fsi.c 24.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Fifo-attached Serial Interface (FSI) support for SH7724
 *
 * Copyright (C) 2009 Renesas Solutions Corp.
 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
 *
 * Based on ssi.c
 * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/delay.h>
16
#include <linux/pm_runtime.h>
17
#include <linux/io.h>
18
#include <linux/slab.h>
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include <sound/soc.h>
#include <sound/sh_fsi.h>

#define DO_FMT		0x0000
#define DOFF_CTL	0x0004
#define DOFF_ST		0x0008
#define DI_FMT		0x000C
#define DIFF_CTL	0x0010
#define DIFF_ST		0x0014
#define CKG1		0x0018
#define CKG2		0x001C
#define DIDT		0x0020
#define DODT		0x0024
#define MUTE_ST		0x0028
#define REG_END		MUTE_ST

35 36 37 38

#define CPU_INT_ST	0x01F4
#define CPU_IEMSK	0x01F8
#define CPU_IMSK	0x01FC
39 40 41 42 43 44
#define INT_ST		0x0200
#define IEMSK		0x0204
#define IMSK		0x0208
#define MUTE		0x020C
#define CLK_RST		0x0210
#define SOFT_RST	0x0214
45
#define FIFO_SZ		0x0218
46
#define MREG_START	CPU_INT_ST
47
#define MREG_END	FIFO_SZ
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

/* DO_FMT */
/* DI_FMT */
#define CR_FMT(param) ((param) << 4)
# define CR_MONO	0x0
# define CR_MONO_D	0x1
# define CR_PCM		0x2
# define CR_I2S		0x3
# define CR_TDM		0x4
# define CR_TDM_D	0x5

/* DOFF_CTL */
/* DIFF_CTL */
#define IRQ_HALF	0x00100000
#define FIFO_CLR	0x00000001

/* DOFF_ST */
#define ERR_OVER	0x00000010
#define ERR_UNDER	0x00000001
67
#define ST_ERR		(ERR_OVER | ERR_UNDER)
68 69 70 71 72 73 74 75 76 77 78

/* CLK_RST */
#define B_CLK		0x00000010
#define A_CLK		0x00000001

/* INT_ST */
#define INT_B_IN	(1 << 12)
#define INT_B_OUT	(1 << 8)
#define INT_A_IN	(1 << 4)
#define INT_A_OUT	(1 << 0)

79 80 81 82 83 84
/* SOFT_RST */
#define PBSR		(1 << 12) /* Port B Software Reset */
#define PASR		(1 <<  8) /* Port A Software Reset */
#define IR		(1 <<  4) /* Interrupt Reset */
#define FSISR		(1 <<  0) /* Software Reset */

85 86 87 88 89
/* FIFO_SZ */
#define OUT_SZ_MASK	0x7
#define BO_SZ_SHIFT	8
#define AO_SZ_SHIFT	0

90 91 92 93 94 95 96 97 98 99 100 101 102 103
#define FSI_RATES SNDRV_PCM_RATE_8000_96000

#define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)

/************************************************************************


		struct


************************************************************************/
struct fsi_priv {
	void __iomem *base;
	struct snd_pcm_substream *substream;
104
	struct fsi_master *master;
105 106 107 108 109 110 111 112 113 114

	int fifo_max;
	int chan;

	int byte_offset;
	int period_len;
	int buffer_len;
	int periods;
};

115 116 117 118 119 120
struct fsi_regs {
	u32 int_st;
	u32 iemsk;
	u32 imsk;
};

121 122 123 124 125
struct fsi_master {
	void __iomem *base;
	int irq;
	struct fsi_priv fsia;
	struct fsi_priv fsib;
126
	struct fsi_regs *regs;
127
	struct sh_fsi_platform_info *info;
128
	spinlock_t lock;
129 130 131 132 133 134 135 136 137
};

/************************************************************************


		basic read write function


************************************************************************/
138
static void __fsi_reg_write(u32 reg, u32 data)
139 140 141 142
{
	/* valid data area is 24bit */
	data &= 0x00ffffff;

