fsi.c 24.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/*
 * Fifo-attached Serial Interface (FSI) support for SH7724
 *
 * Copyright (C) 2009 Renesas Solutions Corp.
 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
 *
 * Based on ssi.c
 * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/delay.h>
16
#include <linux/pm_runtime.h>
17
#include <linux/io.h>
18
#include <linux/slab.h>
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
#include <sound/soc.h>
#include <sound/sh_fsi.h>

#define DO_FMT		0x0000
#define DOFF_CTL	0x0004
#define DOFF_ST		0x0008
#define DI_FMT		0x000C
#define DIFF_CTL	0x0010
#define DIFF_ST		0x0014
#define CKG1		0x0018
#define CKG2		0x001C
#define DIDT		0x0020
#define DODT		0x0024
#define MUTE_ST		0x0028
#define REG_END		MUTE_ST

35 36 37 38

#define CPU_INT_ST	0x01F4
#define CPU_IEMSK	0x01F8
#define CPU_IMSK	0x01FC
39 40 41 42 43 44
#define INT_ST		0x0200
#define IEMSK		0x0204
#define IMSK		0x0208
#define MUTE		0x020C
#define CLK_RST		0x0210
#define SOFT_RST	0x0214
45
#define FIFO_SZ		0x0218
46
#define MREG_START	CPU_INT_ST
47
#define MREG_END	FIFO_SZ
48 49 50

/* DO_FMT */
/* DI_FMT */
51 52 53 54 55 56
#define CR_MONO		(0x0 << 4)
#define CR_MONO_D	(0x1 << 4)
#define CR_PCM		(0x2 << 4)
#define CR_I2S		(0x3 << 4)
#define CR_TDM		(0x4 << 4)
#define CR_TDM_D	(0x5 << 4)
57 58 59 60 61 62 63 64 65

/* DOFF_CTL */
/* DIFF_CTL */
#define IRQ_HALF	0x00100000
#define FIFO_CLR	0x00000001

/* DOFF_ST */
#define ERR_OVER	0x00000010
#define ERR_UNDER	0x00000001
66
#define ST_ERR		(ERR_OVER | ERR_UNDER)
67 68 69 70 71 72 73 74 75 76 77

/* CLK_RST */
#define B_CLK		0x00000010
#define A_CLK		0x00000001

/* INT_ST */
#define INT_B_IN	(1 << 12)
#define INT_B_OUT	(1 << 8)
#define INT_A_IN	(1 << 4)
#define INT_A_OUT	(1 << 0)

78 79 80 81 82 83
/* SOFT_RST */
#define PBSR		(1 << 12) /* Port B Software Reset */
#define PASR		(1 <<  8) /* Port A Software Reset */
#define IR		(1 <<  4) /* Interrupt Reset */
#define FSISR		(1 <<  0) /* Software Reset */

84 85 86 87 88
/* FIFO_SZ */
#define OUT_SZ_MASK	0x7
#define BO_SZ_SHIFT	8
#define AO_SZ_SHIFT	0

89 90 91 92 93 94 95 96 97 98 99 100 101 102
#define FSI_RATES SNDRV_PCM_RATE_8000_96000

#define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)

/************************************************************************


		struct


************************************************************************/
struct fsi_priv {
	void __iomem *base;
	struct snd_pcm_substream *substream;
103
	struct fsi_master *master;
104 105 106 107 108 109 110 111 112 113

	int fifo_max;
	int chan;

	int byte_offset;
	int period_len;
	int buffer_len;
	int periods;
};

114 115 116
struct fsi_core {
	int ver;

117 118 119 120 121
	u32 int_st;
	u32 iemsk;
	u32 imsk;
};

122 123 124 125 126
struct fsi_master {
	void __iomem *base;
	int irq;
	struct fsi_priv fsia;
	struct fsi_priv fsib;
127
	struct fsi_core *core;
128
	struct sh_fsi_platform_info *info;
129
	spinlock_t lock;
130 131 132 133 134 135 136 137 138
};

