core.c 35.5 KB
Newer Older
1 2 3
/*
 * Core driver for the pin control subsystem
 *
4
 * Copyright (C) 2011-2012 ST-Ericsson SA
5 6 7 8 9
 * Written on behalf of Linaro for ST-Ericsson
 * Based on bits of regulator core, gpio core and clk core
 *
 * Author: Linus Walleij <linus.walleij@linaro.org>
 *
10 11
 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
 *
12 13 14 15 16
 * License terms: GNU General Public License (GPL) version 2
 */
#define pr_fmt(fmt) "pinctrl core: " fmt

#include <linux/kernel.h>
17
#include <linux/export.h>
18 19 20 21 22 23 24 25
#include <linux/init.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/sysfs.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
26
#include <linux/pinctrl/consumer.h>
27 28 29
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/machine.h>
#include "core.h"
30
#include "devicetree.h"
31
#include "pinmux.h"
32
#include "pinconf.h"
33

34 35 36 37 38 39 40 41 42 43 44 45
/**
 * struct pinctrl_maps - a list item containing part of the mapping table
 * @node: mapping table list node
 * @maps: array of mapping table entries
 * @num_maps: the number of entries in @maps
 */
struct pinctrl_maps {
	struct list_head node;
	struct pinctrl_map const *maps;
	unsigned num_maps;
};

46 47 48 49
/* Mutex taken by all entry points */
DEFINE_MUTEX(pinctrl_mutex);

/* Global list of pin control devices (struct pinctrl_dev) */
50
LIST_HEAD(pinctrldev_list);
51

52
/* List of pin controller handles (struct pinctrl) */
53 54
static LIST_HEAD(pinctrl_list);

55
/* List of pinctrl maps (struct pinctrl_maps) */
56 57 58 59 60 61 62
static LIST_HEAD(pinctrl_maps);

#define for_each_maps(_maps_node_, _i_, _map_) \
	list_for_each_entry(_maps_node_, &pinctrl_maps, node) \
		for (_i_ = 0, _map_ = &_maps_node_->maps[_i_]; \
			_i_ < _maps_node_->num_maps; \
			i++, _map_ = &_maps_node_->maps[_i_])
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77
const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
{
	/* We're not allowed to register devices without name */
	return pctldev->desc->name;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);

void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
{
	return pctldev->driver_data;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);

/**
78 79
 * get_pinctrl_dev_from_devname() - look up pin controller device
 * @devname: the name of a device instance, as returned by dev_name()
80 81 82 83
 *
 * Looks up a pin control device matching a certain device name or pure device
 * pointer, the pure device pointer will take precedence.
 */
84
struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
85 86 87 88
{
	struct pinctrl_dev *pctldev = NULL;
	bool found = false;

89 90 91
	if (!devname)
		return NULL;

92
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
93
		if (!strcmp(dev_name(pctldev->dev), devname)) {
94 95 96 97 98 99 100 101 102
			/* Matched on device name */
			found = true;
			break;
		}
	}

	return found ? pctldev : NULL;
}

103 104 105 106 107 108 109
/**
 * pin_get_from_name() - look up a pin number from a name
 * @pctldev: the pin control device to lookup the pin on
 * @name: the name of the pin to look up
 */
int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
{
110
	unsigned i, pin;
111

112 113
	/* The pin number can be retrived from the pin controller descriptor */
	for (i = 0; i < pctldev->desc->npins; i++) {
114 115
		struct pin_desc *desc;

116
		pin = pctldev->desc->pins[i].number;
117 118 119 120 121 122 123 124 125 126 127
		desc = pin_desc_get(pctldev, pin);
		/* Pin space may be sparse */
		if (desc == NULL)
			continue;
		if (desc->name && !strcmp(name, desc->name))
			return pin;
	}

	return -EINVAL;
}

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
/**
 * pin_get_name_from_id() - look up a pin name from a pin id
 * @pctldev: the pin control device to lookup the pin on
 * @name: the name of the pin to look up
 */
const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
{
	const struct pin_desc *desc;

	desc = pin_desc_get(pctldev, pin);
	if (desc == NULL) {
		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
			pin);
		return NULL;
	}

	return desc->name;
}

147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
/**
 * pin_is_valid() - check if pin exists on controller
 * @pctldev: the pin control device to check the pin on
 * @pin: pin to check, use the local pin controller index number
 *
 * This tells us whether a certain pin exist on a certain pin controller or
 * not. Pin lists may be sparse, so some pins may not exist.
 */
bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
{
	struct pin_desc *pindesc;

	if (pin < 0)
		return false;

162
	mutex_lock(&pinctrl_mutex);
163
	pindesc = pin_desc_get(pctldev, pin);
164
	mutex_unlock(&pinctrl_mutex);
165

166
	return pindesc != NULL;
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
}
EXPORT_SYMBOL_GPL(pin_is_valid);

/* Deletes a range of pin descriptors */
static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
				  const struct pinctrl_pin_desc *pins,
				  unsigned num_pins)
{
	int i;

	for (i = 0; i < num_pins; i++) {
		struct pin_desc *pindesc;

