numa.c 40.4 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3 4 5 6 7 8 9 10
/*
 * pSeries NUMA support
 *
 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */
11 12
#define pr_fmt(fmt) "numa: " fmt

L
Linus Torvalds 已提交
13 14 15 16 17
#include <linux/threads.h>
#include <linux/bootmem.h>
#include <linux/init.h>
#include <linux/mm.h>
#include <linux/mmzone.h>
18
#include <linux/export.h>
L
Linus Torvalds 已提交
19 20 21
#include <linux/nodemask.h>
#include <linux/cpu.h>
#include <linux/notifier.h>
Y
Yinghai Lu 已提交
22
#include <linux/memblock.h>
23
#include <linux/of.h>
24
#include <linux/pfn.h>
25 26
#include <linux/cpuset.h>
#include <linux/node.h>
27
#include <linux/stop_machine.h>
28 29 30
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/uaccess.h>
31
#include <linux/slab.h>
32
#include <asm/cputhreads.h>
33
#include <asm/sparsemem.h>
34
#include <asm/prom.h>
P
Paul Mackerras 已提交
35
#include <asm/smp.h>
36 37
#include <asm/cputhreads.h>
#include <asm/topology.h>
38 39
#include <asm/firmware.h>
#include <asm/paca.h>
40
#include <asm/hvcall.h>
41
#include <asm/setup.h>
42
#include <asm/vdso.h>
L
Linus Torvalds 已提交
43 44 45

static int numa_enabled = 1;

46 47
static char *cmdline __initdata;

L
Linus Torvalds 已提交
48 49 50
static int numa_debug;
#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }

51
int numa_cpu_lookup_table[NR_CPUS];
52
cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
L
Linus Torvalds 已提交
53
struct pglist_data *node_data[MAX_NUMNODES];
54 55

EXPORT_SYMBOL(numa_cpu_lookup_table);
56
EXPORT_SYMBOL(node_to_cpumask_map);
57 58
EXPORT_SYMBOL(node_data);

L
Linus Torvalds 已提交
59
static int min_common_depth;
60
static int n_mem_addr_cells, n_mem_size_cells;
61 62 63 64
static int form1_affinity;

#define MAX_DISTANCE_REF_POINTS 4
static int distance_ref_points_depth;
65
static const __be32 *distance_ref_points;
66
static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
L
Linus Torvalds 已提交
67

68 69 70 71
/*
 * Allocate node_to_cpumask_map based on number of available nodes
 * Requires node_possible_map to be valid.
 *
72
 * Note: cpumask_of_node() is not valid until after this is done.
73 74 75
 */
static void __init setup_node_to_cpumask_map(void)
{
76
	unsigned int node;
77 78

	/* setup nr_node_ids if not done yet */
79 80
	if (nr_node_ids == MAX_NUMNODES)
		setup_nr_node_ids();
81 82 83 84 85 86 87 88 89

	/* allocate the map */
	for (node = 0; node < nr_node_ids; node++)
		alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);

	/* cpumask_of_node() will now work */
	dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
}

90
static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
						unsigned int *nid)
{
	unsigned long long mem;
	char *p = cmdline;
	static unsigned int fake_nid;
	static unsigned long long curr_boundary;

	/*
	 * Modify node id, iff we started creating NUMA nodes
	 * We want to continue from where we left of the last time
	 */
	if (fake_nid)
		*nid = fake_nid;
	/*
	 * In case there are no more arguments to parse, the
	 * node_id should be the same as the last fake node id
	 * (we've handled this above).
	 */
	if (!p)
		return 0;

	mem = memparse(p, &p);
	if (!mem)
		return 0;

	if (mem < curr_boundary)
		return 0;

	curr_boundary = mem;

	if ((end_pfn << PAGE_SHIFT) > mem) {
		/*
		 * Skip commas and spaces
		 */
		while (*p == ',' || *p == ' ' || *p == '\t')
			p++;

		cmdline = p;
		fake_nid++;
		*nid = fake_nid;
		dbg("created new fake_node with id %d\n", fake_nid);
		return 1;
	}
	return 0;
}

137 138 139 140 141 142 143 144 145
static void reset_numa_cpu_lookup_table(void)
{
	unsigned int cpu;

	for_each_possible_cpu(cpu)
		numa_cpu_lookup_table[cpu] = -1;
}

static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
L
Linus Torvalds 已提交
146 147
{
	numa_cpu_lookup_table[cpu] = node;
148 149 150 151 152
}

static void map_cpu_to_node(int cpu, int node)
{
	update_numa_cpu_lookup_table(cpu, node);
153

154 155
	dbg("adding cpu %d to node %d\n", cpu, node);

156 157
	if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
		cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
158 159
}

160
#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
L
Linus Torvalds 已提交
161 162 163 164 165 166
static void unmap_cpu_from_node(unsigned long cpu)
{
	int node = numa_cpu_lookup_table[cpu];

	dbg("removing cpu %lu from node %d\n", cpu, node);

167
	if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
168
		cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
L
Linus Torvalds 已提交
169 170 171 172 173
	} else {
		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
		       cpu, node);
	}
}
174
#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
L
Linus Torvalds 已提交
175 176

/* must hold reference to node during call */
177
static const __be32 *of_get_associativity(struct device_node *dev)
L
Linus Torvalds 已提交
178
{
179
	return of_get_property(dev, "ibm,associativity", NULL);
L
Linus Torvalds 已提交
180 181
}

182 183 184 185 186
/*
 * Returns the property linux,drconf-usable-memory if
 * it exists (the property exists only in kexec/kdump kernels,
 * added by kexec-tools)
 */
187
static const __be32 *of_get_usable_memory(struct device_node *memory)
188
{
189
	const __be32 *prop;
190 191 192
	u32 len;
	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
	if (!prop || len < sizeof(unsigned int))
193
		return NULL;
194 195 196
	return prop;
}

197 198 199 200 201 202
int __node_distance(int a, int b)
{
	int i;
	int distance = LOCAL_DISTANCE;

	if (!form1_affinity)
203
		return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
204 205 206 207 208 209 210 211 212 213 214

	for (i = 0; i < distance_ref_points_depth; i++) {
		if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
			break;

		/* Double the distance for each NUMA level */
		distance *= 2;
	}

	return distance;
}
215
EXPORT_SYMBOL(__node_distance);
216 217

static void initialize_distance_lookup_table(int nid,
218
		const __be32 *associativity)
219 220 221 222 223 224 225
{
	int i;

	if (!form1_affinity)
		return;

	for (i = 0; i < distance_ref_points_depth; i++) {
226 227 228 229
		const __be32 *entry;

		entry = &associativity[be32_to_cpu(distance_ref_points[i])];
		distance_lookup_table[nid][i] = of_read_number(entry, 1);
230 231 232
	}
}