143
	__raw_writel(data, reg);
144 145 146 147
}

static u32 __fsi_reg_read(u32 reg)
{
148
	return __raw_readl(reg);
149 150
}

151
static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
152 153 154 155 156 157
{
	u32 val = __fsi_reg_read(reg);

	val &= ~mask;
	val |= data & mask;

158
	__fsi_reg_write(reg, val);
159 160
}

161
static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
162 163
{
	if (reg > REG_END)
164
		return;
165

166
	__fsi_reg_write((u32)(fsi->base + reg), data);
167 168 169 170 171 172 173 174 175 176
}

static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
{
	if (reg > REG_END)
		return 0;

	return __fsi_reg_read((u32)(fsi->base + reg));
}

177
static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
178 179
{
	if (reg > REG_END)
180
		return;
181

182
	__fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
183 184
}

185
static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
186
{
187 188
	unsigned long flags;

189 190
	if ((reg < MREG_START) ||
	    (reg > MREG_END))
191
		return;
192

193
	spin_lock_irqsave(&master->lock, flags);
194
	__fsi_reg_write((u32)(master->base + reg), data);
195
	spin_unlock_irqrestore(&master->lock, flags);
196 197
}

198
static u32 fsi_master_read(struct fsi_master *master, u32 reg)
199
{
200 201 202
	u32 ret;
	unsigned long flags;

203 204 205 206
	if ((reg < MREG_START) ||
	    (reg > MREG_END))
		return 0;

207 208 209 210 211
	spin_lock_irqsave(&master->lock, flags);
	ret = __fsi_reg_read((u32)(master->base + reg));
	spin_unlock_irqrestore(&master->lock, flags);

	return ret;
212 213
}

214
static void fsi_master_mask_set(struct fsi_master *master,
215
			       u32 reg, u32 mask, u32 data)
216
{
217 218
	unsigned long flags;

219 220
	if ((reg < MREG_START) ||
	    (reg > MREG_END))
221
		return;
222

223
	spin_lock_irqsave(&master->lock, flags);
224
	__fsi_reg_mask_set((u32)(master->base + reg), mask, data);
225
	spin_unlock_irqrestore(&master->lock, flags);
226 227 228 229 230 231 232 233 234
}

/************************************************************************


		basic function


************************************************************************/
235
static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
236
{
237
	return fsi->master;
238 239 240 241
}

static int fsi_is_port_a(struct fsi_priv *fsi)
{
242 243
	return fsi->master->base == fsi->base;
}
244

245
static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
246 247 248
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct snd_soc_dai_link *machine = rtd->dai;
249 250 251 252 253 254 255

	return  machine->cpu_dai;
}

static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
{
	struct snd_soc_dai *dai = fsi_get_dai(substream);
256

257
	return dai->private_data;
258 259 260 261 262
}

static u32 fsi_get_info_flags(struct fsi_priv *fsi)
{
	int is_porta = fsi_is_port_a(fsi);
263
	struct fsi_master *master = fsi_get_master(fsi);
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333

	return is_porta ? master->info->porta_flags :
		master->info->portb_flags;
}

static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
{
	u32 mode;
	u32 flags = fsi_get_info_flags(fsi);

	mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;

	/* return
	 * 1 : master mode
	 * 0 : slave mode
	 */

	return (mode & flags) != mode;
}

static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
{
	int is_porta = fsi_is_port_a(fsi);
	u32 data;

	if (is_porta)
		data = is_play ? (1 << 0) : (1 << 4);
	else
		data = is_play ? (1 << 8) : (1 << 12);

	return data;
}

static void fsi_stream_push(struct fsi_priv *fsi,
			    struct snd_pcm_substream *substream,
			    u32 buffer_len,
			    u32 period_len)
{
	fsi->substream		= substream;
	fsi->buffer_len		= buffer_len;
	fsi->period_len		= period_len;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static void fsi_stream_pop(struct fsi_priv *fsi)
{
	fsi->substream		= NULL;
	fsi->buffer_len		= 0;
	fsi->period_len		= 0;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
{
	u32 status;
	u32 reg = is_play ? DOFF_ST : DIFF_ST;
	int residue;

	status = fsi_reg_read(fsi, reg);
	residue = 0x1ff & (status >> 8);
	residue *= fsi->chan;

	return residue;
}

/************************************************************************


334
		irq function
335 336 337 338 339 340


************************************************************************/
static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
341
	struct fsi_master *master = fsi_get_master(fsi);
342