		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
					    pins[i].number);
		if (pindesc != NULL) {
			radix_tree_delete(&pctldev->pin_desc_tree,
					  pins[i].number);
185 186
			if (pindesc->dynamic_name)
				kfree(pindesc->name);
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
		}
		kfree(pindesc);
	}
}

static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
				    unsigned number, const char *name)
{
	struct pin_desc *pindesc;

	pindesc = pin_desc_get(pctldev, number);
	if (pindesc != NULL) {
		pr_err("pin %d already registered on %s\n", number,
		       pctldev->desc->name);
		return -EINVAL;
	}

	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
205 206
	if (pindesc == NULL) {
		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
207
		return -ENOMEM;
208
	}
209

210 211 212
	/* Set owner */
	pindesc->pctldev = pctldev;

213
	/* Copy basic pin info */
L
Linus Walleij 已提交
214
	if (name) {
215 216 217 218 219 220 221
		pindesc->name = name;
	} else {
		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
		if (pindesc->name == NULL)
			return -ENOMEM;
		pindesc->dynamic_name = true;
	}
222 223 224

	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
	pr_debug("registered pin %d (%s) on %s\n",
225
		 number, pindesc->name, pctldev->desc->name);
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	return 0;
}

static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
				 struct pinctrl_pin_desc const *pins,
				 unsigned num_descs)
{
	unsigned i;
	int ret = 0;

	for (i = 0; i < num_descs; i++) {
		ret = pinctrl_register_one_pin(pctldev,
					       pins[i].number, pins[i].name);
		if (ret)
			return ret;
	}

	return 0;
}

/**
 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 * @pctldev: pin controller device to check
 * @gpio: gpio pin to check taken from the global GPIO pin space
 *
 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 * controller, return the range or NULL
 */
static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
{
	struct pinctrl_gpio_range *range = NULL;

	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
		/* Check if we're in the valid range */
		if (gpio >= range->base &&
		    gpio < range->base + range->npins) {
			return range;
		}
	}

	return NULL;
}

/**
 * pinctrl_get_device_gpio_range() - find device for GPIO range
 * @gpio: the pin to locate the pin controller for
 * @outdev: the pin control device if found
 * @outrange: the GPIO range if found
 *
 * Find the pin controller handling a certain GPIO pin from the pinspace of
 * the GPIO subsystem, return the device and the matching GPIO range. Returns
 * negative if the GPIO range could not be found in any device.
 */
S
Stephen Warren 已提交
281 282 283
static int pinctrl_get_device_gpio_range(unsigned gpio,
					 struct pinctrl_dev **outdev,
					 struct pinctrl_gpio_range **outrange)
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
{
	struct pinctrl_dev *pctldev = NULL;

	/* Loop over the pin controllers */
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		struct pinctrl_gpio_range *range;

		range = pinctrl_match_gpio_range(pctldev, gpio);
		if (range != NULL) {
			*outdev = pctldev;
			*outrange = range;
			return 0;
		}
	}

	return -EINVAL;
}

/**
 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 * @pctldev: pin controller device to add the range to
 * @range: the GPIO range to add
 *
 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 * this to register handled ranges after registering your pin controller.
 */
void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
			    struct pinctrl_gpio_range *range)
{
313
	mutex_lock(&pinctrl_mutex);
314
	list_add_tail(&range->node, &pctldev->gpio_ranges);
315
	mutex_unlock(&pinctrl_mutex);
316
}
S
Stephen Warren 已提交
317
EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
318 319 320 321 322 323 324 325 326

/**
 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
 * @pctldev: pin controller device to remove the range from
 * @range: the GPIO range to remove
 */
void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
			       struct pinctrl_gpio_range *range)
{
327
	mutex_lock(&pinctrl_mutex);
328
	list_del(&range->node);
329
	mutex_unlock(&pinctrl_mutex);
330
}
S
Stephen Warren 已提交
331
EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
332

333 334 335 336 337 338 339 340 341
/**
 * pinctrl_get_group_selector() - returns the group selector for a group
 * @pctldev: the pin controller handling the group
 * @pin_group: the pin group to look up
 */
int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
			       const char *pin_group)
{
	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
342
	unsigned ngroups = pctlops->get_groups_count(pctldev);
343 344
	unsigned group_selector = 0;

345
	while (group_selector < ngroups) {
346 347 348
		const char *gname = pctlops->get_group_name(pctldev,
							    group_selector);
		if (!strcmp(gname, pin_group)) {
349
			dev_dbg(pctldev->dev,
350 351 352 353 354 355 356 357 358
				"found group selector %u for %s\n",
				group_selector,
				pin_group);
			return group_selector;
		}

		group_selector++;
	}

359
	dev_err(pctldev->dev, "does not have pin group %s\n",
360 361 362 363 364
		pin_group);

	return -EINVAL;
}

365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
/**
 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_request() semantics, platforms and individual drivers
 * shall *NOT* request GPIO pins to be muxed in.
 */
int pinctrl_request_gpio(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

380 381
	mutex_lock(&pinctrl_mutex);

