cpsw.c 85.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/*
 * Texas Instruments Ethernet Switch Driver
 *
 * Copyright (C) 2012 Texas Instruments
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation version 2.
 *
 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
 * kind, whether express or implied; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/irqreturn.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/etherdevice.h>
#include <linux/netdevice.h>
27
#include <linux/net_tstamp.h>
28 29 30
#include <linux/phy.h>
#include <linux/workqueue.h>
#include <linux/delay.h>
31
#include <linux/pm_runtime.h>
32
#include <linux/gpio.h>
33
#include <linux/of.h>
34
#include <linux/of_mdio.h>
35 36
#include <linux/of_net.h>
#include <linux/of_device.h>
37
#include <linux/if_vlan.h>
38

39
#include <linux/pinctrl/consumer.h>
40

41
#include "cpsw.h"
42
#include "cpsw_ale.h"
43
#include "cpts.h"
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
#include "davinci_cpdma.h"

#define CPSW_DEBUG	(NETIF_MSG_HW		| NETIF_MSG_WOL		| \
			 NETIF_MSG_DRV		| NETIF_MSG_LINK	| \
			 NETIF_MSG_IFUP		| NETIF_MSG_INTR	| \
			 NETIF_MSG_PROBE	| NETIF_MSG_TIMER	| \
			 NETIF_MSG_IFDOWN	| NETIF_MSG_RX_ERR	| \
			 NETIF_MSG_TX_ERR	| NETIF_MSG_TX_DONE	| \
			 NETIF_MSG_PKTDATA	| NETIF_MSG_TX_QUEUED	| \
			 NETIF_MSG_RX_STATUS)

#define cpsw_info(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_info(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_err(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_err(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_dbg(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_dbg(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

#define cpsw_notice(priv, type, format, ...)		\
do {								\
	if (netif_msg_##type(priv) && net_ratelimit())		\
		dev_notice(priv->dev, format, ## __VA_ARGS__);	\
} while (0)

79 80
#define ALE_ALL_PORTS		0x7

81 82 83 84
#define CPSW_MAJOR_VERSION(reg)		(reg >> 8 & 0x7)
#define CPSW_MINOR_VERSION(reg)		(reg & 0xff)
#define CPSW_RTL_VERSION(reg)		((reg >> 11) & 0x1f)

85 86
#define CPSW_VERSION_1		0x19010a
#define CPSW_VERSION_2		0x19010c
87
#define CPSW_VERSION_3		0x19010f
88
#define CPSW_VERSION_4		0x190112
89 90

#define HOST_PORT_NUM		0
91
#define CPSW_ALE_PORTS_NUM	3
92 93 94 95 96 97 98
#define SLIVER_SIZE		0x40

#define CPSW1_HOST_PORT_OFFSET	0x028
#define CPSW1_SLAVE_OFFSET	0x050
#define CPSW1_SLAVE_SIZE	0x040
#define CPSW1_CPDMA_OFFSET	0x100
#define CPSW1_STATERAM_OFFSET	0x200
99
#define CPSW1_HW_STATS		0x400
100 101 102 103 104 105 106 107
#define CPSW1_CPTS_OFFSET	0x500
#define CPSW1_ALE_OFFSET	0x600
#define CPSW1_SLIVER_OFFSET	0x700

#define CPSW2_HOST_PORT_OFFSET	0x108
#define CPSW2_SLAVE_OFFSET	0x200
#define CPSW2_SLAVE_SIZE	0x100
#define CPSW2_CPDMA_OFFSET	0x800
108
#define CPSW2_HW_STATS		0x900
109 110 111 112 113 114
#define CPSW2_STATERAM_OFFSET	0xa00
#define CPSW2_CPTS_OFFSET	0xc00
#define CPSW2_ALE_OFFSET	0xd00
#define CPSW2_SLIVER_OFFSET	0xd80
#define CPSW2_BD_OFFSET		0x2000

115 116 117 118 119 120 121 122
#define CPDMA_RXTHRESH		0x0c0
#define CPDMA_RXFREE		0x0e0
#define CPDMA_TXHDP		0x00
#define CPDMA_RXHDP		0x20
#define CPDMA_TXCP		0x40
#define CPDMA_RXCP		0x60

#define CPSW_POLL_WEIGHT	64
123 124
#define CPSW_MIN_PACKET_SIZE	(VLAN_ETH_ZLEN)
#define CPSW_MAX_PACKET_SIZE	(VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)
125 126 127

#define RX_PRIORITY_MAPPING	0x76543210
#define TX_PRIORITY_MAPPING	0x33221100
128
#define CPDMA_TX_PRIORITY_MAP	0x01234567
129

130 131 132
#define CPSW_VLAN_AWARE		BIT(1)
#define CPSW_ALE_VLAN_AWARE	1

133 134 135
#define CPSW_FIFO_NORMAL_MODE		(0 << 16)
#define CPSW_FIFO_DUAL_MAC_MODE		(1 << 16)
#define CPSW_FIFO_RATE_LIMIT_MODE	(2 << 16)
136

