fsi.c 23.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 * Fifo-attached Serial Interface (FSI) support for SH7724
 *
 * Copyright (C) 2009 Renesas Solutions Corp.
 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
 *
 * Based on ssi.c
 * Copyright (c) 2007 Manuel Lauss <mano@roarinelk.homelinux.net>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/delay.h>
#include <linux/list.h>
20
#include <linux/pm_runtime.h>
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
#include <linux/io.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/initval.h>
#include <sound/soc.h>
#include <sound/pcm_params.h>
#include <sound/sh_fsi.h>
#include <asm/atomic.h>

#define DO_FMT		0x0000
#define DOFF_CTL	0x0004
#define DOFF_ST		0x0008
#define DI_FMT		0x000C
#define DIFF_CTL	0x0010
#define DIFF_ST		0x0014
#define CKG1		0x0018
#define CKG2		0x001C
#define DIDT		0x0020
#define DODT		0x0024
#define MUTE_ST		0x0028
#define REG_END		MUTE_ST

#define INT_ST		0x0200
#define IEMSK		0x0204
#define IMSK		0x0208
#define MUTE		0x020C
#define CLK_RST		0x0210
#define SOFT_RST	0x0214
49
#define FIFO_SZ		0x0218
50
#define MREG_START	INT_ST
51
#define MREG_END	FIFO_SZ
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

/* DO_FMT */
/* DI_FMT */
#define CR_FMT(param) ((param) << 4)
# define CR_MONO	0x0
# define CR_MONO_D	0x1
# define CR_PCM		0x2
# define CR_I2S		0x3
# define CR_TDM		0x4
# define CR_TDM_D	0x5

/* DOFF_CTL */
/* DIFF_CTL */
#define IRQ_HALF	0x00100000
#define FIFO_CLR	0x00000001

/* DOFF_ST */
#define ERR_OVER	0x00000010
#define ERR_UNDER	0x00000001
71
#define ST_ERR		(ERR_OVER | ERR_UNDER)
72 73 74 75 76 77 78 79 80 81 82

/* CLK_RST */
#define B_CLK		0x00000010
#define A_CLK		0x00000001

/* INT_ST */
#define INT_B_IN	(1 << 12)
#define INT_B_OUT	(1 << 8)
#define INT_A_IN	(1 << 4)
#define INT_A_OUT	(1 << 0)

83 84 85 86 87 88
/* SOFT_RST */
#define PBSR		(1 << 12) /* Port B Software Reset */
#define PASR		(1 <<  8) /* Port A Software Reset */
#define IR		(1 <<  4) /* Interrupt Reset */
#define FSISR		(1 <<  0) /* Software Reset */

89 90 91 92 93
/* FIFO_SZ */
#define OUT_SZ_MASK	0x7
#define BO_SZ_SHIFT	8
#define AO_SZ_SHIFT	0

94 95 96 97 98 99 100 101 102 103 104 105 106 107
#define FSI_RATES SNDRV_PCM_RATE_8000_96000

#define FSI_FMTS (SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S16_LE)

/************************************************************************


		struct


************************************************************************/
struct fsi_priv {
	void __iomem *base;
	struct snd_pcm_substream *substream;
108
	struct fsi_master *master;
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

	int fifo_max;
	int chan;

	int byte_offset;
	int period_len;
	int buffer_len;
	int periods;
};

struct fsi_master {
	void __iomem *base;
	int irq;
	struct fsi_priv fsia;
	struct fsi_priv fsib;
	struct sh_fsi_platform_info *info;
125
	spinlock_t lock;
126 127 128 129 130 131 132 133 134
};

/************************************************************************


		basic read write function


************************************************************************/
135
static void __fsi_reg_write(u32 reg, u32 data)
136 137 138 139
{
	/* valid data area is 24bit */
	data &= 0x00ffffff;

140
	__raw_writel(data, reg);
141 142 143 144
}

static u32 __fsi_reg_read(u32 reg)
{
145
	return __raw_readl(reg);
146 147
}

148
static void __fsi_reg_mask_set(u32 reg, u32 mask, u32 data)
149 150 151 152 153 154
{
	u32 val = __fsi_reg_read(reg);

	val &= ~mask;
	val |= data & mask;

