fsi.c 27.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Fifo-attached Serial Interface (FSI) support for SH7724
 *
 * Copyright (C) 2009 Renesas Solutions Corp.
 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
 *
 * Based on ssi.c
 * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/delay.h>
16
#include <linux/pm_runtime.h>
17
#include <linux/io.h>
18
#include <linux/slab.h>
19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include <sound/soc.h>
#include <sound/sh_fsi.h>

#define DO_FMT		0x0000
#define DOFF_CTL	0x0004
#define DOFF_ST		0x0008
#define DI_FMT		0x000C
#define DIFF_CTL	0x0010
#define DIFF_ST		0x0014
#define CKG1		0x0018
#define CKG2		0x001C
#define DIDT		0x0020
#define DODT		0x0024
#define MUTE_ST		0x0028
33 34
#define OUT_SEL		0x0030
#define REG_END		OUT_SEL
35

36 37
#define A_MST_CTLR	0x0180
#define B_MST_CTLR	0x01A0
38 39 40
#define CPU_INT_ST	0x01F4
#define CPU_IEMSK	0x01F8
#define CPU_IMSK	0x01FC
41 42 43 44 45 46
#define INT_ST		0x0200
#define IEMSK		0x0204
#define IMSK		0x0208
#define MUTE		0x020C
#define CLK_RST		0x0210
#define SOFT_RST	0x0214
47
#define FIFO_SZ		0x0218
48
#define MREG_START	A_MST_CTLR
49
#define MREG_END	FIFO_SZ
50 51 52

/* DO_FMT */
/* DI_FMT */
53 54 55 56 57 58
#define CR_MONO		(0x0 << 4)
#define CR_MONO_D	(0x1 << 4)
#define CR_PCM		(0x2 << 4)
#define CR_I2S		(0x3 << 4)
#define CR_TDM		(0x4 << 4)
#define CR_TDM_D	(0x5 << 4)
59
#define CR_SPDIF	0x00100120
60 61 62 63 64 65 66 67 68

/* DOFF_CTL */
/* DIFF_CTL */
#define IRQ_HALF	0x00100000
#define FIFO_CLR	0x00000001

/* DOFF_ST */
#define ERR_OVER	0x00000010
#define ERR_UNDER	0x00000001
69
#define ST_ERR		(ERR_OVER | ERR_UNDER)
70

71 72 73 74
/* CKG1 */
#define ACKMD_MASK	0x00007000
#define BPFMD_MASK	0x00000700

75 76 77 78
/* A/B MST_CTLR */
#define BP	(1 << 4)	/* Fix the signal of Biphase output */
#define SE	(1 << 0)	/* Fix the master clock */

79 80 81 82 83 84 85 86 87 88
/* CLK_RST */
#define B_CLK		0x00000010
#define A_CLK		0x00000001

/* INT_ST */
#define INT_B_IN	(1 << 12)
#define INT_B_OUT	(1 << 8)
#define INT_A_IN	(1 << 4)
#define INT_A_OUT	(1 << 0)

89 90 91 92 93 94
/* SOFT_RST */
#define PBSR		(1 << 12) /* Port B Software Reset */
#define PASR		(1 <<  8) /* Port A Software Reset */
#define IR		(1 <<  4) /* Interrupt Reset */
#define FSISR		(1 <<  0) /* Software Reset */

95 96 97 98 99
/* FIFO_SZ */
#define OUT_SZ_MASK	0x7
#define BO_SZ_SHIFT	8
#define AO_SZ_SHIFT	0

100 101 102 103 104 105 106 107 108 109 110 111 112 113
#define FSI_RATES SNDRV_PCM_RATE_8000_96000

#define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)

/************************************************************************


		struct


************************************************************************/
struct fsi_priv {
	void __iomem *base;
	struct snd_pcm_substream *substream;
114
	struct fsi_master *master;
115 116 117 118 119 120 121 122

	int fifo_max;
	int chan;

	int byte_offset;
	int period_len;
	int buffer_len;
	int periods;
123 124

	u32 mst_ctrl;
125 126
};

