fsi.c 22.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Fifo-attached Serial Interface (FSI) support for SH7724
 *
 * Copyright (C) 2009 Renesas Solutions Corp.
 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
 *
 * Based on ssi.c
 * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/list.h>
20
#include <linux/pm_runtime.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#include <linux/io.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include <sound/pcm_params.h>
#include <sound/sh_fsi.h>
#include <asm/atomic.h>

#define DO_FMT		0x0000
#define DOFF_CTL	0x0004
#define DOFF_ST		0x0008
#define DI_FMT		0x000C
#define DIFF_CTL	0x0010
#define DIFF_ST		0x0014
#define CKG1		0x0018
#define CKG2		0x001C
#define DIDT		0x0020
#define DODT		0x0024
#define MUTE_ST		0x0028
#define REG_END		MUTE_ST

#define INT_ST		0x0200
#define IEMSK		0x0204
#define IMSK		0x0208
#define MUTE		0x020C
#define CLK_RST		0x0210
#define SOFT_RST	0x0214
#define MREG_START	INT_ST
#define MREG_END	SOFT_RST

/* DO_FMT */
/* DI_FMT */
#define CR_FMT(param) ((param) << 4)
# define CR_MONO	0x0
# define CR_MONO_D	0x1
# define CR_PCM		0x2
# define CR_I2S		0x3
# define CR_TDM		0x4
# define CR_TDM_D	0x5

/* DOFF_CTL */
/* DIFF_CTL */
#define IRQ_HALF	0x00100000
#define FIFO_CLR	0x00000001

/* DOFF_ST */
#define ERR_OVER	0x00000010
#define ERR_UNDER	0x00000001
70
#define ST_ERR		(ERR_OVER | ERR_UNDER)
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

/* CLK_RST */
#define B_CLK		0x00000010
#define A_CLK		0x00000001

/* INT_ST */
#define INT_B_IN	(1 << 12)
#define INT_B_OUT	(1 << 8)
#define INT_A_IN	(1 << 4)
#define INT_A_OUT	(1 << 0)

#define FSI_RATES SNDRV_PCM_RATE_8000_96000

#define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)

/************************************************************************


		struct


************************************************************************/
struct fsi_priv {
	void __iomem *base;
	struct snd_pcm_substream *substream;
96
	struct fsi_master *master;
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

	int fifo_max;
	int chan;

	int byte_offset;
	int period_len;
	int buffer_len;
	int periods;
};

struct fsi_master {
	void __iomem *base;
	int irq;
	struct fsi_priv fsia;
	struct fsi_priv fsib;
	struct sh_fsi_platform_info *info;
113
	spinlock_t lock;
114 115 116 117 118 119 120 121 122
};

/************************************************************************


		basic read write function


************************************************************************/
123
static void __fsi_reg_write(u32 reg, u32 data)
124 125 126 127
{
	/* valid data area is 24bit */
	data &= 0x00ffffff;

128
	__raw_writel(data, reg);
129 130 131 132
}

static u32 __fsi_reg_read(u32 reg)
{
133
	return __raw_readl(reg);
134 135
}

136
static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
137 138 139 140 141 142
{
	u32 val = __fsi_reg_read(reg);

	val &= ~mask;
	val |= data & mask;

143
	__fsi_reg_write(reg, val);
144 145
}

146
static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
147 148
{
	if (reg > REG_END)
149
		return;
150

151
	__fsi_reg_write((u32)(fsi->base + reg), data);
152 153 154 155 156 157 158 159 160 161
}

static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
{
	if (reg > REG_END)
		return 0;

	return __fsi_reg_read((u32)(fsi->base + reg));
}

162
static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
163 164
{
	if (reg > REG_END)
165
		return;
166

167
	__fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
168 169
}

170
static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
171
{
172 173
	unsigned long flags;

174 175
	if ((reg < MREG_START) ||
	    (reg > MREG_END))
176
		return;
177

178
	spin_lock_irqsave(&master->lock, flags);
179
	__fsi_reg_write((u32)(master->base + reg), data);
180
	spin_unlock_irqrestore(&master->lock, flags);
181 182
}

