core.c 43.7 KB
Newer Older
1 2 3
/*
 * Core driver for the pin control subsystem
 *
4
 * Copyright (C) 2011-2012 ST-Ericsson SA
5 6 7 8 9
 * Written on behalf of Linaro for ST-Ericsson
 * Based on bits of regulator core, gpio core and clk core
 *
 * Author: Linus Walleij <linus.walleij@linaro.org>
 *
10 11
 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
 *
12 13 14 15 16
 * License terms: GNU General Public License (GPL) version 2
 */
#define pr_fmt(fmt) "pinctrl core: " fmt

#include <linux/kernel.h>
17
#include <linux/kref.h>
18
#include <linux/export.h>
19 20 21 22 23 24 25 26
#include <linux/init.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/sysfs.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
27
#include <linux/pinctrl/consumer.h>
28 29
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/machine.h>
30 31

#ifdef CONFIG_GPIOLIB
32
#include <asm-generic/gpio.h>
33 34
#endif

35
#include "core.h"
36
#include "devicetree.h"
37
#include "pinmux.h"
38
#include "pinconf.h"
39

40

41 42
static bool pinctrl_dummy_state;

43 44 45 46 47 48 49 50
/* Mutex taken to protect pinctrl_list */
DEFINE_MUTEX(pinctrl_list_mutex);

/* Mutex taken to protect pinctrl_maps */
DEFINE_MUTEX(pinctrl_maps_mutex);

/* Mutex taken to protect pinctrldev_list */
DEFINE_MUTEX(pinctrldev_list_mutex);
51 52

/* Global list of pin control devices (struct pinctrl_dev) */
53
static LIST_HEAD(pinctrldev_list);
54

55
/* List of pin controller handles (struct pinctrl) */
56 57
static LIST_HEAD(pinctrl_list);

58
/* List of pinctrl maps (struct pinctrl_maps) */
59
LIST_HEAD(pinctrl_maps);
60

61

62 63 64 65 66 67 68 69 70 71 72 73 74
/**
 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
 *
 * Usually this function is called by platforms without pinctrl driver support
 * but run with some shared drivers using pinctrl APIs.
 * After calling this function, the pinctrl core will return successfully
 * with creating a dummy state for the driver to keep going smoothly.
 */
void pinctrl_provide_dummies(void)
{
	pinctrl_dummy_state = true;
}

75 76 77 78 79 80 81
const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
{
	/* We're not allowed to register devices without name */
	return pctldev->desc->name;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);

82 83 84 85 86 87
const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
{
	return dev_name(pctldev->dev);
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);

88 89 90 91 92 93 94
void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
{
	return pctldev->driver_data;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);

/**
95 96
 * get_pinctrl_dev_from_devname() - look up pin controller device
 * @devname: the name of a device instance, as returned by dev_name()
97 98 99 100
 *
 * Looks up a pin control device matching a certain device name or pure device
 * pointer, the pure device pointer will take precedence.
 */
101
struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 103 104
{
	struct pinctrl_dev *pctldev = NULL;

105 106 107
	if (!devname)
		return NULL;

108 109
	mutex_lock(&pinctrldev_list_mutex);

110
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111
		if (!strcmp(dev_name(pctldev->dev), devname)) {
112
			/* Matched on device name */
113 114
			mutex_unlock(&pinctrldev_list_mutex);
			return pctldev;
115 116 117
		}
	}

118 119 120
	mutex_unlock(&pinctrldev_list_mutex);

	return NULL;
121 122
}

123 124 125 126 127 128 129 130 131 132 133 134
struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
{
	struct pinctrl_dev *pctldev;

	mutex_lock(&pinctrldev_list_mutex);

	list_for_each_entry(pctldev, &pinctrldev_list, node)
		if (pctldev->dev->of_node == np) {
			mutex_unlock(&pinctrldev_list_mutex);
			return pctldev;
		}

135
	mutex_unlock(&pinctrldev_list_mutex);
136 137 138 139

	return NULL;
}

140 141 142 143 144 145 146
/**
 * pin_get_from_name() - look up a pin number from a name
 * @pctldev: the pin control device to lookup the pin on
 * @name: the name of the pin to look up
 */
int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
{
147
	unsigned i, pin;
148

149 150
	/* The pin number can be retrived from the pin controller descriptor */
	for (i = 0; i < pctldev->desc->npins; i++) {
151 152
		struct pin_desc *desc;

153
		pin = pctldev->desc->pins[i].number;
154 155 156 157 158 159 160 161 162 163 164
		desc = pin_desc_get(pctldev, pin);
		/* Pin space may be sparse */
		if (desc == NULL)
			continue;
		if (desc->name && !strcmp(name, desc->name))
			return pin;
	}

	return -EINVAL;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/**
 * pin_get_name_from_id() - look up a pin name from a pin id
 * @pctldev: the pin control device to lookup the pin on
 * @name: the name of the pin to look up
 */
const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
{
	const struct pin_desc *desc;

	desc = pin_desc_get(pctldev, pin);
	if (desc == NULL) {
		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
			pin);
		return NULL;
	}

	return desc->name;
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/**
 * pin_is_valid() - check if pin exists on controller
 * @pctldev: the pin control device to check the pin on
 * @pin: pin to check, use the local pin controller index number
 *
 * This tells us whether a certain pin exist on a certain pin controller or
 * not. Pin lists may be sparse, so some pins may not exist.
 */
bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
{
	struct pin_desc *pindesc;

	if (pin < 0)
		return false;

199
	mutex_lock(&pctldev->mutex);
200
	pindesc = pin_desc_get(pctldev, pin);
201
	mutex_unlock(&pctldev->mutex);
202

203
	return pindesc != NULL;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
}
EXPORT_SYMBOL_GPL(pin_is_valid);

/* Deletes a range of pin descriptors */
static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
				  const struct pinctrl_pin_desc *pins,
				  unsigned num_pins)
{
	int i;

	for (i = 0; i < num_pins; i++) {
		struct pin_desc *pindesc;

