core.c 44.9 KB
Newer Older
1 2 3
/*
 * Core driver for the pin control subsystem
 *
4
 * Copyright (C) 2011-2012 ST-Ericsson SA
5 6 7 8 9
 * Written on behalf of Linaro for ST-Ericsson
 * Based on bits of regulator core, gpio core and clk core
 *
 * Author: Linus Walleij <linus.walleij@linaro.org>
 *
10 11
 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
 *
12 13 14 15 16
 * License terms: GNU General Public License (GPL) version 2
 */
#define pr_fmt(fmt) "pinctrl core: " fmt

#include <linux/kernel.h>
17
#include <linux/kref.h>
18
#include <linux/export.h>
19 20 21 22 23 24 25 26
#include <linux/init.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/sysfs.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
27
#include <linux/pinctrl/consumer.h>
28 29
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/machine.h>
30 31

#ifdef CONFIG_GPIOLIB
32
#include <asm-generic/gpio.h>
33 34
#endif

35
#include "core.h"
36
#include "devicetree.h"
37
#include "pinmux.h"
38
#include "pinconf.h"
39

40

41 42
static bool pinctrl_dummy_state;

43
/* Mutex taken to protect pinctrl_list */
S
Sachin Kamat 已提交
44
static DEFINE_MUTEX(pinctrl_list_mutex);
45 46 47 48 49

/* Mutex taken to protect pinctrl_maps */
DEFINE_MUTEX(pinctrl_maps_mutex);

/* Mutex taken to protect pinctrldev_list */
S
Sachin Kamat 已提交
50
static DEFINE_MUTEX(pinctrldev_list_mutex);
51 52

/* Global list of pin control devices (struct pinctrl_dev) */
53
static LIST_HEAD(pinctrldev_list);
54

55
/* List of pin controller handles (struct pinctrl) */
56 57
static LIST_HEAD(pinctrl_list);

58
/* List of pinctrl maps (struct pinctrl_maps) */
59
LIST_HEAD(pinctrl_maps);
60

61

62 63 64 65 66 67 68 69 70 71 72 73 74
/**
 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
 *
 * Usually this function is called by platforms without pinctrl driver support
 * but run with some shared drivers using pinctrl APIs.
 * After calling this function, the pinctrl core will return successfully
 * with creating a dummy state for the driver to keep going smoothly.
 */
void pinctrl_provide_dummies(void)
{
	pinctrl_dummy_state = true;
}

75 76 77 78 79 80 81
const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
{
	/* We're not allowed to register devices without name */
	return pctldev->desc->name;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);

82 83 84 85 86 87
const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
{
	return dev_name(pctldev->dev);
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);

88 89 90 91 92 93 94
void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
{
	return pctldev->driver_data;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);

/**
95 96
 * get_pinctrl_dev_from_devname() - look up pin controller device
 * @devname: the name of a device instance, as returned by dev_name()
97 98 99 100
 *
 * Looks up a pin control device matching a certain device name or pure device
 * pointer, the pure device pointer will take precedence.
 */
101
struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 103 104
{
	struct pinctrl_dev *pctldev = NULL;

105 106 107
	if (!devname)
		return NULL;

108 109
	mutex_lock(&pinctrldev_list_mutex);

110
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111
		if (!strcmp(dev_name(pctldev->dev), devname)) {
112
			/* Matched on device name */
113 114
			mutex_unlock(&pinctrldev_list_mutex);
			return pctldev;
115 116 117
		}
	}

118 119 120
	mutex_unlock(&pinctrldev_list_mutex);

	return NULL;
121 122
}

123 124 125 126 127 128 129 130 131 132 133 134
struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
{
	struct pinctrl_dev *pctldev;

	mutex_lock(&pinctrldev_list_mutex);

	list_for_each_entry(pctldev, &pinctrldev_list, node)
		if (pctldev->dev->of_node == np) {
			mutex_unlock(&pinctrldev_list_mutex);
			return pctldev;
		}

135
	mutex_unlock(&pinctrldev_list_mutex);
136 137 138 139

	return NULL;
}

140 141 142 143 144 145 146
/**
 * pin_get_from_name() - look up a pin number from a name
 * @pctldev: the pin control device to lookup the pin on
 * @name: the name of the pin to look up
 */
int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
{
147
	unsigned i, pin;
148

149 150
	/* The pin number can be retrived from the pin controller descriptor */
	for (i = 0; i < pctldev->desc->npins; i++) {
151 152
		struct pin_desc *desc;

153
		pin = pctldev->desc->pins[i].number;
154 155 156 157 158 159 160 161 162 163 164
		desc = pin_desc_get(pctldev, pin);
		/* Pin space may be sparse */
		if (desc == NULL)
			continue;
		if (desc->name && !strcmp(name, desc->name))
			return pin;
	}

	return -EINVAL;
}

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
/**
 * pin_get_name_from_id() - look up a pin name from a pin id
 * @pctldev: the pin control device to lookup the pin on
 * @name: the name of the pin to look up
 */
const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
{
	const struct pin_desc *desc;

	desc = pin_desc_get(pctldev, pin);
	if (desc == NULL) {
		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
			pin);
		return NULL;
	}

	return desc->name;
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
/**
 * pin_is_valid() - check if pin exists on controller
 * @pctldev: the pin control device to check the pin on
 * @pin: pin to check, use the local pin controller index number
 *
 * This tells us whether a certain pin exist on a certain pin controller or
 * not. Pin lists may be sparse, so some pins may not exist.
 */
bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
{
	struct pin_desc *pindesc;

	if (pin < 0)
		return false;

199
	mutex_lock(&pctldev->mutex);
200
	pindesc = pin_desc_get(pctldev, pin);
201
	mutex_unlock(&pctldev->mutex);
202

203
	return pindesc != NULL;
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
}
EXPORT_SYMBOL_GPL(pin_is_valid);

/* Deletes a range of pin descriptors */
static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
				  const struct pinctrl_pin_desc *pins,
				  unsigned num_pins)
{
	int i;

	for (i = 0; i < num_pins; i++) {
		struct pin_desc *pindesc;

		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
					    pins[i].number);
		if (pindesc != NULL) {
			radix_tree_delete(&pctldev->pin_desc_tree,
					  pins[i].number);
222 223
			if (pindesc->dynamic_name)
				kfree(pindesc->name);
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
		}
		kfree(pindesc);
	}
}

static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
				    unsigned number, const char *name)
{
	struct pin_desc *pindesc;

	pindesc = pin_desc_get(pctldev, number);
	if (pindesc != NULL) {
		pr_err("pin %d already registered on %s\n", number,
		       pctldev->desc->name);
		return -EINVAL;
	}