155
	__fsi_reg_write(reg, val);
156 157
}

158
static void fsi_reg_write(struct fsi_priv *fsi, u32 reg, u32 data)
159 160
{
	if (reg > REG_END)
161
		return;
162

163
	__fsi_reg_write((u32)(fsi->base + reg), data);
164 165 166 167 168 169 170 171 172 173
}

static u32 fsi_reg_read(struct fsi_priv *fsi, u32 reg)
{
	if (reg > REG_END)
		return 0;

	return __fsi_reg_read((u32)(fsi->base + reg));
}

174
static void fsi_reg_mask_set(struct fsi_priv *fsi, u32 reg, u32 mask, u32 data)
175 176
{
	if (reg > REG_END)
177
		return;
178

179
	__fsi_reg_mask_set((u32)(fsi->base + reg), mask, data);
180 181
}

182
static void fsi_master_write(struct fsi_master *master, u32 reg, u32 data)
183
{
184 185
	unsigned long flags;

186 187
	if ((reg < MREG_START) ||
	    (reg > MREG_END))
188
		return;
189

190
	spin_lock_irqsave(&master->lock, flags);
191
	__fsi_reg_write((u32)(master->base + reg), data);
192
	spin_unlock_irqrestore(&master->lock, flags);
193 194
}

195
static u32 fsi_master_read(struct fsi_master *master, u32 reg)
196
{
197 198 199
	u32 ret;
	unsigned long flags;

200 201 202 203
	if ((reg < MREG_START) ||
	    (reg > MREG_END))
		return 0;

204 205 206 207 208
	spin_lock_irqsave(&master->lock, flags);
	ret = __fsi_reg_read((u32)(master->base + reg));
	spin_unlock_irqrestore(&master->lock, flags);

	return ret;
209 210
}

211
static void fsi_master_mask_set(struct fsi_master *master,
212
			       u32 reg, u32 mask, u32 data)
213
{
214 215
	unsigned long flags;

216 217
	if ((reg < MREG_START) ||
	    (reg > MREG_END))
218
		return;
219

220
	spin_lock_irqsave(&master->lock, flags);
221
	__fsi_reg_mask_set((u32)(master->base + reg), mask, data);
222
	spin_unlock_irqrestore(&master->lock, flags);
223 224 225 226 227 228 229 230 231
}

/************************************************************************


		basic function


************************************************************************/
232
static struct fsi_master *fsi_get_master(struct fsi_priv *fsi)
233
{
234
	return fsi->master;
235 236 237 238
}

static int fsi_is_port_a(struct fsi_priv *fsi)
{
239 240
	return fsi->master->base == fsi->base;
}
241

242
static struct snd_soc_dai *fsi_get_dai(struct snd_pcm_substream *substream)
243 244 245
{
	struct snd_soc_pcm_runtime *rtd = substream->private_data;
	struct snd_soc_dai_link *machine = rtd->dai;
246 247 248 249 250 251 252

	return  machine->cpu_dai;
}

static struct fsi_priv *fsi_get_priv(struct snd_pcm_substream *substream)
{
	struct snd_soc_dai *dai = fsi_get_dai(substream);
253

254
	return dai->private_data;
255 256 257 258 259
}

static u32 fsi_get_info_flags(struct fsi_priv *fsi)
{
	int is_porta = fsi_is_port_a(fsi);
260
	struct fsi_master *master = fsi_get_master(fsi);
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330

	return is_porta ? master->info->porta_flags :
		master->info->portb_flags;
}

static int fsi_is_master_mode(struct fsi_priv *fsi, int is_play)
{
	u32 mode;
	u32 flags = fsi_get_info_flags(fsi);

	mode = is_play ? SH_FSI_OUT_SLAVE_MODE : SH_FSI_IN_SLAVE_MODE;