233 234 235
/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 * info is found.
 */
236
static int associativity_to_nid(const __be32 *associativity)
L
Linus Torvalds 已提交
237
{
238
	int nid = -1;
L
Linus Torvalds 已提交
239 240

	if (min_common_depth == -1)
241
		goto out;
L
Linus Torvalds 已提交
242

243 244
	if (of_read_number(associativity, 1) >= min_common_depth)
		nid = of_read_number(&associativity[min_common_depth], 1);
245 246

	/* POWER4 LPAR uses 0xffff as invalid node */
247 248
	if (nid == 0xffff || nid >= MAX_NUMNODES)
		nid = -1;
249

250 251
	if (nid > 0 &&
	    of_read_number(associativity, 1) >= distance_ref_points_depth)
252
		initialize_distance_lookup_table(nid, associativity);
253

254
out:
255
	return nid;
L
Linus Torvalds 已提交
256 257
}

258 259 260 261 262 263
/* Returns the nid associated with the given device tree node,
 * or -1 if not found.
 */
static int of_node_to_nid_single(struct device_node *device)
{
	int nid = -1;
264
	const __be32 *tmp;
265 266 267 268 269 270 271

	tmp = of_get_associativity(device);
	if (tmp)
		nid = associativity_to_nid(tmp);
	return nid;
}

272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
/* Walk the device tree upwards, looking for an associativity id */
int of_node_to_nid(struct device_node *device)
{
	struct device_node *tmp;
	int nid = -1;

	of_node_get(device);
	while (device) {
		nid = of_node_to_nid_single(device);
		if (nid != -1)
			break;

	        tmp = device;
		device = of_get_parent(tmp);
		of_node_put(tmp);
	}
	of_node_put(device);

	return nid;
}
EXPORT_SYMBOL_GPL(of_node_to_nid);

L
Linus Torvalds 已提交
294 295
static int __init find_min_common_depth(void)
{
296
	int depth;
297
	struct device_node *root;
L
Linus Torvalds 已提交
298

299 300 301 302
	if (firmware_has_feature(FW_FEATURE_OPAL))
		root = of_find_node_by_path("/ibm,opal");
	else
		root = of_find_node_by_path("/rtas");
303 304
	if (!root)
		root = of_find_node_by_path("/");
L
Linus Torvalds 已提交
305 306

	/*
307 308 309 310 311 312 313 314 315 316
	 * This property is a set of 32-bit integers, each representing
	 * an index into the ibm,associativity nodes.
	 *
	 * With form 0 affinity the first integer is for an SMP configuration
	 * (should be all 0's) and the second is for a normal NUMA
	 * configuration. We have only one level of NUMA.
	 *
	 * With form 1 affinity the first integer is the most significant
	 * NUMA boundary and the following are progressively less significant
	 * boundaries. There can be more than one level of NUMA.
L
Linus Torvalds 已提交
317
	 */
318
	distance_ref_points = of_get_property(root,
319 320 321 322 323 324 325 326 327
					"ibm,associativity-reference-points",
					&distance_ref_points_depth);

	if (!distance_ref_points) {
		dbg("NUMA: ibm,associativity-reference-points not found.\n");
		goto err;
	}

	distance_ref_points_depth /= sizeof(int);
L
Linus Torvalds 已提交
328

329 330 331
	if (firmware_has_feature(FW_FEATURE_OPAL) ||
	    firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
		dbg("Using form 1 affinity\n");
332
		form1_affinity = 1;
333 334
	}

335
	if (form1_affinity) {
336
		depth = of_read_number(distance_ref_points, 1);
L
Linus Torvalds 已提交
337
	} else {
338 339 340 341 342 343
		if (distance_ref_points_depth < 2) {
			printk(KERN_WARNING "NUMA: "
				"short ibm,associativity-reference-points\n");
			goto err;
		}

344
		depth = of_read_number(&distance_ref_points[1], 1);
L
Linus Torvalds 已提交
345 346
	}

347 348 349 350 351 352 353 354 355 356
	/*
	 * Warn and cap if the hardware supports more than
	 * MAX_DISTANCE_REF_POINTS domains.
	 */
	if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
		printk(KERN_WARNING "NUMA: distance array capped at "
			"%d entries\n", MAX_DISTANCE_REF_POINTS);
		distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
	}

357
	of_node_put(root);
L
Linus Torvalds 已提交
358
	return depth;
359 360

err:
361
	of_node_put(root);
362
	return -1;
L
Linus Torvalds 已提交
363 364
}

365
static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
L
Linus Torvalds 已提交
366 367 368 369
{
	struct device_node *memory = NULL;

	memory = of_find_node_by_type(memory, "memory");
370
	if (!memory)
371
		panic("numa.c: No memory nodes found!");
372

373
	*n_addr_cells = of_n_addr_cells(memory);
374
	*n_size_cells = of_n_size_cells(memory);
375
	of_node_put(memory);
L
Linus Torvalds 已提交
376 377
}

378
static unsigned long read_n_cells(int n, const __be32 **buf)
L
Linus Torvalds 已提交
379 380 381 382
{
	unsigned long result = 0;

	while (n--) {
383
		result = (result << 32) | of_read_number(*buf, 1);
L
Linus Torvalds 已提交
384 385 386 387 388
		(*buf)++;
	}
	return result;
}

389
/*
Y
Yinghai Lu 已提交
390
 * Read the next memblock list entry from the ibm,dynamic-memory property
391 392
 * and return the information in the provided of_drconf_cell structure.
 */
393
static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
394
{
395
	const __be32 *cp;
396 397 398 399

	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);

	cp = *cellp;
400 401 402 403
	drmem->drc_index = of_read_number(cp, 1);
	drmem->reserved = of_read_number(&cp[1], 1);
	drmem->aa_index = of_read_number(&cp[2], 1);
	drmem->flags = of_read_number(&cp[3], 1);
404 405 406 407 408

	*cellp = cp + 4;
}

/*
L
Lucas De Marchi 已提交
409
 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
410
 *
Y
Yinghai Lu 已提交
411 412
 * The layout of the ibm,dynamic-memory property is a number N of memblock
 * list entries followed by N memblock list entries.  Each memblock list entry
L
Lucas De Marchi 已提交
413
 * contains information as laid out in the of_drconf_cell struct above.
414
 */
415
static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
416
{
417
	const __be32 *prop;
418 419 420 421 422 423
	u32 len, entries;

	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
	if (!prop || len < sizeof(unsigned int))
		return 0;

424
	entries = of_read_number(prop++, 1);
425 426 427 428 429 430 431 432 433 434 435 436

