fsi.c 27.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Fifo-attached Serial Interface (FSI) support for SH7724
 *
 * Copyright (C) 2009 Renesas Solutions Corp.
 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
 *
 * Based on ssi.c
 * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/delay.h>
16
#include <linux/pm_runtime.h>
17
#include <linux/io.h>
18
#include <linux/slab.h>
19 20 21 22 23 24 25 26 27 28 29 30 31 32
#include <sound/soc.h>
#include <sound/sh_fsi.h>

#define DO_FMT		0x0000
#define DOFF_CTL	0x0004
#define DOFF_ST		0x0008
#define DI_FMT		0x000C
#define DIFF_CTL	0x0010
#define DIFF_ST		0x0014
#define CKG1		0x0018
#define CKG2		0x001C
#define DIDT		0x0020
#define DODT		0x0024
#define MUTE_ST		0x0028
33 34
#define OUT_SEL		0x0030
#define REG_END		OUT_SEL
35

36 37
#define A_MST_CTLR	0x0180
#define B_MST_CTLR	0x01A0
38 39 40
#define CPU_INT_ST	0x01F4
#define CPU_IEMSK	0x01F8
#define CPU_IMSK	0x01FC
41 42 43 44 45 46
#define INT_ST		0x0200
#define IEMSK		0x0204
#define IMSK		0x0208
#define MUTE		0x020C
#define CLK_RST		0x0210
#define SOFT_RST	0x0214
47
#define FIFO_SZ		0x0218
48
#define MREG_START	A_MST_CTLR
49
#define MREG_END	FIFO_SZ
50 51 52

/* DO_FMT */
/* DI_FMT */
53 54 55 56 57 58
#define CR_MONO		(0x0 << 4)
#define CR_MONO_D	(0x1 << 4)
#define CR_PCM		(0x2 << 4)
#define CR_I2S		(0x3 << 4)
#define CR_TDM		(0x4 << 4)
#define CR_TDM_D	(0x5 << 4)
59
#define CR_SPDIF	0x00100120
60 61 62 63 64 65 66 67 68

/* DOFF_CTL */
/* DIFF_CTL */
#define IRQ_HALF	0x00100000
#define FIFO_CLR	0x00000001

/* DOFF_ST */
#define ERR_OVER	0x00000010
#define ERR_UNDER	0x00000001
69
#define ST_ERR		(ERR_OVER | ERR_UNDER)
70

71 72 73 74
/* CKG1 */
#define ACKMD_MASK	0x00007000
#define BPFMD_MASK	0x00000700

75 76 77 78
/* A/B MST_CTLR */
#define BP	(1 << 4)	/* Fix the signal of Biphase output */
#define SE	(1 << 0)	/* Fix the master clock */

79 80 81 82 83 84 85 86 87 88
/* CLK_RST */
#define B_CLK		0x00000010
#define A_CLK		0x00000001

/* INT_ST */
#define INT_B_IN	(1 << 12)
#define INT_B_OUT	(1 << 8)
#define INT_A_IN	(1 << 4)
#define INT_A_OUT	(1 << 0)

89 90 91 92 93 94
/* SOFT_RST */
#define PBSR		(1 << 12) /* Port B Software Reset */
#define PASR		(1 <<  8) /* Port A Software Reset */
#define IR		(1 <<  4) /* Interrupt Reset */
#define FSISR		(1 <<  0) /* Software Reset */

95 96 97 98 99
/* FIFO_SZ */
#define OUT_SZ_MASK	0x7
#define BO_SZ_SHIFT	8
#define AO_SZ_SHIFT	0

100 101 102 103 104 105 106 107 108 109 110 111 112 113
#define FSI_RATES SNDRV_PCM_RATE_8000_96000

#define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)

/************************************************************************


		struct


************************************************************************/
struct fsi_priv {
	void __iomem *base;
	struct snd_pcm_substream *substream;
114
	struct fsi_master *master;
115 116 117 118 119 120 121 122

	int fifo_max;
	int chan;

	int byte_offset;
	int period_len;
	int buffer_len;
	int periods;
123 124

	u32 mst_ctrl;
125 126
};