	/* return
	 * 1 : master mode
	 * 0 : slave mode
	 */

	return (mode & flags) != mode;
}

static u32 fsi_port_ab_io_bit(struct fsi_priv *fsi, int is_play)
{
	int is_porta = fsi_is_port_a(fsi);
	u32 data;

	if (is_porta)
		data = is_play ? (1 << 0) : (1 << 4);
	else
		data = is_play ? (1 << 8) : (1 << 12);

	return data;
}

static void fsi_stream_push(struct fsi_priv *fsi,
			    struct snd_pcm_substream *substream,
			    u32 buffer_len,
			    u32 period_len)
{
	fsi->substream		= substream;
	fsi->buffer_len		= buffer_len;
	fsi->period_len		= period_len;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static void fsi_stream_pop(struct fsi_priv *fsi)
{
	fsi->substream		= NULL;
	fsi->buffer_len		= 0;
	fsi->period_len		= 0;
	fsi->byte_offset	= 0;
	fsi->periods		= 0;
}

static int fsi_get_fifo_residue(struct fsi_priv *fsi, int is_play)
{
	u32 status;
	u32 reg = is_play ? DOFF_ST : DIFF_ST;
	int residue;

	status = fsi_reg_read(fsi, reg);
	residue = 0x1ff & (status >> 8);
	residue *= fsi->chan;

	return residue;
}

/************************************************************************


331
		irq function
332 333 334 335 336 337


************************************************************************/
static void fsi_irq_enable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
338
	struct fsi_master *master = fsi_get_master(fsi);
339

340 341
	fsi_master_mask_set(master, IMSK,  data, data);
	fsi_master_mask_set(master, IEMSK, data, data);
342 343 344 345 346
}

static void fsi_irq_disable(struct fsi_priv *fsi, int is_play)
{
	u32 data = fsi_port_ab_io_bit(fsi, is_play);
347
	struct fsi_master *master = fsi_get_master(fsi);
348

349 350
	fsi_master_mask_set(master, IMSK,  data, 0);
	fsi_master_mask_set(master, IEMSK, data, 0);
351 352
}

353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
static u32 fsi_irq_get_status(struct fsi_master *master)
{
	return fsi_master_read(master, INT_ST);
}

static void fsi_irq_clear_all_status(struct fsi_master *master)
{
	fsi_master_write(master, INT_ST, 0x0000000);
}

static void fsi_irq_clear_status(struct fsi_priv *fsi)
{
	u32 data = 0;
	struct fsi_master *master = fsi_get_master(fsi);

	data |= fsi_port_ab_io_bit(fsi, 0);
	data |= fsi_port_ab_io_bit(fsi, 1);

	/* clear interrupt factor */
	fsi_master_mask_set(master, INT_ST, data, 0);
}

/************************************************************************


		ctrl function


************************************************************************/
382 383 384
static void fsi_clk_ctrl(struct fsi_priv *fsi, int enable)
{
	u32 val = fsi_is_port_a(fsi) ? (1 << 0) : (1 << 4);
385
	struct fsi_master *master = fsi_get_master(fsi);
386 387

	if (enable)
388
		fsi_master_mask_set(master, CLK_RST, val, val);
389
	else
390
		fsi_master_mask_set(master, CLK_RST, val, 0);
391 392
}

393 394 395
static void fsi_fifo_init(struct fsi_priv *fsi,
			  int is_play,
			  struct snd_soc_dai *dai)
396
{
397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
	struct fsi_master *master = fsi_get_master(fsi);
	u32 ctrl, shift, i;

	/* get on-chip RAM capacity */
	shift = fsi_master_read(master, FIFO_SZ);
	shift >>= fsi_is_port_a(fsi) ? AO_SZ_SHIFT : BO_SZ_SHIFT;
	shift &= OUT_SZ_MASK;
	fsi->fifo_max = 256 << shift;
	dev_dbg(dai->dev, "fifo = %d words\n", fsi->fifo_max);