343 344
	fsi_master_mask_set(master, master->regs->imsk,  data, data);
	fsi_master_mask_set(master, master->regs->iemsk, data, data);
345 346 347 348 349
}

static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
350
	struct fsi_master *master = fsi_get_master(fsi);
351

352 353
	fsi_master_mask_set(master, master->regs->imsk,  data, 0);
	fsi_master_mask_set(master, master->regs->iemsk, data, 0);
354 355
}

356 357
static u32 fsi_irq_get_status(struct fsi_master *master)
{
358
	return fsi_master_read(master, master->regs->int_st);
359 360 361 362
}

static void fsi_irq_clear_all_status(struct fsi_master *master)
{
363
	fsi_master_write(master, master->regs->int_st, 0x0000000);
364 365
}

366 367 368 369 370 371 372 373 374
static void fsi_irq_clear_status(struct fsi_priv *fsi)
{
	u32 data = 0;
	struct fsi_master *master = fsi_get_master(fsi);

	data |= fsi_port_ab_io_bit(fsi, 0);
	data |= fsi_port_ab_io_bit(fsi, 1);

	/* clear interrupt factor */
375
	fsi_master_mask_set(master, master->regs->int_st, data, 0);
376 377 378 379 380 381 382 383 384
}

/************************************************************************


		ctrl function


************************************************************************/
385 386 387
static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
388
	struct fsi_master *master = fsi_get_master(fsi);
389 390

	if (enable)
391
		fsi_master_mask_set(master, CLK_RST, val, val);
392
	else
393
		fsi_master_mask_set(master, CLK_RST, val, 0);
394 395
}

396 397 398
static void fsi_fifo_init(struct fsi_priv *fsi,
			  int is_play,
			  struct snd_soc_dai *dai)
399
{
400 401
	struct fsi_master *master = fsi_get_master(fsi);
	u32 ctrl, shift, i;
402

403 404 405 406 407 408
	/* get on-chip RAM capacity */
	shift = fsi_master_read(master, FIFO_SZ);
	shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
	shift &= OUT_SZ_MASK;
	fsi->fifo_max = 256 << shift;
	dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);
409

410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
	/*
	 * The maximum number of sample data varies depending
	 * on the number of channels selected for the format.
	 *
	 * FIFOs are used in 4-channel units in 3-channel mode
	 * and in 8-channel units in 5- to 7-channel mode
	 * meaning that more FIFOs than the required size of DPRAM
	 * are used.
	 *
	 * ex) if 256 words of DP-RAM is connected
	 * 1 channel:  256 (256 x 1 = 256)
	 * 2 channels: 128 (128 x 2 = 256)
	 * 3 channels:  64 ( 64 x 3 = 192)
	 * 4 channels:  64 ( 64 x 4 = 256)
	 * 5 channels:  32 ( 32 x 5 = 160)
	 * 6 channels:  32 ( 32 x 6 = 192)
	 * 7 channels:  32 ( 32 x 7 = 224)
	 * 8 channels:  32 ( 32 x 8 = 256)
	 */
	for (i = 1; i < fsi->chan; i <<= 1)
		fsi->fifo_max >>= 1;
	dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
432 433 434 435 436 437 438 439 440 441

	ctrl = is_play ? DOFF_CTL : DIFF_CTL;

	/* set interrupt generation factor */
	fsi_reg_write(fsi, ctrl, IRQ_HALF);