382
	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
383 384
	if (ret) {
		mutex_unlock(&pinctrl_mutex);
385
		return -EINVAL;
386
	}
387 388 389 390

	/* Convert to the pin controllers number space */
	pin = gpio - range->base + range->pin_base;

391 392 393 394
	ret = pinmux_request_gpio(pctldev, range, pin, gpio);

	mutex_unlock(&pinctrl_mutex);
	return ret;
395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
}
EXPORT_SYMBOL_GPL(pinctrl_request_gpio);

/**
 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_free() semantics, platforms and individual drivers
 * shall *NOT* request GPIO pins to be muxed out.
 */
void pinctrl_free_gpio(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

413 414
	mutex_lock(&pinctrl_mutex);

415
	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
416 417
	if (ret) {
		mutex_unlock(&pinctrl_mutex);
418
		return;
419
	}
420 421 422 423

	/* Convert to the pin controllers number space */
	pin = gpio - range->base + range->pin_base;

424 425 426
	pinmux_free_gpio(pctldev, pin, range);

	mutex_unlock(&pinctrl_mutex);
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
}
EXPORT_SYMBOL_GPL(pinctrl_free_gpio);

static int pinctrl_gpio_direction(unsigned gpio, bool input)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
	if (ret)
		return ret;

	/* Convert to the pin controllers number space */
	pin = gpio - range->base + range->pin_base;

	return pinmux_gpio_direction(pctldev, range, pin, input);
}

/**
 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_direction_input() semantics, platforms and individual
 * drivers shall *NOT* touch pin control GPIO calls.
 */
int pinctrl_gpio_direction_input(unsigned gpio)
{
457 458 459 460 461
	int ret;
	mutex_lock(&pinctrl_mutex);
	ret = pinctrl_gpio_direction(gpio, true);
	mutex_unlock(&pinctrl_mutex);
	return ret;
462 463 464 465 466 467 468 469 470 471 472 473 474
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);

/**
 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_direction_output() semantics, platforms and individual
 * drivers shall *NOT* touch pin control GPIO calls.
 */
int pinctrl_gpio_direction_output(unsigned gpio)
{
475 476 477 478 479
	int ret;
	mutex_lock(&pinctrl_mutex);
	ret = pinctrl_gpio_direction(gpio, false);
	mutex_unlock(&pinctrl_mutex);
	return ret;
480 481 482
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);

483 484
static struct pinctrl_state *find_state(struct pinctrl *p,
					const char *name)
485
{
486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
	struct pinctrl_state *state;

	list_for_each_entry(state, &p->states, node)
		if (!strcmp(state->name, name))
			return state;

	return NULL;
}

static struct pinctrl_state *create_state(struct pinctrl *p,
					  const char *name)
{
	struct pinctrl_state *state;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (state == NULL) {
		dev_err(p->dev,
			"failed to alloc struct pinctrl_state\n");
		return ERR_PTR(-ENOMEM);
	}

	state->name = name;
	INIT_LIST_HEAD(&state->settings);

	list_add_tail(&state->node, &p->states);

	return state;
}

static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
{
	struct pinctrl_state *state;
518
	struct pinctrl_setting *setting;
519
	int ret;
520

521 522 523 524 525
	state = find_state(p, map->name);
	if (!state)
		state = create_state(p, map->name);
	if (IS_ERR(state))
		return PTR_ERR(state);
526

527 528 529
	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
		return 0;

530 531 532 533 534 535
	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
	if (setting == NULL) {
		dev_err(p->dev,
			"failed to alloc struct pinctrl_setting\n");
		return -ENOMEM;
	}
536

537 538
	setting->type = map->type;

539 540
	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
	if (setting->pctldev == NULL) {
541
		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
542 543
			map->ctrl_dev_name);
		kfree(setting);
544 545 546 547 548
		/*
		 * OK let us guess that the driver is not there yet, and
		 * let's defer obtaining this pinctrl handle to later...
		 */
		return -EPROBE_DEFER;
549 550
	}

551 552 553 554 555 556 557 558 559 560 561 562
	switch (map->type) {
	case PIN_MAP_TYPE_MUX_GROUP:
		ret = pinmux_map_to_setting(map, setting);
		break;
	case PIN_MAP_TYPE_CONFIGS_PIN:
	case PIN_MAP_TYPE_CONFIGS_GROUP:
		ret = pinconf_map_to_setting(map, setting);
		break;
	default:
		ret = -EINVAL;
		break;
	}
563 564 565 566 567 568 569 570 571 572 573 574 575 576
	if (ret < 0) {
		kfree(setting);
		return ret;
	}

	list_add_tail(&setting->node, &state->settings);

	return 0;
}

static struct pinctrl *find_pinctrl(struct device *dev)
{
	struct pinctrl *p;

577
	list_for_each_entry(p, &pinctrl_list, node)
578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
		if (p->dev == dev)
			return p;

	return NULL;
}

static void pinctrl_put_locked(struct pinctrl *p, bool inlist);

static struct pinctrl *create_pinctrl(struct device *dev)
{
	struct pinctrl *p;
	const char *devname;
	struct pinctrl_maps *maps_node;
	int i;
	struct pinctrl_map const *map;
	int ret;
594 595 596 597 598 599