	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
242 243
	if (pindesc == NULL) {
		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
244
		return -ENOMEM;
245
	}
246

247 248 249
	/* Set owner */
	pindesc->pctldev = pctldev;

250
	/* Copy basic pin info */
L
Linus Walleij 已提交
251
	if (name) {
252 253 254
		pindesc->name = name;
	} else {
		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
255 256
		if (pindesc->name == NULL) {
			kfree(pindesc);
257
			return -ENOMEM;
258
		}
259 260
		pindesc->dynamic_name = true;
	}
261 262 263

	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
	pr_debug("registered pin %d (%s) on %s\n",
264
		 number, pindesc->name, pctldev->desc->name);
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
	return 0;
}

static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
				 struct pinctrl_pin_desc const *pins,
				 unsigned num_descs)
{
	unsigned i;
	int ret = 0;

	for (i = 0; i < num_descs; i++) {
		ret = pinctrl_register_one_pin(pctldev,
					       pins[i].number, pins[i].name);
		if (ret)
			return ret;
	}

	return 0;
}

285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
/**
 * gpio_to_pin() - GPIO range GPIO number to pin number translation
 * @range: GPIO range used for the translation
 * @gpio: gpio pin to translate to a pin number
 *
 * Finds the pin number for a given GPIO using the specified GPIO range
 * as a base for translation. The distinction between linear GPIO ranges
 * and pin list based GPIO ranges is managed correctly by this function.
 *
 * This function assumes the gpio is part of the specified GPIO range, use
 * only after making sure this is the case (e.g. by calling it on the
 * result of successful pinctrl_get_device_gpio_range calls)!
 */
static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
				unsigned int gpio)
{
	unsigned int offset = gpio - range->base;
	if (range->pins)
		return range->pins[offset];
	else
		return range->pin_base + offset;
}

308 309 310 311 312 313 314 315 316 317 318 319 320
/**
 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
 * @pctldev: pin controller device to check
 * @gpio: gpio pin to check taken from the global GPIO pin space
 *
 * Tries to match a GPIO pin number to the ranges handled by a certain pin
 * controller, return the range or NULL
 */
static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
{
	struct pinctrl_gpio_range *range = NULL;

321
	mutex_lock(&pctldev->mutex);
322 323 324 325 326
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
		/* Check if we're in the valid range */
		if (gpio >= range->base &&
		    gpio < range->base + range->npins) {
327
			mutex_unlock(&pctldev->mutex);
328 329 330
			return range;
		}
	}
331
	mutex_unlock(&pctldev->mutex);
332 333 334
	return NULL;
}

335 336 337 338 339 340 341 342 343 344 345 346 347
/**
 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
 * the same GPIO chip are in range
 * @gpio: gpio pin to check taken from the global GPIO pin space
 *
 * This function is complement of pinctrl_match_gpio_range(). If the return
 * value of pinctrl_match_gpio_range() is NULL, this function could be used
 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
 * of the same GPIO chip don't have back-end pinctrl interface.
 * If the return value is true, it means that pinctrl device is ready & the
 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
 * is false, it means that pinctrl device may not be ready.
 */
348
#ifdef CONFIG_GPIOLIB
349 350 351 352 353 354
static bool pinctrl_ready_for_gpio_range(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range = NULL;
	struct gpio_chip *chip = gpio_to_chip(gpio);

355 356
	mutex_lock(&pinctrldev_list_mutex);

357 358 359 360 361 362 363 364
	/* Loop over the pin controllers */
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		/* Loop over the ranges */
		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
			/* Check if any gpio range overlapped with gpio chip */
			if (range->base + range->npins - 1 < chip->base ||
			    range->base > chip->base + chip->ngpio - 1)
				continue;
365
			mutex_unlock(&pinctrldev_list_mutex);
366 367 368
			return true;
		}
	}
369 370 371

	mutex_unlock(&pinctrldev_list_mutex);

372 373
	return false;
}
374 375 376
#else
static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
#endif
377

378 379 380 381 382 383 384 385
/**
 * pinctrl_get_device_gpio_range() - find device for GPIO range
 * @gpio: the pin to locate the pin controller for
 * @outdev: the pin control device if found
 * @outrange: the GPIO range if found
 *
 * Find the pin controller handling a certain GPIO pin from the pinspace of
 * the GPIO subsystem, return the device and the matching GPIO range. Returns
386 387
 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
 * may still have not been registered.
388
 */
S
Stephen Warren 已提交
389 390 391
static int pinctrl_get_device_gpio_range(unsigned gpio,
					 struct pinctrl_dev **outdev,
					 struct pinctrl_gpio_range **outrange)
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
{
	struct pinctrl_dev *pctldev = NULL;

	/* Loop over the pin controllers */
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		struct pinctrl_gpio_range *range;

		range = pinctrl_match_gpio_range(pctldev, gpio);
		if (range != NULL) {
			*outdev = pctldev;
			*outrange = range;
			return 0;
		}
	}

407
	return -EPROBE_DEFER;
408 409 410 411 412 413 414 415 416 417 418 419 420
}

/**
 * pinctrl_add_gpio_range() - register a GPIO range for a controller
 * @pctldev: pin controller device to add the range to
 * @range: the GPIO range to add
 *
 * This adds a range of GPIOs to be handled by a certain pin controller. Call
 * this to register handled ranges after registering your pin controller.
 */
void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
			    struct pinctrl_gpio_range *range)
{
421
	mutex_lock(&pctldev->mutex);
422
	list_add_tail(&range->node, &pctldev->gpio_ranges);
423
	mutex_unlock(&pctldev->mutex);
424
}
S
Stephen Warren 已提交
425
EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
426

427 428 429 430 431 432 433 434 435 436 437
void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
			     struct pinctrl_gpio_range *ranges,
			     unsigned nranges)
{
	int i;

	for (i = 0; i < nranges; i++)
		pinctrl_add_gpio_range(pctldev, &ranges[i]);
}
EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);

L
Linus Walleij 已提交
438
struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
439 440
		struct pinctrl_gpio_range *range)
{
441 442 443
	struct pinctrl_dev *pctldev;

	pctldev = get_pinctrl_dev_from_devname(devname);
444

445 446 447 448 449
	/*
	 * If we can't find this device, let's assume that is because
	 * it has not probed yet, so the driver trying to register this
	 * range need to defer probing.
	 */
450
	if (!pctldev) {
451
		return ERR_PTR(-EPROBE_DEFER);
452
	}
453
	pinctrl_add_gpio_range(pctldev, range);
454

