core.c 45.7 KB
Newer Older
1 2 3
/*
 * Core driver for the pin control subsystem
 *
4
 * Copyright (C) 2011-2012 ST-Ericsson SA
5 6 7 8 9
 * Written on behalf of Linaro for ST-Ericsson
 * Based on bits of regulator core, gpio core and clk core
 *
 * Author: Linus Walleij <linus.walleij@linaro.org>
 *
10 11
 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
 *
12 13 14 15 16
 * License terms: GNU General Public License (GPL) version 2
 */
#define pr_fmt(fmt) "pinctrl core: " fmt

#include <linux/kernel.h>
17
#include <linux/kref.h>
18
#include <linux/export.h>
19 20 21 22 23 24 25 26
#include <linux/init.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/sysfs.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
27
#include <linux/pinctrl/consumer.h>
28 29
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/machine.h>
30 31

#ifdef CONFIG_GPIOLIB
32
#include <asm-generic/gpio.h>
33 34
#endif

35
#include "core.h"
36
#include "devicetree.h"
37
#include "pinmux.h"
38
#include "pinconf.h"
39

40

41 42
static bool pinctrl_dummy_state;

43
/* Mutex taken to protect pinctrl_list */
S
Sachin Kamat 已提交
44
static DEFINE_MUTEX(pinctrl_list_mutex);
45 46 47 48 49

/* Mutex taken to protect pinctrl_maps */
DEFINE_MUTEX(pinctrl_maps_mutex);

/* Mutex taken to protect pinctrldev_list */
S
Sachin Kamat 已提交
50
static DEFINE_MUTEX(pinctrldev_list_mutex);
51 52

/* Global list of pin control devices (struct pinctrl_dev) */
53
static LIST_HEAD(pinctrldev_list);
54

55
/* List of pin controller handles (struct pinctrl) */
56 57
static LIST_HEAD(pinctrl_list);

58
/* List of pinctrl maps (struct pinctrl_maps) */
59
LIST_HEAD(pinctrl_maps);
60

61

62 63 64 65 66 67 68 69 70 71 72 73 74
/**
 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
 *
 * Usually this function is called by platforms without pinctrl driver support
 * but run with some shared drivers using pinctrl APIs.
 * After calling this function, the pinctrl core will return successfully
 * with creating a dummy state for the driver to keep going smoothly.
 */
void pinctrl_provide_dummies(void)
{
	pinctrl_dummy_state = true;
}

75 76 77 78 79 80 81
const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
{
	/* We're not allowed to register devices without name */
	return pctldev->desc->name;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);

82 83 84 85 86 87
const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
{
	return dev_name(pctldev->dev);
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);

88 89 90 91 92 93 94
void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
{
	return pctldev->driver_data;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);

/**
95 96
 * get_pinctrl_dev_from_devname() - look up pin controller device
 * @devname: the name of a device instance, as returned by dev_name()
97 98 99 100
 *
 * Looks up a pin control device matching a certain device name or pure device
 * pointer, the pure device pointer will take precedence.
 */
101
struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 103 104
{
	struct pinctrl_dev *pctldev = NULL;

105 106 107
	if (!devname)
		return NULL;

108 109
	mutex_lock(&pinctrldev_list_mutex);

110
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111
		if (!strcmp(dev_name(pctldev->dev), devname)) {
112
			/* Matched on device name */
113 114
			mutex_unlock(&pinctrldev_list_mutex);
			return pctldev;
115 116 117
		}
	}

118 119 120
	mutex_unlock(&pinctrldev_list_mutex);

	return NULL;
121 122
}

123 124 125 126 127 128 129 130 131 132 133 134
struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
{
	struct pinctrl_dev *pctldev;

	mutex_lock(&pinctrldev_list_mutex);

	list_for_each_entry(pctldev, &pinctrldev_list, node)
		if (pctldev->dev->of_node == np) {
			mutex_unlock(&pinctrldev_list_mutex);
			return pctldev;
		}

135
	mutex_unlock(&pinctrldev_list_mutex);
136 137 138 139

	return NULL;
}

140 141 142 143 144 145 146
/**
 * pin_get_from_name() - look up a pin number from a name
 * @pctldev: the pin control device to lookup the pin on
 * @name: the name of the pin to look up
 */
int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
{
147
	unsigned i, pin;
148

149 150
	/* The pin number can be retrived from the pin controller descriptor */
	for (i = 0; i < pctldev->desc->npins; i++) {
151 152
		struct pin_desc *desc;

153
		pin = pctldev->desc->pins[i].number;
154 155
		desc = pin_desc_get(pctldev, pin);
		/* Pin space may be sparse */
156
		if (desc && !strcmp(name, desc->name))
157 158 159 160 161 162
			return pin;
	}

	return -EINVAL;
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
/**
 * pin_get_name_from_id() - look up a pin name from a pin id
 * @pctldev: the pin control device to lookup the pin on
 * @name: the name of the pin to look up
 */
const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
{
	const struct pin_desc *desc;

	desc = pin_desc_get(pctldev, pin);
	if (desc == NULL) {
		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
			pin);
		return NULL;
	}

	return desc->name;
}

182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
/**
 * pin_is_valid() - check if pin exists on controller
 * @pctldev: the pin control device to check the pin on
 * @pin: pin to check, use the local pin controller index number
 *
 * This tells us whether a certain pin exist on a certain pin controller or
 * not. Pin lists may be sparse, so some pins may not exist.
 */
bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
{
	struct pin_desc *pindesc;

	if (pin < 0)
		return false;

197
	mutex_lock(&pctldev->mutex);
198
	pindesc = pin_desc_get(pctldev, pin);
199
	mutex_unlock(&pctldev->mutex);
200

201
	return pindesc != NULL;
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
}
EXPORT_SYMBOL_GPL(pin_is_valid);

/* Deletes a range of pin descriptors */
static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
				  const struct pinctrl_pin_desc *pins,
				  unsigned num_pins)
{
	int i;

	for (i = 0; i < num_pins; i++) {
		struct pin_desc *pindesc;

		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
					    pins[i].number);
		if (pindesc != NULL) {
			radix_tree_delete(&pctldev->pin_desc_tree,
					  pins[i].number);
220 221
			if (pindesc->dynamic_name)
				kfree(pindesc->name);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
		}
		kfree(pindesc);
	}
}

static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
				    unsigned number, const char *name)
{
	struct pin_desc *pindesc;

	pindesc = pin_desc_get(pctldev, number);
	if (pindesc != NULL) {
		pr_err("pin %d already registered on %s\n", number,
		       pctldev->desc->name);
		return -EINVAL;
	}

