core.c 48.1 KB
Newer Older
1 2 3
/*
 * Core driver for the pin control subsystem
 *
4
 * Copyright (C) 2011-2012 ST-Ericsson SA
5 6 7 8 9
 * Written on behalf of Linaro for ST-Ericsson
 * Based on bits of regulator core, gpio core and clk core
 *
 * Author: Linus Walleij <linus.walleij@linaro.org>
 *
10 11
 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
 *
12 13 14 15 16
 * License terms: GNU General Public License (GPL) version 2
 */
#define pr_fmt(fmt) "pinctrl core: " fmt

#include <linux/kernel.h>
17
#include <linux/kref.h>
18
#include <linux/export.h>
19 20 21 22 23 24 25 26
#include <linux/init.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/sysfs.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
27
#include <linux/pinctrl/consumer.h>
28 29
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/machine.h>
30 31

#ifdef CONFIG_GPIOLIB
32
#include <asm-generic/gpio.h>
33 34
#endif

35
#include "core.h"
36
#include "devicetree.h"
37
#include "pinmux.h"
38
#include "pinconf.h"
39

40

41 42
static bool pinctrl_dummy_state;

43
/* Mutex taken to protect pinctrl_list */
S
Sachin Kamat 已提交
44
static DEFINE_MUTEX(pinctrl_list_mutex);
45 46 47 48 49

/* Mutex taken to protect pinctrl_maps */
DEFINE_MUTEX(pinctrl_maps_mutex);

/* Mutex taken to protect pinctrldev_list */
S
Sachin Kamat 已提交
50
static DEFINE_MUTEX(pinctrldev_list_mutex);
51 52

/* Global list of pin control devices (struct pinctrl_dev) */
53
static LIST_HEAD(pinctrldev_list);
54

55
/* List of pin controller handles (struct pinctrl) */
56 57
static LIST_HEAD(pinctrl_list);

58
/* List of pinctrl maps (struct pinctrl_maps) */
59
LIST_HEAD(pinctrl_maps);
60

61

62 63 64 65 66 67 68 69 70 71 72 73 74
/**
 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
 *
 * Usually this function is called by platforms without pinctrl driver support
 * but run with some shared drivers using pinctrl APIs.
 * After calling this function, the pinctrl core will return successfully
 * with creating a dummy state for the driver to keep going smoothly.
 */
void pinctrl_provide_dummies(void)
{
	pinctrl_dummy_state = true;
}

75 76 77 78 79 80 81
const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
{
	/* We're not allowed to register devices without name */
	return pctldev->desc->name;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);

82 83 84 85 86 87
const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
{
	return dev_name(pctldev->dev);
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);

88 89 90 91 92 93 94
void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
{
	return pctldev->driver_data;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);

/**
95 96
 * get_pinctrl_dev_from_devname() - look up pin controller device
 * @devname: the name of a device instance, as returned by dev_name()
97 98 99 100
 *
 * Looks up a pin control device matching a certain device name or pure device
 * pointer, the pure device pointer will take precedence.
 */
101
struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 103 104
{
	struct pinctrl_dev *pctldev = NULL;

105 106 107
	if (!devname)
		return NULL;

108 109
	mutex_lock(&pinctrldev_list_mutex);

110
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111
		if (!strcmp(dev_name(pctldev->dev), devname)) {
112
			/* Matched on device name */
113 114
			mutex_unlock(&pinctrldev_list_mutex);
			return pctldev;
115 116 117
		}
	}

118 119 120
	mutex_unlock(&pinctrldev_list_mutex);

	return NULL;
121 122
}

123 124 125 126 127 128 129 130 131 132 133 134
struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
{
	struct pinctrl_dev *pctldev;

	mutex_lock(&pinctrldev_list_mutex);

	list_for_each_entry(pctldev, &pinctrldev_list, node)
		if (pctldev->dev->of_node == np) {
			mutex_unlock(&pinctrldev_list_mutex);
			return pctldev;
		}

135
	mutex_unlock(&pinctrldev_list_mutex);
136 137 138 139

	return NULL;
}

140 141 142 143 144 145 146
/**
 * pin_get_from_name() - look up a pin number from a name
 * @pctldev: the pin control device to lookup the pin on
 * @name: the name of the pin to look up
 */
int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
{
147
	unsigned i, pin;
148

149 150
	/* The pin number can be retrived from the pin controller descriptor */
	for (i = 0; i < pctldev->desc->npins; i++) {
151 152
		struct pin_desc *desc;

153
		pin = pctldev->desc->pins[i].number;
154 155
		desc = pin_desc_get(pctldev, pin);
		/* Pin space may be sparse */
156
		if (desc && !strcmp(name, desc->name))
157 158 159 160 161 162
			return pin;
	}

	return -EINVAL;
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/**
 * pin_get_name_from_id() - look up a pin name from a pin id
 * @pctldev: the pin control device to lookup the pin on
 * @name: the name of the pin to look up
 */
const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
{
	const struct pin_desc *desc;

	desc = pin_desc_get(pctldev, pin);
	if (desc == NULL) {
		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
			pin);
		return NULL;
	}

	return desc->name;
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/**
 * pin_is_valid() - check if pin exists on controller
 * @pctldev: the pin control device to check the pin on
 * @pin: pin to check, use the local pin controller index number
 *
 * This tells us whether a certain pin exist on a certain pin controller or
 * not. Pin lists may be sparse, so some pins may not exist.
 */
bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
{
	struct pin_desc *pindesc;

	if (pin < 0)
		return false;

197
	mutex_lock(&pctldev->mutex);
198
	pindesc = pin_desc_get(pctldev, pin);
199
	mutex_unlock(&pctldev->mutex);
200

201
	return pindesc != NULL;
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
}
EXPORT_SYMBOL_GPL(pin_is_valid);

/* Deletes a range of pin descriptors */
static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
				  const struct pinctrl_pin_desc *pins,
				  unsigned num_pins)
{
	int i;

	for (i = 0; i < num_pins; i++) {
		struct pin_desc *pindesc;

		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
					    pins[i].number);
		if (pindesc != NULL) {
			radix_tree_delete(&pctldev->pin_desc_tree,
					  pins[i].number);
220 221
			if (pindesc->dynamic_name)
				kfree(pindesc->name);
222 223 224 225 226 227 228 229 230 231 232 233
		}
		kfree(pindesc);
	}
}

static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
				    unsigned number, const char *name)
{
	struct pin_desc *pindesc;

	pindesc = pin_desc_get(pctldev, number);
	if (pindesc != NULL) {
234
		dev_err(pctldev->dev, "pin %d already registered\n", number);
235 236 237 238
		return -EINVAL;
	}

	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
239 240
	if (pindesc == NULL) {
		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
241
		return -ENOMEM;
242
	}
243