	/* Now that we know the number of entries, revalidate the size
	 * of the property read in to ensure we have everything
	 */
	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
		return 0;

	*dm = prop;
	return entries;
}

/*
L
Lucas De Marchi 已提交
437
 * Retrieve and validate the ibm,lmb-size property for drconf memory
438 439
 * from the device tree.
 */
440
static u64 of_get_lmb_size(struct device_node *memory)
441
{
442
	const __be32 *prop;
443 444
	u32 len;

445
	prop = of_get_property(memory, "ibm,lmb-size", &len);
446 447 448 449 450 451 452 453 454
	if (!prop || len < sizeof(unsigned int))
		return 0;

	return read_n_cells(n_mem_size_cells, &prop);
}

struct assoc_arrays {
	u32	n_arrays;
	u32	array_sz;
455
	const __be32 *arrays;
456 457 458
};

/*
L
Lucas De Marchi 已提交
459
 * Retrieve and validate the list of associativity arrays for drconf
460 461 462 463 464 465 466 467 468 469 470
 * memory from the ibm,associativity-lookup-arrays property of the
 * device tree..
 *
 * The layout of the ibm,associativity-lookup-arrays property is a number N
 * indicating the number of associativity arrays, followed by a number M
 * indicating the size of each associativity array, followed by a list
 * of N associativity arrays.
 */
static int of_get_assoc_arrays(struct device_node *memory,
			       struct assoc_arrays *aa)
{
471
	const __be32 *prop;
472 473 474 475 476 477
	u32 len;

	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
	if (!prop || len < 2 * sizeof(unsigned int))
		return -1;

478 479
	aa->n_arrays = of_read_number(prop++, 1);
	aa->array_sz = of_read_number(prop++, 1);
480

481
	/* Now that we know the number of arrays and size of each array,
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
	 * revalidate the size of the property read in.
	 */
	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
		return -1;

	aa->arrays = prop;
	return 0;
}

/*
 * This is like of_node_to_nid_single() for memory represented in the
 * ibm,dynamic-reconfiguration-memory node.
 */
static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
				   struct assoc_arrays *aa)
{
	int default_nid = 0;
	int nid = default_nid;
	int index;

	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
	    drmem->aa_index < aa->n_arrays) {
		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
506
		nid = of_read_number(&aa->arrays[index], 1);
507 508 509 510 511 512 513 514

		if (nid == 0xffff || nid >= MAX_NUMNODES)
			nid = default_nid;
	}

	return nid;
}

L
Linus Torvalds 已提交
515 516 517 518
/*
 * Figure out to which domain a cpu belongs and stick it there.
 * Return the id of the domain used.
 */
519
static int numa_setup_cpu(unsigned long lcpu)
L
Linus Torvalds 已提交
520
{
521
	int nid = -1;
522 523 524 525 526 527 528 529 530 531 532 533 534
	struct device_node *cpu;

	/*
	 * If a valid cpu-to-node mapping is already available, use it
	 * directly instead of querying the firmware, since it represents
	 * the most recent mapping notified to us by the platform (eg: VPHN).
	 */
	if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
		map_cpu_to_node(lcpu, nid);
		return nid;
	}

	cpu = of_get_cpu_node(lcpu, NULL);
L
Linus Torvalds 已提交
535 536 537

	if (!cpu) {
		WARN_ON(1);
538 539 540 541
		if (cpu_present(lcpu))
			goto out_present;
		else
			goto out;
L
Linus Torvalds 已提交
542 543
	}

544
	nid = of_node_to_nid_single(cpu);
L
Linus Torvalds 已提交
545

546
out_present:
547
	if (nid < 0 || !node_online(nid))
548
		nid = first_online_node;
L
Linus Torvalds 已提交
549

550
	map_cpu_to_node(lcpu, nid);
L
Linus Torvalds 已提交
551
	of_node_put(cpu);
552
out:
553
	return nid;
L
Linus Torvalds 已提交
554 555
}

556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
static void verify_cpu_node_mapping(int cpu, int node)
{
	int base, sibling, i;

	/* Verify that all the threads in the core belong to the same node */
	base = cpu_first_thread_sibling(cpu);

	for (i = 0; i < threads_per_core; i++) {
		sibling = base + i;

		if (sibling == cpu || cpu_is_offline(sibling))
			continue;

		if (cpu_to_node(sibling) != node) {
			WARN(1, "CPU thread siblings %d and %d don't belong"
				" to the same node!\n", cpu, sibling);
			break;
		}
	}
}

577
static int cpu_numa_callback(struct notifier_block *nfb, unsigned long action,
L
Linus Torvalds 已提交
578 579 580
			     void *hcpu)
{
	unsigned long lcpu = (unsigned long)hcpu;
581
	int ret = NOTIFY_DONE, nid;
L
Linus Torvalds 已提交
582 583 584

	switch (action) {
	case CPU_UP_PREPARE:
585
	case CPU_UP_PREPARE_FROZEN:
586 587
		nid = numa_setup_cpu(lcpu);
		verify_cpu_node_mapping((int)lcpu, nid);
L
Linus Torvalds 已提交
588 589 590 591
		ret = NOTIFY_OK;
		break;
#ifdef CONFIG_HOTPLUG_CPU
	case CPU_DEAD:
592
	case CPU_DEAD_FROZEN:
L
Linus Torvalds 已提交
593
	case CPU_UP_CANCELED:
594
	case CPU_UP_CANCELED_FROZEN:
L
Linus Torvalds 已提交
595 596
		unmap_cpu_from_node(lcpu);
		ret = NOTIFY_OK;
597
		break;
L
Linus Torvalds 已提交
598 599 600 601 602 603 604 605 606 607 608
#endif
	}
	return ret;
}

/*
 * Check and possibly modify a memory region to enforce the memory limit.
 *
 * Returns the size the region should have to enforce the memory limit.
 * This will either be the original value of size, a truncated value,
 * or zero. If the returned value of size is 0 the region should be
L
Lucas De Marchi 已提交
609
 * discarded as it lies wholly above the memory limit.
L
Linus Torvalds 已提交
610
 */
611 612
static unsigned long __init numa_enforce_memory_limit(unsigned long start,
						      unsigned long size)
L
Linus Torvalds 已提交
613 614
{
	/*
Y
Yinghai Lu 已提交
615
	 * We use memblock_end_of_DRAM() in here instead of memory_limit because
L
Linus Torvalds 已提交
616
	 * we've already adjusted it for the limit and it takes care of
617 618
	 * having memory holes below the limit.  Also, in the case of
	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
L
Linus Torvalds 已提交
619 620
	 */