		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
					    pins[i].number);
		if (pindesc != NULL) {
			radix_tree_delete(&pctldev->pin_desc_tree,
					  pins[i].number);
222 223
			if (pindesc->dynamic_name)
				kfree(pindesc->name);
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
		}
		kfree(pindesc);
	}
}

static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
				    unsigned number, const char *name)
{
	struct pin_desc *pindesc;

	pindesc = pin_desc_get(pctldev, number);
	if (pindesc != NULL) {
		pr_err("pin %d already registered on %s\n", number,
		       pctldev->desc->name);
		return -EINVAL;
	}

	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
242 243
	if (pindesc == NULL) {
		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
244
		return -ENOMEM;
245
	}
246

247 248 249
	/* Set owner */
	pindesc->pctldev = pctldev;

250
	/* Copy basic pin info */
L
Linus Walleij 已提交
251
	if (name) {
252 253 254
		pindesc->name = name;
	} else {
		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
255 256
		if (pindesc->name == NULL) {
			kfree(pindesc);
257
			return -ENOMEM;
258
		}
259 260
		pindesc->dynamic_name = true;
	}
261 262 263

	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
	pr_debug("registered pin %d (%s) on %s\n",
264
		 number, pindesc->name, pctldev->desc->name);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
	return 0;
}

static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
				 struct pinctrl_pin_desc const *pins,
				 unsigned num_descs)
{
	unsigned i;
	int ret = 0;

	for (i = 0; i < num_descs; i++) {
		ret = pinctrl_register_one_pin(pctldev,
					       pins[i].number, pins[i].name);
		if (ret)
			return ret;
	}

	return 0;
}

/**
 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 * @pctldev: pin controller device to check
 * @gpio: gpio pin to check taken from the global GPIO pin space
 *
 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 * controller, return the range or NULL
 */
static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
{
	struct pinctrl_gpio_range *range = NULL;

298
	mutex_lock(&pctldev->mutex);
299 300 301 302 303
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
		/* Check if we're in the valid range */
		if (gpio >= range->base &&
		    gpio < range->base + range->npins) {
304
			mutex_unlock(&pctldev->mutex);
305 306 307
			return range;
		}
	}
308
	mutex_unlock(&pctldev->mutex);
309 310 311
	return NULL;
}

312 313 314 315 316 317 318 319 320 321 322 323 324
/**
 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 * the same GPIO chip are in range
 * @gpio: gpio pin to check taken from the global GPIO pin space
 *
 * This function is complement of pinctrl_match_gpio_range(). If the return
 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 * of the same GPIO chip don't have back-end pinctrl interface.
 * If the return value is true, it means that pinctrl device is ready & the
 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 * is false, it means that pinctrl device may not be ready.
 */
325
#ifdef CONFIG_GPIOLIB
326 327 328 329 330 331
static bool pinctrl_ready_for_gpio_range(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range = NULL;
	struct gpio_chip *chip = gpio_to_chip(gpio);

332 333
	mutex_lock(&pinctrldev_list_mutex);

334 335 336 337 338 339 340 341
	/* Loop over the pin controllers */
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		/* Loop over the ranges */
		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
			/* Check if any gpio range overlapped with gpio chip */
			if (range->base + range->npins - 1 < chip->base ||
			    range->base > chip->base + chip->ngpio - 1)
				continue;
342
			mutex_unlock(&pinctrldev_list_mutex);
343 344 345
			return true;
		}
	}
346 347 348

	mutex_unlock(&pinctrldev_list_mutex);

349 350
	return false;
}
351 352 353
#else
static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
#endif
354

355 356 357 358 359 360 361 362
/**
 * pinctrl_get_device_gpio_range() - find device for GPIO range
 * @gpio: the pin to locate the pin controller for
 * @outdev: the pin control device if found
 * @outrange: the GPIO range if found
 *
 * Find the pin controller handling a certain GPIO pin from the pinspace of
 * the GPIO subsystem, return the device and the matching GPIO range. Returns
363 364
 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 * may still have not been registered.
365
 */
S
Stephen Warren 已提交
366 367 368
static int pinctrl_get_device_gpio_range(unsigned gpio,
					 struct pinctrl_dev **outdev,
					 struct pinctrl_gpio_range **outrange)
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
{
	struct pinctrl_dev *pctldev = NULL;

	/* Loop over the pin controllers */
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		struct pinctrl_gpio_range *range;

		range = pinctrl_match_gpio_range(pctldev, gpio);
		if (range != NULL) {
			*outdev = pctldev;
			*outrange = range;
			return 0;
		}
	}

384
	return -EPROBE_DEFER;
385 386 387 388 389 390 391 392 393 394 395 396 397
}

/**
 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 * @pctldev: pin controller device to add the range to
 * @range: the GPIO range to add
 *
 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 * this to register handled ranges after registering your pin controller.
 */
void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
			    struct pinctrl_gpio_range *range)
{
398
	mutex_lock(&pctldev->mutex);
399
	list_add_tail(&range->node, &pctldev->gpio_ranges);
400
	mutex_unlock(&pctldev->mutex);
401
}
S
Stephen Warren 已提交
402
EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
403

404 405 406 407 408 409 410 411 412 413 414
void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
			     struct pinctrl_gpio_range *ranges,
			     unsigned nranges)
{
	int i;

	for (i = 0; i < nranges; i++)
		pinctrl_add_gpio_range(pctldev, &ranges[i]);
}
EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);

L
Linus Walleij 已提交
415
struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
416 417
		struct pinctrl_gpio_range *range)
{
418 419 420
	struct pinctrl_dev *pctldev;

	pctldev = get_pinctrl_dev_from_devname(devname);
421

422 423 424 425 426
	/*
	 * If we can't find this device, let's assume that is because
	 * it has not probed yet, so the driver trying to register this
	 * range need to defer probing.
	 */
427
	if (!pctldev) {
428
		return ERR_PTR(-EPROBE_DEFER);
429
	}
430
	pinctrl_add_gpio_range(pctldev, range);
431

432 433
	return pctldev;
}
L
Linus Walleij 已提交
434
EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
435

436 437 438 439 440 441 442 443 444 445 446
/**
 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 * @pctldev: the pin controller device to look in
 * @pin: a controller-local number to find the range for
 */
struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
				 unsigned int pin)
{
	struct pinctrl_gpio_range *range = NULL;