244 245 246
	/* Set owner */
	pindesc->pctldev = pctldev;

247
	/* Copy basic pin info */
L
Linus Walleij 已提交
248
	if (name) {
249 250 251
		pindesc->name = name;
	} else {
		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
252 253
		if (pindesc->name == NULL) {
			kfree(pindesc);
254
			return -ENOMEM;
255
		}
256 257
		pindesc->dynamic_name = true;
	}
258 259 260

	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
	pr_debug("registered pin %d (%s) on %s\n",
261
		 number, pindesc->name, pctldev->desc->name);
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	return 0;
}

static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
				 struct pinctrl_pin_desc const *pins,
				 unsigned num_descs)
{
	unsigned i;
	int ret = 0;

	for (i = 0; i < num_descs; i++) {
		ret = pinctrl_register_one_pin(pctldev,
					       pins[i].number, pins[i].name);
		if (ret)
			return ret;
	}

	return 0;
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
/**
 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 * @range: GPIO range used for the translation
 * @gpio: gpio pin to translate to a pin number
 *
 * Finds the pin number for a given GPIO using the specified GPIO range
 * as a base for translation. The distinction between linear GPIO ranges
 * and pin list based GPIO ranges is managed correctly by this function.
 *
 * This function assumes the gpio is part of the specified GPIO range, use
 * only after making sure this is the case (e.g. by calling it on the
 * result of successful pinctrl_get_device_gpio_range calls)!
 */
static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
				unsigned int gpio)
{
	unsigned int offset = gpio - range->base;
	if (range->pins)
		return range->pins[offset];
	else
		return range->pin_base + offset;
}

305 306 307 308 309 310 311 312 313 314 315 316 317
/**
 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 * @pctldev: pin controller device to check
 * @gpio: gpio pin to check taken from the global GPIO pin space
 *
 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 * controller, return the range or NULL
 */
static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
{
	struct pinctrl_gpio_range *range = NULL;

318
	mutex_lock(&pctldev->mutex);
319 320 321 322 323
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
		/* Check if we're in the valid range */
		if (gpio >= range->base &&
		    gpio < range->base + range->npins) {
324
			mutex_unlock(&pctldev->mutex);
325 326 327
			return range;
		}
	}
328
	mutex_unlock(&pctldev->mutex);
329 330 331
	return NULL;
}

332 333 334 335 336 337 338 339 340 341 342 343 344
/**
 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 * the same GPIO chip are in range
 * @gpio: gpio pin to check taken from the global GPIO pin space
 *
 * This function is complement of pinctrl_match_gpio_range(). If the return
 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 * of the same GPIO chip don't have back-end pinctrl interface.
 * If the return value is true, it means that pinctrl device is ready & the
 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 * is false, it means that pinctrl device may not be ready.
 */
345
#ifdef CONFIG_GPIOLIB
346 347 348 349 350 351
static bool pinctrl_ready_for_gpio_range(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range = NULL;
	struct gpio_chip *chip = gpio_to_chip(gpio);

352 353 354
	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
		return false;

355 356
	mutex_lock(&pinctrldev_list_mutex);

357 358 359
	/* Loop over the pin controllers */
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		/* Loop over the ranges */
360
		mutex_lock(&pctldev->mutex);
361 362 363 364 365
		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
			/* Check if any gpio range overlapped with gpio chip */
			if (range->base + range->npins - 1 < chip->base ||
			    range->base > chip->base + chip->ngpio - 1)
				continue;
366
			mutex_unlock(&pctldev->mutex);
367
			mutex_unlock(&pinctrldev_list_mutex);
368 369
			return true;
		}
370
		mutex_unlock(&pctldev->mutex);
371
	}
372 373 374

	mutex_unlock(&pinctrldev_list_mutex);

375 376
	return false;
}
377 378 379
#else
static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
#endif
380

381 382 383 384 385 386 387 388
/**
 * pinctrl_get_device_gpio_range() - find device for GPIO range
 * @gpio: the pin to locate the pin controller for
 * @outdev: the pin control device if found
 * @outrange: the GPIO range if found
 *
 * Find the pin controller handling a certain GPIO pin from the pinspace of
 * the GPIO subsystem, return the device and the matching GPIO range. Returns
389 390
 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 * may still have not been registered.
391
 */
S
Stephen Warren 已提交
392 393 394
static int pinctrl_get_device_gpio_range(unsigned gpio,
					 struct pinctrl_dev **outdev,
					 struct pinctrl_gpio_range **outrange)
395 396 397
{
	struct pinctrl_dev *pctldev = NULL;

398 399
	mutex_lock(&pinctrldev_list_mutex);

400 401 402 403 404 405 406 407
	/* Loop over the pin controllers */
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		struct pinctrl_gpio_range *range;

		range = pinctrl_match_gpio_range(pctldev, gpio);
		if (range != NULL) {
			*outdev = pctldev;
			*outrange = range;
408
			mutex_unlock(&pinctrldev_list_mutex);
409 410 411 412
			return 0;
		}
	}

413 414
	mutex_unlock(&pinctrldev_list_mutex);

415
	return -EPROBE_DEFER;
416 417 418 419 420 421 422 423 424 425 426 427 428
}

/**
 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 * @pctldev: pin controller device to add the range to
 * @range: the GPIO range to add
 *
 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 * this to register handled ranges after registering your pin controller.
 */
void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
			    struct pinctrl_gpio_range *range)
{
429
	mutex_lock(&pctldev->mutex);
430
	list_add_tail(&range->node, &pctldev->gpio_ranges);
431
	mutex_unlock(&pctldev->mutex);
432
}
S
Stephen Warren 已提交
433
EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434

435 436 437 438 439 440 441 442 443 444 445
void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
			     struct pinctrl_gpio_range *ranges,
			     unsigned nranges)
{
	int i;

	for (i = 0; i < nranges; i++)
		pinctrl_add_gpio_range(pctldev, &ranges[i]);
}
EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);

L
Linus Walleij 已提交
446
struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 448
		struct pinctrl_gpio_range *range)
{
449 450 451
	struct pinctrl_dev *pctldev;

	pctldev = get_pinctrl_dev_from_devname(devname);
452

453 454 455 456 457
	/*
	 * If we can't find this device, let's assume that is because
	 * it has not probed yet, so the driver trying to register this
	 * range need to defer probing.
	 */
458
	if (!pctldev) {
459
		return ERR_PTR(-EPROBE_DEFER);
460
	}
461
	pinctrl_add_gpio_range(pctldev, range);
462

463 464
	return pctldev;
}
L
Linus Walleij 已提交
465
EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466

467 468 469 470 471 472
int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
				const unsigned **pins, unsigned *num_pins)
{
	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
	int gs;