127 128 129
struct fsi_core {
	int ver;

130 131 132 133 134
	u32 int_st;
	u32 iemsk;
	u32 imsk;
};

135 136 137 138 139
struct fsi_master {
	void __iomem *base;
	int irq;
	struct fsi_priv fsia;
	struct fsi_priv fsib;
140
	struct fsi_core *core;
141
	struct sh_fsi_platform_info *info;
142
	spinlock_t lock;
143 144 145 146 147 148 149 150 151
};

/************************************************************************


		basic read write function


************************************************************************/
152
static void __fsi_reg_write(u32 reg, u32 data)
153 154 155 156
{
	/* valid data area is 24bit */
	data &= 0x00ffffff;

157
	__raw_writel(data, reg);
158 159 160 161
}

static u32 __fsi_reg_read(u32 reg)
{
162
	return __raw_readl(reg);
163 164
}

165
static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
166 167 168 169 170 171
{
	u32 val = __fsi_reg_read(reg);

	val &= ~mask;
	val |= data & mask;

172
	__fsi_reg_write(reg, val);
173 174
}

175
static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
176
{
177 178
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
179
		return;
180
	}
181

182
	__fsi_reg_write((u32)(fsi->base + reg), data);
183 184 185 186
}

static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
{
187 188
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
189
		return 0;
190
	}
191 192 193 194

	return __fsi_reg_read((u32)(fsi->base + reg));
}

195
static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
196
{
197 198
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
199
		return;
200
	}
201

202
	__fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
203 204
}

205
static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
206
{
207 208
	unsigned long flags;

209
	if ((reg < MREG_START) ||
210 211
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
212
		return;
213
	}
214

215
	spin_lock_irqsave(&master->lock, flags);
216
	__fsi_reg_write((u32)(master->base + reg), data);
217
	spin_unlock_irqrestore(&master->lock, flags);
218 219
}

220
static u32 fsi_master_read(struct fsi_master *master, u32 reg)
221
{
222 223 224
	u32 ret;
	unsigned long flags;

225
	if ((reg < MREG_START) ||
226 227
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
228
		return 0;
229
	}
230

231 232 233 234 235
	spin_lock_irqsave(&master->lock, flags);
	ret = __fsi_reg_read((u32)(master->base + reg));
	spin_unlock_irqrestore(&master->lock, flags);

	return ret;
236 237
}

238
static void fsi_master_mask_set(struct fsi_master *master,
239
			       u32 reg, u32 mask, u32 data)
240
{
241 242
	unsigned long flags;

243
	if ((reg < MREG_START) ||
244 245
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
246
		return;
247
	}
248

249
	spin_lock_irqsave(&master->lock, flags);
250
	__fsi_reg_mask_set((u32)(master->base + reg), mask, data);
251
	spin_unlock_irqrestore(&master->lock, flags);
252 253 254 255 256 257 258 259 260
}

/************************************************************************


		basic function


************************************************************************/
261
static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
262
{
263
	return fsi->master;
264 265 266 267
}

static int fsi_is_port_a(struct fsi_priv *fsi)
{
268 269
	return fsi->master->base == fsi->base;
}
270

271
static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
272 273 274
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct snd_soc_dai_link *machine = rtd->dai;
275 276 277 278 279 280 281

	return  machine->cpu_dai;
}

static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
{
	struct snd_soc_dai *dai = fsi_get_dai(substream);
282

283
	return dai->private_data;
284 285 286 287 288
}

static u32 fsi_get_info_flags(struct fsi_priv *fsi)
{
	int is_porta = fsi_is_port_a(fsi);
289
	struct fsi_master *master = fsi_get_master(fsi);
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359

	return is_porta ? master->info->porta_flags :
		master->info->portb_flags;
}

static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
{
	u32 mode;
	u32 flags = fsi_get_info_flags(fsi);

	mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;