Y
Yinghai Lu 已提交
621
	if (start + size <= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
622 623
		return size;

Y
Yinghai Lu 已提交
624
	if (start >= memblock_end_of_DRAM())
L
Linus Torvalds 已提交
625 626
		return 0;

Y
Yinghai Lu 已提交
627
	return memblock_end_of_DRAM() - start;
L
Linus Torvalds 已提交
628 629
}

630 631 632 633
/*
 * Reads the counter for a given entry in
 * linux,drconf-usable-memory property
 */
634
static inline int __init read_usm_ranges(const __be32 **usm)
635 636
{
	/*
637
	 * For each lmb in ibm,dynamic-memory a corresponding
638 639 640 641 642 643 644
	 * entry in linux,drconf-usable-memory property contains
	 * a counter followed by that many (base, size) duple.
	 * read the counter from linux,drconf-usable-memory
	 */
	return read_n_cells(n_mem_size_cells, usm);
}

645 646 647 648 649 650
/*
 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 * node.  This assumes n_mem_{addr,size}_cells have been set.
 */
static void __init parse_drconf_memory(struct device_node *memory)
{
651
	const __be32 *uninitialized_var(dm), *usm;
652
	unsigned int n, rc, ranges, is_kexec_kdump = 0;
653
	unsigned long lmb_size, base, size, sz;
654
	int nid;
655
	struct assoc_arrays aa = { .arrays = NULL };
656 657 658

	n = of_get_drconf_memory(memory, &dm);
	if (!n)
659 660
		return;

661 662
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
663 664 665 666
		return;

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
667 668
		return;

669 670 671 672 673
	/* check if this is a kexec/kdump kernel */
	usm = of_get_usable_memory(memory);
	if (usm != NULL)
		is_kexec_kdump = 1;

674
	for (; n != 0; --n) {
675 676 677 678 679 680 681 682
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if the reserved bit is set in flags (0x80)
		   or if the block is not assigned to this partition (0x8) */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
683
			continue;
684

685
		base = drmem.base_addr;
686
		size = lmb_size;
687
		ranges = 1;
688

689 690 691 692 693 694 695 696 697 698 699 700 701
		if (is_kexec_kdump) {
			ranges = read_usm_ranges(&usm);
			if (!ranges) /* there are no (base, size) duple */
				continue;
		}
		do {
			if (is_kexec_kdump) {
				base = read_n_cells(n_mem_addr_cells, &usm);
				size = read_n_cells(n_mem_size_cells, &usm);
			}
			nid = of_drconf_to_nid_single(&drmem, &aa);
			fake_numa_create_new_node(
				((base + size) >> PAGE_SHIFT),
702
					   &nid);
703 704 705
			node_set_online(nid);
			sz = numa_enforce_memory_limit(base, size);
			if (sz)
706 707
				memblock_set_node(base, sz,
						  &memblock.memory, nid);
708
		} while (--ranges);
709 710 711
	}
}

L
Linus Torvalds 已提交
712 713
static int __init parse_numa_properties(void)
{
714
	struct device_node *memory;
715
	int default_nid = 0;
L
Linus Torvalds 已提交
716 717 718 719 720 721 722 723 724 725 726 727
	unsigned long i;

	if (numa_enabled == 0) {
		printk(KERN_WARNING "NUMA disabled by user\n");
		return -1;
	}

	min_common_depth = find_min_common_depth();

	if (min_common_depth < 0)
		return min_common_depth;

728 729
	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);

L
Linus Torvalds 已提交
730
	/*
731 732 733
	 * Even though we connect cpus to numa domains later in SMP
	 * init, we need to know the node ids now. This is because
	 * each node to be onlined must have NODE_DATA etc backing it.
L
Linus Torvalds 已提交
734
	 */
735
	for_each_present_cpu(i) {
A
Anton Blanchard 已提交
736
		struct device_node *cpu;
737
		int nid;
L
Linus Torvalds 已提交
738

739
		cpu = of_get_cpu_node(i, NULL);
740
		BUG_ON(!cpu);
741
		nid = of_node_to_nid_single(cpu);
742
		of_node_put(cpu);
L
Linus Torvalds 已提交
743

744 745 746 747 748 749 750 751
		/*
		 * Don't fall back to default_nid yet -- we will plug
		 * cpus into nodes once the memory scan has discovered
		 * the topology.
		 */
		if (nid < 0)
			continue;
		node_set_online(nid);
L
Linus Torvalds 已提交
752 753
	}

754
	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
755 756

	for_each_node_by_type(memory, "memory") {
L
Linus Torvalds 已提交
757 758
		unsigned long start;
		unsigned long size;
759
		int nid;
L
Linus Torvalds 已提交
760
		int ranges;
761
		const __be32 *memcell_buf;
L
Linus Torvalds 已提交
762 763
		unsigned int len;

764
		memcell_buf = of_get_property(memory,
765 766
			"linux,usable-memory", &len);
		if (!memcell_buf || len <= 0)
767
			memcell_buf = of_get_property(memory, "reg", &len);
L
Linus Torvalds 已提交
768 769 770
		if (!memcell_buf || len <= 0)
			continue;

771 772
		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
L
Linus Torvalds 已提交
773 774
new_range:
		/* these are order-sensitive, and modify the buffer pointer */
775 776
		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
		size = read_n_cells(n_mem_size_cells, &memcell_buf);
L
Linus Torvalds 已提交
777

778 779 780 781 782
		/*
		 * Assumption: either all memory nodes or none will
		 * have associativity properties.  If none, then
		 * everything goes to default_nid.
		 */
783
		nid = of_node_to_nid_single(memory);
784 785
		if (nid < 0)
			nid = default_nid;
786 787

		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
788
		node_set_online(nid);
L
Linus Torvalds 已提交
789

790
		if (!(size = numa_enforce_memory_limit(start, size))) {
L
Linus Torvalds 已提交
791 792 793 794 795 796
			if (--ranges)
				goto new_range;
			else
				continue;
		}

797
		memblock_set_node(start, size, &memblock.memory, nid);
L
Linus Torvalds 已提交
798 799 800 801 802

		if (--ranges)
			goto new_range;
	}

803
	/*
A
Anton Blanchard 已提交
804 805 806
	 * Now do the same thing for each MEMBLOCK listed in the
	 * ibm,dynamic-memory property in the
	 * ibm,dynamic-reconfiguration-memory node.
807 808 809 810 811
	 */
	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory)
		parse_drconf_memory(memory);

L
Linus Torvalds 已提交
812 813 814 815 816
	return 0;
}

static void __init setup_nonnuma(void)
{
Y
Yinghai Lu 已提交
817 818
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();
819
	unsigned long start_pfn, end_pfn;
820 821
	unsigned int nid = 0;
	struct memblock_region *reg;
L
Linus Torvalds 已提交
822