	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 241
	if (pindesc == NULL) {
		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
242
		return -ENOMEM;
243
	}
244

245 246 247
	/* Set owner */
	pindesc->pctldev = pctldev;

248
	/* Copy basic pin info */
L
Linus Walleij 已提交
249
	if (name) {
250 251 252
		pindesc->name = name;
	} else {
		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
253 254
		if (pindesc->name == NULL) {
			kfree(pindesc);
255
			return -ENOMEM;
256
		}
257 258
		pindesc->dynamic_name = true;
	}
259 260 261

	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
	pr_debug("registered pin %d (%s) on %s\n",
262
		 number, pindesc->name, pctldev->desc->name);
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
	return 0;
}

static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
				 struct pinctrl_pin_desc const *pins,
				 unsigned num_descs)
{
	unsigned i;
	int ret = 0;

	for (i = 0; i < num_descs; i++) {
		ret = pinctrl_register_one_pin(pctldev,
					       pins[i].number, pins[i].name);
		if (ret)
			return ret;
	}

	return 0;
}

283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
/**
 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 * @range: GPIO range used for the translation
 * @gpio: gpio pin to translate to a pin number
 *
 * Finds the pin number for a given GPIO using the specified GPIO range
 * as a base for translation. The distinction between linear GPIO ranges
 * and pin list based GPIO ranges is managed correctly by this function.
 *
 * This function assumes the gpio is part of the specified GPIO range, use
 * only after making sure this is the case (e.g. by calling it on the
 * result of successful pinctrl_get_device_gpio_range calls)!
 */
static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
				unsigned int gpio)
{
	unsigned int offset = gpio - range->base;
	if (range->pins)
		return range->pins[offset];
	else
		return range->pin_base + offset;
}

306 307 308 309 310 311 312 313 314 315 316 317 318
/**
 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 * @pctldev: pin controller device to check
 * @gpio: gpio pin to check taken from the global GPIO pin space
 *
 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 * controller, return the range or NULL
 */
static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
{
	struct pinctrl_gpio_range *range = NULL;

319
	mutex_lock(&pctldev->mutex);
320 321 322 323 324
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
		/* Check if we're in the valid range */
		if (gpio >= range->base &&
		    gpio < range->base + range->npins) {
325
			mutex_unlock(&pctldev->mutex);
326 327 328
			return range;
		}
	}
329
	mutex_unlock(&pctldev->mutex);
330 331 332
	return NULL;
}

333 334 335 336 337 338 339 340 341 342 343 344 345
/**
 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 * the same GPIO chip are in range
 * @gpio: gpio pin to check taken from the global GPIO pin space
 *
 * This function is complement of pinctrl_match_gpio_range(). If the return
 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 * of the same GPIO chip don't have back-end pinctrl interface.
 * If the return value is true, it means that pinctrl device is ready & the
 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 * is false, it means that pinctrl device may not be ready.
 */
346
#ifdef CONFIG_GPIOLIB
347 348 349 350 351 352
static bool pinctrl_ready_for_gpio_range(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range = NULL;
	struct gpio_chip *chip = gpio_to_chip(gpio);

353 354
	mutex_lock(&pinctrldev_list_mutex);

355 356 357
	/* Loop over the pin controllers */
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		/* Loop over the ranges */
358
		mutex_lock(&pctldev->mutex);
359 360 361 362 363
		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
			/* Check if any gpio range overlapped with gpio chip */
			if (range->base + range->npins - 1 < chip->base ||
			    range->base > chip->base + chip->ngpio - 1)
				continue;
364
			mutex_unlock(&pctldev->mutex);
365
			mutex_unlock(&pinctrldev_list_mutex);
366 367
			return true;
		}
368
		mutex_unlock(&pctldev->mutex);
369
	}
370 371 372

	mutex_unlock(&pinctrldev_list_mutex);

373 374
	return false;
}
375 376 377
#else
static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
#endif
378

379 380 381 382 383 384 385 386
/**
 * pinctrl_get_device_gpio_range() - find device for GPIO range
 * @gpio: the pin to locate the pin controller for
 * @outdev: the pin control device if found
 * @outrange: the GPIO range if found
 *
 * Find the pin controller handling a certain GPIO pin from the pinspace of
 * the GPIO subsystem, return the device and the matching GPIO range. Returns
387 388
 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 * may still have not been registered.
389
 */
S
Stephen Warren 已提交
390 391 392
static int pinctrl_get_device_gpio_range(unsigned gpio,
					 struct pinctrl_dev **outdev,
					 struct pinctrl_gpio_range **outrange)
393 394 395
{
	struct pinctrl_dev *pctldev = NULL;

396 397
	mutex_lock(&pinctrldev_list_mutex);

398 399 400 401 402 403 404 405
	/* Loop over the pin controllers */
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		struct pinctrl_gpio_range *range;

		range = pinctrl_match_gpio_range(pctldev, gpio);
		if (range != NULL) {
			*outdev = pctldev;
			*outrange = range;
406
			mutex_unlock(&pinctrldev_list_mutex);
407 408 409 410
			return 0;
		}
	}

411 412
	mutex_unlock(&pinctrldev_list_mutex);

413
	return -EPROBE_DEFER;
414 415 416 417 418 419 420 421 422 423 424 425 426
}

/**
 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 * @pctldev: pin controller device to add the range to
 * @range: the GPIO range to add
 *
 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 * this to register handled ranges after registering your pin controller.
 */
void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
			    struct pinctrl_gpio_range *range)
{
427
	mutex_lock(&pctldev->mutex);
428
	list_add_tail(&range->node, &pctldev->gpio_ranges);
429
	mutex_unlock(&pctldev->mutex);
430
}
S
Stephen Warren 已提交
431
EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
432

433 434 435 436 437 438 439 440 441 442 443
void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
			     struct pinctrl_gpio_range *ranges,
			     unsigned nranges)
{
	int i;

	for (i = 0; i < nranges; i++)
		pinctrl_add_gpio_range(pctldev, &ranges[i]);
}
EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);