447
	mutex_lock(&pctldev->mutex);
448 449 450 451 452
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
		/* Check if we're in the valid range */
		if (pin >= range->pin_base &&
		    pin < range->pin_base + range->npins) {
453
			mutex_unlock(&pctldev->mutex);
454 455 456
			return range;
		}
	}
457
	mutex_unlock(&pctldev->mutex);
458 459 460 461 462

	return NULL;
}
EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);

463 464 465 466 467 468 469 470
/**
 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
 * @pctldev: pin controller device to remove the range from
 * @range: the GPIO range to remove
 */
void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
			       struct pinctrl_gpio_range *range)
{
471
	mutex_lock(&pctldev->mutex);
472
	list_del(&range->node);
473
	mutex_unlock(&pctldev->mutex);
474 475 476
}
EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);

477 478 479 480 481 482 483 484 485
/**
 * pinctrl_get_group_selector() - returns the group selector for a group
 * @pctldev: the pin controller handling the group
 * @pin_group: the pin group to look up
 */
int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
			       const char *pin_group)
{
	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
486
	unsigned ngroups = pctlops->get_groups_count(pctldev);
487 488
	unsigned group_selector = 0;

489
	while (group_selector < ngroups) {
490 491 492
		const char *gname = pctlops->get_group_name(pctldev,
							    group_selector);
		if (!strcmp(gname, pin_group)) {
493
			dev_dbg(pctldev->dev,
494 495 496 497 498 499 500 501 502
				"found group selector %u for %s\n",
				group_selector,
				pin_group);
			return group_selector;
		}

		group_selector++;
	}

503
	dev_err(pctldev->dev, "does not have pin group %s\n",
504 505 506 507 508
		pin_group);

	return -EINVAL;
}

509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
/**
 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_request() semantics, platforms and individual drivers
 * shall *NOT* request GPIO pins to be muxed in.
 */
int pinctrl_request_gpio(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
525
	if (ret) {
526 527
		if (pinctrl_ready_for_gpio_range(gpio))
			ret = 0;
528
		return ret;
529
	}
530 531 532 533

	/* Convert to the pin controllers number space */
	pin = gpio - range->base + range->pin_base;

534 535 536
	ret = pinmux_request_gpio(pctldev, range, pin, gpio);

	return ret;
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555
}
EXPORT_SYMBOL_GPL(pinctrl_request_gpio);

/**
 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_free() semantics, platforms and individual drivers
 * shall *NOT* request GPIO pins to be muxed out.
 */
void pinctrl_free_gpio(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
556
	if (ret) {
557
		return;
558
	}
559
	mutex_lock(&pctldev->mutex);
560 561 562 563

	/* Convert to the pin controllers number space */
	pin = gpio - range->base + range->pin_base;

564 565
	pinmux_free_gpio(pctldev, pin, range);

566
	mutex_unlock(&pctldev->mutex);
567 568 569 570 571 572 573 574 575 576 577
}
EXPORT_SYMBOL_GPL(pinctrl_free_gpio);

static int pinctrl_gpio_direction(unsigned gpio, bool input)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
578
	if (ret) {
579
		return ret;
580 581 582
	}

	mutex_lock(&pctldev->mutex);
583 584 585

	/* Convert to the pin controllers number space */
	pin = gpio - range->base + range->pin_base;
586 587 588
	ret = pinmux_gpio_direction(pctldev, range, pin, input);

	mutex_unlock(&pctldev->mutex);
589

590
	return ret;
591 592 593 594 595 596 597 598 599 600 601 602
}

/**
 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_direction_input() semantics, platforms and individual
 * drivers shall *NOT* touch pin control GPIO calls.
 */
int pinctrl_gpio_direction_input(unsigned gpio)
{
603
	return pinctrl_gpio_direction(gpio, true);
604 605 606 607 608 609 610 611 612 613 614 615 616
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);

/**
 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_direction_output() semantics, platforms and individual
 * drivers shall *NOT* touch pin control GPIO calls.
 */
int pinctrl_gpio_direction_output(unsigned gpio)
{
617
	return pinctrl_gpio_direction(gpio, false);
618 619 620
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);

621 622
static struct pinctrl_state *find_state(struct pinctrl *p,
					const char *name)
623
{
624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
	struct pinctrl_state *state;

	list_for_each_entry(state, &p->states, node)
		if (!strcmp(state->name, name))
			return state;

	return NULL;
}

static struct pinctrl_state *create_state(struct pinctrl *p,
					  const char *name)
{
	struct pinctrl_state *state;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (state == NULL) {
		dev_err(p->dev,
			"failed to alloc struct pinctrl_state\n");
		return ERR_PTR(-ENOMEM);
	}

	state->name = name;
	INIT_LIST_HEAD(&state->settings);

	list_add_tail(&state->node, &p->states);

	return state;
}

static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
{
	struct pinctrl_state *state;
656
	struct pinctrl_setting *setting;
657
	int ret;
658

659 660 661 662 663
	state = find_state(p, map->name);
	if (!state)
		state = create_state(p, map->name);
	if (IS_ERR(state))
		return PTR_ERR(state);
664

665 666 667
	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
		return 0;

668 669 670 671 672 673
	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
	if (setting == NULL) {
		dev_err(p->dev,
			"failed to alloc struct pinctrl_setting\n");
		return -ENOMEM;
	}
674

675 676
	setting->type = map->type;

677 678 679
	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
	if (setting->pctldev == NULL) {
		kfree(setting);
L
Linus Walleij 已提交
680 681 682
		/* Do not defer probing of hogs (circular loop) */
		if (!strcmp(map->ctrl_dev_name, map->dev_name))
			return -ENODEV;
683 684 685 686
		/*
		 * OK let us guess that the driver is not there yet, and
		 * let's defer obtaining this pinctrl handle to later...
		 */
L
Linus Walleij 已提交
687 688
		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
			map->ctrl_dev_name);
689
		return -EPROBE_DEFER;
690 691
	}

692 693
	setting->dev_name = map->dev_name;