/************************************************************************


		basic read write function


************************************************************************/
139
static void __fsi_reg_write(u32 reg, u32 data)
140 141 142 143
{
	/* valid data area is 24bit */
	data &= 0x00ffffff;

144
	__raw_writel(data, reg);
145 146 147 148
}

static u32 __fsi_reg_read(u32 reg)
{
149
	return __raw_readl(reg);
150 151
}

152
static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
153 154 155 156 157 158
{
	u32 val = __fsi_reg_read(reg);

	val &= ~mask;
	val |= data & mask;

159
	__fsi_reg_write(reg, val);
160 161
}

162
static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
163
{
164 165
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
166
		return;
167
	}
168

169
	__fsi_reg_write((u32)(fsi->base + reg), data);
170 171 172 173
}

static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
{
174 175
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
176
		return 0;
177
	}
178 179 180 181

	return __fsi_reg_read((u32)(fsi->base + reg));
}

182
static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
183
{
184 185
	if (reg > REG_END) {
		pr_err("fsi: register access err (%s)\n", __func__);
186
		return;
187
	}
188

189
	__fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
190 191
}

192
static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
193
{
194 195
	unsigned long flags;

196
	if ((reg < MREG_START) ||
197 198
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
199
		return;
200
	}
201

202
	spin_lock_irqsave(&master->lock, flags);
203
	__fsi_reg_write((u32)(master->base + reg), data);
204
	spin_unlock_irqrestore(&master->lock, flags);
205 206
}

207
static u32 fsi_master_read(struct fsi_master *master, u32 reg)
208
{
209 210 211
	u32 ret;
	unsigned long flags;

212
	if ((reg < MREG_START) ||
213 214
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
215
		return 0;
216
	}
217

218 219 220 221 222
	spin_lock_irqsave(&master->lock, flags);
	ret = __fsi_reg_read((u32)(master->base + reg));
	spin_unlock_irqrestore(&master->lock, flags);

	return ret;
223 224
}

225
static void fsi_master_mask_set(struct fsi_master *master,
226
			       u32 reg, u32 mask, u32 data)
227
{
228 229
	unsigned long flags;

230
	if ((reg < MREG_START) ||
231 232
	    (reg > MREG_END)) {
		pr_err("fsi: register access err (%s)\n", __func__);
233
		return;
234
	}
235

236
	spin_lock_irqsave(&master->lock, flags);
237
	__fsi_reg_mask_set((u32)(master->base + reg), mask, data);
238
	spin_unlock_irqrestore(&master->lock, flags);
239 240 241 242 243 244 245 246 247
}

/************************************************************************


		basic function


************************************************************************/
248
static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
249
{
250
	return fsi->master;
251 252 253 254
}

static int fsi_is_port_a(struct fsi_priv *fsi)
{
255 256
	return fsi->master->base == fsi->base;
}
257

258
static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
259 260 261
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct snd_soc_dai_link *machine = rtd->dai;
262 263 264 265 266 267 268

	return  machine->cpu_dai;
}

static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
{
	struct snd_soc_dai *dai = fsi_get_dai(substream);
269

270
	return dai->private_data;
271 272 273 274 275
}

static u32 fsi_get_info_flags(struct fsi_priv *fsi)
{
	int is_porta = fsi_is_port_a(fsi);
276
	struct fsi_master *master = fsi_get_master(fsi);
277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346

	return is_porta ? master->info->porta_flags :
		master->info->portb_flags;
}

static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
{
	u32 mode;
	u32 flags = fsi_get_info_flags(fsi);

	mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;

	/* return
	 * 1 : master mode
	 * 0 : slave mode
	 */

	return (mode & flags) != mode;
}

static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
{
	int is_porta = fsi_is_port_a(fsi);
	u32 data;

	if (is_porta)
		data = is_play ? (1 << 0) : (1 << 4);
	else
		data = is_play ? (1 << 8) : (1 << 12);

