core.c 53.5 KB
Newer Older
1 2 3
/*
 * Core driver for the pin control subsystem
 *
4
 * Copyright (C) 2011-2012 ST-Ericsson SA
5 6 7 8 9
 * Written on behalf of Linaro for ST-Ericsson
 * Based on bits of regulator core, gpio core and clk core
 *
 * Author: Linus Walleij <linus.walleij@linaro.org>
 *
10 11
 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
 *
12 13 14 15 16
 * License terms: GNU General Public License (GPL) version 2
 */
#define pr_fmt(fmt) "pinctrl core: " fmt

#include <linux/kernel.h>
17
#include <linux/kref.h>
18
#include <linux/export.h>
19 20 21 22 23 24 25 26
#include <linux/init.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/sysfs.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
27
#include <linux/pinctrl/consumer.h>
28 29
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/machine.h>
30 31

#ifdef CONFIG_GPIOLIB
32
#include <asm-generic/gpio.h>
33 34
#endif

35
#include "core.h"
36
#include "devicetree.h"
37
#include "pinmux.h"
38
#include "pinconf.h"
39

40

41 42
static bool pinctrl_dummy_state;

43
/* Mutex taken to protect pinctrl_list */
S
Sachin Kamat 已提交
44
static DEFINE_MUTEX(pinctrl_list_mutex);
45 46 47 48 49

/* Mutex taken to protect pinctrl_maps */
DEFINE_MUTEX(pinctrl_maps_mutex);

/* Mutex taken to protect pinctrldev_list */
S
Sachin Kamat 已提交
50
static DEFINE_MUTEX(pinctrldev_list_mutex);
51 52

/* Global list of pin control devices (struct pinctrl_dev) */
53
static LIST_HEAD(pinctrldev_list);
54

55
/* List of pin controller handles (struct pinctrl) */
56 57
static LIST_HEAD(pinctrl_list);

58
/* List of pinctrl maps (struct pinctrl_maps) */
59
LIST_HEAD(pinctrl_maps);
60

61

62 63 64 65 66 67 68 69 70 71 72 73 74
/**
 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
 *
 * Usually this function is called by platforms without pinctrl driver support
 * but run with some shared drivers using pinctrl APIs.
 * After calling this function, the pinctrl core will return successfully
 * with creating a dummy state for the driver to keep going smoothly.
 */
void pinctrl_provide_dummies(void)
{
	pinctrl_dummy_state = true;
}

75 76 77 78 79 80 81
const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
{
	/* We're not allowed to register devices without name */
	return pctldev->desc->name;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);

82 83 84 85 86 87
const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
{
	return dev_name(pctldev->dev);
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);

88 89 90 91 92 93 94
void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
{
	return pctldev->driver_data;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);

/**
95 96
 * get_pinctrl_dev_from_devname() - look up pin controller device
 * @devname: the name of a device instance, as returned by dev_name()
97 98 99 100
 *
 * Looks up a pin control device matching a certain device name or pure device
 * pointer, the pure device pointer will take precedence.
 */
101
struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 103 104
{
	struct pinctrl_dev *pctldev = NULL;

105 106 107
	if (!devname)
		return NULL;

108 109
	mutex_lock(&pinctrldev_list_mutex);

110
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111
		if (!strcmp(dev_name(pctldev->dev), devname)) {
112
			/* Matched on device name */
113 114
			mutex_unlock(&pinctrldev_list_mutex);
			return pctldev;
115 116 117
		}
	}

118 119 120
	mutex_unlock(&pinctrldev_list_mutex);

	return NULL;
121 122
}

123 124 125 126 127 128 129 130 131 132 133 134
struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
{
	struct pinctrl_dev *pctldev;

	mutex_lock(&pinctrldev_list_mutex);

	list_for_each_entry(pctldev, &pinctrldev_list, node)
		if (pctldev->dev->of_node == np) {
			mutex_unlock(&pinctrldev_list_mutex);
			return pctldev;
		}

135
	mutex_unlock(&pinctrldev_list_mutex);
136 137 138 139

	return NULL;
}

140 141 142 143 144 145 146
/**
 * pin_get_from_name() - look up a pin number from a name
 * @pctldev: the pin control device to lookup the pin on
 * @name: the name of the pin to look up
 */
int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
{
147
	unsigned i, pin;
148

149 150
	/* The pin number can be retrived from the pin controller descriptor */
	for (i = 0; i < pctldev->desc->npins; i++) {
151 152
		struct pin_desc *desc;

153
		pin = pctldev->desc->pins[i].number;
154 155
		desc = pin_desc_get(pctldev, pin);
		/* Pin space may be sparse */
156
		if (desc && !strcmp(name, desc->name))
157 158 159 160 161 162
			return pin;
	}

	return -EINVAL;
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/**
 * pin_get_name_from_id() - look up a pin name from a pin id
 * @pctldev: the pin control device to lookup the pin on
 * @name: the name of the pin to look up
 */
const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
{
	const struct pin_desc *desc;

	desc = pin_desc_get(pctldev, pin);
	if (desc == NULL) {
		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
			pin);
		return NULL;
	}

	return desc->name;
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/**
 * pin_is_valid() - check if pin exists on controller
 * @pctldev: the pin control device to check the pin on
 * @pin: pin to check, use the local pin controller index number
 *
 * This tells us whether a certain pin exist on a certain pin controller or
 * not. Pin lists may be sparse, so some pins may not exist.
 */
bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
{
	struct pin_desc *pindesc;

	if (pin < 0)
		return false;

197
	mutex_lock(&pctldev->mutex);
198
	pindesc = pin_desc_get(pctldev, pin);
199
	mutex_unlock(&pctldev->mutex);
200

201
	return pindesc != NULL;
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
}
EXPORT_SYMBOL_GPL(pin_is_valid);

/* Deletes a range of pin descriptors */
static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
				  const struct pinctrl_pin_desc *pins,
				  unsigned num_pins)
{
	int i;

	for (i = 0; i < num_pins; i++) {
		struct pin_desc *pindesc;

		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
					    pins[i].number);
		if (pindesc != NULL) {
			radix_tree_delete(&pctldev->pin_desc_tree,
					  pins[i].number);
220 221
			if (pindesc->dynamic_name)
				kfree(pindesc->name);
222 223 224 225 226 227
		}
		kfree(pindesc);
	}
}

static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228
				    const struct pinctrl_pin_desc *pin)
229 230 231
{
	struct pin_desc *pindesc;

232
	pindesc = pin_desc_get(pctldev, pin->number);
233
	if (pindesc != NULL) {
234 235
		dev_err(pctldev->dev, "pin %d already registered\n",
			pin->number);
236 237 238 239
		return -EINVAL;
	}

	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 241
	if (pindesc == NULL) {
		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
242
		return -ENOMEM;
243
	}
244

245 246 247
	/* Set owner */
	pindesc->pctldev = pctldev;

248
	/* Copy basic pin info */
249 250
	if (pin->name) {
		pindesc->name = pin->name;
251
	} else {
252
		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
253 254
		if (pindesc->name == NULL) {
			kfree(pindesc);
255
			return -ENOMEM;
256
		}
257 258
		pindesc->dynamic_name = true;
	}
259

260 261 262
	pindesc->drv_data = pin->drv_data;