	/* return
	 * 1 : master mode
	 * 0 : slave mode
	 */

	return (mode & flags) != mode;
}

static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
{
	int is_porta = fsi_is_port_a(fsi);
	u32 data;

	if (is_porta)
		data = is_play ? (1 << 0) : (1 << 4);
	else
		data = is_play ? (1 << 8) : (1 << 12);

	return data;
}

static void fsi_stream_push(struct fsi_priv *fsi,
			    struct snd_pcm_substream *substream,
			    u32 buffer_len,
			    u32 period_len)
{
	fsi->substream		= substream;
	fsi->buffer_len		= buffer_len;
	fsi->period_len		= period_len;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static void fsi_stream_pop(struct fsi_priv *fsi)
{
	fsi->substream		= NULL;
	fsi->buffer_len		= 0;
	fsi->period_len		= 0;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
{
	u32 status;
	u32 reg = is_play ? DOFF_ST : DIFF_ST;
	int residue;

	status = fsi_reg_read(fsi, reg);
	residue = 0x1ff & (status >> 8);
	residue *= fsi->chan;

	return residue;
}

/************************************************************************


360
		irq function
361 362 363 364 365 366


************************************************************************/
static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
367
	struct fsi_master *master = fsi_get_master(fsi);
368

369 370
	fsi_master_mask_set(master, master->core->imsk,  data, data);
	fsi_master_mask_set(master, master->core->iemsk, data, data);
371 372 373 374 375
}

static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
376
	struct fsi_master *master = fsi_get_master(fsi);
377

378 379
	fsi_master_mask_set(master, master->core->imsk,  data, 0);
	fsi_master_mask_set(master, master->core->iemsk, data, 0);
380 381
}

382 383
static u32 fsi_irq_get_status(struct fsi_master *master)
{
384
	return fsi_master_read(master, master->core->int_st);
385 386 387 388
}

static void fsi_irq_clear_all_status(struct fsi_master *master)
{
389
	fsi_master_write(master, master->core->int_st, 0);
390 391
}

392 393 394 395 396 397 398 399 400
static void fsi_irq_clear_status(struct fsi_priv *fsi)
{
	u32 data = 0;
	struct fsi_master *master = fsi_get_master(fsi);

	data |= fsi_port_ab_io_bit(fsi, 0);
	data |= fsi_port_ab_io_bit(fsi, 1);

	/* clear interrupt factor */
401
	fsi_master_mask_set(master, master->core->int_st, data, 0);
402 403
}

404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/************************************************************************


		SPDIF master clock function

These functions are used later FSI2
************************************************************************/
static void fsi_spdif_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	struct fsi_master *master = fsi_get_master(fsi);
	u32 val = BP | SE;

	if (master->core->ver < 2) {
		pr_err("fsi: register access err (%s)\n", __func__);
		return;
	}

	if (enable)
		fsi_master_mask_set(master, fsi->mst_ctrl, val, val);
	else
		fsi_master_mask_set(master, fsi->mst_ctrl, val, 0);
}

427 428 429 430 431 432 433
/************************************************************************


		ctrl function


************************************************************************/
434 435 436
static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
437
	struct fsi_master *master = fsi_get_master(fsi);
438 439

	if (enable)
440
		fsi_master_mask_set(master, CLK_RST, val, val);
441
	else
442
		fsi_master_mask_set(master, CLK_RST, val, 0);
443 444
}

445 446 447
static void fsi_fifo_init(struct fsi_priv *fsi,
			  int is_play,
			  struct snd_soc_dai *dai)
448
{
449 450
	struct fsi_master *master = fsi_get_master(fsi);
	u32 ctrl, shift, i;
451

452 453 454 455 456 457
	/* get on-chip RAM capacity */
	shift = fsi_master_read(master, FIFO_SZ);
	shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
	shift &= OUT_SZ_MASK;
	fsi->fifo_max = 256 << shift;
	dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);
458