127 128 129
struct fsi_core {
	int ver;

130 131 132 133 134
	u32 int_st;
	u32 iemsk;
	u32 imsk;
};

135 136 137 138 139
struct fsi_master {
	void __iomem *base;
	int irq;
	struct fsi_priv fsia;
	struct fsi_priv fsib;
140
	struct fsi_core *core;
141
	struct sh_fsi_platform_info *info;
142
	spinlock_t lock;
143 144 145 146 147 148 149 150 151
};

/************************************************************************


		basic read write function


************************************************************************/
152
static void __fsi_reg_write(u32 reg, u32 data)
153 154 155 156
{
	/* valid data area is 24bit */
	data &= 0x00ffffff;

157
	__raw_writel(data, reg);
158 159 160 161
}

static u32 __fsi_reg_read(u32 reg)
{
162
	return __raw_readl(reg);
163 164
}

165
static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
166 167 168 169 170 171
{
	u32 val = __fsi_reg_read(reg);

	val &= ~mask;
	val |= data & mask;

172
	__fsi_reg_write(reg, val);
173 174
}

175
static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
176
{
177 178
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
179
		return;
180
	}
181

182
	__fsi_reg_write((u32)(fsi->base + reg), data);
183 184 185 186
}

static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
{
187 188
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
189
		return 0;
190
	}
191 192 193 194

	return __fsi_reg_read((u32)(fsi->base + reg));
}

195
static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
196
{
197 198
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
199
		return;
200
	}
201

202
	__fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
203 204
}

205
static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
206
{
207 208
	unsigned long flags;

209
	if ((reg < MREG_START) ||
210 211
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
212
		return;
213
	}
214

215
	spin_lock_irqsave(&master->lock, flags);
216
	__fsi_reg_write((u32)(master->base + reg), data);
217
	spin_unlock_irqrestore(&master->lock, flags);
218 219
}

220
static u32 fsi_master_read(struct fsi_master *master, u32 reg)
221
{
222 223 224
	u32 ret;
	unsigned long flags;

225
	if ((reg < MREG_START) ||
226 227
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
228
		return 0;
229
	}
230

231 232 233 234 235
	spin_lock_irqsave(&master->lock, flags);
	ret = __fsi_reg_read((u32)(master->base + reg));
	spin_unlock_irqrestore(&master->lock, flags);

	return ret;
236 237
}

238
static void fsi_master_mask_set(struct fsi_master *master,
239
			       u32 reg, u32 mask, u32 data)
240
{
241 242
	unsigned long flags;

243
	if ((reg < MREG_START) ||
244 245
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
246
		return;
247
	}
248

249
	spin_lock_irqsave(&master->lock, flags);
250
	__fsi_reg_mask_set((u32)(master->base + reg), mask, data);
251
	spin_unlock_irqrestore(&master->lock, flags);
252 253 254 255 256 257 258 259 260
}

/************************************************************************


		basic function


************************************************************************/
261
static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
262
{
263
	return fsi->master;
264 265 266 267
}

static int fsi_is_port_a(struct fsi_priv *fsi)
{
268 269
	return fsi->master->base == fsi->base;
}
270

271
static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
272 273
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
274

275
	return  rtd->cpu_dai;
276 277 278 279 280
}

static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
{
	struct snd_soc_dai *dai = fsi_get_dai(substream);
281
	struct fsi_master *master = snd_soc_dai_get_drvdata(dai);
282

283 284 285 286
	if (dai->id == 0)
		return &master->fsia;
	else
		return &master->fsib;
287 288 289 290 291
}

static u32 fsi_get_info_flags(struct fsi_priv *fsi)
{
	int is_porta = fsi_is_port_a(fsi);
292
	struct fsi_master *master = fsi_get_master(fsi);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362

	return is_porta ? master->info->porta_flags :
		master->info->portb_flags;
}

static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
{
	u32 mode;
	u32 flags = fsi_get_info_flags(fsi);

	mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;