	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
263
	pr_debug("registered pin %d (%s) on %s\n",
264
		 pin->number, pindesc->name, pctldev->desc->name);
265 266 267 268 269 270 271 272 273 274 275
	return 0;
}

static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
				 struct pinctrl_pin_desc const *pins,
				 unsigned num_descs)
{
	unsigned i;
	int ret = 0;

	for (i = 0; i < num_descs; i++) {
276
		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
277 278 279 280 281 282 283
		if (ret)
			return ret;
	}

	return 0;
}

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
/**
 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 * @range: GPIO range used for the translation
 * @gpio: gpio pin to translate to a pin number
 *
 * Finds the pin number for a given GPIO using the specified GPIO range
 * as a base for translation. The distinction between linear GPIO ranges
 * and pin list based GPIO ranges is managed correctly by this function.
 *
 * This function assumes the gpio is part of the specified GPIO range, use
 * only after making sure this is the case (e.g. by calling it on the
 * result of successful pinctrl_get_device_gpio_range calls)!
 */
static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
				unsigned int gpio)
{
	unsigned int offset = gpio - range->base;
	if (range->pins)
		return range->pins[offset];
	else
		return range->pin_base + offset;
}

307 308 309 310 311 312 313 314 315 316 317 318 319
/**
 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 * @pctldev: pin controller device to check
 * @gpio: gpio pin to check taken from the global GPIO pin space
 *
 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 * controller, return the range or NULL
 */
static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
{
	struct pinctrl_gpio_range *range = NULL;

320
	mutex_lock(&pctldev->mutex);
321 322 323 324 325
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
		/* Check if we're in the valid range */
		if (gpio >= range->base &&
		    gpio < range->base + range->npins) {
326
			mutex_unlock(&pctldev->mutex);
327 328 329
			return range;
		}
	}
330
	mutex_unlock(&pctldev->mutex);
331 332 333
	return NULL;
}

334 335 336 337 338 339 340 341 342 343 344 345 346
/**
 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 * the same GPIO chip are in range
 * @gpio: gpio pin to check taken from the global GPIO pin space
 *
 * This function is complement of pinctrl_match_gpio_range(). If the return
 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 * of the same GPIO chip don't have back-end pinctrl interface.
 * If the return value is true, it means that pinctrl device is ready & the
 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 * is false, it means that pinctrl device may not be ready.
 */
347
#ifdef CONFIG_GPIOLIB
348 349 350 351 352 353
static bool pinctrl_ready_for_gpio_range(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range = NULL;
	struct gpio_chip *chip = gpio_to_chip(gpio);

354 355 356
	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
		return false;

357 358
	mutex_lock(&pinctrldev_list_mutex);

359 360 361
	/* Loop over the pin controllers */
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		/* Loop over the ranges */
362
		mutex_lock(&pctldev->mutex);
363 364 365 366 367
		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
			/* Check if any gpio range overlapped with gpio chip */
			if (range->base + range->npins - 1 < chip->base ||
			    range->base > chip->base + chip->ngpio - 1)
				continue;
368
			mutex_unlock(&pctldev->mutex);
369
			mutex_unlock(&pinctrldev_list_mutex);
370 371
			return true;
		}
372
		mutex_unlock(&pctldev->mutex);
373
	}
374 375 376

	mutex_unlock(&pinctrldev_list_mutex);

377 378
	return false;
}
379 380 381
#else
static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
#endif
382

383 384 385 386 387 388 389 390
/**
 * pinctrl_get_device_gpio_range() - find device for GPIO range
 * @gpio: the pin to locate the pin controller for
 * @outdev: the pin control device if found
 * @outrange: the GPIO range if found
 *
 * Find the pin controller handling a certain GPIO pin from the pinspace of
 * the GPIO subsystem, return the device and the matching GPIO range. Returns
391 392
 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 * may still have not been registered.
393
 */
S
Stephen Warren 已提交
394 395 396
static int pinctrl_get_device_gpio_range(unsigned gpio,
					 struct pinctrl_dev **outdev,
					 struct pinctrl_gpio_range **outrange)
397 398 399
{
	struct pinctrl_dev *pctldev = NULL;

400 401
	mutex_lock(&pinctrldev_list_mutex);

402 403 404 405 406 407 408 409
	/* Loop over the pin controllers */
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		struct pinctrl_gpio_range *range;

		range = pinctrl_match_gpio_range(pctldev, gpio);
		if (range != NULL) {
			*outdev = pctldev;
			*outrange = range;
410
			mutex_unlock(&pinctrldev_list_mutex);
411 412 413 414
			return 0;
		}
	}

415 416
	mutex_unlock(&pinctrldev_list_mutex);

417
	return -EPROBE_DEFER;
418 419 420 421 422 423 424 425 426 427 428 429 430
}

/**
 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 * @pctldev: pin controller device to add the range to
 * @range: the GPIO range to add
 *
 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 * this to register handled ranges after registering your pin controller.
 */
void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
			    struct pinctrl_gpio_range *range)
{
431
	mutex_lock(&pctldev->mutex);
432
	list_add_tail(&range->node, &pctldev->gpio_ranges);
433
	mutex_unlock(&pctldev->mutex);
434
}
S
Stephen Warren 已提交
435
EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
436

437 438 439 440 441 442 443 444 445 446 447
void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
			     struct pinctrl_gpio_range *ranges,
			     unsigned nranges)
{
	int i;

	for (i = 0; i < nranges; i++)
		pinctrl_add_gpio_range(pctldev, &ranges[i]);
}
EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);

L
Linus Walleij 已提交
448
struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
449 450
		struct pinctrl_gpio_range *range)
{
451 452 453
	struct pinctrl_dev *pctldev;

	pctldev = get_pinctrl_dev_from_devname(devname);
454

455 456 457 458 459
	/*
	 * If we can't find this device, let's assume that is because
	 * it has not probed yet, so the driver trying to register this
	 * range need to defer probing.
	 */
460
	if (!pctldev) {
461
		return ERR_PTR(-EPROBE_DEFER);
462
	}
463
	pinctrl_add_gpio_range(pctldev, range);
464

465 466
	return pctldev;
}
L
Linus Walleij 已提交
467
EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
468

469 470 471 472 473 474
int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
				const unsigned **pins, unsigned *num_pins)
{
	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
	int gs;

475 476 477
	if (!pctlops->get_group_pins)
		return -EINVAL;

478 479 480 481 482 483 484 485
	gs = pinctrl_get_group_selector(pctldev, pin_group);
	if (gs < 0)
		return gs;

	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
}
EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);

486
struct pinctrl_gpio_range *
487 488
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
					unsigned int pin)
489
{
490
	struct pinctrl_gpio_range *range;
491 492 493 494

	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
		/* Check if we're in the valid range */
495 496 497 498
		if (range->pins) {
			int a;
			for (a = 0; a < range->npins; a++) {
				if (range->pins[a] == pin)
499
					return range;
500 501
			}
		} else if (pin >= range->pin_base &&
502
			   pin < range->pin_base + range->npins)
503
			return range;
504
	}
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522

	return NULL;
}
EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);

/**
 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 * @pctldev: the pin controller device to look in
 * @pin: a controller-local number to find the range for
 */
struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
				 unsigned int pin)
{
	struct pinctrl_gpio_range *range;

	mutex_lock(&pctldev->mutex);
	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
523
	mutex_unlock(&pctldev->mutex);
524

525
	return range;
526 527 528
}
EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);