459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	/*
	 * The maximum number of sample data varies depending
	 * on the number of channels selected for the format.
	 *
	 * FIFOs are used in 4-channel units in 3-channel mode
	 * and in 8-channel units in 5- to 7-channel mode
	 * meaning that more FIFOs than the required size of DPRAM
	 * are used.
	 *
	 * ex) if 256 words of DP-RAM is connected
	 * 1 channel:  256 (256 x 1 = 256)
	 * 2 channels: 128 (128 x 2 = 256)
	 * 3 channels:  64 ( 64 x 3 = 192)
	 * 4 channels:  64 ( 64 x 4 = 256)
	 * 5 channels:  32 ( 32 x 5 = 160)
	 * 6 channels:  32 ( 32 x 6 = 192)
	 * 7 channels:  32 ( 32 x 7 = 224)
	 * 8 channels:  32 ( 32 x 8 = 256)
	 */
	for (i = 1; i < fsi->chan; i <<= 1)
		fsi->fifo_max >>= 1;
	dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
481 482 483 484 485 486 487 488 489 490

	ctrl = is_play ? DOFF_CTL : DIFF_CTL;

	/* set interrupt generation factor */
	fsi_reg_write(fsi, ctrl, IRQ_HALF);

	/* clear FIFO */
	fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
}

491
static void fsi_soft_all_reset(struct fsi_master *master)
492 493
{
	/* port AB reset */
494
	fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
495 496 497
	mdelay(10);

	/* soft reset */
498 499
	fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
	fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
500 501 502 503
	mdelay(10);
}

/* playback interrupt */
504
static int fsi_data_push(struct fsi_priv *fsi, int startup)
505 506 507
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
508
	u32 status;
509 510 511
	int send;
	int fifo_free;
	int width;
512
	u8 *start;
513
	int i, over_period;
514 515 516 517 518 519

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

520 521 522
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
523 524 525 526 527 528 529

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

530
		over_period = 1;
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get send size for alsa */
	send = (fsi->buffer_len - fsi->byte_offset) / width;

	/*  get FIFO free size */
	fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);

	/* size check */
	if (fifo_free < send)
		send = fifo_free;

550 551 552 553 554 555 556 557 558 559 560 561 562 563
	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT,
				      ((u32)*((u16 *)start + i) << 8));
		break;
	case 4:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT, *((u32 *)start + i));
		break;
	default:
564
		return -EINVAL;
565
	}
566 567 568

	fsi->byte_offset += send * width;

569
	status = fsi_reg_read(fsi, DOFF_ST);
570
	if (!startup) {
571
		struct snd_soc_dai *dai = fsi_get_dai(substream);
572 573 574 575 576

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
577
	}
578
	fsi_reg_write(fsi, DOFF_ST, 0);
579

580 581
	fsi_irq_enable(fsi, 1);

582
	if (over_period)
583 584
		snd_pcm_period_elapsed(substream);

585
	return 0;
586 587
}

588
static int fsi_data_pop(struct fsi_priv *fsi, int startup)
589 590 591
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
592
	u32 status;
593 594 595 596
	int free;
	int fifo_fill;
	int width;
	u8 *start;
597
	int i, over_period;
598 599 600 601 602 603

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

604 605 606
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
607 608 609 610 611 612 613

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

614
		over_period = 1;
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get free space for alsa */
	free = (fsi->buffer_len - fsi->byte_offset) / width;

	/* get recv size */
	fifo_fill = fsi_get_fifo_residue(fsi, 0);

	if (free < fifo_fill)
		fifo_fill = free;

	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < fifo_fill; i++)
			*((u16 *)start + i) =
				(u16)(fsi_reg_read(fsi, DIDT) >> 8);
		break;
	case 4:
		for (i = 0; i < fifo_fill; i++)
			*((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
		break;
	default:
		return -EINVAL;
	}

	fsi->byte_offset += fifo_fill * width;

652
	status = fsi_reg_read(fsi, DIFF_ST);
653
	if (!startup) {
654
		struct snd_soc_dai *dai = fsi_get_dai(substream);
655 656 657 658 659

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
660
	}
661
	fsi_reg_write(fsi, DIFF_ST, 0);
662

663 664
	fsi_irq_enable(fsi, 0);

665
	if (over_period)
666 667
		snd_pcm_period_elapsed(substream);

668
	return 0;
669 670
}

671 672
static irqreturn_t fsi_interrupt(int irq, void *data)
{
673
	struct fsi_master *master = data;
674
	u32 int_st = fsi_irq_get_status(master);
675 676