	/* return
	 * 1 : master mode
	 * 0 : slave mode
	 */

	return (mode & flags) != mode;
}

static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
{
	int is_porta = fsi_is_port_a(fsi);
	u32 data;

	if (is_porta)
		data = is_play ? (1 << 0) : (1 << 4);
	else
		data = is_play ? (1 << 8) : (1 << 12);

	return data;
}

static void fsi_stream_push(struct fsi_priv *fsi,
			    struct snd_pcm_substream *substream,
			    u32 buffer_len,
			    u32 period_len)
{
	fsi->substream		= substream;
	fsi->buffer_len		= buffer_len;
	fsi->period_len		= period_len;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static void fsi_stream_pop(struct fsi_priv *fsi)
{
	fsi->substream		= NULL;
	fsi->buffer_len		= 0;
	fsi->period_len		= 0;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
{
	u32 status;
	u32 reg = is_play ? DOFF_ST : DIFF_ST;
	int residue;

	status = fsi_reg_read(fsi, reg);
	residue = 0x1ff & (status >> 8);
	residue *= fsi->chan;

	return residue;
}

/************************************************************************


363
		irq function
364 365 366 367 368 369


************************************************************************/
static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
370
	struct fsi_master *master = fsi_get_master(fsi);
371

372 373
	fsi_master_mask_set(master, master->core->imsk,  data, data);
	fsi_master_mask_set(master, master->core->iemsk, data, data);
374 375 376 377 378
}

static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
379
	struct fsi_master *master = fsi_get_master(fsi);
380

381 382
	fsi_master_mask_set(master, master->core->imsk,  data, 0);
	fsi_master_mask_set(master, master->core->iemsk, data, 0);
383 384
}

385 386
static u32 fsi_irq_get_status(struct fsi_master *master)
{
387
	return fsi_master_read(master, master->core->int_st);
388 389 390 391
}

static void fsi_irq_clear_all_status(struct fsi_master *master)
{
392
	fsi_master_write(master, master->core->int_st, 0);
393 394
}

395 396 397 398 399 400 401 402 403
static void fsi_irq_clear_status(struct fsi_priv *fsi)
{
	u32 data = 0;
	struct fsi_master *master = fsi_get_master(fsi);

	data |= fsi_port_ab_io_bit(fsi, 0);
	data |= fsi_port_ab_io_bit(fsi, 1);

	/* clear interrupt factor */
404
	fsi_master_mask_set(master, master->core->int_st, data, 0);
405 406
}

407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
/************************************************************************


		SPDIF master clock function

These functions are used later FSI2
************************************************************************/
static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	struct fsi_master *master = fsi_get_master(fsi);
	u32 val = BP | SE;

	if (master->core->ver < 2) {
		pr_err("fsi: register access err (%s)\n", __func__);
		return;
	}

	if (enable)
		fsi_master_mask_set(master, fsi->mst_ctrl, val, val);
	else
		fsi_master_mask_set(master, fsi->mst_ctrl, val, 0);
}

430 431 432 433 434 435 436
/************************************************************************


		ctrl function


************************************************************************/
437 438 439
static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
440
	struct fsi_master *master = fsi_get_master(fsi);
441 442

	if (enable)
443
		fsi_master_mask_set(master, CLK_RST, val, val);
444
	else
445
		fsi_master_mask_set(master, CLK_RST, val, 0);
446 447
}

448 449 450
static void fsi_fifo_init(struct fsi_priv *fsi,
			  int is_play,
			  struct snd_soc_dai *dai)
451
{
452 453
	struct fsi_master *master = fsi_get_master(fsi);
	u32 ctrl, shift, i;
454

455 456 457 458 459 460
	/* get on-chip RAM capacity */
	shift = fsi_master_read(master, FIFO_SZ);
	shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
	shift &= OUT_SZ_MASK;
	fsi->fifo_max = 256 << shift;
	dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);
461

