, struct kmem_cache_order_objects oo)
1430
{
1431
	struct page *page;
1432 1433
	int order = oo_order(oo);

1434 1435
	flags |= __GFP_NOTRACK;

1436
	if (node == NUMA_NO_NODE)
1437
		page = alloc_pages(flags, order);
1438
	else
1439
		page = __alloc_pages_node(node, flags, order);
1440

1441 1442 1443 1444
	if (page && memcg_charge_slab(page, flags, order, s)) {
		__free_pages(page, order);
		page = NULL;
	}
1445 1446

	return page;
1447 1448
}

T
Thomas Garnier 已提交
1449 1450 1451 1452 1453 1454 1455
#ifdef CONFIG_SLAB_FREELIST_RANDOM
/* Pre-initialize the random sequence cache */
static int init_cache_random_seq(struct kmem_cache *s)
{
	int err;
	unsigned long i, count = oo_objects(s->oo);

1456 1457 1458 1459
	/* Bailout if already initialised */
	if (s->random_seq)
		return 0;

T
Thomas Garnier 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
	err = cache_random_seq_create(s, count, GFP_KERNEL);
	if (err) {
		pr_err("SLUB: Unable to initialize free list for %s\n",
			s->name);
		return err;
	}

	/* Transform to an offset on the set of pages */
	if (s->random_seq) {
		for (i = 0; i < count; i++)
			s->random_seq[i] *= s->size;
	}
	return 0;
}

/* Initialize each random sequence freelist per cache */
static void __init init_freelist_randomization(void)
{
	struct kmem_cache *s;

	mutex_lock(&slab_mutex);

	list_for_each_entry(s, &slab_caches, list)
		init_cache_random_seq(s);

	mutex_unlock(&slab_mutex);
}

/* Get the next entry on the pre-computed freelist randomized */
static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
				unsigned long *pos, void *start,
				unsigned long page_limit,
				unsigned long freelist_count)
{
	unsigned int idx;

	/*
	 * If the target page allocation failed, the number of objects on the
	 * page might be smaller than the usual size defined by the cache.
	 */
	do {
		idx = s->random_seq[*pos];
		*pos += 1;
		if (*pos >= freelist_count)
			*pos = 0;
	} while (unlikely(idx >= page_limit));

	return (char *)start + idx;
}

/* Shuffle the single linked freelist based on a random pre-computed sequence */
static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	void *start;
	void *cur;
	void *next;
	unsigned long idx, pos, page_limit, freelist_count;

	if (page->objects < 2 || !s->random_seq)
		return false;

	freelist_count = oo_objects(s->oo);
	pos = get_random_int() % freelist_count;

	page_limit = page->objects * s->size;
	start = fixup_red_left(s, page_address(page));

	/* First entry is used as the base of the freelist */
	cur = next_freelist_entry(s, page, &pos, start, page_limit,
				freelist_count);
	page->freelist = cur;

	for (idx = 1; idx < page->objects; idx++) {
		setup_object(s, page, cur);
		next = next_freelist_entry(s, page, &pos, start, page_limit,
			freelist_count);
		set_freepointer(s, cur, next);
		cur = next;
	}
	setup_object(s, page, cur);
	set_freepointer(s, cur, NULL);

	return true;
}
#else
static inline int init_cache_random_seq(struct kmem_cache *s)
{
	return 0;
}
static inline void init_freelist_randomization(void) { }
static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
{
	return false;
}
#endif /* CONFIG_SLAB_FREELIST_RANDOM */

C
Christoph Lameter 已提交
1556 1557
static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
{
P
Pekka Enberg 已提交
1558
	struct page *page;
1559
	struct kmem_cache_order_objects oo = s->oo;
1560
	gfp_t alloc_gfp;
1561 1562
	void *start, *p;
	int idx, order;
T
Thomas Garnier 已提交
1563
	bool shuffle;
C
Christoph Lameter 已提交
1564

1565 1566
	flags &= gfp_allowed_mask;

1567
	if (gfpflags_allow_blocking(flags))
1568 1569
		local_irq_enable();

1570
	flags |= s->allocflags;
1571

1572 1573 1574 1575 1576
	/*
	 * Let the initial higher-order allocation fail under memory pressure
	 * so we fall-back to the minimum order allocation.
	 */
	alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1577
	if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1578
		alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1579

1580
	page = alloc_slab_page(s, alloc_gfp, node, oo);
1581 1582
	if (unlikely(!page)) {
		oo = s->min;
1583
		alloc_gfp = flags;
1584 1585 1586 1587
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
1588
		page = alloc_slab_page(s, alloc_gfp, node, oo);
1589 1590 1591
		if (unlikely(!page))
			goto out;
		stat(s, ORDER_FALLBACK);
1592
	}
V
Vegard Nossum 已提交
1593

1594 1595
	if (kmemcheck_enabled &&
	    !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1596 1597
		int pages = 1 << oo_order(oo);

1598
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1599 1600 1601 1602 1603 1604 1605 1606 1607

		/*
		 * Objects from caches that have a constructor don't get
		 * cleared when they're allocated, so we need to do it here.
		 */
		if (s->ctor)
			kmemcheck_mark_uninitialized_pages(page, pages);
		else
			kmemcheck_mark_unallocated_pages(page, pages);
V
Vegard Nossum 已提交
1608 1609
	}

1610
	page->objects = oo_objects(oo);
C
Christoph Lameter 已提交
1611

G
Glauber Costa 已提交
1612
	order = compound_order(page);
1613
	page->slab_cache = s;
1614
	__SetPageSlab(page);
1615
	if (page_is_pfmemalloc(page))
1616
		SetPageSlabPfmemalloc(page);
C
Christoph Lameter 已提交
1617 1618 1619 1620

	start = page_address(page);

	if (unlikely(s->flags & SLAB_POISON))
G
Glauber Costa 已提交
1621
		memset(start, POISON_INUSE, PAGE_SIZE << order);
C
Christoph Lameter 已提交
1622

1623 1624
	kasan_poison_slab(page);

T
Thomas Garnier 已提交
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635
	shuffle = shuffle_freelist(s, page);

	if (!shuffle) {
		for_each_object_idx(p, idx, s, start, page->objects) {
			setup_object(s, page, p);
			if (likely(idx < page->objects))
				set_freepointer(s, p, p + s->size);
			else
				set_freepointer(s, p, NULL);
		}
		page->freelist = fixup_red_left(s, start);
C
Christoph Lameter 已提交
1636 1637
	}

1638
	page->inuse = page->objects;
1639
	page->frozen = 1;
1640

C
Christoph Lameter 已提交
1641
out:
1642
	if (gfpflags_allow_blocking(flags))
1643 1644 1645 1646
		local_irq_disable();
	if (!page)
		return NULL;

1647
	mod_lruvec_page_state(page,
1648 1649 1650 1651 1652 1653
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
		1 << oo_order(oo));

	inc_slabs_node(s, page_to_nid(page), page->objects);

C
Christoph Lameter 已提交
1654 1655 1656
	return page;
}

1657 1658 1659
static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
{
	if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1660
		gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1661 1662 1663
		flags &= ~GFP_SLAB_BUG_MASK;
		pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
				invalid_mask, &invalid_mask, flags, &flags);
1664
		dump_stack();
1665 1666 1667 1668 1669 1670
	}

	return allocate_slab(s,
		flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
}

C
Christoph Lameter 已提交
1671 1672
static void __free_slab(struct kmem_cache *s, struct page *page)
{
1673 1674
	int order = compound_order(page);
	int pages = 1 << order;
C
Christoph Lameter 已提交
1675

1676
	if (s->flags & SLAB_CONSISTENCY_CHECKS) {
C
Christoph Lameter 已提交
1677 1678 1679
		void *p;

		slab_pad_check(s, page);
1680 1681
		for_each_object(p, s, page_address(page),
						page->objects)
1682
			check_object(s, page, p, SLUB_RED_INACTIVE);
C
Christoph Lameter 已提交
1683 1684
	}

1685
	kmemcheck_free_shadow(page, compound_order(page));
V
Vegard Nossum 已提交
1686

1687
	mod_lruvec_page_state(page,
C
Christoph Lameter 已提交
1688 1689
		(s->flags & SLAB_RECLAIM_ACCOUNT) ?
		NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
P
Pekka Enberg 已提交
1690
		-pages);
C
Christoph Lameter 已提交
1691

1692
	__ClearPageSlabPfmemalloc(page);
1693
	__ClearPageSlab(page);
G
Glauber Costa 已提交
1694

1695
	page_mapcount_reset(page);
N
Nick Piggin 已提交
1696 1697
	if (current->reclaim_state)
		current->reclaim_state->reclaimed_slab += pages;
1698 1699
	memcg_uncharge_slab(page, order, s);
	__free_pages(page, order);
C
Christoph Lameter 已提交
1700 1701
}

1702 1703 1704
#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

C
Christoph Lameter 已提交
1705 1706 1707 1708
static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

1709 1710 1711 1712 1713
	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

1714
	__free_slab(page->slab_cache, page);
C
Christoph Lameter 已提交
1715 1716 1717 1718
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
1719
	if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1720 1721 1722 1723 1724 1725 1726 1727 1728
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
1729
			head = &page->rcu_head;
1730
		}
C
Christoph Lameter 已提交
1731 1732 1733 1734 1735 1736 1737 1738

		call_rcu(head, rcu_free_slab);
	} else
		__free_slab(s, page);
}

static void discard_slab(struct kmem_cache *s, struct page *page)
{
1739
	dec_slabs_node(s, page_to_nid(page), page->objects);
C
Christoph Lameter 已提交
1740 1741 1742 1743
	free_slab(s, page);
}

/*
1744
 * Management of partially allocated slabs.
C
Christoph Lameter 已提交
1745
 */
1746 1747
static inline void
__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
C
Christoph Lameter 已提交
1748
{
C
Christoph Lameter 已提交
1749
	n->nr_partial++;
1750
	if (tail == DEACTIVATE_TO_TAIL)
1751 1752 1753
		list_add_tail(&page->lru, &n->partial);
	else
		list_add(&page->lru, &n->partial);
C
Christoph Lameter 已提交
1754 1755
}

1756 1757
static inline void add_partial(struct kmem_cache_node *n,
				struct page *page, int tail)
1758
{
P
Peter Zijlstra 已提交
1759
	lockdep_assert_held(&n->list_lock);
1760 1761
	__add_partial(n, page, tail);
}
P
Peter Zijlstra 已提交
1762

1763 1764 1765 1766
static inline void remove_partial(struct kmem_cache_node *n,
					struct page *page)
{
	lockdep_assert_held(&n->list_lock);
1767 1768
	list_del(&page->lru);
	n->nr_partial--;
1769 1770
}

C
Christoph Lameter 已提交
1771
/*
1772 1773
 * Remove slab from the partial list, freeze it and
 * return the pointer to the freelist.
C
Christoph Lameter 已提交
1774
 *
1775
 * Returns a list of objects or NULL if it fails.
C
Christoph Lameter 已提交
1776
 */
1777
static inline void *acquire_slab(struct kmem_cache *s,
1778
		struct kmem_cache_node *n, struct page *page,
1779
		int mode, int *objects)
C
Christoph Lameter 已提交
1780
{
1781 1782 1783 1784
	void *freelist;
	unsigned long counters;
	struct page new;

P
Peter Zijlstra 已提交
1785 1786
	lockdep_assert_held(&n->list_lock);

1787 1788 1789 1790 1791
	/*
	 * Zap the freelist and set the frozen bit.
	 * The old freelist is the list of objects for the
	 * per cpu allocation list.
	 */
1792 1793 1794
	freelist = page->freelist;
	counters = page->counters;
	new.counters = counters;
1795
	*objects = new.objects - new.inuse;
1796
	if (mode) {
1797
		new.inuse = page->objects;
1798 1799 1800 1801
		new.freelist = NULL;
	} else {
		new.freelist = freelist;
	}
1802

1803
	VM_BUG_ON(new.frozen);
1804
	new.frozen = 1;
1805

1806
	if (!__cmpxchg_double_slab(s, page,
1807
			freelist, counters,
1808
			new.freelist, new.counters,
1809 1810
			"acquire_slab"))
		return NULL;
1811 1812

	remove_partial(n, page);
1813
	WARN_ON(!freelist);
1814
	return freelist;
C
Christoph Lameter 已提交
1815 1816
}

1817
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1818
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1819

C
Christoph Lameter 已提交
1820
/*
C
Christoph Lameter 已提交
1821
 * Try to allocate a partial slab from a specific node.
C
Christoph Lameter 已提交
1822
 */
1823 1824
static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
				struct kmem_cache_cpu *c, gfp_t flags)
C
Christoph Lameter 已提交
1825
{
1826 1827
	struct page *page, *page2;
	void *object = NULL;
1828 1829
	int available = 0;
	int objects;
C
Christoph Lameter 已提交
1830 1831 1832 1833

	/*
	 * Racy check. If we mistakenly see no partial slabs then we
	 * just allocate an empty slab. If we mistakenly try to get a
C
Christoph Lameter 已提交
1834 1835
	 * partial slab and there is none available then get_partials()
	 * will return NULL.
C
Christoph Lameter 已提交
1836 1837 1838 1839 1840
	 */
	if (!n || !n->nr_partial)
		return NULL;

	spin_lock(&n->list_lock);
1841
	list_for_each_entry_safe(page, page2, &n->partial, lru) {
1842
		void *t;
1843

1844 1845 1846
		if (!pfmemalloc_match(page, flags))
			continue;

1847
		t = acquire_slab(s, n, page, object == NULL, &objects);
1848 1849 1850
		if (!t)
			break;

1851
		available += objects;
1852
		if (!object) {
1853 1854 1855 1856
			c->page = page;
			stat(s, ALLOC_FROM_PARTIAL);
			object = t;
		} else {
1857
			put_cpu_partial(s, page, 0);
1858
			stat(s, CPU_PARTIAL_NODE);
1859
		}
1860
		if (!kmem_cache_has_cpu_partial(s)
1861
			|| available > slub_cpu_partial(s) / 2)
1862 1863
			break;

1864
	}
C
Christoph Lameter 已提交
1865
	spin_unlock(&n->list_lock);
1866
	return object;
C
Christoph Lameter 已提交
1867 1868 1869
}

/*
C
Christoph Lameter 已提交
1870
 * Get a page from somewhere. Search in increasing NUMA distances.
C
Christoph Lameter 已提交
1871
 */
1872
static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1873
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1874 1875 1876
{
#ifdef CONFIG_NUMA
	struct zonelist *zonelist;
1877
	struct zoneref *z;
1878 1879
	struct zone *zone;
	enum zone_type high_zoneidx = gfp_zone(flags);
1880
	void *object;
1881
	unsigned int cpuset_mems_cookie;
C
Christoph Lameter 已提交
1882 1883

	/*
C
Christoph Lameter 已提交
1884 1885 1886 1887
	 * The defrag ratio allows a configuration of the tradeoffs between
	 * inter node defragmentation and node local allocations. A lower
	 * defrag_ratio increases the tendency to do local allocations
	 * instead of attempting to obtain partial slabs from other nodes.
C
Christoph Lameter 已提交
1888
	 *
C
Christoph Lameter 已提交
1889 1890 1891 1892
	 * If the defrag_ratio is set to 0 then kmalloc() always
	 * returns node local objects. If the ratio is higher then kmalloc()
	 * may return off node objects because partial slabs are obtained
	 * from other nodes and filled up.
C
Christoph Lameter 已提交
1893
	 *
1894 1895 1896 1897 1898
	 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
	 * (which makes defrag_ratio = 1000) then every (well almost)
	 * allocation will first attempt to defrag slab caches on other nodes.
	 * This means scanning over all nodes to look for partial slabs which
	 * may be expensive if we do it every time we are trying to find a slab
C
Christoph Lameter 已提交
1899
	 * with available objects.
C
Christoph Lameter 已提交
1900
	 */
1901 1902
	if (!s->remote_node_defrag_ratio ||
			get_cycles() % 1024 > s->remote_node_defrag_ratio)
C
Christoph Lameter 已提交
1903 1904
		return NULL;

1905
	do {
1906
		cpuset_mems_cookie = read_mems_allowed_begin();
1907
		zonelist = node_zonelist(mempolicy_slab_node(), flags);
1908 1909 1910 1911 1912
		for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
			struct kmem_cache_node *n;

			n = get_node(s, zone_to_nid(zone));

1913
			if (n && cpuset_zone_allowed(zone, flags) &&
1914
					n->nr_partial > s->min_partial) {
1915
				object = get_partial_node(s, n, c, flags);
1916 1917
				if (object) {
					/*
1918 1919 1920 1921 1922
					 * Don't check read_mems_allowed_retry()
					 * here - if mems_allowed was updated in
					 * parallel, that was a harmless race
					 * between allocation and the cpuset
					 * update
1923 1924 1925
					 */
					return object;
				}
1926
			}
C
Christoph Lameter 已提交
1927
		}
1928
	} while (read_mems_allowed_retry(cpuset_mems_cookie));
C
Christoph Lameter 已提交
1929 1930 1931 1932 1933 1934 1935
#endif
	return NULL;
}

/*
 * Get a partial page, lock it and return it.
 */
1936
static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1937
		struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
1938
{
1939
	void *object;
1940 1941 1942 1943 1944 1945
	int searchnode = node;

	if (node == NUMA_NO_NODE)
		searchnode = numa_mem_id();
	else if (!node_present_pages(node))
		searchnode = node_to_mem_node(node);
C
Christoph Lameter 已提交
1946

1947
	object = get_partial_node(s, get_node(s, searchnode), c, flags);
1948 1949
	if (object || node != NUMA_NO_NODE)
		return object;
C
Christoph Lameter 已提交
1950

1951
	return get_any_partial(s, flags, c);
C
Christoph Lameter 已提交
1952 1953
}

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

1995
	pr_info("%s %s: cmpxchg redo ", n, s->name);
1996 1997 1998

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1999
		pr_warn("due to cpu change %d -> %d\n",
2000 2001 2002 2003
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
2004
		pr_warn("due to cpu running other code. Event %ld->%ld\n",
2005 2006
			tid_to_event(tid), tid_to_event(actual_tid));
	else
2007
		pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2008 2009
			actual_tid, tid, next_tid(tid));
#endif
2010
	stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2011 2012
}