	/*
	 * The maximum number of sample data varies depending
	 * on the number of channels selected for the format.
	 *
	 * FIFOs are used in 4-channel units in 3-channel mode
	 * and in 8-channel units in 5- to 7-channel mode
	 * meaning that more FIFOs than the required size of DPRAM
	 * are used.
	 *
	 * ex) if 256 words of DP-RAM is connected
	 * 1 channel:  256 (256 x 1 = 256)
	 * 2 channels: 128 (128 x 2 = 256)
	 * 3 channels:  64 ( 64 x 3 = 192)
	 * 4 channels:  64 ( 64 x 4 = 256)
	 * 5 channels:  32 ( 32 x 5 = 160)
	 * 6 channels:  32 ( 32 x 6 = 192)
	 * 7 channels:  32 ( 32 x 7 = 224)
	 * 8 channels:  32 ( 32 x 8 = 256)
	 */
	for (i = 1; i < fsi->chan; i <<= 1)
		fsi->fifo_max >>= 1;
	dev_dbg(dai->dev, "%d channel %d store\n", fsi->chan, fsi->fifo_max);
429 430 431 432 433 434 435 436 437 438

	ctrl = is_play ? DOFF_CTL : DIFF_CTL;

	/* set interrupt generation factor */
	fsi_reg_write(fsi, ctrl, IRQ_HALF);

	/* clear FIFO */
	fsi_reg_mask_set(fsi, ctrl, FIFO_CLR, FIFO_CLR);
}

439
static void fsi_soft_all_reset(struct fsi_master *master)
440 441
{
	/* port AB reset */
442
	fsi_master_mask_set(master, SOFT_RST, PASR | PBSR, 0);
443 444 445
	mdelay(10);

	/* soft reset */
446 447
	fsi_master_mask_set(master, SOFT_RST, FSISR, 0);
	fsi_master_mask_set(master, SOFT_RST, FSISR, FSISR);
448 449 450 451
	mdelay(10);
}

/* playback interrupt */
452
static int fsi_data_push(struct fsi_priv *fsi, int startup)
453 454 455
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
456
	u32 status;
457 458 459
	int send;
	int fifo_free;
	int width;
460
	u8 *start;
461
	int i, over_period;
462 463 464 465 466 467

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

468 469 470
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
471 472 473 474 475 476 477

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

478
		over_period = 1;
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get send size for alsa */
	send = (fsi->buffer_len - fsi->byte_offset) / width;

	/*  get FIFO free size */
	fifo_free = (fsi->fifo_max * fsi->chan) - fsi_get_fifo_residue(fsi, 1);

	/* size check */
	if (fifo_free < send)
		send = fifo_free;

498 499 500 501 502 503 504 505 506 507 508 509 510 511
	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT,
				      ((u32)*((u16 *)start + i) << 8));
		break;
	case 4:
		for (i = 0; i < send; i++)
			fsi_reg_write(fsi, DODT, *((u32 *)start + i));
		break;
	default:
512
		return -EINVAL;
513
	}
514 515 516

	fsi->byte_offset += send * width;

517
	status = fsi_reg_read(fsi, DOFF_ST);
518
	if (!startup) {
519
		struct snd_soc_dai *dai = fsi_get_dai(substream);
520 521 522 523 524

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
525
	}
526
	fsi_reg_write(fsi, DOFF_ST, 0);
527

528 529
	fsi_irq_enable(fsi, 1);

530
	if (over_period)
531 532
		snd_pcm_period_elapsed(substream);

533
	return 0;
534 535
}

536
static int fsi_data_pop(struct fsi_priv *fsi, int startup)
537 538 539
{
	struct snd_pcm_runtime *runtime;
	struct snd_pcm_substream *substream = NULL;
540
	u32 status;
541 542 543 544
	int free;
	int fifo_fill;
	int width;
	u8 *start;
545
	int i, over_period;
546 547 548 549 550 551

	if (!fsi			||
	    !fsi->substream		||
	    !fsi->substream->runtime)
		return -EINVAL;

552 553 554
	over_period	= 0;
	substream	= fsi->substream;
	runtime		= substream->runtime;
555 556 557 558 559 560 561

	/* FSI FIFO has limit.
	 * So, this driver can not send periods data at a time
	 */
	if (fsi->byte_offset >=
	    fsi->period_len * (fsi->periods + 1)) {