455 456
	return pctldev;
}
L
Linus Walleij 已提交
457
EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
458

459 460 461 462 463 464 465 466 467
/**
 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
 * @pctldev: the pin controller device to look in
 * @pin: a controller-local number to find the range for
 */
struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
				 unsigned int pin)
{
468
	struct pinctrl_gpio_range *range;
469

470
	mutex_lock(&pctldev->mutex);
471 472 473
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
		/* Check if we're in the valid range */
474 475 476 477
		if (range->pins) {
			int a;
			for (a = 0; a < range->npins; a++) {
				if (range->pins[a] == pin)
478
					goto out;
479 480
			}
		} else if (pin >= range->pin_base &&
481 482
			   pin < range->pin_base + range->npins)
			goto out;
483
	}
484 485
	range = NULL;
out:
486
	mutex_unlock(&pctldev->mutex);
487
	return range;
488 489 490
}
EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);

491 492 493 494 495 496 497 498
/**
 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
 * @pctldev: pin controller device to remove the range from
 * @range: the GPIO range to remove
 */
void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
			       struct pinctrl_gpio_range *range)
{
499
	mutex_lock(&pctldev->mutex);
500
	list_del(&range->node);
501
	mutex_unlock(&pctldev->mutex);
502 503 504
}
EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);

505 506 507 508 509 510 511 512 513
/**
 * pinctrl_get_group_selector() - returns the group selector for a group
 * @pctldev: the pin controller handling the group
 * @pin_group: the pin group to look up
 */
int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
			       const char *pin_group)
{
	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
514
	unsigned ngroups = pctlops->get_groups_count(pctldev);
515 516
	unsigned group_selector = 0;

517
	while (group_selector < ngroups) {
518 519 520
		const char *gname = pctlops->get_group_name(pctldev,
							    group_selector);
		if (!strcmp(gname, pin_group)) {
521
			dev_dbg(pctldev->dev,
522 523 524 525 526 527 528 529 530
				"found group selector %u for %s\n",
				group_selector,
				pin_group);
			return group_selector;
		}

		group_selector++;
	}

531
	dev_err(pctldev->dev, "does not have pin group %s\n",
532 533 534 535 536
		pin_group);

	return -EINVAL;
}

537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
/**
 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_request() semantics, platforms and individual drivers
 * shall *NOT* request GPIO pins to be muxed in.
 */
int pinctrl_request_gpio(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
553
	if (ret) {
554 555
		if (pinctrl_ready_for_gpio_range(gpio))
			ret = 0;
556
		return ret;
557
	}
558 559

	/* Convert to the pin controllers number space */
560
	pin = gpio_to_pin(range, gpio);
561

562 563 564
	ret = pinmux_request_gpio(pctldev, range, pin, gpio);

	return ret;
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
}
EXPORT_SYMBOL_GPL(pinctrl_request_gpio);

/**
 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_free() semantics, platforms and individual drivers
 * shall *NOT* request GPIO pins to be muxed out.
 */
void pinctrl_free_gpio(unsigned gpio)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
584
	if (ret) {
585
		return;
586
	}
587
	mutex_lock(&pctldev->mutex);
588 589

	/* Convert to the pin controllers number space */
590
	pin = gpio_to_pin(range, gpio);
591

592 593
	pinmux_free_gpio(pctldev, pin, range);

594
	mutex_unlock(&pctldev->mutex);
595 596 597 598 599 600 601 602 603 604 605
}
EXPORT_SYMBOL_GPL(pinctrl_free_gpio);

static int pinctrl_gpio_direction(unsigned gpio, bool input)
{
	struct pinctrl_dev *pctldev;
	struct pinctrl_gpio_range *range;
	int ret;
	int pin;

	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
606
	if (ret) {
607
		return ret;
608 609 610
	}

	mutex_lock(&pctldev->mutex);
611 612

	/* Convert to the pin controllers number space */
613
	pin = gpio_to_pin(range, gpio);
614 615 616
	ret = pinmux_gpio_direction(pctldev, range, pin, input);

	mutex_unlock(&pctldev->mutex);
617

618
	return ret;
619 620 621 622 623 624 625 626 627 628 629 630
}

/**
 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_direction_input() semantics, platforms and individual
 * drivers shall *NOT* touch pin control GPIO calls.
 */
int pinctrl_gpio_direction_input(unsigned gpio)
{
631
	return pinctrl_gpio_direction(gpio, true);
632 633 634 635 636 637 638 639 640 641 642 643 644
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);

/**
 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
 * @gpio: the GPIO pin number from the GPIO subsystem number space
 *
 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
 * as part of their gpio_direction_output() semantics, platforms and individual
 * drivers shall *NOT* touch pin control GPIO calls.
 */
int pinctrl_gpio_direction_output(unsigned gpio)
{
645
	return pinctrl_gpio_direction(gpio, false);
646 647 648
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);

649 650
static struct pinctrl_state *find_state(struct pinctrl *p,
					const char *name)
651
{
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
	struct pinctrl_state *state;

	list_for_each_entry(state, &p->states, node)
		if (!strcmp(state->name, name))
			return state;

	return NULL;
}

static struct pinctrl_state *create_state(struct pinctrl *p,
					  const char *name)
{
	struct pinctrl_state *state;

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (state == NULL) {
		dev_err(p->dev,
			"failed to alloc struct pinctrl_state\n");
		return ERR_PTR(-ENOMEM);
	}

	state->name = name;
	INIT_LIST_HEAD(&state->settings);

	list_add_tail(&state->node, &p->states);

	return state;
}

static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
{
	struct pinctrl_state *state;
684
	struct pinctrl_setting *setting;
685
	int ret;
686

687 688 689 690 691
	state = find_state(p, map->name);
	if (!state)
		state = create_state(p, map->name);
	if (IS_ERR(state))
		return PTR_ERR(state);
692

693 694 695
	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
		return 0;

696 697 698 699 700 701
	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
	if (setting == NULL) {
		dev_err(p->dev,
			"failed to alloc struct pinctrl_setting\n");
		return -ENOMEM;
	}
702

703 704
	setting->type = map->type;