2013
static void init_kmem_cache_cpus(struct kmem_cache *s)
2014 2015 2016 2017 2018 2019
{
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
}
2020

C
Christoph Lameter 已提交
2021 2022 2023
/*
 * Remove the cpu slab
 */
2024
static void deactivate_slab(struct kmem_cache *s, struct page *page,
2025
				void *freelist, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2026
{
2027 2028 2029 2030 2031
	enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
	struct kmem_cache_node *n = get_node(s, page_to_nid(page));
	int lock = 0;
	enum slab_modes l = M_NONE, m = M_NONE;
	void *nextfree;
2032
	int tail = DEACTIVATE_TO_HEAD;
2033 2034 2035 2036
	struct page new;
	struct page old;

	if (page->freelist) {
2037
		stat(s, DEACTIVATE_REMOTE_FREES);
2038
		tail = DEACTIVATE_TO_TAIL;
2039 2040
	}

2041
	/*
2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	 * Stage one: Free all available per cpu objects back
	 * to the page freelist while it is still frozen. Leave the
	 * last one.
	 *
	 * There is no need to take the list->lock because the page
	 * is still frozen.
	 */
	while (freelist && (nextfree = get_freepointer(s, freelist))) {
		void *prior;
		unsigned long counters;

		do {
			prior = page->freelist;
			counters = page->counters;
			set_freepointer(s, freelist, prior);
			new.counters = counters;
			new.inuse--;
2059
			VM_BUG_ON(!new.frozen);
2060

2061
		} while (!__cmpxchg_double_slab(s, page,
2062 2063 2064 2065 2066 2067 2068
			prior, counters,
			freelist, new.counters,
			"drain percpu freelist"));

		freelist = nextfree;
	}

2069
	/*
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
	 * Stage two: Ensure that the page is unfrozen while the
	 * list presence reflects the actual number of objects
	 * during unfreeze.
	 *
	 * We setup the list membership and then perform a cmpxchg
	 * with the count. If there is a mismatch then the page
	 * is not unfrozen but the page is on the wrong list.
	 *
	 * Then we restart the process which may have to remove
	 * the page from the list that we just put it on again
	 * because the number of objects in the slab may have
	 * changed.
2082
	 */
2083
redo:
2084

2085 2086
	old.freelist = page->freelist;
	old.counters = page->counters;
2087
	VM_BUG_ON(!old.frozen);
2088

2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099
	/* Determine target state of the slab */
	new.counters = old.counters;
	if (freelist) {
		new.inuse--;
		set_freepointer(s, freelist, old.freelist);
		new.freelist = freelist;
	} else
		new.freelist = old.freelist;

	new.frozen = 0;

2100
	if (!new.inuse && n->nr_partial >= s->min_partial)
2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132
		m = M_FREE;
	else if (new.freelist) {
		m = M_PARTIAL;
		if (!lock) {
			lock = 1;
			/*
			 * Taking the spinlock removes the possiblity
			 * that acquire_slab() will see a slab page that
			 * is frozen
			 */
			spin_lock(&n->list_lock);
		}
	} else {
		m = M_FULL;
		if (kmem_cache_debug(s) && !lock) {
			lock = 1;
			/*
			 * This also ensures that the scanning of full
			 * slabs from diagnostic functions will not see
			 * any frozen slabs.
			 */
			spin_lock(&n->list_lock);
		}
	}

	if (l != m) {

		if (l == M_PARTIAL)

			remove_partial(n, page);

		else if (l == M_FULL)
2133

P
Peter Zijlstra 已提交
2134
			remove_full(s, n, page);
2135 2136 2137 2138

		if (m == M_PARTIAL) {

			add_partial(n, page, tail);
2139
			stat(s, tail);
2140 2141

		} else if (m == M_FULL) {
2142

2143 2144 2145 2146 2147 2148 2149
			stat(s, DEACTIVATE_FULL);
			add_full(s, n, page);

		}
	}

	l = m;
2150
	if (!__cmpxchg_double_slab(s, page,
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"))
		goto redo;

	if (lock)
		spin_unlock(&n->list_lock);

	if (m == M_FREE) {
		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
2163
	}
2164 2165 2166

	c->page = NULL;
	c->freelist = NULL;
C
Christoph Lameter 已提交
2167 2168
}

2169 2170 2171
/*
 * Unfreeze all the cpu partial slabs.
 *
2172 2173 2174
 * This function must be called with interrupts disabled
 * for the cpu using c (or some other guarantee must be there
 * to guarantee no concurrent accesses).
2175
 */
2176 2177
static void unfreeze_partials(struct kmem_cache *s,
		struct kmem_cache_cpu *c)
2178
{
2179
#ifdef CONFIG_SLUB_CPU_PARTIAL
2180
	struct kmem_cache_node *n = NULL, *n2 = NULL;
2181
	struct page *page, *discard_page = NULL;
2182 2183 2184 2185 2186 2187

	while ((page = c->partial)) {
		struct page new;
		struct page old;

		c->partial = page->next;
2188 2189 2190 2191 2192 2193 2194 2195 2196

		n2 = get_node(s, page_to_nid(page));
		if (n != n2) {
			if (n)
				spin_unlock(&n->list_lock);

			n = n2;
			spin_lock(&n->list_lock);
		}
2197 2198 2199 2200 2201

		do {

			old.freelist = page->freelist;
			old.counters = page->counters;
2202
			VM_BUG_ON(!old.frozen);
2203 2204 2205 2206 2207 2208

			new.counters = old.counters;
			new.freelist = old.freelist;

			new.frozen = 0;

2209
		} while (!__cmpxchg_double_slab(s, page,
2210 2211 2212 2213
				old.freelist, old.counters,
				new.freelist, new.counters,
				"unfreezing slab"));

2214
		if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2215 2216
			page->next = discard_page;
			discard_page = page;
2217 2218 2219
		} else {
			add_partial(n, page, DEACTIVATE_TO_TAIL);
			stat(s, FREE_ADD_PARTIAL);
2220 2221 2222 2223 2224
		}
	}

	if (n)
		spin_unlock(&n->list_lock);
2225 2226 2227 2228 2229 2230 2231 2232 2233

	while (discard_page) {
		page = discard_page;
		discard_page = discard_page->next;

		stat(s, DEACTIVATE_EMPTY);
		discard_slab(s, page);
		stat(s, FREE_SLAB);
	}
2234
#endif
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245
}

/*
 * Put a page that was just frozen (in __slab_free) into a partial page
 * slot if available. This is done without interrupts disabled and without
 * preemption disabled. The cmpxchg is racy and may put the partial page
 * onto a random cpus partial slot.
 *
 * If we did not find a slot then simply move all the partials to the
 * per node partial list.
 */
2246
static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2247
{
2248
#ifdef CONFIG_SLUB_CPU_PARTIAL
2249 2250 2251 2252
	struct page *oldpage;
	int pages;
	int pobjects;

2253
	preempt_disable();
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
	do {
		pages = 0;
		pobjects = 0;
		oldpage = this_cpu_read(s->cpu_slab->partial);

		if (oldpage) {
			pobjects = oldpage->pobjects;
			pages = oldpage->pages;
			if (drain && pobjects > s->cpu_partial) {
				unsigned long flags;
				/*
				 * partial array is full. Move the existing
				 * set to the per node partial list.
				 */
				local_irq_save(flags);
2269
				unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2270
				local_irq_restore(flags);
2271
				oldpage = NULL;
2272 2273
				pobjects = 0;
				pages = 0;
2274
				stat(s, CPU_PARTIAL_DRAIN);
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
			}
		}

		pages++;
		pobjects += page->objects - page->inuse;

		page->pages = pages;
		page->pobjects = pobjects;
		page->next = oldpage;

2285 2286
	} while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
								!= oldpage);
2287 2288 2289 2290 2291 2292 2293 2294
	if (unlikely(!s->cpu_partial)) {
		unsigned long flags;

		local_irq_save(flags);
		unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
		local_irq_restore(flags);
	}
	preempt_enable();
2295
#endif
2296 2297
}

2298
static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2299
{
2300
	stat(s, CPUSLAB_FLUSH);
2301
	deactivate_slab(s, c->page, c->freelist, c);
2302 2303

	c->tid = next_tid(c->tid);
C
Christoph Lameter 已提交
2304 2305 2306 2307
}

/*
 * Flush cpu slab.
C
Christoph Lameter 已提交
2308
 *
C
Christoph Lameter 已提交
2309 2310
 * Called from IPI handler with interrupts disabled.
 */
2311
static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
C
Christoph Lameter 已提交
2312
{
2313
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
C
Christoph Lameter 已提交
2314

2315 2316 2317 2318
	if (likely(c)) {
		if (c->page)
			flush_slab(s, c);

2319
		unfreeze_partials(s, c);
2320
	}
C
Christoph Lameter 已提交
2321 2322 2323 2324 2325 2326
}

static void flush_cpu_slab(void *d)
{
	struct kmem_cache *s = d;

2327
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
2328 2329
}

2330 2331 2332 2333 2334
static bool has_cpu_slab(int cpu, void *info)
{
	struct kmem_cache *s = info;
	struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);

2335
	return c->page || slub_percpu_partial(c);
2336 2337
}

C
Christoph Lameter 已提交
2338 2339
static void flush_all(struct kmem_cache *s)
{
2340
	on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
C
Christoph Lameter 已提交
2341 2342
}

2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361
/*
 * Use the cpu notifier to insure that the cpu slabs are flushed when
 * necessary.
 */
static int slub_cpu_dead(unsigned int cpu)
{
	struct kmem_cache *s;
	unsigned long flags;

	mutex_lock(&slab_mutex);
	list_for_each_entry(s, &slab_caches, list) {
		local_irq_save(flags);
		__flush_cpu_slab(s, cpu);
		local_irq_restore(flags);
	}
	mutex_unlock(&slab_mutex);
	return 0;
}

2362 2363 2364 2365
/*
 * Check if the objects in a per cpu structure fit numa
 * locality expectations.
 */
2366
static inline int node_match(struct page *page, int node)
2367 2368
{
#ifdef CONFIG_NUMA
2369
	if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2370 2371 2372 2373 2374
		return 0;
#endif
	return 1;
}

2375
#ifdef CONFIG_SLUB_DEBUG
P
Pekka Enberg 已提交
2376 2377 2378 2379 2380
static int count_free(struct page *page)
{
	return page->objects - page->inuse;
}

2381 2382 2383 2384 2385 2386 2387
static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
{
	return atomic_long_read(&n->total_objects);
}
#endif /* CONFIG_SLUB_DEBUG */

#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
P
Pekka Enberg 已提交
2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
static unsigned long count_partial(struct kmem_cache_node *n,
					int (*get_count)(struct page *))
{
	unsigned long flags;
	unsigned long x = 0;
	struct page *page;

	spin_lock_irqsave(&n->list_lock, flags);
	list_for_each_entry(page, &n->partial, lru)
		x += get_count(page);
	spin_unlock_irqrestore(&n->list_lock, flags);
	return x;
}
2401
#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2402

P
Pekka Enberg 已提交
2403 2404 2405
static noinline void
slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
{
2406 2407 2408
#ifdef CONFIG_SLUB_DEBUG
	static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
P
Pekka Enberg 已提交
2409
	int node;
C
Christoph Lameter 已提交
2410
	struct kmem_cache_node *n;
P
Pekka Enberg 已提交
2411

2412 2413 2414
	if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
		return;

2415 2416
	pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
		nid, gfpflags, &gfpflags);
2417 2418 2419
	pr_warn("  cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
		s->name, s->object_size, s->size, oo_order(s->oo),
		oo_order(s->min));
P
Pekka Enberg 已提交
2420

2421
	if (oo_order(s->min) > get_order(s->object_size))
2422 2423
		pr_warn("  %s debugging increased min order, use slub_debug=O to disable.\n",
			s->name);
2424

C
Christoph Lameter 已提交
2425
	for_each_kmem_cache_node(s, node, n) {
P
Pekka Enberg 已提交
2426 2427 2428 2429
		unsigned long nr_slabs;
		unsigned long nr_objs;
		unsigned long nr_free;

2430 2431 2432
		nr_free  = count_partial(n, count_free);
		nr_slabs = node_nr_slabs(n);
		nr_objs  = node_nr_objs(n);
P
Pekka Enberg 已提交
2433

2434
		pr_warn("  node %d: slabs: %ld, objs: %ld, free: %ld\n",
P
Pekka Enberg 已提交
2435 2436
			node, nr_slabs, nr_objs, nr_free);
	}
2437
#endif
P
Pekka Enberg 已提交
2438 2439
}

2440 2441 2442
static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
			int node, struct kmem_cache_cpu **pc)
{
2443
	void *freelist;
2444 2445
	struct kmem_cache_cpu *c = *pc;
	struct page *page;
2446

2447
	freelist = get_partial(s, flags, node, c);
2448

2449 2450 2451 2452
	if (freelist)
		return freelist;

	page = new_slab(s, flags, node);
2453
	if (page) {
2454
		c = raw_cpu_ptr(s->cpu_slab);
2455 2456 2457 2458 2459 2460 2461
		if (c->page)
			flush_slab(s, c);

		/*
		 * No other reference to the page yet so we can
		 * muck around with it freely without cmpxchg
		 */
2462
		freelist = page->freelist;
2463 2464 2465 2466 2467 2468
		page->freelist = NULL;

		stat(s, ALLOC_SLAB);
		c->page = page;
		*pc = c;
	} else
2469
		freelist = NULL;
2470

2471
	return freelist;
2472 2473
}

2474 2475 2476 2477 2478 2479 2480 2481
static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
{
	if (unlikely(PageSlabPfmemalloc(page)))
		return gfp_pfmemalloc_allowed(gfpflags);

	return true;
}

2482
/*
2483 2484
 * Check the page->freelist of a page and either transfer the freelist to the
 * per cpu freelist or deactivate the page.
2485 2486 2487 2488
 *
 * The page is still frozen if the return value is not NULL.
 *
 * If this function returns NULL then the page has been unfrozen.
2489 2490
 *
 * This function must be called with interrupt disabled.
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500
 */
static inline void *get_freelist(struct kmem_cache *s, struct page *page)
{
	struct page new;
	unsigned long counters;
	void *freelist;

	do {
		freelist = page->freelist;
		counters = page->counters;
2501

2502
		new.counters = counters;
2503
		VM_BUG_ON(!new.frozen);
2504 2505 2506 2507

		new.inuse = page->objects;
		new.frozen = freelist != NULL;

2508
	} while (!__cmpxchg_double_slab(s, page,
2509 2510 2511 2512 2513 2514 2515
		freelist, counters,
		NULL, new.counters,
		"get_freelist"));

	return freelist;
}

C
Christoph Lameter 已提交
2516
/*
2517 2518 2519 2520 2521 2522
 * Slow path. The lockless freelist is empty or we need to perform
 * debugging duties.
 *
 * Processing is still very fast if new objects have been freed to the
 * regular freelist. In that case we simply take over the regular freelist
 * as the lockless freelist and zap the regular freelist.
C
Christoph Lameter 已提交
2523
 *
2524 2525 2526
 * If that is not working then we fall back to the partial lists. We take the
 * first element of the freelist as the object to allocate now and move the
 * rest of the freelist to the lockless freelist.
C
Christoph Lameter 已提交
2527
 *
2528
 * And if we were unable to get a new slab from the partial slab lists then
C
Christoph Lameter 已提交
2529 2530
 * we need to allocate a new slab. This is the slowest path since it involves
 * a call to the page allocator and the setup of a new slab.
2531 2532 2533
 *
 * Version of __slab_alloc to use when we know that interrupts are
 * already disabled (which is the case for bulk allocation).
C
Christoph Lameter 已提交
2534
 */
2535
static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2536
			  unsigned long addr, struct kmem_cache_cpu *c)
C
Christoph Lameter 已提交
2537
{
2538
	void *freelist;
2539
	struct page *page;
C
Christoph Lameter 已提交
2540

2541 2542
	page = c->page;
	if (!page)
C
Christoph Lameter 已提交
2543
		goto new_slab;
2544
redo:
2545

2546
	if (unlikely(!node_match(page, node))) {
2547 2548 2549 2550 2551 2552 2553
		int searchnode = node;

		if (node != NUMA_NO_NODE && !node_present_pages(node))
			searchnode = node_to_mem_node(node);

		if (unlikely(!node_match(page, searchnode))) {
			stat(s, ALLOC_NODE_MISMATCH);
2554
			deactivate_slab(s, page, c->freelist, c);
2555 2556
			goto new_slab;
		}
2557
	}
C
Christoph Lameter 已提交
2558

2559 2560 2561 2562 2563 2564
	/*
	 * By rights, we should be searching for a slab page that was
	 * PFMEMALLOC but right now, we are losing the pfmemalloc
	 * information when the page leaves the per-cpu allocator
	 */
	if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2565
		deactivate_slab(s, page, c->freelist, c);
2566 2567 2568
		goto new_slab;
	}

2569
	/* must check again c->freelist in case of cpu migration or IRQ */
2570 2571
	freelist = c->freelist;
	if (freelist)
2572
		goto load_freelist;
2573

2574
	freelist = get_freelist(s, page);
C
Christoph Lameter 已提交
2575

2576
	if (!freelist) {
2577 2578
		c->page = NULL;
		stat(s, DEACTIVATE_BYPASS);
2579
		goto new_slab;
2580
	}
C
Christoph Lameter 已提交
2581

2582
	stat(s, ALLOC_REFILL);
C
Christoph Lameter 已提交
2583

2584
load_freelist:
2585 2586 2587 2588 2589
	/*
	 * freelist is pointing to the list of objects to be used.
	 * page is pointing to the page from which the objects are obtained.
	 * That page must be frozen for per cpu allocations to work.
	 */
2590
	VM_BUG_ON(!c->page->frozen);
2591
	c->freelist = get_freepointer(s, freelist);
2592
	c->tid = next_tid(c->tid);
2593
	return freelist;
C
Christoph Lameter 已提交
2594 2595

new_slab:
2596

2597 2598 2599
	if (slub_percpu_partial(c)) {
		page = c->page = slub_percpu_partial(c);
		slub_set_percpu_partial(c, page);
2600 2601
		stat(s, CPU_PARTIAL_ALLOC);
		goto redo;
C
Christoph Lameter 已提交
2602 2603
	}