529 530 531 532 533 534 535 536
/**
 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
 * @pctldev: pin controller device to remove the range from
 * @range: the GPIO range to remove
 */
void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
			       struct pinctrl_gpio_range *range)
{
537
	mutex_lock(&pctldev->mutex);
538
	list_del(&range->node);
539
	mutex_unlock(&pctldev->mutex);
540 541 542
}
EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);

543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
#ifdef CONFIG_GENERIC_PINCTRL

/**
 * pinctrl_generic_get_group_count() - returns the number of pin groups
 * @pctldev: pin controller device
 */
int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
{
	return pctldev->num_groups;
}
EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);

/**
 * pinctrl_generic_get_group_name() - returns the name of a pin group
 * @pctldev: pin controller device
 * @selector: group number
 */
const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
					   unsigned int selector)
{
	struct group_desc *group;

	group = radix_tree_lookup(&pctldev->pin_group_tree,
				  selector);
	if (!group)
		return NULL;

	return group->name;
}
EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);

/**
 * pinctrl_generic_get_group_pins() - gets the pin group pins
 * @pctldev: pin controller device
 * @selector: group number
 * @pins: pins in the group
 * @num_pins: number of pins in the group
 */
int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
				   unsigned int selector,
				   const unsigned int **pins,
				   unsigned int *num_pins)
{
	struct group_desc *group;

	group = radix_tree_lookup(&pctldev->pin_group_tree,
				  selector);
	if (!group) {
		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
			__func__, selector);
		return -EINVAL;
	}

	*pins = group->pins;
	*num_pins = group->num_pins;

	return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);

/**
 * pinctrl_generic_get_group() - returns a pin group based on the number
 * @pctldev: pin controller device
 * @gselector: group number
 */
struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
					     unsigned int selector)
{
	struct group_desc *group;

	group = radix_tree_lookup(&pctldev->pin_group_tree,
				  selector);
	if (!group)
		return NULL;

	return group;
}
EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);

/**
 * pinctrl_generic_add_group() - adds a new pin group
 * @pctldev: pin controller device
 * @name: name of the pin group
 * @pins: pins in the pin group
 * @num_pins: number of pins in the pin group
 * @data: pin controller driver specific data
 *
 * Note that the caller must take care of locking.
 */
int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
			      int *pins, int num_pins, void *data)
{
	struct group_desc *group;

	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
	if (!group)
		return -ENOMEM;

	group->name = name;
	group->pins = pins;
	group->num_pins = num_pins;
	group->data = data;

	radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups,
			  group);

	pctldev->num_groups++;

	return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);

/**
 * pinctrl_generic_remove_group() - removes a numbered pin group
 * @pctldev: pin controller device
 * @selector: group number
 *
 * Note that the caller must take care of locking.
 */
int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
				 unsigned int selector)
{
	struct group_desc *group;

	group = radix_tree_lookup(&pctldev->pin_group_tree,
				  selector);
	if (!group)
		return -ENOENT;

	radix_tree_delete(&pctldev->pin_group_tree, selector);
	devm_kfree(pctldev->dev, group);

	pctldev->num_groups--;

	return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);

/**
 * pinctrl_generic_free_groups() - removes all pin groups
 * @pctldev: pin controller device
 *
 * Note that the caller must take care of locking.
 */
static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
{
	struct radix_tree_iter iter;
	struct group_desc *group;
	unsigned long *indices;
	void **slot;
	int i = 0;

	indices = devm_kzalloc(pctldev->dev, sizeof(*indices) *
			       pctldev->num_groups, GFP_KERNEL);
	if (!indices)
		return;

	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
		indices[i++] = iter.index;

	for (i = 0; i < pctldev->num_groups; i++) {
		group = radix_tree_lookup(&pctldev->pin_group_tree,
					  indices[i]);
		radix_tree_delete(&pctldev->pin_group_tree, indices[i]);
		devm_kfree(pctldev->dev, group);
	}

	pctldev->num_groups = 0;
}

#else
static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
{
}
#endif /* CONFIG_GENERIC_PINCTRL */

719 720 721 722 723 724 725 726 727
/**
 * pinctrl_get_group_selector() - returns the group selector for a group
 * @pctldev: the pin controller handling the group
 * @pin_group: the pin group to look up
 */
int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
			       const char *pin_group)
{
	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
728
	unsigned ngroups = pctlops->get_groups_count(pctldev);
729 730
	unsigned group_selector = 0;

731
	while (group_selector < ngroups) {
732 733 734
		const char *gname = pctlops->get_group_name(pctldev,
							    group_selector);
		if (!strcmp(gname, pin_group)) {
735
			dev_dbg(pctldev->dev,
736 737 738 739 740 741 742 743 744
				"found group selector %u for %s\n",
				group_selector,
				pin_group);
			return group_selector;
		}

		group_selector++;
	}

745
	dev_err(pctldev->dev, "does not have pin group %s\n",
746 747 748 749 750
		pin_group);

	return -EINVAL;
}

751
/**
752
 * pinctrl_request_gpio() - request a single pin to be used as GPIO
753 754 755 756 757 758 759 760 761 762 763 764 765 766
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_request() semantics, platforms and individual drivers
 * shall *NOT* request GPIO pins to be muxed in.
 */
int pinctrl_request_gpio(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
767
	if (ret) {
768 769
		if (pinctrl_ready_for_gpio_range(gpio))
			ret = 0;
770
		return ret;
771
	}
772

773 774
	mutex_lock(&pctldev->mutex);

775
	/* Convert to the pin controllers number space */
776
	pin = gpio_to_pin(range, gpio);
777

778 779
	ret = pinmux_request_gpio(pctldev, range, pin, gpio);

780 781
	mutex_unlock(&pctldev->mutex);

782
	return ret;
783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
}
EXPORT_SYMBOL_GPL(pinctrl_request_gpio);

/**
 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_free() semantics, platforms and individual drivers
 * shall *NOT* request GPIO pins to be muxed out.
 */
void pinctrl_free_gpio(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
802
	if (ret) {
803
		return;
804
	}
805
	mutex_lock(&pctldev->mutex);
806 807

	/* Convert to the pin controllers number space */
808
	pin = gpio_to_pin(range, gpio);
809

810 811
	pinmux_free_gpio(pctldev, pin, range);

812
	mutex_unlock(&pctldev->mutex);
813 814 815 816 817 818 819 820 821 822 823
}
EXPORT_SYMBOL_GPL(pinctrl_free_gpio);

static int pinctrl_gpio_direction(unsigned gpio, bool input)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
824
	if (ret) {
825
		return ret;
826 827 828
	}

	mutex_lock(&pctldev->mutex);
829 830

	/* Convert to the pin controllers number space */
831
	pin = gpio_to_pin(range, gpio);
832 833 834
	ret = pinmux_gpio_direction(pctldev, range, pin, input);

	mutex_unlock(&pctldev->mutex);
835

836
	return ret;
837 838 839 840 841 842 843 844 845 846 847 848
}

/**
 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_direction_input() semantics, platforms and individual
 * drivers shall *NOT* touch pin control GPIO calls.
 */
int pinctrl_gpio_direction_input(unsigned gpio)
{
849
	return pinctrl_gpio_direction(gpio, true);
850 851 852 853 854 855 856 857 858 859 860 861 862
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);

/**
 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_direction_output() semantics, platforms and individual
 * drivers shall *NOT* touch pin control GPIO calls.
 */
int pinctrl_gpio_direction_output(unsigned gpio)
{
863
	return pinctrl_gpio_direction(gpio, false);
864 865 866
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);