	/*
	 * create the state cookie holder struct pinctrl for each
	 * mapping, this is what consumers will get when requesting
	 * a pin control handle with pinctrl_get()
	 */
600
	p = kzalloc(sizeof(*p), GFP_KERNEL);
601 602
	if (p == NULL) {
		dev_err(dev, "failed to alloc struct pinctrl\n");
603
		return ERR_PTR(-ENOMEM);
604
	}
605
	p->dev = dev;
606
	INIT_LIST_HEAD(&p->states);
607 608 609 610 611 612 613
	INIT_LIST_HEAD(&p->dt_maps);

	ret = pinctrl_dt_to_map(p);
	if (ret < 0) {
		kfree(p);
		return ERR_PTR(ret);
	}
614 615

	devname = dev_name(dev);
616 617

	/* Iterate over the pin control maps to locate the right ones */
618
	for_each_maps(maps_node, i, map) {
619 620 621 622
		/* Map must be for this device */
		if (strcmp(map->dev_name, devname))
			continue;

623 624 625 626
		ret = add_setting(p, map);
		if (ret < 0) {
			pinctrl_put_locked(p, false);
			return ERR_PTR(ret);
627
		}
628 629 630
	}

	/* Add the pinmux to the global list */
631
	list_add_tail(&p->node, &pinctrl_list);
632 633

	return p;
634
}
635

636 637 638
static struct pinctrl *pinctrl_get_locked(struct device *dev)
{
	struct pinctrl *p;
639

640 641 642 643 644 645
	if (WARN_ON(!dev))
		return ERR_PTR(-EINVAL);

	p = find_pinctrl(dev);
	if (p != NULL)
		return ERR_PTR(-EBUSY);
646

647 648 649 650 651
	p = create_pinctrl(dev);
	if (IS_ERR(p))
		return p;

	return p;
652
}
653 654

/**
655 656
 * pinctrl_get() - retrieves the pinctrl handle for a device
 * @dev: the device to obtain the handle for
657
 */
658
struct pinctrl *pinctrl_get(struct device *dev)
659 660 661
{
	struct pinctrl *p;

662
	mutex_lock(&pinctrl_mutex);
663
	p = pinctrl_get_locked(dev);
664
	mutex_unlock(&pinctrl_mutex);
665 666 667

	return p;
}
668 669
EXPORT_SYMBOL_GPL(pinctrl_get);

670
static void pinctrl_put_locked(struct pinctrl *p, bool inlist)
671
{
672 673 674 675 676
	struct pinctrl_state *state, *n1;
	struct pinctrl_setting *setting, *n2;

	list_for_each_entry_safe(state, n1, &p->states, node) {
		list_for_each_entry_safe(setting, n2, &state->settings, node) {
677 678 679 680 681 682 683 684 685 686 687 688 689
			switch (setting->type) {
			case PIN_MAP_TYPE_MUX_GROUP:
				if (state == p->state)
					pinmux_disable_setting(setting);
				pinmux_free_setting(setting);
				break;
			case PIN_MAP_TYPE_CONFIGS_PIN:
			case PIN_MAP_TYPE_CONFIGS_GROUP:
				pinconf_free_setting(setting);
				break;
			default:
				break;
			}
690 691 692 693 694
			list_del(&setting->node);
			kfree(setting);
		}
		list_del(&state->node);
		kfree(state);
695
	}
696

697 698
	pinctrl_dt_free_maps(p);

699 700
	if (inlist)
		list_del(&p->node);
701 702 703 704
	kfree(p);
}

/**
705 706
 * pinctrl_put() - release a previously claimed pinctrl handle
 * @p: the pinctrl handle to release
707
 */
708 709 710
void pinctrl_put(struct pinctrl *p)
{
	mutex_lock(&pinctrl_mutex);
711
	pinctrl_put_locked(p, true);
712 713 714 715
	mutex_unlock(&pinctrl_mutex);
}
EXPORT_SYMBOL_GPL(pinctrl_put);

716 717
static struct pinctrl_state *pinctrl_lookup_state_locked(struct pinctrl *p,
							 const char *name)
718
{
719
	struct pinctrl_state *state;
720

721 722 723
	state = find_state(p, name);
	if (!state)
		return ERR_PTR(-ENODEV);
724

725
	return state;
726 727 728
}

/**
729 730 731
 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
 * @p: the pinctrl handle to retrieve the state from
 * @name: the state name to retrieve
732
 */
733
struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char *name)
734
{
735 736
	struct pinctrl_state *s;

737
	mutex_lock(&pinctrl_mutex);
738
	s = pinctrl_lookup_state_locked(p, name);
739
	mutex_unlock(&pinctrl_mutex);
740 741

	return s;
742
}
743
EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
744

745 746
static int pinctrl_select_state_locked(struct pinctrl *p,
				       struct pinctrl_state *state)
747
{
748 749
	struct pinctrl_setting *setting, *setting2;
	int ret;
750