	/* clear FIFO */
	fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
}

442
static void fsi_soft_all_reset(struct fsi_master *master)
443 444
{
	/* port AB reset */
445
	fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
446 447 448
	mdelay(10);

	/* soft reset */
449 450
	fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
	fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
451 452 453 454
	mdelay(10);
}

/* playback interrupt */
455
static int fsi_data_push(struct fsi_priv *fsi, int startup)
456 457 458
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
459
	u32 status;
460 461 462
	int send;
	int fifo_free;
	int width;
463
	u8 *start;
464
	int i, over_period;
465 466 467 468 469 470

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

471 472 473
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
474 475 476 477 478 479 480

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

481
		over_period = 1;
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get send size for alsa */
	send = (fsi->buffer_len - fsi->byte_offset) / width;

	/*  get FIFO free size */
	fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);

	/* size check */
	if (fifo_free < send)
		send = fifo_free;

501 502 503 504 505 506 507 508 509 510 511 512 513 514
	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT,
				      ((u32)*((u16 *)start + i) << 8));
		break;
	case 4:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT, *((u32 *)start + i));
		break;
	default:
515
		return -EINVAL;
516
	}
517 518 519

	fsi->byte_offset += send * width;

520
	status = fsi_reg_read(fsi, DOFF_ST);
521
	if (!startup) {
522
		struct snd_soc_dai *dai = fsi_get_dai(substream);
523 524 525 526 527

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
528
	}
529
	fsi_reg_write(fsi, DOFF_ST, 0);
530

531 532
	fsi_irq_enable(fsi, 1);

533
	if (over_period)
534 535
		snd_pcm_period_elapsed(substream);

536
	return 0;
537 538
}

539
static int fsi_data_pop(struct fsi_priv *fsi, int startup)
540 541 542
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
543
	u32 status;
544 545 546 547
	int free;
	int fifo_fill;
	int width;
	u8 *start;
548
	int i, over_period;
549 550 551 552 553 554

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

555 556 557
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
558 559 560 561 562 563 564

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

565
		over_period = 1;
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get free space for alsa */
	free = (fsi->buffer_len - fsi->byte_offset) / width;

	/* get recv size */
	fifo_fill = fsi_get_fifo_residue(fsi, 0);

	if (free < fifo_fill)
		fifo_fill = free;

	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < fifo_fill; i++)
			*((u16 *)start + i) =
				(u16)(fsi_reg_read(fsi, DIDT) >> 8);
		break;
	case 4:
		for (i = 0; i < fifo_fill; i++)
			*((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
		break;
	default:
		return -EINVAL;
	}

	fsi->byte_offset += fifo_fill * width;

603
	status = fsi_reg_read(fsi, DIFF_ST);
604
	if (!startup) {
605
		struct snd_soc_dai *dai = fsi_get_dai(substream);
606 607 608 609 610

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
611
	}
612
	fsi_reg_write(fsi, DIFF_ST, 0);
613

614 615
	fsi_irq_enable(fsi, 0);

616
	if (over_period)
617 618
		snd_pcm_period_elapsed(substream);

619
	return 0;
620 621
}

622 623
static irqreturn_t fsi_interrupt(int irq, void *data)
{
624
	struct fsi_master *master = data;
625
	u32 int_st = fsi_irq_get_status(master);
626 627

	/* clear irq status */
628 629
	fsi_master_mask_set(master, SOFT_RST, IR, 0);
	fsi_master_mask_set(master, SOFT_RST, IR, IR);
630 631

	if (int_st & INT_A_OUT)
632
		fsi_data_push(&master->fsia, 0);
633
	if (int_st & INT_B_OUT)
634
		fsi_data_push(&master->fsib, 0);
635
	if (int_st & INT_A_IN)
636
		fsi_data_pop(&master->fsia, 0);
637
	if (int_st & INT_B_IN)
638
		fsi_data_pop(&master->fsib, 0);
639