867 868
static struct pinctrl_state *find_state(struct pinctrl *p,
					const char *name)
869
{
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
	struct pinctrl_state *state;

	list_for_each_entry(state, &p->states, node)
		if (!strcmp(state->name, name))
			return state;

	return NULL;
}

static struct pinctrl_state *create_state(struct pinctrl *p,
					  const char *name)
{
	struct pinctrl_state *state;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (state == NULL) {
		dev_err(p->dev,
			"failed to alloc struct pinctrl_state\n");
		return ERR_PTR(-ENOMEM);
	}

	state->name = name;
	INIT_LIST_HEAD(&state->settings);

	list_add_tail(&state->node, &p->states);

	return state;
}

899 900
static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
		       struct pinctrl_map const *map)
901 902
{
	struct pinctrl_state *state;
903
	struct pinctrl_setting *setting;
904
	int ret;
905

906 907 908 909 910
	state = find_state(p, map->name);
	if (!state)
		state = create_state(p, map->name);
	if (IS_ERR(state))
		return PTR_ERR(state);
911

912 913 914
	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
		return 0;

915 916 917 918 919 920
	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
	if (setting == NULL) {
		dev_err(p->dev,
			"failed to alloc struct pinctrl_setting\n");
		return -ENOMEM;
	}
921

922 923
	setting->type = map->type;

924 925 926 927 928
	if (pctldev)
		setting->pctldev = pctldev;
	else
		setting->pctldev =
			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
929 930
	if (setting->pctldev == NULL) {
		kfree(setting);
L
Linus Walleij 已提交
931 932 933
		/* Do not defer probing of hogs (circular loop) */
		if (!strcmp(map->ctrl_dev_name, map->dev_name))
			return -ENODEV;
934 935 936 937
		/*
		 * OK let us guess that the driver is not there yet, and
		 * let's defer obtaining this pinctrl handle to later...
		 */
L
Linus Walleij 已提交
938 939
		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
			map->ctrl_dev_name);
940
		return -EPROBE_DEFER;
941 942
	}

943 944
	setting->dev_name = map->dev_name;

945 946 947 948 949 950 951 952 953 954 955 956
	switch (map->type) {
	case PIN_MAP_TYPE_MUX_GROUP:
		ret = pinmux_map_to_setting(map, setting);
		break;
	case PIN_MAP_TYPE_CONFIGS_PIN:
	case PIN_MAP_TYPE_CONFIGS_GROUP:
		ret = pinconf_map_to_setting(map, setting);
		break;
	default:
		ret = -EINVAL;
		break;
	}
957 958 959 960 961 962 963 964 965 966 967 968 969 970
	if (ret < 0) {
		kfree(setting);
		return ret;
	}

	list_add_tail(&setting->node, &state->settings);

	return 0;
}

static struct pinctrl *find_pinctrl(struct device *dev)
{
	struct pinctrl *p;

971
	mutex_lock(&pinctrl_list_mutex);
972
	list_for_each_entry(p, &pinctrl_list, node)
973 974
		if (p->dev == dev) {
			mutex_unlock(&pinctrl_list_mutex);
975
			return p;
976
		}
977

978
	mutex_unlock(&pinctrl_list_mutex);
979 980 981
	return NULL;
}

982
static void pinctrl_free(struct pinctrl *p, bool inlist);
983

984 985
static struct pinctrl *create_pinctrl(struct device *dev,
				      struct pinctrl_dev *pctldev)
986 987 988 989 990 991 992
{
	struct pinctrl *p;
	const char *devname;
	struct pinctrl_maps *maps_node;
	int i;
	struct pinctrl_map const *map;
	int ret;
993 994 995 996 997 998

	/*
	 * create the state cookie holder struct pinctrl for each
	 * mapping, this is what consumers will get when requesting
	 * a pin control handle with pinctrl_get()
	 */
999
	p = kzalloc(sizeof(*p), GFP_KERNEL);
1000 1001
	if (p == NULL) {
		dev_err(dev, "failed to alloc struct pinctrl\n");
1002
		return ERR_PTR(-ENOMEM);
1003
	}
1004
	p->dev = dev;
1005
	INIT_LIST_HEAD(&p->states);
1006 1007
	INIT_LIST_HEAD(&p->dt_maps);

1008
	ret = pinctrl_dt_to_map(p, pctldev);
1009 1010 1011 1012
	if (ret < 0) {
		kfree(p);
		return ERR_PTR(ret);
	}
1013 1014

	devname = dev_name(dev);
1015

1016
	mutex_lock(&pinctrl_maps_mutex);
1017
	/* Iterate over the pin control maps to locate the right ones */
1018
	for_each_maps(maps_node, i, map) {
1019 1020 1021 1022
		/* Map must be for this device */
		if (strcmp(map->dev_name, devname))
			continue;

1023
		ret = add_setting(p, pctldev, map);
L
Linus Walleij 已提交
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
		/*
		 * At this point the adding of a setting may:
		 *
		 * - Defer, if the pinctrl device is not yet available
		 * - Fail, if the pinctrl device is not yet available,
		 *   AND the setting is a hog. We cannot defer that, since
		 *   the hog will kick in immediately after the device
		 *   is registered.
		 *
		 * If the error returned was not -EPROBE_DEFER then we
		 * accumulate the errors to see if we end up with
		 * an -EPROBE_DEFER later, as that is the worst case.
		 */
		if (ret == -EPROBE_DEFER) {
1038 1039
			pinctrl_free(p, false);
			mutex_unlock(&pinctrl_maps_mutex);
1040
			return ERR_PTR(ret);
1041
		}
1042
	}
1043 1044
	mutex_unlock(&pinctrl_maps_mutex);

L
Linus Walleij 已提交
1045 1046
	if (ret < 0) {
		/* If some other error than deferral occured, return here */
1047
		pinctrl_free(p, false);
L
Linus Walleij 已提交
1048 1049
		return ERR_PTR(ret);
	}
1050

1051 1052
	kref_init(&p->users);

L
Linus Walleij 已提交
1053
	/* Add the pinctrl handle to the global list */
1054
	mutex_lock(&pinctrl_list_mutex);
1055
	list_add_tail(&p->node, &pinctrl_list);
1056
	mutex_unlock(&pinctrl_list_mutex);
1057 1058

	return p;
1059
}
1060

1061 1062 1063 1064 1065
/**
 * pinctrl_get() - retrieves the pinctrl handle for a device
 * @dev: the device to obtain the handle for
 */
struct pinctrl *pinctrl_get(struct device *dev)
1066 1067
{
	struct pinctrl *p;
1068

1069 1070 1071
	if (WARN_ON(!dev))
		return ERR_PTR(-EINVAL);

1072 1073 1074 1075 1076
	/*
	 * See if somebody else (such as the device core) has already
	 * obtained a handle to the pinctrl for this device. In that case,
	 * return another pointer to it.
	 */
1077
	p = find_pinctrl(dev);
1078 1079 1080 1081 1082
	if (p != NULL) {
		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
		kref_get(&p->users);
		return p;
	}
1083

1084
	return create_pinctrl(dev, NULL);
1085 1086 1087
}
EXPORT_SYMBOL_GPL(pinctrl_get);