694 695 696 697 698 699 700 701 702 703 704 705
	switch (map->type) {
	case PIN_MAP_TYPE_MUX_GROUP:
		ret = pinmux_map_to_setting(map, setting);
		break;
	case PIN_MAP_TYPE_CONFIGS_PIN:
	case PIN_MAP_TYPE_CONFIGS_GROUP:
		ret = pinconf_map_to_setting(map, setting);
		break;
	default:
		ret = -EINVAL;
		break;
	}
706 707 708 709 710 711 712 713 714 715 716 717 718 719
	if (ret < 0) {
		kfree(setting);
		return ret;
	}

	list_add_tail(&setting->node, &state->settings);

	return 0;
}

static struct pinctrl *find_pinctrl(struct device *dev)
{
	struct pinctrl *p;

720
	mutex_lock(&pinctrl_list_mutex);
721
	list_for_each_entry(p, &pinctrl_list, node)
722 723
		if (p->dev == dev) {
			mutex_unlock(&pinctrl_list_mutex);
724
			return p;
725
		}
726

727
	mutex_unlock(&pinctrl_list_mutex);
728 729 730
	return NULL;
}

731
static void pinctrl_free(struct pinctrl *p, bool inlist);
732 733 734 735 736 737 738 739 740

static struct pinctrl *create_pinctrl(struct device *dev)
{
	struct pinctrl *p;
	const char *devname;
	struct pinctrl_maps *maps_node;
	int i;
	struct pinctrl_map const *map;
	int ret;
741 742 743 744 745 746

	/*
	 * create the state cookie holder struct pinctrl for each
	 * mapping, this is what consumers will get when requesting
	 * a pin control handle with pinctrl_get()
	 */
747
	p = kzalloc(sizeof(*p), GFP_KERNEL);
748 749
	if (p == NULL) {
		dev_err(dev, "failed to alloc struct pinctrl\n");
750
		return ERR_PTR(-ENOMEM);
751
	}
752
	p->dev = dev;
753
	INIT_LIST_HEAD(&p->states);
754 755 756 757 758 759 760
	INIT_LIST_HEAD(&p->dt_maps);

	ret = pinctrl_dt_to_map(p);
	if (ret < 0) {
		kfree(p);
		return ERR_PTR(ret);
	}
761 762

	devname = dev_name(dev);
763

764
	mutex_lock(&pinctrl_maps_mutex);
765
	/* Iterate over the pin control maps to locate the right ones */
766
	for_each_maps(maps_node, i, map) {
767 768 769 770
		/* Map must be for this device */
		if (strcmp(map->dev_name, devname))
			continue;

771
		ret = add_setting(p, map);
L
Linus Walleij 已提交
772 773 774 775 776 777 778 779 780 781 782 783 784 785
		/*
		 * At this point the adding of a setting may:
		 *
		 * - Defer, if the pinctrl device is not yet available
		 * - Fail, if the pinctrl device is not yet available,
		 *   AND the setting is a hog. We cannot defer that, since
		 *   the hog will kick in immediately after the device
		 *   is registered.
		 *
		 * If the error returned was not -EPROBE_DEFER then we
		 * accumulate the errors to see if we end up with
		 * an -EPROBE_DEFER later, as that is the worst case.
		 */
		if (ret == -EPROBE_DEFER) {
786 787
			pinctrl_free(p, false);
			mutex_unlock(&pinctrl_maps_mutex);
788
			return ERR_PTR(ret);
789
		}
790
	}
791 792
	mutex_unlock(&pinctrl_maps_mutex);

L
Linus Walleij 已提交
793 794
	if (ret < 0) {
		/* If some other error than deferral occured, return here */
795
		pinctrl_free(p, false);
L
Linus Walleij 已提交
796 797
		return ERR_PTR(ret);
	}
798

799 800
	kref_init(&p->users);

L
Linus Walleij 已提交
801
	/* Add the pinctrl handle to the global list */
802
	list_add_tail(&p->node, &pinctrl_list);
803 804

	return p;
805
}
806

807 808 809 810 811
/**
 * pinctrl_get() - retrieves the pinctrl handle for a device
 * @dev: the device to obtain the handle for
 */
struct pinctrl *pinctrl_get(struct device *dev)
812 813
{
	struct pinctrl *p;
814

815 816 817
	if (WARN_ON(!dev))
		return ERR_PTR(-EINVAL);

818 819 820 821 822
	/*
	 * See if somebody else (such as the device core) has already
	 * obtained a handle to the pinctrl for this device. In that case,
	 * return another pointer to it.
	 */
823
	p = find_pinctrl(dev);
824 825 826 827 828
	if (p != NULL) {
		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
		kref_get(&p->users);
		return p;
	}
829

830
	return create_pinctrl(dev);
831 832 833
}
EXPORT_SYMBOL_GPL(pinctrl_get);

834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851
static void pinctrl_free_setting(bool disable_setting,
				 struct pinctrl_setting *setting)
{
	switch (setting->type) {
	case PIN_MAP_TYPE_MUX_GROUP:
		if (disable_setting)
			pinmux_disable_setting(setting);
		pinmux_free_setting(setting);
		break;
	case PIN_MAP_TYPE_CONFIGS_PIN:
	case PIN_MAP_TYPE_CONFIGS_GROUP:
		pinconf_free_setting(setting);
		break;
	default:
		break;
	}
}

852
static void pinctrl_free(struct pinctrl *p, bool inlist)
853
{
854 855 856
	struct pinctrl_state *state, *n1;
	struct pinctrl_setting *setting, *n2;

857
	mutex_lock(&pinctrl_list_mutex);
858 859
	list_for_each_entry_safe(state, n1, &p->states, node) {
		list_for_each_entry_safe(setting, n2, &state->settings, node) {
860
			pinctrl_free_setting(state == p->state, setting);
861 862 863 864 865
			list_del(&setting->node);
			kfree(setting);
		}
		list_del(&state->node);
		kfree(state);
866
	}
867

868 869
	pinctrl_dt_free_maps(p);

870 871
	if (inlist)
		list_del(&p->node);
872
	kfree(p);
873
	mutex_unlock(&pinctrl_list_mutex);
874 875 876
}