L
Linus Walleij 已提交
444
struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
445 446
		struct pinctrl_gpio_range *range)
{
447 448 449
	struct pinctrl_dev *pctldev;

	pctldev = get_pinctrl_dev_from_devname(devname);
450

451 452 453 454 455
	/*
	 * If we can't find this device, let's assume that is because
	 * it has not probed yet, so the driver trying to register this
	 * range need to defer probing.
	 */
456
	if (!pctldev) {
457
		return ERR_PTR(-EPROBE_DEFER);
458
	}
459
	pinctrl_add_gpio_range(pctldev, range);
460

461 462
	return pctldev;
}
L
Linus Walleij 已提交
463
EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
464

465 466 467 468 469 470 471 472 473 474 475 476 477 478
int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
				const unsigned **pins, unsigned *num_pins)
{
	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
	int gs;

	gs = pinctrl_get_group_selector(pctldev, pin_group);
	if (gs < 0)
		return gs;

	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
}
EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);

479 480 481 482 483 484 485 486 487
/**
 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 * @pctldev: the pin controller device to look in
 * @pin: a controller-local number to find the range for
 */
struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
				 unsigned int pin)
{
488
	struct pinctrl_gpio_range *range;
489

490
	mutex_lock(&pctldev->mutex);
491 492 493
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
		/* Check if we're in the valid range */
494 495 496 497
		if (range->pins) {
			int a;
			for (a = 0; a < range->npins; a++) {
				if (range->pins[a] == pin)
498
					goto out;
499 500
			}
		} else if (pin >= range->pin_base &&
501 502
			   pin < range->pin_base + range->npins)
			goto out;
503
	}
504 505
	range = NULL;
out:
506
	mutex_unlock(&pctldev->mutex);
507
	return range;
508 509 510
}
EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);

511 512 513 514 515 516 517 518
/**
 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
 * @pctldev: pin controller device to remove the range from
 * @range: the GPIO range to remove
 */
void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
			       struct pinctrl_gpio_range *range)
{
519
	mutex_lock(&pctldev->mutex);
520
	list_del(&range->node);
521
	mutex_unlock(&pctldev->mutex);
522 523 524
}
EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);

525 526 527 528 529 530 531 532 533
/**
 * pinctrl_get_group_selector() - returns the group selector for a group
 * @pctldev: the pin controller handling the group
 * @pin_group: the pin group to look up
 */
int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
			       const char *pin_group)
{
	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
534
	unsigned ngroups = pctlops->get_groups_count(pctldev);
535 536
	unsigned group_selector = 0;

537
	while (group_selector < ngroups) {
538 539 540
		const char *gname = pctlops->get_group_name(pctldev,
							    group_selector);
		if (!strcmp(gname, pin_group)) {
541
			dev_dbg(pctldev->dev,
542 543 544 545 546 547 548 549 550
				"found group selector %u for %s\n",
				group_selector,
				pin_group);
			return group_selector;
		}

		group_selector++;
	}

551
	dev_err(pctldev->dev, "does not have pin group %s\n",
552 553 554 555 556
		pin_group);

	return -EINVAL;
}

557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
/**
 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_request() semantics, platforms and individual drivers
 * shall *NOT* request GPIO pins to be muxed in.
 */
int pinctrl_request_gpio(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
573
	if (ret) {
574 575
		if (pinctrl_ready_for_gpio_range(gpio))
			ret = 0;
576
		return ret;
577
	}
578

579 580
	mutex_lock(&pctldev->mutex);

581
	/* Convert to the pin controllers number space */
582
	pin = gpio_to_pin(range, gpio);
583

584 585
	ret = pinmux_request_gpio(pctldev, range, pin, gpio);

586 587
	mutex_unlock(&pctldev->mutex);

588
	return ret;
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
}
EXPORT_SYMBOL_GPL(pinctrl_request_gpio);

/**
 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_free() semantics, platforms and individual drivers
 * shall *NOT* request GPIO pins to be muxed out.
 */
void pinctrl_free_gpio(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
608
	if (ret) {
609
		return;
610
	}
611
	mutex_lock(&pctldev->mutex);
612 613

	/* Convert to the pin controllers number space */
614
	pin = gpio_to_pin(range, gpio);
615

616 617
	pinmux_free_gpio(pctldev, pin, range);

618
	mutex_unlock(&pctldev->mutex);
619 620 621 622 623 624 625 626 627 628 629
}
EXPORT_SYMBOL_GPL(pinctrl_free_gpio);

static int pinctrl_gpio_direction(unsigned gpio, bool input)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
630
	if (ret) {
631
		return ret;
632 633 634
	}

	mutex_lock(&pctldev->mutex);
635 636

	/* Convert to the pin controllers number space */
637
	pin = gpio_to_pin(range, gpio);
638 639 640
	ret = pinmux_gpio_direction(pctldev, range, pin, input);

	mutex_unlock(&pctldev->mutex);
641

642
	return ret;
643 644 645 646 647 648 649 650 651 652 653 654
}

/**
 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_direction_input() semantics, platforms and individual
 * drivers shall *NOT* touch pin control GPIO calls.
 */
int pinctrl_gpio_direction_input(unsigned gpio)
{
655
	return pinctrl_gpio_direction(gpio, true);
656 657 658 659 660 661 662 663 664 665 666 667 668
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);

/**
 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_direction_output() semantics, platforms and individual
 * drivers shall *NOT* touch pin control GPIO calls.
 */
int pinctrl_gpio_direction_output(unsigned gpio)
{
669
	return pinctrl_gpio_direction(gpio, false);
670 671 672
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);

673 674
static struct pinctrl_state *find_state(struct pinctrl *p,
					const char *name)
675
{
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
	struct pinctrl_state *state;

	list_for_each_entry(state, &p->states, node)
		if (!strcmp(state->name, name))
			return state;

	return NULL;
}

static struct pinctrl_state *create_state(struct pinctrl *p,
					  const char *name)
{
	struct pinctrl_state *state;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (state == NULL) {
		dev_err(p->dev,
			"failed to alloc struct pinctrl_state\n");
		return ERR_PTR(-ENOMEM);
	}

	state->name = name;
	INIT_LIST_HEAD(&state->settings);

	list_add_tail(&state->node, &p->states);

	return state;
}

static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
{
	struct pinctrl_state *state;
708
	struct pinctrl_setting *setting;
709
	int ret;
710

711 712 713 714 715
	state = find_state(p, map->name);
	if (!state)
		state = create_state(p, map->name);
	if (IS_ERR(state))
		return PTR_ERR(state);
716

717 718 719
	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
		return 0;

720 721 722 723 724 725
	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
	if (setting == NULL) {
		dev_err(p->dev,
			"failed to alloc struct pinctrl_setting\n");
		return -ENOMEM;
	}
726