705 706 707
	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
	if (setting->pctldev == NULL) {
		kfree(setting);
L
Linus Walleij 已提交
708 709 710
		/* Do not defer probing of hogs (circular loop) */
		if (!strcmp(map->ctrl_dev_name, map->dev_name))
			return -ENODEV;
711 712 713 714
		/*
		 * OK let us guess that the driver is not there yet, and
		 * let's defer obtaining this pinctrl handle to later...
		 */
L
Linus Walleij 已提交
715 716
		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
			map->ctrl_dev_name);
717
		return -EPROBE_DEFER;
718 719
	}

720 721
	setting->dev_name = map->dev_name;

722 723 724 725 726 727 728 729 730 731 732 733
	switch (map->type) {
	case PIN_MAP_TYPE_MUX_GROUP:
		ret = pinmux_map_to_setting(map, setting);
		break;
	case PIN_MAP_TYPE_CONFIGS_PIN:
	case PIN_MAP_TYPE_CONFIGS_GROUP:
		ret = pinconf_map_to_setting(map, setting);
		break;
	default:
		ret = -EINVAL;
		break;
	}
734 735 736 737 738 739 740 741 742 743 744 745 746 747
	if (ret < 0) {
		kfree(setting);
		return ret;
	}

	list_add_tail(&setting->node, &state->settings);

	return 0;
}

static struct pinctrl *find_pinctrl(struct device *dev)
{
	struct pinctrl *p;

748
	mutex_lock(&pinctrl_list_mutex);
749
	list_for_each_entry(p, &pinctrl_list, node)
750 751
		if (p->dev == dev) {
			mutex_unlock(&pinctrl_list_mutex);
752
			return p;
753
		}
754

755
	mutex_unlock(&pinctrl_list_mutex);
756 757 758
	return NULL;
}

759
static void pinctrl_free(struct pinctrl *p, bool inlist);
760 761 762 763 764 765 766 767 768

static struct pinctrl *create_pinctrl(struct device *dev)
{
	struct pinctrl *p;
	const char *devname;
	struct pinctrl_maps *maps_node;
	int i;
	struct pinctrl_map const *map;
	int ret;
769 770 771 772 773 774

	/*
	 * create the state cookie holder struct pinctrl for each
	 * mapping, this is what consumers will get when requesting
	 * a pin control handle with pinctrl_get()
	 */
775
	p = kzalloc(sizeof(*p), GFP_KERNEL);
776 777
	if (p == NULL) {
		dev_err(dev, "failed to alloc struct pinctrl\n");
778
		return ERR_PTR(-ENOMEM);
779
	}
780
	p->dev = dev;
781
	INIT_LIST_HEAD(&p->states);
782 783 784 785 786 787 788
	INIT_LIST_HEAD(&p->dt_maps);

	ret = pinctrl_dt_to_map(p);
	if (ret < 0) {
		kfree(p);
		return ERR_PTR(ret);
	}
789 790

	devname = dev_name(dev);
791

792
	mutex_lock(&pinctrl_maps_mutex);
793
	/* Iterate over the pin control maps to locate the right ones */
794
	for_each_maps(maps_node, i, map) {
795 796 797 798
		/* Map must be for this device */
		if (strcmp(map->dev_name, devname))
			continue;

799
		ret = add_setting(p, map);
L
Linus Walleij 已提交
800 801 802 803 804 805 806 807 808 809 810 811 812 813
		/*
		 * At this point the adding of a setting may:
		 *
		 * - Defer, if the pinctrl device is not yet available
		 * - Fail, if the pinctrl device is not yet available,
		 *   AND the setting is a hog. We cannot defer that, since
		 *   the hog will kick in immediately after the device
		 *   is registered.
		 *
		 * If the error returned was not -EPROBE_DEFER then we
		 * accumulate the errors to see if we end up with
		 * an -EPROBE_DEFER later, as that is the worst case.
		 */
		if (ret == -EPROBE_DEFER) {
814 815
			pinctrl_free(p, false);
			mutex_unlock(&pinctrl_maps_mutex);
816
			return ERR_PTR(ret);
817
		}
818
	}
819 820
	mutex_unlock(&pinctrl_maps_mutex);

L
Linus Walleij 已提交
821 822
	if (ret < 0) {
		/* If some other error than deferral occured, return here */
823
		pinctrl_free(p, false);
L
Linus Walleij 已提交
824 825
		return ERR_PTR(ret);
	}
826

827 828
	kref_init(&p->users);

L
Linus Walleij 已提交
829
	/* Add the pinctrl handle to the global list */
830
	list_add_tail(&p->node, &pinctrl_list);
831 832

	return p;
833
}
834

835 836 837 838 839
/**
 * pinctrl_get() - retrieves the pinctrl handle for a device
 * @dev: the device to obtain the handle for
 */
struct pinctrl *pinctrl_get(struct device *dev)
840 841
{
	struct pinctrl *p;
842

843 844 845
	if (WARN_ON(!dev))
		return ERR_PTR(-EINVAL);

846 847 848 849 850
	/*
	 * See if somebody else (such as the device core) has already
	 * obtained a handle to the pinctrl for this device. In that case,
	 * return another pointer to it.
	 */
851
	p = find_pinctrl(dev);
852 853 854 855 856
	if (p != NULL) {
		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
		kref_get(&p->users);
		return p;
	}
857

858
	return create_pinctrl(dev);
859 860 861
}
EXPORT_SYMBOL_GPL(pinctrl_get);

862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
static void pinctrl_free_setting(bool disable_setting,
				 struct pinctrl_setting *setting)
{
	switch (setting->type) {
	case PIN_MAP_TYPE_MUX_GROUP:
		if (disable_setting)
			pinmux_disable_setting(setting);
		pinmux_free_setting(setting);
		break;
	case PIN_MAP_TYPE_CONFIGS_PIN:
	case PIN_MAP_TYPE_CONFIGS_GROUP:
		pinconf_free_setting(setting);
		break;
	default:
		break;
	}
}

880
static void pinctrl_free(struct pinctrl *p, bool inlist)
881
{
882 883 884
	struct pinctrl_state *state, *n1;
	struct pinctrl_setting *setting, *n2;

885
	mutex_lock(&pinctrl_list_mutex);
886 887
	list_for_each_entry_safe(state, n1, &p->states, node) {
		list_for_each_entry_safe(setting, n2, &state->settings, node) {
888
			pinctrl_free_setting(state == p->state, setting);
889 890 891 892 893
			list_del(&setting->node);
			kfree(setting);
		}
		list_del(&state->node);
		kfree(state);
894
	}
895

896 897
	pinctrl_dt_free_maps(p);