473 474 475
	if (!pctlops->get_group_pins)
		return -EINVAL;

476 477 478 479 480 481 482 483
	gs = pinctrl_get_group_selector(pctldev, pin_group);
	if (gs < 0)
		return gs;

	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
}
EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);

484
struct pinctrl_gpio_range *
485 486
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
					unsigned int pin)
487
{
488
	struct pinctrl_gpio_range *range;
489 490 491 492

	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
		/* Check if we're in the valid range */
493 494 495 496
		if (range->pins) {
			int a;
			for (a = 0; a < range->npins; a++) {
				if (range->pins[a] == pin)
497
					return range;
498 499
			}
		} else if (pin >= range->pin_base &&
500
			   pin < range->pin_base + range->npins)
501
			return range;
502
	}
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

	return NULL;
}
EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);

/**
 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 * @pctldev: the pin controller device to look in
 * @pin: a controller-local number to find the range for
 */
struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
				 unsigned int pin)
{
	struct pinctrl_gpio_range *range;

	mutex_lock(&pctldev->mutex);
	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
521
	mutex_unlock(&pctldev->mutex);
522

523
	return range;
524 525 526
}
EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);

527 528 529 530 531 532 533 534
/**
 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
 * @pctldev: pin controller device to remove the range from
 * @range: the GPIO range to remove
 */
void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
			       struct pinctrl_gpio_range *range)
{
535
	mutex_lock(&pctldev->mutex);
536
	list_del(&range->node);
537
	mutex_unlock(&pctldev->mutex);
538 539 540
}
EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);

541 542 543 544 545 546 547 548 549
/**
 * pinctrl_get_group_selector() - returns the group selector for a group
 * @pctldev: the pin controller handling the group
 * @pin_group: the pin group to look up
 */
int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
			       const char *pin_group)
{
	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
550
	unsigned ngroups = pctlops->get_groups_count(pctldev);
551 552
	unsigned group_selector = 0;

553
	while (group_selector < ngroups) {
554 555 556
		const char *gname = pctlops->get_group_name(pctldev,
							    group_selector);
		if (!strcmp(gname, pin_group)) {
557
			dev_dbg(pctldev->dev,
558 559 560 561 562 563 564 565 566
				"found group selector %u for %s\n",
				group_selector,
				pin_group);
			return group_selector;
		}

		group_selector++;
	}

567
	dev_err(pctldev->dev, "does not have pin group %s\n",
568 569 570 571 572
		pin_group);

	return -EINVAL;
}

573
/**
574
 * pinctrl_request_gpio() - request a single pin to be used as GPIO
575 576 577 578 579 580 581 582 583 584 585 586 587 588
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_request() semantics, platforms and individual drivers
 * shall *NOT* request GPIO pins to be muxed in.
 */
int pinctrl_request_gpio(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
589
	if (ret) {
590 591
		if (pinctrl_ready_for_gpio_range(gpio))
			ret = 0;
592
		return ret;
593
	}
594

595 596
	mutex_lock(&pctldev->mutex);

597
	/* Convert to the pin controllers number space */
598
	pin = gpio_to_pin(range, gpio);
599

600 601
	ret = pinmux_request_gpio(pctldev, range, pin, gpio);

602 603
	mutex_unlock(&pctldev->mutex);

604
	return ret;
605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
}
EXPORT_SYMBOL_GPL(pinctrl_request_gpio);

/**
 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_free() semantics, platforms and individual drivers
 * shall *NOT* request GPIO pins to be muxed out.
 */
void pinctrl_free_gpio(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
624
	if (ret) {
625
		return;
626
	}
627
	mutex_lock(&pctldev->mutex);
628 629

	/* Convert to the pin controllers number space */
630
	pin = gpio_to_pin(range, gpio);
631

632 633
	pinmux_free_gpio(pctldev, pin, range);

634
	mutex_unlock(&pctldev->mutex);
635 636 637 638 639 640 641 642 643 644 645
}
EXPORT_SYMBOL_GPL(pinctrl_free_gpio);

static int pinctrl_gpio_direction(unsigned gpio, bool input)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
646
	if (ret) {
647
		return ret;
648 649 650
	}

	mutex_lock(&pctldev->mutex);
651 652

	/* Convert to the pin controllers number space */
653
	pin = gpio_to_pin(range, gpio);
654 655 656
	ret = pinmux_gpio_direction(pctldev, range, pin, input);

	mutex_unlock(&pctldev->mutex);
657

658
	return ret;
659 660 661 662 663 664 665 666 667 668 669 670
}

/**
 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_direction_input() semantics, platforms and individual
 * drivers shall *NOT* touch pin control GPIO calls.
 */
int pinctrl_gpio_direction_input(unsigned gpio)
{
671
	return pinctrl_gpio_direction(gpio, true);
672 673 674 675 676 677 678 679 680 681 682 683 684
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);

/**
 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_direction_output() semantics, platforms and individual
 * drivers shall *NOT* touch pin control GPIO calls.
 */
int pinctrl_gpio_direction_output(unsigned gpio)
{
685
	return pinctrl_gpio_direction(gpio, false);
686 687 688
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);

689 690
static struct pinctrl_state *find_state(struct pinctrl *p,
					const char *name)
691
{
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
	struct pinctrl_state *state;

	list_for_each_entry(state, &p->states, node)
		if (!strcmp(state->name, name))
			return state;

	return NULL;
}

static struct pinctrl_state *create_state(struct pinctrl *p,
					  const char *name)
{
	struct pinctrl_state *state;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (state == NULL) {
		dev_err(p->dev,
			"failed to alloc struct pinctrl_state\n");
		return ERR_PTR(-ENOMEM);
	}

	state->name = name;
	INIT_LIST_HEAD(&state->settings);

	list_add_tail(&state->node, &p->states);

	return state;
}

static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
{
	struct pinctrl_state *state;
724
	struct pinctrl_setting *setting;
725
	int ret;
726

727 728 729 730 731
	state = find_state(p, map->name);
	if (!state)
		state = create_state(p, map->name);
	if (IS_ERR(state))
		return PTR_ERR(state);
732

733 734 735
	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
		return 0;

736 737 738 739 740 741
	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
	if (setting == NULL) {
		dev_err(p->dev,
			"failed to alloc struct pinctrl_setting\n");
		return -ENOMEM;
	}
742

743 744
	setting->type = map->type;

745 746 747
	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
	if (setting->pctldev == NULL) {
		kfree(setting);
L
Linus Walleij 已提交
748 749 750
		/* Do not defer probing of hogs (circular loop) */
		if (!strcmp(map->ctrl_dev_name, map->dev_name))
			return -ENODEV;
751 752 753 754
		/*
		 * OK let us guess that the driver is not there yet, and
		 * let's defer obtaining this pinctrl handle to later...
		 */
L
Linus Walleij 已提交
755 756
		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
			map->ctrl_dev_name);
757
		return -EPROBE_DEFER;
758 759
	}