462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
	/*
	 * The maximum number of sample data varies depending
	 * on the number of channels selected for the format.
	 *
	 * FIFOs are used in 4-channel units in 3-channel mode
	 * and in 8-channel units in 5- to 7-channel mode
	 * meaning that more FIFOs than the required size of DPRAM
	 * are used.
	 *
	 * ex) if 256 words of DP-RAM is connected
	 * 1 channel:  256 (256 x 1 = 256)
	 * 2 channels: 128 (128 x 2 = 256)
	 * 3 channels:  64 ( 64 x 3 = 192)
	 * 4 channels:  64 ( 64 x 4 = 256)
	 * 5 channels:  32 ( 32 x 5 = 160)
	 * 6 channels:  32 ( 32 x 6 = 192)
	 * 7 channels:  32 ( 32 x 7 = 224)
	 * 8 channels:  32 ( 32 x 8 = 256)
	 */
	for (i = 1; i < fsi->chan; i <<= 1)
		fsi->fifo_max >>= 1;
	dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
484 485 486 487 488 489 490 491 492 493

	ctrl = is_play ? DOFF_CTL : DIFF_CTL;

	/* set interrupt generation factor */
	fsi_reg_write(fsi, ctrl, IRQ_HALF);

	/* clear FIFO */
	fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
}

494
static void fsi_soft_all_reset(struct fsi_master *master)
495 496
{
	/* port AB reset */
497
	fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
498 499 500
	mdelay(10);

	/* soft reset */
501 502
	fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
	fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
503 504 505 506
	mdelay(10);
}

/* playback interrupt */
507
static int fsi_data_push(struct fsi_priv *fsi, int startup)
508 509 510
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
511
	u32 status;
512 513 514
	int send;
	int fifo_free;
	int width;
515
	u8 *start;
516
	int i, over_period;
517 518 519 520 521 522

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

523 524 525
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
526 527 528 529 530 531 532

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

533
		over_period = 1;
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get send size for alsa */
	send = (fsi->buffer_len - fsi->byte_offset) / width;

	/*  get FIFO free size */
	fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);

	/* size check */
	if (fifo_free < send)
		send = fifo_free;

553 554 555 556 557 558 559 560 561 562 563 564 565 566
	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT,
				      ((u32)*((u16 *)start + i) << 8));
		break;
	case 4:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT, *((u32 *)start + i));
		break;
	default:
567
		return -EINVAL;
568
	}
569 570 571

	fsi->byte_offset += send * width;

572
	status = fsi_reg_read(fsi, DOFF_ST);
573
	if (!startup) {
574
		struct snd_soc_dai *dai = fsi_get_dai(substream);
575 576 577 578 579

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
580
	}
581
	fsi_reg_write(fsi, DOFF_ST, 0);
582

583 584
	fsi_irq_enable(fsi, 1);

585
	if (over_period)
586 587
		snd_pcm_period_elapsed(substream);

588
	return 0;
589 590
}

591
static int fsi_data_pop(struct fsi_priv *fsi, int startup)
592 593 594
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
595
	u32 status;
596 597 598 599
	int free;
	int fifo_fill;
	int width;
	u8 *start;
600
	int i, over_period;
601 602 603 604 605 606

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

607 608 609
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
610 611 612 613 614 615 616

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

617
		over_period = 1;
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get free space for alsa */
	free = (fsi->buffer_len - fsi->byte_offset) / width;

	/* get recv size */
	fifo_fill = fsi_get_fifo_residue(fsi, 0);

	if (free < fifo_fill)
		fifo_fill = free;

	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < fifo_fill; i++)
			*((u16 *)start + i) =
				(u16)(fsi_reg_read(fsi, DIDT) >> 8);
		break;
	case 4:
		for (i = 0; i < fifo_fill; i++)
			*((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
		break;
	default:
		return -EINVAL;
	}

	fsi->byte_offset += fifo_fill * width;

655
	status = fsi_reg_read(fsi, DIFF_ST);
656
	if (!startup) {
657
		struct snd_soc_dai *dai = fsi_get_dai(substream);
658 659 660 661 662

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
663
	}
664
	fsi_reg_write(fsi, DIFF_ST, 0);
665

666 667
	fsi_irq_enable(fsi, 0);