	/* clear irq status */
677 678
	fsi_master_mask_set(master, SOFT_RST, IR, 0);
	fsi_master_mask_set(master, SOFT_RST, IR, IR);
679 680

	if (int_st & INT_A_OUT)
681
		fsi_data_push(&master->fsia, 0);
682
	if (int_st & INT_B_OUT)
683
		fsi_data_push(&master->fsib, 0);
684
	if (int_st & INT_A_IN)
685
		fsi_data_pop(&master->fsia, 0);
686
	if (int_st & INT_B_IN)
687
		fsi_data_pop(&master->fsib, 0);
688

689
	fsi_irq_clear_all_status(master);
690 691 692 693 694 695 696 697 698 699 700 701 702 703

	return IRQ_HANDLED;
}

/************************************************************************


		dai ops


************************************************************************/
static int fsi_dai_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
{
704
	struct fsi_priv *fsi = fsi_get_priv(substream);
705
	u32 flags = fsi_get_info_flags(fsi);
706
	struct fsi_master *master = fsi_get_master(fsi);
707 708 709 710 711 712 713
	u32 fmt;
	u32 reg;
	u32 data;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int is_master;
	int ret = 0;

714
	pm_runtime_get_sync(dai->dev);
715 716 717 718 719 720 721 722 723 724 725

	/* CKG1 */
	data = is_play ? (1 << 0) : (1 << 4);
	is_master = fsi_is_master_mode(fsi, is_play);
	if (is_master)
		fsi_reg_mask_set(fsi, CKG1, data, data);
	else
		fsi_reg_mask_set(fsi, CKG1, data, 0);

	/* clock inversion (CKG2) */
	data = 0;
726 727 728 729 730 731 732 733 734
	if (SH_FSI_LRM_INV & flags)
		data |= 1 << 12;
	if (SH_FSI_BRM_INV & flags)
		data |= 1 << 8;
	if (SH_FSI_LRS_INV & flags)
		data |= 1 << 4;
	if (SH_FSI_BRS_INV & flags)
		data |= 1 << 0;

735 736 737 738 739 740 741 742
	fsi_reg_write(fsi, CKG2, data);

	/* do fmt, di fmt */
	data = 0;
	reg = is_play ? DO_FMT : DI_FMT;
	fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
	switch (fmt) {
	case SH_FSI_FMT_MONO:
743
		data = CR_MONO;
744 745 746
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_MONO_DELAY:
747
		data = CR_MONO_D;
748 749 750
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_PCM:
751
		data = CR_PCM;
752 753 754
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_I2S:
755
		data = CR_I2S;
756 757 758 759 760
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_TDM:
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
761
		data = CR_TDM | (fsi->chan - 1);
762 763 764 765
		break;
	case SH_FSI_FMT_TDM_DELAY:
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
766
		data = CR_TDM_D | (fsi->chan - 1);
767
		break;
768 769 770 771 772 773 774 775 776 777
	case SH_FSI_FMT_SPDIF:
		if (master->core->ver < 2) {
			dev_err(dai->dev, "This FSI can not use SPDIF\n");
			return -EINVAL;
		}
		data = CR_SPDIF;
		fsi->chan = 2;
		fsi_spdif_clk_ctrl(fsi, 1);
		fsi_reg_mask_set(fsi, OUT_SEL, 0x0010, 0x0010);
		break;
778 779 780 781 782 783
	default:
		dev_err(dai->dev, "unknown format.\n");
		return -EINVAL;
	}
	fsi_reg_write(fsi, reg, data);

784 785 786 787 788
	/* irq clear */
	fsi_irq_disable(fsi, is_play);
	fsi_irq_clear_status(fsi);

	/* fifo init */
789
	fsi_fifo_init(fsi, is_play, dai);
790 791 792 793 794 795 796

	return ret;
}

static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
{
797
	struct fsi_priv *fsi = fsi_get_priv(substream);
798 799 800 801 802
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	fsi_irq_disable(fsi, is_play);
	fsi_clk_ctrl(fsi, 0);