2604
	freelist = new_slab_objects(s, gfpflags, node, &c);
2605

2606
	if (unlikely(!freelist)) {
2607
		slab_out_of_memory(s, gfpflags, node);
2608
		return NULL;
C
Christoph Lameter 已提交
2609
	}
2610

2611
	page = c->page;
2612
	if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2613
		goto load_freelist;
2614

2615
	/* Only entered in the debug case */
2616 2617
	if (kmem_cache_debug(s) &&
			!alloc_debug_processing(s, page, freelist, addr))
2618
		goto new_slab;	/* Slab failed checks. Next slab needed */
2619

2620
	deactivate_slab(s, page, get_freepointer(s, freelist), c);
2621
	return freelist;
2622 2623
}

2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648
/*
 * Another one that disabled interrupt and compensates for possible
 * cpu changes by refetching the per cpu area pointer.
 */
static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
			  unsigned long addr, struct kmem_cache_cpu *c)
{
	void *p;
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif

	p = ___slab_alloc(s, gfpflags, node, addr, c);
	local_irq_restore(flags);
	return p;
}

2649 2650 2651 2652 2653 2654 2655 2656 2657 2658
/*
 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
 * have the fastpath folded into their functions. So no function call
 * overhead for requests that can be satisfied on the fastpath.
 *
 * The fastpath works by first checking if the lockless freelist can be used.
 * If not then __slab_alloc is called for slow processing.
 *
 * Otherwise we can simply pick the next object from the lockless free list.
 */
2659
static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2660
		gfp_t gfpflags, int node, unsigned long addr)
2661
{
2662
	void *object;
2663
	struct kmem_cache_cpu *c;
2664
	struct page *page;
2665
	unsigned long tid;
2666

2667 2668
	s = slab_pre_alloc_hook(s, gfpflags);
	if (!s)
A
Akinobu Mita 已提交
2669
		return NULL;
2670 2671 2672 2673 2674 2675
redo:
	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
2676
	 *
2677 2678 2679
	 * We should guarantee that tid and kmem_cache are retrieved on
	 * the same cpu. It could be different if CONFIG_PREEMPT so we need
	 * to check if it is matched or not.
2680
	 */
2681 2682 2683
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2684 2685
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695

	/*
	 * Irqless object alloc/free algorithm used here depends on sequence
	 * of fetching cpu_slab's data. tid should be fetched before anything
	 * on c to guarantee that object and page associated with previous tid
	 * won't be used with current tid. If we fetch tid first, object and
	 * page could be one associated with next tid and our alloc/free
	 * request will be failed. In this case, we will retry. So, no problem.
	 */
	barrier();
2696 2697 2698 2699 2700 2701 2702 2703

	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */

2704
	object = c->freelist;
2705
	page = c->page;
D
Dave Hansen 已提交
2706
	if (unlikely(!object || !node_match(page, node))) {
2707
		object = __slab_alloc(s, gfpflags, node, addr, c);
D
Dave Hansen 已提交
2708 2709
		stat(s, ALLOC_SLOWPATH);
	} else {
2710 2711
		void *next_object = get_freepointer_safe(s, object);

2712
		/*
L
Lucas De Marchi 已提交
2713
		 * The cmpxchg will only match if there was no additional
2714 2715
		 * operation and if we are on the right processor.
		 *
2716 2717
		 * The cmpxchg does the following atomically (without lock
		 * semantics!)
2718 2719 2720 2721
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
2722 2723 2724
		 * Since this is without lock semantics the protection is only
		 * against code executing on this cpu *not* from access by
		 * other cpus.
2725
		 */
2726
		if (unlikely(!this_cpu_cmpxchg_double(
2727 2728
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
2729
				next_object, next_tid(tid)))) {
2730 2731 2732 2733

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
2734
		prefetch_freepointer(s, next_object);
2735
		stat(s, ALLOC_FASTPATH);
2736
	}
2737

2738
	if (unlikely(gfpflags & __GFP_ZERO) && object)
2739
		memset(object, 0, s->object_size);
2740

2741
	slab_post_alloc_hook(s, gfpflags, 1, &object);
V
Vegard Nossum 已提交
2742

2743
	return object;
C
Christoph Lameter 已提交
2744 2745
}

2746 2747 2748 2749 2750 2751
static __always_inline void *slab_alloc(struct kmem_cache *s,
		gfp_t gfpflags, unsigned long addr)
{
	return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
}

C
Christoph Lameter 已提交
2752 2753
void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
{
2754
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2755

2756 2757
	trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
				s->size, gfpflags);
E
Eduard - Gabriel Munteanu 已提交
2758 2759

	return ret;
C
Christoph Lameter 已提交
2760 2761 2762
}
EXPORT_SYMBOL(kmem_cache_alloc);

2763
#ifdef CONFIG_TRACING
2764 2765
void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
{
2766
	void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2767
	trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2768
	kasan_kmalloc(s, ret, size, gfpflags);
2769 2770 2771
	return ret;
}
EXPORT_SYMBOL(kmem_cache_alloc_trace);
E
Eduard - Gabriel Munteanu 已提交
2772 2773
#endif

C
Christoph Lameter 已提交
2774 2775 2776
#ifdef CONFIG_NUMA
void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
{
2777
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
2778

2779
	trace_kmem_cache_alloc_node(_RET_IP_, ret,
2780
				    s->object_size, s->size, gfpflags, node);
E
Eduard - Gabriel Munteanu 已提交
2781 2782

	return ret;
C
Christoph Lameter 已提交
2783 2784 2785
}
EXPORT_SYMBOL(kmem_cache_alloc_node);

2786
#ifdef CONFIG_TRACING
2787
void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
E
Eduard - Gabriel Munteanu 已提交
2788
				    gfp_t gfpflags,
2789
				    int node, size_t size)
E
Eduard - Gabriel Munteanu 已提交
2790
{
2791
	void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2792 2793 2794

	trace_kmalloc_node(_RET_IP_, ret,
			   size, s->size, gfpflags, node);
2795

2796
	kasan_kmalloc(s, ret, size, gfpflags);
2797
	return ret;
E
Eduard - Gabriel Munteanu 已提交
2798
}
2799
EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
E
Eduard - Gabriel Munteanu 已提交
2800
#endif
2801
#endif
E
Eduard - Gabriel Munteanu 已提交
2802

C
Christoph Lameter 已提交
2803
/*
K
Kim Phillips 已提交
2804
 * Slow path handling. This may still be called frequently since objects
2805
 * have a longer lifetime than the cpu slabs in most processing loads.
C
Christoph Lameter 已提交
2806
 *
2807 2808 2809
 * So we still attempt to reduce cache line usage. Just take the slab
 * lock and free the item. If there is no additional partial page
 * handling required then we can return immediately.
C
Christoph Lameter 已提交
2810
 */
2811
static void __slab_free(struct kmem_cache *s, struct page *page,
2812 2813 2814
			void *head, void *tail, int cnt,
			unsigned long addr)

C
Christoph Lameter 已提交
2815 2816
{
	void *prior;
2817 2818 2819 2820
	int was_frozen;
	struct page new;
	unsigned long counters;
	struct kmem_cache_node *n = NULL;
2821
	unsigned long uninitialized_var(flags);
C
Christoph Lameter 已提交
2822

2823
	stat(s, FREE_SLOWPATH);
C
Christoph Lameter 已提交
2824

2825
	if (kmem_cache_debug(s) &&
2826
	    !free_debug_processing(s, page, head, tail, cnt, addr))
2827
		return;
C
Christoph Lameter 已提交
2828

2829
	do {
2830 2831 2832 2833
		if (unlikely(n)) {
			spin_unlock_irqrestore(&n->list_lock, flags);
			n = NULL;
		}
2834 2835
		prior = page->freelist;
		counters = page->counters;
2836
		set_freepointer(s, tail, prior);
2837 2838
		new.counters = counters;
		was_frozen = new.frozen;
2839
		new.inuse -= cnt;
2840
		if ((!new.inuse || !prior) && !was_frozen) {
2841

P
Peter Zijlstra 已提交
2842
			if (kmem_cache_has_cpu_partial(s) && !prior) {
2843 2844

				/*
2845 2846 2847 2848
				 * Slab was on no list before and will be
				 * partially empty
				 * We can defer the list move and instead
				 * freeze it.
2849 2850 2851
				 */
				new.frozen = 1;

P
Peter Zijlstra 已提交
2852
			} else { /* Needs to be taken off a list */
2853

2854
				n = get_node(s, page_to_nid(page));
2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
				/*
				 * Speculatively acquire the list_lock.
				 * If the cmpxchg does not succeed then we may
				 * drop the list_lock without any processing.
				 *
				 * Otherwise the list_lock will synchronize with
				 * other processors updating the list of slabs.
				 */
				spin_lock_irqsave(&n->list_lock, flags);

			}
2866
		}
C
Christoph Lameter 已提交
2867

2868 2869
	} while (!cmpxchg_double_slab(s, page,
		prior, counters,
2870
		head, new.counters,
2871
		"__slab_free"));
C
Christoph Lameter 已提交
2872

2873
	if (likely(!n)) {
2874 2875 2876 2877 2878

		/*
		 * If we just froze the page then put it onto the
		 * per cpu partial list.
		 */
2879
		if (new.frozen && !was_frozen) {
2880
			put_cpu_partial(s, page, 1);
2881 2882
			stat(s, CPU_PARTIAL_FREE);
		}
2883
		/*
2884 2885 2886
		 * The list lock was not taken therefore no list
		 * activity can be necessary.
		 */
2887 2888 2889 2890
		if (was_frozen)
			stat(s, FREE_FROZEN);
		return;
	}
C
Christoph Lameter 已提交
2891

2892
	if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2893 2894
		goto slab_empty;

C
Christoph Lameter 已提交
2895
	/*
2896 2897
	 * Objects left in the slab. If it was not on the partial list before
	 * then add it.
C
Christoph Lameter 已提交
2898
	 */
2899 2900
	if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
		if (kmem_cache_debug(s))
P
Peter Zijlstra 已提交
2901
			remove_full(s, n, page);
2902 2903
		add_partial(n, page, DEACTIVATE_TO_TAIL);
		stat(s, FREE_ADD_PARTIAL);
2904
	}
2905
	spin_unlock_irqrestore(&n->list_lock, flags);
C
Christoph Lameter 已提交
2906 2907 2908
	return;

slab_empty:
2909
	if (prior) {
C
Christoph Lameter 已提交
2910
		/*
2911
		 * Slab on the partial list.
C
Christoph Lameter 已提交
2912
		 */
2913
		remove_partial(n, page);
2914
		stat(s, FREE_REMOVE_PARTIAL);
P
Peter Zijlstra 已提交
2915
	} else {
2916
		/* Slab must be on the full list */
P
Peter Zijlstra 已提交
2917 2918
		remove_full(s, n, page);
	}
2919

2920
	spin_unlock_irqrestore(&n->list_lock, flags);
2921
	stat(s, FREE_SLAB);
C
Christoph Lameter 已提交
2922 2923 2924
	discard_slab(s, page);
}

2925 2926 2927 2928 2929 2930 2931 2932 2933 2934
/*
 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
 * can perform fastpath freeing without additional function calls.
 *
 * The fastpath is only possible if we are freeing to the current cpu slab
 * of this processor. This typically the case if we have just allocated
 * the item before.
 *
 * If fastpath is not possible then fall back to __slab_free where we deal
 * with all sorts of special processing.
2935 2936 2937 2938
 *
 * Bulk free of a freelist with several objects (all pointing to the
 * same page) possible by specifying head and tail ptr, plus objects
 * count (cnt). Bulk free indicated by tail pointer being set.
2939
 */
2940 2941 2942
static __always_inline void do_slab_free(struct kmem_cache *s,
				struct page *page, void *head, void *tail,
				int cnt, unsigned long addr)
2943
{
2944
	void *tail_obj = tail ? : head;
2945
	struct kmem_cache_cpu *c;
2946 2947 2948 2949 2950 2951
	unsigned long tid;
redo:
	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
2952
	 * during the cmpxchg then the free will succeed.
2953
	 */
2954 2955 2956
	do {
		tid = this_cpu_read(s->cpu_slab->tid);
		c = raw_cpu_ptr(s->cpu_slab);
2957 2958
	} while (IS_ENABLED(CONFIG_PREEMPT) &&
		 unlikely(tid != READ_ONCE(c->tid)));
2959

2960 2961
	/* Same with comment on barrier() in slab_alloc_node() */
	barrier();
2962

2963
	if (likely(page == c->page)) {
2964
		set_freepointer(s, tail_obj, c->freelist);
2965

2966
		if (unlikely(!this_cpu_cmpxchg_double(
2967 2968
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
2969
				head, next_tid(tid)))) {
2970 2971 2972 2973

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
2974
		stat(s, FREE_FASTPATH);
2975
	} else
2976
		__slab_free(s, page, head, tail_obj, cnt, addr);
2977 2978 2979

}

2980 2981 2982 2983 2984 2985 2986 2987 2988
static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
				      void *head, void *tail, int cnt,
				      unsigned long addr)
{
	slab_free_freelist_hook(s, head, tail);
	/*
	 * slab_free_freelist_hook() could have put the items into quarantine.
	 * If so, no need to free them.
	 */
2989
	if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000
		return;
	do_slab_free(s, page, head, tail, cnt, addr);
}

#ifdef CONFIG_KASAN
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
{
	do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
}
#endif

C
Christoph Lameter 已提交
3001 3002
void kmem_cache_free(struct kmem_cache *s, void *x)
{
3003 3004
	s = cache_from_obj(s, x);
	if (!s)
3005
		return;
3006
	slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3007
	trace_kmem_cache_free(_RET_IP_, x);
C
Christoph Lameter 已提交
3008 3009 3010
}
EXPORT_SYMBOL(kmem_cache_free);

3011
struct detached_freelist {
3012
	struct page *page;
3013 3014 3015
	void *tail;
	void *freelist;
	int cnt;
3016
	struct kmem_cache *s;
3017
};
3018

3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030
/*
 * This function progressively scans the array with free objects (with
 * a limited look ahead) and extract objects belonging to the same
 * page.  It builds a detached freelist directly within the given
 * page/objects.  This can happen without any need for
 * synchronization, because the objects are owned by running process.
 * The freelist is build up as a single linked list in the objects.
 * The idea is, that this detached freelist can then be bulk
 * transferred to the real freelist(s), but only requiring a single
 * synchronization primitive.  Look ahead in the array is limited due
 * to performance reasons.
 */
3031 3032 3033
static inline
int build_detached_freelist(struct kmem_cache *s, size_t size,
			    void **p, struct detached_freelist *df)
3034 3035 3036 3037
{
	size_t first_skipped_index = 0;
	int lookahead = 3;
	void *object;
3038
	struct page *page;
3039

3040 3041
	/* Always re-init detached_freelist */
	df->page = NULL;
3042

3043 3044
	do {
		object = p[--size];
3045
		/* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3046
	} while (!object && size);
3047

3048 3049
	if (!object)
		return 0;
3050

3051 3052 3053 3054 3055 3056
	page = virt_to_head_page(object);
	if (!s) {
		/* Handle kalloc'ed objects */
		if (unlikely(!PageSlab(page))) {
			BUG_ON(!PageCompound(page));
			kfree_hook(object);
3057
			__free_pages(page, compound_order(page));
3058 3059 3060 3061 3062 3063 3064 3065
			p[size] = NULL; /* mark object processed */
			return size;
		}
		/* Derive kmem_cache from object */
		df->s = page->slab_cache;
	} else {
		df->s = cache_from_obj(s, object); /* Support for memcg */
	}
3066

3067
	/* Start new detached freelist */
3068
	df->page = page;
3069
	set_freepointer(df->s, object, NULL);
3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082
	df->tail = object;
	df->freelist = object;
	p[size] = NULL; /* mark object processed */
	df->cnt = 1;

	while (size) {
		object = p[--size];
		if (!object)
			continue; /* Skip processed objects */

		/* df->page is always set at this point */
		if (df->page == virt_to_head_page(object)) {
			/* Opportunity build freelist */
3083
			set_freepointer(df->s, object, df->freelist);
3084 3085 3086 3087 3088
			df->freelist = object;
			df->cnt++;
			p[size] = NULL; /* mark object processed */

			continue;
3089
		}
3090 3091 3092 3093 3094 3095 3096

		/* Limit look ahead search */
		if (!--lookahead)
			break;

		if (!first_skipped_index)
			first_skipped_index = size + 1;
3097
	}
3098 3099 3100 3101 3102

	return first_skipped_index;
}

/* Note that interrupts must be enabled when calling this function. */
3103
void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3104 3105 3106 3107 3108 3109 3110 3111
{
	if (WARN_ON(!size))
		return;

	do {
		struct detached_freelist df;

		size = build_detached_freelist(s, size, p, &df);
A
Arnd Bergmann 已提交
3112
		if (!df.page)
3113 3114
			continue;

3115
		slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3116
	} while (likely(size));
3117 3118 3119
}
EXPORT_SYMBOL(kmem_cache_free_bulk);

3120
/* Note that interrupts must be enabled when calling this function. */
3121 3122
int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
			  void **p)
3123
{
3124 3125 3126
	struct kmem_cache_cpu *c;
	int i;

3127 3128 3129 3130
	/* memcg and kmem_cache debug support */
	s = slab_pre_alloc_hook(s, flags);
	if (unlikely(!s))
		return false;
3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
	/*
	 * Drain objects in the per cpu slab, while disabling local
	 * IRQs, which protects against PREEMPT and interrupts
	 * handlers invoking normal fastpath.
	 */
	local_irq_disable();
	c = this_cpu_ptr(s->cpu_slab);

	for (i = 0; i < size; i++) {
		void *object = c->freelist;