1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
static void pinctrl_free_setting(bool disable_setting,
				 struct pinctrl_setting *setting)
{
	switch (setting->type) {
	case PIN_MAP_TYPE_MUX_GROUP:
		if (disable_setting)
			pinmux_disable_setting(setting);
		pinmux_free_setting(setting);
		break;
	case PIN_MAP_TYPE_CONFIGS_PIN:
	case PIN_MAP_TYPE_CONFIGS_GROUP:
		pinconf_free_setting(setting);
		break;
	default:
		break;
	}
}

1106
static void pinctrl_free(struct pinctrl *p, bool inlist)
1107
{
1108 1109 1110
	struct pinctrl_state *state, *n1;
	struct pinctrl_setting *setting, *n2;

1111
	mutex_lock(&pinctrl_list_mutex);
1112 1113
	list_for_each_entry_safe(state, n1, &p->states, node) {
		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1114
			pinctrl_free_setting(state == p->state, setting);
1115 1116 1117 1118 1119
			list_del(&setting->node);
			kfree(setting);
		}
		list_del(&state->node);
		kfree(state);
1120
	}
1121

1122 1123
	pinctrl_dt_free_maps(p);

1124 1125
	if (inlist)
		list_del(&p->node);
1126
	kfree(p);
1127
	mutex_unlock(&pinctrl_list_mutex);
1128 1129 1130
}

/**
1131 1132 1133
 * pinctrl_release() - release the pinctrl handle
 * @kref: the kref in the pinctrl being released
 */
1134
static void pinctrl_release(struct kref *kref)
1135 1136 1137
{
	struct pinctrl *p = container_of(kref, struct pinctrl, users);

1138
	pinctrl_free(p, true);
1139 1140 1141 1142
}

/**
 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1143
 * @p: the pinctrl handle to release
1144
 */
1145 1146
void pinctrl_put(struct pinctrl *p)
{
1147
	kref_put(&p->users, pinctrl_release);
1148 1149 1150
}
EXPORT_SYMBOL_GPL(pinctrl_put);

1151 1152 1153 1154 1155 1156 1157
/**
 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
 * @p: the pinctrl handle to retrieve the state from
 * @name: the state name to retrieve
 */
struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
						 const char *name)
1158
{
1159
	struct pinctrl_state *state;
1160

1161
	state = find_state(p, name);
1162 1163 1164 1165 1166 1167
	if (!state) {
		if (pinctrl_dummy_state) {
			/* create dummy state */
			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
				name);
			state = create_state(p, name);
1168 1169
		} else
			state = ERR_PTR(-ENODEV);
1170
	}
1171

1172
	return state;
1173
}
1174
EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1175 1176

/**
1177 1178 1179
 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
 * @p: the pinctrl handle for the device that requests configuration
 * @state: the state handle to select/activate/program
1180
 */
1181
int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1182
{
1183
	struct pinctrl_setting *setting, *setting2;
1184
	struct pinctrl_state *old_state = p->state;
1185
	int ret;
1186

1187 1188
	if (p->state == state)
		return 0;
1189

1190 1191
	if (p->state) {
		/*
1192 1193 1194 1195
		 * For each pinmux setting in the old state, forget SW's record
		 * of mux owner for that pingroup. Any pingroups which are
		 * still owned by the new state will be re-acquired by the call
		 * to pinmux_enable_setting() in the loop below.
1196 1197
		 */
		list_for_each_entry(setting, &p->state->settings, node) {
1198 1199
			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
				continue;
1200
			pinmux_disable_setting(setting);
1201 1202 1203
		}
	}

1204
	p->state = NULL;
1205 1206 1207

	/* Apply all the settings for the new state */
	list_for_each_entry(setting, &state->settings, node) {
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
		switch (setting->type) {
		case PIN_MAP_TYPE_MUX_GROUP:
			ret = pinmux_enable_setting(setting);
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			ret = pinconf_apply_setting(setting);
			break;
		default:
			ret = -EINVAL;
			break;
		}
1220

1221
		if (ret < 0) {
1222
			goto unapply_new_state;
1223
		}
1224
	}
1225

1226 1227
	p->state = state;

1228
	return 0;
1229 1230

unapply_new_state:
1231
	dev_err(p->dev, "Error applying setting, reverse things back\n");
1232 1233 1234 1235

	list_for_each_entry(setting2, &state->settings, node) {
		if (&setting2->node == &setting->node)
			break;
1236 1237 1238 1239 1240 1241 1242 1243 1244
		/*
		 * All we can do here is pinmux_disable_setting.
		 * That means that some pins are muxed differently now
		 * than they were before applying the setting (We can't
		 * "unmux a pin"!), but it's not a big deal since the pins
		 * are free to be muxed by another apply_setting.
		 */
		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
			pinmux_disable_setting(setting2);
1245
	}
1246

1247 1248
	/* There's no infinite recursive loop here because p->state is NULL */
	if (old_state)
1249
		pinctrl_select_state(p, old_state);
1250 1251

	return ret;
1252
}
1253
EXPORT_SYMBOL_GPL(pinctrl_select_state);
1254

1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303
static void devm_pinctrl_release(struct device *dev, void *res)
{
	pinctrl_put(*(struct pinctrl **)res);
}

/**
 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
 * @dev: the device to obtain the handle for
 *
 * If there is a need to explicitly destroy the returned struct pinctrl,
 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
 */
struct pinctrl *devm_pinctrl_get(struct device *dev)
{
	struct pinctrl **ptr, *p;

	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	p = pinctrl_get(dev);
	if (!IS_ERR(p)) {
		*ptr = p;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return p;
}
EXPORT_SYMBOL_GPL(devm_pinctrl_get);

static int devm_pinctrl_match(struct device *dev, void *res, void *data)
{
	struct pinctrl **p = res;

	return *p == data;
}

/**
 * devm_pinctrl_put() - Resource managed pinctrl_put()
 * @p: the pinctrl handle to release
 *
 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_pinctrl_put(struct pinctrl *p)
{
1304
	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1305 1306 1307 1308
			       devm_pinctrl_match, p));
}
EXPORT_SYMBOL_GPL(devm_pinctrl_put);

1309
int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1310
			 bool dup)
1311
{
1312
	int i, ret;
1313
	struct pinctrl_maps *maps_node;
1314

1315
	pr_debug("add %u pinctrl maps\n", num_maps);
1316 1317 1318

	/* First sanity check the new mapping */
	for (i = 0; i < num_maps; i++) {
1319 1320 1321 1322 1323 1324
		if (!maps[i].dev_name) {
			pr_err("failed to register map %s (%d): no device given\n",
			       maps[i].name, i);
			return -EINVAL;
		}

1325 1326
		if (!maps[i].name) {
			pr_err("failed to register map %d: no map name given\n",
1327
			       i);
1328 1329 1330
			return -EINVAL;
		}

1331 1332
		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
				!maps[i].ctrl_dev_name) {
1333 1334 1335 1336 1337
			pr_err("failed to register map %s (%d): no pin control device given\n",
			       maps[i].name, i);
			return -EINVAL;
		}

1338 1339 1340 1341 1342 1343
		switch (maps[i].type) {
		case PIN_MAP_TYPE_DUMMY_STATE:
			break;
		case PIN_MAP_TYPE_MUX_GROUP:
			ret = pinmux_validate_map(&maps[i], i);
			if (ret < 0)
1344
				return ret;
1345 1346 1347 1348 1349
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			ret = pinconf_validate_map(&maps[i], i);
			if (ret < 0)
1350
				return ret;
1351 1352 1353
			break;
		default:
			pr_err("failed to register map %s (%d): invalid type given\n",
1354
			       maps[i].name, i);
1355 1356
			return -EINVAL;
		}
1357 1358
	}