668
	if (over_period)
669 670
		snd_pcm_period_elapsed(substream);

671
	return 0;
672 673
}

674 675
static irqreturn_t fsi_interrupt(int irq, void *data)
{
676
	struct fsi_master *master = data;
677
	u32 int_st = fsi_irq_get_status(master);
678 679

	/* clear irq status */
680 681
	fsi_master_mask_set(master, SOFT_RST, IR, 0);
	fsi_master_mask_set(master, SOFT_RST, IR, IR);
682 683

	if (int_st & INT_A_OUT)
684
		fsi_data_push(&master->fsia, 0);
685
	if (int_st & INT_B_OUT)
686
		fsi_data_push(&master->fsib, 0);
687
	if (int_st & INT_A_IN)
688
		fsi_data_pop(&master->fsia, 0);
689
	if (int_st & INT_B_IN)
690
		fsi_data_pop(&master->fsib, 0);
691

692
	fsi_irq_clear_all_status(master);
693 694 695 696 697 698 699 700 701 702 703 704 705 706

	return IRQ_HANDLED;
}

/************************************************************************


		dai ops


************************************************************************/
static int fsi_dai_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
{
707
	struct fsi_priv *fsi = fsi_get_priv(substream);
708
	u32 flags = fsi_get_info_flags(fsi);
709
	struct fsi_master *master = fsi_get_master(fsi);
710 711 712 713 714 715 716
	u32 fmt;
	u32 reg;
	u32 data;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int is_master;
	int ret = 0;

717
	pm_runtime_get_sync(dai->dev);
718 719 720 721 722 723 724 725 726 727 728

	/* CKG1 */
	data = is_play ? (1 << 0) : (1 << 4);
	is_master = fsi_is_master_mode(fsi, is_play);
	if (is_master)
		fsi_reg_mask_set(fsi, CKG1, data, data);
	else
		fsi_reg_mask_set(fsi, CKG1, data, 0);

	/* clock inversion (CKG2) */
	data = 0;
729 730 731 732 733 734 735 736 737
	if (SH_FSI_LRM_INV & flags)
		data |= 1 << 12;
	if (SH_FSI_BRM_INV & flags)
		data |= 1 << 8;
	if (SH_FSI_LRS_INV & flags)
		data |= 1 << 4;
	if (SH_FSI_BRS_INV & flags)
		data |= 1 << 0;

738 739 740 741 742 743 744 745
	fsi_reg_write(fsi, CKG2, data);

	/* do fmt, di fmt */
	data = 0;
	reg = is_play ? DO_FMT : DI_FMT;
	fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
	switch (fmt) {
	case SH_FSI_FMT_MONO:
746
		data = CR_MONO;
747 748 749
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_MONO_DELAY:
750
		data = CR_MONO_D;
751 752 753
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_PCM:
754
		data = CR_PCM;
755 756 757
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_I2S:
758
		data = CR_I2S;
759 760 761 762 763
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_TDM:
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
764
		data = CR_TDM | (fsi->chan - 1);
765 766 767 768
		break;
	case SH_FSI_FMT_TDM_DELAY:
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
769
		data = CR_TDM_D | (fsi->chan - 1);
770
		break;
771 772 773 774 775 776 777 778 779 780
	case SH_FSI_FMT_SPDIF:
		if (master->core->ver < 2) {
			dev_err(dai->dev, "This FSI can not use SPDIF\n");
			return -EINVAL;
		}
		data = CR_SPDIF;
		fsi->chan = 2;
		fsi_spdif_clk_ctrl(fsi, 1);
		fsi_reg_mask_set(fsi, OUT_SEL, 0x0010, 0x0010);
		break;
781 782 783 784 785 786
	default:
		dev_err(dai->dev, "unknown format.\n");
		return -EINVAL;
	}
	fsi_reg_write(fsi, reg, data);

787 788 789 790 791
	/* irq clear */
	fsi_irq_disable(fsi, is_play);
	fsi_irq_clear_status(fsi);