727 728
	setting->type = map->type;

729 730 731
	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
	if (setting->pctldev == NULL) {
		kfree(setting);
L
Linus Walleij 已提交
732 733 734
		/* Do not defer probing of hogs (circular loop) */
		if (!strcmp(map->ctrl_dev_name, map->dev_name))
			return -ENODEV;
735 736 737 738
		/*
		 * OK let us guess that the driver is not there yet, and
		 * let's defer obtaining this pinctrl handle to later...
		 */
L
Linus Walleij 已提交
739 740
		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
			map->ctrl_dev_name);
741
		return -EPROBE_DEFER;
742 743
	}

744 745
	setting->dev_name = map->dev_name;

746 747 748 749 750 751 752 753 754 755 756 757
	switch (map->type) {
	case PIN_MAP_TYPE_MUX_GROUP:
		ret = pinmux_map_to_setting(map, setting);
		break;
	case PIN_MAP_TYPE_CONFIGS_PIN:
	case PIN_MAP_TYPE_CONFIGS_GROUP:
		ret = pinconf_map_to_setting(map, setting);
		break;
	default:
		ret = -EINVAL;
		break;
	}
758 759 760 761 762 763 764 765 766 767 768 769 770 771
	if (ret < 0) {
		kfree(setting);
		return ret;
	}

	list_add_tail(&setting->node, &state->settings);

	return 0;
}

static struct pinctrl *find_pinctrl(struct device *dev)
{
	struct pinctrl *p;

772
	mutex_lock(&pinctrl_list_mutex);
773
	list_for_each_entry(p, &pinctrl_list, node)
774 775
		if (p->dev == dev) {
			mutex_unlock(&pinctrl_list_mutex);
776
			return p;
777
		}
778

779
	mutex_unlock(&pinctrl_list_mutex);
780 781 782
	return NULL;
}

783
static void pinctrl_free(struct pinctrl *p, bool inlist);
784 785 786 787 788 789 790 791 792

static struct pinctrl *create_pinctrl(struct device *dev)
{
	struct pinctrl *p;
	const char *devname;
	struct pinctrl_maps *maps_node;
	int i;
	struct pinctrl_map const *map;
	int ret;
793 794 795 796 797 798

	/*
	 * create the state cookie holder struct pinctrl for each
	 * mapping, this is what consumers will get when requesting
	 * a pin control handle with pinctrl_get()
	 */
799
	p = kzalloc(sizeof(*p), GFP_KERNEL);
800 801
	if (p == NULL) {
		dev_err(dev, "failed to alloc struct pinctrl\n");
802
		return ERR_PTR(-ENOMEM);
803
	}
804
	p->dev = dev;
805
	INIT_LIST_HEAD(&p->states);
806 807 808 809 810 811 812
	INIT_LIST_HEAD(&p->dt_maps);

	ret = pinctrl_dt_to_map(p);
	if (ret < 0) {
		kfree(p);
		return ERR_PTR(ret);
	}
813 814

	devname = dev_name(dev);
815

816
	mutex_lock(&pinctrl_maps_mutex);
817
	/* Iterate over the pin control maps to locate the right ones */
818
	for_each_maps(maps_node, i, map) {
819 820 821 822
		/* Map must be for this device */
		if (strcmp(map->dev_name, devname))
			continue;

823
		ret = add_setting(p, map);
L
Linus Walleij 已提交
824 825 826 827 828 829 830 831 832 833 834 835 836 837
		/*
		 * At this point the adding of a setting may:
		 *
		 * - Defer, if the pinctrl device is not yet available
		 * - Fail, if the pinctrl device is not yet available,
		 *   AND the setting is a hog. We cannot defer that, since
		 *   the hog will kick in immediately after the device
		 *   is registered.
		 *
		 * If the error returned was not -EPROBE_DEFER then we
		 * accumulate the errors to see if we end up with
		 * an -EPROBE_DEFER later, as that is the worst case.
		 */
		if (ret == -EPROBE_DEFER) {
838 839
			pinctrl_free(p, false);
			mutex_unlock(&pinctrl_maps_mutex);
840
			return ERR_PTR(ret);
841
		}
842
	}
843 844
	mutex_unlock(&pinctrl_maps_mutex);

L
Linus Walleij 已提交
845 846
	if (ret < 0) {
		/* If some other error than deferral occured, return here */
847
		pinctrl_free(p, false);
L
Linus Walleij 已提交
848 849
		return ERR_PTR(ret);
	}
850

851 852
	kref_init(&p->users);

L
Linus Walleij 已提交
853
	/* Add the pinctrl handle to the global list */
854
	mutex_lock(&pinctrl_list_mutex);
855
	list_add_tail(&p->node, &pinctrl_list);
856
	mutex_unlock(&pinctrl_list_mutex);
857 858

	return p;
859
}
860

861 862 863 864 865
/**
 * pinctrl_get() - retrieves the pinctrl handle for a device
 * @dev: the device to obtain the handle for
 */
struct pinctrl *pinctrl_get(struct device *dev)
866 867
{
	struct pinctrl *p;
868

869 870 871
	if (WARN_ON(!dev))
		return ERR_PTR(-EINVAL);

872 873 874 875 876
	/*
	 * See if somebody else (such as the device core) has already
	 * obtained a handle to the pinctrl for this device. In that case,
	 * return another pointer to it.
	 */
877
	p = find_pinctrl(dev);
878 879 880 881 882
	if (p != NULL) {
		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
		kref_get(&p->users);
		return p;
	}
883

884
	return create_pinctrl(dev);
885 886 887
}
EXPORT_SYMBOL_GPL(pinctrl_get);

888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905
static void pinctrl_free_setting(bool disable_setting,
				 struct pinctrl_setting *setting)
{
	switch (setting->type) {
	case PIN_MAP_TYPE_MUX_GROUP:
		if (disable_setting)
			pinmux_disable_setting(setting);
		pinmux_free_setting(setting);
		break;
	case PIN_MAP_TYPE_CONFIGS_PIN:
	case PIN_MAP_TYPE_CONFIGS_GROUP:
		pinconf_free_setting(setting);
		break;
	default:
		break;
	}
}

906
static void pinctrl_free(struct pinctrl *p, bool inlist)
907
{
908 909 910
	struct pinctrl_state *state, *n1;
	struct pinctrl_setting *setting, *n2;