1359 1360 1361 1362 1363
	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
	if (!maps_node) {
		pr_err("failed to alloc struct pinctrl_maps\n");
		return -ENOMEM;
	}
1364

1365
	maps_node->num_maps = num_maps;
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
	if (dup) {
		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
					  GFP_KERNEL);
		if (!maps_node->maps) {
			pr_err("failed to duplicate mapping table\n");
			kfree(maps_node);
			return -ENOMEM;
		}
	} else {
		maps_node->maps = maps;
1376 1377
	}

1378
	mutex_lock(&pinctrl_maps_mutex);
1379
	list_add_tail(&maps_node->node, &pinctrl_maps);
1380
	mutex_unlock(&pinctrl_maps_mutex);
1381

1382 1383 1384
	return 0;
}

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
/**
 * pinctrl_register_mappings() - register a set of pin controller mappings
 * @maps: the pincontrol mappings table to register. This should probably be
 *	marked with __initdata so it can be discarded after boot. This
 *	function will perform a shallow copy for the mapping entries.
 * @num_maps: the number of maps in the mapping table
 */
int pinctrl_register_mappings(struct pinctrl_map const *maps,
			      unsigned num_maps)
{
1395
	return pinctrl_register_map(maps, num_maps, true);
1396 1397 1398 1399 1400 1401
}

void pinctrl_unregister_map(struct pinctrl_map const *map)
{
	struct pinctrl_maps *maps_node;

1402
	mutex_lock(&pinctrl_maps_mutex);
1403 1404 1405
	list_for_each_entry(maps_node, &pinctrl_maps, node) {
		if (maps_node->maps == map) {
			list_del(&maps_node->node);
1406
			kfree(maps_node);
1407
			mutex_unlock(&pinctrl_maps_mutex);
1408 1409 1410
			return;
		}
	}
1411
	mutex_unlock(&pinctrl_maps_mutex);
1412 1413
}

1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
/**
 * pinctrl_force_sleep() - turn a given controller device into sleep state
 * @pctldev: pin controller device
 */
int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
{
	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
	return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_force_sleep);

/**
 * pinctrl_force_default() - turn a given controller device into default state
 * @pctldev: pin controller device
 */
int pinctrl_force_default(struct pinctrl_dev *pctldev)
{
	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
	return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_force_default);

1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
/**
 * pinctrl_init_done() - tell pinctrl probe is done
 *
 * We'll use this time to switch the pins from "init" to "default" unless the
 * driver selected some other state.
 *
 * @dev: device to that's done probing
 */
int pinctrl_init_done(struct device *dev)
{
	struct dev_pin_info *pins = dev->pins;
	int ret;

	if (!pins)
		return 0;

	if (IS_ERR(pins->init_state))
		return 0; /* No such state */

	if (pins->p->state != pins->init_state)
		return 0; /* Not at init anyway */

	if (IS_ERR(pins->default_state))
		return 0; /* No default state */

	ret = pinctrl_select_state(pins->p, pins->default_state);
	if (ret)
		dev_err(dev, "failed to activate default pinctrl state\n");

	return ret;
}

1470 1471 1472
#ifdef CONFIG_PM

/**
1473
 * pinctrl_pm_select_state() - select pinctrl state for PM
1474
 * @dev: device to select default state for
1475
 * @state: state to set
1476
 */
1477 1478
static int pinctrl_pm_select_state(struct device *dev,
				   struct pinctrl_state *state)
1479 1480 1481 1482
{
	struct dev_pin_info *pins = dev->pins;
	int ret;

1483 1484 1485
	if (IS_ERR(state))
		return 0; /* No such state */
	ret = pinctrl_select_state(pins->p, state);
1486
	if (ret)
1487 1488
		dev_err(dev, "failed to activate pinctrl state %s\n",
			state->name);
1489 1490
	return ret;
}
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502

/**
 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
 * @dev: device to select default state for
 */
int pinctrl_pm_select_default_state(struct device *dev)
{
	if (!dev->pins)
		return 0;

	return pinctrl_pm_select_state(dev, dev->pins->default_state);
}
1503
EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1504 1505 1506 1507 1508 1509 1510

/**
 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
 * @dev: device to select sleep state for
 */
int pinctrl_pm_select_sleep_state(struct device *dev)
{
1511
	if (!dev->pins)
1512
		return 0;
1513 1514

	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1515
}
1516
EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1517 1518 1519 1520 1521 1522 1523

/**
 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
 * @dev: device to select idle state for
 */
int pinctrl_pm_select_idle_state(struct device *dev)
{
1524
	if (!dev->pins)
1525
		return 0;
1526 1527

	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1528
}
1529
EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1530 1531
#endif

1532 1533 1534 1535 1536 1537
#ifdef CONFIG_DEBUG_FS

static int pinctrl_pins_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1538
	unsigned i, pin;
1539 1540 1541

	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);

1542
	mutex_lock(&pctldev->mutex);
1543

1544 1545
	/* The pin number can be retrived from the pin controller descriptor */
	for (i = 0; i < pctldev->desc->npins; i++) {
1546 1547
		struct pin_desc *desc;

1548
		pin = pctldev->desc->pins[i].number;
1549 1550 1551 1552 1553
		desc = pin_desc_get(pctldev, pin);
		/* Pin space may be sparse */
		if (desc == NULL)
			continue;

1554
		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1555 1556 1557 1558 1559 1560 1561 1562

		/* Driver-specific info per pin */
		if (ops->pin_dbg_show)
			ops->pin_dbg_show(pctldev, s, pin);

		seq_puts(s, "\n");
	}

1563
	mutex_unlock(&pctldev->mutex);
1564

1565 1566 1567 1568 1569 1570 1571
	return 0;
}

static int pinctrl_groups_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1572
	unsigned ngroups, selector = 0;
1573

1574 1575
	mutex_lock(&pctldev->mutex);

1576
	ngroups = ops->get_groups_count(pctldev);
1577

1578
	seq_puts(s, "registered pin groups:\n");
1579
	while (selector < ngroups) {
1580 1581
		const unsigned *pins = NULL;
		unsigned num_pins = 0;
1582
		const char *gname = ops->get_group_name(pctldev, selector);
1583
		const char *pname;
1584
		int ret = 0;
1585 1586
		int i;

1587 1588 1589
		if (ops->get_group_pins)
			ret = ops->get_group_pins(pctldev, selector,
						  &pins, &num_pins);
1590 1591 1592 1593
		if (ret)
			seq_printf(s, "%s [ERROR GETTING PINS]\n",
				   gname);
		else {
1594 1595 1596
			seq_printf(s, "group: %s\n", gname);
			for (i = 0; i < num_pins; i++) {
				pname = pin_get_name(pctldev, pins[i]);
1597
				if (WARN_ON(!pname)) {
1598
					mutex_unlock(&pctldev->mutex);
1599
					return -EINVAL;
1600
				}
1601 1602 1603
				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
			}
			seq_puts(s, "\n");
1604 1605 1606 1607
		}
		selector++;
	}

1608
	mutex_unlock(&pctldev->mutex);
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619

	return 0;
}

static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	struct pinctrl_gpio_range *range = NULL;

	seq_puts(s, "GPIO ranges handled:\n");