183
static u32 fsi_master_read(struct fsi_master *master, u32 reg)
184
{
185 186 187
	u32 ret;
	unsigned long flags;

188 189 190 191
	if ((reg < MREG_START) ||
	    (reg > MREG_END))
		return 0;

192 193 194 195 196
	spin_lock_irqsave(&master->lock, flags);
	ret = __fsi_reg_read((u32)(master->base + reg));
	spin_unlock_irqrestore(&master->lock, flags);

	return ret;
197 198
}

199
static void fsi_master_mask_set(struct fsi_master *master,
200
			       u32 reg, u32 mask, u32 data)
201
{
202 203
	unsigned long flags;

204 205
	if ((reg < MREG_START) ||
	    (reg > MREG_END))
206
		return;
207

208
	spin_lock_irqsave(&master->lock, flags);
209
	__fsi_reg_mask_set((u32)(master->base + reg), mask, data);
210
	spin_unlock_irqrestore(&master->lock, flags);
211 212 213 214 215 216 217 218 219
}

/************************************************************************


		basic function


************************************************************************/
220
static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
221
{
222
	return fsi->master;
223 224 225 226
}

static int fsi_is_port_a(struct fsi_priv *fsi)
{
227 228
	return fsi->master->base == fsi->base;
}
229

230
static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
231 232 233
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct snd_soc_dai_link *machine = rtd->dai;
234 235 236 237 238 239 240

	return  machine->cpu_dai;
}

static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
{
	struct snd_soc_dai *dai = fsi_get_dai(substream);
241

242
	return dai->private_data;
243 244 245 246 247
}

static u32 fsi_get_info_flags(struct fsi_priv *fsi)
{
	int is_porta = fsi_is_port_a(fsi);
248
	struct fsi_master *master = fsi_get_master(fsi);
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

	return is_porta ? master->info->porta_flags :
		master->info->portb_flags;
}

static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
{
	u32 mode;
	u32 flags = fsi_get_info_flags(fsi);

	mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;

	/* return
	 * 1 : master mode
	 * 0 : slave mode
	 */

	return (mode & flags) != mode;
}

static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
{
	int is_porta = fsi_is_port_a(fsi);
	u32 data;

	if (is_porta)
		data = is_play ? (1 << 0) : (1 << 4);
	else
		data = is_play ? (1 << 8) : (1 << 12);

	return data;
}

static void fsi_stream_push(struct fsi_priv *fsi,
			    struct snd_pcm_substream *substream,
			    u32 buffer_len,
			    u32 period_len)
{
	fsi->substream		= substream;
	fsi->buffer_len		= buffer_len;
	fsi->period_len		= period_len;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static void fsi_stream_pop(struct fsi_priv *fsi)
{
	fsi->substream		= NULL;
	fsi->buffer_len		= 0;
	fsi->period_len		= 0;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
{
	u32 status;
	u32 reg = is_play ? DOFF_ST : DIFF_ST;
	int residue;

	status = fsi_reg_read(fsi, reg);
	residue = 0x1ff & (status >> 8);
	residue *= fsi->chan;

	return residue;
}

/************************************************************************


		ctrl function


************************************************************************/
static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
326
	struct fsi_master *master = fsi_get_master(fsi);
327

328 329
	fsi_master_mask_set(master, IMSK,  data, data);
	fsi_master_mask_set(master, IEMSK, data, data);
330 331 332 333 334
}

static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
335
	struct fsi_master *master = fsi_get_master(fsi);
336

337 338
	fsi_master_mask_set(master, IMSK,  data, 0);
	fsi_master_mask_set(master, IEMSK, data, 0);
339 340 341 342 343
}

static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
344
	struct fsi_master *master = fsi_get_master(fsi);
345 346

	if (enable)
347
		fsi_master_mask_set(master, CLK_RST, val, val);
348
	else
349
		fsi_master_mask_set(master, CLK_RST, val, 0);
350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
}

static void fsi_irq_init(struct fsi_priv *fsi, int is_play)
{
	u32 data;
	u32 ctrl;

	data = fsi_port_ab_io_bit(fsi, is_play);
	ctrl = is_play ? DOFF_CTL : DIFF_CTL;