898 899
	if (inlist)
		list_del(&p->node);
900
	kfree(p);
901
	mutex_unlock(&pinctrl_list_mutex);
902 903 904
}

/**
905 906 907
 * pinctrl_release() - release the pinctrl handle
 * @kref: the kref in the pinctrl being released
 */
908
static void pinctrl_release(struct kref *kref)
909 910 911
{
	struct pinctrl *p = container_of(kref, struct pinctrl, users);

912
	pinctrl_free(p, true);
913 914 915 916
}

/**
 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
917
 * @p: the pinctrl handle to release
918
 */
919 920
void pinctrl_put(struct pinctrl *p)
{
921
	kref_put(&p->users, pinctrl_release);
922 923 924
}
EXPORT_SYMBOL_GPL(pinctrl_put);

925 926 927 928 929 930 931
/**
 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
 * @p: the pinctrl handle to retrieve the state from
 * @name: the state name to retrieve
 */
struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
						 const char *name)
932
{
933
	struct pinctrl_state *state;
934

935
	state = find_state(p, name);
936 937 938 939 940 941
	if (!state) {
		if (pinctrl_dummy_state) {
			/* create dummy state */
			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
				name);
			state = create_state(p, name);
942 943
		} else
			state = ERR_PTR(-ENODEV);
944
	}
945

946
	return state;
947
}
948
EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
949 950

/**
951 952 953
 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
 * @p: the pinctrl handle for the device that requests configuration
 * @state: the state handle to select/activate/program
954
 */
955
int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
956
{
957
	struct pinctrl_setting *setting, *setting2;
958
	struct pinctrl_state *old_state = p->state;
959
	int ret;
960

961 962
	if (p->state == state)
		return 0;
963

964 965 966 967 968 969 970 971 972 973 974 975
	if (p->state) {
		/*
		 * The set of groups with a mux configuration in the old state
		 * may not be identical to the set of groups with a mux setting
		 * in the new state. While this might be unusual, it's entirely
		 * possible for the "user"-supplied mapping table to be written
		 * that way. For each group that was configured in the old state
		 * but not in the new state, this code puts that group into a
		 * safe/disabled state.
		 */
		list_for_each_entry(setting, &p->state->settings, node) {
			bool found = false;
976 977
			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
				continue;
978
			list_for_each_entry(setting2, &state->settings, node) {
979 980 981 982
				if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
					continue;
				if (setting2->data.mux.group ==
						setting->data.mux.group) {
983 984 985 986 987 988 989 990 991
					found = true;
					break;
				}
			}
			if (!found)
				pinmux_disable_setting(setting);
		}
	}

992
	p->state = NULL;
993 994 995

	/* Apply all the settings for the new state */
	list_for_each_entry(setting, &state->settings, node) {
996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
		switch (setting->type) {
		case PIN_MAP_TYPE_MUX_GROUP:
			ret = pinmux_enable_setting(setting);
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			ret = pinconf_apply_setting(setting);
			break;
		default:
			ret = -EINVAL;
			break;
		}
1008

1009
		if (ret < 0) {
1010
			goto unapply_new_state;
1011
		}
1012
	}
1013

1014 1015
	p->state = state;

1016
	return 0;
1017 1018

unapply_new_state:
1019
	dev_err(p->dev, "Error applying setting, reverse things back\n");
1020 1021 1022 1023

	list_for_each_entry(setting2, &state->settings, node) {
		if (&setting2->node == &setting->node)
			break;
1024 1025 1026 1027 1028 1029 1030 1031 1032
		/*
		 * All we can do here is pinmux_disable_setting.
		 * That means that some pins are muxed differently now
		 * than they were before applying the setting (We can't
		 * "unmux a pin"!), but it's not a big deal since the pins
		 * are free to be muxed by another apply_setting.
		 */
		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
			pinmux_disable_setting(setting2);
1033
	}
1034

1035 1036
	/* There's no infinite recursive loop here because p->state is NULL */
	if (old_state)
1037
		pinctrl_select_state(p, old_state);
1038 1039

	return ret;
1040
}
1041
EXPORT_SYMBOL_GPL(pinctrl_select_state);
1042

1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
static void devm_pinctrl_release(struct device *dev, void *res)
{
	pinctrl_put(*(struct pinctrl **)res);
}

/**
 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
 * @dev: the device to obtain the handle for
 *
 * If there is a need to explicitly destroy the returned struct pinctrl,
 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
 */
struct pinctrl *devm_pinctrl_get(struct device *dev)
{
	struct pinctrl **ptr, *p;

	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return ERR_PTR(-ENOMEM);

	p = pinctrl_get(dev);
	if (!IS_ERR(p)) {
		*ptr = p;
		devres_add(dev, ptr);
	} else {
		devres_free(ptr);
	}

	return p;
}
EXPORT_SYMBOL_GPL(devm_pinctrl_get);

static int devm_pinctrl_match(struct device *dev, void *res, void *data)
{
	struct pinctrl **p = res;

	return *p == data;
}

/**
 * devm_pinctrl_put() - Resource managed pinctrl_put()
 * @p: the pinctrl handle to release
 *
 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
 * this function will not need to be called and the resource management
 * code will ensure that the resource is freed.
 */
void devm_pinctrl_put(struct pinctrl *p)
{
1092
	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1093 1094 1095 1096
			       devm_pinctrl_match, p));
}
EXPORT_SYMBOL_GPL(devm_pinctrl_put);

1097 1098
int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
			 bool dup, bool locked)
1099
{
1100
	int i, ret;
1101
	struct pinctrl_maps *maps_node;
1102 1103 1104 1105 1106

	pr_debug("add %d pinmux maps\n", num_maps);

	/* First sanity check the new mapping */
	for (i = 0; i < num_maps; i++) {
1107 1108 1109 1110 1111 1112
		if (!maps[i].dev_name) {
			pr_err("failed to register map %s (%d): no device given\n",
			       maps[i].name, i);
			return -EINVAL;
		}

1113 1114
		if (!maps[i].name) {
			pr_err("failed to register map %d: no map name given\n",
1115
			       i);
1116 1117 1118
			return -EINVAL;
		}

1119 1120
		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
				!maps[i].ctrl_dev_name) {
1121 1122 1123 1124 1125
			pr_err("failed to register map %s (%d): no pin control device given\n",
			       maps[i].name, i);
			return -EINVAL;
		}