760 761
	setting->dev_name = map->dev_name;

762 763 764 765 766 767 768 769 770 771 772 773
	switch (map->type) {
	case PIN_MAP_TYPE_MUX_GROUP:
		ret = pinmux_map_to_setting(map, setting);
		break;
	case PIN_MAP_TYPE_CONFIGS_PIN:
	case PIN_MAP_TYPE_CONFIGS_GROUP:
		ret = pinconf_map_to_setting(map, setting);
		break;
	default:
		ret = -EINVAL;
		break;
	}
774 775 776 777 778 779 780 781 782 783 784 785 786 787
	if (ret < 0) {
		kfree(setting);
		return ret;
	}

	list_add_tail(&setting->node, &state->settings);

	return 0;
}

static struct pinctrl *find_pinctrl(struct device *dev)
{
	struct pinctrl *p;

788
	mutex_lock(&pinctrl_list_mutex);
789
	list_for_each_entry(p, &pinctrl_list, node)
790 791
		if (p->dev == dev) {
			mutex_unlock(&pinctrl_list_mutex);
792
			return p;
793
		}
794

795
	mutex_unlock(&pinctrl_list_mutex);
796 797 798
	return NULL;
}

799
static void pinctrl_free(struct pinctrl *p, bool inlist);
800 801 802 803 804 805 806 807 808

static struct pinctrl *create_pinctrl(struct device *dev)
{
	struct pinctrl *p;
	const char *devname;
	struct pinctrl_maps *maps_node;
	int i;
	struct pinctrl_map const *map;
	int ret;
809 810 811 812 813 814

	/*
	 * create the state cookie holder struct pinctrl for each
	 * mapping, this is what consumers will get when requesting
	 * a pin control handle with pinctrl_get()
	 */
815
	p = kzalloc(sizeof(*p), GFP_KERNEL);
816 817
	if (p == NULL) {
		dev_err(dev, "failed to alloc struct pinctrl\n");
818
		return ERR_PTR(-ENOMEM);
819
	}
820
	p->dev = dev;
821
	INIT_LIST_HEAD(&p->states);
822 823 824 825 826 827 828
	INIT_LIST_HEAD(&p->dt_maps);

	ret = pinctrl_dt_to_map(p);
	if (ret < 0) {
		kfree(p);
		return ERR_PTR(ret);
	}
829 830

	devname = dev_name(dev);
831

832
	mutex_lock(&pinctrl_maps_mutex);
833
	/* Iterate over the pin control maps to locate the right ones */
834
	for_each_maps(maps_node, i, map) {
835 836 837 838
		/* Map must be for this device */
		if (strcmp(map->dev_name, devname))
			continue;

839
		ret = add_setting(p, map);
L
Linus Walleij 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852 853
		/*
		 * At this point the adding of a setting may:
		 *
		 * - Defer, if the pinctrl device is not yet available
		 * - Fail, if the pinctrl device is not yet available,
		 *   AND the setting is a hog. We cannot defer that, since
		 *   the hog will kick in immediately after the device
		 *   is registered.
		 *
		 * If the error returned was not -EPROBE_DEFER then we
		 * accumulate the errors to see if we end up with
		 * an -EPROBE_DEFER later, as that is the worst case.
		 */
		if (ret == -EPROBE_DEFER) {
854 855
			pinctrl_free(p, false);
			mutex_unlock(&pinctrl_maps_mutex);
856
			return ERR_PTR(ret);
857
		}
858
	}
859 860
	mutex_unlock(&pinctrl_maps_mutex);

L
Linus Walleij 已提交
861 862
	if (ret < 0) {
		/* If some other error than deferral occured, return here */
863
		pinctrl_free(p, false);
L
Linus Walleij 已提交
864 865
		return ERR_PTR(ret);
	}
866

867 868
	kref_init(&p->users);

L
Linus Walleij 已提交
869
	/* Add the pinctrl handle to the global list */
870
	mutex_lock(&pinctrl_list_mutex);
871
	list_add_tail(&p->node, &pinctrl_list);
872
	mutex_unlock(&pinctrl_list_mutex);
873 874

	return p;
875
}
876

877 878 879 880 881
/**
 * pinctrl_get() - retrieves the pinctrl handle for a device
 * @dev: the device to obtain the handle for
 */
struct pinctrl *pinctrl_get(struct device *dev)
882 883
{
	struct pinctrl *p;
884

885 886 887
	if (WARN_ON(!dev))
		return ERR_PTR(-EINVAL);

888 889 890 891 892
	/*
	 * See if somebody else (such as the device core) has already
	 * obtained a handle to the pinctrl for this device. In that case,
	 * return another pointer to it.
	 */
893
	p = find_pinctrl(dev);
894 895 896 897 898
	if (p != NULL) {
		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
		kref_get(&p->users);
		return p;
	}
899

900
	return create_pinctrl(dev);
901 902 903
}
EXPORT_SYMBOL_GPL(pinctrl_get);

904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
static void pinctrl_free_setting(bool disable_setting,
				 struct pinctrl_setting *setting)
{
	switch (setting->type) {
	case PIN_MAP_TYPE_MUX_GROUP:
		if (disable_setting)
			pinmux_disable_setting(setting);
		pinmux_free_setting(setting);
		break;
	case PIN_MAP_TYPE_CONFIGS_PIN:
	case PIN_MAP_TYPE_CONFIGS_GROUP:
		pinconf_free_setting(setting);
		break;
	default:
		break;
	}
}

922
static void pinctrl_free(struct pinctrl *p, bool inlist)
923
{
924 925 926
	struct pinctrl_state *state, *n1;
	struct pinctrl_setting *setting, *n2;

927
	mutex_lock(&pinctrl_list_mutex);
928 929
	list_for_each_entry_safe(state, n1, &p->states, node) {
		list_for_each_entry_safe(setting, n2, &state->settings, node) {
930
			pinctrl_free_setting(state == p->state, setting);
931 932 933 934 935
			list_del(&setting->node);
			kfree(setting);
		}
		list_del(&state->node);
		kfree(state);
936
	}
937

938 939
	pinctrl_dt_free_maps(p);

940 941
	if (inlist)
		list_del(&p->node);
942
	kfree(p);
943
	mutex_unlock(&pinctrl_list_mutex);
944 945 946
}

/**
947 948 949
 * pinctrl_release() - release the pinctrl handle
 * @kref: the kref in the pinctrl being released
 */
950
static void pinctrl_release(struct kref *kref)
951 952 953
{
	struct pinctrl *p = container_of(kref, struct pinctrl, users);