/**
877 878 879
 * pinctrl_release() - release the pinctrl handle
 * @kref: the kref in the pinctrl being released
 */
880
static void pinctrl_release(struct kref *kref)
881 882 883
{
	struct pinctrl *p = container_of(kref, struct pinctrl, users);

884
	pinctrl_free(p, true);
885 886 887 888
}

/**
 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
889
 * @p: the pinctrl handle to release
890
 */
891 892
void pinctrl_put(struct pinctrl *p)
{
893
	kref_put(&p->users, pinctrl_release);
894 895 896
}
EXPORT_SYMBOL_GPL(pinctrl_put);

897 898 899 900 901 902 903
/**
 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
 * @p: the pinctrl handle to retrieve the state from
 * @name: the state name to retrieve
 */
struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
						 const char *name)
904
{
905
	struct pinctrl_state *state;
906

907
	state = find_state(p, name);
908 909 910 911 912 913
	if (!state) {
		if (pinctrl_dummy_state) {
			/* create dummy state */
			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
				name);
			state = create_state(p, name);
914 915
		} else
			state = ERR_PTR(-ENODEV);
916
	}
917

918
	return state;
919
}
920
EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
921 922

/**
923 924 925
 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
 * @p: the pinctrl handle for the device that requests configuration
 * @state: the state handle to select/activate/program
926
 */
927
int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
928
{
929
	struct pinctrl_setting *setting, *setting2;
930
	struct pinctrl_state *old_state = p->state;
931
	int ret;
932

933 934
	if (p->state == state)
		return 0;
935

936 937 938 939 940 941 942 943 944 945 946 947
	if (p->state) {
		/*
		 * The set of groups with a mux configuration in the old state
		 * may not be identical to the set of groups with a mux setting
		 * in the new state. While this might be unusual, it's entirely
		 * possible for the "user"-supplied mapping table to be written
		 * that way. For each group that was configured in the old state
		 * but not in the new state, this code puts that group into a
		 * safe/disabled state.
		 */
		list_for_each_entry(setting, &p->state->settings, node) {
			bool found = false;
948 949
			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
				continue;
950
			list_for_each_entry(setting2, &state->settings, node) {
951 952 953 954
				if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
					continue;
				if (setting2->data.mux.group ==
						setting->data.mux.group) {
955 956 957 958 959 960 961 962 963
					found = true;
					break;
				}
			}
			if (!found)
				pinmux_disable_setting(setting);
		}
	}

964
	p->state = NULL;
965 966 967

	/* Apply all the settings for the new state */
	list_for_each_entry(setting, &state->settings, node) {
968 969 970 971 972 973 974 975 976 977 978 979
		switch (setting->type) {
		case PIN_MAP_TYPE_MUX_GROUP:
			ret = pinmux_enable_setting(setting);
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			ret = pinconf_apply_setting(setting);
			break;
		default:
			ret = -EINVAL;
			break;
		}
980

981
		if (ret < 0) {
982
			goto unapply_new_state;
983
		}
984
	}
985

986 987
	p->state = state;

988
	return 0;
989 990

unapply_new_state:
991
	dev_err(p->dev, "Error applying setting, reverse things back\n");
992 993 994 995

	list_for_each_entry(setting2, &state->settings, node) {
		if (&setting2->node == &setting->node)
			break;
996 997 998 999 1000 1001 1002 1003 1004
		/*
		 * All we can do here is pinmux_disable_setting.
		 * That means that some pins are muxed differently now
		 * than they were before applying the setting (We can't
		 * "unmux a pin"!), but it's not a big deal since the pins
		 * are free to be muxed by another apply_setting.
		 */
		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
			pinmux_disable_setting(setting2);
1005
	}
1006

1007 1008
	/* There's no infinite recursive loop here because p->state is NULL */
	if (old_state)
1009
		pinctrl_select_state(p, old_state);
1010 1011

	return ret;
1012
}
1013
EXPORT_SYMBOL_GPL(pinctrl_select_state);
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
static void devm_pinctrl_release(struct device *dev, void *res)
{
	pinctrl_put(*(struct pinctrl **)res);
}

/**
 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
 * @dev: the device to obtain the handle for
 *
 * If there is a need to explicitly destroy the returned struct pinctrl,
 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
 */
struct pinctrl *devm_pinctrl_get(struct device *dev)
{
	struct pinctrl **ptr, *p;

	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	p = pinctrl_get(dev);
	if (!IS_ERR(p)) {
		*ptr = p;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return p;
}
EXPORT_SYMBOL_GPL(devm_pinctrl_get);

static int devm_pinctrl_match(struct device *dev, void *res, void *data)
{
	struct pinctrl **p = res;

	return *p == data;
}

/**
 * devm_pinctrl_put() - Resource managed pinctrl_put()
 * @p: the pinctrl handle to release
 *
 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_pinctrl_put(struct pinctrl *p)
{
1064
	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1065 1066 1067 1068
			       devm_pinctrl_match, p));
}
EXPORT_SYMBOL_GPL(devm_pinctrl_put);

1069 1070
int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
			 bool dup, bool locked)
1071
{
1072
	int i, ret;
1073
	struct pinctrl_maps *maps_node;
1074 1075 1076 1077 1078

	pr_debug("add %d pinmux maps\n", num_maps);

	/* First sanity check the new mapping */
	for (i = 0; i < num_maps; i++) {
1079 1080 1081 1082 1083 1084
		if (!maps[i].dev_name) {
			pr_err("failed to register map %s (%d): no device given\n",
			       maps[i].name, i);
			return -EINVAL;
		}

1085 1086
		if (!maps[i].name) {
			pr_err("failed to register map %d: no map name given\n",
1087
			       i);
1088 1089 1090
			return -EINVAL;
		}

1091 1092
		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
				!maps[i].ctrl_dev_name) {
1093 1094 1095 1096 1097
			pr_err("failed to register map %s (%d): no pin control device given\n",
			       maps[i].name, i);
			return -EINVAL;
		}