	/* fifo init */
792
	fsi_fifo_init(fsi, is_play, dai);
793 794 795 796 797 798 799

	return ret;
}

static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
{
800
	struct fsi_priv *fsi = fsi_get_priv(substream);
801 802 803 804 805
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	fsi_irq_disable(fsi, is_play);
	fsi_clk_ctrl(fsi, 0);

806
	pm_runtime_put_sync(dai->dev);
807 808 809 810 811
}

static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
812
	struct fsi_priv *fsi = fsi_get_priv(substream);
813 814 815 816 817 818 819 820 821
	struct snd_pcm_runtime *runtime = substream->runtime;
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	int ret = 0;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		fsi_stream_push(fsi, substream,
				frames_to_bytes(runtime, runtime->buffer_size),
				frames_to_bytes(runtime, runtime->period_size));
822
		ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
823 824 825 826 827 828 829 830 831 832
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		fsi_irq_disable(fsi, is_play);
		fsi_stream_pop(fsi);
		break;
	}

	return ret;
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914
static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
			     struct snd_pcm_hw_params *params,
			     struct snd_soc_dai *dai)
{
	struct fsi_priv *fsi = fsi_get_priv(substream);
	struct fsi_master *master = fsi_get_master(fsi);
	int (*set_rate)(int is_porta, int rate) = master->info->set_rate;
	int fsi_ver = master->core->ver;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int ret;

	/* if slave mode, set_rate is not needed */
	if (!fsi_is_master_mode(fsi, is_play))
		return 0;

	/* it is error if no set_rate */
	if (!set_rate)
		return -EIO;

	ret = set_rate(fsi_is_port_a(fsi), params_rate(params));
	if (ret > 0) {
		u32 data = 0;

		switch (ret & SH_FSI_ACKMD_MASK) {
		default:
			/* FALL THROUGH */
		case SH_FSI_ACKMD_512:
			data |= (0x0 << 12);
			break;
		case SH_FSI_ACKMD_256:
			data |= (0x1 << 12);
			break;
		case SH_FSI_ACKMD_128:
			data |= (0x2 << 12);
			break;
		case SH_FSI_ACKMD_64:
			data |= (0x3 << 12);
			break;
		case SH_FSI_ACKMD_32:
			if (fsi_ver < 2)
				dev_err(dai->dev, "unsupported ACKMD\n");
			else
				data |= (0x4 << 12);
			break;
		}

		switch (ret & SH_FSI_BPFMD_MASK) {
		default:
			/* FALL THROUGH */
		case SH_FSI_BPFMD_32:
			data |= (0x0 << 8);
			break;
		case SH_FSI_BPFMD_64:
			data |= (0x1 << 8);
			break;
		case SH_FSI_BPFMD_128:
			data |= (0x2 << 8);
			break;
		case SH_FSI_BPFMD_256:
			data |= (0x3 << 8);
			break;
		case SH_FSI_BPFMD_512:
			data |= (0x4 << 8);
			break;
		case SH_FSI_BPFMD_16:
			if (fsi_ver < 2)
				dev_err(dai->dev, "unsupported ACKMD\n");
			else
				data |= (0x7 << 8);
			break;
		}

		fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
		udelay(10);
		fsi_clk_ctrl(fsi, 1);
		ret = 0;
	}

	return ret;

}

915 916 917 918
static struct snd_soc_dai_ops fsi_dai_ops = {
	.startup	= fsi_dai_startup,
	.shutdown	= fsi_dai_shutdown,
	.trigger	= fsi_dai_trigger,
919
	.hw_params	= fsi_dai_hw_params,
920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975
};