751 752
	if (p->state == state)
		return 0;
753

754 755 756 757 758 759 760 761 762 763 764 765
	if (p->state) {
		/*
		 * The set of groups with a mux configuration in the old state
		 * may not be identical to the set of groups with a mux setting
		 * in the new state. While this might be unusual, it's entirely
		 * possible for the "user"-supplied mapping table to be written
		 * that way. For each group that was configured in the old state
		 * but not in the new state, this code puts that group into a
		 * safe/disabled state.
		 */
		list_for_each_entry(setting, &p->state->settings, node) {
			bool found = false;
766 767
			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
				continue;
768
			list_for_each_entry(setting2, &state->settings, node) {
769 770 771 772
				if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
					continue;
				if (setting2->data.mux.group ==
						setting->data.mux.group) {
773 774 775 776 777 778 779 780 781 782 783 784 785
					found = true;
					break;
				}
			}
			if (!found)
				pinmux_disable_setting(setting);
		}
	}

	p->state = state;

	/* Apply all the settings for the new state */
	list_for_each_entry(setting, &state->settings, node) {
786 787 788 789 790 791 792 793 794 795 796 797
		switch (setting->type) {
		case PIN_MAP_TYPE_MUX_GROUP:
			ret = pinmux_enable_setting(setting);
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			ret = pinconf_apply_setting(setting);
			break;
		default:
			ret = -EINVAL;
			break;
		}
798 799 800 801
		if (ret < 0) {
			/* FIXME: Difficult to return to prev state */
			return ret;
		}
802
	}
803 804

	return 0;
805 806 807
}

/**
808 809 810
 * pinctrl_select() - select/activate/program a pinctrl state to HW
 * @p: the pinctrl handle for the device that requests configuratio
 * @state: the state handle to select/activate/program
811
 */
812
int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
813
{
814 815
	int ret;

816
	mutex_lock(&pinctrl_mutex);
817
	ret = pinctrl_select_state_locked(p, state);
818
	mutex_unlock(&pinctrl_mutex);
819 820

	return ret;
821
}
822
EXPORT_SYMBOL_GPL(pinctrl_select_state);
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
static void devm_pinctrl_release(struct device *dev, void *res)
{
	pinctrl_put(*(struct pinctrl **)res);
}

/**
 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
 * @dev: the device to obtain the handle for
 *
 * If there is a need to explicitly destroy the returned struct pinctrl,
 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
 */
struct pinctrl *devm_pinctrl_get(struct device *dev)
{
	struct pinctrl **ptr, *p;

	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	p = pinctrl_get(dev);
	if (!IS_ERR(p)) {
		*ptr = p;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return p;
}
EXPORT_SYMBOL_GPL(devm_pinctrl_get);

static int devm_pinctrl_match(struct device *dev, void *res, void *data)
{
	struct pinctrl **p = res;

	return *p == data;
}

/**
 * devm_pinctrl_put() - Resource managed pinctrl_put()
 * @p: the pinctrl handle to release
 *
 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_pinctrl_put(struct pinctrl *p)
{
	WARN_ON(devres_destroy(p->dev, devm_pinctrl_release,
			       devm_pinctrl_match, p));
	pinctrl_put(p);
}
EXPORT_SYMBOL_GPL(devm_pinctrl_put);

879 880
int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
			 bool dup, bool locked)
881
{
882
	int i, ret;
883
	struct pinctrl_maps *maps_node;
884 885 886 887 888

	pr_debug("add %d pinmux maps\n", num_maps);

	/* First sanity check the new mapping */
	for (i = 0; i < num_maps; i++) {
889 890 891 892 893 894
		if (!maps[i].dev_name) {
			pr_err("failed to register map %s (%d): no device given\n",
			       maps[i].name, i);
			return -EINVAL;
		}

895 896
		if (!maps[i].name) {
			pr_err("failed to register map %d: no map name given\n",
897
			       i);
898 899 900
			return -EINVAL;
		}

901 902
		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
				!maps[i].ctrl_dev_name) {
903 904 905 906 907
			pr_err("failed to register map %s (%d): no pin control device given\n",
			       maps[i].name, i);
			return -EINVAL;
		}

908 909 910 911 912 913
		switch (maps[i].type) {
		case PIN_MAP_TYPE_DUMMY_STATE:
			break;
		case PIN_MAP_TYPE_MUX_GROUP:
			ret = pinmux_validate_map(&maps[i], i);
			if (ret < 0)
914
				return ret;
915 916 917 918 919
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			ret = pinconf_validate_map(&maps[i], i);
			if (ret < 0)
920
				return ret;
921 922 923
			break;
		default:
			pr_err("failed to register map %s (%d): invalid type given\n",
924
			       maps[i].name, i);
925 926
			return -EINVAL;
		}
927 928
	}

929 930 931 932 933
	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
	if (!maps_node) {
		pr_err("failed to alloc struct pinctrl_maps\n");
		return -ENOMEM;
	}
934