803
	pm_runtime_put_sync(dai->dev);
804 805 806 807 808
}

static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
809
	struct fsi_priv *fsi = fsi_get_priv(substream);
810 811 812 813 814 815 816 817 818
	struct snd_pcm_runtime *runtime = substream->runtime;
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	int ret = 0;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		fsi_stream_push(fsi, substream,
				frames_to_bytes(runtime, runtime->buffer_size),
				frames_to_bytes(runtime, runtime->period_size));
819
		ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
820 821 822 823 824 825 826 827 828 829
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		fsi_irq_disable(fsi, is_play);
		fsi_stream_pop(fsi);
		break;
	}

	return ret;
}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
static int fsi_dai_hw_params(struct snd_pcm_substream *substream,
			     struct snd_pcm_hw_params *params,
			     struct snd_soc_dai *dai)
{
	struct fsi_priv *fsi = fsi_get_priv(substream);
	struct fsi_master *master = fsi_get_master(fsi);
	int (*set_rate)(int is_porta, int rate) = master->info->set_rate;
	int fsi_ver = master->core->ver;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int ret;

	/* if slave mode, set_rate is not needed */
	if (!fsi_is_master_mode(fsi, is_play))
		return 0;

	/* it is error if no set_rate */
	if (!set_rate)
		return -EIO;

	ret = set_rate(fsi_is_port_a(fsi), params_rate(params));
	if (ret > 0) {
		u32 data = 0;

		switch (ret & SH_FSI_ACKMD_MASK) {
		default:
			/* FALL THROUGH */
		case SH_FSI_ACKMD_512:
			data |= (0x0 << 12);
			break;
		case SH_FSI_ACKMD_256:
			data |= (0x1 << 12);
			break;
		case SH_FSI_ACKMD_128:
			data |= (0x2 << 12);
			break;
		case SH_FSI_ACKMD_64:
			data |= (0x3 << 12);
			break;
		case SH_FSI_ACKMD_32:
			if (fsi_ver < 2)
				dev_err(dai->dev, "unsupported ACKMD\n");
			else
				data |= (0x4 << 12);
			break;
		}

		switch (ret & SH_FSI_BPFMD_MASK) {
		default:
			/* FALL THROUGH */
		case SH_FSI_BPFMD_32:
			data |= (0x0 << 8);
			break;
		case SH_FSI_BPFMD_64:
			data |= (0x1 << 8);
			break;
		case SH_FSI_BPFMD_128:
			data |= (0x2 << 8);
			break;
		case SH_FSI_BPFMD_256:
			data |= (0x3 << 8);
			break;
		case SH_FSI_BPFMD_512:
			data |= (0x4 << 8);
			break;
		case SH_FSI_BPFMD_16:
			if (fsi_ver < 2)
				dev_err(dai->dev, "unsupported ACKMD\n");
			else
				data |= (0x7 << 8);
			break;
		}

		fsi_reg_mask_set(fsi, CKG1, (ACKMD_MASK | BPFMD_MASK) , data);
		udelay(10);
		fsi_clk_ctrl(fsi, 1);
		ret = 0;
	}

	return ret;

}

912 913 914 915
static struct snd_soc_dai_ops fsi_dai_ops = {
	.startup	= fsi_dai_startup,
	.shutdown	= fsi_dai_shutdown,
	.trigger	= fsi_dai_trigger,
916
	.hw_params	= fsi_dai_hw_params,
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
};

/************************************************************************


		pcm ops


************************************************************************/
static struct snd_pcm_hardware fsi_pcm_hardware = {
	.info =		SNDRV_PCM_INFO_INTERLEAVED	|
			SNDRV_PCM_INFO_MMAP		|
			SNDRV_PCM_INFO_MMAP_VALID	|
			SNDRV_PCM_INFO_PAUSE,
	.formats		= FSI_FMTS,
	.rates			= FSI_RATES,
	.rate_min		= 8000,
	.rate_max		= 192000,
	.channels_min		= 1,
	.channels_max		= 2,
	.buffer_bytes_max	= 64 * 1024,
	.period_bytes_min	= 32,
	.period_bytes_max	= 8192,
	.periods_min		= 1,
	.periods_max		= 32,
	.fifo_size		= 256,
};