	/* set IMSK */
	fsi_irq_disable(fsi, is_play);

	/* set interrupt generation factor */
	fsi_reg_write(fsi, ctrl, IRQ_HALF);

	/* clear FIFO */
	fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);

	/* clear interrupt factor */
370
	fsi_master_mask_set(fsi_get_master(fsi), INT_ST, data, 0);
371 372
}

373
static void fsi_soft_all_reset(struct fsi_master *master)
374
{
375
	u32 status = fsi_master_read(master, SOFT_RST);
376 377 378

	/* port AB reset */
	status &= 0x000000ff;
379
	fsi_master_write(master, SOFT_RST, status);
380 381 382 383
	mdelay(10);

	/* soft reset */
	status &= 0x000000f0;
384
	fsi_master_write(master, SOFT_RST, status);
385
	status |= 0x00000001;
386
	fsi_master_write(master, SOFT_RST, status);
387 388 389 390
	mdelay(10);
}

/* playback interrupt */
391
static int fsi_data_push(struct fsi_priv *fsi, int startup)
392 393 394
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
395
	u32 status;
396 397 398
	int send;
	int fifo_free;
	int width;
399
	u8 *start;
400
	int i, over_period;
401 402 403 404 405 406

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

407 408 409
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
410 411 412 413 414 415 416

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

417
		over_period = 1;
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get send size for alsa */
	send = (fsi->buffer_len - fsi->byte_offset) / width;

	/*  get FIFO free size */
	fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);

	/* size check */
	if (fifo_free < send)
		send = fifo_free;

437 438 439 440 441 442 443 444 445 446 447 448 449 450
	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT,
				      ((u32)*((u16 *)start + i) << 8));
		break;
	case 4:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT, *((u32 *)start + i));
		break;
	default:
451
		return -EINVAL;
452
	}
453 454 455

	fsi->byte_offset += send * width;

456
	status = fsi_reg_read(fsi, DOFF_ST);
457
	if (!startup) {
458
		struct snd_soc_dai *dai = fsi_get_dai(substream);
459 460 461 462 463

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
464
	}
465
	fsi_reg_write(fsi, DOFF_ST, 0);
466

467 468
	fsi_irq_enable(fsi, 1);

469
	if (over_period)
470 471
		snd_pcm_period_elapsed(substream);

472
	return 0;
473 474
}

475
static int fsi_data_pop(struct fsi_priv *fsi, int startup)
476 477 478
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
479
	u32 status;
480 481 482 483
	int free;
	int fifo_fill;
	int width;
	u8 *start;
484
	int i, over_period;
485 486 487 488 489 490

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

491 492 493
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
494 495 496 497 498 499 500

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

501
		over_period = 1;
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get free space for alsa */
	free = (fsi->buffer_len - fsi->byte_offset) / width;

	/* get recv size */
	fifo_fill = fsi_get_fifo_residue(fsi, 0);

	if (free < fifo_fill)
		fifo_fill = free;

	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < fifo_fill; i++)
			*((u16 *)start + i) =
				(u16)(fsi_reg_read(fsi, DIDT) >> 8);
		break;
	case 4:
		for (i = 0; i < fifo_fill; i++)
			*((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
		break;
	default:
		return -EINVAL;
	}

	fsi->byte_offset += fifo_fill * width;

539
	status = fsi_reg_read(fsi, DIFF_ST);
540
	if (!startup) {
541
		struct snd_soc_dai *dai = fsi_get_dai(substream);
542 543 544 545 546

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
547
	}
548
	fsi_reg_write(fsi, DIFF_ST, 0);
549

550 551
	fsi_irq_enable(fsi, 0);

552
	if (over_period)
553 554
		snd_pcm_period_elapsed(substream);

555
	return 0;
556 557
}

558 559
static irqreturn_t fsi_interrupt(int irq, void *data)
{
560 561 562
	struct fsi_master *master = data;
	u32 status = fsi_master_read(master, SOFT_RST) & ~0x00000010;
	u32 int_st = fsi_master_read(master, INT_ST);
563 564