3142 3143 3144 3145 3146
		if (unlikely(!object)) {
			/*
			 * Invoking slow path likely have side-effect
			 * of re-populating per CPU c->freelist
			 */
3147
			p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3148
					    _RET_IP_, c);
3149 3150 3151
			if (unlikely(!p[i]))
				goto error;

3152 3153 3154
			c = this_cpu_ptr(s->cpu_slab);
			continue; /* goto for-loop */
		}
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
		c->freelist = get_freepointer(s, object);
		p[i] = object;
	}
	c->tid = next_tid(c->tid);
	local_irq_enable();

	/* Clear memory outside IRQ disabled fastpath loop */
	if (unlikely(flags & __GFP_ZERO)) {
		int j;

		for (j = 0; j < i; j++)
			memset(p[j], 0, s->object_size);
	}

3169 3170
	/* memcg and kmem_cache debug support */
	slab_post_alloc_hook(s, flags, size, p);
3171
	return i;
3172 3173
error:
	local_irq_enable();
3174 3175
	slab_post_alloc_hook(s, flags, i, p);
	__kmem_cache_free_bulk(s, i, p);
3176
	return 0;
3177 3178 3179 3180
}
EXPORT_SYMBOL(kmem_cache_alloc_bulk);


C
Christoph Lameter 已提交
3181
/*
C
Christoph Lameter 已提交
3182 3183 3184 3185
 * Object placement in a slab is made very easy because we always start at
 * offset 0. If we tune the size of the object to the alignment then we can
 * get the required alignment by putting one properly sized object after
 * another.
C
Christoph Lameter 已提交
3186 3187 3188 3189
 *
 * Notice that the allocation order determines the sizes of the per cpu
 * caches. Each processor has always one slab available for allocations.
 * Increasing the allocation order reduces the number of times that slabs
C
Christoph Lameter 已提交
3190
 * must be moved on and off the partial lists and is therefore a factor in
C
Christoph Lameter 已提交
3191 3192 3193 3194 3195 3196 3197 3198 3199 3200
 * locking overhead.
 */

/*
 * Mininum / Maximum order of slab pages. This influences locking overhead
 * and slab fragmentation. A higher order reduces the number of partial slabs
 * and increases the number of allocations possible without having to
 * take the list_lock.
 */
static int slub_min_order;
3201
static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3202
static int slub_min_objects;
C
Christoph Lameter 已提交
3203 3204 3205 3206

/*
 * Calculate the order of allocation given an slab object size.
 *
C
Christoph Lameter 已提交
3207 3208 3209 3210
 * The order of allocation has significant impact on performance and other
 * system components. Generally order 0 allocations should be preferred since
 * order 0 does not cause fragmentation in the page allocator. Larger objects
 * be problematic to put into order 0 slabs because there may be too much
C
Christoph Lameter 已提交
3211
 * unused space left. We go to a higher order if more than 1/16th of the slab
C
Christoph Lameter 已提交
3212 3213 3214 3215 3216 3217
 * would be wasted.
 *
 * In order to reach satisfactory performance we must ensure that a minimum
 * number of objects is in one slab. Otherwise we may generate too much
 * activity on the partial lists which requires taking the list_lock. This is
 * less a concern for large slabs though which are rarely used.
C
Christoph Lameter 已提交
3218
 *
C
Christoph Lameter 已提交
3219 3220 3221 3222
 * slub_max_order specifies the order where we begin to stop considering the
 * number of objects in a slab as critical. If we reach slub_max_order then
 * we try to keep the page order as low as possible. So we accept more waste
 * of space in favor of a small page order.
C
Christoph Lameter 已提交
3223
 *
C
Christoph Lameter 已提交
3224 3225 3226 3227
 * Higher order allocations also allow the placement of more objects in a
 * slab and thereby reduce object handling overhead. If the user has
 * requested a higher mininum order then we start with that one instead of
 * the smallest order which will fit the object.
C
Christoph Lameter 已提交
3228
 */
3229
static inline int slab_order(int size, int min_objects,
3230
				int max_order, int fract_leftover, int reserved)
C
Christoph Lameter 已提交
3231 3232 3233
{
	int order;
	int rem;
3234
	int min_order = slub_min_order;
C
Christoph Lameter 已提交
3235

3236
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3237
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3238

3239
	for (order = max(min_order, get_order(min_objects * size + reserved));
3240
			order <= max_order; order++) {
C
Christoph Lameter 已提交
3241

3242
		unsigned long slab_size = PAGE_SIZE << order;
C
Christoph Lameter 已提交
3243

3244
		rem = (slab_size - reserved) % size;
C
Christoph Lameter 已提交
3245

3246
		if (rem <= slab_size / fract_leftover)
C
Christoph Lameter 已提交
3247 3248
			break;
	}
C
Christoph Lameter 已提交
3249

C
Christoph Lameter 已提交
3250 3251 3252
	return order;
}

3253
static inline int calculate_order(int size, int reserved)
3254 3255 3256 3257
{
	int order;
	int min_objects;
	int fraction;
3258
	int max_objects;
3259 3260 3261 3262 3263 3264

	/*
	 * Attempt to find best configuration for a slab. This
	 * works by first attempting to generate a layout with
	 * the best configuration and backing off gradually.
	 *
3265
	 * First we increase the acceptable waste in a slab. Then
3266 3267 3268
	 * we reduce the minimum objects required in a slab.
	 */
	min_objects = slub_min_objects;
3269 3270
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
3271
	max_objects = order_objects(slub_max_order, size, reserved);
3272 3273
	min_objects = min(min_objects, max_objects);

3274
	while (min_objects > 1) {
C
Christoph Lameter 已提交
3275
		fraction = 16;
3276 3277
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
3278
					slub_max_order, fraction, reserved);
3279 3280 3281 3282
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
		}
3283
		min_objects--;
3284 3285 3286 3287 3288 3289
	}

	/*
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
3290
	order = slab_order(size, 1, slub_max_order, 1, reserved);
3291 3292 3293 3294 3295 3296
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
3297
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
D
David Rientjes 已提交
3298
	if (order < MAX_ORDER)
3299 3300 3301 3302
		return order;
	return -ENOSYS;
}

3303
static void
3304
init_kmem_cache_node(struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3305 3306 3307 3308
{
	n->nr_partial = 0;
	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
3309
#ifdef CONFIG_SLUB_DEBUG
3310
	atomic_long_set(&n->nr_slabs, 0);
3311
	atomic_long_set(&n->total_objects, 0);
3312
	INIT_LIST_HEAD(&n->full);
3313
#endif
C
Christoph Lameter 已提交
3314 3315
}

3316
static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3317
{
3318
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3319
			KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3320

3321
	/*
3322 3323
	 * Must align to double word boundary for the double cmpxchg
	 * instructions to work; see __pcpu_double_call_return_bool().
3324
	 */
3325 3326
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
				     2 * sizeof(void *));
3327 3328 3329 3330 3331

	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);
3332

3333
	return 1;
3334 3335
}

3336 3337
static struct kmem_cache *kmem_cache_node;

C
Christoph Lameter 已提交
3338 3339 3340 3341 3342
/*
 * No kmalloc_node yet so do it by hand. We know that this is the first
 * slab on the node for this slabcache. There are no concurrent accesses
 * possible.
 *
Z
Zhi Yong Wu 已提交
3343 3344
 * Note that this function only works on the kmem_cache_node
 * when allocating for the kmem_cache_node. This is used for bootstrapping
3345
 * memory on a fresh node that has no slab structures yet.
C
Christoph Lameter 已提交
3346
 */
3347
static void early_kmem_cache_node_alloc(int node)
C
Christoph Lameter 已提交
3348 3349 3350 3351
{
	struct page *page;
	struct kmem_cache_node *n;

3352
	BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
C
Christoph Lameter 已提交
3353

3354
	page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
C
Christoph Lameter 已提交
3355 3356

	BUG_ON(!page);
3357
	if (page_to_nid(page) != node) {
3358 3359
		pr_err("SLUB: Unable to allocate memory from node %d\n", node);
		pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3360 3361
	}

C
Christoph Lameter 已提交
3362 3363
	n = page->freelist;
	BUG_ON(!n);
3364
	page->freelist = get_freepointer(kmem_cache_node, n);
3365
	page->inuse = 1;
3366
	page->frozen = 0;
3367
	kmem_cache_node->node[node] = n;
3368
#ifdef CONFIG_SLUB_DEBUG
3369
	init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3370
	init_tracking(kmem_cache_node, n);
3371
#endif
3372 3373
	kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
		      GFP_KERNEL);
3374
	init_kmem_cache_node(n);
3375
	inc_slabs_node(kmem_cache_node, node, page->objects);
C
Christoph Lameter 已提交
3376

3377
	/*
3378 3379
	 * No locks need to be taken here as it has just been
	 * initialized and there is no concurrent access.
3380
	 */
3381
	__add_partial(n, page, DEACTIVATE_TO_HEAD);
C
Christoph Lameter 已提交
3382 3383 3384 3385 3386
}

static void free_kmem_cache_nodes(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
3387
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3388

C
Christoph Lameter 已提交
3389
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3390
		s->node[node] = NULL;
3391
		kmem_cache_free(kmem_cache_node, n);
C
Christoph Lameter 已提交
3392 3393 3394
	}
}

3395 3396
void __kmem_cache_release(struct kmem_cache *s)
{
T
Thomas Garnier 已提交
3397
	cache_random_seq_destroy(s);
3398 3399 3400 3401
	free_percpu(s->cpu_slab);
	free_kmem_cache_nodes(s);
}

3402
static int init_kmem_cache_nodes(struct kmem_cache *s)
C
Christoph Lameter 已提交
3403 3404 3405
{
	int node;

C
Christoph Lameter 已提交
3406
	for_each_node_state(node, N_NORMAL_MEMORY) {
C
Christoph Lameter 已提交
3407 3408
		struct kmem_cache_node *n;

3409
		if (slab_state == DOWN) {
3410
			early_kmem_cache_node_alloc(node);
3411 3412
			continue;
		}
3413
		n = kmem_cache_alloc_node(kmem_cache_node,
3414
						GFP_KERNEL, node);
C
Christoph Lameter 已提交
3415

3416 3417 3418
		if (!n) {
			free_kmem_cache_nodes(s);
			return 0;
C
Christoph Lameter 已提交
3419
		}
3420

3421
		init_kmem_cache_node(n);
3422
		s->node[node] = n;
C
Christoph Lameter 已提交
3423 3424 3425 3426
	}
	return 1;
}

3427
static void set_min_partial(struct kmem_cache *s, unsigned long min)
3428 3429 3430 3431 3432 3433 3434 3435
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
static void set_cpu_partial(struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_CPU_PARTIAL
	/*
	 * cpu_partial determined the maximum number of objects kept in the
	 * per cpu partial lists of a processor.
	 *
	 * Per cpu partial lists mainly contain slabs that just have one
	 * object freed. If they are used for allocation then they can be
	 * filled up again with minimal effort. The slab will never hit the
	 * per node partial lists and therefore no locking will be required.
	 *
	 * This setting also determines
	 *
	 * A) The number of objects from per cpu partial slabs dumped to the
	 *    per node list when we reach the limit.
	 * B) The number of objects in cpu partial slabs to extract from the
	 *    per node list when we run out of per cpu objects. We only fetch
	 *    50% to keep some capacity around for frees.
	 */
	if (!kmem_cache_has_cpu_partial(s))
		s->cpu_partial = 0;
	else if (s->size >= PAGE_SIZE)
		s->cpu_partial = 2;
	else if (s->size >= 1024)
		s->cpu_partial = 6;
	else if (s->size >= 256)
		s->cpu_partial = 13;
	else
		s->cpu_partial = 30;
#endif
}

C
Christoph Lameter 已提交
3469 3470 3471 3472
/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
 */
3473
static int calculate_sizes(struct kmem_cache *s, int forced_order)
C
Christoph Lameter 已提交
3474 3475
{
	unsigned long flags = s->flags;
3476
	size_t size = s->object_size;
3477
	int order;
C
Christoph Lameter 已提交
3478

3479 3480 3481 3482 3483 3484 3485 3486
	/*
	 * Round up object size to the next word boundary. We can only
	 * place the free pointer at word boundaries and this determines
	 * the possible location of the free pointer.
	 */
	size = ALIGN(size, sizeof(void *));

#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3487 3488 3489 3490 3491
	/*
	 * Determine if we can poison the object itself. If the user of
	 * the slab may touch the object after free or before allocation
	 * then we should never poison the object itself.
	 */
3492
	if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3493
			!s->ctor)
C
Christoph Lameter 已提交
3494 3495 3496 3497 3498 3499
		s->flags |= __OBJECT_POISON;
	else
		s->flags &= ~__OBJECT_POISON;


	/*
C
Christoph Lameter 已提交
3500
	 * If we are Redzoning then check if there is some space between the
C
Christoph Lameter 已提交
3501
	 * end of the object and the free pointer. If not then add an
C
Christoph Lameter 已提交
3502
	 * additional word to have some bytes to store Redzone information.
C
Christoph Lameter 已提交
3503
	 */
3504
	if ((flags & SLAB_RED_ZONE) && size == s->object_size)
C
Christoph Lameter 已提交
3505
		size += sizeof(void *);
C
Christoph Lameter 已提交
3506
#endif
C
Christoph Lameter 已提交
3507 3508

	/*
C
Christoph Lameter 已提交
3509 3510
	 * With that we have determined the number of bytes in actual use
	 * by the object. This is the potential offset to the free pointer.
C
Christoph Lameter 已提交
3511 3512 3513
	 */
	s->inuse = size;

3514
	if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3515
		s->ctor)) {
C
Christoph Lameter 已提交
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527
		/*
		 * Relocate free pointer after the object if it is not
		 * permitted to overwrite the first word of the object on
		 * kmem_cache_free.
		 *
		 * This is the case if we do RCU, have a constructor or
		 * destructor or are poisoning the objects.
		 */
		s->offset = size;
		size += sizeof(void *);
	}

3528
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
3529 3530 3531 3532 3533 3534
	if (flags & SLAB_STORE_USER)
		/*
		 * Need to store information about allocs and frees after
		 * the object.
		 */
		size += 2 * sizeof(struct track);
3535
#endif
C
Christoph Lameter 已提交
3536

3537 3538
	kasan_cache_create(s, &size, &s->flags);
#ifdef CONFIG_SLUB_DEBUG
J
Joonsoo Kim 已提交
3539
	if (flags & SLAB_RED_ZONE) {
C
Christoph Lameter 已提交
3540 3541 3542 3543
		/*
		 * Add some empty padding so that we can catch
		 * overwrites from earlier objects rather than let
		 * tracking information or the free pointer be
3544
		 * corrupted if a user writes before the start
C
Christoph Lameter 已提交
3545 3546 3547
		 * of the object.
		 */
		size += sizeof(void *);
J
Joonsoo Kim 已提交
3548 3549 3550 3551 3552

		s->red_left_pad = sizeof(void *);
		s->red_left_pad = ALIGN(s->red_left_pad, s->align);
		size += s->red_left_pad;
	}
C
Christoph Lameter 已提交
3553
#endif
C
Christoph Lameter 已提交
3554

C
Christoph Lameter 已提交
3555 3556 3557 3558 3559
	/*
	 * SLUB stores one object immediately after another beginning from
	 * offset 0. In order to align the objects we have to simply size
	 * each object to conform to the alignment.
	 */
3560
	size = ALIGN(size, s->align);
C
Christoph Lameter 已提交
3561
	s->size = size;
3562 3563 3564
	if (forced_order >= 0)
		order = forced_order;
	else
3565
		order = calculate_order(size, s->reserved);
C
Christoph Lameter 已提交
3566

3567
	if (order < 0)
C
Christoph Lameter 已提交
3568 3569
		return 0;

3570
	s->allocflags = 0;
3571
	if (order)
3572 3573 3574
		s->allocflags |= __GFP_COMP;

	if (s->flags & SLAB_CACHE_DMA)
3575
		s->allocflags |= GFP_DMA;
3576 3577 3578 3579

	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		s->allocflags |= __GFP_RECLAIMABLE;

C
Christoph Lameter 已提交
3580 3581 3582
	/*
	 * Determine the number of objects per slab
	 */
3583 3584
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
3585 3586
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;
C
Christoph Lameter 已提交
3587

3588
	return !!oo_objects(s->oo);
C
Christoph Lameter 已提交
3589 3590
}

3591
static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
C
Christoph Lameter 已提交
3592
{
3593
	s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3594
	s->reserved = 0;
3595 3596 3597
#ifdef CONFIG_SLAB_FREELIST_HARDENED
	s->random = get_random_long();
#endif
C
Christoph Lameter 已提交
3598

3599
	if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3600
		s->reserved = sizeof(struct rcu_head);
C
Christoph Lameter 已提交
3601

3602
	if (!calculate_sizes(s, -1))
C
Christoph Lameter 已提交
3603
		goto error;
3604 3605 3606 3607 3608
	if (disable_higher_order_debug) {
		/*
		 * Disable debugging flags that store metadata if the min slab
		 * order increased.
		 */
3609
		if (get_order(s->size) > get_order(s->object_size)) {
3610 3611 3612 3613 3614 3615
			s->flags &= ~DEBUG_METADATA_FLAGS;
			s->offset = 0;
			if (!calculate_sizes(s, -1))
				goto error;
		}
	}
C
Christoph Lameter 已提交
3616

3617 3618
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
    defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3619
	if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3620 3621 3622 3623
		/* Enable fast mode */
		s->flags |= __CMPXCHG_DOUBLE;
#endif

3624 3625 3626 3627
	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
3628 3629
	set_min_partial(s, ilog2(s->size) / 2);

3630
	set_cpu_partial(s);
3631

C
Christoph Lameter 已提交
3632
#ifdef CONFIG_NUMA
3633
	s->remote_node_defrag_ratio = 1000;
C
Christoph Lameter 已提交
3634
#endif
T
Thomas Garnier 已提交
3635 3636 3637 3638 3639 3640 3641