935
	maps_node->num_maps = num_maps;
936 937 938 939 940 941 942 943 944 945
	if (dup) {
		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
					  GFP_KERNEL);
		if (!maps_node->maps) {
			pr_err("failed to duplicate mapping table\n");
			kfree(maps_node);
			return -ENOMEM;
		}
	} else {
		maps_node->maps = maps;
946 947
	}

948 949
	if (!locked)
		mutex_lock(&pinctrl_mutex);
950
	list_add_tail(&maps_node->node, &pinctrl_maps);
951 952
	if (!locked)
		mutex_unlock(&pinctrl_mutex);
953

954 955 956
	return 0;
}

957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981
/**
 * pinctrl_register_mappings() - register a set of pin controller mappings
 * @maps: the pincontrol mappings table to register. This should probably be
 *	marked with __initdata so it can be discarded after boot. This
 *	function will perform a shallow copy for the mapping entries.
 * @num_maps: the number of maps in the mapping table
 */
int pinctrl_register_mappings(struct pinctrl_map const *maps,
			      unsigned num_maps)
{
	return pinctrl_register_map(maps, num_maps, true, false);
}

void pinctrl_unregister_map(struct pinctrl_map const *map)
{
	struct pinctrl_maps *maps_node;

	list_for_each_entry(maps_node, &pinctrl_maps, node) {
		if (maps_node->maps == map) {
			list_del(&maps_node->node);
			return;
		}
	}
}

982 983 984 985 986 987
#ifdef CONFIG_DEBUG_FS

static int pinctrl_pins_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
988
	unsigned i, pin;
989 990 991

	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);

992 993
	mutex_lock(&pinctrl_mutex);

994 995
	/* The pin number can be retrived from the pin controller descriptor */
	for (i = 0; i < pctldev->desc->npins; i++) {
996 997
		struct pin_desc *desc;

998
		pin = pctldev->desc->pins[i].number;
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
		desc = pin_desc_get(pctldev, pin);
		/* Pin space may be sparse */
		if (desc == NULL)
			continue;

		seq_printf(s, "pin %d (%s) ", pin,
			   desc->name ? desc->name : "unnamed");

		/* Driver-specific info per pin */
		if (ops->pin_dbg_show)
			ops->pin_dbg_show(pctldev, s, pin);

		seq_puts(s, "\n");
	}

1014 1015
	mutex_unlock(&pinctrl_mutex);

1016 1017 1018 1019 1020 1021 1022
	return 0;
}

static int pinctrl_groups_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1023
	unsigned ngroups, selector = 0;
1024

1025
	ngroups = ops->get_groups_count(pctldev);
1026 1027
	mutex_lock(&pinctrl_mutex);

1028
	seq_puts(s, "registered pin groups:\n");
1029
	while (selector < ngroups) {
1030
		const unsigned *pins;
1031 1032
		unsigned num_pins;
		const char *gname = ops->get_group_name(pctldev, selector);
1033
		const char *pname;
1034 1035 1036 1037 1038 1039 1040 1041 1042
		int ret;
		int i;

		ret = ops->get_group_pins(pctldev, selector,
					  &pins, &num_pins);
		if (ret)
			seq_printf(s, "%s [ERROR GETTING PINS]\n",
				   gname);
		else {
1043 1044 1045 1046 1047 1048 1049 1050
			seq_printf(s, "group: %s\n", gname);
			for (i = 0; i < num_pins; i++) {
				pname = pin_get_name(pctldev, pins[i]);
				if (WARN_ON(!pname))
					return -EINVAL;
				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
			}
			seq_puts(s, "\n");
1051 1052 1053 1054
		}
		selector++;
	}

1055
	mutex_unlock(&pinctrl_mutex);
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066

	return 0;
}

static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	struct pinctrl_gpio_range *range = NULL;

	seq_puts(s, "GPIO ranges handled:\n");

1067 1068
	mutex_lock(&pinctrl_mutex);

1069 1070
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1071 1072 1073 1074 1075
		seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
			   range->id, range->name,
			   range->base, (range->base + range->npins - 1),
			   range->pin_base,
			   (range->pin_base + range->npins - 1));
1076
	}
1077 1078

	mutex_unlock(&pinctrl_mutex);
1079 1080 1081 1082 1083 1084 1085 1086

	return 0;
}

static int pinctrl_devices_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev;

1087
	seq_puts(s, "name [pinmux] [pinconf]\n");
1088 1089 1090

	mutex_lock(&pinctrl_mutex);

1091 1092 1093
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		seq_printf(s, "%s ", pctldev->desc->name);
		if (pctldev->desc->pmxops)
1094 1095 1096 1097
			seq_puts(s, "yes ");
		else
			seq_puts(s, "no ");
		if (pctldev->desc->confops)
1098 1099 1100 1101 1102
			seq_puts(s, "yes");
		else
			seq_puts(s, "no");
		seq_puts(s, "\n");
	}
1103 1104

	mutex_unlock(&pinctrl_mutex);
1105 1106 1107 1108

	return 0;
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
static inline const char *map_type(enum pinctrl_map_type type)
{
	static const char * const names[] = {
		"INVALID",
		"DUMMY_STATE",
		"MUX_GROUP",
		"CONFIGS_PIN",
		"CONFIGS_GROUP",
	};

	if (type >= ARRAY_SIZE(names))
		return "UNKNOWN";

	return names[type];
}

1125 1126 1127 1128 1129 1130 1131 1132
static int pinctrl_maps_show(struct seq_file *s, void *what)
{
	struct pinctrl_maps *maps_node;
	int i;
	struct pinctrl_map const *map;

	seq_puts(s, "Pinctrl maps:\n");