	return data;
}

static void fsi_stream_push(struct fsi_priv *fsi,
			    struct snd_pcm_substream *substream,
			    u32 buffer_len,
			    u32 period_len)
{
	fsi->substream		= substream;
	fsi->buffer_len		= buffer_len;
	fsi->period_len		= period_len;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static void fsi_stream_pop(struct fsi_priv *fsi)
{
	fsi->substream		= NULL;
	fsi->buffer_len		= 0;
	fsi->period_len		= 0;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
{
	u32 status;
	u32 reg = is_play ? DOFF_ST : DIFF_ST;
	int residue;

	status = fsi_reg_read(fsi, reg);
	residue = 0x1ff & (status >> 8);
	residue *= fsi->chan;

	return residue;
}

/************************************************************************


347
		irq function
348 349 350 351 352 353


************************************************************************/
static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
354
	struct fsi_master *master = fsi_get_master(fsi);
355

356 357
	fsi_master_mask_set(master, master->core->imsk,  data, data);
	fsi_master_mask_set(master, master->core->iemsk, data, data);
358 359 360 361 362
}

static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
363
	struct fsi_master *master = fsi_get_master(fsi);
364

365 366
	fsi_master_mask_set(master, master->core->imsk,  data, 0);
	fsi_master_mask_set(master, master->core->iemsk, data, 0);
367 368
}

369 370
static u32 fsi_irq_get_status(struct fsi_master *master)
{
371
	return fsi_master_read(master, master->core->int_st);
372 373 374 375
}

static void fsi_irq_clear_all_status(struct fsi_master *master)
{
376
	fsi_master_write(master, master->core->int_st, 0);
377 378
}

379 380 381 382 383 384 385 386 387
static void fsi_irq_clear_status(struct fsi_priv *fsi)
{
	u32 data = 0;
	struct fsi_master *master = fsi_get_master(fsi);

	data |= fsi_port_ab_io_bit(fsi, 0);
	data |= fsi_port_ab_io_bit(fsi, 1);

	/* clear interrupt factor */
388
	fsi_master_mask_set(master, master->core->int_st, data, 0);
389 390 391 392 393 394 395 396 397
}

/************************************************************************


		ctrl function


************************************************************************/
398 399 400
static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
401
	struct fsi_master *master = fsi_get_master(fsi);
402 403

	if (enable)
404
		fsi_master_mask_set(master, CLK_RST, val, val);
405
	else
406
		fsi_master_mask_set(master, CLK_RST, val, 0);
407 408
}

409 410 411
static void fsi_fifo_init(struct fsi_priv *fsi,
			  int is_play,
			  struct snd_soc_dai *dai)
412
{
413 414
	struct fsi_master *master = fsi_get_master(fsi);
	u32 ctrl, shift, i;
415

416 417 418 419 420 421
	/* get on-chip RAM capacity */
	shift = fsi_master_read(master, FIFO_SZ);
	shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
	shift &= OUT_SZ_MASK;
	fsi->fifo_max = 256 << shift;
	dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);
422

423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
	/*
	 * The maximum number of sample data varies depending
	 * on the number of channels selected for the format.
	 *
	 * FIFOs are used in 4-channel units in 3-channel mode
	 * and in 8-channel units in 5- to 7-channel mode
	 * meaning that more FIFOs than the required size of DPRAM
	 * are used.
	 *
	 * ex) if 256 words of DP-RAM is connected
	 * 1 channel:  256 (256 x 1 = 256)
	 * 2 channels: 128 (128 x 2 = 256)
	 * 3 channels:  64 ( 64 x 3 = 192)
	 * 4 channels:  64 ( 64 x 4 = 256)
	 * 5 channels:  32 ( 32 x 5 = 160)
	 * 6 channels:  32 ( 32 x 6 = 192)
	 * 7 channels:  32 ( 32 x 7 = 224)
	 * 8 channels:  32 ( 32 x 8 = 256)
	 */
	for (i = 1; i < fsi->chan; i <<= 1)
		fsi->fifo_max >>= 1;
	dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
445 446 447 448 449 450 451 452 453 454

	ctrl = is_play ? DOFF_CTL : DIFF_CTL;

	/* set interrupt generation factor */
	fsi_reg_write(fsi, ctrl, IRQ_HALF);