1620
	mutex_lock(&pctldev->mutex);
1621

1622 1623
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
		if (range->pins) {
			int a;
			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
				range->id, range->name,
				range->base, (range->base + range->npins - 1));
			for (a = 0; a < range->npins - 1; a++)
				seq_printf(s, "%u, ", range->pins[a]);
			seq_printf(s, "%u}\n", range->pins[a]);
		}
		else
			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
				range->id, range->name,
				range->base, (range->base + range->npins - 1),
				range->pin_base,
				(range->pin_base + range->npins - 1));
1639
	}
1640

1641
	mutex_unlock(&pctldev->mutex);
1642 1643 1644 1645 1646 1647 1648 1649

	return 0;
}

static int pinctrl_devices_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev;

1650
	seq_puts(s, "name [pinmux] [pinconf]\n");
1651

1652
	mutex_lock(&pinctrldev_list_mutex);
1653

1654 1655 1656
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		seq_printf(s, "%s ", pctldev->desc->name);
		if (pctldev->desc->pmxops)
1657 1658 1659 1660
			seq_puts(s, "yes ");
		else
			seq_puts(s, "no ");
		if (pctldev->desc->confops)
1661 1662 1663 1664 1665
			seq_puts(s, "yes");
		else
			seq_puts(s, "no");
		seq_puts(s, "\n");
	}
1666

1667
	mutex_unlock(&pinctrldev_list_mutex);
1668 1669 1670 1671

	return 0;
}

1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
static inline const char *map_type(enum pinctrl_map_type type)
{
	static const char * const names[] = {
		"INVALID",
		"DUMMY_STATE",
		"MUX_GROUP",
		"CONFIGS_PIN",
		"CONFIGS_GROUP",
	};

	if (type >= ARRAY_SIZE(names))
		return "UNKNOWN";

	return names[type];
}

1688 1689 1690 1691 1692 1693 1694 1695
static int pinctrl_maps_show(struct seq_file *s, void *what)
{
	struct pinctrl_maps *maps_node;
	int i;
	struct pinctrl_map const *map;

	seq_puts(s, "Pinctrl maps:\n");

1696
	mutex_lock(&pinctrl_maps_mutex);
1697
	for_each_maps(maps_node, i, map) {
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
			   map->dev_name, map->name, map_type(map->type),
			   map->type);

		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
			seq_printf(s, "controlling device %s\n",
				   map->ctrl_dev_name);

		switch (map->type) {
		case PIN_MAP_TYPE_MUX_GROUP:
			pinmux_show_map(s, map);
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			pinconf_show_map(s, map);
			break;
		default:
			break;
		}

		seq_printf(s, "\n");
1719
	}
1720
	mutex_unlock(&pinctrl_maps_mutex);
1721 1722 1723 1724

	return 0;
}

1725 1726 1727
static int pinctrl_show(struct seq_file *s, void *what)
{
	struct pinctrl *p;
1728
	struct pinctrl_state *state;
1729
	struct pinctrl_setting *setting;
1730 1731

	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1732

1733
	mutex_lock(&pinctrl_list_mutex);
1734

1735
	list_for_each_entry(p, &pinctrl_list, node) {
1736 1737 1738 1739 1740 1741
		seq_printf(s, "device: %s current state: %s\n",
			   dev_name(p->dev),
			   p->state ? p->state->name : "none");

		list_for_each_entry(state, &p->states, node) {
			seq_printf(s, "  state: %s\n", state->name);
1742

1743
			list_for_each_entry(setting, &state->settings, node) {
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760
				struct pinctrl_dev *pctldev = setting->pctldev;

				seq_printf(s, "    type: %s controller %s ",
					   map_type(setting->type),
					   pinctrl_dev_get_name(pctldev));

				switch (setting->type) {
				case PIN_MAP_TYPE_MUX_GROUP:
					pinmux_show_setting(s, setting);
					break;
				case PIN_MAP_TYPE_CONFIGS_PIN:
				case PIN_MAP_TYPE_CONFIGS_GROUP:
					pinconf_show_setting(s, setting);
					break;
				default:
					break;
				}
1761
			}
1762 1763 1764
		}
	}

1765
	mutex_unlock(&pinctrl_list_mutex);
1766

1767 1768 1769
	return 0;
}

1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
static int pinctrl_pins_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_pins_show, inode->i_private);
}

static int pinctrl_groups_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_groups_show, inode->i_private);
}

static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
}

static int pinctrl_devices_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_devices_show, NULL);
}

1790 1791 1792 1793 1794
static int pinctrl_maps_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_maps_show, NULL);
}

1795 1796 1797 1798 1799
static int pinctrl_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_show, NULL);
}

1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
static const struct file_operations pinctrl_pins_ops = {
	.open		= pinctrl_pins_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations pinctrl_groups_ops = {
	.open		= pinctrl_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations pinctrl_gpioranges_ops = {
	.open		= pinctrl_gpioranges_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1821 1822
static const struct file_operations pinctrl_devices_ops = {
	.open		= pinctrl_devices_open,
1823 1824 1825 1826 1827
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1828 1829
static const struct file_operations pinctrl_maps_ops = {
	.open		= pinctrl_maps_open,
1830 1831 1832 1833 1834
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1835 1836 1837 1838 1839 1840 1841
static const struct file_operations pinctrl_ops = {
	.open		= pinctrl_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1842 1843 1844 1845
static struct dentry *debugfs_root;

static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
1846
	struct dentry *device_root;
1847

1848
	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1849
					 debugfs_root);
1850 1851
	pctldev->device_root = device_root;

1852 1853
	if (IS_ERR(device_root) || !device_root) {
		pr_warn("failed to create debugfs directory for %s\n",
1854
			dev_name(pctldev->dev));
1855 1856 1857 1858 1859 1860 1861 1862
		return;
	}
	debugfs_create_file("pins", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_pins_ops);
	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_groups_ops);
	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_gpioranges_ops);
1863 1864 1865 1866
	if (pctldev->desc->pmxops)
		pinmux_init_device_debugfs(device_root, pctldev);
	if (pctldev->desc->confops)
		pinconf_init_device_debugfs(device_root, pctldev);
1867 1868
}

1869 1870 1871 1872 1873
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
	debugfs_remove_recursive(pctldev->device_root);
}

1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884
static void pinctrl_init_debugfs(void)
{
	debugfs_root = debugfs_create_dir("pinctrl", NULL);
	if (IS_ERR(debugfs_root) || !debugfs_root) {
		pr_warn("failed to create debugfs directory\n");
		debugfs_root = NULL;
		return;
	}

	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_devices_ops);
1885 1886
	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_maps_ops);
1887 1888
	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_ops);
1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900
}

#else /* CONFIG_DEBUG_FS */

static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
}

static void pinctrl_init_debugfs(void)
{
}

1901 1902 1903 1904
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
}

1905 1906
#endif

1907 1908 1909 1910 1911
static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
{
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;

	if (!ops ||
1912
	    !ops->get_groups_count ||
1913
	    !ops->get_group_name)
1914 1915
		return -EINVAL;

1916 1917 1918
	if (ops->dt_node_to_map && !ops->dt_free_map)
		return -EINVAL;

1919 1920 1921
	return 0;
}

1922 1923 1924 1925 1926 1927 1928 1929 1930 1931
/**
 * pinctrl_late_init() - finish pin controller device registration
 * @work: work struct
 */
static void pinctrl_late_init(struct work_struct *work)
{
	struct pinctrl_dev *pctldev;

	pctldev = container_of(work, struct pinctrl_dev, late_init.work);