640
	fsi_irq_clear_all_status(master);
641 642 643 644 645 646 647 648 649 650 651 652 653 654

	return IRQ_HANDLED;
}

/************************************************************************


		dai ops


************************************************************************/
static int fsi_dai_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
{
655
	struct fsi_priv *fsi = fsi_get_priv(substream);
656 657 658 659 660 661 662 663
	u32 flags = fsi_get_info_flags(fsi);
	u32 fmt;
	u32 reg;
	u32 data;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int is_master;
	int ret = 0;

664
	pm_runtime_get_sync(dai->dev);
665 666 667 668 669 670 671 672 673 674 675

	/* CKG1 */
	data = is_play ? (1 << 0) : (1 << 4);
	is_master = fsi_is_master_mode(fsi, is_play);
	if (is_master)
		fsi_reg_mask_set(fsi, CKG1, data, data);
	else
		fsi_reg_mask_set(fsi, CKG1, data, 0);

	/* clock inversion (CKG2) */
	data = 0;
676 677 678 679 680 681 682 683 684
	if (SH_FSI_LRM_INV & flags)
		data |= 1 << 12;
	if (SH_FSI_BRM_INV & flags)
		data |= 1 << 8;
	if (SH_FSI_LRS_INV & flags)
		data |= 1 << 4;
	if (SH_FSI_BRS_INV & flags)
		data |= 1 << 0;

685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
	fsi_reg_write(fsi, CKG2, data);

	/* do fmt, di fmt */
	data = 0;
	reg = is_play ? DO_FMT : DI_FMT;
	fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
	switch (fmt) {
	case SH_FSI_FMT_MONO:
		data = CR_FMT(CR_MONO);
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_MONO_DELAY:
		data = CR_FMT(CR_MONO_D);
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_PCM:
		data = CR_FMT(CR_PCM);
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_I2S:
		data = CR_FMT(CR_I2S);
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_TDM:
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
711
		data = CR_FMT(CR_TDM) | (fsi->chan - 1);
712 713 714 715
		break;
	case SH_FSI_FMT_TDM_DELAY:
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
716
		data = CR_FMT(CR_TDM_D) | (fsi->chan - 1);
717 718 719 720 721 722 723 724 725 726 727 728 729
		break;
	default:
		dev_err(dai->dev, "unknown format.\n");
		return -EINVAL;
	}
	fsi_reg_write(fsi, reg, data);

	/*
	 * clear clk reset if master mode
	 */
	if (is_master)
		fsi_clk_ctrl(fsi, 1);

730 731 732 733 734
	/* irq clear */
	fsi_irq_disable(fsi, is_play);
	fsi_irq_clear_status(fsi);

	/* fifo init */
735
	fsi_fifo_init(fsi, is_play, dai);
736 737 738 739 740 741 742

	return ret;
}

static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
{
743
	struct fsi_priv *fsi = fsi_get_priv(substream);
744 745 746 747 748
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	fsi_irq_disable(fsi, is_play);
	fsi_clk_ctrl(fsi, 0);

749
	pm_runtime_put_sync(dai->dev);
750 751 752 753 754
}

static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
755
	struct fsi_priv *fsi = fsi_get_priv(substream);
756 757 758 759 760 761 762 763 764
	struct snd_pcm_runtime *runtime = substream->runtime;
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	int ret = 0;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		fsi_stream_push(fsi, substream,
				frames_to_bytes(runtime, runtime->buffer_size),
				frames_to_bytes(runtime, runtime->period_size));
765
		ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		fsi_irq_disable(fsi, is_play);
		fsi_stream_pop(fsi);
		break;
	}

	return ret;
}

static struct snd_soc_dai_ops fsi_dai_ops = {
	.startup	= fsi_dai_startup,
	.shutdown	= fsi_dai_shutdown,
	.trigger	= fsi_dai_trigger,
};