	/* clear irq status */
565 566
	fsi_master_write(master, SOFT_RST, status);
	fsi_master_write(master, SOFT_RST, status | 0x00000010);
567 568

	if (int_st & INT_A_OUT)
569
		fsi_data_push(&master->fsia, 0);
570
	if (int_st & INT_B_OUT)
571
		fsi_data_push(&master->fsib, 0);
572
	if (int_st & INT_A_IN)
573
		fsi_data_pop(&master->fsia, 0);
574
	if (int_st & INT_B_IN)
575
		fsi_data_pop(&master->fsib, 0);
576

577
	fsi_master_write(master, INT_ST, 0x0000000);
578 579 580 581 582 583 584 585 586 587 588 589 590 591

	return IRQ_HANDLED;
}

/************************************************************************


		dai ops


************************************************************************/
static int fsi_dai_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
{
592
	struct fsi_priv *fsi = fsi_get_priv(substream);
593 594 595 596 597 598 599 600 601
	const char *msg;
	u32 flags = fsi_get_info_flags(fsi);
	u32 fmt;
	u32 reg;
	u32 data;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int is_master;
	int ret = 0;

602
	pm_runtime_get_sync(dai->dev);
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710

	/* CKG1 */
	data = is_play ? (1 << 0) : (1 << 4);
	is_master = fsi_is_master_mode(fsi, is_play);
	if (is_master)
		fsi_reg_mask_set(fsi, CKG1, data, data);
	else
		fsi_reg_mask_set(fsi, CKG1, data, 0);

	/* clock inversion (CKG2) */
	data = 0;
	switch (SH_FSI_INVERSION_MASK & flags) {
	case SH_FSI_LRM_INV:
		data = 1 << 12;
		break;
	case SH_FSI_BRM_INV:
		data = 1 << 8;
		break;
	case SH_FSI_LRS_INV:
		data = 1 << 4;
		break;
	case SH_FSI_BRS_INV:
		data = 1 << 0;
		break;
	}
	fsi_reg_write(fsi, CKG2, data);

	/* do fmt, di fmt */
	data = 0;
	reg = is_play ? DO_FMT : DI_FMT;
	fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
	switch (fmt) {
	case SH_FSI_FMT_MONO:
		msg = "MONO";
		data = CR_FMT(CR_MONO);
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_MONO_DELAY:
		msg = "MONO Delay";
		data = CR_FMT(CR_MONO_D);
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_PCM:
		msg = "PCM";
		data = CR_FMT(CR_PCM);
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_I2S:
		msg = "I2S";
		data = CR_FMT(CR_I2S);
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_TDM:
		msg = "TDM";
		data = CR_FMT(CR_TDM) | (fsi->chan - 1);
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
		break;
	case SH_FSI_FMT_TDM_DELAY:
		msg = "TDM Delay";
		data = CR_FMT(CR_TDM_D) | (fsi->chan - 1);
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
		break;
	default:
		dev_err(dai->dev, "unknown format.\n");
		return -EINVAL;
	}

	switch (fsi->chan) {
	case 1:
		fsi->fifo_max = 256;
		break;
	case 2:
		fsi->fifo_max = 128;
		break;
	case 3:
	case 4:
		fsi->fifo_max = 64;
		break;
	case 5:
	case 6:
	case 7:
	case 8:
		fsi->fifo_max = 32;
		break;
	default:
		dev_err(dai->dev, "channel size error.\n");
		return -EINVAL;
	}

	fsi_reg_write(fsi, reg, data);

	/*
	 * clear clk reset if master mode
	 */
	if (is_master)
		fsi_clk_ctrl(fsi, 1);

	/* irq setting */
	fsi_irq_init(fsi, is_play);

	return ret;
}

static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
{
711
	struct fsi_priv *fsi = fsi_get_priv(substream);
712 713 714 715 716
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	fsi_irq_disable(fsi, is_play);
	fsi_clk_ctrl(fsi, 0);