911
	mutex_lock(&pinctrl_list_mutex);
912 913
	list_for_each_entry_safe(state, n1, &p->states, node) {
		list_for_each_entry_safe(setting, n2, &state->settings, node) {
914
			pinctrl_free_setting(state == p->state, setting);
915 916 917 918 919
			list_del(&setting->node);
			kfree(setting);
		}
		list_del(&state->node);
		kfree(state);
920
	}
921

922 923
	pinctrl_dt_free_maps(p);

924 925
	if (inlist)
		list_del(&p->node);
926
	kfree(p);
927
	mutex_unlock(&pinctrl_list_mutex);
928 929 930
}

/**
931 932 933
 * pinctrl_release() - release the pinctrl handle
 * @kref: the kref in the pinctrl being released
 */
934
static void pinctrl_release(struct kref *kref)
935 936 937
{
	struct pinctrl *p = container_of(kref, struct pinctrl, users);

938
	pinctrl_free(p, true);
939 940 941 942
}

/**
 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
943
 * @p: the pinctrl handle to release
944
 */
945 946
void pinctrl_put(struct pinctrl *p)
{
947
	kref_put(&p->users, pinctrl_release);
948 949 950
}
EXPORT_SYMBOL_GPL(pinctrl_put);

951 952 953 954 955 956 957
/**
 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
 * @p: the pinctrl handle to retrieve the state from
 * @name: the state name to retrieve
 */
struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
						 const char *name)
958
{
959
	struct pinctrl_state *state;
960

961
	state = find_state(p, name);
962 963 964 965 966 967
	if (!state) {
		if (pinctrl_dummy_state) {
			/* create dummy state */
			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
				name);
			state = create_state(p, name);
968 969
		} else
			state = ERR_PTR(-ENODEV);
970
	}
971

972
	return state;
973
}
974
EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
975 976

/**
977 978 979
 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
 * @p: the pinctrl handle for the device that requests configuration
 * @state: the state handle to select/activate/program
980
 */
981
int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
982
{
983
	struct pinctrl_setting *setting, *setting2;
984
	struct pinctrl_state *old_state = p->state;
985
	int ret;
986

987 988
	if (p->state == state)
		return 0;
989

990 991 992 993 994 995 996 997 998 999 1000 1001
	if (p->state) {
		/*
		 * The set of groups with a mux configuration in the old state
		 * may not be identical to the set of groups with a mux setting
		 * in the new state. While this might be unusual, it's entirely
		 * possible for the "user"-supplied mapping table to be written
		 * that way. For each group that was configured in the old state
		 * but not in the new state, this code puts that group into a
		 * safe/disabled state.
		 */
		list_for_each_entry(setting, &p->state->settings, node) {
			bool found = false;
1002 1003
			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
				continue;
1004
			list_for_each_entry(setting2, &state->settings, node) {
1005 1006 1007 1008
				if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
					continue;
				if (setting2->data.mux.group ==
						setting->data.mux.group) {
1009 1010 1011 1012 1013 1014 1015 1016 1017
					found = true;
					break;
				}
			}
			if (!found)
				pinmux_disable_setting(setting);
		}
	}

1018
	p->state = NULL;
1019 1020 1021

	/* Apply all the settings for the new state */
	list_for_each_entry(setting, &state->settings, node) {
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
		switch (setting->type) {
		case PIN_MAP_TYPE_MUX_GROUP:
			ret = pinmux_enable_setting(setting);
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			ret = pinconf_apply_setting(setting);
			break;
		default:
			ret = -EINVAL;
			break;
		}
1034

1035
		if (ret < 0) {
1036
			goto unapply_new_state;
1037
		}
1038
	}
1039

1040 1041
	p->state = state;

1042
	return 0;
1043 1044

unapply_new_state:
1045
	dev_err(p->dev, "Error applying setting, reverse things back\n");
1046 1047 1048 1049

	list_for_each_entry(setting2, &state->settings, node) {
		if (&setting2->node == &setting->node)
			break;
1050 1051 1052 1053 1054 1055 1056 1057 1058
		/*
		 * All we can do here is pinmux_disable_setting.
		 * That means that some pins are muxed differently now
		 * than they were before applying the setting (We can't
		 * "unmux a pin"!), but it's not a big deal since the pins
		 * are free to be muxed by another apply_setting.
		 */
		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
			pinmux_disable_setting(setting2);
1059
	}
1060

1061 1062
	/* There's no infinite recursive loop here because p->state is NULL */
	if (old_state)
1063
		pinctrl_select_state(p, old_state);
1064 1065

	return ret;
1066
}
1067
EXPORT_SYMBOL_GPL(pinctrl_select_state);
1068

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
static void devm_pinctrl_release(struct device *dev, void *res)
{
	pinctrl_put(*(struct pinctrl **)res);
}

/**
 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
 * @dev: the device to obtain the handle for
 *
 * If there is a need to explicitly destroy the returned struct pinctrl,
 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
 */
struct pinctrl *devm_pinctrl_get(struct device *dev)
{
	struct pinctrl **ptr, *p;

	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	p = pinctrl_get(dev);
	if (!IS_ERR(p)) {
		*ptr = p;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return p;
}
EXPORT_SYMBOL_GPL(devm_pinctrl_get);

static int devm_pinctrl_match(struct device *dev, void *res, void *data)
{
	struct pinctrl **p = res;

	return *p == data;
}

/**
 * devm_pinctrl_put() - Resource managed pinctrl_put()
 * @p: the pinctrl handle to release
 *
 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_pinctrl_put(struct pinctrl *p)
{
1118
	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1119 1120 1121 1122
			       devm_pinctrl_match, p));
}
EXPORT_SYMBOL_GPL(devm_pinctrl_put);

1123 1124
int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
			 bool dup, bool locked)
1125
{
1126
	int i, ret;
1127
	struct pinctrl_maps *maps_node;
1128 1129 1130 1131 1132

	pr_debug("add %d pinmux maps\n", num_maps);

	/* First sanity check the new mapping */
	for (i = 0; i < num_maps; i++) {
1133 1134 1135 1136 1137 1138
		if (!maps[i].dev_name) {
			pr_err("failed to register map %s (%d): no device given\n",
			       maps[i].name, i);
			return -EINVAL;
		}

1139 1140
		if (!maps[i].name) {
			pr_err("failed to register map %d: no map name given\n",
1141
			       i);
1142 1143 1144
			return -EINVAL;
		}