954
	pinctrl_free(p, true);
955 956 957 958
}

/**
 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
959
 * @p: the pinctrl handle to release
960
 */
961 962
void pinctrl_put(struct pinctrl *p)
{
963
	kref_put(&p->users, pinctrl_release);
964 965 966
}
EXPORT_SYMBOL_GPL(pinctrl_put);

967 968 969 970 971 972 973
/**
 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
 * @p: the pinctrl handle to retrieve the state from
 * @name: the state name to retrieve
 */
struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
						 const char *name)
974
{
975
	struct pinctrl_state *state;
976

977
	state = find_state(p, name);
978 979 980 981 982 983
	if (!state) {
		if (pinctrl_dummy_state) {
			/* create dummy state */
			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
				name);
			state = create_state(p, name);
984 985
		} else
			state = ERR_PTR(-ENODEV);
986
	}
987

988
	return state;
989
}
990
EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
991 992

/**
993 994 995
 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
 * @p: the pinctrl handle for the device that requests configuration
 * @state: the state handle to select/activate/program
996
 */
997
int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
998
{
999
	struct pinctrl_setting *setting, *setting2;
1000
	struct pinctrl_state *old_state = p->state;
1001
	int ret;
1002

1003 1004
	if (p->state == state)
		return 0;
1005

1006 1007
	if (p->state) {
		/*
1008 1009 1010 1011
		 * For each pinmux setting in the old state, forget SW's record
		 * of mux owner for that pingroup. Any pingroups which are
		 * still owned by the new state will be re-acquired by the call
		 * to pinmux_enable_setting() in the loop below.
1012 1013
		 */
		list_for_each_entry(setting, &p->state->settings, node) {
1014 1015
			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
				continue;
1016
			pinmux_disable_setting(setting);
1017 1018 1019
		}
	}

1020
	p->state = NULL;
1021 1022 1023

	/* Apply all the settings for the new state */
	list_for_each_entry(setting, &state->settings, node) {
1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
		switch (setting->type) {
		case PIN_MAP_TYPE_MUX_GROUP:
			ret = pinmux_enable_setting(setting);
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			ret = pinconf_apply_setting(setting);
			break;
		default:
			ret = -EINVAL;
			break;
		}
1036

1037
		if (ret < 0) {
1038
			goto unapply_new_state;
1039
		}
1040
	}
1041

1042 1043
	p->state = state;

1044
	return 0;
1045 1046

unapply_new_state:
1047
	dev_err(p->dev, "Error applying setting, reverse things back\n");
1048 1049 1050 1051

	list_for_each_entry(setting2, &state->settings, node) {
		if (&setting2->node == &setting->node)
			break;
1052 1053 1054 1055 1056 1057 1058 1059 1060
		/*
		 * All we can do here is pinmux_disable_setting.
		 * That means that some pins are muxed differently now
		 * than they were before applying the setting (We can't
		 * "unmux a pin"!), but it's not a big deal since the pins
		 * are free to be muxed by another apply_setting.
		 */
		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
			pinmux_disable_setting(setting2);
1061
	}
1062

1063 1064
	/* There's no infinite recursive loop here because p->state is NULL */
	if (old_state)
1065
		pinctrl_select_state(p, old_state);
1066 1067

	return ret;
1068
}
1069
EXPORT_SYMBOL_GPL(pinctrl_select_state);
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
static void devm_pinctrl_release(struct device *dev, void *res)
{
	pinctrl_put(*(struct pinctrl **)res);
}

/**
 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
 * @dev: the device to obtain the handle for
 *
 * If there is a need to explicitly destroy the returned struct pinctrl,
 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
 */
struct pinctrl *devm_pinctrl_get(struct device *dev)
{
	struct pinctrl **ptr, *p;

	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	p = pinctrl_get(dev);
	if (!IS_ERR(p)) {
		*ptr = p;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return p;
}
EXPORT_SYMBOL_GPL(devm_pinctrl_get);

static int devm_pinctrl_match(struct device *dev, void *res, void *data)
{
	struct pinctrl **p = res;

	return *p == data;
}

/**
 * devm_pinctrl_put() - Resource managed pinctrl_put()
 * @p: the pinctrl handle to release
 *
 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_pinctrl_put(struct pinctrl *p)
{
1120
	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1121 1122 1123 1124
			       devm_pinctrl_match, p));
}
EXPORT_SYMBOL_GPL(devm_pinctrl_put);

1125
int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1126
			 bool dup)
1127
{
1128
	int i, ret;
1129
	struct pinctrl_maps *maps_node;
1130

1131
	pr_debug("add %u pinctrl maps\n", num_maps);
1132 1133 1134

	/* First sanity check the new mapping */
	for (i = 0; i < num_maps; i++) {
1135 1136 1137 1138 1139 1140
		if (!maps[i].dev_name) {
			pr_err("failed to register map %s (%d): no device given\n",
			       maps[i].name, i);
			return -EINVAL;
		}

1141 1142
		if (!maps[i].name) {
			pr_err("failed to register map %d: no map name given\n",
1143
			       i);
1144 1145 1146
			return -EINVAL;
		}

1147 1148
		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
				!maps[i].ctrl_dev_name) {
1149 1150 1151 1152 1153
			pr_err("failed to register map %s (%d): no pin control device given\n",
			       maps[i].name, i);
			return -EINVAL;
		}

1154 1155 1156 1157 1158 1159
		switch (maps[i].type) {
		case PIN_MAP_TYPE_DUMMY_STATE:
			break;
		case PIN_MAP_TYPE_MUX_GROUP:
			ret = pinmux_validate_map(&maps[i], i);
			if (ret < 0)
1160
				return ret;
1161 1162 1163 1164 1165
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			ret = pinconf_validate_map(&maps[i], i);
			if (ret < 0)
1166
				return ret;
1167 1168 1169
			break;
		default:
			pr_err("failed to register map %s (%d): invalid type given\n",
1170
			       maps[i].name, i);
1171 1172
			return -EINVAL;
		}
1173 1174
	}

1175 1176 1177 1178 1179
	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
	if (!maps_node) {
		pr_err("failed to alloc struct pinctrl_maps\n");
		return -ENOMEM;
	}
1180

1181
	maps_node->num_maps = num_maps;
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
	if (dup) {
		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
					  GFP_KERNEL);
		if (!maps_node->maps) {
			pr_err("failed to duplicate mapping table\n");
			kfree(maps_node);
			return -ENOMEM;
		}
	} else {
		maps_node->maps = maps;
1192 1193
	}

1194
	mutex_lock(&pinctrl_maps_mutex);
1195
	list_add_tail(&maps_node->node, &pinctrl_maps);
1196
	mutex_unlock(&pinctrl_maps_mutex);
1197