717
	pm_runtime_put_sync(dai->dev);
718 719 720 721 722
}

static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
723
	struct fsi_priv *fsi = fsi_get_priv(substream);
724 725 726 727 728 729 730 731 732
	struct snd_pcm_runtime *runtime = substream->runtime;
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	int ret = 0;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		fsi_stream_push(fsi, substream,
				frames_to_bytes(runtime, runtime->buffer_size),
				frames_to_bytes(runtime, runtime->period_size));
733
		ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		fsi_irq_disable(fsi, is_play);
		fsi_stream_pop(fsi);
		break;
	}

	return ret;
}

static struct snd_soc_dai_ops fsi_dai_ops = {
	.startup	= fsi_dai_startup,
	.shutdown	= fsi_dai_shutdown,
	.trigger	= fsi_dai_trigger,
};

/************************************************************************


		pcm ops


************************************************************************/
static struct snd_pcm_hardware fsi_pcm_hardware = {
	.info =		SNDRV_PCM_INFO_INTERLEAVED	|
			SNDRV_PCM_INFO_MMAP		|
			SNDRV_PCM_INFO_MMAP_VALID	|
			SNDRV_PCM_INFO_PAUSE,
	.formats		= FSI_FMTS,
	.rates			= FSI_RATES,
	.rate_min		= 8000,
	.rate_max		= 192000,
	.channels_min		= 1,
	.channels_max		= 2,
	.buffer_bytes_max	= 64 * 1024,
	.period_bytes_min	= 32,
	.period_bytes_max	= 8192,
	.periods_min		= 1,
	.periods_max		= 32,
	.fifo_size		= 256,
};

static int fsi_pcm_open(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int ret = 0;

	snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);

	ret = snd_pcm_hw_constraint_integer(runtime,
					    SNDRV_PCM_HW_PARAM_PERIODS);

	return ret;
}

static int fsi_hw_params(struct snd_pcm_substream *substream,
			 struct snd_pcm_hw_params *hw_params)
{
	return snd_pcm_lib_malloc_pages(substream,
					params_buffer_bytes(hw_params));
}

static int fsi_hw_free(struct snd_pcm_substream *substream)
{
	return snd_pcm_lib_free_pages(substream);
}

static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
804
	struct fsi_priv *fsi = fsi_get_priv(substream);
805 806
	long location;

807
	location = (fsi->byte_offset - 1);
808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
	if (location < 0)
		location = 0;

	return bytes_to_frames(runtime, location);
}

static struct snd_pcm_ops fsi_pcm_ops = {
	.open		= fsi_pcm_open,
	.ioctl		= snd_pcm_lib_ioctl,
	.hw_params	= fsi_hw_params,
	.hw_free	= fsi_hw_free,
	.pointer	= fsi_pointer,
};

/************************************************************************


		snd_soc_platform


************************************************************************/
#define PREALLOC_BUFFER		(32 * 1024)
#define PREALLOC_BUFFER_MAX	(32 * 1024)

static void fsi_pcm_free(struct snd_pcm *pcm)
{
	snd_pcm_lib_preallocate_free_for_all(pcm);
}

static int fsi_pcm_new(struct snd_card *card,
		       struct snd_soc_dai *dai,
		       struct snd_pcm *pcm)
{
	/*
	 * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
	 * in MMAP mode (i.e. aplay -M)
	 */
	return snd_pcm_lib_preallocate_pages_for_all(
		pcm,
		SNDRV_DMA_TYPE_CONTINUOUS,
		snd_dma_continuous_data(GFP_KERNEL),
		PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
}

/************************************************************************


		alsa struct


************************************************************************/
struct snd_soc_dai fsi_soc_dai[] = {
	{
		.name			= "FSIA",
		.id			= 0,
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
869 870 871 872 873 874
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
875 876 877 878 879 880 881 882 883 884 885
		.ops = &fsi_dai_ops,
	},
	{
		.name			= "FSIB",
		.id			= 1,
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
886 887 888 889 890 891
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
		.ops = &fsi_dai_ops,
	},
};
EXPORT_SYMBOL_GPL(fsi_soc_dai);

struct snd_soc_platform fsi_soc_platform = {
	.name		= "fsi-pcm",
	.pcm_ops 	= &fsi_pcm_ops,
	.pcm_new	= fsi_pcm_new,
	.pcm_free	= fsi_pcm_free,
};
EXPORT_SYMBOL_GPL(fsi_soc_platform);