1098 1099 1100 1101 1102 1103
		switch (maps[i].type) {
		case PIN_MAP_TYPE_DUMMY_STATE:
			break;
		case PIN_MAP_TYPE_MUX_GROUP:
			ret = pinmux_validate_map(&maps[i], i);
			if (ret < 0)
1104
				return ret;
1105 1106 1107 1108 1109
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			ret = pinconf_validate_map(&maps[i], i);
			if (ret < 0)
1110
				return ret;
1111 1112 1113
			break;
		default:
			pr_err("failed to register map %s (%d): invalid type given\n",
1114
			       maps[i].name, i);
1115 1116
			return -EINVAL;
		}
1117 1118
	}

1119 1120 1121 1122 1123
	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
	if (!maps_node) {
		pr_err("failed to alloc struct pinctrl_maps\n");
		return -ENOMEM;
	}
1124

1125
	maps_node->num_maps = num_maps;
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	if (dup) {
		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
					  GFP_KERNEL);
		if (!maps_node->maps) {
			pr_err("failed to duplicate mapping table\n");
			kfree(maps_node);
			return -ENOMEM;
		}
	} else {
		maps_node->maps = maps;
1136 1137
	}

1138
	if (!locked)
1139
		mutex_lock(&pinctrl_maps_mutex);
1140
	list_add_tail(&maps_node->node, &pinctrl_maps);
1141
	if (!locked)
1142
		mutex_unlock(&pinctrl_maps_mutex);
1143

1144 1145 1146
	return 0;
}

1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/**
 * pinctrl_register_mappings() - register a set of pin controller mappings
 * @maps: the pincontrol mappings table to register. This should probably be
 *	marked with __initdata so it can be discarded after boot. This
 *	function will perform a shallow copy for the mapping entries.
 * @num_maps: the number of maps in the mapping table
 */
int pinctrl_register_mappings(struct pinctrl_map const *maps,
			      unsigned num_maps)
{
	return pinctrl_register_map(maps, num_maps, true, false);
}

void pinctrl_unregister_map(struct pinctrl_map const *map)
{
	struct pinctrl_maps *maps_node;

1164
	mutex_lock(&pinctrl_maps_mutex);
1165 1166 1167
	list_for_each_entry(maps_node, &pinctrl_maps, node) {
		if (maps_node->maps == map) {
			list_del(&maps_node->node);
1168
			mutex_unlock(&pinctrl_maps_mutex);
1169 1170 1171
			return;
		}
	}
1172
	mutex_unlock(&pinctrl_maps_mutex);
1173 1174
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
/**
 * pinctrl_force_sleep() - turn a given controller device into sleep state
 * @pctldev: pin controller device
 */
int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
{
	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
	return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_force_sleep);

/**
 * pinctrl_force_default() - turn a given controller device into default state
 * @pctldev: pin controller device
 */
int pinctrl_force_default(struct pinctrl_dev *pctldev)
{
	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
	return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_force_default);

1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259
#ifdef CONFIG_PM

/**
 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
 * @dev: device to select default state for
 */
int pinctrl_pm_select_default_state(struct device *dev)
{
	struct dev_pin_info *pins = dev->pins;
	int ret;

	if (!pins)
		return 0;
	if (IS_ERR(pins->default_state))
		return 0; /* No default state */
	ret = pinctrl_select_state(pins->p, pins->default_state);
	if (ret)
		dev_err(dev, "failed to activate default pinctrl state\n");
	return ret;
}

/**
 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
 * @dev: device to select sleep state for
 */
int pinctrl_pm_select_sleep_state(struct device *dev)
{
	struct dev_pin_info *pins = dev->pins;
	int ret;

	if (!pins)
		return 0;
	if (IS_ERR(pins->sleep_state))
		return 0; /* No sleep state */
	ret = pinctrl_select_state(pins->p, pins->sleep_state);
	if (ret)
		dev_err(dev, "failed to activate pinctrl sleep state\n");
	return ret;
}

/**
 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
 * @dev: device to select idle state for
 */
int pinctrl_pm_select_idle_state(struct device *dev)
{
	struct dev_pin_info *pins = dev->pins;
	int ret;

	if (!pins)
		return 0;
	if (IS_ERR(pins->idle_state))
		return 0; /* No idle state */
	ret = pinctrl_select_state(pins->p, pins->idle_state);
	if (ret)
		dev_err(dev, "failed to activate pinctrl idle state\n");
	return ret;
}

#endif

1260 1261 1262 1263 1264 1265
#ifdef CONFIG_DEBUG_FS

static int pinctrl_pins_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1266
	unsigned i, pin;
1267 1268 1269

	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);

1270
	mutex_lock(&pctldev->mutex);
1271

1272 1273
	/* The pin number can be retrived from the pin controller descriptor */
	for (i = 0; i < pctldev->desc->npins; i++) {
1274 1275
		struct pin_desc *desc;

1276
		pin = pctldev->desc->pins[i].number;
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
		desc = pin_desc_get(pctldev, pin);
		/* Pin space may be sparse */
		if (desc == NULL)
			continue;

		seq_printf(s, "pin %d (%s) ", pin,
			   desc->name ? desc->name : "unnamed");

		/* Driver-specific info per pin */
		if (ops->pin_dbg_show)
			ops->pin_dbg_show(pctldev, s, pin);

		seq_puts(s, "\n");
	}

1292
	mutex_unlock(&pctldev->mutex);
1293

1294 1295 1296 1297 1298 1299 1300
	return 0;
}

static int pinctrl_groups_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1301
	unsigned ngroups, selector = 0;
1302

1303 1304
	mutex_lock(&pctldev->mutex);

1305
	ngroups = ops->get_groups_count(pctldev);
1306

1307
	seq_puts(s, "registered pin groups:\n");
1308
	while (selector < ngroups) {
1309
		const unsigned *pins;
1310 1311
		unsigned num_pins;
		const char *gname = ops->get_group_name(pctldev, selector);
1312
		const char *pname;
1313 1314 1315 1316 1317 1318 1319 1320 1321
		int ret;
		int i;

		ret = ops->get_group_pins(pctldev, selector,
					  &pins, &num_pins);
		if (ret)
			seq_printf(s, "%s [ERROR GETTING PINS]\n",
				   gname);
		else {
1322 1323 1324
			seq_printf(s, "group: %s\n", gname);
			for (i = 0; i < num_pins; i++) {
				pname = pin_get_name(pctldev, pins[i]);
1325
				if (WARN_ON(!pname)) {
1326
					mutex_unlock(&pctldev->mutex);
1327
					return -EINVAL;
1328
				}
1329 1330 1331
				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
			}
			seq_puts(s, "\n");
1332 1333 1334 1335
		}
		selector++;
	}