	/* Initialize the pre-computed randomized freelist if slab is up */
	if (slab_state >= UP) {
		if (init_cache_random_seq(s))
			goto error;
	}

3642
	if (!init_kmem_cache_nodes(s))
3643
		goto error;
C
Christoph Lameter 已提交
3644

3645
	if (alloc_kmem_cache_cpus(s))
3646
		return 0;
3647

3648
	free_kmem_cache_nodes(s);
C
Christoph Lameter 已提交
3649 3650
error:
	if (flags & SLAB_PANIC)
J
Joe Perches 已提交
3651 3652 3653
		panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
		      s->name, (unsigned long)s->size, s->size,
		      oo_order(s->oo), s->offset, flags);
3654
	return -EINVAL;
C
Christoph Lameter 已提交
3655 3656
}

3657 3658 3659 3660 3661 3662
static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
#ifdef CONFIG_SLUB_DEBUG
	void *addr = page_address(page);
	void *p;
N
Namhyung Kim 已提交
3663 3664
	unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
				     sizeof(long), GFP_ATOMIC);
E
Eric Dumazet 已提交
3665 3666
	if (!map)
		return;
3667
	slab_err(s, page, text, s->name);
3668 3669
	slab_lock(page);

3670
	get_map(s, page, map);
3671 3672 3673
	for_each_object(p, s, addr, page->objects) {

		if (!test_bit(slab_index(p, s, addr), map)) {
3674
			pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3675 3676 3677 3678
			print_tracking(s, p);
		}
	}
	slab_unlock(page);
E
Eric Dumazet 已提交
3679
	kfree(map);
3680 3681 3682
#endif
}

C
Christoph Lameter 已提交
3683
/*
C
Christoph Lameter 已提交
3684
 * Attempt to free all partial slabs on a node.
3685 3686
 * This is called from __kmem_cache_shutdown(). We must take list_lock
 * because sysfs file might still access partial list after the shutdowning.
C
Christoph Lameter 已提交
3687
 */
C
Christoph Lameter 已提交
3688
static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
C
Christoph Lameter 已提交
3689
{
3690
	LIST_HEAD(discard);
C
Christoph Lameter 已提交
3691 3692
	struct page *page, *h;

3693 3694
	BUG_ON(irqs_disabled());
	spin_lock_irq(&n->list_lock);
3695
	list_for_each_entry_safe(page, h, &n->partial, lru) {
C
Christoph Lameter 已提交
3696
		if (!page->inuse) {
3697
			remove_partial(n, page);
3698
			list_add(&page->lru, &discard);
3699 3700
		} else {
			list_slab_objects(s, page,
3701
			"Objects remaining in %s on __kmem_cache_shutdown()");
C
Christoph Lameter 已提交
3702
		}
3703
	}
3704
	spin_unlock_irq(&n->list_lock);
3705 3706 3707

	list_for_each_entry_safe(page, h, &discard, lru)
		discard_slab(s, page);
C
Christoph Lameter 已提交
3708 3709 3710
}

/*
C
Christoph Lameter 已提交
3711
 * Release all resources used by a slab cache.
C
Christoph Lameter 已提交
3712
 */
3713
int __kmem_cache_shutdown(struct kmem_cache *s)
C
Christoph Lameter 已提交
3714 3715
{
	int node;
C
Christoph Lameter 已提交
3716
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
3717 3718 3719

	flush_all(s);
	/* Attempt to free all objects */
C
Christoph Lameter 已提交
3720
	for_each_kmem_cache_node(s, node, n) {
C
Christoph Lameter 已提交
3721 3722
		free_partial(s, n);
		if (n->nr_partial || slabs_node(s, node))
C
Christoph Lameter 已提交
3723 3724
			return 1;
	}
3725
	sysfs_slab_remove(s);
C
Christoph Lameter 已提交
3726 3727 3728 3729 3730 3731 3732 3733 3734
	return 0;
}

/********************************************************************
 *		Kmalloc subsystem
 *******************************************************************/

static int __init setup_slub_min_order(char *str)
{
P
Pekka Enberg 已提交
3735
	get_option(&str, &slub_min_order);
C
Christoph Lameter 已提交
3736 3737 3738 3739 3740 3741 3742 3743

	return 1;
}

__setup("slub_min_order=", setup_slub_min_order);

static int __init setup_slub_max_order(char *str)
{
P
Pekka Enberg 已提交
3744
	get_option(&str, &slub_max_order);
D
David Rientjes 已提交
3745
	slub_max_order = min(slub_max_order, MAX_ORDER - 1);
C
Christoph Lameter 已提交
3746 3747 3748 3749 3750 3751 3752 3753

	return 1;
}

__setup("slub_max_order=", setup_slub_max_order);

static int __init setup_slub_min_objects(char *str)
{
P
Pekka Enberg 已提交
3754
	get_option(&str, &slub_min_objects);
C
Christoph Lameter 已提交
3755 3756 3757 3758 3759 3760 3761 3762

	return 1;
}

__setup("slub_min_objects=", setup_slub_min_objects);

void *__kmalloc(size_t size, gfp_t flags)
{
3763
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3764
	void *ret;
C
Christoph Lameter 已提交
3765

3766
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3767
		return kmalloc_large(size, flags);
3768

3769
	s = kmalloc_slab(size, flags);
3770 3771

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3772 3773
		return s;

3774
	ret = slab_alloc(s, flags, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3775

3776
	trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
E
Eduard - Gabriel Munteanu 已提交
3777

3778
	kasan_kmalloc(s, ret, size, flags);
3779

E
Eduard - Gabriel Munteanu 已提交
3780
	return ret;
C
Christoph Lameter 已提交
3781 3782 3783
}
EXPORT_SYMBOL(__kmalloc);

3784
#ifdef CONFIG_NUMA
3785 3786
static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
{
3787
	struct page *page;
3788
	void *ptr = NULL;
3789

V
Vladimir Davydov 已提交
3790
	flags |= __GFP_COMP | __GFP_NOTRACK;
3791
	page = alloc_pages_node(node, flags, get_order(size));
3792
	if (page)
3793 3794
		ptr = page_address(page);

3795
	kmalloc_large_node_hook(ptr, size, flags);
3796
	return ptr;
3797 3798
}

C
Christoph Lameter 已提交
3799 3800
void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
3801
	struct kmem_cache *s;
E
Eduard - Gabriel Munteanu 已提交
3802
	void *ret;
C
Christoph Lameter 已提交
3803

3804
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
E
Eduard - Gabriel Munteanu 已提交
3805 3806
		ret = kmalloc_large_node(size, flags, node);

3807 3808 3809
		trace_kmalloc_node(_RET_IP_, ret,
				   size, PAGE_SIZE << get_order(size),
				   flags, node);
E
Eduard - Gabriel Munteanu 已提交
3810 3811 3812

		return ret;
	}
3813

3814
	s = kmalloc_slab(size, flags);
3815 3816

	if (unlikely(ZERO_OR_NULL_PTR(s)))
3817 3818
		return s;

3819
	ret = slab_alloc_node(s, flags, node, _RET_IP_);
E
Eduard - Gabriel Munteanu 已提交
3820

3821
	trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
E
Eduard - Gabriel Munteanu 已提交
3822

3823
	kasan_kmalloc(s, ret, size, flags);
3824

E
Eduard - Gabriel Munteanu 已提交
3825
	return ret;
C
Christoph Lameter 已提交
3826 3827 3828 3829
}
EXPORT_SYMBOL(__kmalloc_node);
#endif

K
Kees Cook 已提交
3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
#ifdef CONFIG_HARDENED_USERCOPY
/*
 * Rejects objects that are incorrectly sized.
 *
 * Returns NULL if check passes, otherwise const char * to name of cache
 * to indicate an error.
 */
const char *__check_heap_object(const void *ptr, unsigned long n,
				struct page *page)
{
	struct kmem_cache *s;
	unsigned long offset;
	size_t object_size;

	/* Find object and usable object size. */
	s = page->slab_cache;
	object_size = slab_ksize(s);

	/* Reject impossible pointers. */
	if (ptr < page_address(page))
		return s->name;

	/* Find offset within object. */
	offset = (ptr - page_address(page)) % s->size;

	/* Adjust for redzone and reject if within the redzone. */
	if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
		if (offset < s->red_left_pad)
			return s->name;
		offset -= s->red_left_pad;
	}

	/* Allow address range falling entirely within object size. */
	if (offset <= object_size && n <= object_size - offset)
		return NULL;

	return s->name;
}
#endif /* CONFIG_HARDENED_USERCOPY */

3870
static size_t __ksize(const void *object)
C
Christoph Lameter 已提交
3871
{
3872
	struct page *page;
C
Christoph Lameter 已提交
3873

3874
	if (unlikely(object == ZERO_SIZE_PTR))
3875 3876
		return 0;

3877 3878
	page = virt_to_head_page(object);

P
Pekka Enberg 已提交
3879 3880
	if (unlikely(!PageSlab(page))) {
		WARN_ON(!PageCompound(page));
3881
		return PAGE_SIZE << compound_order(page);
P
Pekka Enberg 已提交
3882
	}
C
Christoph Lameter 已提交
3883

3884
	return slab_ksize(page->slab_cache);
C
Christoph Lameter 已提交
3885
}
3886 3887 3888 3889 3890

size_t ksize(const void *object)
{
	size_t size = __ksize(object);
	/* We assume that ksize callers could use whole allocated area,
3891 3892 3893
	 * so we need to unpoison this area.
	 */
	kasan_unpoison_shadow(object, size);
3894 3895
	return size;
}
K
Kirill A. Shutemov 已提交
3896
EXPORT_SYMBOL(ksize);
C
Christoph Lameter 已提交
3897 3898 3899 3900

void kfree(const void *x)
{
	struct page *page;
3901
	void *object = (void *)x;
C
Christoph Lameter 已提交
3902

3903 3904
	trace_kfree(_RET_IP_, x);

3905
	if (unlikely(ZERO_OR_NULL_PTR(x)))
C
Christoph Lameter 已提交
3906 3907
		return;

3908
	page = virt_to_head_page(x);
3909
	if (unlikely(!PageSlab(page))) {
3910
		BUG_ON(!PageCompound(page));
3911
		kfree_hook(x);
3912
		__free_pages(page, compound_order(page));
3913 3914
		return;
	}
3915
	slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
C
Christoph Lameter 已提交
3916 3917 3918
}
EXPORT_SYMBOL(kfree);

3919 3920
#define SHRINK_PROMOTE_MAX 32

3921
/*
3922 3923 3924
 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
 * up most to the head of the partial lists. New allocations will then
 * fill those up and thus they can be removed from the partial lists.
C
Christoph Lameter 已提交
3925 3926 3927 3928
 *
 * The slabs with the least items are placed last. This results in them
 * being allocated from last increasing the chance that the last objects
 * are freed in them.
3929
 */
3930
int __kmem_cache_shrink(struct kmem_cache *s)
3931 3932 3933 3934 3935 3936
{
	int node;
	int i;
	struct kmem_cache_node *n;
	struct page *page;
	struct page *t;
3937 3938
	struct list_head discard;
	struct list_head promote[SHRINK_PROMOTE_MAX];
3939
	unsigned long flags;
3940
	int ret = 0;
3941 3942

	flush_all(s);
C
Christoph Lameter 已提交
3943
	for_each_kmem_cache_node(s, node, n) {
3944 3945 3946
		INIT_LIST_HEAD(&discard);
		for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
			INIT_LIST_HEAD(promote + i);
3947 3948 3949 3950

		spin_lock_irqsave(&n->list_lock, flags);

		/*
3951
		 * Build lists of slabs to discard or promote.
3952
		 *
C
Christoph Lameter 已提交
3953 3954
		 * Note that concurrent frees may occur while we hold the
		 * list_lock. page->inuse here is the upper limit.
3955 3956
		 */
		list_for_each_entry_safe(page, t, &n->partial, lru) {
3957 3958 3959 3960 3961 3962 3963 3964 3965 3966
			int free = page->objects - page->inuse;

			/* Do not reread page->inuse */
			barrier();

			/* We do not keep full slabs on the list */
			BUG_ON(free <= 0);

			if (free == page->objects) {
				list_move(&page->lru, &discard);
3967
				n->nr_partial--;
3968 3969
			} else if (free <= SHRINK_PROMOTE_MAX)
				list_move(&page->lru, promote + free - 1);
3970 3971 3972
		}

		/*
3973 3974
		 * Promote the slabs filled up most to the head of the
		 * partial list.
3975
		 */
3976 3977
		for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
			list_splice(promote + i, &n->partial);
3978 3979

		spin_unlock_irqrestore(&n->list_lock, flags);
3980 3981

		/* Release empty slabs */
3982
		list_for_each_entry_safe(page, t, &discard, lru)
3983
			discard_slab(s, page);
3984 3985 3986

		if (slabs_node(s, node))
			ret = 1;
3987 3988
	}

3989
	return ret;
3990 3991
}

3992
#ifdef CONFIG_MEMCG
3993 3994
static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
{
3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008
	/*
	 * Called with all the locks held after a sched RCU grace period.
	 * Even if @s becomes empty after shrinking, we can't know that @s
	 * doesn't have allocations already in-flight and thus can't
	 * destroy @s until the associated memcg is released.
	 *
	 * However, let's remove the sysfs files for empty caches here.
	 * Each cache has a lot of interface files which aren't
	 * particularly useful for empty draining caches; otherwise, we can
	 * easily end up with millions of unnecessary sysfs files on
	 * systems which have a lot of memory and transient cgroups.
	 */
	if (!__kmem_cache_shrink(s))
		sysfs_slab_remove(s);
4009 4010
}

4011 4012 4013 4014 4015 4016
void __kmemcg_cache_deactivate(struct kmem_cache *s)
{
	/*
	 * Disable empty slabs caching. Used to avoid pinning offline
	 * memory cgroups by kmem pages that can be freed.
	 */
4017
	slub_set_cpu_partial(s, 0);
4018 4019 4020 4021
	s->min_partial = 0;

	/*
	 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4022
	 * we have to make sure the change is visible before shrinking.
4023
	 */
4024
	slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4025 4026 4027
}
#endif

4028 4029 4030 4031
static int slab_mem_going_offline_callback(void *arg)
{
	struct kmem_cache *s;

4032
	mutex_lock(&slab_mutex);
4033
	list_for_each_entry(s, &slab_caches, list)
4034
		__kmem_cache_shrink(s);
4035
	mutex_unlock(&slab_mutex);
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046

	return 0;
}

static void slab_mem_offline_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
	int offline_node;

4047
	offline_node = marg->status_change_nid_normal;
4048 4049 4050 4051 4052 4053 4054 4055

	/*
	 * If the node still has available memory. we need kmem_cache_node
	 * for it yet.
	 */
	if (offline_node < 0)
		return;

4056
	mutex_lock(&slab_mutex);
4057 4058 4059 4060 4061 4062
	list_for_each_entry(s, &slab_caches, list) {
		n = get_node(s, offline_node);
		if (n) {
			/*
			 * if n->nr_slabs > 0, slabs still exist on the node
			 * that is going down. We were unable to free them,
4063
			 * and offline_pages() function shouldn't call this
4064 4065
			 * callback. So, we must fail.
			 */
4066
			BUG_ON(slabs_node(s, offline_node));
4067 4068

			s->node[offline_node] = NULL;
4069
			kmem_cache_free(kmem_cache_node, n);
4070 4071
		}
	}
4072
	mutex_unlock(&slab_mutex);
4073 4074 4075 4076 4077 4078 4079
}

static int slab_mem_going_online_callback(void *arg)
{
	struct kmem_cache_node *n;
	struct kmem_cache *s;
	struct memory_notify *marg = arg;
4080
	int nid = marg->status_change_nid_normal;
4081 4082 4083 4084 4085 4086 4087 4088 4089 4090
	int ret = 0;

	/*
	 * If the node's memory is already available, then kmem_cache_node is
	 * already created. Nothing to do.
	 */
	if (nid < 0)
		return 0;

	/*
4091
	 * We are bringing a node online. No memory is available yet. We must
4092 4093 4094
	 * allocate a kmem_cache_node structure in order to bring the node
	 * online.
	 */
4095
	mutex_lock(&slab_mutex);
4096 4097 4098 4099 4100 4101
	list_for_each_entry(s, &slab_caches, list) {
		/*
		 * XXX: kmem_cache_alloc_node will fallback to other nodes
		 *      since memory is not yet available from the node that
		 *      is brought up.
		 */
4102
		n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4103 4104 4105 4106
		if (!n) {
			ret = -ENOMEM;
			goto out;
		}
4107
		init_kmem_cache_node(n);
4108 4109 4110
		s->node[nid] = n;
	}
out:
4111
	mutex_unlock(&slab_mutex);
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134
	return ret;
}

static int slab_memory_callback(struct notifier_block *self,
				unsigned long action, void *arg)
{
	int ret = 0;

	switch (action) {
	case MEM_GOING_ONLINE:
		ret = slab_mem_going_online_callback(arg);
		break;
	case MEM_GOING_OFFLINE:
		ret = slab_mem_going_offline_callback(arg);
		break;
	case MEM_OFFLINE:
	case MEM_CANCEL_ONLINE:
		slab_mem_offline_callback(arg);
		break;
	case MEM_ONLINE:
	case MEM_CANCEL_OFFLINE:
		break;
	}
4135 4136 4137 4138
	if (ret)
		ret = notifier_from_errno(ret);
	else
		ret = NOTIFY_OK;
4139 4140 4141
	return ret;
}

4142 4143 4144 4145
static struct notifier_block slab_memory_callback_nb = {
	.notifier_call = slab_memory_callback,
	.priority = SLAB_CALLBACK_PRI,
};
4146

C
Christoph Lameter 已提交
4147 4148 4149 4150
/********************************************************************
 *			Basic setup of slabs
 *******************************************************************/

4151 4152
/*
 * Used for early kmem_cache structures that were allocated using
4153 4154
 * the page allocator. Allocate them properly then fix up the pointers
 * that may be pointing to the wrong kmem_cache structure.
4155 4156
 */

4157
static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4158 4159
{
	int node;
4160
	struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
C
Christoph Lameter 已提交
4161
	struct kmem_cache_node *n;
4162