	/* clear FIFO */
	fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
}

455
static void fsi_soft_all_reset(struct fsi_master *master)
456 457
{
	/* port AB reset */
458
	fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
459 460 461
	mdelay(10);

	/* soft reset */
462 463
	fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
	fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
464 465 466 467
	mdelay(10);
}

/* playback interrupt */
468
static int fsi_data_push(struct fsi_priv *fsi, int startup)
469 470 471
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
472
	u32 status;
473 474 475
	int send;
	int fifo_free;
	int width;
476
	u8 *start;
477
	int i, over_period;
478 479 480 481 482 483

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

484 485 486
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
487 488 489 490 491 492 493

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

494
		over_period = 1;
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get send size for alsa */
	send = (fsi->buffer_len - fsi->byte_offset) / width;

	/*  get FIFO free size */
	fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);

	/* size check */
	if (fifo_free < send)
		send = fifo_free;

514 515 516 517 518 519 520 521 522 523 524 525 526 527
	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT,
				      ((u32)*((u16 *)start + i) << 8));
		break;
	case 4:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT, *((u32 *)start + i));
		break;
	default:
528
		return -EINVAL;
529
	}
530 531 532

	fsi->byte_offset += send * width;

533
	status = fsi_reg_read(fsi, DOFF_ST);
534
	if (!startup) {
535
		struct snd_soc_dai *dai = fsi_get_dai(substream);
536 537 538 539 540

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
541
	}
542
	fsi_reg_write(fsi, DOFF_ST, 0);
543

544 545
	fsi_irq_enable(fsi, 1);

546
	if (over_period)
547 548
		snd_pcm_period_elapsed(substream);

549
	return 0;
550 551
}

552
static int fsi_data_pop(struct fsi_priv *fsi, int startup)
553 554 555
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
556
	u32 status;
557 558 559 560
	int free;
	int fifo_fill;
	int width;
	u8 *start;
561
	int i, over_period;
562 563 564 565 566 567

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

568 569 570
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
571 572 573 574 575 576 577

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

578
		over_period = 1;
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get free space for alsa */
	free = (fsi->buffer_len - fsi->byte_offset) / width;

	/* get recv size */
	fifo_fill = fsi_get_fifo_residue(fsi, 0);

	if (free < fifo_fill)
		fifo_fill = free;

	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < fifo_fill; i++)
			*((u16 *)start + i) =
				(u16)(fsi_reg_read(fsi, DIDT) >> 8);
		break;
	case 4:
		for (i = 0; i < fifo_fill; i++)
			*((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
		break;
	default:
		return -EINVAL;
	}

	fsi->byte_offset += fifo_fill * width;

616
	status = fsi_reg_read(fsi, DIFF_ST);
617
	if (!startup) {
618
		struct snd_soc_dai *dai = fsi_get_dai(substream);
619 620 621 622 623

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
624
	}
625
	fsi_reg_write(fsi, DIFF_ST, 0);
626

627 628
	fsi_irq_enable(fsi, 0);

629
	if (over_period)
630 631
		snd_pcm_period_elapsed(substream);

632
	return 0;
633 634
}

635 636
static irqreturn_t fsi_interrupt(int irq, void *data)
{
637
	struct fsi_master *master = data;
638
	u32 int_st = fsi_irq_get_status(master);
639 640

	/* clear irq status */
641 642
	fsi_master_mask_set(master, SOFT_RST, IR, 0);
	fsi_master_mask_set(master, SOFT_RST, IR, IR);
643 644

	if (int_st & INT_A_OUT)
645
		fsi_data_push(&master->fsia, 0);
646
	if (int_st & INT_B_OUT)
647
		fsi_data_push(&master->fsib, 0);
648
	if (int_st & INT_A_IN)
649
		fsi_data_pop(&master->fsia, 0);
650
	if (int_st & INT_B_IN)
651
		fsi_data_pop(&master->fsib, 0);
652