/************************************************************************


		pcm ops


************************************************************************/
static struct snd_pcm_hardware fsi_pcm_hardware = {
	.info =		SNDRV_PCM_INFO_INTERLEAVED	|
			SNDRV_PCM_INFO_MMAP		|
			SNDRV_PCM_INFO_MMAP_VALID	|
			SNDRV_PCM_INFO_PAUSE,
	.formats		= FSI_FMTS,
	.rates			= FSI_RATES,
	.rate_min		= 8000,
	.rate_max		= 192000,
	.channels_min		= 1,
	.channels_max		= 2,
	.buffer_bytes_max	= 64 * 1024,
	.period_bytes_min	= 32,
	.period_bytes_max	= 8192,
	.periods_min		= 1,
	.periods_max		= 32,
	.fifo_size		= 256,
};

static int fsi_pcm_open(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int ret = 0;

	snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);

	ret = snd_pcm_hw_constraint_integer(runtime,
					    SNDRV_PCM_HW_PARAM_PERIODS);

	return ret;
}

static int fsi_hw_params(struct snd_pcm_substream *substream,
			 struct snd_pcm_hw_params *hw_params)
{
	return snd_pcm_lib_malloc_pages(substream,
					params_buffer_bytes(hw_params));
}

static int fsi_hw_free(struct snd_pcm_substream *substream)
{
	return snd_pcm_lib_free_pages(substream);
}

static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
836
	struct fsi_priv *fsi = fsi_get_priv(substream);
837 838
	long location;

839
	location = (fsi->byte_offset - 1);
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
	if (location < 0)
		location = 0;

	return bytes_to_frames(runtime, location);
}

static struct snd_pcm_ops fsi_pcm_ops = {
	.open		= fsi_pcm_open,
	.ioctl		= snd_pcm_lib_ioctl,
	.hw_params	= fsi_hw_params,
	.hw_free	= fsi_hw_free,
	.pointer	= fsi_pointer,
};

/************************************************************************


		snd_soc_platform


************************************************************************/
#define PREALLOC_BUFFER		(32 * 1024)
#define PREALLOC_BUFFER_MAX	(32 * 1024)

static void fsi_pcm_free(struct snd_pcm *pcm)
{
	snd_pcm_lib_preallocate_free_for_all(pcm);
}

static int fsi_pcm_new(struct snd_card *card,
		       struct snd_soc_dai *dai,
		       struct snd_pcm *pcm)
{
	/*
	 * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
	 * in MMAP mode (i.e. aplay -M)
	 */
	return snd_pcm_lib_preallocate_pages_for_all(
		pcm,
		SNDRV_DMA_TYPE_CONTINUOUS,
		snd_dma_continuous_data(GFP_KERNEL),
		PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
}

/************************************************************************


		alsa struct


************************************************************************/
struct snd_soc_dai fsi_soc_dai[] = {
	{
		.name			= "FSIA",
		.id			= 0,
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
901 902 903 904 905 906
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
907 908 909 910 911 912 913 914 915 916 917
		.ops = &fsi_dai_ops,
	},
	{
		.name			= "FSIB",
		.id			= 1,
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
918 919 920 921 922 923
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
		.ops = &fsi_dai_ops,
	},
};
EXPORT_SYMBOL_GPL(fsi_soc_dai);

struct snd_soc_platform fsi_soc_platform = {
	.name		= "fsi-pcm",
	.pcm_ops 	= &fsi_pcm_ops,
	.pcm_new	= fsi_pcm_new,
	.pcm_free	= fsi_pcm_free,
};
EXPORT_SYMBOL_GPL(fsi_soc_platform);

/************************************************************************


		platform function


************************************************************************/
static int fsi_probe(struct platform_device *pdev)
{
946
	struct fsi_master *master;
947
	const struct platform_device_id	*id_entry;
948 949 950 951
	struct resource *res;
	unsigned int irq;
	int ret;

952 953 954 955 956
	if (0 != pdev->id) {
		dev_err(&pdev->dev, "current fsi support id 0 only now\n");
		return -ENODEV;
	}

957 958 959 960 961 962
	id_entry = pdev->id_entry;
	if (!id_entry) {
		dev_err(&pdev->dev, "unknown fsi device\n");
		return -ENODEV;
	}

963 964
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
965
	if (!res || (int)irq <= 0) {
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
		dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
		ret = -ENODEV;
		goto exit;
	}