4163
	memcpy(s, static_cache, kmem_cache->object_size);
4164

4165 4166 4167 4168 4169 4170
	/*
	 * This runs very early, and only the boot processor is supposed to be
	 * up.  Even if it weren't true, IRQs are not up so we couldn't fire
	 * IPIs around.
	 */
	__flush_cpu_slab(s, smp_processor_id());
C
Christoph Lameter 已提交
4171
	for_each_kmem_cache_node(s, node, n) {
4172 4173
		struct page *p;

C
Christoph Lameter 已提交
4174 4175
		list_for_each_entry(p, &n->partial, lru)
			p->slab_cache = s;
4176

L
Li Zefan 已提交
4177
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4178 4179
		list_for_each_entry(p, &n->full, lru)
			p->slab_cache = s;
4180 4181
#endif
	}
4182
	slab_init_memcg_params(s);
4183
	list_add(&s->list, &slab_caches);
4184
	memcg_link_cache(s);
4185
	return s;
4186 4187
}

C
Christoph Lameter 已提交
4188 4189
void __init kmem_cache_init(void)
{
4190 4191
	static __initdata struct kmem_cache boot_kmem_cache,
		boot_kmem_cache_node;
4192

4193 4194 4195
	if (debug_guardpage_minorder())
		slub_max_order = 0;

4196 4197
	kmem_cache_node = &boot_kmem_cache_node;
	kmem_cache = &boot_kmem_cache;
4198

4199 4200
	create_boot_cache(kmem_cache_node, "kmem_cache_node",
		sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4201

4202
	register_hotmemory_notifier(&slab_memory_callback_nb);
C
Christoph Lameter 已提交
4203 4204 4205 4206

	/* Able to allocate the per node structures */
	slab_state = PARTIAL;

4207 4208 4209 4210
	create_boot_cache(kmem_cache, "kmem_cache",
			offsetof(struct kmem_cache, node) +
				nr_node_ids * sizeof(struct kmem_cache_node *),
		       SLAB_HWCACHE_ALIGN);
4211

4212
	kmem_cache = bootstrap(&boot_kmem_cache);
C
Christoph Lameter 已提交
4213

4214 4215 4216 4217 4218
	/*
	 * Allocate kmem_cache_node properly from the kmem_cache slab.
	 * kmem_cache_node is separately allocated so no need to
	 * update any list pointers.
	 */
4219
	kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4220 4221

	/* Now we can use the kmem_cache to allocate kmalloc slabs */
4222
	setup_kmalloc_cache_index_table();
4223
	create_kmalloc_caches(0);
C
Christoph Lameter 已提交
4224

T
Thomas Garnier 已提交
4225 4226 4227
	/* Setup random freelists for each cache */
	init_freelist_randomization();

4228 4229
	cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
				  slub_cpu_dead);
C
Christoph Lameter 已提交
4230

4231
	pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
4232
		cache_line_size(),
C
Christoph Lameter 已提交
4233 4234 4235 4236
		slub_min_order, slub_max_order, slub_min_objects,
		nr_cpu_ids, nr_node_ids);
}

4237 4238 4239 4240
void __init kmem_cache_init_late(void)
{
}

4241
struct kmem_cache *
4242 4243
__kmem_cache_alias(const char *name, size_t size, size_t align,
		   unsigned long flags, void (*ctor)(void *))
C
Christoph Lameter 已提交
4244
{
4245
	struct kmem_cache *s, *c;
C
Christoph Lameter 已提交
4246

4247
	s = find_mergeable(size, align, flags, name, ctor);
C
Christoph Lameter 已提交
4248 4249
	if (s) {
		s->refcount++;
4250

C
Christoph Lameter 已提交
4251 4252 4253 4254
		/*
		 * Adjust the object sizes so that we clear
		 * the complete object on kzalloc.
		 */
4255
		s->object_size = max(s->object_size, (int)size);
C
Christoph Lameter 已提交
4256
		s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
C
Christoph Lameter 已提交
4257

4258
		for_each_memcg_cache(c, s) {
4259 4260 4261 4262 4263
			c->object_size = s->object_size;
			c->inuse = max_t(int, c->inuse,
					 ALIGN(size, sizeof(void *)));
		}

4264 4265
		if (sysfs_slab_alias(s, name)) {
			s->refcount--;
4266
			s = NULL;
4267
		}
4268
	}
C
Christoph Lameter 已提交
4269

4270 4271
	return s;
}
P
Pekka Enberg 已提交
4272

4273
int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4274
{
4275 4276 4277 4278 4279
	int err;

	err = kmem_cache_open(s, flags);
	if (err)
		return err;
4280

4281 4282 4283 4284
	/* Mutex is not taken during early boot */
	if (slab_state <= UP)
		return 0;

4285
	memcg_propagate_slab_attrs(s);
4286 4287
	err = sysfs_slab_add(s);
	if (err)
4288
		__kmem_cache_release(s);
4289

4290
	return err;
C
Christoph Lameter 已提交
4291 4292
}

4293
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
C
Christoph Lameter 已提交
4294
{
4295
	struct kmem_cache *s;
4296
	void *ret;
4297

4298
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4299 4300
		return kmalloc_large(size, gfpflags);

4301
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4302

4303
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4304
		return s;
C
Christoph Lameter 已提交
4305

4306
	ret = slab_alloc(s, gfpflags, caller);
4307

L
Lucas De Marchi 已提交
4308
	/* Honor the call site pointer we received. */
4309
	trace_kmalloc(caller, ret, size, s->size, gfpflags);
4310 4311

	return ret;
C
Christoph Lameter 已提交
4312 4313
}

4314
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4315
void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4316
					int node, unsigned long caller)
C
Christoph Lameter 已提交
4317
{
4318
	struct kmem_cache *s;
4319
	void *ret;
4320

4321
	if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4322 4323 4324 4325 4326 4327 4328 4329
		ret = kmalloc_large_node(size, gfpflags, node);

		trace_kmalloc_node(caller, ret,
				   size, PAGE_SIZE << get_order(size),
				   gfpflags, node);

		return ret;
	}
4330

4331
	s = kmalloc_slab(size, gfpflags);
C
Christoph Lameter 已提交
4332

4333
	if (unlikely(ZERO_OR_NULL_PTR(s)))
4334
		return s;
C
Christoph Lameter 已提交
4335

4336
	ret = slab_alloc_node(s, gfpflags, node, caller);
4337

L
Lucas De Marchi 已提交
4338
	/* Honor the call site pointer we received. */
4339
	trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4340 4341

	return ret;
C
Christoph Lameter 已提交
4342
}
4343
#endif
C
Christoph Lameter 已提交
4344

4345
#ifdef CONFIG_SYSFS
4346 4347 4348 4349 4350 4351 4352 4353 4354
static int count_inuse(struct page *page)
{
	return page->inuse;
}

static int count_total(struct page *page)
{
	return page->objects;
}
4355
#endif
4356

4357
#ifdef CONFIG_SLUB_DEBUG
4358 4359
static int validate_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4360 4361
{
	void *p;
4362
	void *addr = page_address(page);
4363 4364 4365 4366 4367 4368

	if (!check_slab(s, page) ||
			!on_freelist(s, page, NULL))
		return 0;

	/* Now we know that a valid freelist exists */
4369
	bitmap_zero(map, page->objects);
4370

4371 4372 4373 4374 4375
	get_map(s, page, map);
	for_each_object(p, s, addr, page->objects) {
		if (test_bit(slab_index(p, s, addr), map))
			if (!check_object(s, page, p, SLUB_RED_INACTIVE))
				return 0;
4376 4377
	}

4378
	for_each_object(p, s, addr, page->objects)
4379
		if (!test_bit(slab_index(p, s, addr), map))
4380
			if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4381 4382 4383 4384
				return 0;
	return 1;
}

4385 4386
static void validate_slab_slab(struct kmem_cache *s, struct page *page,
						unsigned long *map)
4387
{
4388 4389 4390
	slab_lock(page);
	validate_slab(s, page, map);
	slab_unlock(page);
4391 4392
}

4393 4394
static int validate_slab_node(struct kmem_cache *s,
		struct kmem_cache_node *n, unsigned long *map)
4395 4396 4397 4398 4399 4400 4401 4402
{
	unsigned long count = 0;
	struct page *page;
	unsigned long flags;

	spin_lock_irqsave(&n->list_lock, flags);

	list_for_each_entry(page, &n->partial, lru) {
4403
		validate_slab_slab(s, page, map);
4404 4405 4406
		count++;
	}
	if (count != n->nr_partial)
4407 4408
		pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
		       s->name, count, n->nr_partial);
4409 4410 4411 4412 4413

	if (!(s->flags & SLAB_STORE_USER))
		goto out;

	list_for_each_entry(page, &n->full, lru) {
4414
		validate_slab_slab(s, page, map);
4415 4416 4417
		count++;
	}
	if (count != atomic_long_read(&n->nr_slabs))
4418 4419
		pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
		       s->name, count, atomic_long_read(&n->nr_slabs));
4420 4421 4422 4423 4424 4425

out:
	spin_unlock_irqrestore(&n->list_lock, flags);
	return count;
}

4426
static long validate_slab_cache(struct kmem_cache *s)
4427 4428 4429
{
	int node;
	unsigned long count = 0;
4430
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4431
				sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4432
	struct kmem_cache_node *n;
4433 4434 4435

	if (!map)
		return -ENOMEM;
4436 4437

	flush_all(s);
C
Christoph Lameter 已提交
4438
	for_each_kmem_cache_node(s, node, n)
4439 4440
		count += validate_slab_node(s, n, map);
	kfree(map);
4441 4442
	return count;
}
4443
/*
C
Christoph Lameter 已提交
4444
 * Generate lists of code addresses where slabcache objects are allocated
4445 4446 4447 4448 4449
 * and freed.
 */

struct location {
	unsigned long count;
4450
	unsigned long addr;
4451 4452 4453 4454 4455
	long long sum_time;
	long min_time;
	long max_time;
	long min_pid;
	long max_pid;
R
Rusty Russell 已提交
4456
	DECLARE_BITMAP(cpus, NR_CPUS);
4457
	nodemask_t nodes;
4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
};

struct loc_track {
	unsigned long max;
	unsigned long count;
	struct location *loc;
};

static void free_loc_track(struct loc_track *t)
{
	if (t->max)
		free_pages((unsigned long)t->loc,
			get_order(sizeof(struct location) * t->max));
}

4473
static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4474 4475 4476 4477 4478 4479
{
	struct location *l;
	int order;

	order = get_order(sizeof(struct location) * max);

4480
	l = (void *)__get_free_pages(flags, order);
4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493
	if (!l)
		return 0;

	if (t->count) {
		memcpy(l, t->loc, sizeof(struct location) * t->count);
		free_loc_track(t);
	}
	t->max = max;
	t->loc = l;
	return 1;
}

static int add_location(struct loc_track *t, struct kmem_cache *s,
4494
				const struct track *track)
4495 4496 4497
{
	long start, end, pos;
	struct location *l;
4498
	unsigned long caddr;
4499
	unsigned long age = jiffies - track->when;
4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514

	start = -1;
	end = t->count;

	for ( ; ; ) {
		pos = start + (end - start + 1) / 2;

		/*
		 * There is nothing at "end". If we end up there
		 * we need to add something to before end.
		 */
		if (pos == end)
			break;

		caddr = t->loc[pos].addr;
4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530
		if (track->addr == caddr) {

			l = &t->loc[pos];
			l->count++;
			if (track->when) {
				l->sum_time += age;
				if (age < l->min_time)
					l->min_time = age;
				if (age > l->max_time)
					l->max_time = age;

				if (track->pid < l->min_pid)
					l->min_pid = track->pid;
				if (track->pid > l->max_pid)
					l->max_pid = track->pid;

R
Rusty Russell 已提交
4531 4532
				cpumask_set_cpu(track->cpu,
						to_cpumask(l->cpus));
4533 4534
			}
			node_set(page_to_nid(virt_to_page(track)), l->nodes);
4535 4536 4537
			return 1;
		}

4538
		if (track->addr < caddr)
4539 4540 4541 4542 4543 4544
			end = pos;
		else
			start = pos;
	}

	/*
C
Christoph Lameter 已提交
4545
	 * Not found. Insert new tracking element.
4546
	 */
4547
	if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4548 4549 4550 4551 4552 4553 4554 4555
		return 0;

	l = t->loc + pos;
	if (pos < t->count)
		memmove(l + 1, l,
			(t->count - pos) * sizeof(struct location));
	t->count++;
	l->count = 1;
4556 4557 4558 4559 4560 4561
	l->addr = track->addr;
	l->sum_time = age;
	l->min_time = age;
	l->max_time = age;
	l->min_pid = track->pid;
	l->max_pid = track->pid;
R
Rusty Russell 已提交
4562 4563
	cpumask_clear(to_cpumask(l->cpus));
	cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4564 4565
	nodes_clear(l->nodes);
	node_set(page_to_nid(virt_to_page(track)), l->nodes);
4566 4567 4568 4569
	return 1;
}

static void process_slab(struct loc_track *t, struct kmem_cache *s,
E
Eric Dumazet 已提交
4570
		struct page *page, enum track_item alloc,
N
Namhyung Kim 已提交
4571
		unsigned long *map)
4572
{
4573
	void *addr = page_address(page);
4574 4575
	void *p;

4576
	bitmap_zero(map, page->objects);
4577
	get_map(s, page, map);
4578

4579
	for_each_object(p, s, addr, page->objects)
4580 4581
		if (!test_bit(slab_index(p, s, addr), map))
			add_location(t, s, get_track(s, p, alloc));
4582 4583 4584 4585 4586
}

static int list_locations(struct kmem_cache *s, char *buf,
					enum track_item alloc)
{
4587
	int len = 0;
4588
	unsigned long i;
4589
	struct loc_track t = { 0, 0, NULL };
4590
	int node;
E
Eric Dumazet 已提交
4591 4592
	unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
				     sizeof(unsigned long), GFP_KERNEL);
C
Christoph Lameter 已提交
4593
	struct kmem_cache_node *n;
4594

E
Eric Dumazet 已提交
4595 4596 4597
	if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
				     GFP_TEMPORARY)) {
		kfree(map);
4598
		return sprintf(buf, "Out of memory\n");
E
Eric Dumazet 已提交
4599
	}
4600 4601 4602
	/* Push back cpu slabs */
	flush_all(s);

C
Christoph Lameter 已提交
4603
	for_each_kmem_cache_node(s, node, n) {
4604 4605 4606
		unsigned long flags;
		struct page *page;

4607
		if (!atomic_long_read(&n->nr_slabs))
4608 4609 4610 4611
			continue;

		spin_lock_irqsave(&n->list_lock, flags);
		list_for_each_entry(page, &n->partial, lru)
E
Eric Dumazet 已提交
4612
			process_slab(&t, s, page, alloc, map);
4613
		list_for_each_entry(page, &n->full, lru)
E
Eric Dumazet 已提交
4614
			process_slab(&t, s, page, alloc, map);
4615 4616 4617 4618
		spin_unlock_irqrestore(&n->list_lock, flags);
	}

	for (i = 0; i < t.count; i++) {
4619
		struct location *l = &t.loc[i];
4620

H
Hugh Dickins 已提交
4621
		if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4622
			break;
4623
		len += sprintf(buf + len, "%7ld ", l->count);
4624 4625

		if (l->addr)
J
Joe Perches 已提交
4626
			len += sprintf(buf + len, "%pS", (void *)l->addr);
4627
		else
4628
			len += sprintf(buf + len, "<not-available>");
4629 4630

		if (l->sum_time != l->min_time) {
4631
			len += sprintf(buf + len, " age=%ld/%ld/%ld",
R
Roman Zippel 已提交
4632 4633 4634
				l->min_time,
				(long)div_u64(l->sum_time, l->count),
				l->max_time);
4635
		} else
4636
			len += sprintf(buf + len, " age=%ld",
4637 4638 4639
				l->min_time);

		if (l->min_pid != l->max_pid)
4640
			len += sprintf(buf + len, " pid=%ld-%ld",
4641 4642
				l->min_pid, l->max_pid);
		else
4643
			len += sprintf(buf + len, " pid=%ld",
4644 4645
				l->min_pid);

R
Rusty Russell 已提交
4646 4647
		if (num_online_cpus() > 1 &&
				!cpumask_empty(to_cpumask(l->cpus)) &&
4648 4649 4650 4651
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " cpus=%*pbl",
					 cpumask_pr_args(to_cpumask(l->cpus)));
4652

4653
		if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4654 4655 4656 4657
				len < PAGE_SIZE - 60)
			len += scnprintf(buf + len, PAGE_SIZE - len - 50,
					 " nodes=%*pbl",
					 nodemask_pr_args(&l->nodes));
4658

4659
		len += sprintf(buf + len, "\n");
4660 4661 4662
	}

	free_loc_track(&t);
E
Eric Dumazet 已提交
4663
	kfree(map);
4664
	if (!t.count)
4665 4666
		len += sprintf(buf, "No data\n");
	return len;
4667
}
4668
#endif
4669

4670
#ifdef SLUB_RESILIENCY_TEST
4671
static void __init resiliency_test(void)
4672 4673 4674
{
	u8 *p;

4675
	BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4676

4677 4678 4679
	pr_err("SLUB resiliency testing\n");
	pr_err("-----------------------\n");
	pr_err("A. Corruption after allocation\n");
4680 4681 4682

	p = kzalloc(16, GFP_KERNEL);
	p[16] = 0x12;
4683 4684
	pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
	       p + 16);
4685 4686 4687 4688 4689 4690

	validate_slab_cache(kmalloc_caches[4]);

	/* Hmmm... The next two are dangerous */
	p = kzalloc(32, GFP_KERNEL);
	p[32 + sizeof(void *)] = 0x34;
4691 4692 4693
	pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4694 4695 4696 4697 4698

	validate_slab_cache(kmalloc_caches[5]);
	p = kzalloc(64, GFP_KERNEL);
	p += 64 + (get_cycles() & 0xff) * sizeof(void *);
	*p = 0x56;
4699 4700 4701
	pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
	       p);
	pr_err("If allocated object is overwritten then not detectable\n\n");
4702 4703
	validate_slab_cache(kmalloc_caches[6]);