static int fsi_pcm_open(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int ret = 0;

	snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);

	ret = snd_pcm_hw_constraint_integer(runtime,
					    SNDRV_PCM_HW_PARAM_PERIODS);

	return ret;
}

static int fsi_hw_params(struct snd_pcm_substream *substream,
			 struct snd_pcm_hw_params *hw_params)
{
	return snd_pcm_lib_malloc_pages(substream,
					params_buffer_bytes(hw_params));
}

static int fsi_hw_free(struct snd_pcm_substream *substream)
{
	return snd_pcm_lib_free_pages(substream);
}

static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
973
	struct fsi_priv *fsi = fsi_get_priv(substream);
974 975
	long location;

976
	location = (fsi->byte_offset - 1);
977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	if (location < 0)
		location = 0;

	return bytes_to_frames(runtime, location);
}

static struct snd_pcm_ops fsi_pcm_ops = {
	.open		= fsi_pcm_open,
	.ioctl		= snd_pcm_lib_ioctl,
	.hw_params	= fsi_hw_params,
	.hw_free	= fsi_hw_free,
	.pointer	= fsi_pointer,
};

/************************************************************************


		snd_soc_platform


************************************************************************/
#define PREALLOC_BUFFER		(32 * 1024)
#define PREALLOC_BUFFER_MAX	(32 * 1024)

static void fsi_pcm_free(struct snd_pcm *pcm)
{
	snd_pcm_lib_preallocate_free_for_all(pcm);
}

static int fsi_pcm_new(struct snd_card *card,
		       struct snd_soc_dai *dai,
		       struct snd_pcm *pcm)
{
	/*
	 * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
	 * in MMAP mode (i.e. aplay -M)
	 */
	return snd_pcm_lib_preallocate_pages_for_all(
		pcm,
		SNDRV_DMA_TYPE_CONTINUOUS,
		snd_dma_continuous_data(GFP_KERNEL),
		PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
}

/************************************************************************


		alsa struct


************************************************************************/
struct snd_soc_dai fsi_soc_dai[] = {
	{
		.name			= "FSIA",
		.id			= 0,
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1038 1039 1040 1041 1042 1043
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
		.ops = &fsi_dai_ops,
	},
	{
		.name			= "FSIB",
		.id			= 1,
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1055 1056 1057 1058 1059 1060
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
		.ops = &fsi_dai_ops,
	},
};
EXPORT_SYMBOL_GPL(fsi_soc_dai);

struct snd_soc_platform fsi_soc_platform = {
	.name		= "fsi-pcm",
	.pcm_ops 	= &fsi_pcm_ops,
	.pcm_new	= fsi_pcm_new,
	.pcm_free	= fsi_pcm_free,
};
EXPORT_SYMBOL_GPL(fsi_soc_platform);

/************************************************************************


		platform function


************************************************************************/
static int fsi_probe(struct platform_device *pdev)
{
1083
	struct fsi_master *master;
1084
	const struct platform_device_id	*id_entry;
1085 1086 1087 1088
	struct resource *res;
	unsigned int irq;
	int ret;

1089 1090 1091 1092 1093 1094
	id_entry = pdev->id_entry;
	if (!id_entry) {
		dev_err(&pdev->dev, "unknown fsi device\n");
		return -ENODEV;
	}

1095 1096
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
1097
	if (!res || (int)irq <= 0) {
1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
		dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
		ret = -ENODEV;
		goto exit;
	}

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master) {
		dev_err(&pdev->dev, "Could not allocate master\n");
		ret = -ENOMEM;
		goto exit;
	}

	master->base = ioremap_nocache(res->start, resource_size(res));
	if (!master->base) {
		ret = -ENXIO;
		dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
		goto exit_kfree;
	}

1117
	/* master setting */
1118 1119
	master->irq		= irq;
	master->info		= pdev->dev.platform_data;
1120 1121 1122 1123
	master->core		= (struct fsi_core *)id_entry->driver_data;
	spin_lock_init(&master->lock);