562
		over_period = 1;
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
		fsi->periods = (fsi->periods + 1) % runtime->periods;

		if (0 == fsi->periods)
			fsi->byte_offset = 0;
	}

	/* get 1 channel data width */
	width = frames_to_bytes(runtime, 1) / fsi->chan;

	/* get free space for alsa */
	free = (fsi->buffer_len - fsi->byte_offset) / width;

	/* get recv size */
	fifo_fill = fsi_get_fifo_residue(fsi, 0);

	if (free < fifo_fill)
		fifo_fill = free;

	start = runtime->dma_area;
	start += fsi->byte_offset;

	switch (width) {
	case 2:
		for (i = 0; i < fifo_fill; i++)
			*((u16 *)start + i) =
				(u16)(fsi_reg_read(fsi, DIDT) >> 8);
		break;
	case 4:
		for (i = 0; i < fifo_fill; i++)
			*((u32 *)start + i) = fsi_reg_read(fsi, DIDT);
		break;
	default:
		return -EINVAL;
	}

	fsi->byte_offset += fifo_fill * width;

600
	status = fsi_reg_read(fsi, DIFF_ST);
601
	if (!startup) {
602
		struct snd_soc_dai *dai = fsi_get_dai(substream);
603 604 605 606 607

		if (status & ERR_OVER)
			dev_err(dai->dev, "over run\n");
		if (status & ERR_UNDER)
			dev_err(dai->dev, "under run\n");
608
	}
609
	fsi_reg_write(fsi, DIFF_ST, 0);
610

611 612
	fsi_irq_enable(fsi, 0);

613
	if (over_period)
614 615
		snd_pcm_period_elapsed(substream);

616
	return 0;
617 618
}

619 620
static irqreturn_t fsi_interrupt(int irq, void *data)
{
621
	struct fsi_master *master = data;
622
	u32 int_st = fsi_irq_get_status(master);
623 624

	/* clear irq status */
625 626
	fsi_master_mask_set(master, SOFT_RST, IR, 0);
	fsi_master_mask_set(master, SOFT_RST, IR, IR);
627 628

	if (int_st & INT_A_OUT)
629
		fsi_data_push(&master->fsia, 0);
630
	if (int_st & INT_B_OUT)
631
		fsi_data_push(&master->fsib, 0);
632
	if (int_st & INT_A_IN)
633
		fsi_data_pop(&master->fsia, 0);
634
	if (int_st & INT_B_IN)
635
		fsi_data_pop(&master->fsib, 0);
636

637
	fsi_irq_clear_all_status(master);
638 639 640 641 642 643 644 645 646 647 648 649 650 651

	return IRQ_HANDLED;
}

/************************************************************************


		dai ops


************************************************************************/
static int fsi_dai_startup(struct snd_pcm_substream *substream,
			   struct snd_soc_dai *dai)
{
652
	struct fsi_priv *fsi = fsi_get_priv(substream);
653 654 655 656 657 658 659 660 661
	const char *msg;
	u32 flags = fsi_get_info_flags(fsi);
	u32 fmt;
	u32 reg;
	u32 data;
	int is_play = (substream->stream == SNDRV_PCM_STREAM_PLAYBACK);
	int is_master;
	int ret = 0;

662
	pm_runtime_get_sync(dai->dev);
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738

	/* CKG1 */
	data = is_play ? (1 << 0) : (1 << 4);
	is_master = fsi_is_master_mode(fsi, is_play);
	if (is_master)
		fsi_reg_mask_set(fsi, CKG1, data, data);
	else
		fsi_reg_mask_set(fsi, CKG1, data, 0);

	/* clock inversion (CKG2) */
	data = 0;
	switch (SH_FSI_INVERSION_MASK & flags) {
	case SH_FSI_LRM_INV:
		data = 1 << 12;
		break;
	case SH_FSI_BRM_INV:
		data = 1 << 8;
		break;
	case SH_FSI_LRS_INV:
		data = 1 << 4;
		break;
	case SH_FSI_BRS_INV:
		data = 1 << 0;
		break;
	}
	fsi_reg_write(fsi, CKG2, data);