1133 1134
	mutex_lock(&pinctrl_mutex);

1135
	for_each_maps(maps_node, i, map) {
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
			   map->dev_name, map->name, map_type(map->type),
			   map->type);

		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
			seq_printf(s, "controlling device %s\n",
				   map->ctrl_dev_name);

		switch (map->type) {
		case PIN_MAP_TYPE_MUX_GROUP:
			pinmux_show_map(s, map);
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			pinconf_show_map(s, map);
			break;
		default:
			break;
		}

		seq_printf(s, "\n");
1157
	}
1158 1159

	mutex_unlock(&pinctrl_mutex);
1160 1161 1162 1163

	return 0;
}

1164 1165 1166
static int pinctrl_show(struct seq_file *s, void *what)
{
	struct pinctrl *p;
1167
	struct pinctrl_state *state;
1168
	struct pinctrl_setting *setting;
1169 1170

	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1171 1172 1173

	mutex_lock(&pinctrl_mutex);

1174
	list_for_each_entry(p, &pinctrl_list, node) {
1175 1176 1177 1178 1179 1180
		seq_printf(s, "device: %s current state: %s\n",
			   dev_name(p->dev),
			   p->state ? p->state->name : "none");

		list_for_each_entry(state, &p->states, node) {
			seq_printf(s, "  state: %s\n", state->name);
1181

1182
			list_for_each_entry(setting, &state->settings, node) {
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
				struct pinctrl_dev *pctldev = setting->pctldev;

				seq_printf(s, "    type: %s controller %s ",
					   map_type(setting->type),
					   pinctrl_dev_get_name(pctldev));

				switch (setting->type) {
				case PIN_MAP_TYPE_MUX_GROUP:
					pinmux_show_setting(s, setting);
					break;
				case PIN_MAP_TYPE_CONFIGS_PIN:
				case PIN_MAP_TYPE_CONFIGS_GROUP:
					pinconf_show_setting(s, setting);
					break;
				default:
					break;
				}
1200
			}
1201 1202 1203
		}
	}

1204 1205
	mutex_unlock(&pinctrl_mutex);

1206 1207 1208
	return 0;
}

1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228
static int pinctrl_pins_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_pins_show, inode->i_private);
}

static int pinctrl_groups_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_groups_show, inode->i_private);
}

static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
}

static int pinctrl_devices_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_devices_show, NULL);
}

1229 1230 1231 1232 1233
static int pinctrl_maps_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_maps_show, NULL);
}

1234 1235 1236 1237 1238
static int pinctrl_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_show, NULL);
}

1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
static const struct file_operations pinctrl_pins_ops = {
	.open		= pinctrl_pins_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations pinctrl_groups_ops = {
	.open		= pinctrl_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations pinctrl_gpioranges_ops = {
	.open		= pinctrl_gpioranges_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1260 1261
static const struct file_operations pinctrl_devices_ops = {
	.open		= pinctrl_devices_open,
1262 1263 1264 1265 1266
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1267 1268
static const struct file_operations pinctrl_maps_ops = {
	.open		= pinctrl_maps_open,
1269 1270 1271 1272 1273
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1274 1275 1276 1277 1278 1279 1280
static const struct file_operations pinctrl_ops = {
	.open		= pinctrl_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1281 1282 1283 1284
static struct dentry *debugfs_root;

static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
1285
	struct dentry *device_root;
1286

1287
	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1288
					 debugfs_root);
1289 1290
	pctldev->device_root = device_root;

1291 1292
	if (IS_ERR(device_root) || !device_root) {
		pr_warn("failed to create debugfs directory for %s\n",
1293
			dev_name(pctldev->dev));
1294 1295 1296 1297 1298 1299 1300 1301 1302
		return;
	}
	debugfs_create_file("pins", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_pins_ops);
	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_groups_ops);
	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_gpioranges_ops);
	pinmux_init_device_debugfs(device_root, pctldev);
1303
	pinconf_init_device_debugfs(device_root, pctldev);
1304 1305
}

1306 1307 1308 1309 1310
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
	debugfs_remove_recursive(pctldev->device_root);
}

1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
static void pinctrl_init_debugfs(void)
{
	debugfs_root = debugfs_create_dir("pinctrl", NULL);
	if (IS_ERR(debugfs_root) || !debugfs_root) {
		pr_warn("failed to create debugfs directory\n");
		debugfs_root = NULL;
		return;
	}

	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_devices_ops);
1322 1323
	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_maps_ops);
1324 1325
	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_ops);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
}