653
	fsi_irq_clear_all_status(master);
654 655 656 657 658 659 660 661 662 663 664 665 666 667

	return IRQ_HANDLED;
}

/************************************************************************


		dai ops


************************************************************************/
static int fsi_dai_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
{
668
	struct fsi_priv *fsi = fsi_get_priv(substream);
669 670 671 672 673 674 675 676
	u32 flags = fsi_get_info_flags(fsi);
	u32 fmt;
	u32 reg;
	u32 data;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int is_master;
	int ret = 0;

677
	pm_runtime_get_sync(dai->dev);
678 679 680 681 682 683 684 685 686 687 688

	/* CKG1 */
	data = is_play ? (1 << 0) : (1 << 4);
	is_master = fsi_is_master_mode(fsi, is_play);
	if (is_master)
		fsi_reg_mask_set(fsi, CKG1, data, data);
	else
		fsi_reg_mask_set(fsi, CKG1, data, 0);

	/* clock inversion (CKG2) */
	data = 0;
689 690 691 692 693 694 695 696 697
	if (SH_FSI_LRM_INV & flags)
		data |= 1 << 12;
	if (SH_FSI_BRM_INV & flags)
		data |= 1 << 8;
	if (SH_FSI_LRS_INV & flags)
		data |= 1 << 4;
	if (SH_FSI_BRS_INV & flags)
		data |= 1 << 0;

698 699 700 701 702 703 704 705
	fsi_reg_write(fsi, CKG2, data);

	/* do fmt, di fmt */
	data = 0;
	reg = is_play ? DO_FMT : DI_FMT;
	fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
	switch (fmt) {
	case SH_FSI_FMT_MONO:
706
		data = CR_MONO;
707 708 709
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_MONO_DELAY:
710
		data = CR_MONO_D;
711 712 713
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_PCM:
714
		data = CR_PCM;
715 716 717
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_I2S:
718
		data = CR_I2S;
719 720 721 722 723
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_TDM:
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
724
		data = CR_TDM | (fsi->chan - 1);
725 726 727 728
		break;
	case SH_FSI_FMT_TDM_DELAY:
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
729
		data = CR_TDM_D | (fsi->chan - 1);
730 731 732 733 734 735 736 737 738 739 740 741 742
		break;
	default:
		dev_err(dai->dev, "unknown format.\n");
		return -EINVAL;
	}
	fsi_reg_write(fsi, reg, data);

	/*
	 * clear clk reset if master mode
	 */
	if (is_master)
		fsi_clk_ctrl(fsi, 1);

743 744 745 746 747
	/* irq clear */
	fsi_irq_disable(fsi, is_play);
	fsi_irq_clear_status(fsi);

	/* fifo init */
748
	fsi_fifo_init(fsi, is_play, dai);
749 750 751 752 753 754 755

	return ret;
}

static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
{
756
	struct fsi_priv *fsi = fsi_get_priv(substream);
757 758 759 760 761
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	fsi_irq_disable(fsi, is_play);
	fsi_clk_ctrl(fsi, 0);

762
	pm_runtime_put_sync(dai->dev);
763 764 765 766 767
}

static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
768
	struct fsi_priv *fsi = fsi_get_priv(substream);
769 770 771 772 773 774 775 776 777
	struct snd_pcm_runtime *runtime = substream->runtime;
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	int ret = 0;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		fsi_stream_push(fsi, substream,
				frames_to_bytes(runtime, runtime->buffer_size),
				frames_to_bytes(runtime, runtime->period_size));
778
		ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		fsi_irq_disable(fsi, is_play);
		fsi_stream_pop(fsi);
		break;
	}

	return ret;
}

static struct snd_soc_dai_ops fsi_dai_ops = {
	.startup	= fsi_dai_startup,
	.shutdown	= fsi_dai_shutdown,
	.trigger	= fsi_dai_trigger,
};