1932 1933 1934 1935 1936 1937
	/*
	 * If the pin controller does NOT have hogs, this will report an
	 * error and we skip over this entire branch. This is why we can
	 * call this function directly when we do not have hogs on the
	 * device.
	 */
1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
	if (!IS_ERR(pctldev->p)) {
		kref_get(&pctldev->p->users);
		pctldev->hog_default =
			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
		if (IS_ERR(pctldev->hog_default)) {
			dev_dbg(pctldev->dev,
				"failed to lookup the default state\n");
		} else {
			if (pinctrl_select_state(pctldev->p,
						 pctldev->hog_default))
				dev_err(pctldev->dev,
					"failed to select default state\n");
		}

		pctldev->hog_sleep =
			pinctrl_lookup_state(pctldev->p,
					     PINCTRL_STATE_SLEEP);
		if (IS_ERR(pctldev->hog_sleep))
			dev_dbg(pctldev->dev,
				"failed to lookup the sleep state\n");
	}

	mutex_lock(&pinctrldev_list_mutex);
	list_add_tail(&pctldev->node, &pinctrldev_list);
	mutex_unlock(&pinctrldev_list_mutex);

	pinctrl_init_device_debugfs(pctldev);
}

1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
/**
 * pinctrl_register() - register a pin controller device
 * @pctldesc: descriptor for this pin controller
 * @dev: parent device for this pin controller
 * @driver_data: private pin controller data for this pin controller
 */
struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
				    struct device *dev, void *driver_data)
{
	struct pinctrl_dev *pctldev;
	int ret;

1980
	if (!pctldesc)
1981
		return ERR_PTR(-EINVAL);
1982
	if (!pctldesc->name)
1983
		return ERR_PTR(-EINVAL);
1984

1985
	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1986 1987
	if (pctldev == NULL) {
		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1988
		return ERR_PTR(-ENOMEM);
1989
	}
1990 1991 1992 1993 1994 1995

	/* Initialize pin control device struct */
	pctldev->owner = pctldesc->owner;
	pctldev->desc = pctldesc;
	pctldev->driver_data = driver_data;
	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1996
	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1997
	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1998
	INIT_DELAYED_WORK(&pctldev->late_init, pinctrl_late_init);
1999
	pctldev->dev = dev;
2000
	mutex_init(&pctldev->mutex);
2001

2002
	/* check core ops for sanity */
2003 2004
	ret = pinctrl_check_ops(pctldev);
	if (ret) {
2005
		dev_err(dev, "pinctrl ops lacks necessary functions\n");
2006 2007 2008
		goto out_err;
	}

2009 2010
	/* If we're implementing pinmuxing, check the ops for sanity */
	if (pctldesc->pmxops) {
2011 2012
		ret = pinmux_check_ops(pctldev);
		if (ret)
2013
			goto out_err;
2014 2015
	}

2016 2017
	/* If we're implementing pinconfig, check the ops for sanity */
	if (pctldesc->confops) {
2018 2019
		ret = pinconf_check_ops(pctldev);
		if (ret)
2020
			goto out_err;
2021 2022
	}

2023
	/* Register all the pins */
2024
	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
2025 2026
	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
	if (ret) {
2027
		dev_err(dev, "error during pin registration\n");
2028 2029
		pinctrl_free_pindescs(pctldev, pctldesc->pins,
				      pctldesc->npins);
2030
		goto out_err;
2031 2032
	}

2033 2034 2035 2036 2037 2038
	/*
	 * If the device has hogs we want the probe() function of the driver
	 * to complete before we go in and hog them and add the pin controller
	 * to the list of controllers. If it has no hogs, we can just complete
	 * the registration immediately.
	 */
2039 2040 2041 2042
	if (pinctrl_dt_has_hogs(pctldev))
		schedule_delayed_work(&pctldev->late_init, 0);
	else
		pinctrl_late_init(&pctldev->late_init.work);
2043

2044 2045
	return pctldev;

2046
out_err:
2047
	mutex_destroy(&pctldev->mutex);
2048
	kfree(pctldev);
2049
	return ERR_PTR(ret);
2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
}
EXPORT_SYMBOL_GPL(pinctrl_register);

/**
 * pinctrl_unregister() - unregister pinmux
 * @pctldev: pin controller to unregister
 *
 * Called by pinmux drivers to unregister a pinmux.
 */
void pinctrl_unregister(struct pinctrl_dev *pctldev)
{
2061
	struct pinctrl_gpio_range *range, *n;
2062 2063 2064
	if (pctldev == NULL)
		return;

2065
	cancel_delayed_work_sync(&pctldev->late_init);
2066 2067
	mutex_lock(&pctldev->mutex);
	pinctrl_remove_device_debugfs(pctldev);
J
Jim Lin 已提交
2068
	mutex_unlock(&pctldev->mutex);
2069

2070
	if (!IS_ERR(pctldev->p))
2071
		pinctrl_put(pctldev->p);
2072

J
Jim Lin 已提交
2073 2074
	mutex_lock(&pinctrldev_list_mutex);
	mutex_lock(&pctldev->mutex);
2075 2076
	/* TODO: check that no pinmuxes are still active? */
	list_del(&pctldev->node);
2077
	pinctrl_generic_free_groups(pctldev);
2078 2079 2080
	/* Destroy descriptor tree */
	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
			      pctldev->desc->npins);
2081 2082 2083 2084
	/* remove gpio ranges map */
	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
		list_del(&range->node);

2085 2086
	mutex_unlock(&pctldev->mutex);
	mutex_destroy(&pctldev->mutex);
2087
	kfree(pctldev);
2088
	mutex_unlock(&pinctrldev_list_mutex);
2089 2090 2091
}
EXPORT_SYMBOL_GPL(pinctrl_unregister);

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
static void devm_pinctrl_dev_release(struct device *dev, void *res)
{
	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;

	pinctrl_unregister(pctldev);
}

static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
{
	struct pctldev **r = res;

2103
	if (WARN_ON(!r || !*r))
2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
		return 0;

	return *r == data;
}

/**
 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
 * @dev: parent device for this pin controller
 * @pctldesc: descriptor for this pin controller
 * @driver_data: private pin controller data for this pin controller
 *
 * Returns an error pointer if pincontrol register failed. Otherwise
 * it returns valid pinctrl handle.
 *
 * The pinctrl device will be automatically released when the device is unbound.
 */
struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
					  struct pinctrl_desc *pctldesc,
					  void *driver_data)
{
	struct pinctrl_dev **ptr, *pctldev;

	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	pctldev = pinctrl_register(pctldesc, dev, driver_data);
	if (IS_ERR(pctldev)) {
		devres_free(ptr);
		return pctldev;
	}

	*ptr = pctldev;
	devres_add(dev, ptr);

	return pctldev;
}
EXPORT_SYMBOL_GPL(devm_pinctrl_register);

/**
 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
 * @dev: device for which which resource was allocated
 * @pctldev: the pinctrl device to unregister.
 */
void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
{
	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
			       devm_pinctrl_dev_match, pctldev));
}
EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);

2155 2156 2157 2158 2159 2160 2161 2162 2163
static int __init pinctrl_init(void)
{
	pr_info("initialized pinctrl subsystem\n");
	pinctrl_init_debugfs();
	return 0;
}

/* init early since many drivers really need to initialized pinmux early */
core_initcall(pinctrl_init);