1126 1127 1128 1129 1130 1131
		switch (maps[i].type) {
		case PIN_MAP_TYPE_DUMMY_STATE:
			break;
		case PIN_MAP_TYPE_MUX_GROUP:
			ret = pinmux_validate_map(&maps[i], i);
			if (ret < 0)
1132
				return ret;
1133 1134 1135 1136 1137
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			ret = pinconf_validate_map(&maps[i], i);
			if (ret < 0)
1138
				return ret;
1139 1140 1141
			break;
		default:
			pr_err("failed to register map %s (%d): invalid type given\n",
1142
			       maps[i].name, i);
1143 1144
			return -EINVAL;
		}
1145 1146
	}

1147 1148 1149 1150 1151
	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
	if (!maps_node) {
		pr_err("failed to alloc struct pinctrl_maps\n");
		return -ENOMEM;
	}
1152

1153
	maps_node->num_maps = num_maps;
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
	if (dup) {
		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
					  GFP_KERNEL);
		if (!maps_node->maps) {
			pr_err("failed to duplicate mapping table\n");
			kfree(maps_node);
			return -ENOMEM;
		}
	} else {
		maps_node->maps = maps;
1164 1165
	}

1166
	if (!locked)
1167
		mutex_lock(&pinctrl_maps_mutex);
1168
	list_add_tail(&maps_node->node, &pinctrl_maps);
1169
	if (!locked)
1170
		mutex_unlock(&pinctrl_maps_mutex);
1171

1172 1173 1174
	return 0;
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/**
 * pinctrl_register_mappings() - register a set of pin controller mappings
 * @maps: the pincontrol mappings table to register. This should probably be
 *	marked with __initdata so it can be discarded after boot. This
 *	function will perform a shallow copy for the mapping entries.
 * @num_maps: the number of maps in the mapping table
 */
int pinctrl_register_mappings(struct pinctrl_map const *maps,
			      unsigned num_maps)
{
	return pinctrl_register_map(maps, num_maps, true, false);
}

void pinctrl_unregister_map(struct pinctrl_map const *map)
{
	struct pinctrl_maps *maps_node;

1192
	mutex_lock(&pinctrl_maps_mutex);
1193 1194 1195
	list_for_each_entry(maps_node, &pinctrl_maps, node) {
		if (maps_node->maps == map) {
			list_del(&maps_node->node);
1196
			mutex_unlock(&pinctrl_maps_mutex);
1197 1198 1199
			return;
		}
	}
1200
	mutex_unlock(&pinctrl_maps_mutex);
1201 1202
}

1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
/**
 * pinctrl_force_sleep() - turn a given controller device into sleep state
 * @pctldev: pin controller device
 */
int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
{
	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
	return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_force_sleep);

/**
 * pinctrl_force_default() - turn a given controller device into default state
 * @pctldev: pin controller device
 */
int pinctrl_force_default(struct pinctrl_dev *pctldev)
{
	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
	return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_force_default);

1227 1228 1229
#ifdef CONFIG_PM

/**
1230
 * pinctrl_pm_select_state() - select pinctrl state for PM
1231
 * @dev: device to select default state for
1232
 * @state: state to set
1233
 */
1234 1235
static int pinctrl_pm_select_state(struct device *dev,
				   struct pinctrl_state *state)
1236 1237 1238 1239
{
	struct dev_pin_info *pins = dev->pins;
	int ret;

1240 1241 1242
	if (IS_ERR(state))
		return 0; /* No such state */
	ret = pinctrl_select_state(pins->p, state);
1243
	if (ret)
1244 1245
		dev_err(dev, "failed to activate pinctrl state %s\n",
			state->name);
1246 1247
	return ret;
}
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

/**
 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
 * @dev: device to select default state for
 */
int pinctrl_pm_select_default_state(struct device *dev)
{
	if (!dev->pins)
		return 0;

	return pinctrl_pm_select_state(dev, dev->pins->default_state);
}
1260
EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1261 1262 1263 1264 1265 1266 1267

/**
 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
 * @dev: device to select sleep state for
 */
int pinctrl_pm_select_sleep_state(struct device *dev)
{
1268
	if (!dev->pins)
1269
		return 0;
1270 1271

	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1272
}
1273
EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1274 1275 1276 1277 1278 1279 1280

/**
 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
 * @dev: device to select idle state for
 */
int pinctrl_pm_select_idle_state(struct device *dev)
{
1281
	if (!dev->pins)
1282
		return 0;
1283 1284

	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1285
}
1286
EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1287 1288
#endif

1289 1290 1291 1292 1293 1294
#ifdef CONFIG_DEBUG_FS

static int pinctrl_pins_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1295
	unsigned i, pin;
1296 1297 1298

	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);

1299
	mutex_lock(&pctldev->mutex);
1300

1301 1302
	/* The pin number can be retrived from the pin controller descriptor */
	for (i = 0; i < pctldev->desc->npins; i++) {
1303 1304
		struct pin_desc *desc;

1305
		pin = pctldev->desc->pins[i].number;
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
		desc = pin_desc_get(pctldev, pin);
		/* Pin space may be sparse */
		if (desc == NULL)
			continue;

		seq_printf(s, "pin %d (%s) ", pin,
			   desc->name ? desc->name : "unnamed");

		/* Driver-specific info per pin */
		if (ops->pin_dbg_show)
			ops->pin_dbg_show(pctldev, s, pin);

		seq_puts(s, "\n");
	}

1321
	mutex_unlock(&pctldev->mutex);
1322

1323 1324 1325 1326 1327 1328 1329
	return 0;
}

static int pinctrl_groups_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1330
	unsigned ngroups, selector = 0;
1331

1332 1333
	mutex_lock(&pctldev->mutex);

1334
	ngroups = ops->get_groups_count(pctldev);
1335

1336
	seq_puts(s, "registered pin groups:\n");
1337
	while (selector < ngroups) {
1338
		const unsigned *pins;
1339 1340
		unsigned num_pins;
		const char *gname = ops->get_group_name(pctldev, selector);
1341
		const char *pname;
1342 1343 1344 1345 1346 1347 1348 1349 1350
		int ret;
		int i;

		ret = ops->get_group_pins(pctldev, selector,
					  &pins, &num_pins);
		if (ret)
			seq_printf(s, "%s [ERROR GETTING PINS]\n",
				   gname);
		else {
1351 1352 1353
			seq_printf(s, "group: %s\n", gname);
			for (i = 0; i < num_pins; i++) {
				pname = pin_get_name(pctldev, pins[i]);
1354
				if (WARN_ON(!pname)) {
1355
					mutex_unlock(&pctldev->mutex);
1356
					return -EINVAL;
1357
				}
1358 1359 1360
				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
			}
			seq_puts(s, "\n");
1361 1362 1363 1364
		}
		selector++;
	}