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master) {
		dev_err(&pdev->dev, "Could not allocate master\n");
		ret = -ENOMEM;
		goto exit;
	}

	master->base = ioremap_nocache(res->start, resource_size(res));
	if (!master->base) {
		ret = -ENXIO;
		dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
		goto exit_kfree;
	}

	master->irq		= irq;
	master->info		= pdev->dev.platform_data;
	master->fsia.base	= master->base;
988
	master->fsia.master	= master;
989
	master->fsib.base	= master->base + 0x40;
990
	master->fsib.master	= master;
991
	master->regs		= (struct fsi_regs *)id_entry->driver_data;
992
	spin_lock_init(&master->lock);
993

994 995
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);
996 997

	fsi_soc_dai[0].dev		= &pdev->dev;
998
	fsi_soc_dai[0].private_data	= &master->fsia;
999
	fsi_soc_dai[1].dev		= &pdev->dev;
1000
	fsi_soc_dai[1].private_data	= &master->fsib;
1001

1002
	fsi_soft_all_reset(master);
1003

1004 1005
	ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
			  id_entry->name, master);
1006 1007
	if (ret) {
		dev_err(&pdev->dev, "irq request err\n");
1008
		goto exit_iounmap;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	}

	ret = snd_soc_register_platform(&fsi_soc_platform);
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot snd soc register\n");
		goto exit_free_irq;
	}

	return snd_soc_register_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));

exit_free_irq:
	free_irq(irq, master);
exit_iounmap:
	iounmap(master->base);
1023
	pm_runtime_disable(&pdev->dev);
1024 1025 1026 1027 1028 1029 1030 1031 1032
exit_kfree:
	kfree(master);
	master = NULL;
exit:
	return ret;
}

static int fsi_remove(struct platform_device *pdev)
{
1033 1034 1035 1036
	struct fsi_master *master;

	master = fsi_get_master(fsi_soc_dai[0].private_data);

1037 1038 1039
	snd_soc_unregister_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
	snd_soc_unregister_platform(&fsi_soc_platform);

1040
	pm_runtime_disable(&pdev->dev);
1041 1042 1043 1044 1045

	free_irq(master->irq, master);

	iounmap(master->base);
	kfree(master);
1046 1047 1048 1049 1050 1051

	fsi_soc_dai[0].dev		= NULL;
	fsi_soc_dai[0].private_data	= NULL;
	fsi_soc_dai[1].dev		= NULL;
	fsi_soc_dai[1].private_data	= NULL;

1052 1053 1054
	return 0;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
static int fsi_runtime_nop(struct device *dev)
{
	/* Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops fsi_pm_ops = {
	.runtime_suspend	= fsi_runtime_nop,
	.runtime_resume		= fsi_runtime_nop,
};

1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
static struct fsi_regs fsi_regs = {
	.int_st	= INT_ST,
	.iemsk	= IEMSK,
	.imsk	= IMSK,
};

static struct fsi_regs fsi2_regs = {
	.int_st	= CPU_INT_ST,
	.iemsk	= CPU_IEMSK,
	.imsk	= CPU_IMSK,
};

static struct platform_device_id fsi_id_table[] = {
	{ "sh_fsi",	(kernel_ulong_t)&fsi_regs },
	{ "sh_fsi2",	(kernel_ulong_t)&fsi2_regs },
};

1089 1090 1091
static struct platform_driver fsi_driver = {
	.driver 	= {
		.name	= "sh_fsi",
1092
		.pm	= &fsi_pm_ops,
1093 1094 1095
	},
	.probe		= fsi_probe,
	.remove		= fsi_remove,
1096
	.id_table	= fsi_id_table,
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
};

static int __init fsi_mobile_init(void)
{
	return platform_driver_register(&fsi_driver);
}

static void __exit fsi_mobile_exit(void)
{
	platform_driver_unregister(&fsi_driver);
}
module_init(fsi_mobile_init);
module_exit(fsi_mobile_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");