#else /* CONFIG_DEBUG_FS */

static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
}

static void pinctrl_init_debugfs(void)
{
}

1338 1339 1340 1341
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
}

1342 1343
#endif

1344 1345 1346 1347 1348
static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
{
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;

	if (!ops ||
1349
	    !ops->get_groups_count ||
1350 1351 1352 1353
	    !ops->get_group_name ||
	    !ops->get_group_pins)
		return -EINVAL;

1354 1355 1356
	if (ops->dt_node_to_map && !ops->dt_free_map)
		return -EINVAL;

1357 1358 1359
	return 0;
}

1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
/**
 * pinctrl_register() - register a pin controller device
 * @pctldesc: descriptor for this pin controller
 * @dev: parent device for this pin controller
 * @driver_data: private pin controller data for this pin controller
 */
struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
				    struct device *dev, void *driver_data)
{
	struct pinctrl_dev *pctldev;
	int ret;

	if (pctldesc == NULL)
		return NULL;
	if (pctldesc->name == NULL)
		return NULL;

1377
	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1378 1379
	if (pctldev == NULL) {
		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1380
		return NULL;
1381
	}
1382 1383 1384 1385 1386 1387 1388 1389 1390

	/* Initialize pin control device struct */
	pctldev->owner = pctldesc->owner;
	pctldev->desc = pctldesc;
	pctldev->driver_data = driver_data;
	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
	INIT_LIST_HEAD(&pctldev->gpio_ranges);
	pctldev->dev = dev;

1391 1392 1393 1394 1395 1396 1397 1398
	/* check core ops for sanity */
	ret = pinctrl_check_ops(pctldev);
	if (ret) {
		pr_err("%s pinctrl ops lacks necessary functions\n",
			pctldesc->name);
		goto out_err;
	}

1399 1400
	/* If we're implementing pinmuxing, check the ops for sanity */
	if (pctldesc->pmxops) {
1401
		ret = pinmux_check_ops(pctldev);
1402 1403 1404
		if (ret) {
			pr_err("%s pinmux ops lacks necessary functions\n",
			       pctldesc->name);
1405
			goto out_err;
1406 1407 1408
		}
	}

1409 1410
	/* If we're implementing pinconfig, check the ops for sanity */
	if (pctldesc->confops) {
1411
		ret = pinconf_check_ops(pctldev);
1412 1413 1414
		if (ret) {
			pr_err("%s pin config ops lacks necessary functions\n",
			       pctldesc->name);
1415
			goto out_err;
1416 1417 1418
		}
	}

1419 1420 1421 1422 1423 1424 1425 1426
	/* Register all the pins */
	pr_debug("try to register %d pins on %s...\n",
		 pctldesc->npins, pctldesc->name);
	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
	if (ret) {
		pr_err("error during pin registration\n");
		pinctrl_free_pindescs(pctldev, pctldesc->pins,
				      pctldesc->npins);
1427
		goto out_err;
1428 1429
	}

1430 1431
	mutex_lock(&pinctrl_mutex);

1432
	list_add_tail(&pctldev->node, &pinctrldev_list);
1433

1434 1435 1436 1437 1438 1439 1440 1441
	pctldev->p = pinctrl_get_locked(pctldev->dev);
	if (!IS_ERR(pctldev->p)) {
		struct pinctrl_state *s =
			pinctrl_lookup_state_locked(pctldev->p,
						    PINCTRL_STATE_DEFAULT);
		if (!IS_ERR(s))
			pinctrl_select_state_locked(pctldev->p, s);
	}
1442 1443 1444

	mutex_unlock(&pinctrl_mutex);

1445 1446
	pinctrl_init_device_debugfs(pctldev);

1447 1448
	return pctldev;

1449 1450
out_err:
	kfree(pctldev);
1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465
	return NULL;
}
EXPORT_SYMBOL_GPL(pinctrl_register);

/**
 * pinctrl_unregister() - unregister pinmux
 * @pctldev: pin controller to unregister
 *
 * Called by pinmux drivers to unregister a pinmux.
 */
void pinctrl_unregister(struct pinctrl_dev *pctldev)
{
	if (pctldev == NULL)
		return;

1466
	pinctrl_remove_device_debugfs(pctldev);
1467 1468 1469

	mutex_lock(&pinctrl_mutex);

1470 1471
	if (!IS_ERR(pctldev->p))
		pinctrl_put_locked(pctldev->p, true);
1472

1473 1474 1475 1476 1477
	/* TODO: check that no pinmuxes are still active? */
	list_del(&pctldev->node);
	/* Destroy descriptor tree */
	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
			      pctldev->desc->npins);
1478
	kfree(pctldev);
1479 1480

	mutex_unlock(&pinctrl_mutex);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
}
EXPORT_SYMBOL_GPL(pinctrl_unregister);

static int __init pinctrl_init(void)
{
	pr_info("initialized pinctrl subsystem\n");
	pinctrl_init_debugfs();
	return 0;
}

/* init early since many drivers really need to initialized pinmux early */
core_initcall(pinctrl_init);