1145 1146
		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
				!maps[i].ctrl_dev_name) {
1147 1148 1149 1150 1151
			pr_err("failed to register map %s (%d): no pin control device given\n",
			       maps[i].name, i);
			return -EINVAL;
		}

1152 1153 1154 1155 1156 1157
		switch (maps[i].type) {
		case PIN_MAP_TYPE_DUMMY_STATE:
			break;
		case PIN_MAP_TYPE_MUX_GROUP:
			ret = pinmux_validate_map(&maps[i], i);
			if (ret < 0)
1158
				return ret;
1159 1160 1161 1162 1163
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			ret = pinconf_validate_map(&maps[i], i);
			if (ret < 0)
1164
				return ret;
1165 1166 1167
			break;
		default:
			pr_err("failed to register map %s (%d): invalid type given\n",
1168
			       maps[i].name, i);
1169 1170
			return -EINVAL;
		}
1171 1172
	}

1173 1174 1175 1176 1177
	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
	if (!maps_node) {
		pr_err("failed to alloc struct pinctrl_maps\n");
		return -ENOMEM;
	}
1178

1179
	maps_node->num_maps = num_maps;
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
	if (dup) {
		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
					  GFP_KERNEL);
		if (!maps_node->maps) {
			pr_err("failed to duplicate mapping table\n");
			kfree(maps_node);
			return -ENOMEM;
		}
	} else {
		maps_node->maps = maps;
1190 1191
	}

1192
	if (!locked)
1193
		mutex_lock(&pinctrl_maps_mutex);
1194
	list_add_tail(&maps_node->node, &pinctrl_maps);
1195
	if (!locked)
1196
		mutex_unlock(&pinctrl_maps_mutex);
1197

1198 1199 1200
	return 0;
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
/**
 * pinctrl_register_mappings() - register a set of pin controller mappings
 * @maps: the pincontrol mappings table to register. This should probably be
 *	marked with __initdata so it can be discarded after boot. This
 *	function will perform a shallow copy for the mapping entries.
 * @num_maps: the number of maps in the mapping table
 */
int pinctrl_register_mappings(struct pinctrl_map const *maps,
			      unsigned num_maps)
{
	return pinctrl_register_map(maps, num_maps, true, false);
}

void pinctrl_unregister_map(struct pinctrl_map const *map)
{
	struct pinctrl_maps *maps_node;

1218
	mutex_lock(&pinctrl_maps_mutex);
1219 1220 1221
	list_for_each_entry(maps_node, &pinctrl_maps, node) {
		if (maps_node->maps == map) {
			list_del(&maps_node->node);
1222
			kfree(maps_node);
1223
			mutex_unlock(&pinctrl_maps_mutex);
1224 1225 1226
			return;
		}
	}
1227
	mutex_unlock(&pinctrl_maps_mutex);
1228 1229
}

1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
/**
 * pinctrl_force_sleep() - turn a given controller device into sleep state
 * @pctldev: pin controller device
 */
int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
{
	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
	return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_force_sleep);

/**
 * pinctrl_force_default() - turn a given controller device into default state
 * @pctldev: pin controller device
 */
int pinctrl_force_default(struct pinctrl_dev *pctldev)
{
	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
	return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_force_default);

1254 1255 1256
#ifdef CONFIG_PM

/**
1257
 * pinctrl_pm_select_state() - select pinctrl state for PM
1258
 * @dev: device to select default state for
1259
 * @state: state to set
1260
 */
1261 1262
static int pinctrl_pm_select_state(struct device *dev,
				   struct pinctrl_state *state)
1263 1264 1265 1266
{
	struct dev_pin_info *pins = dev->pins;
	int ret;

1267 1268 1269
	if (IS_ERR(state))
		return 0; /* No such state */
	ret = pinctrl_select_state(pins->p, state);
1270
	if (ret)
1271 1272
		dev_err(dev, "failed to activate pinctrl state %s\n",
			state->name);
1273 1274
	return ret;
}
1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286

/**
 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
 * @dev: device to select default state for
 */
int pinctrl_pm_select_default_state(struct device *dev)
{
	if (!dev->pins)
		return 0;

	return pinctrl_pm_select_state(dev, dev->pins->default_state);
}
1287
EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1288 1289 1290 1291 1292 1293 1294

/**
 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
 * @dev: device to select sleep state for
 */
int pinctrl_pm_select_sleep_state(struct device *dev)
{
1295
	if (!dev->pins)
1296
		return 0;
1297 1298

	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1299
}
1300
EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1301 1302 1303 1304 1305 1306 1307

/**
 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
 * @dev: device to select idle state for
 */
int pinctrl_pm_select_idle_state(struct device *dev)
{
1308
	if (!dev->pins)
1309
		return 0;
1310 1311

	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1312
}
1313
EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1314 1315
#endif

1316 1317 1318 1319 1320 1321
#ifdef CONFIG_DEBUG_FS

static int pinctrl_pins_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1322
	unsigned i, pin;
1323 1324 1325

	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);

1326
	mutex_lock(&pctldev->mutex);
1327

1328 1329
	/* The pin number can be retrived from the pin controller descriptor */
	for (i = 0; i < pctldev->desc->npins; i++) {
1330 1331
		struct pin_desc *desc;

1332
		pin = pctldev->desc->pins[i].number;
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
		desc = pin_desc_get(pctldev, pin);
		/* Pin space may be sparse */
		if (desc == NULL)
			continue;

		seq_printf(s, "pin %d (%s) ", pin,
			   desc->name ? desc->name : "unnamed");

		/* Driver-specific info per pin */
		if (ops->pin_dbg_show)
			ops->pin_dbg_show(pctldev, s, pin);

		seq_puts(s, "\n");
	}

1348
	mutex_unlock(&pctldev->mutex);
1349

1350 1351 1352 1353 1354 1355 1356
	return 0;
}

static int pinctrl_groups_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1357
	unsigned ngroups, selector = 0;
1358

1359 1360
	mutex_lock(&pctldev->mutex);