/************************************************************************


		pcm ops


************************************************************************/
static struct snd_pcm_hardware fsi_pcm_hardware = {
	.info =		SNDRV_PCM_INFO_INTERLEAVED	|
			SNDRV_PCM_INFO_MMAP		|
			SNDRV_PCM_INFO_MMAP_VALID	|
			SNDRV_PCM_INFO_PAUSE,
	.formats		= FSI_FMTS,
	.rates			= FSI_RATES,
	.rate_min		= 8000,
	.rate_max		= 192000,
	.channels_min		= 1,
	.channels_max		= 2,
	.buffer_bytes_max	= 64 * 1024,
	.period_bytes_min	= 32,
	.period_bytes_max	= 8192,
	.periods_min		= 1,
	.periods_max		= 32,
	.fifo_size		= 256,
};

static int fsi_pcm_open(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int ret = 0;

	snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);

	ret = snd_pcm_hw_constraint_integer(runtime,
					    SNDRV_PCM_HW_PARAM_PERIODS);

	return ret;
}

static int fsi_hw_params(struct snd_pcm_substream *substream,
			 struct snd_pcm_hw_params *hw_params)
{
	return snd_pcm_lib_malloc_pages(substream,
					params_buffer_bytes(hw_params));
}

static int fsi_hw_free(struct snd_pcm_substream *substream)
{
	return snd_pcm_lib_free_pages(substream);
}

static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
976
	struct fsi_priv *fsi = fsi_get_priv(substream);
977 978
	long location;

979
	location = (fsi->byte_offset - 1);
980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
	if (location < 0)
		location = 0;

	return bytes_to_frames(runtime, location);
}

static struct snd_pcm_ops fsi_pcm_ops = {
	.open		= fsi_pcm_open,
	.ioctl		= snd_pcm_lib_ioctl,
	.hw_params	= fsi_hw_params,
	.hw_free	= fsi_hw_free,
	.pointer	= fsi_pointer,
};

/************************************************************************


		snd_soc_platform


************************************************************************/
#define PREALLOC_BUFFER		(32 * 1024)
#define PREALLOC_BUFFER_MAX	(32 * 1024)

static void fsi_pcm_free(struct snd_pcm *pcm)
{
	snd_pcm_lib_preallocate_free_for_all(pcm);
}

static int fsi_pcm_new(struct snd_card *card,
		       struct snd_soc_dai *dai,
		       struct snd_pcm *pcm)
{
	/*
	 * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
	 * in MMAP mode (i.e. aplay -M)
	 */
	return snd_pcm_lib_preallocate_pages_for_all(
		pcm,
		SNDRV_DMA_TYPE_CONTINUOUS,
		snd_dma_continuous_data(GFP_KERNEL),
		PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
}

/************************************************************************


		alsa struct


************************************************************************/
1031
static struct snd_soc_dai_driver fsi_soc_dai[] = {
1032
	{
1033
		.name			= "fsia-dai",
1034 1035 1036 1037 1038 1039
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1040 1041 1042 1043 1044 1045
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1046 1047 1048
		.ops = &fsi_dai_ops,
	},
	{
1049
		.name			= "fsib-dai",
1050 1051 1052 1053 1054 1055
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1056 1057 1058 1059 1060 1061
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1062 1063 1064 1065
		.ops = &fsi_dai_ops,
	},
};

1066 1067
static struct snd_soc_platform_driver fsi_soc_platform = {
	.ops		= &fsi_pcm_ops,
1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080
	.pcm_new	= fsi_pcm_new,
	.pcm_free	= fsi_pcm_free,
};

/************************************************************************


		platform function


************************************************************************/
static int fsi_probe(struct platform_device *pdev)
{
1081
	struct fsi_master *master;
1082
	const struct platform_device_id	*id_entry;
1083 1084 1085 1086
	struct resource *res;
	unsigned int irq;
	int ret;

1087 1088 1089 1090 1091 1092
	id_entry = pdev->id_entry;
	if (!id_entry) {
		dev_err(&pdev->dev, "unknown fsi device\n");
		return -ENODEV;
	}

1093 1094
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
1095
	if (!res || (int)irq <= 0) {
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
		dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
		ret = -ENODEV;
		goto exit;
	}

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master) {
		dev_err(&pdev->dev, "Could not allocate master\n");
		ret = -ENOMEM;
		goto exit;
	}

	master->base = ioremap_nocache(res->start, resource_size(res));
	if (!master->base) {
		ret = -ENXIO;
		dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
		goto exit_kfree;
	}