1336
	mutex_unlock(&pctldev->mutex);
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347

	return 0;
}

static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	struct pinctrl_gpio_range *range = NULL;

	seq_puts(s, "GPIO ranges handled:\n");

1348
	mutex_lock(&pctldev->mutex);
1349

1350 1351
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1352 1353 1354 1355 1356
		seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
			   range->id, range->name,
			   range->base, (range->base + range->npins - 1),
			   range->pin_base,
			   (range->pin_base + range->npins - 1));
1357
	}
1358

1359
	mutex_unlock(&pctldev->mutex);
1360 1361 1362 1363 1364 1365 1366 1367

	return 0;
}

static int pinctrl_devices_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev;

1368
	seq_puts(s, "name [pinmux] [pinconf]\n");
1369

1370
	mutex_lock(&pinctrldev_list_mutex);
1371

1372 1373 1374
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		seq_printf(s, "%s ", pctldev->desc->name);
		if (pctldev->desc->pmxops)
1375 1376 1377 1378
			seq_puts(s, "yes ");
		else
			seq_puts(s, "no ");
		if (pctldev->desc->confops)
1379 1380 1381 1382 1383
			seq_puts(s, "yes");
		else
			seq_puts(s, "no");
		seq_puts(s, "\n");
	}
1384

1385
	mutex_unlock(&pinctrldev_list_mutex);
1386 1387 1388 1389

	return 0;
}

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
static inline const char *map_type(enum pinctrl_map_type type)
{
	static const char * const names[] = {
		"INVALID",
		"DUMMY_STATE",
		"MUX_GROUP",
		"CONFIGS_PIN",
		"CONFIGS_GROUP",
	};

	if (type >= ARRAY_SIZE(names))
		return "UNKNOWN";

	return names[type];
}

1406 1407 1408 1409 1410 1411 1412 1413
static int pinctrl_maps_show(struct seq_file *s, void *what)
{
	struct pinctrl_maps *maps_node;
	int i;
	struct pinctrl_map const *map;

	seq_puts(s, "Pinctrl maps:\n");

1414
	mutex_lock(&pinctrl_maps_mutex);
1415
	for_each_maps(maps_node, i, map) {
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436
		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
			   map->dev_name, map->name, map_type(map->type),
			   map->type);

		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
			seq_printf(s, "controlling device %s\n",
				   map->ctrl_dev_name);

		switch (map->type) {
		case PIN_MAP_TYPE_MUX_GROUP:
			pinmux_show_map(s, map);
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			pinconf_show_map(s, map);
			break;
		default:
			break;
		}

		seq_printf(s, "\n");
1437
	}
1438
	mutex_unlock(&pinctrl_maps_mutex);
1439 1440 1441 1442

	return 0;
}

1443 1444 1445
static int pinctrl_show(struct seq_file *s, void *what)
{
	struct pinctrl *p;
1446
	struct pinctrl_state *state;
1447
	struct pinctrl_setting *setting;
1448 1449

	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1450

1451
	mutex_lock(&pinctrl_list_mutex);
1452

1453
	list_for_each_entry(p, &pinctrl_list, node) {
1454 1455 1456 1457 1458 1459
		seq_printf(s, "device: %s current state: %s\n",
			   dev_name(p->dev),
			   p->state ? p->state->name : "none");

		list_for_each_entry(state, &p->states, node) {
			seq_printf(s, "  state: %s\n", state->name);
1460

1461
			list_for_each_entry(setting, &state->settings, node) {
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478
				struct pinctrl_dev *pctldev = setting->pctldev;

				seq_printf(s, "    type: %s controller %s ",
					   map_type(setting->type),
					   pinctrl_dev_get_name(pctldev));

				switch (setting->type) {
				case PIN_MAP_TYPE_MUX_GROUP:
					pinmux_show_setting(s, setting);
					break;
				case PIN_MAP_TYPE_CONFIGS_PIN:
				case PIN_MAP_TYPE_CONFIGS_GROUP:
					pinconf_show_setting(s, setting);
					break;
				default:
					break;
				}
1479
			}
1480 1481 1482
		}
	}

1483
	mutex_unlock(&pinctrl_list_mutex);
1484

1485 1486 1487
	return 0;
}

1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507
static int pinctrl_pins_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_pins_show, inode->i_private);
}

static int pinctrl_groups_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_groups_show, inode->i_private);
}

static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
}

static int pinctrl_devices_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_devices_show, NULL);
}

1508 1509 1510 1511 1512
static int pinctrl_maps_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_maps_show, NULL);
}

1513 1514 1515 1516 1517
static int pinctrl_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_show, NULL);
}

1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
static const struct file_operations pinctrl_pins_ops = {
	.open		= pinctrl_pins_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations pinctrl_groups_ops = {
	.open		= pinctrl_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations pinctrl_gpioranges_ops = {
	.open		= pinctrl_gpioranges_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1539 1540
static const struct file_operations pinctrl_devices_ops = {
	.open		= pinctrl_devices_open,
1541 1542 1543 1544 1545
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1546 1547
static const struct file_operations pinctrl_maps_ops = {
	.open		= pinctrl_maps_open,
1548 1549 1550 1551 1552
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1553 1554 1555 1556 1557 1558 1559
static const struct file_operations pinctrl_ops = {
	.open		= pinctrl_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1560 1561 1562 1563
static struct dentry *debugfs_root;

static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
1564
	struct dentry *device_root;
1565

1566
	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1567
					 debugfs_root);
1568 1569
	pctldev->device_root = device_root;

1570 1571
	if (IS_ERR(device_root) || !device_root) {
		pr_warn("failed to create debugfs directory for %s\n",
1572
			dev_name(pctldev->dev));
1573 1574 1575 1576 1577 1578 1579 1580 1581
		return;
	}
	debugfs_create_file("pins", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_pins_ops);
	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_groups_ops);
	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_gpioranges_ops);
	pinmux_init_device_debugfs(device_root, pctldev);
1582
	pinconf_init_device_debugfs(device_root, pctldev);
1583 1584
}