	/* do fmt, di fmt */
	data = 0;
	reg = is_play ? DO_FMT : DI_FMT;
	fmt = is_play ? SH_FSI_GET_OFMT(flags) : SH_FSI_GET_IFMT(flags);
	switch (fmt) {
	case SH_FSI_FMT_MONO:
		msg = "MONO";
		data = CR_FMT(CR_MONO);
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_MONO_DELAY:
		msg = "MONO Delay";
		data = CR_FMT(CR_MONO_D);
		fsi->chan = 1;
		break;
	case SH_FSI_FMT_PCM:
		msg = "PCM";
		data = CR_FMT(CR_PCM);
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_I2S:
		msg = "I2S";
		data = CR_FMT(CR_I2S);
		fsi->chan = 2;
		break;
	case SH_FSI_FMT_TDM:
		msg = "TDM";
		data = CR_FMT(CR_TDM) | (fsi->chan - 1);
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
		break;
	case SH_FSI_FMT_TDM_DELAY:
		msg = "TDM Delay";
		data = CR_FMT(CR_TDM_D) | (fsi->chan - 1);
		fsi->chan = is_play ?
			SH_FSI_GET_CH_O(flags) : SH_FSI_GET_CH_I(flags);
		break;
	default:
		dev_err(dai->dev, "unknown format.\n");
		return -EINVAL;
	}
	fsi_reg_write(fsi, reg, data);

	/*
	 * clear clk reset if master mode
	 */
	if (is_master)
		fsi_clk_ctrl(fsi, 1);

739 740 741 742 743
	/* irq clear */
	fsi_irq_disable(fsi, is_play);
	fsi_irq_clear_status(fsi);

	/* fifo init */
744
	fsi_fifo_init(fsi, is_play, dai);
745 746 747 748 749 750 751

	return ret;
}

static void fsi_dai_shutdown(struct snd_pcm_substream *substream,
			     struct snd_soc_dai *dai)
{
752
	struct fsi_priv *fsi = fsi_get_priv(substream);
753 754 755 756 757
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;

	fsi_irq_disable(fsi, is_play);
	fsi_clk_ctrl(fsi, 0);

758
	pm_runtime_put_sync(dai->dev);
759 760 761 762 763
}

static int fsi_dai_trigger(struct snd_pcm_substream *substream, int cmd,
			   struct snd_soc_dai *dai)
{
764
	struct fsi_priv *fsi = fsi_get_priv(substream);
765 766 767 768 769 770 771 772 773
	struct snd_pcm_runtime *runtime = substream->runtime;
	int is_play = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
	int ret = 0;

	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
		fsi_stream_push(fsi, substream,
				frames_to_bytes(runtime, runtime->buffer_size),
				frames_to_bytes(runtime, runtime->period_size));
774
		ret = is_play ? fsi_data_push(fsi, 1) : fsi_data_pop(fsi, 1);
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
		break;
	case SNDRV_PCM_TRIGGER_STOP:
		fsi_irq_disable(fsi, is_play);
		fsi_stream_pop(fsi);
		break;
	}

	return ret;
}

static struct snd_soc_dai_ops fsi_dai_ops = {
	.startup	= fsi_dai_startup,
	.shutdown	= fsi_dai_shutdown,
	.trigger	= fsi_dai_trigger,
};

/************************************************************************


		pcm ops


************************************************************************/
static struct snd_pcm_hardware fsi_pcm_hardware = {
	.info =		SNDRV_PCM_INFO_INTERLEAVED	|
			SNDRV_PCM_INFO_MMAP		|
			SNDRV_PCM_INFO_MMAP_VALID	|
			SNDRV_PCM_INFO_PAUSE,
	.formats		= FSI_FMTS,
	.rates			= FSI_RATES,
	.rate_min		= 8000,
	.rate_max		= 192000,
	.channels_min		= 1,
	.channels_max		= 2,
	.buffer_bytes_max	= 64 * 1024,
	.period_bytes_min	= 32,
	.period_bytes_max	= 8192,
	.periods_min		= 1,
	.periods_max		= 32,
	.fifo_size		= 256,
};