4704
	pr_err("\nB. Corruption after free\n");
4705 4706 4707
	p = kzalloc(128, GFP_KERNEL);
	kfree(p);
	*p = 0x78;
4708
	pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4709 4710 4711 4712 4713
	validate_slab_cache(kmalloc_caches[7]);

	p = kzalloc(256, GFP_KERNEL);
	kfree(p);
	p[50] = 0x9a;
4714
	pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4715 4716 4717 4718 4719
	validate_slab_cache(kmalloc_caches[8]);

	p = kzalloc(512, GFP_KERNEL);
	kfree(p);
	p[512] = 0xab;
4720
	pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4721 4722 4723 4724 4725 4726 4727 4728
	validate_slab_cache(kmalloc_caches[9]);
}
#else
#ifdef CONFIG_SYSFS
static void resiliency_test(void) {};
#endif
#endif

4729
#ifdef CONFIG_SYSFS
C
Christoph Lameter 已提交
4730
enum slab_stat_type {
4731 4732 4733 4734 4735
	SL_ALL,			/* All slabs */
	SL_PARTIAL,		/* Only partially allocated slabs */
	SL_CPU,			/* Only slabs used for cpu caches */
	SL_OBJECTS,		/* Determine allocated objects not slabs */
	SL_TOTAL		/* Determine object capacity not slabs */
C
Christoph Lameter 已提交
4736 4737
};

4738
#define SO_ALL		(1 << SL_ALL)
C
Christoph Lameter 已提交
4739 4740 4741
#define SO_PARTIAL	(1 << SL_PARTIAL)
#define SO_CPU		(1 << SL_CPU)
#define SO_OBJECTS	(1 << SL_OBJECTS)
4742
#define SO_TOTAL	(1 << SL_TOTAL)
C
Christoph Lameter 已提交
4743

4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759
#ifdef CONFIG_MEMCG
static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);

static int __init setup_slub_memcg_sysfs(char *str)
{
	int v;

	if (get_option(&str, &v) > 0)
		memcg_sysfs_enabled = v;

	return 1;
}

__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
#endif

4760 4761
static ssize_t show_slab_objects(struct kmem_cache *s,
			    char *buf, unsigned long flags)
C
Christoph Lameter 已提交
4762 4763 4764 4765 4766 4767
{
	unsigned long total = 0;
	int node;
	int x;
	unsigned long *nodes;

4768
	nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4769 4770
	if (!nodes)
		return -ENOMEM;
C
Christoph Lameter 已提交
4771

4772 4773
	if (flags & SO_CPU) {
		int cpu;
C
Christoph Lameter 已提交
4774

4775
		for_each_possible_cpu(cpu) {
4776 4777
			struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
							       cpu);
4778
			int node;
4779
			struct page *page;
4780

4781
			page = READ_ONCE(c->page);
4782 4783
			if (!page)
				continue;
4784

4785 4786 4787 4788 4789 4790 4791
			node = page_to_nid(page);
			if (flags & SO_TOTAL)
				x = page->objects;
			else if (flags & SO_OBJECTS)
				x = page->inuse;
			else
				x = 1;
4792

4793 4794 4795
			total += x;
			nodes[node] += x;

4796
			page = slub_percpu_partial_read_once(c);
4797
			if (page) {
L
Li Zefan 已提交
4798 4799 4800 4801 4802 4803 4804
				node = page_to_nid(page);
				if (flags & SO_TOTAL)
					WARN_ON_ONCE(1);
				else if (flags & SO_OBJECTS)
					WARN_ON_ONCE(1);
				else
					x = page->pages;
4805 4806
				total += x;
				nodes[node] += x;
4807
			}
C
Christoph Lameter 已提交
4808 4809 4810
		}
	}

4811
	get_online_mems();
4812
#ifdef CONFIG_SLUB_DEBUG
4813
	if (flags & SO_ALL) {
C
Christoph Lameter 已提交
4814 4815 4816
		struct kmem_cache_node *n;

		for_each_kmem_cache_node(s, node, n) {
4817

4818 4819 4820 4821 4822
			if (flags & SO_TOTAL)
				x = atomic_long_read(&n->total_objects);
			else if (flags & SO_OBJECTS)
				x = atomic_long_read(&n->total_objects) -
					count_partial(n, count_free);
C
Christoph Lameter 已提交
4823
			else
4824
				x = atomic_long_read(&n->nr_slabs);
C
Christoph Lameter 已提交
4825 4826 4827 4828
			total += x;
			nodes[node] += x;
		}

4829 4830 4831
	} else
#endif
	if (flags & SO_PARTIAL) {
C
Christoph Lameter 已提交
4832
		struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4833

C
Christoph Lameter 已提交
4834
		for_each_kmem_cache_node(s, node, n) {
4835 4836 4837 4838
			if (flags & SO_TOTAL)
				x = count_partial(n, count_total);
			else if (flags & SO_OBJECTS)
				x = count_partial(n, count_inuse);
C
Christoph Lameter 已提交
4839
			else
4840
				x = n->nr_partial;
C
Christoph Lameter 已提交
4841 4842 4843 4844 4845 4846
			total += x;
			nodes[node] += x;
		}
	}
	x = sprintf(buf, "%lu", total);
#ifdef CONFIG_NUMA
C
Christoph Lameter 已提交
4847
	for (node = 0; node < nr_node_ids; node++)
C
Christoph Lameter 已提交
4848 4849 4850 4851
		if (nodes[node])
			x += sprintf(buf + x, " N%d=%lu",
					node, nodes[node]);
#endif
4852
	put_online_mems();
C
Christoph Lameter 已提交
4853 4854 4855 4856
	kfree(nodes);
	return x + sprintf(buf + x, "\n");
}

4857
#ifdef CONFIG_SLUB_DEBUG
C
Christoph Lameter 已提交
4858 4859 4860
static int any_slab_objects(struct kmem_cache *s)
{
	int node;
C
Christoph Lameter 已提交
4861
	struct kmem_cache_node *n;
C
Christoph Lameter 已提交
4862

C
Christoph Lameter 已提交
4863
	for_each_kmem_cache_node(s, node, n)
4864
		if (atomic_long_read(&n->total_objects))
C
Christoph Lameter 已提交
4865
			return 1;
C
Christoph Lameter 已提交
4866

C
Christoph Lameter 已提交
4867 4868
	return 0;
}
4869
#endif
C
Christoph Lameter 已提交
4870 4871

#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4872
#define to_slab(n) container_of(n, struct kmem_cache, kobj)
C
Christoph Lameter 已提交
4873 4874 4875 4876 4877 4878 4879 4880

struct slab_attribute {
	struct attribute attr;
	ssize_t (*show)(struct kmem_cache *s, char *buf);
	ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
};

#define SLAB_ATTR_RO(_name) \
4881 4882
	static struct slab_attribute _name##_attr = \
	__ATTR(_name, 0400, _name##_show, NULL)
C
Christoph Lameter 已提交
4883 4884 4885

#define SLAB_ATTR(_name) \
	static struct slab_attribute _name##_attr =  \
4886
	__ATTR(_name, 0600, _name##_show, _name##_store)
C
Christoph Lameter 已提交
4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901

static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->size);
}
SLAB_ATTR_RO(slab_size);

static ssize_t align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->align);
}
SLAB_ATTR_RO(align);

static ssize_t object_size_show(struct kmem_cache *s, char *buf)
{
4902
	return sprintf(buf, "%d\n", s->object_size);
C
Christoph Lameter 已提交
4903 4904 4905 4906 4907
}
SLAB_ATTR_RO(object_size);

static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
{
4908
	return sprintf(buf, "%d\n", oo_objects(s->oo));
C
Christoph Lameter 已提交
4909 4910 4911
}
SLAB_ATTR_RO(objs_per_slab);

4912 4913 4914
static ssize_t order_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
4915 4916 4917
	unsigned long order;
	int err;

4918
	err = kstrtoul(buf, 10, &order);
4919 4920
	if (err)
		return err;
4921 4922 4923 4924 4925 4926 4927 4928

	if (order > slub_max_order || order < slub_min_order)
		return -EINVAL;

	calculate_sizes(s, order);
	return length;
}

C
Christoph Lameter 已提交
4929 4930
static ssize_t order_show(struct kmem_cache *s, char *buf)
{
4931
	return sprintf(buf, "%d\n", oo_order(s->oo));
C
Christoph Lameter 已提交
4932
}
4933
SLAB_ATTR(order);
C
Christoph Lameter 已提交
4934

4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945
static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

4946
	err = kstrtoul(buf, 10, &min);
4947 4948 4949
	if (err)
		return err;

4950
	set_min_partial(s, min);
4951 4952 4953 4954
	return length;
}
SLAB_ATTR(min_partial);

4955 4956
static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
{
4957
	return sprintf(buf, "%u\n", slub_cpu_partial(s));
4958 4959 4960 4961 4962 4963 4964 4965
}

static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long objects;
	int err;

4966
	err = kstrtoul(buf, 10, &objects);
4967 4968
	if (err)
		return err;
4969
	if (objects && !kmem_cache_has_cpu_partial(s))
4970
		return -EINVAL;
4971

4972
	slub_set_cpu_partial(s, objects);
4973 4974 4975 4976 4977
	flush_all(s);
	return length;
}
SLAB_ATTR(cpu_partial);

C
Christoph Lameter 已提交
4978 4979
static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
J
Joe Perches 已提交
4980 4981 4982
	if (!s->ctor)
		return 0;
	return sprintf(buf, "%pS\n", s->ctor);
C
Christoph Lameter 已提交
4983 4984 4985 4986 4987
}
SLAB_ATTR_RO(ctor);

static ssize_t aliases_show(struct kmem_cache *s, char *buf)
{
4988
	return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
C
Christoph Lameter 已提交
4989 4990 4991 4992 4993
}
SLAB_ATTR_RO(aliases);

static ssize_t partial_show(struct kmem_cache *s, char *buf)
{
4994
	return show_slab_objects(s, buf, SO_PARTIAL);
C
Christoph Lameter 已提交
4995 4996 4997 4998 4999
}
SLAB_ATTR_RO(partial);

static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
{
5000
	return show_slab_objects(s, buf, SO_CPU);
C
Christoph Lameter 已提交
5001 5002 5003 5004 5005
}
SLAB_ATTR_RO(cpu_slabs);

static ssize_t objects_show(struct kmem_cache *s, char *buf)
{
5006
	return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
C
Christoph Lameter 已提交
5007 5008 5009
}
SLAB_ATTR_RO(objects);

5010 5011 5012 5013 5014 5015
static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
}
SLAB_ATTR_RO(objects_partial);

5016 5017 5018 5019 5020 5021 5022 5023
static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
{
	int objects = 0;
	int pages = 0;
	int cpu;
	int len;

	for_each_online_cpu(cpu) {
5024 5025 5026
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037

		if (page) {
			pages += page->pages;
			objects += page->pobjects;
		}
	}

	len = sprintf(buf, "%d(%d)", objects, pages);

#ifdef CONFIG_SMP
	for_each_online_cpu(cpu) {
5038 5039 5040
		struct page *page;

		page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5041 5042 5043 5044 5045 5046 5047 5048 5049 5050

		if (page && len < PAGE_SIZE - 20)
			len += sprintf(buf + len, " C%d=%d(%d)", cpu,
				page->pobjects, page->pages);
	}
#endif
	return len + sprintf(buf + len, "\n");
}
SLAB_ATTR_RO(slabs_cpu_partial);

5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081
static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
}

static ssize_t reclaim_account_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	s->flags &= ~SLAB_RECLAIM_ACCOUNT;
	if (buf[0] == '1')
		s->flags |= SLAB_RECLAIM_ACCOUNT;
	return length;
}
SLAB_ATTR(reclaim_account);

static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
}
SLAB_ATTR_RO(hwcache_align);

#ifdef CONFIG_ZONE_DMA
static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
}
SLAB_ATTR_RO(cache_dma);
#endif

static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
{
5082
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5083 5084 5085
}
SLAB_ATTR_RO(destroy_by_rcu);

5086 5087 5088 5089 5090 5091
static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

5092
#ifdef CONFIG_SLUB_DEBUG
5093 5094 5095 5096 5097 5098
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL);
}
SLAB_ATTR_RO(slabs);

5099 5100 5101 5102 5103 5104
static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
{
	return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
}
SLAB_ATTR_RO(total_objects);

C
Christoph Lameter 已提交
5105 5106
static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
{
5107
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
C
Christoph Lameter 已提交
5108 5109 5110 5111 5112
}

static ssize_t sanity_checks_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
5113
	s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5114 5115
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
5116
		s->flags |= SLAB_CONSISTENCY_CHECKS;
5117
	}
C
Christoph Lameter 已提交
5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129
	return length;
}
SLAB_ATTR(sanity_checks);

static ssize_t trace_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
}

static ssize_t trace_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5130 5131 5132 5133 5134 5135 5136 5137
	/*
	 * Tracing a merged cache is going to give confusing results
	 * as well as cause other issues like converting a mergeable
	 * cache into an umergeable one.
	 */
	if (s->refcount > 1)
		return -EINVAL;

C
Christoph Lameter 已提交
5138
	s->flags &= ~SLAB_TRACE;
5139 5140
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5141
		s->flags |= SLAB_TRACE;
5142
	}
C
Christoph Lameter 已提交
5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158
	return length;
}
SLAB_ATTR(trace);

static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
}

static ssize_t red_zone_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_RED_ZONE;
5159
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5160
		s->flags |= SLAB_RED_ZONE;
5161
	}
5162
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178
	return length;
}
SLAB_ATTR(red_zone);

static ssize_t poison_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
}

static ssize_t poison_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_POISON;
5179
	if (buf[0] == '1') {
C
Christoph Lameter 已提交
5180
		s->flags |= SLAB_POISON;
5181
	}
5182
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
	return length;
}
SLAB_ATTR(poison);

static ssize_t store_user_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
}

static ssize_t store_user_store(struct kmem_cache *s,
				const char *buf, size_t length)
{
	if (any_slab_objects(s))
		return -EBUSY;

	s->flags &= ~SLAB_STORE_USER;
5199 5200
	if (buf[0] == '1') {
		s->flags &= ~__CMPXCHG_DOUBLE;
C
Christoph Lameter 已提交
5201
		s->flags |= SLAB_STORE_USER;
5202
	}
5203
	calculate_sizes(s, -1);
C
Christoph Lameter 已提交
5204 5205 5206 5207
	return length;
}
SLAB_ATTR(store_user);

5208 5209 5210 5211 5212 5213 5214 5215
static ssize_t validate_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t validate_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5216 5217 5218 5219 5220 5221 5222 5223
	int ret = -EINVAL;

	if (buf[0] == '1') {
		ret = validate_slab_cache(s);
		if (ret >= 0)
			ret = length;
	}
	return ret;
5224 5225
}
SLAB_ATTR(validate);
5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252

static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_ALLOC);
}
SLAB_ATTR_RO(alloc_calls);

static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
{
	if (!(s->flags & SLAB_STORE_USER))
		return -ENOSYS;
	return list_locations(s, buf, TRACK_FREE);
}
SLAB_ATTR_RO(free_calls);
#endif /* CONFIG_SLUB_DEBUG */

#ifdef CONFIG_FAILSLAB
static ssize_t failslab_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
}

static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
							size_t length)
{
5253 5254 5255
	if (s->refcount > 1)
		return -EINVAL;

5256 5257 5258 5259 5260 5261
	s->flags &= ~SLAB_FAILSLAB;
	if (buf[0] == '1')
		s->flags |= SLAB_FAILSLAB;
	return length;
}
SLAB_ATTR(failslab);
5262
#endif
5263

5264 5265 5266 5267 5268 5269 5270 5271
static ssize_t shrink_show(struct kmem_cache *s, char *buf)
{
	return 0;
}

static ssize_t shrink_store(struct kmem_cache *s,
			const char *buf, size_t length)
{
5272 5273 5274
	if (buf[0] == '1')
		kmem_cache_shrink(s);
	else
5275 5276 5277 5278 5279
		return -EINVAL;
	return length;
}
SLAB_ATTR(shrink);

C
Christoph Lameter 已提交
5280
#ifdef CONFIG_NUMA
5281
static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
C
Christoph Lameter 已提交
5282
{
5283
	return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
C
Christoph Lameter 已提交
5284 5285
}

5286
static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
C
Christoph Lameter 已提交
5287 5288
				const char *buf, size_t length)
{
5289 5290 5291
	unsigned long ratio;
	int err;

5292
	err = kstrtoul(buf, 10, &ratio);
5293 5294 5295
	if (err)
		return err;

5296
	if (ratio <= 100)
5297
		s->remote_node_defrag_ratio = ratio * 10;
C
Christoph Lameter 已提交
5298 5299 5300

	return length;
}
5301
SLAB_ATTR(remote_node_defrag_ratio);
C
Christoph Lameter 已提交
5302 5303
#endif

5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315
#ifdef CONFIG_SLUB_STATS
static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
{
	unsigned long sum  = 0;
	int cpu;
	int len;
	int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);

	if (!data)
		return -ENOMEM;

	for_each_online_cpu(cpu) {
5316
		unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5317 5318 5319 5320 5321 5322 5323

		data[cpu] = x;
		sum += x;
	}

	len = sprintf(buf, "%lu", sum);

5324
#ifdef CONFIG_SMP
5325 5326
	for_each_online_cpu(cpu) {
		if (data[cpu] && len < PAGE_SIZE - 20)
5327
			len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5328
	}
5329
#endif
5330 5331 5332 5333
	kfree(data);
	return len + sprintf(buf + len, "\n");
}

D
David Rientjes 已提交
5334 5335 5336 5337 5338
static void clear_stat(struct kmem_cache *s, enum stat_item si)
{
	int cpu;

	for_each_online_cpu(cpu)
5339
		per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
D
David Rientjes 已提交
5340 5341
}