1198 1199 1200
	return 0;
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
/**
 * pinctrl_register_mappings() - register a set of pin controller mappings
 * @maps: the pincontrol mappings table to register. This should probably be
 *	marked with __initdata so it can be discarded after boot. This
 *	function will perform a shallow copy for the mapping entries.
 * @num_maps: the number of maps in the mapping table
 */
int pinctrl_register_mappings(struct pinctrl_map const *maps,
			      unsigned num_maps)
{
1211
	return pinctrl_register_map(maps, num_maps, true);
1212 1213 1214 1215 1216 1217
}

void pinctrl_unregister_map(struct pinctrl_map const *map)
{
	struct pinctrl_maps *maps_node;

1218
	mutex_lock(&pinctrl_maps_mutex);
1219 1220 1221
	list_for_each_entry(maps_node, &pinctrl_maps, node) {
		if (maps_node->maps == map) {
			list_del(&maps_node->node);
1222
			kfree(maps_node);
1223
			mutex_unlock(&pinctrl_maps_mutex);
1224 1225 1226
			return;
		}
	}
1227
	mutex_unlock(&pinctrl_maps_mutex);
1228 1229
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/**
 * pinctrl_force_sleep() - turn a given controller device into sleep state
 * @pctldev: pin controller device
 */
int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
{
	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
	return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_force_sleep);

/**
 * pinctrl_force_default() - turn a given controller device into default state
 * @pctldev: pin controller device
 */
int pinctrl_force_default(struct pinctrl_dev *pctldev)
{
	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
	return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_force_default);

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
/**
 * pinctrl_init_done() - tell pinctrl probe is done
 *
 * We'll use this time to switch the pins from "init" to "default" unless the
 * driver selected some other state.
 *
 * @dev: device to that's done probing
 */
int pinctrl_init_done(struct device *dev)
{
	struct dev_pin_info *pins = dev->pins;
	int ret;

	if (!pins)
		return 0;

	if (IS_ERR(pins->init_state))
		return 0; /* No such state */

	if (pins->p->state != pins->init_state)
		return 0; /* Not at init anyway */

	if (IS_ERR(pins->default_state))
		return 0; /* No default state */

	ret = pinctrl_select_state(pins->p, pins->default_state);
	if (ret)
		dev_err(dev, "failed to activate default pinctrl state\n");

	return ret;
}

1286 1287 1288
#ifdef CONFIG_PM

/**
1289
 * pinctrl_pm_select_state() - select pinctrl state for PM
1290
 * @dev: device to select default state for
1291
 * @state: state to set
1292
 */
1293 1294
static int pinctrl_pm_select_state(struct device *dev,
				   struct pinctrl_state *state)
1295 1296 1297 1298
{
	struct dev_pin_info *pins = dev->pins;
	int ret;

1299 1300 1301
	if (IS_ERR(state))
		return 0; /* No such state */
	ret = pinctrl_select_state(pins->p, state);
1302
	if (ret)
1303 1304
		dev_err(dev, "failed to activate pinctrl state %s\n",
			state->name);
1305 1306
	return ret;
}
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318

/**
 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
 * @dev: device to select default state for
 */
int pinctrl_pm_select_default_state(struct device *dev)
{
	if (!dev->pins)
		return 0;

	return pinctrl_pm_select_state(dev, dev->pins->default_state);
}
1319
EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1320 1321 1322 1323 1324 1325 1326

/**
 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
 * @dev: device to select sleep state for
 */
int pinctrl_pm_select_sleep_state(struct device *dev)
{
1327
	if (!dev->pins)
1328
		return 0;
1329 1330

	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1331
}
1332
EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1333 1334 1335 1336 1337 1338 1339

/**
 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
 * @dev: device to select idle state for
 */
int pinctrl_pm_select_idle_state(struct device *dev)
{
1340
	if (!dev->pins)
1341
		return 0;
1342 1343

	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1344
}
1345
EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1346 1347
#endif

1348 1349 1350 1351 1352 1353
#ifdef CONFIG_DEBUG_FS

static int pinctrl_pins_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1354
	unsigned i, pin;
1355 1356 1357

	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);

1358
	mutex_lock(&pctldev->mutex);
1359

1360 1361
	/* The pin number can be retrived from the pin controller descriptor */
	for (i = 0; i < pctldev->desc->npins; i++) {
1362 1363
		struct pin_desc *desc;

1364
		pin = pctldev->desc->pins[i].number;
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
		desc = pin_desc_get(pctldev, pin);
		/* Pin space may be sparse */
		if (desc == NULL)
			continue;

		seq_printf(s, "pin %d (%s) ", pin,
			   desc->name ? desc->name : "unnamed");

		/* Driver-specific info per pin */
		if (ops->pin_dbg_show)
			ops->pin_dbg_show(pctldev, s, pin);

		seq_puts(s, "\n");
	}

1380
	mutex_unlock(&pctldev->mutex);
1381

1382 1383 1384 1385 1386 1387 1388
	return 0;
}

static int pinctrl_groups_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1389
	unsigned ngroups, selector = 0;
1390

1391 1392
	mutex_lock(&pctldev->mutex);

1393
	ngroups = ops->get_groups_count(pctldev);
1394

1395
	seq_puts(s, "registered pin groups:\n");
1396
	while (selector < ngroups) {
1397 1398
		const unsigned *pins = NULL;
		unsigned num_pins = 0;
1399
		const char *gname = ops->get_group_name(pctldev, selector);
1400
		const char *pname;
1401
		int ret = 0;
1402 1403
		int i;

1404 1405 1406
		if (ops->get_group_pins)
			ret = ops->get_group_pins(pctldev, selector,
						  &pins, &num_pins);
1407 1408 1409 1410
		if (ret)
			seq_printf(s, "%s [ERROR GETTING PINS]\n",
				   gname);
		else {
1411 1412 1413
			seq_printf(s, "group: %s\n", gname);
			for (i = 0; i < num_pins; i++) {
				pname = pin_get_name(pctldev, pins[i]);
1414
				if (WARN_ON(!pname)) {
1415
					mutex_unlock(&pctldev->mutex);
1416
					return -EINVAL;
1417
				}
1418 1419 1420
				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
			}
			seq_puts(s, "\n");
1421 1422 1423 1424
		}
		selector++;
	}

1425
	mutex_unlock(&pctldev->mutex);
1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

	return 0;
}

static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	struct pinctrl_gpio_range *range = NULL;

	seq_puts(s, "GPIO ranges handled:\n");

1437
	mutex_lock(&pctldev->mutex);
1438

1439 1440
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
		if (range->pins) {
			int a;
			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
				range->id, range->name,
				range->base, (range->base + range->npins - 1));
			for (a = 0; a < range->npins - 1; a++)
				seq_printf(s, "%u, ", range->pins[a]);
			seq_printf(s, "%u}\n", range->pins[a]);
		}
		else
			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
				range->id, range->name,
				range->base, (range->base + range->npins - 1),
				range->pin_base,
				(range->pin_base + range->npins - 1));
1456
	}
1457