1361
	ngroups = ops->get_groups_count(pctldev);
1362

1363
	seq_puts(s, "registered pin groups:\n");
1364
	while (selector < ngroups) {
1365
		const unsigned *pins;
1366 1367
		unsigned num_pins;
		const char *gname = ops->get_group_name(pctldev, selector);
1368
		const char *pname;
1369 1370 1371 1372 1373 1374 1375 1376 1377
		int ret;
		int i;

		ret = ops->get_group_pins(pctldev, selector,
					  &pins, &num_pins);
		if (ret)
			seq_printf(s, "%s [ERROR GETTING PINS]\n",
				   gname);
		else {
1378 1379 1380
			seq_printf(s, "group: %s\n", gname);
			for (i = 0; i < num_pins; i++) {
				pname = pin_get_name(pctldev, pins[i]);
1381
				if (WARN_ON(!pname)) {
1382
					mutex_unlock(&pctldev->mutex);
1383
					return -EINVAL;
1384
				}
1385 1386 1387
				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
			}
			seq_puts(s, "\n");
1388 1389 1390 1391
		}
		selector++;
	}

1392
	mutex_unlock(&pctldev->mutex);
1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403

	return 0;
}

static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	struct pinctrl_gpio_range *range = NULL;

	seq_puts(s, "GPIO ranges handled:\n");

1404
	mutex_lock(&pctldev->mutex);
1405

1406 1407
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
		if (range->pins) {
			int a;
			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
				range->id, range->name,
				range->base, (range->base + range->npins - 1));
			for (a = 0; a < range->npins - 1; a++)
				seq_printf(s, "%u, ", range->pins[a]);
			seq_printf(s, "%u}\n", range->pins[a]);
		}
		else
			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
				range->id, range->name,
				range->base, (range->base + range->npins - 1),
				range->pin_base,
				(range->pin_base + range->npins - 1));
1423
	}
1424

1425
	mutex_unlock(&pctldev->mutex);
1426 1427 1428 1429 1430 1431 1432 1433

	return 0;
}

static int pinctrl_devices_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev;

1434
	seq_puts(s, "name [pinmux] [pinconf]\n");
1435

1436
	mutex_lock(&pinctrldev_list_mutex);
1437

1438 1439 1440
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		seq_printf(s, "%s ", pctldev->desc->name);
		if (pctldev->desc->pmxops)
1441 1442 1443 1444
			seq_puts(s, "yes ");
		else
			seq_puts(s, "no ");
		if (pctldev->desc->confops)
1445 1446 1447 1448 1449
			seq_puts(s, "yes");
		else
			seq_puts(s, "no");
		seq_puts(s, "\n");
	}
1450

1451
	mutex_unlock(&pinctrldev_list_mutex);
1452 1453 1454 1455

	return 0;
}

1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
static inline const char *map_type(enum pinctrl_map_type type)
{
	static const char * const names[] = {
		"INVALID",
		"DUMMY_STATE",
		"MUX_GROUP",
		"CONFIGS_PIN",
		"CONFIGS_GROUP",
	};

	if (type >= ARRAY_SIZE(names))
		return "UNKNOWN";

	return names[type];
}

1472 1473 1474 1475 1476 1477 1478 1479
static int pinctrl_maps_show(struct seq_file *s, void *what)
{
	struct pinctrl_maps *maps_node;
	int i;
	struct pinctrl_map const *map;

	seq_puts(s, "Pinctrl maps:\n");

1480
	mutex_lock(&pinctrl_maps_mutex);
1481
	for_each_maps(maps_node, i, map) {
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
			   map->dev_name, map->name, map_type(map->type),
			   map->type);

		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
			seq_printf(s, "controlling device %s\n",
				   map->ctrl_dev_name);

		switch (map->type) {
		case PIN_MAP_TYPE_MUX_GROUP:
			pinmux_show_map(s, map);
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			pinconf_show_map(s, map);
			break;
		default:
			break;
		}

		seq_printf(s, "\n");
1503
	}
1504
	mutex_unlock(&pinctrl_maps_mutex);
1505 1506 1507 1508

	return 0;
}

1509 1510 1511
static int pinctrl_show(struct seq_file *s, void *what)
{
	struct pinctrl *p;
1512
	struct pinctrl_state *state;
1513
	struct pinctrl_setting *setting;
1514 1515

	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1516

1517
	mutex_lock(&pinctrl_list_mutex);
1518

1519
	list_for_each_entry(p, &pinctrl_list, node) {
1520 1521 1522 1523 1524 1525
		seq_printf(s, "device: %s current state: %s\n",
			   dev_name(p->dev),
			   p->state ? p->state->name : "none");

		list_for_each_entry(state, &p->states, node) {
			seq_printf(s, "  state: %s\n", state->name);
1526

1527
			list_for_each_entry(setting, &state->settings, node) {
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
				struct pinctrl_dev *pctldev = setting->pctldev;

				seq_printf(s, "    type: %s controller %s ",
					   map_type(setting->type),
					   pinctrl_dev_get_name(pctldev));

				switch (setting->type) {
				case PIN_MAP_TYPE_MUX_GROUP:
					pinmux_show_setting(s, setting);
					break;
				case PIN_MAP_TYPE_CONFIGS_PIN:
				case PIN_MAP_TYPE_CONFIGS_GROUP:
					pinconf_show_setting(s, setting);
					break;
				default:
					break;
				}
1545
			}
1546 1547 1548
		}
	}

1549
	mutex_unlock(&pinctrl_list_mutex);
1550

1551 1552 1553
	return 0;
}

1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573
static int pinctrl_pins_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_pins_show, inode->i_private);
}

static int pinctrl_groups_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_groups_show, inode->i_private);
}

static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
}

static int pinctrl_devices_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_devices_show, NULL);
}

1574 1575 1576 1577 1578
static int pinctrl_maps_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_maps_show, NULL);
}

1579 1580 1581 1582 1583
static int pinctrl_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_show, NULL);
}

1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
static const struct file_operations pinctrl_pins_ops = {
	.open		= pinctrl_pins_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations pinctrl_groups_ops = {
	.open		= pinctrl_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations pinctrl_gpioranges_ops = {
	.open		= pinctrl_gpioranges_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1605 1606
static const struct file_operations pinctrl_devices_ops = {
	.open		= pinctrl_devices_open,
1607 1608 1609 1610 1611
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1612 1613
static const struct file_operations pinctrl_maps_ops = {
	.open		= pinctrl_maps_open,
1614 1615 1616 1617 1618
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1619 1620 1621 1622 1623 1624 1625
static const struct file_operations pinctrl_ops = {
	.open		= pinctrl_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1626 1627 1628 1629
static struct dentry *debugfs_root;

static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
1630
	struct dentry *device_root;
1631

1632
	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1633
					 debugfs_root);
1634 1635
	pctldev->device_root = device_root;