/************************************************************************


		pcm ops


************************************************************************/
static struct snd_pcm_hardware fsi_pcm_hardware = {
	.info =		SNDRV_PCM_INFO_INTERLEAVED	|
			SNDRV_PCM_INFO_MMAP		|
			SNDRV_PCM_INFO_MMAP_VALID	|
			SNDRV_PCM_INFO_PAUSE,
	.formats		= FSI_FMTS,
	.rates			= FSI_RATES,
	.rate_min		= 8000,
	.rate_max		= 192000,
	.channels_min		= 1,
	.channels_max		= 2,
	.buffer_bytes_max	= 64 * 1024,
	.period_bytes_min	= 32,
	.period_bytes_max	= 8192,
	.periods_min		= 1,
	.periods_max		= 32,
	.fifo_size		= 256,
};

static int fsi_pcm_open(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int ret = 0;

	snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);

	ret = snd_pcm_hw_constraint_integer(runtime,
					    SNDRV_PCM_HW_PARAM_PERIODS);

	return ret;
}

static int fsi_hw_params(struct snd_pcm_substream *substream,
			 struct snd_pcm_hw_params *hw_params)
{
	return snd_pcm_lib_malloc_pages(substream,
					params_buffer_bytes(hw_params));
}

static int fsi_hw_free(struct snd_pcm_substream *substream)
{
	return snd_pcm_lib_free_pages(substream);
}

static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
849
	struct fsi_priv *fsi = fsi_get_priv(substream);
850 851
	long location;

852
	location = (fsi->byte_offset - 1);
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
	if (location < 0)
		location = 0;

	return bytes_to_frames(runtime, location);
}

static struct snd_pcm_ops fsi_pcm_ops = {
	.open		= fsi_pcm_open,
	.ioctl		= snd_pcm_lib_ioctl,
	.hw_params	= fsi_hw_params,
	.hw_free	= fsi_hw_free,
	.pointer	= fsi_pointer,
};

/************************************************************************


		snd_soc_platform


************************************************************************/
#define PREALLOC_BUFFER		(32 * 1024)
#define PREALLOC_BUFFER_MAX	(32 * 1024)

static void fsi_pcm_free(struct snd_pcm *pcm)
{
	snd_pcm_lib_preallocate_free_for_all(pcm);
}

static int fsi_pcm_new(struct snd_card *card,
		       struct snd_soc_dai *dai,
		       struct snd_pcm *pcm)
{
	/*
	 * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
	 * in MMAP mode (i.e. aplay -M)
	 */
	return snd_pcm_lib_preallocate_pages_for_all(
		pcm,
		SNDRV_DMA_TYPE_CONTINUOUS,
		snd_dma_continuous_data(GFP_KERNEL),
		PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
}

/************************************************************************


		alsa struct


************************************************************************/
struct snd_soc_dai fsi_soc_dai[] = {
	{
		.name			= "FSIA",
		.id			= 0,
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
914 915 916 917 918 919
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
920 921 922 923 924 925 926 927 928 929 930
		.ops = &fsi_dai_ops,
	},
	{
		.name			= "FSIB",
		.id			= 1,
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
931 932 933 934 935 936
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
		.ops = &fsi_dai_ops,
	},
};
EXPORT_SYMBOL_GPL(fsi_soc_dai);

struct snd_soc_platform fsi_soc_platform = {
	.name		= "fsi-pcm",
	.pcm_ops 	= &fsi_pcm_ops,
	.pcm_new	= fsi_pcm_new,
	.pcm_free	= fsi_pcm_free,
};
EXPORT_SYMBOL_GPL(fsi_soc_platform);

/************************************************************************


		platform function


************************************************************************/
static int fsi_probe(struct platform_device *pdev)
{
959
	struct fsi_master *master;
960
	const struct platform_device_id	*id_entry;
961 962 963 964
	struct resource *res;
	unsigned int irq;
	int ret;

965 966 967 968 969
	if (0 != pdev->id) {
		dev_err(&pdev->dev, "current fsi support id 0 only now\n");
		return -ENODEV;
	}

970 971 972 973 974 975
	id_entry = pdev->id_entry;
	if (!id_entry) {
		dev_err(&pdev->dev, "unknown fsi device\n");
		return -ENODEV;
	}

976 977
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
978
	if (!res || (int)irq <= 0) {
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
		dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
		ret = -ENODEV;
		goto exit;
	}