1115
	/* master setting */
1116 1117
	master->irq		= irq;
	master->info		= pdev->dev.platform_data;
1118 1119 1120 1121
	master->core		= (struct fsi_core *)id_entry->driver_data;
	spin_lock_init(&master->lock);

	/* FSI A setting */
1122
	master->fsia.base	= master->base;
1123
	master->fsia.master	= master;
1124 1125 1126
	master->fsia.mst_ctrl	= A_MST_CTLR;

	/* FSI B setting */
1127
	master->fsib.base	= master->base + 0x40;
1128
	master->fsib.master	= master;
1129
	master->fsib.mst_ctrl	= B_MST_CTLR;
1130

1131 1132
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);
1133
	dev_set_drvdata(&pdev->dev, master);
1134

1135
	fsi_soft_all_reset(master);
1136

1137 1138
	ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
			  id_entry->name, master);
1139 1140
	if (ret) {
		dev_err(&pdev->dev, "irq request err\n");
1141
		goto exit_iounmap;
1142 1143
	}

1144
	ret = snd_soc_register_platform(&pdev->dev, &fsi_soc_platform);
1145 1146 1147 1148 1149
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot snd soc register\n");
		goto exit_free_irq;
	}

1150
	return snd_soc_register_dais(&pdev->dev, fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
1151 1152 1153 1154 1155

exit_free_irq:
	free_irq(irq, master);
exit_iounmap:
	iounmap(master->base);
1156
	pm_runtime_disable(&pdev->dev);
1157 1158 1159 1160 1161 1162 1163 1164 1165
exit_kfree:
	kfree(master);
	master = NULL;
exit:
	return ret;
}

static int fsi_remove(struct platform_device *pdev)
{
1166 1167
	struct fsi_master *master;

1168
	master = dev_get_drvdata(&pdev->dev);
1169

1170 1171
	snd_soc_unregister_dais(&pdev->dev, ARRAY_SIZE(fsi_soc_dai));
	snd_soc_unregister_platform(&pdev->dev);
1172

1173
	pm_runtime_disable(&pdev->dev);
1174 1175 1176 1177 1178

	free_irq(master->irq, master);

	iounmap(master->base);
	kfree(master);
1179

1180 1181 1182
	return 0;
}

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
static int fsi_runtime_nop(struct device *dev)
{
	/* Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops fsi_pm_ops = {
	.runtime_suspend	= fsi_runtime_nop,
	.runtime_resume		= fsi_runtime_nop,
};

1200 1201 1202 1203
static struct fsi_core fsi1_core = {
	.ver	= 1,

	/* Interrupt */
1204 1205 1206 1207 1208
	.int_st	= INT_ST,
	.iemsk	= IEMSK,
	.imsk	= IMSK,
};

1209 1210 1211 1212
static struct fsi_core fsi2_core = {
	.ver	= 2,

	/* Interrupt */
1213 1214 1215 1216 1217 1218
	.int_st	= CPU_INT_ST,
	.iemsk	= CPU_IEMSK,
	.imsk	= CPU_IMSK,
};

static struct platform_device_id fsi_id_table[] = {
1219 1220
	{ "sh_fsi",	(kernel_ulong_t)&fsi1_core },
	{ "sh_fsi2",	(kernel_ulong_t)&fsi2_core },
1221
};
1222
MODULE_DEVICE_TABLE(platform, fsi_id_table);
1223

1224 1225
static struct platform_driver fsi_driver = {
	.driver 	= {
1226
		.name	= "fsi-pcm-audio",
1227
		.pm	= &fsi_pm_ops,
1228 1229 1230
	},
	.probe		= fsi_probe,
	.remove		= fsi_remove,
1231
	.id_table	= fsi_id_table,
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
};

static int __init fsi_mobile_init(void)
{
	return platform_driver_register(&fsi_driver);
}

static void __exit fsi_mobile_exit(void)
{
	platform_driver_unregister(&fsi_driver);
}
1243

1244 1245 1246 1247 1248 1249
module_init(fsi_mobile_init);
module_exit(fsi_mobile_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");