1365
	mutex_unlock(&pctldev->mutex);
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

	return 0;
}

static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev = s->private;
	struct pinctrl_gpio_range *range = NULL;

	seq_puts(s, "GPIO ranges handled:\n");

1377
	mutex_lock(&pctldev->mutex);
1378

1379 1380
	/* Loop over the ranges */
	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
		if (range->pins) {
			int a;
			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
				range->id, range->name,
				range->base, (range->base + range->npins - 1));
			for (a = 0; a < range->npins - 1; a++)
				seq_printf(s, "%u, ", range->pins[a]);
			seq_printf(s, "%u}\n", range->pins[a]);
		}
		else
			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
				range->id, range->name,
				range->base, (range->base + range->npins - 1),
				range->pin_base,
				(range->pin_base + range->npins - 1));
1396
	}
1397

1398
	mutex_unlock(&pctldev->mutex);
1399 1400 1401 1402 1403 1404 1405 1406

	return 0;
}

static int pinctrl_devices_show(struct seq_file *s, void *what)
{
	struct pinctrl_dev *pctldev;

1407
	seq_puts(s, "name [pinmux] [pinconf]\n");
1408

1409
	mutex_lock(&pinctrldev_list_mutex);
1410

1411 1412 1413
	list_for_each_entry(pctldev, &pinctrldev_list, node) {
		seq_printf(s, "%s ", pctldev->desc->name);
		if (pctldev->desc->pmxops)
1414 1415 1416 1417
			seq_puts(s, "yes ");
		else
			seq_puts(s, "no ");
		if (pctldev->desc->confops)
1418 1419 1420 1421 1422
			seq_puts(s, "yes");
		else
			seq_puts(s, "no");
		seq_puts(s, "\n");
	}
1423

1424
	mutex_unlock(&pinctrldev_list_mutex);
1425 1426 1427 1428

	return 0;
}

1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444
static inline const char *map_type(enum pinctrl_map_type type)
{
	static const char * const names[] = {
		"INVALID",
		"DUMMY_STATE",
		"MUX_GROUP",
		"CONFIGS_PIN",
		"CONFIGS_GROUP",
	};

	if (type >= ARRAY_SIZE(names))
		return "UNKNOWN";

	return names[type];
}

1445 1446 1447 1448 1449 1450 1451 1452
static int pinctrl_maps_show(struct seq_file *s, void *what)
{
	struct pinctrl_maps *maps_node;
	int i;
	struct pinctrl_map const *map;

	seq_puts(s, "Pinctrl maps:\n");

1453
	mutex_lock(&pinctrl_maps_mutex);
1454
	for_each_maps(maps_node, i, map) {
1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
			   map->dev_name, map->name, map_type(map->type),
			   map->type);

		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
			seq_printf(s, "controlling device %s\n",
				   map->ctrl_dev_name);

		switch (map->type) {
		case PIN_MAP_TYPE_MUX_GROUP:
			pinmux_show_map(s, map);
			break;
		case PIN_MAP_TYPE_CONFIGS_PIN:
		case PIN_MAP_TYPE_CONFIGS_GROUP:
			pinconf_show_map(s, map);
			break;
		default:
			break;
		}

		seq_printf(s, "\n");
1476
	}
1477
	mutex_unlock(&pinctrl_maps_mutex);
1478 1479 1480 1481

	return 0;
}

1482 1483 1484
static int pinctrl_show(struct seq_file *s, void *what)
{
	struct pinctrl *p;
1485
	struct pinctrl_state *state;
1486
	struct pinctrl_setting *setting;
1487 1488

	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1489

1490
	mutex_lock(&pinctrl_list_mutex);
1491

1492
	list_for_each_entry(p, &pinctrl_list, node) {
1493 1494 1495 1496 1497 1498
		seq_printf(s, "device: %s current state: %s\n",
			   dev_name(p->dev),
			   p->state ? p->state->name : "none");

		list_for_each_entry(state, &p->states, node) {
			seq_printf(s, "  state: %s\n", state->name);
1499

1500
			list_for_each_entry(setting, &state->settings, node) {
1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517
				struct pinctrl_dev *pctldev = setting->pctldev;

				seq_printf(s, "    type: %s controller %s ",
					   map_type(setting->type),
					   pinctrl_dev_get_name(pctldev));

				switch (setting->type) {
				case PIN_MAP_TYPE_MUX_GROUP:
					pinmux_show_setting(s, setting);
					break;
				case PIN_MAP_TYPE_CONFIGS_PIN:
				case PIN_MAP_TYPE_CONFIGS_GROUP:
					pinconf_show_setting(s, setting);
					break;
				default:
					break;
				}
1518
			}
1519 1520 1521
		}
	}

1522
	mutex_unlock(&pinctrl_list_mutex);
1523

1524 1525 1526
	return 0;
}

1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
static int pinctrl_pins_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_pins_show, inode->i_private);
}

static int pinctrl_groups_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_groups_show, inode->i_private);
}

static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
}

static int pinctrl_devices_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_devices_show, NULL);
}

1547 1548 1549 1550 1551
static int pinctrl_maps_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_maps_show, NULL);
}

1552 1553 1554 1555 1556
static int pinctrl_open(struct inode *inode, struct file *file)
{
	return single_open(file, pinctrl_show, NULL);
}

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
static const struct file_operations pinctrl_pins_ops = {
	.open		= pinctrl_pins_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations pinctrl_groups_ops = {
	.open		= pinctrl_groups_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

static const struct file_operations pinctrl_gpioranges_ops = {
	.open		= pinctrl_gpioranges_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1578 1579
static const struct file_operations pinctrl_devices_ops = {
	.open		= pinctrl_devices_open,
1580 1581 1582 1583 1584
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1585 1586
static const struct file_operations pinctrl_maps_ops = {
	.open		= pinctrl_maps_open,
1587 1588 1589 1590 1591
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1592 1593 1594 1595 1596 1597 1598
static const struct file_operations pinctrl_ops = {
	.open		= pinctrl_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

1599 1600 1601 1602
static struct dentry *debugfs_root;

static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
1603
	struct dentry *device_root;
1604

1605
	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1606
					 debugfs_root);
1607 1608
	pctldev->device_root = device_root;