1636 1637
	if (IS_ERR(device_root) || !device_root) {
		pr_warn("failed to create debugfs directory for %s\n",
1638
			dev_name(pctldev->dev));
1639 1640 1641 1642 1643 1644 1645 1646
		return;
	}
	debugfs_create_file("pins", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_pins_ops);
	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_groups_ops);
	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_gpioranges_ops);
1647 1648 1649 1650
	if (pctldev->desc->pmxops)
		pinmux_init_device_debugfs(device_root, pctldev);
	if (pctldev->desc->confops)
		pinconf_init_device_debugfs(device_root, pctldev);
1651 1652
}

1653 1654 1655 1656 1657
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
	debugfs_remove_recursive(pctldev->device_root);
}

1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668
static void pinctrl_init_debugfs(void)
{
	debugfs_root = debugfs_create_dir("pinctrl", NULL);
	if (IS_ERR(debugfs_root) || !debugfs_root) {
		pr_warn("failed to create debugfs directory\n");
		debugfs_root = NULL;
		return;
	}

	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_devices_ops);
1669 1670
	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_maps_ops);
1671 1672
	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_ops);
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
}

#else /* CONFIG_DEBUG_FS */

static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
}

static void pinctrl_init_debugfs(void)
{
}

1685 1686 1687 1688
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
}

1689 1690
#endif

1691 1692 1693 1694 1695
static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
{
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;

	if (!ops ||
1696
	    !ops->get_groups_count ||
1697 1698 1699 1700
	    !ops->get_group_name ||
	    !ops->get_group_pins)
		return -EINVAL;

1701 1702 1703
	if (ops->dt_node_to_map && !ops->dt_free_map)
		return -EINVAL;

1704 1705 1706
	return 0;
}

1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718
/**
 * pinctrl_register() - register a pin controller device
 * @pctldesc: descriptor for this pin controller
 * @dev: parent device for this pin controller
 * @driver_data: private pin controller data for this pin controller
 */
struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
				    struct device *dev, void *driver_data)
{
	struct pinctrl_dev *pctldev;
	int ret;

1719
	if (!pctldesc)
1720
		return NULL;
1721
	if (!pctldesc->name)
1722 1723
		return NULL;

1724
	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1725 1726
	if (pctldev == NULL) {
		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1727
		return NULL;
1728
	}
1729 1730 1731 1732 1733 1734 1735 1736

	/* Initialize pin control device struct */
	pctldev->owner = pctldesc->owner;
	pctldev->desc = pctldesc;
	pctldev->driver_data = driver_data;
	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
	INIT_LIST_HEAD(&pctldev->gpio_ranges);
	pctldev->dev = dev;
1737
	mutex_init(&pctldev->mutex);
1738

1739
	/* check core ops for sanity */
1740
	if (pinctrl_check_ops(pctldev)) {
1741
		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1742 1743 1744
		goto out_err;
	}

1745 1746
	/* If we're implementing pinmuxing, check the ops for sanity */
	if (pctldesc->pmxops) {
1747
		if (pinmux_check_ops(pctldev))
1748
			goto out_err;
1749 1750
	}

1751 1752
	/* If we're implementing pinconfig, check the ops for sanity */
	if (pctldesc->confops) {
1753
		if (pinconf_check_ops(pctldev))
1754
			goto out_err;
1755 1756
	}

1757
	/* Register all the pins */
1758
	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1759 1760
	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
	if (ret) {
1761
		dev_err(dev, "error during pin registration\n");
1762 1763
		pinctrl_free_pindescs(pctldev, pctldesc->pins,
				      pctldesc->npins);
1764
		goto out_err;
1765 1766
	}

1767
	mutex_lock(&pinctrldev_list_mutex);
1768
	list_add_tail(&pctldev->node, &pinctrldev_list);
1769 1770 1771
	mutex_unlock(&pinctrldev_list_mutex);

	pctldev->p = pinctrl_get(pctldev->dev);
1772

1773
	if (!IS_ERR(pctldev->p)) {
1774
		pctldev->hog_default =
1775
			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1776
		if (IS_ERR(pctldev->hog_default)) {
1777 1778
			dev_dbg(dev, "failed to lookup the default state\n");
		} else {
1779
			if (pinctrl_select_state(pctldev->p,
1780
						pctldev->hog_default))
1781 1782 1783
				dev_err(dev,
					"failed to select default state\n");
		}
1784 1785

		pctldev->hog_sleep =
1786
			pinctrl_lookup_state(pctldev->p,
1787 1788 1789
						    PINCTRL_STATE_SLEEP);
		if (IS_ERR(pctldev->hog_sleep))
			dev_dbg(dev, "failed to lookup the sleep state\n");
1790
	}
1791

1792 1793
	pinctrl_init_device_debugfs(pctldev);

1794 1795
	return pctldev;

1796
out_err:
1797
	mutex_destroy(&pctldev->mutex);
1798
	kfree(pctldev);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810
	return NULL;
}
EXPORT_SYMBOL_GPL(pinctrl_register);

/**
 * pinctrl_unregister() - unregister pinmux
 * @pctldev: pin controller to unregister
 *
 * Called by pinmux drivers to unregister a pinmux.
 */
void pinctrl_unregister(struct pinctrl_dev *pctldev)
{
1811
	struct pinctrl_gpio_range *range, *n;
1812 1813 1814
	if (pctldev == NULL)
		return;

1815 1816
	mutex_lock(&pinctrldev_list_mutex);
	mutex_lock(&pctldev->mutex);
1817

1818
	pinctrl_remove_device_debugfs(pctldev);
1819

1820
	if (!IS_ERR(pctldev->p))
1821
		pinctrl_put(pctldev->p);
1822

1823 1824 1825 1826 1827
	/* TODO: check that no pinmuxes are still active? */
	list_del(&pctldev->node);
	/* Destroy descriptor tree */
	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
			      pctldev->desc->npins);
1828 1829 1830 1831
	/* remove gpio ranges map */
	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
		list_del(&range->node);

1832 1833
	mutex_unlock(&pctldev->mutex);
	mutex_destroy(&pctldev->mutex);
1834
	kfree(pctldev);
1835
	mutex_unlock(&pinctrldev_list_mutex);
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
}
EXPORT_SYMBOL_GPL(pinctrl_unregister);

static int __init pinctrl_init(void)
{
	pr_info("initialized pinctrl subsystem\n");
	pinctrl_init_debugfs();
	return 0;
}

/* init early since many drivers really need to initialized pinmux early */
core_initcall(pinctrl_init);