1458
	mutex_unlock(&pctldev->mutex);
1459 1460 1461 1462 1463 1464 1465 1466

	return 0;
}

static int pinctrl_devices_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev;

1467
	seq_puts(s, "name [pinmux] [pinconf]\n");
1468

1469
	mutex_lock(&pinctrldev_list_mutex);
1470

1471 1472 1473
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		seq_printf(s, "%s ", pctldev->desc->name);
		if (pctldev->desc->pmxops)
1474 1475 1476 1477
			seq_puts(s, "yes ");
		else
			seq_puts(s, "no ");
		if (pctldev->desc->confops)
1478 1479 1480 1481 1482
			seq_puts(s, "yes");
		else
			seq_puts(s, "no");
		seq_puts(s, "\n");
	}
1483

1484
	mutex_unlock(&pinctrldev_list_mutex);
1485 1486 1487 1488

	return 0;
}

1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504
static inline const char *map_type(enum pinctrl_map_type type)
{
	static const char * const names[] = {
		"INVALID",
		"DUMMY_STATE",
		"MUX_GROUP",
		"CONFIGS_PIN",
		"CONFIGS_GROUP",
	};

	if (type >= ARRAY_SIZE(names))
		return "UNKNOWN";

	return names[type];
}

1505 1506 1507 1508 1509 1510 1511 1512
static int pinctrl_maps_show(struct seq_file *s, void *what)
{
	struct pinctrl_maps *maps_node;
	int i;
	struct pinctrl_map const *map;

	seq_puts(s, "Pinctrl maps:\n");

1513
	mutex_lock(&pinctrl_maps_mutex);
1514
	for_each_maps(maps_node, i, map) {
1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
			   map->dev_name, map->name, map_type(map->type),
			   map->type);

		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
			seq_printf(s, "controlling device %s\n",
				   map->ctrl_dev_name);

		switch (map->type) {
		case PIN_MAP_TYPE_MUX_GROUP:
			pinmux_show_map(s, map);
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			pinconf_show_map(s, map);
			break;
		default:
			break;
		}

		seq_printf(s, "\n");
1536
	}
1537
	mutex_unlock(&pinctrl_maps_mutex);
1538 1539 1540 1541

	return 0;
}

1542 1543 1544
static int pinctrl_show(struct seq_file *s, void *what)
{
	struct pinctrl *p;
1545
	struct pinctrl_state *state;
1546
	struct pinctrl_setting *setting;
1547 1548

	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1549

1550
	mutex_lock(&pinctrl_list_mutex);
1551

1552
	list_for_each_entry(p, &pinctrl_list, node) {
1553 1554 1555 1556 1557 1558
		seq_printf(s, "device: %s current state: %s\n",
			   dev_name(p->dev),
			   p->state ? p->state->name : "none");

		list_for_each_entry(state, &p->states, node) {
			seq_printf(s, "  state: %s\n", state->name);
1559

1560
			list_for_each_entry(setting, &state->settings, node) {
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
				struct pinctrl_dev *pctldev = setting->pctldev;

				seq_printf(s, "    type: %s controller %s ",
					   map_type(setting->type),
					   pinctrl_dev_get_name(pctldev));

				switch (setting->type) {
				case PIN_MAP_TYPE_MUX_GROUP:
					pinmux_show_setting(s, setting);
					break;
				case PIN_MAP_TYPE_CONFIGS_PIN:
				case PIN_MAP_TYPE_CONFIGS_GROUP:
					pinconf_show_setting(s, setting);
					break;
				default:
					break;
				}
1578
			}
1579 1580 1581
		}
	}

1582
	mutex_unlock(&pinctrl_list_mutex);
1583

1584 1585 1586
	return 0;
}

1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606
static int pinctrl_pins_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_pins_show, inode->i_private);
}

static int pinctrl_groups_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_groups_show, inode->i_private);
}

static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
}

static int pinctrl_devices_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_devices_show, NULL);
}

1607 1608 1609 1610 1611
static int pinctrl_maps_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_maps_show, NULL);
}

1612 1613 1614 1615 1616
static int pinctrl_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_show, NULL);
}

1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
static const struct file_operations pinctrl_pins_ops = {
	.open		= pinctrl_pins_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations pinctrl_groups_ops = {
	.open		= pinctrl_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations pinctrl_gpioranges_ops = {
	.open		= pinctrl_gpioranges_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1638 1639
static const struct file_operations pinctrl_devices_ops = {
	.open		= pinctrl_devices_open,
1640 1641 1642 1643 1644
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1645 1646
static const struct file_operations pinctrl_maps_ops = {
	.open		= pinctrl_maps_open,
1647 1648 1649 1650 1651
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1652 1653 1654 1655 1656 1657 1658
static const struct file_operations pinctrl_ops = {
	.open		= pinctrl_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1659 1660 1661 1662
static struct dentry *debugfs_root;

static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
1663
	struct dentry *device_root;
1664

1665
	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1666
					 debugfs_root);
1667 1668
	pctldev->device_root = device_root;

1669 1670
	if (IS_ERR(device_root) || !device_root) {
		pr_warn("failed to create debugfs directory for %s\n",
1671
			dev_name(pctldev->dev));
1672 1673 1674 1675 1676 1677 1678 1679
		return;
	}
	debugfs_create_file("pins", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_pins_ops);
	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_groups_ops);
	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_gpioranges_ops);
1680 1681 1682 1683
	if (pctldev->desc->pmxops)
		pinmux_init_device_debugfs(device_root, pctldev);
	if (pctldev->desc->confops)
		pinconf_init_device_debugfs(device_root, pctldev);
1684 1685
}

1686 1687 1688 1689 1690
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
	debugfs_remove_recursive(pctldev->device_root);
}

1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
static void pinctrl_init_debugfs(void)
{
	debugfs_root = debugfs_create_dir("pinctrl", NULL);
	if (IS_ERR(debugfs_root) || !debugfs_root) {
		pr_warn("failed to create debugfs directory\n");
		debugfs_root = NULL;
		return;
	}

	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_devices_ops);
1702 1703
	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_maps_ops);
1704 1705
	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_ops);
1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717
}

#else /* CONFIG_DEBUG_FS */

static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
}

static void pinctrl_init_debugfs(void)
{
}

1718 1719 1720 1721
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
}

1722 1723
#endif

1724 1725 1726 1727 1728
static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
{
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;

	if (!ops ||
1729
	    !ops->get_groups_count ||
1730
	    !ops->get_group_name)
1731 1732
		return -EINVAL;