1609 1610
	if (IS_ERR(device_root) || !device_root) {
		pr_warn("failed to create debugfs directory for %s\n",
1611
			dev_name(pctldev->dev));
1612 1613 1614 1615 1616 1617 1618 1619 1620
		return;
	}
	debugfs_create_file("pins", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_pins_ops);
	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_groups_ops);
	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
			    device_root, pctldev, &pinctrl_gpioranges_ops);
	pinmux_init_device_debugfs(device_root, pctldev);
1621
	pinconf_init_device_debugfs(device_root, pctldev);
1622 1623
}

1624 1625 1626 1627 1628
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
	debugfs_remove_recursive(pctldev->device_root);
}

1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
static void pinctrl_init_debugfs(void)
{
	debugfs_root = debugfs_create_dir("pinctrl", NULL);
	if (IS_ERR(debugfs_root) || !debugfs_root) {
		pr_warn("failed to create debugfs directory\n");
		debugfs_root = NULL;
		return;
	}

	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_devices_ops);
1640 1641
	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_maps_ops);
1642 1643
	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
			    debugfs_root, NULL, &pinctrl_ops);
1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
}

#else /* CONFIG_DEBUG_FS */

static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
}

static void pinctrl_init_debugfs(void)
{
}

1656 1657 1658 1659
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
}

1660 1661
#endif

1662 1663 1664 1665 1666
static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
{
	const struct pinctrl_ops *ops = pctldev->desc->pctlops;

	if (!ops ||
1667
	    !ops->get_groups_count ||
1668 1669 1670 1671
	    !ops->get_group_name ||
	    !ops->get_group_pins)
		return -EINVAL;

1672 1673 1674
	if (ops->dt_node_to_map && !ops->dt_free_map)
		return -EINVAL;

1675 1676 1677
	return 0;
}

1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
/**
 * pinctrl_register() - register a pin controller device
 * @pctldesc: descriptor for this pin controller
 * @dev: parent device for this pin controller
 * @driver_data: private pin controller data for this pin controller
 */
struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
				    struct device *dev, void *driver_data)
{
	struct pinctrl_dev *pctldev;
	int ret;

1690
	if (!pctldesc)
1691
		return NULL;
1692
	if (!pctldesc->name)
1693 1694
		return NULL;

1695
	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1696 1697
	if (pctldev == NULL) {
		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1698
		return NULL;
1699
	}
1700 1701 1702 1703 1704 1705 1706 1707

	/* Initialize pin control device struct */
	pctldev->owner = pctldesc->owner;
	pctldev->desc = pctldesc;
	pctldev->driver_data = driver_data;
	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
	INIT_LIST_HEAD(&pctldev->gpio_ranges);
	pctldev->dev = dev;
1708
	mutex_init(&pctldev->mutex);
1709

1710
	/* check core ops for sanity */
1711
	if (pinctrl_check_ops(pctldev)) {
1712
		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1713 1714 1715
		goto out_err;
	}

1716 1717
	/* If we're implementing pinmuxing, check the ops for sanity */
	if (pctldesc->pmxops) {
1718
		if (pinmux_check_ops(pctldev))
1719
			goto out_err;
1720 1721
	}

1722 1723
	/* If we're implementing pinconfig, check the ops for sanity */
	if (pctldesc->confops) {
1724
		if (pinconf_check_ops(pctldev))
1725
			goto out_err;
1726 1727
	}

1728
	/* Register all the pins */
1729
	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1730 1731
	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
	if (ret) {
1732
		dev_err(dev, "error during pin registration\n");
1733 1734
		pinctrl_free_pindescs(pctldev, pctldesc->pins,
				      pctldesc->npins);
1735
		goto out_err;
1736 1737
	}

1738
	mutex_lock(&pinctrldev_list_mutex);
1739
	list_add_tail(&pctldev->node, &pinctrldev_list);
1740 1741 1742
	mutex_unlock(&pinctrldev_list_mutex);

	pctldev->p = pinctrl_get(pctldev->dev);
1743

1744
	if (!IS_ERR(pctldev->p)) {
1745
		pctldev->hog_default =
1746
			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1747
		if (IS_ERR(pctldev->hog_default)) {
1748 1749
			dev_dbg(dev, "failed to lookup the default state\n");
		} else {
1750
			if (pinctrl_select_state(pctldev->p,
1751
						pctldev->hog_default))
1752 1753 1754
				dev_err(dev,
					"failed to select default state\n");
		}
1755 1756

		pctldev->hog_sleep =
1757
			pinctrl_lookup_state(pctldev->p,
1758 1759 1760
						    PINCTRL_STATE_SLEEP);
		if (IS_ERR(pctldev->hog_sleep))
			dev_dbg(dev, "failed to lookup the sleep state\n");
1761
	}
1762

1763 1764
	pinctrl_init_device_debugfs(pctldev);

1765 1766
	return pctldev;

1767
out_err:
1768
	mutex_destroy(&pctldev->mutex);
1769
	kfree(pctldev);
1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
	return NULL;
}
EXPORT_SYMBOL_GPL(pinctrl_register);

/**
 * pinctrl_unregister() - unregister pinmux
 * @pctldev: pin controller to unregister
 *
 * Called by pinmux drivers to unregister a pinmux.
 */
void pinctrl_unregister(struct pinctrl_dev *pctldev)
{
1782
	struct pinctrl_gpio_range *range, *n;
1783 1784 1785
	if (pctldev == NULL)
		return;

1786 1787
	mutex_lock(&pinctrldev_list_mutex);
	mutex_lock(&pctldev->mutex);
1788

1789
	pinctrl_remove_device_debugfs(pctldev);
1790

1791
	if (!IS_ERR(pctldev->p))
1792
		pinctrl_put(pctldev->p);
1793

1794 1795 1796 1797 1798
	/* TODO: check that no pinmuxes are still active? */
	list_del(&pctldev->node);
	/* Destroy descriptor tree */
	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
			      pctldev->desc->npins);
1799 1800 1801 1802
	/* remove gpio ranges map */
	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
		list_del(&range->node);

1803 1804
	mutex_unlock(&pctldev->mutex);
	mutex_destroy(&pctldev->mutex);
1805
	kfree(pctldev);
1806
	mutex_unlock(&pinctrldev_list_mutex);
1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818
}
EXPORT_SYMBOL_GPL(pinctrl_unregister);

static int __init pinctrl_init(void)
{
	pr_info("initialized pinctrl subsystem\n");
	pinctrl_init_debugfs();
	return 0;
}

/* init early since many drivers really need to initialized pinmux early */
core_initcall(pinctrl_init);