static int fsi_pcm_open(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
	int ret = 0;

	snd_soc_set_runtime_hwparams(substream, &fsi_pcm_hardware);

	ret = snd_pcm_hw_constraint_integer(runtime,
					    SNDRV_PCM_HW_PARAM_PERIODS);

	return ret;
}

static int fsi_hw_params(struct snd_pcm_substream *substream,
			 struct snd_pcm_hw_params *hw_params)
{
	return snd_pcm_lib_malloc_pages(substream,
					params_buffer_bytes(hw_params));
}

static int fsi_hw_free(struct snd_pcm_substream *substream)
{
	return snd_pcm_lib_free_pages(substream);
}

static snd_pcm_uframes_t fsi_pointer(struct snd_pcm_substream *substream)
{
	struct snd_pcm_runtime *runtime = substream->runtime;
845
	struct fsi_priv *fsi = fsi_get_priv(substream);
846 847
	long location;

848
	location = (fsi->byte_offset - 1);
849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
	if (location < 0)
		location = 0;

	return bytes_to_frames(runtime, location);
}

static struct snd_pcm_ops fsi_pcm_ops = {
	.open		= fsi_pcm_open,
	.ioctl		= snd_pcm_lib_ioctl,
	.hw_params	= fsi_hw_params,
	.hw_free	= fsi_hw_free,
	.pointer	= fsi_pointer,
};

/************************************************************************


		snd_soc_platform


************************************************************************/
#define PREALLOC_BUFFER		(32 * 1024)
#define PREALLOC_BUFFER_MAX	(32 * 1024)

static void fsi_pcm_free(struct snd_pcm *pcm)
{
	snd_pcm_lib_preallocate_free_for_all(pcm);
}

static int fsi_pcm_new(struct snd_card *card,
		       struct snd_soc_dai *dai,
		       struct snd_pcm *pcm)
{
	/*
	 * dont use SNDRV_DMA_TYPE_DEV, since it will oops the SH kernel
	 * in MMAP mode (i.e. aplay -M)
	 */
	return snd_pcm_lib_preallocate_pages_for_all(
		pcm,
		SNDRV_DMA_TYPE_CONTINUOUS,
		snd_dma_continuous_data(GFP_KERNEL),
		PREALLOC_BUFFER, PREALLOC_BUFFER_MAX);
}

/************************************************************************


		alsa struct


************************************************************************/
struct snd_soc_dai fsi_soc_dai[] = {
	{
		.name			= "FSIA",
		.id			= 0,
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
910 911 912 913 914 915
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
916 917 918 919 920 921 922 923 924 925 926
		.ops = &fsi_dai_ops,
	},
	{
		.name			= "FSIB",
		.id			= 1,
		.playback = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
927 928 929 930 931 932
		.capture = {
			.rates		= FSI_RATES,
			.formats	= FSI_FMTS,
			.channels_min	= 1,
			.channels_max	= 8,
		},
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954
		.ops = &fsi_dai_ops,
	},
};
EXPORT_SYMBOL_GPL(fsi_soc_dai);

struct snd_soc_platform fsi_soc_platform = {
	.name		= "fsi-pcm",
	.pcm_ops 	= &fsi_pcm_ops,
	.pcm_new	= fsi_pcm_new,
	.pcm_free	= fsi_pcm_free,
};
EXPORT_SYMBOL_GPL(fsi_soc_platform);

/************************************************************************


		platform function


************************************************************************/
static int fsi_probe(struct platform_device *pdev)
{
955
	struct fsi_master *master;
956 957 958 959
	struct resource *res;
	unsigned int irq;
	int ret;

960 961 962 963 964
	if (0 != pdev->id) {
		dev_err(&pdev->dev, "current fsi support id 0 only now\n");
		return -ENODEV;
	}