1585 1586 1587 1588 1589
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
	debugfs_remove_recursive(pctldev->device_root);
}

1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
static void pinctrl_init_debugfs(void)
{
	debugfs_root = debugfs_create_dir("pinctrl", NULL);
	if (IS_ERR(debugfs_root) || !debugfs_root) {
		pr_warn("failed to create debugfs directory\n");
		debugfs_root = NULL;
		return;
	}

	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_devices_ops);
1601 1602
	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_maps_ops);
1603 1604
	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_ops);
1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
}

#else /* CONFIG_DEBUG_FS */

static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
}

static void pinctrl_init_debugfs(void)
{
}

1617 1618 1619 1620
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
}

1621 1622
#endif

1623 1624 1625 1626 1627
static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
{
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;

	if (!ops ||
1628
	    !ops->get_groups_count ||
1629 1630 1631 1632
	    !ops->get_group_name ||
	    !ops->get_group_pins)
		return -EINVAL;

1633 1634 1635
	if (ops->dt_node_to_map && !ops->dt_free_map)
		return -EINVAL;

1636 1637 1638
	return 0;
}

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
/**
 * pinctrl_register() - register a pin controller device
 * @pctldesc: descriptor for this pin controller
 * @dev: parent device for this pin controller
 * @driver_data: private pin controller data for this pin controller
 */
struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
				    struct device *dev, void *driver_data)
{
	struct pinctrl_dev *pctldev;
	int ret;

1651
	if (!pctldesc)
1652
		return NULL;
1653
	if (!pctldesc->name)
1654 1655
		return NULL;

1656
	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1657 1658
	if (pctldev == NULL) {
		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1659
		return NULL;
1660
	}
1661 1662 1663 1664 1665 1666 1667 1668

	/* Initialize pin control device struct */
	pctldev->owner = pctldesc->owner;
	pctldev->desc = pctldesc;
	pctldev->driver_data = driver_data;
	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
	INIT_LIST_HEAD(&pctldev->gpio_ranges);
	pctldev->dev = dev;
1669
	mutex_init(&pctldev->mutex);
1670

1671
	/* check core ops for sanity */
1672
	if (pinctrl_check_ops(pctldev)) {
1673
		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1674 1675 1676
		goto out_err;
	}

1677 1678
	/* If we're implementing pinmuxing, check the ops for sanity */
	if (pctldesc->pmxops) {
1679
		if (pinmux_check_ops(pctldev))
1680
			goto out_err;
1681 1682
	}

1683 1684
	/* If we're implementing pinconfig, check the ops for sanity */
	if (pctldesc->confops) {
1685
		if (pinconf_check_ops(pctldev))
1686
			goto out_err;
1687 1688
	}

1689
	/* Register all the pins */
1690
	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1691 1692
	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
	if (ret) {
1693
		dev_err(dev, "error during pin registration\n");
1694 1695
		pinctrl_free_pindescs(pctldev, pctldesc->pins,
				      pctldesc->npins);
1696
		goto out_err;
1697 1698
	}

1699
	mutex_lock(&pinctrldev_list_mutex);
1700
	list_add_tail(&pctldev->node, &pinctrldev_list);
1701 1702 1703
	mutex_unlock(&pinctrldev_list_mutex);

	pctldev->p = pinctrl_get(pctldev->dev);
1704

1705
	if (!IS_ERR(pctldev->p)) {
1706
		pctldev->hog_default =
1707
			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1708
		if (IS_ERR(pctldev->hog_default)) {
1709 1710
			dev_dbg(dev, "failed to lookup the default state\n");
		} else {
1711
			if (pinctrl_select_state(pctldev->p,
1712
						pctldev->hog_default))
1713 1714 1715
				dev_err(dev,
					"failed to select default state\n");
		}
1716 1717

		pctldev->hog_sleep =
1718
			pinctrl_lookup_state(pctldev->p,
1719 1720 1721
						    PINCTRL_STATE_SLEEP);
		if (IS_ERR(pctldev->hog_sleep))
			dev_dbg(dev, "failed to lookup the sleep state\n");
1722
	}
1723

1724 1725
	pinctrl_init_device_debugfs(pctldev);

1726 1727
	return pctldev;

1728
out_err:
1729
	mutex_destroy(&pctldev->mutex);
1730
	kfree(pctldev);
1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	return NULL;
}
EXPORT_SYMBOL_GPL(pinctrl_register);

/**
 * pinctrl_unregister() - unregister pinmux
 * @pctldev: pin controller to unregister
 *
 * Called by pinmux drivers to unregister a pinmux.
 */
void pinctrl_unregister(struct pinctrl_dev *pctldev)
{
1743
	struct pinctrl_gpio_range *range, *n;
1744 1745 1746
	if (pctldev == NULL)
		return;

1747 1748
	mutex_lock(&pinctrldev_list_mutex);
	mutex_lock(&pctldev->mutex);
1749

1750
	pinctrl_remove_device_debugfs(pctldev);
1751

1752
	if (!IS_ERR(pctldev->p))
1753
		pinctrl_put(pctldev->p);
1754

1755 1756 1757 1758 1759
	/* TODO: check that no pinmuxes are still active? */
	list_del(&pctldev->node);
	/* Destroy descriptor tree */
	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
			      pctldev->desc->npins);
1760 1761 1762 1763
	/* remove gpio ranges map */
	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
		list_del(&range->node);

1764 1765
	mutex_unlock(&pctldev->mutex);
	mutex_destroy(&pctldev->mutex);
1766
	kfree(pctldev);
1767
	mutex_unlock(&pinctrldev_list_mutex);
1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
}
EXPORT_SYMBOL_GPL(pinctrl_unregister);

static int __init pinctrl_init(void)
{
	pr_info("initialized pinctrl subsystem\n");
	pinctrl_init_debugfs();
	return 0;
}

/* init early since many drivers really need to initialized pinmux early */
core_initcall(pinctrl_init);