823
	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
L
Linus Torvalds 已提交
824
	       top_of_ram, total_ram);
825
	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
L
Linus Torvalds 已提交
826 827
	       (top_of_ram - total_ram) >> 20);

828
	for_each_memblock(memory, reg) {
829 830
		start_pfn = memblock_region_memory_base_pfn(reg);
		end_pfn = memblock_region_memory_end_pfn(reg);
831 832

		fake_numa_create_new_node(end_pfn, &nid);
T
Tejun Heo 已提交
833
		memblock_set_node(PFN_PHYS(start_pfn),
834 835
				  PFN_PHYS(end_pfn - start_pfn),
				  &memblock.memory, nid);
836
		node_set_online(nid);
837
	}
L
Linus Torvalds 已提交
838 839
}

840 841 842 843 844 845 846 847 848
void __init dump_numa_cpu_topology(void)
{
	unsigned int node;
	unsigned int cpu, count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
849
		printk(KERN_DEBUG "Node %d CPUs:", node);
850 851 852 853 854 855

		count = 0;
		/*
		 * If we used a CPU iterator here we would miss printing
		 * the holes in the cpumap.
		 */
856 857 858
		for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
			if (cpumask_test_cpu(cpu,
					node_to_cpumask_map[node])) {
859 860 861 862 863 864 865 866 867 868 869
				if (count == 0)
					printk(" %u", cpu);
				++count;
			} else {
				if (count > 1)
					printk("-%u", cpu - 1);
				count = 0;
			}
		}

		if (count > 1)
870
			printk("-%u", nr_cpu_ids - 1);
871 872 873 874 875
		printk("\n");
	}
}

static void __init dump_numa_memory_topology(void)
L
Linus Torvalds 已提交
876 877 878 879 880 881 882 883 884 885
{
	unsigned int node;
	unsigned int count;

	if (min_common_depth == -1 || !numa_enabled)
		return;

	for_each_online_node(node) {
		unsigned long i;

886
		printk(KERN_DEBUG "Node %d Memory:", node);
L
Linus Torvalds 已提交
887 888 889

		count = 0;

Y
Yinghai Lu 已提交
890
		for (i = 0; i < memblock_end_of_DRAM();
891 892
		     i += (1 << SECTION_SIZE_BITS)) {
			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
L
Linus Torvalds 已提交
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908
				if (count == 0)
					printk(" 0x%lx", i);
				++count;
			} else {
				if (count > 0)
					printk("-0x%lx", i);
				count = 0;
			}
		}

		if (count > 0)
			printk("-0x%lx", i);
		printk("\n");
	}
}

909
static struct notifier_block ppc64_numa_nb = {
910 911 912 913
	.notifier_call = cpu_numa_callback,
	.priority = 1 /* Must run before sched domains notifier. */
};

914 915
/* Initialize NODE_DATA for a node on the local memory */
static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
916
{
917 918 919 920 921
	u64 spanned_pages = end_pfn - start_pfn;
	const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
	u64 nd_pa;
	void *nd;
	int tnid;
922

923 924 925 926 927 928
	if (spanned_pages)
		pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
			nid, start_pfn << PAGE_SHIFT,
			(end_pfn << PAGE_SHIFT) - 1);
	else
		pr_info("Initmem setup node %d\n", nid);
929

930 931
	nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
	nd = __va(nd_pa);
932

933 934 935 936 937 938
	/* report and initialize */
	pr_info("  NODE_DATA [mem %#010Lx-%#010Lx]\n",
		nd_pa, nd_pa + nd_size - 1);
	tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
	if (tnid != nid)
		pr_info("    NODE_DATA(%d) on node %d\n", nid, tnid);
939

940 941 942 943 944 945
	node_data[nid] = nd;
	memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
	NODE_DATA(nid)->node_id = nid;
	NODE_DATA(nid)->node_start_pfn = start_pfn;
	NODE_DATA(nid)->node_spanned_pages = spanned_pages;
}
946

947
void __init initmem_init(void)
L
Linus Torvalds 已提交
948
{
949
	int nid, cpu;
L
Linus Torvalds 已提交
950

Y
Yinghai Lu 已提交
951
	max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
L
Linus Torvalds 已提交
952 953 954 955 956
	max_pfn = max_low_pfn;

	if (parse_numa_properties())
		setup_nonnuma();
	else
957
		dump_numa_memory_topology();
L
Linus Torvalds 已提交
958

959 960
	memblock_dump_all();

L
Linus Torvalds 已提交
961
	for_each_online_node(nid) {
962
		unsigned long start_pfn, end_pfn;
L
Linus Torvalds 已提交
963

964
		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
965
		setup_node_data(nid, start_pfn, end_pfn);
966
		sparse_memory_present_with_active_regions(nid);
967
	}
968

969
	sparse_init();
970 971 972

	setup_node_to_cpumask_map();

973
	reset_numa_cpu_lookup_table();
974
	register_cpu_notifier(&ppc64_numa_nb);
975 976 977 978 979
	/*
	 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
	 * even before we online them, so that we can use cpu_to_{node,mem}
	 * early in boot, cf. smp_prepare_cpus().
	 */
980
	for_each_present_cpu(cpu) {
981
		numa_setup_cpu((unsigned long)cpu);
982
	}
L
Linus Torvalds 已提交
983 984 985 986 987 988 989 990 991 992 993 994 995
}

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

996 997 998 999
	p = strstr(p, "fake=");
	if (p)
		cmdline = p + strlen("fake=");

L
Linus Torvalds 已提交
1000 1001 1002
	return 0;
}
early_param("numa", early_numa);
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
static bool topology_updates_enabled = true;

static int __init early_topology_updates(char *p)
{
	if (!p)
		return 0;

	if (!strcmp(p, "off")) {
		pr_info("Disabling topology updates\n");
		topology_updates_enabled = false;
	}

	return 0;
}
early_param("topology_updates", early_topology_updates);

1020
#ifdef CONFIG_MEMORY_HOTPLUG
1021
/*
1022 1023 1024
 * Find the node associated with a hot added memory section for
 * memory represented in the device tree by the property
 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1025 1026 1027 1028
 */
static int hot_add_drconf_scn_to_nid(struct device_node *memory,
				     unsigned long scn_addr)
{
1029
	const __be32 *dm;
1030
	unsigned int drconf_cell_cnt, rc;
1031
	unsigned long lmb_size;
1032
	struct assoc_arrays aa;
1033
	int nid = -1;
1034

1035 1036 1037
	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
	if (!drconf_cell_cnt)
		return -1;
1038