	/* FSI A setting */
1124
	master->fsia.base	= master->base;
1125
	master->fsia.master	= master;
1126 1127 1128
	master->fsia.mst_ctrl	= A_MST_CTLR;

	/* FSI B setting */
1129
	master->fsib.base	= master->base + 0x40;
1130
	master->fsib.master	= master;
1131
	master->fsib.mst_ctrl	= B_MST_CTLR;
1132

1133 1134
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);
1135 1136

	fsi_soc_dai[0].dev		= &pdev->dev;
1137
	fsi_soc_dai[0].private_data	= &master->fsia;
1138
	fsi_soc_dai[1].dev		= &pdev->dev;
1139
	fsi_soc_dai[1].private_data	= &master->fsib;
1140

1141
	fsi_soft_all_reset(master);
1142

1143 1144
	ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
			  id_entry->name, master);
1145 1146
	if (ret) {
		dev_err(&pdev->dev, "irq request err\n");
1147
		goto exit_iounmap;
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
	}

	ret = snd_soc_register_platform(&fsi_soc_platform);
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot snd soc register\n");
		goto exit_free_irq;
	}

	return snd_soc_register_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));

exit_free_irq:
	free_irq(irq, master);
exit_iounmap:
	iounmap(master->base);
1162
	pm_runtime_disable(&pdev->dev);
1163 1164 1165 1166 1167 1168 1169 1170 1171
exit_kfree:
	kfree(master);
	master = NULL;
exit:
	return ret;
}

static int fsi_remove(struct platform_device *pdev)
{
1172 1173 1174 1175
	struct fsi_master *master;

	master = fsi_get_master(fsi_soc_dai[0].private_data);

1176 1177 1178
	snd_soc_unregister_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
	snd_soc_unregister_platform(&fsi_soc_platform);

1179
	pm_runtime_disable(&pdev->dev);
1180 1181 1182 1183 1184

	free_irq(master->irq, master);

	iounmap(master->base);
	kfree(master);
1185 1186 1187 1188 1189 1190

	fsi_soc_dai[0].dev		= NULL;
	fsi_soc_dai[0].private_data	= NULL;
	fsi_soc_dai[1].dev		= NULL;
	fsi_soc_dai[1].private_data	= NULL;

1191 1192 1193
	return 0;
}

1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
static int fsi_runtime_nop(struct device *dev)
{
	/* Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops fsi_pm_ops = {
	.runtime_suspend	= fsi_runtime_nop,
	.runtime_resume		= fsi_runtime_nop,
};

1211 1212 1213 1214
static struct fsi_core fsi1_core = {
	.ver	= 1,

	/* Interrupt */
1215 1216 1217 1218 1219
	.int_st	= INT_ST,
	.iemsk	= IEMSK,
	.imsk	= IMSK,
};

1220 1221 1222 1223
static struct fsi_core fsi2_core = {
	.ver	= 2,

	/* Interrupt */
1224 1225 1226 1227 1228 1229
	.int_st	= CPU_INT_ST,
	.iemsk	= CPU_IEMSK,
	.imsk	= CPU_IMSK,
};

static struct platform_device_id fsi_id_table[] = {
1230 1231
	{ "sh_fsi",	(kernel_ulong_t)&fsi1_core },
	{ "sh_fsi2",	(kernel_ulong_t)&fsi2_core },
1232 1233
};

1234 1235 1236
static struct platform_driver fsi_driver = {
	.driver 	= {
		.name	= "sh_fsi",
1237
		.pm	= &fsi_pm_ops,
1238 1239 1240
	},
	.probe		= fsi_probe,
	.remove		= fsi_remove,
1241
	.id_table	= fsi_id_table,
1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258
};

static int __init fsi_mobile_init(void)
{
	return platform_driver_register(&fsi_driver);
}

static void __exit fsi_mobile_exit(void)
{
	platform_driver_unregister(&fsi_driver);
}
module_init(fsi_mobile_init);
module_exit(fsi_mobile_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");