5342 5343 5344 5345 5346
#define STAT_ATTR(si, text) 					\
static ssize_t text##_show(struct kmem_cache *s, char *buf)	\
{								\
	return show_stat(s, buf, si);				\
}								\
D
David Rientjes 已提交
5347 5348 5349 5350 5351 5352 5353 5354 5355
static ssize_t text##_store(struct kmem_cache *s,		\
				const char *buf, size_t length)	\
{								\
	if (buf[0] != '0')					\
		return -EINVAL;					\
	clear_stat(s, si);					\
	return length;						\
}								\
SLAB_ATTR(text);						\
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366

STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
STAT_ATTR(FREE_FASTPATH, free_fastpath);
STAT_ATTR(FREE_SLOWPATH, free_slowpath);
STAT_ATTR(FREE_FROZEN, free_frozen);
STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
STAT_ATTR(ALLOC_SLAB, alloc_slab);
STAT_ATTR(ALLOC_REFILL, alloc_refill);
5367
STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5368 5369 5370 5371 5372 5373 5374
STAT_ATTR(FREE_SLAB, free_slab);
STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5375
STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5376
STAT_ATTR(ORDER_FALLBACK, order_fallback);
5377 5378
STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5379 5380
STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5381 5382
STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5383 5384
#endif

P
Pekka Enberg 已提交
5385
static struct attribute *slab_attrs[] = {
C
Christoph Lameter 已提交
5386 5387 5388 5389
	&slab_size_attr.attr,
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
5390
	&min_partial_attr.attr,
5391
	&cpu_partial_attr.attr,
C
Christoph Lameter 已提交
5392
	&objects_attr.attr,
5393
	&objects_partial_attr.attr,
C
Christoph Lameter 已提交
5394 5395 5396 5397 5398 5399 5400 5401
	&partial_attr.attr,
	&cpu_slabs_attr.attr,
	&ctor_attr.attr,
	&aliases_attr.attr,
	&align_attr.attr,
	&hwcache_align_attr.attr,
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
5402
	&shrink_attr.attr,
5403
	&reserved_attr.attr,
5404
	&slabs_cpu_partial_attr.attr,
5405
#ifdef CONFIG_SLUB_DEBUG
5406 5407 5408 5409
	&total_objects_attr.attr,
	&slabs_attr.attr,
	&sanity_checks_attr.attr,
	&trace_attr.attr,
C
Christoph Lameter 已提交
5410 5411 5412
	&red_zone_attr.attr,
	&poison_attr.attr,
	&store_user_attr.attr,
5413
	&validate_attr.attr,
5414 5415
	&alloc_calls_attr.attr,
	&free_calls_attr.attr,
5416
#endif
C
Christoph Lameter 已提交
5417 5418 5419 5420
#ifdef CONFIG_ZONE_DMA
	&cache_dma_attr.attr,
#endif
#ifdef CONFIG_NUMA
5421
	&remote_node_defrag_ratio_attr.attr,
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
#endif
#ifdef CONFIG_SLUB_STATS
	&alloc_fastpath_attr.attr,
	&alloc_slowpath_attr.attr,
	&free_fastpath_attr.attr,
	&free_slowpath_attr.attr,
	&free_frozen_attr.attr,
	&free_add_partial_attr.attr,
	&free_remove_partial_attr.attr,
	&alloc_from_partial_attr.attr,
	&alloc_slab_attr.attr,
	&alloc_refill_attr.attr,
5434
	&alloc_node_mismatch_attr.attr,
5435 5436 5437 5438 5439 5440 5441
	&free_slab_attr.attr,
	&cpuslab_flush_attr.attr,
	&deactivate_full_attr.attr,
	&deactivate_empty_attr.attr,
	&deactivate_to_head_attr.attr,
	&deactivate_to_tail_attr.attr,
	&deactivate_remote_frees_attr.attr,
5442
	&deactivate_bypass_attr.attr,
5443
	&order_fallback_attr.attr,
5444 5445
	&cmpxchg_double_fail_attr.attr,
	&cmpxchg_double_cpu_fail_attr.attr,
5446 5447
	&cpu_partial_alloc_attr.attr,
	&cpu_partial_free_attr.attr,
5448 5449
	&cpu_partial_node_attr.attr,
	&cpu_partial_drain_attr.attr,
C
Christoph Lameter 已提交
5450
#endif
5451 5452 5453 5454
#ifdef CONFIG_FAILSLAB
	&failslab_attr.attr,
#endif

C
Christoph Lameter 已提交
5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
	NULL
};

static struct attribute_group slab_attr_group = {
	.attrs = slab_attrs,
};

static ssize_t slab_attr_show(struct kobject *kobj,
				struct attribute *attr,
				char *buf)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->show)
		return -EIO;

	err = attribute->show(s, buf);

	return err;
}

static ssize_t slab_attr_store(struct kobject *kobj,
				struct attribute *attr,
				const char *buf, size_t len)
{
	struct slab_attribute *attribute;
	struct kmem_cache *s;
	int err;

	attribute = to_slab_attr(attr);
	s = to_slab(kobj);

	if (!attribute->store)
		return -EIO;

	err = attribute->store(s, buf, len);
5496
#ifdef CONFIG_MEMCG
5497
	if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5498
		struct kmem_cache *c;
C
Christoph Lameter 已提交
5499

5500 5501 5502 5503
		mutex_lock(&slab_mutex);
		if (s->max_attr_size < len)
			s->max_attr_size = len;

5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520
		/*
		 * This is a best effort propagation, so this function's return
		 * value will be determined by the parent cache only. This is
		 * basically because not all attributes will have a well
		 * defined semantics for rollbacks - most of the actions will
		 * have permanent effects.
		 *
		 * Returning the error value of any of the children that fail
		 * is not 100 % defined, in the sense that users seeing the
		 * error code won't be able to know anything about the state of
		 * the cache.
		 *
		 * Only returning the error code for the parent cache at least
		 * has well defined semantics. The cache being written to
		 * directly either failed or succeeded, in which case we loop
		 * through the descendants with best-effort propagation.
		 */
5521 5522
		for_each_memcg_cache(c, s)
			attribute->store(c, buf, len);
5523 5524 5525
		mutex_unlock(&slab_mutex);
	}
#endif
C
Christoph Lameter 已提交
5526 5527 5528
	return err;
}

5529 5530
static void memcg_propagate_slab_attrs(struct kmem_cache *s)
{
5531
#ifdef CONFIG_MEMCG
5532 5533
	int i;
	char *buffer = NULL;
5534
	struct kmem_cache *root_cache;
5535

5536
	if (is_root_cache(s))
5537 5538
		return;

5539
	root_cache = s->memcg_params.root_cache;
5540

5541 5542 5543 5544
	/*
	 * This mean this cache had no attribute written. Therefore, no point
	 * in copying default values around
	 */
5545
	if (!root_cache->max_attr_size)
5546 5547 5548 5549 5550 5551
		return;

	for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
		char mbuf[64];
		char *buf;
		struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5552
		ssize_t len;
5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567

		if (!attr || !attr->store || !attr->show)
			continue;

		/*
		 * It is really bad that we have to allocate here, so we will
		 * do it only as a fallback. If we actually allocate, though,
		 * we can just use the allocated buffer until the end.
		 *
		 * Most of the slub attributes will tend to be very small in
		 * size, but sysfs allows buffers up to a page, so they can
		 * theoretically happen.
		 */
		if (buffer)
			buf = buffer;
5568
		else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5569 5570 5571 5572 5573 5574 5575 5576
			buf = mbuf;
		else {
			buffer = (char *) get_zeroed_page(GFP_KERNEL);
			if (WARN_ON(!buffer))
				continue;
			buf = buffer;
		}

5577 5578 5579
		len = attr->show(root_cache, buf);
		if (len > 0)
			attr->store(s, buf, len);
5580 5581 5582 5583 5584 5585 5586
	}

	if (buffer)
		free_page((unsigned long)buffer);
#endif
}

5587 5588 5589 5590 5591
static void kmem_cache_release(struct kobject *k)
{
	slab_kmem_cache_release(to_slab(k));
}

5592
static const struct sysfs_ops slab_sysfs_ops = {
C
Christoph Lameter 已提交
5593 5594 5595 5596 5597 5598
	.show = slab_attr_show,
	.store = slab_attr_store,
};

static struct kobj_type slab_ktype = {
	.sysfs_ops = &slab_sysfs_ops,
5599
	.release = kmem_cache_release,
C
Christoph Lameter 已提交
5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610
};

static int uevent_filter(struct kset *kset, struct kobject *kobj)
{
	struct kobj_type *ktype = get_ktype(kobj);

	if (ktype == &slab_ktype)
		return 1;
	return 0;
}

5611
static const struct kset_uevent_ops slab_uevent_ops = {
C
Christoph Lameter 已提交
5612 5613 5614
	.filter = uevent_filter,
};

5615
static struct kset *slab_kset;
C
Christoph Lameter 已提交
5616

5617 5618
static inline struct kset *cache_kset(struct kmem_cache *s)
{
5619
#ifdef CONFIG_MEMCG
5620
	if (!is_root_cache(s))
5621
		return s->memcg_params.root_cache->memcg_kset;
5622 5623 5624 5625
#endif
	return slab_kset;
}

C
Christoph Lameter 已提交
5626 5627 5628
#define ID_STR_LENGTH 64

/* Create a unique string id for a slab cache:
C
Christoph Lameter 已提交
5629 5630
 *
 * Format	:[flags-]size
C
Christoph Lameter 已提交
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650
 */
static char *create_unique_id(struct kmem_cache *s)
{
	char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
	char *p = name;

	BUG_ON(!name);

	*p++ = ':';
	/*
	 * First flags affecting slabcache operations. We will only
	 * get here for aliasable slabs so we do not need to support
	 * too many flags. The flags here must cover all flags that
	 * are matched during merging to guarantee that the id is
	 * unique.
	 */
	if (s->flags & SLAB_CACHE_DMA)
		*p++ = 'd';
	if (s->flags & SLAB_RECLAIM_ACCOUNT)
		*p++ = 'a';
5651
	if (s->flags & SLAB_CONSISTENCY_CHECKS)
C
Christoph Lameter 已提交
5652
		*p++ = 'F';
V
Vegard Nossum 已提交
5653 5654
	if (!(s->flags & SLAB_NOTRACK))
		*p++ = 't';
V
Vladimir Davydov 已提交
5655 5656
	if (s->flags & SLAB_ACCOUNT)
		*p++ = 'A';
C
Christoph Lameter 已提交
5657 5658 5659
	if (p != name + 1)
		*p++ = '-';
	p += sprintf(p, "%07d", s->size);
5660

C
Christoph Lameter 已提交
5661 5662 5663 5664
	BUG_ON(p > name + ID_STR_LENGTH - 1);
	return name;
}

5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
static void sysfs_slab_remove_workfn(struct work_struct *work)
{
	struct kmem_cache *s =
		container_of(work, struct kmem_cache, kobj_remove_work);

	if (!s->kobj.state_in_sysfs)
		/*
		 * For a memcg cache, this may be called during
		 * deactivation and again on shutdown.  Remove only once.
		 * A cache is never shut down before deactivation is
		 * complete, so no need to worry about synchronization.
		 */
5677
		goto out;
5678 5679 5680 5681 5682 5683

#ifdef CONFIG_MEMCG
	kset_unregister(s->memcg_kset);
#endif
	kobject_uevent(&s->kobj, KOBJ_REMOVE);
	kobject_del(&s->kobj);
5684
out:
5685 5686 5687
	kobject_put(&s->kobj);
}

C
Christoph Lameter 已提交
5688 5689 5690 5691
static int sysfs_slab_add(struct kmem_cache *s)
{
	int err;
	const char *name;
5692
	struct kset *kset = cache_kset(s);
5693
	int unmergeable = slab_unmergeable(s);
C
Christoph Lameter 已提交
5694

5695 5696
	INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);

5697 5698 5699 5700 5701
	if (!kset) {
		kobject_init(&s->kobj, &slab_ktype);
		return 0;
	}

C
Christoph Lameter 已提交
5702 5703 5704 5705 5706 5707
	if (unmergeable) {
		/*
		 * Slabcache can never be merged so we can use the name proper.
		 * This is typically the case for debug situations. In that
		 * case we can catch duplicate names easily.
		 */
5708
		sysfs_remove_link(&slab_kset->kobj, s->name);
C
Christoph Lameter 已提交
5709 5710 5711 5712 5713 5714 5715 5716 5717
		name = s->name;
	} else {
		/*
		 * Create a unique name for the slab as a target
		 * for the symlinks.
		 */
		name = create_unique_id(s);
	}

5718
	s->kobj.kset = kset;
5719
	err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5720
	if (err)
5721
		goto out;
C
Christoph Lameter 已提交
5722 5723

	err = sysfs_create_group(&s->kobj, &slab_attr_group);
5724 5725
	if (err)
		goto out_del_kobj;
5726

5727
#ifdef CONFIG_MEMCG
5728
	if (is_root_cache(s) && memcg_sysfs_enabled) {
5729 5730
		s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
		if (!s->memcg_kset) {
5731 5732
			err = -ENOMEM;
			goto out_del_kobj;
5733 5734 5735 5736
		}
	}
#endif

C
Christoph Lameter 已提交
5737 5738 5739 5740 5741
	kobject_uevent(&s->kobj, KOBJ_ADD);
	if (!unmergeable) {
		/* Setup first alias */
		sysfs_slab_alias(s, s->name);
	}
5742 5743 5744 5745 5746 5747 5748
out:
	if (!unmergeable)
		kfree(name);
	return err;
out_del_kobj:
	kobject_del(&s->kobj);
	goto out;
C
Christoph Lameter 已提交
5749 5750
}

5751
static void sysfs_slab_remove(struct kmem_cache *s)
C
Christoph Lameter 已提交
5752
{
5753
	if (slab_state < FULL)
5754 5755 5756 5757 5758 5759
		/*
		 * Sysfs has not been setup yet so no need to remove the
		 * cache from sysfs.
		 */
		return;

5760 5761
	kobject_get(&s->kobj);
	schedule_work(&s->kobj_remove_work);
5762 5763 5764 5765 5766 5767
}

void sysfs_slab_release(struct kmem_cache *s)
{
	if (slab_state >= FULL)
		kobject_put(&s->kobj);
C
Christoph Lameter 已提交
5768 5769 5770 5771
}

/*
 * Need to buffer aliases during bootup until sysfs becomes
N
Nick Andrew 已提交
5772
 * available lest we lose that information.
C
Christoph Lameter 已提交
5773 5774 5775 5776 5777 5778 5779
 */
struct saved_alias {
	struct kmem_cache *s;
	const char *name;
	struct saved_alias *next;
};

A
Adrian Bunk 已提交
5780
static struct saved_alias *alias_list;
C
Christoph Lameter 已提交
5781 5782 5783 5784 5785

static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
{
	struct saved_alias *al;

5786
	if (slab_state == FULL) {
C
Christoph Lameter 已提交
5787 5788 5789
		/*
		 * If we have a leftover link then remove it.
		 */
5790 5791
		sysfs_remove_link(&slab_kset->kobj, name);
		return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
C
Christoph Lameter 已提交
5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806
	}

	al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
	if (!al)
		return -ENOMEM;

	al->s = s;
	al->name = name;
	al->next = alias_list;
	alias_list = al;
	return 0;
}

static int __init slab_sysfs_init(void)
{
5807
	struct kmem_cache *s;
C
Christoph Lameter 已提交
5808 5809
	int err;

5810
	mutex_lock(&slab_mutex);
5811

5812
	slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5813
	if (!slab_kset) {
5814
		mutex_unlock(&slab_mutex);
5815
		pr_err("Cannot register slab subsystem.\n");
C
Christoph Lameter 已提交
5816 5817 5818
		return -ENOSYS;
	}

5819
	slab_state = FULL;
5820

5821
	list_for_each_entry(s, &slab_caches, list) {
5822
		err = sysfs_slab_add(s);
5823
		if (err)
5824 5825
			pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
			       s->name);
5826
	}
C
Christoph Lameter 已提交
5827 5828 5829 5830 5831 5832

	while (alias_list) {
		struct saved_alias *al = alias_list;

		alias_list = alias_list->next;
		err = sysfs_slab_alias(al->s, al->name);
5833
		if (err)
5834 5835
			pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
			       al->name);
C
Christoph Lameter 已提交
5836 5837 5838
		kfree(al);
	}

5839
	mutex_unlock(&slab_mutex);
C
Christoph Lameter 已提交
5840 5841 5842 5843 5844
	resiliency_test();
	return 0;
}

__initcall(slab_sysfs_init);
5845
#endif /* CONFIG_SYSFS */
P
Pekka J Enberg 已提交
5846 5847 5848 5849

/*
 * The /proc/slabinfo ABI
 */
5850
#ifdef CONFIG_SLABINFO
5851
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
P
Pekka J Enberg 已提交
5852 5853
{
	unsigned long nr_slabs = 0;
5854 5855
	unsigned long nr_objs = 0;
	unsigned long nr_free = 0;
P
Pekka J Enberg 已提交
5856
	int node;
C
Christoph Lameter 已提交
5857
	struct kmem_cache_node *n;
P
Pekka J Enberg 已提交
5858

C
Christoph Lameter 已提交
5859
	for_each_kmem_cache_node(s, node, n) {
5860 5861
		nr_slabs += node_nr_slabs(n);
		nr_objs += node_nr_objs(n);
5862
		nr_free += count_partial(n, count_free);
P
Pekka J Enberg 已提交
5863 5864
	}

5865 5866 5867 5868 5869 5870
	sinfo->active_objs = nr_objs - nr_free;
	sinfo->num_objs = nr_objs;
	sinfo->active_slabs = nr_slabs;
	sinfo->num_slabs = nr_slabs;
	sinfo->objects_per_slab = oo_objects(s->oo);
	sinfo->cache_order = oo_order(s->oo);
P
Pekka J Enberg 已提交
5871 5872
}

5873
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5874 5875 5876
{
}

5877 5878
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
		       size_t count, loff_t *ppos)
5879
{
5880
	return -EIO;
5881
}
5882
#endif /* CONFIG_SLABINFO */