1039 1040
	lmb_size = of_get_lmb_size(memory);
	if (!lmb_size)
1041
		return -1;
1042 1043 1044

	rc = of_get_assoc_arrays(memory, &aa);
	if (rc)
1045
		return -1;
1046

1047
	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
		struct of_drconf_cell drmem;

		read_drconf_cell(&drmem, &dm);

		/* skip this block if it is reserved or not assigned to
		 * this partition */
		if ((drmem.flags & DRCONF_MEM_RESERVED)
		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
			continue;

1058
		if ((scn_addr < drmem.base_addr)
1059
		    || (scn_addr >= (drmem.base_addr + lmb_size)))
1060 1061
			continue;

1062
		nid = of_drconf_to_nid_single(&drmem, &aa);
1063 1064 1065 1066 1067 1068 1069 1070 1071
		break;
	}

	return nid;
}

/*
 * Find the node associated with a hot added memory section for memory
 * represented in the device tree as a node (i.e. memory@XXXX) for
Y
Yinghai Lu 已提交
1072
 * each memblock.
1073
 */
1074
static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1075
{
1076
	struct device_node *memory;
1077 1078
	int nid = -1;

1079
	for_each_node_by_type(memory, "memory") {
1080 1081
		unsigned long start, size;
		int ranges;
1082
		const __be32 *memcell_buf;
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101
		unsigned int len;

		memcell_buf = of_get_property(memory, "reg", &len);
		if (!memcell_buf || len <= 0)
			continue;

		/* ranges in cell */
		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);

		while (ranges--) {
			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
			size = read_n_cells(n_mem_size_cells, &memcell_buf);

			if ((scn_addr < start) || (scn_addr >= (start + size)))
				continue;

			nid = of_node_to_nid_single(memory);
			break;
		}
1102

1103 1104
		if (nid >= 0)
			break;
1105 1106
	}

1107 1108
	of_node_put(memory);

1109
	return nid;
1110 1111
}

1112 1113
/*
 * Find the node associated with a hot added memory section.  Section
Y
Yinghai Lu 已提交
1114 1115
 * corresponds to a SPARSEMEM section, not an MEMBLOCK.  It is assumed that
 * sections are fully contained within a single MEMBLOCK.
1116 1117 1118 1119
 */
int hot_add_scn_to_nid(unsigned long scn_addr)
{
	struct device_node *memory = NULL;
1120
	int nid, found = 0;
1121 1122

	if (!numa_enabled || (min_common_depth < 0))
1123
		return first_online_node;
1124 1125 1126 1127 1128

	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
	if (memory) {
		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
		of_node_put(memory);
1129 1130
	} else {
		nid = hot_add_node_scn_to_nid(scn_addr);
1131
	}
1132

1133
	if (nid < 0 || !node_online(nid))
1134
		nid = first_online_node;
1135

1136 1137
	if (NODE_DATA(nid)->node_spanned_pages)
		return nid;
1138

1139 1140 1141 1142
	for_each_online_node(nid) {
		if (NODE_DATA(nid)->node_spanned_pages) {
			found = 1;
			break;
1143 1144
		}
	}
1145 1146 1147

	BUG_ON(!found);
	return nid;
1148
}
1149

1150 1151 1152 1153 1154
static u64 hot_add_drconf_memory_max(void)
{
        struct device_node *memory = NULL;
        unsigned int drconf_cell_cnt = 0;
        u64 lmb_size = 0;
1155
	const __be32 *dm = NULL;
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175

        memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
        if (memory) {
                drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
                lmb_size = of_get_lmb_size(memory);
                of_node_put(memory);
        }
        return lmb_size * drconf_cell_cnt;
}

/*
 * memory_hotplug_max - return max address of memory that may be added
 *
 * This is currently only used on systems that support drconfig memory
 * hotplug.
 */
u64 memory_hotplug_max(void)
{
        return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
}
1176
#endif /* CONFIG_MEMORY_HOTPLUG */
1177

1178
/* Virtual Processor Home Node (VPHN) support */
1179
#ifdef CONFIG_PPC_SPLPAR
1180 1181 1182 1183 1184 1185 1186
struct topology_update_data {
	struct topology_update_data *next;
	unsigned int cpu;
	int old_nid;
	int new_nid;
};

1187
static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1188 1189
static cpumask_t cpu_associativity_changes_mask;
static int vphn_enabled;
1190 1191
static int prrn_enabled;
static void reset_topology_timer(void);
1192 1193 1194 1195 1196 1197 1198

/*
 * Store the current values of the associativity change counters in the
 * hypervisor.
 */
static void setup_cpu_associativity_change_counters(void)
{
1199
	int cpu;
1200

1201 1202 1203
	/* The VPHN feature supports a maximum of 8 reference points */
	BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);

1204
	for_each_possible_cpu(cpu) {
1205
		int i;
1206 1207 1208
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1209
		for (i = 0; i < distance_ref_points_depth; i++)
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
			counts[i] = hypervisor_counts[i];
	}
}

/*
 * The hypervisor maintains a set of 8 associativity change counters in
 * the VPA of each cpu that correspond to the associativity levels in the
 * ibm,associativity-reference-points property. When an associativity
 * level changes, the corresponding counter is incremented.
 *
 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
 * node associativity levels have changed.
 *
 * Returns the number of cpus with unhandled associativity changes.
 */
static int update_cpu_associativity_changes_mask(void)
{
1227
	int cpu;
1228 1229 1230 1231 1232 1233 1234
	cpumask_t *changes = &cpu_associativity_changes_mask;

	for_each_possible_cpu(cpu) {
		int i, changed = 0;
		u8 *counts = vphn_cpu_change_counts[cpu];
		volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;

1235
		for (i = 0; i < distance_ref_points_depth; i++) {
1236
			if (hypervisor_counts[i] != counts[i]) {
1237 1238 1239 1240 1241
				counts[i] = hypervisor_counts[i];
				changed = 1;
			}
		}
		if (changed) {
1242 1243
			cpumask_or(changes, changes, cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
1244 1245 1246
		}
	}

1247
	return cpumask_weight(changes);
1248 1249
}

1250 1251 1252 1253
/* The H_HOME_NODE_ASSOCIATIVITY h_call returns 6 64-bit registers.
 */
#define VPHN_REGISTER_COUNT 6

1254 1255 1256 1257
/*
 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
 * the complete property we have to add the length in the first cell.
 */
1258
#define VPHN_ASSOC_BUFSIZE (VPHN_REGISTER_COUNT*sizeof(u64)/sizeof(u32) + 1)
1259 1260 1261 1262 1263