965 966
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	irq = platform_get_irq(pdev, 0);
967
	if (!res || (int)irq <= 0) {
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989
		dev_err(&pdev->dev, "Not enough FSI platform resources.\n");
		ret = -ENODEV;
		goto exit;
	}

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master) {
		dev_err(&pdev->dev, "Could not allocate master\n");
		ret = -ENOMEM;
		goto exit;
	}

	master->base = ioremap_nocache(res->start, resource_size(res));
	if (!master->base) {
		ret = -ENXIO;
		dev_err(&pdev->dev, "Unable to ioremap FSI registers.\n");
		goto exit_kfree;
	}

	master->irq		= irq;
	master->info		= pdev->dev.platform_data;
	master->fsia.base	= master->base;
990
	master->fsia.master	= master;
991
	master->fsib.base	= master->base + 0x40;
992
	master->fsib.master	= master;
993
	spin_lock_init(&master->lock);
994

995 996
	pm_runtime_enable(&pdev->dev);
	pm_runtime_resume(&pdev->dev);
997 998

	fsi_soc_dai[0].dev		= &pdev->dev;
999
	fsi_soc_dai[0].private_data	= &master->fsia;
1000
	fsi_soc_dai[1].dev		= &pdev->dev;
1001
	fsi_soc_dai[1].private_data	= &master->fsib;
1002

1003
	fsi_soft_all_reset(master);
1004 1005 1006 1007

	ret = request_irq(irq, &fsi_interrupt, IRQF_DISABLED, "fsi", master);
	if (ret) {
		dev_err(&pdev->dev, "irq request err\n");
1008
		goto exit_iounmap;
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
	}

	ret = snd_soc_register_platform(&fsi_soc_platform);
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot snd soc register\n");
		goto exit_free_irq;
	}

	return snd_soc_register_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));

exit_free_irq:
	free_irq(irq, master);
exit_iounmap:
	iounmap(master->base);
1023
	pm_runtime_disable(&pdev->dev);
1024 1025 1026 1027 1028 1029 1030 1031 1032
exit_kfree:
	kfree(master);
	master = NULL;
exit:
	return ret;
}

static int fsi_remove(struct platform_device *pdev)
{
1033 1034 1035 1036
	struct fsi_master *master;

	master = fsi_get_master(fsi_soc_dai[0].private_data);

1037 1038 1039
	snd_soc_unregister_dais(fsi_soc_dai, ARRAY_SIZE(fsi_soc_dai));
	snd_soc_unregister_platform(&fsi_soc_platform);

1040
	pm_runtime_disable(&pdev->dev);
1041 1042 1043 1044 1045

	free_irq(master->irq, master);

	iounmap(master->base);
	kfree(master);
1046 1047 1048 1049 1050 1051

	fsi_soc_dai[0].dev		= NULL;
	fsi_soc_dai[0].private_data	= NULL;
	fsi_soc_dai[1].dev		= NULL;
	fsi_soc_dai[1].private_data	= NULL;

1052 1053 1054
	return 0;
}

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
static int fsi_runtime_nop(struct device *dev)
{
	/* Runtime PM callback shared between ->runtime_suspend()
	 * and ->runtime_resume(). Simply returns success.
	 *
	 * This driver re-initializes all registers after
	 * pm_runtime_get_sync() anyway so there is no need
	 * to save and restore registers here.
	 */
	return 0;
}

static struct dev_pm_ops fsi_pm_ops = {
	.runtime_suspend	= fsi_runtime_nop,
	.runtime_resume		= fsi_runtime_nop,
};

1072 1073 1074
static struct platform_driver fsi_driver = {
	.driver 	= {
		.name	= "sh_fsi",
1075
		.pm	= &fsi_pm_ops,
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	},
	.probe		= fsi_probe,
	.remove		= fsi_remove,
};

static int __init fsi_mobile_init(void)
{
	return platform_driver_register(&fsi_driver);
}

static void __exit fsi_mobile_exit(void)
{
	platform_driver_unregister(&fsi_driver);
}
module_init(fsi_mobile_init);
module_exit(fsi_mobile_exit);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("SuperH onchip FSI audio driver");
MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");