1733 1734 1735
	if (ops->dt_node_to_map && !ops->dt_free_map)
		return -EINVAL;

1736 1737 1738
	return 0;
}

1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
/**
 * pinctrl_register() - register a pin controller device
 * @pctldesc: descriptor for this pin controller
 * @dev: parent device for this pin controller
 * @driver_data: private pin controller data for this pin controller
 */
struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
				    struct device *dev, void *driver_data)
{
	struct pinctrl_dev *pctldev;
	int ret;

1751
	if (!pctldesc)
1752
		return ERR_PTR(-EINVAL);
1753
	if (!pctldesc->name)
1754
		return ERR_PTR(-EINVAL);
1755

1756
	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1757 1758
	if (pctldev == NULL) {
		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1759
		return ERR_PTR(-ENOMEM);
1760
	}
1761 1762 1763 1764 1765 1766 1767 1768

	/* Initialize pin control device struct */
	pctldev->owner = pctldesc->owner;
	pctldev->desc = pctldesc;
	pctldev->driver_data = driver_data;
	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
	INIT_LIST_HEAD(&pctldev->gpio_ranges);
	pctldev->dev = dev;
1769
	mutex_init(&pctldev->mutex);
1770

1771
	/* check core ops for sanity */
1772 1773
	ret = pinctrl_check_ops(pctldev);
	if (ret) {
1774
		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1775 1776 1777
		goto out_err;
	}

1778 1779
	/* If we're implementing pinmuxing, check the ops for sanity */
	if (pctldesc->pmxops) {
1780 1781
		ret = pinmux_check_ops(pctldev);
		if (ret)
1782
			goto out_err;
1783 1784
	}

1785 1786
	/* If we're implementing pinconfig, check the ops for sanity */
	if (pctldesc->confops) {
1787 1788
		ret = pinconf_check_ops(pctldev);
		if (ret)
1789
			goto out_err;
1790 1791
	}

1792
	/* Register all the pins */
1793
	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1794 1795
	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
	if (ret) {
1796
		dev_err(dev, "error during pin registration\n");
1797 1798
		pinctrl_free_pindescs(pctldev, pctldesc->pins,
				      pctldesc->npins);
1799
		goto out_err;
1800 1801
	}

1802
	mutex_lock(&pinctrldev_list_mutex);
1803
	list_add_tail(&pctldev->node, &pinctrldev_list);
1804 1805 1806
	mutex_unlock(&pinctrldev_list_mutex);

	pctldev->p = pinctrl_get(pctldev->dev);
1807

1808
	if (!IS_ERR(pctldev->p)) {
1809
		pctldev->hog_default =
1810
			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1811
		if (IS_ERR(pctldev->hog_default)) {
1812 1813
			dev_dbg(dev, "failed to lookup the default state\n");
		} else {
1814
			if (pinctrl_select_state(pctldev->p,
1815
						pctldev->hog_default))
1816 1817 1818
				dev_err(dev,
					"failed to select default state\n");
		}
1819 1820

		pctldev->hog_sleep =
1821
			pinctrl_lookup_state(pctldev->p,
1822 1823 1824
						    PINCTRL_STATE_SLEEP);
		if (IS_ERR(pctldev->hog_sleep))
			dev_dbg(dev, "failed to lookup the sleep state\n");
1825
	}
1826

1827 1828
	pinctrl_init_device_debugfs(pctldev);

1829 1830
	return pctldev;

1831
out_err:
1832
	mutex_destroy(&pctldev->mutex);
1833
	kfree(pctldev);
1834
	return ERR_PTR(ret);
1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845
}
EXPORT_SYMBOL_GPL(pinctrl_register);

/**
 * pinctrl_unregister() - unregister pinmux
 * @pctldev: pin controller to unregister
 *
 * Called by pinmux drivers to unregister a pinmux.
 */
void pinctrl_unregister(struct pinctrl_dev *pctldev)
{
1846
	struct pinctrl_gpio_range *range, *n;
1847 1848 1849
	if (pctldev == NULL)
		return;

1850 1851
	mutex_lock(&pctldev->mutex);
	pinctrl_remove_device_debugfs(pctldev);
J
Jim Lin 已提交
1852
	mutex_unlock(&pctldev->mutex);
1853

1854
	if (!IS_ERR(pctldev->p))
1855
		pinctrl_put(pctldev->p);
1856

J
Jim Lin 已提交
1857 1858
	mutex_lock(&pinctrldev_list_mutex);
	mutex_lock(&pctldev->mutex);
1859 1860 1861 1862 1863
	/* TODO: check that no pinmuxes are still active? */
	list_del(&pctldev->node);
	/* Destroy descriptor tree */
	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
			      pctldev->desc->npins);
1864 1865 1866 1867
	/* remove gpio ranges map */
	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
		list_del(&range->node);

1868 1869
	mutex_unlock(&pctldev->mutex);
	mutex_destroy(&pctldev->mutex);
1870
	kfree(pctldev);
1871
	mutex_unlock(&pinctrldev_list_mutex);
1872 1873 1874
}
EXPORT_SYMBOL_GPL(pinctrl_unregister);

1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937
static void devm_pinctrl_dev_release(struct device *dev, void *res)
{
	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;

	pinctrl_unregister(pctldev);
}

static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
{
	struct pctldev **r = res;

	if (WARN_ON(!r || !*r)
		return 0;

	return *r == data;
}

/**
 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
 * @dev: parent device for this pin controller
 * @pctldesc: descriptor for this pin controller
 * @driver_data: private pin controller data for this pin controller
 *
 * Returns an error pointer if pincontrol register failed. Otherwise
 * it returns valid pinctrl handle.
 *
 * The pinctrl device will be automatically released when the device is unbound.
 */
struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
					  struct pinctrl_desc *pctldesc,
					  void *driver_data)
{
	struct pinctrl_dev **ptr, *pctldev;

	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	pctldev = pinctrl_register(pctldesc, dev, driver_data);
	if (IS_ERR(pctldev)) {
		devres_free(ptr);
		return pctldev;
	}

	*ptr = pctldev;
	devres_add(dev, ptr);

	return pctldev;
}
EXPORT_SYMBOL_GPL(devm_pinctrl_register);

/**
 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
 * @dev: device for which which resource was allocated
 * @pctldev: the pinctrl device to unregister.
 */
void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
{
	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
			       devm_pinctrl_dev_match, pctldev));
}
EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);

1938 1939 1940 1941 1942 1943 1944 1945 1946
static int __init pinctrl_init(void)
{
	pr_info("initialized pinctrl subsystem\n");
	pinctrl_init_debugfs();
	return 0;
}

/* init early since many drivers really need to initialized pinmux early */
core_initcall(pinctrl_init);