/*
 * Convert the associativity domain numbers returned from the hypervisor
 * to the sequence they would appear in the ibm,associativity property.
 */
1264
static int vphn_unpack_associativity(const long *packed, __be32 *unpacked)
1265
{
1266
	__be64 be_packed[VPHN_REGISTER_COUNT];
1267
	int i, nr_assoc_doms = 0;
1268
	const __be16 *field = (const __be16 *) be_packed;
1269 1270 1271 1272 1273

#define VPHN_FIELD_UNUSED	(0xffff)
#define VPHN_FIELD_MSB		(0x8000)
#define VPHN_FIELD_MASK		(~VPHN_FIELD_MSB)

1274 1275 1276 1277
	/* Let's recreate the original stream. */
	for (i = 0; i < VPHN_REGISTER_COUNT; i++)
		be_packed[i] = cpu_to_be64(packed[i]);

1278
	for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1279
		if (be16_to_cpup(field) == VPHN_FIELD_UNUSED) {
1280 1281 1282 1283
			/* All significant fields processed, and remaining
			 * fields contain the reserved value of all 1's.
			 * Just store them.
			 */
1284
			unpacked[i] = *((__be32 *)field);
1285
			field += 2;
1286
		} else if (be16_to_cpup(field) & VPHN_FIELD_MSB) {
1287
			/* Data is in the lower 15 bits of this field */
1288 1289
			unpacked[i] = cpu_to_be32(
				be16_to_cpup(field) & VPHN_FIELD_MASK);
1290 1291
			field++;
			nr_assoc_doms++;
1292
		} else {
1293 1294 1295
			/* Data is in the lower 15 bits of this field
			 * concatenated with the next 16 bit field
			 */
1296
			unpacked[i] = *((__be32 *)field);
1297 1298 1299 1300 1301
			field += 2;
			nr_assoc_doms++;
		}
	}

1302
	/* The first cell contains the length of the property */
1303
	unpacked[0] = cpu_to_be32(nr_assoc_doms);
1304

1305 1306 1307 1308 1309 1310 1311
	return nr_assoc_doms;
}

/*
 * Retrieve the new associativity information for a virtual processor's
 * home node.
 */
1312
static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1313
{
1314
	long rc;
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
	long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
	u64 flags = 1;
	int hwcpu = get_hard_smp_processor_id(cpu);

	rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
	vphn_unpack_associativity(retbuf, associativity);

	return rc;
}

static long vphn_get_associativity(unsigned long cpu,
1326
					__be32 *associativity)
1327
{
1328
	long rc;
1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

	rc = hcall_vphn(cpu, associativity);

	switch (rc) {
	case H_FUNCTION:
		printk(KERN_INFO
			"VPHN is not supported. Disabling polling...\n");
		stop_topology_update();
		break;
	case H_HARDWARE:
		printk(KERN_ERR
			"hcall_vphn() experienced a hardware fault "
			"preventing VPHN. Disabling polling...\n");
		stop_topology_update();
	}

	return rc;
}

1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
/*
 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
 * characteristics change. This function doesn't perform any locking and is
 * only safe to call from stop_machine().
 */
static int update_cpu_topology(void *data)
{
	struct topology_update_data *update;
	unsigned long cpu;

	if (!data)
		return -EINVAL;

1361
	cpu = smp_processor_id();
1362 1363

	for (update = data; update; update = update->next) {
1364
		int new_nid = update->new_nid;
1365 1366 1367
		if (cpu != update->cpu)
			continue;

1368
		unmap_cpu_from_node(cpu);
1369 1370 1371
		map_cpu_to_node(cpu, new_nid);
		set_cpu_numa_node(cpu, new_nid);
		set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1372
		vdso_getcpu_init();
1373 1374 1375 1376 1377
	}

	return 0;
}

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
static int update_lookup_table(void *data)
{
	struct topology_update_data *update;

	if (!data)
		return -EINVAL;

	/*
	 * Upon topology update, the numa-cpu lookup table needs to be updated
	 * for all threads in the core, including offline CPUs, to ensure that
	 * future hotplug operations respect the cpu-to-node associativity
	 * properly.
	 */
	for (update = data; update; update = update->next) {
		int nid, base, j;

		nid = update->new_nid;
		base = cpu_first_thread_sibling(update->cpu);

		for (j = 0; j < threads_per_core; j++) {
			update_numa_cpu_lookup_table(base + j, nid);
		}
	}

	return 0;
}

1405 1406
/*
 * Update the node maps and sysfs entries for each cpu whose home node
1407
 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1408 1409 1410
 */
int arch_update_cpu_topology(void)
{
1411
	unsigned int cpu, sibling, changed = 0;
1412
	struct topology_update_data *updates, *ud;
1413
	__be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1414
	cpumask_t updated_cpus;
1415
	struct device *dev;
1416
	int weight, new_nid, i = 0;
1417

1418 1419 1420
	if (!prrn_enabled && !vphn_enabled)
		return 0;

1421 1422 1423 1424 1425 1426 1427
	weight = cpumask_weight(&cpu_associativity_changes_mask);
	if (!weight)
		return 0;

	updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
	if (!updates)
		return 0;
1428

1429 1430
	cpumask_clear(&updated_cpus);

1431
	for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
		/*
		 * If siblings aren't flagged for changes, updates list
		 * will be too short. Skip on this update and set for next
		 * update.
		 */
		if (!cpumask_subset(cpu_sibling_mask(cpu),
					&cpu_associativity_changes_mask)) {
			pr_info("Sibling bits not set for associativity "
					"change, cpu%d\n", cpu);
			cpumask_or(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1447

1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
		/* Use associativity from first thread for all siblings */
		vphn_get_associativity(cpu, associativity);
		new_nid = associativity_to_nid(associativity);
		if (new_nid < 0 || !node_online(new_nid))
			new_nid = first_online_node;

		if (new_nid == numa_cpu_lookup_table[cpu]) {
			cpumask_andnot(&cpu_associativity_changes_mask,
					&cpu_associativity_changes_mask,
					cpu_sibling_mask(cpu));
			cpu = cpu_last_thread_sibling(cpu);
			continue;
		}
1461

1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
		for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
			ud = &updates[i++];
			ud->cpu = sibling;
			ud->new_nid = new_nid;
			ud->old_nid = numa_cpu_lookup_table[sibling];
			cpumask_set_cpu(sibling, &updated_cpus);
			if (i < weight)
				ud->next = &updates[i];
		}
		cpu = cpu_last_thread_sibling(cpu);
1472 1473
	}

1474 1475 1476 1477 1478 1479 1480 1481 1482
	pr_debug("Topology update for the following CPUs:\n");
	if (cpumask_weight(&updated_cpus)) {
		for (ud = &updates[0]; ud; ud = ud->next) {
			pr_debug("cpu %d moving from node %d "
					  "to %d\n", ud->cpu,
					  ud->old_nid, ud->new_nid);
		}
	}