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master) {
		dev_err(&pdev->dev, "Could not allocate master\n");
		ret = -ENOMEM;
		goto exit;
	}

	master->base = ioremap_nocache(res->start, resource_size(res));
	if (!master->base) {
		ret = -ENXIO;
		dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
		goto exit_kfree;
	}

	master->irq		= irq;
	master->info		= pdev->dev.platform_data;
	master->fsia.base	= master->base;
1001
	master->fsia.master	= master;
1002
	master->fsib.base	= master->base + 0x40;
1003
	master->fsib.master	= master;
1004
	master->core		= (struct fsi_core *)id_entry->driver_data;
1005
	spin_lock_init(&master->lock);
1006

1007 1008
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);
1009 1010

	fsi_soc_dai[0].dev		= &pdev->dev;
1011
	fsi_soc_dai[0].private_data	= &master->fsia;
1012
	fsi_soc_dai[1].dev		= &pdev->dev;
1013
	fsi_soc_dai[1].private_data	= &master->fsib;
1014

1015
	fsi_soft_all_reset(master);
1016

1017 1018
	ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED,
			  id_entry->name, master);
1019 1020
	if (ret) {
		dev_err(&pdev->dev, "irq request err\n");
1021
		goto exit_iounmap;
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
	}

	ret = snd_soc_register_platform(&fsi_soc_platform);
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot snd soc register\n");
		goto exit_free_irq;
	}

	return snd_soc_register_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));

exit_free_irq:
	free_irq(irq, master);
exit_iounmap:
	iounmap(master->base);
1036
	pm_runtime_disable(&pdev->dev);
1037 1038 1039 1040 1041 1042 1043 1044 1045
exit_kfree:
	kfree(master);
	master = NULL;
exit:
	return ret;
}

static int fsi_remove(struct platform_device *pdev)
{
1046 1047 1048 1049
	struct fsi_master *master;

	master = fsi_get_master(fsi_soc_dai[0].private_data);

1050 1051 1052
	snd_soc_unregister_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
	snd_soc_unregister_platform(&fsi_soc_platform);

1053
	pm_runtime_disable(&pdev->dev);
1054 1055 1056 1057 1058

	free_irq(master->irq, master);

	iounmap(master->base);
	kfree(master);
1059 1060 1061 1062 1063 1064

	fsi_soc_dai[0].dev		= NULL;
	fsi_soc_dai[0].private_data	= NULL;
	fsi_soc_dai[1].dev		= NULL;
	fsi_soc_dai[1].private_data	= NULL;

1065 1066 1067
	return 0;
}

1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
static int fsi_runtime_nop(struct device *dev)
{
	/* Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops fsi_pm_ops = {
	.runtime_suspend	= fsi_runtime_nop,
	.runtime_resume		= fsi_runtime_nop,
};

1085 1086 1087 1088
static struct fsi_core fsi1_core = {
	.ver	= 1,

	/* Interrupt */
1089 1090 1091 1092 1093
	.int_st	= INT_ST,
	.iemsk	= IEMSK,
	.imsk	= IMSK,
};

1094 1095 1096 1097
static struct fsi_core fsi2_core = {
	.ver	= 2,

	/* Interrupt */
1098 1099 1100 1101 1102 1103
	.int_st	= CPU_INT_ST,
	.iemsk	= CPU_IEMSK,
	.imsk	= CPU_IMSK,
};

static struct platform_device_id fsi_id_table[] = {
1104 1105
	{ "sh_fsi",	(kernel_ulong_t)&fsi1_core },
	{ "sh_fsi2",	(kernel_ulong_t)&fsi2_core },
1106 1107
};

1108 1109 1110
static struct platform_driver fsi_driver = {
	.driver 	= {
		.name	= "sh_fsi",
1111
		.pm	= &fsi_pm_ops,
1112 1113 1114
	},
	.probe		= fsi_probe,
	.remove		= fsi_remove,
1115
	.id_table	= fsi_id_table,
1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132
};

static int __init fsi_mobile_init(void)
{
	return platform_driver_register(&fsi_driver);
}

static void __exit fsi_mobile_exit(void)
{
	platform_driver_unregister(&fsi_driver);
}
module_init(fsi_mobile_init);
module_exit(fsi_mobile_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");