/************************************************************************


		platform function


************************************************************************/
static int fsi_probe(struct platform_device *pdev)
{
914
	struct fsi_master *master;
915 916 917 918
	struct resource *res;
	unsigned int irq;
	int ret;

919 920 921 922 923
	if (0 != pdev->id) {
		dev_err(&pdev->dev, "current fsi support id 0 only now\n");
		return -ENODEV;
	}

924 925
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
926
	if (!res || (int)irq <= 0) {
927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
		dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
		ret = -ENODEV;
		goto exit;
	}

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master) {
		dev_err(&pdev->dev, "Could not allocate master\n");
		ret = -ENOMEM;
		goto exit;
	}

	master->base = ioremap_nocache(res->start, resource_size(res));
	if (!master->base) {
		ret = -ENXIO;
		dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
		goto exit_kfree;
	}

	master->irq		= irq;
	master->info		= pdev->dev.platform_data;
	master->fsia.base	= master->base;
949
	master->fsia.master	= master;
950
	master->fsib.base	= master->base + 0x40;
951
	master->fsib.master	= master;
952
	spin_lock_init(&master->lock);
953

954 955
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);
956 957

	fsi_soc_dai[0].dev		= &pdev->dev;
958
	fsi_soc_dai[0].private_data	= &master->fsia;
959
	fsi_soc_dai[1].dev		= &pdev->dev;
960
	fsi_soc_dai[1].private_data	= &master->fsib;
961

962
	fsi_soft_all_reset(master);
963 964 965 966

	ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED, "fsi", master);
	if (ret) {
		dev_err(&pdev->dev, "irq request err\n");
967
		goto exit_iounmap;
968 969 970 971 972 973 974 975 976 977 978 979 980 981
	}

	ret = snd_soc_register_platform(&fsi_soc_platform);
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot snd soc register\n");
		goto exit_free_irq;
	}

	return snd_soc_register_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));

exit_free_irq:
	free_irq(irq, master);
exit_iounmap:
	iounmap(master->base);
982
	pm_runtime_disable(&pdev->dev);
983 984 985 986 987 988 989 990 991
exit_kfree:
	kfree(master);
	master = NULL;
exit:
	return ret;
}

static int fsi_remove(struct platform_device *pdev)
{
992 993 994 995
	struct fsi_master *master;

	master = fsi_get_master(fsi_soc_dai[0].private_data);

996 997 998
	snd_soc_unregister_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
	snd_soc_unregister_platform(&fsi_soc_platform);

999
	pm_runtime_disable(&pdev->dev);
1000 1001 1002 1003 1004

	free_irq(master->irq, master);

	iounmap(master->base);
	kfree(master);
1005 1006 1007 1008 1009 1010

	fsi_soc_dai[0].dev		= NULL;
	fsi_soc_dai[0].private_data	= NULL;
	fsi_soc_dai[1].dev		= NULL;
	fsi_soc_dai[1].private_data	= NULL;

1011 1012 1013
	return 0;
}

1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
static int fsi_runtime_nop(struct device *dev)
{
	/* Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops fsi_pm_ops = {
	.runtime_suspend	= fsi_runtime_nop,
	.runtime_resume		= fsi_runtime_nop,
};

1031 1032 1033
static struct platform_driver fsi_driver = {
	.driver 	= {
		.name	= "sh_fsi",
1034
		.pm	= &fsi_pm_ops,
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	},
	.probe		= fsi_probe,
	.remove		= fsi_remove,
};

static int __init fsi_mobile_init(void)
{
	return platform_driver_register(&fsi_driver);
}

static void __exit fsi_mobile_exit(void)
{
	platform_driver_unregister(&fsi_driver);
}
module_init(fsi_mobile_init);
module_exit(fsi_mobile_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");