1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
	/*
	 * In cases where we have nothing to update (because the updates list
	 * is too short or because the new topology is same as the old one),
	 * skip invoking update_cpu_topology() via stop-machine(). This is
	 * necessary (and not just a fast-path optimization) since stop-machine
	 * can end up electing a random CPU to run update_cpu_topology(), and
	 * thus trick us into setting up incorrect cpu-node mappings (since
	 * 'updates' is kzalloc()'ed).
	 *
	 * And for the similar reason, we will skip all the following updating.
	 */
	if (!cpumask_weight(&updated_cpus))
		goto out;

1497
	stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1498

1499 1500 1501 1502 1503 1504 1505 1506
	/*
	 * Update the numa-cpu lookup table with the new mappings, even for
	 * offline CPUs. It is best to perform this update from the stop-
	 * machine context.
	 */
	stop_machine(update_lookup_table, &updates[0],
					cpumask_of(raw_smp_processor_id()));

1507
	for (ud = &updates[0]; ud; ud = ud->next) {
1508 1509 1510
		unregister_cpu_under_node(ud->cpu, ud->old_nid);
		register_cpu_under_node(ud->cpu, ud->new_nid);

1511
		dev = get_cpu_device(ud->cpu);
1512 1513
		if (dev)
			kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1514
		cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1515
		changed = 1;
1516 1517
	}

1518
out:
1519
	kfree(updates);
1520
	return changed;
1521 1522 1523 1524 1525 1526 1527 1528
}

static void topology_work_fn(struct work_struct *work)
{
	rebuild_sched_domains();
}
static DECLARE_WORK(topology_work, topology_work_fn);

1529
static void topology_schedule_update(void)
1530 1531 1532 1533 1534 1535
{
	schedule_work(&topology_work);
}

static void topology_timer_fn(unsigned long ignored)
{
1536
	if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1537
		topology_schedule_update();
1538 1539 1540 1541 1542
	else if (vphn_enabled) {
		if (update_cpu_associativity_changes_mask() > 0)
			topology_schedule_update();
		reset_topology_timer();
	}
1543 1544 1545 1546
}
static struct timer_list topology_timer =
	TIMER_INITIALIZER(topology_timer_fn, 0, 0);

1547
static void reset_topology_timer(void)
1548 1549 1550
{
	topology_timer.data = 0;
	topology_timer.expires = jiffies + 60 * HZ;
1551
	mod_timer(&topology_timer, topology_timer.expires);
1552 1553
}

1554 1555
#ifdef CONFIG_SMP

1556 1557 1558 1559 1560 1561 1562 1563 1564 1565
static void stage_topology_update(int core_id)
{
	cpumask_or(&cpu_associativity_changes_mask,
		&cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
	reset_topology_timer();
}

static int dt_update_callback(struct notifier_block *nb,
				unsigned long action, void *data)
{
1566
	struct of_reconfig_data *update = data;
1567 1568 1569 1570
	int rc = NOTIFY_DONE;

	switch (action) {
	case OF_RECONFIG_UPDATE_PROPERTY:
1571 1572
		if (!of_prop_cmp(update->dn->type, "cpu") &&
		    !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1573 1574 1575 1576 1577 1578 1579 1580 1581
			u32 core_id;
			of_property_read_u32(update->dn, "reg", &core_id);
			stage_topology_update(core_id);
			rc = NOTIFY_OK;
		}
		break;
	}

	return rc;
1582 1583
}

1584 1585 1586 1587
static struct notifier_block dt_update_nb = {
	.notifier_call = dt_update_callback,
};

1588 1589
#endif

1590
/*
1591
 * Start polling for associativity changes.
1592 1593 1594 1595 1596
 */
int start_topology_update(void)
{
	int rc = 0;

1597 1598 1599 1600
	if (firmware_has_feature(FW_FEATURE_PRRN)) {
		if (!prrn_enabled) {
			prrn_enabled = 1;
			vphn_enabled = 0;
1601
#ifdef CONFIG_SMP
1602
			rc = of_reconfig_notifier_register(&dt_update_nb);
1603
#endif
1604
		}
1605
	} else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1606
		   lppaca_shared_proc(get_lppaca())) {
1607 1608 1609 1610 1611 1612 1613
		if (!vphn_enabled) {
			prrn_enabled = 0;
			vphn_enabled = 1;
			setup_cpu_associativity_change_counters();
			init_timer_deferrable(&topology_timer);
			reset_topology_timer();
		}
1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
	}

	return rc;
}

/*
 * Disable polling for VPHN associativity changes.
 */
int stop_topology_update(void)
{
1624 1625 1626 1627
	int rc = 0;

	if (prrn_enabled) {
		prrn_enabled = 0;
1628
#ifdef CONFIG_SMP
1629
		rc = of_reconfig_notifier_unregister(&dt_update_nb);
1630
#endif
1631 1632 1633 1634 1635 1636
	} else if (vphn_enabled) {
		vphn_enabled = 0;
		rc = del_timer_sync(&topology_timer);
	}

	return rc;
1637
}
1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689

int prrn_is_enabled(void)
{
	return prrn_enabled;
}

static int topology_read(struct seq_file *file, void *v)
{
	if (vphn_enabled || prrn_enabled)
		seq_puts(file, "on\n");
	else
		seq_puts(file, "off\n");

	return 0;
}

static int topology_open(struct inode *inode, struct file *file)
{
	return single_open(file, topology_read, NULL);
}

static ssize_t topology_write(struct file *file, const char __user *buf,
			      size_t count, loff_t *off)
{
	char kbuf[4]; /* "on" or "off" plus null. */
	int read_len;

	read_len = count < 3 ? count : 3;
	if (copy_from_user(kbuf, buf, read_len))
		return -EINVAL;

	kbuf[read_len] = '\0';

	if (!strncmp(kbuf, "on", 2))
		start_topology_update();
	else if (!strncmp(kbuf, "off", 3))
		stop_topology_update();
	else
		return -EINVAL;

	return count;
}

static const struct file_operations topology_ops = {
	.read = seq_read,
	.write = topology_write,
	.open = topology_open,
	.release = single_release
};

static int topology_update_init(void)
{
1690 1691 1692 1693
	/* Do not poll for changes if disabled at boot */
	if (topology_updates_enabled)
		start_topology_update();

1694 1695
	if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
		return -ENOMEM;
1696 1697

	return 0;
1698
}
1699
device_initcall(topology_update_init);
1700
#endif /* CONFIG_PPC_SPLPAR */