137 138 139 140 141 142 143
#define CPSW_INTPACEEN		(0x3f << 16)
#define CPSW_INTPRESCALE_MASK	(0x7FF << 0)
#define CPSW_CMINTMAX_CNT	63
#define CPSW_CMINTMIN_CNT	2
#define CPSW_CMINTMAX_INTVL	(1000 / CPSW_CMINTMIN_CNT)
#define CPSW_CMINTMIN_INTVL	((1000 / CPSW_CMINTMAX_CNT) + 1)

144 145 146
#define cpsw_slave_index(cpsw, priv)				\
		((cpsw->data.dual_emac) ? priv->emac_port :	\
		cpsw->data.active_slave)
147
#define IRQ_NUM			2
148
#define CPSW_MAX_QUEUES		8
149
#define CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT 256
150

151 152 153 154 155 156 157 158 159 160 161 162
static int debug_level;
module_param(debug_level, int, 0);
MODULE_PARM_DESC(debug_level, "cpsw debug level (NETIF_MSG bits)");

static int ale_ageout = 10;
module_param(ale_ageout, int, 0);
MODULE_PARM_DESC(ale_ageout, "cpsw ale ageout interval (seconds)");

static int rx_packet_max = CPSW_MAX_PACKET_SIZE;
module_param(rx_packet_max, int, 0);
MODULE_PARM_DESC(rx_packet_max, "maximum receive packet size (bytes)");

163 164 165 166
static int descs_pool_size = CPSW_CPDMA_DESCS_POOL_SIZE_DEFAULT;
module_param(descs_pool_size, int, 0444);
MODULE_PARM_DESC(descs_pool_size, "Number of CPDMA CPPI descriptors in pool");

167
struct cpsw_wr_regs {
168 169 170 171 172 173 174 175
	u32	id_ver;
	u32	soft_reset;
	u32	control;
	u32	int_control;
	u32	rx_thresh_en;
	u32	rx_en;
	u32	tx_en;
	u32	misc_en;
176 177 178 179 180 181 182 183 184
	u32	mem_allign1[8];
	u32	rx_thresh_stat;
	u32	rx_stat;
	u32	tx_stat;
	u32	misc_stat;
	u32	mem_allign2[8];
	u32	rx_imax;
	u32	tx_imax;

185 186
};

187
struct cpsw_ss_regs {
188 189 190 191 192
	u32	id_ver;
	u32	control;
	u32	soft_reset;
	u32	stat_port_en;
	u32	ptype;
193 194 195 196 197 198 199 200
	u32	soft_idle;
	u32	thru_rate;
	u32	gap_thresh;
	u32	tx_start_wds;
	u32	flow_control;
	u32	vlan_ltype;
	u32	ts_ltype;
	u32	dlr_ltype;
201 202
};

203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/* CPSW_PORT_V1 */
#define CPSW1_MAX_BLKS      0x00 /* Maximum FIFO Blocks */
#define CPSW1_BLK_CNT       0x04 /* FIFO Block Usage Count (Read Only) */
#define CPSW1_TX_IN_CTL     0x08 /* Transmit FIFO Control */
#define CPSW1_PORT_VLAN     0x0c /* VLAN Register */
#define CPSW1_TX_PRI_MAP    0x10 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW1_TS_CTL        0x14 /* Time Sync Control */
#define CPSW1_TS_SEQ_LTYPE  0x18 /* Time Sync Sequence ID Offset and Msg Type */
#define CPSW1_TS_VLAN       0x1c /* Time Sync VLAN1 and VLAN2 */

/* CPSW_PORT_V2 */
#define CPSW2_CONTROL       0x00 /* Control Register */
#define CPSW2_MAX_BLKS      0x08 /* Maximum FIFO Blocks */
#define CPSW2_BLK_CNT       0x0c /* FIFO Block Usage Count (Read Only) */
#define CPSW2_TX_IN_CTL     0x10 /* Transmit FIFO Control */
#define CPSW2_PORT_VLAN     0x14 /* VLAN Register */
#define CPSW2_TX_PRI_MAP    0x18 /* Tx Header Priority to Switch Pri Mapping */
#define CPSW2_TS_SEQ_MTYPE  0x1c /* Time Sync Sequence ID Offset and Msg Type */

/* CPSW_PORT_V1 and V2 */
#define SA_LO               0x20 /* CPGMAC_SL Source Address Low */
#define SA_HI               0x24 /* CPGMAC_SL Source Address High */
#define SEND_PERCENT        0x28 /* Transmit Queue Send Percentages */

/* CPSW_PORT_V2 only */
#define RX_DSCP_PRI_MAP0    0x30 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP1    0x34 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP2    0x38 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP3    0x3c /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP4    0x40 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP5    0x44 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP6    0x48 /* Rx DSCP Priority to Rx Packet Mapping */
#define RX_DSCP_PRI_MAP7    0x4c /* Rx DSCP Priority to Rx Packet Mapping */

/* Bit definitions for the CPSW2_CONTROL register */
#define PASS_PRI_TAGGED     (1<<24) /* Pass Priority Tagged */
#define VLAN_LTYPE2_EN      (1<<21) /* VLAN LTYPE 2 enable */
#define VLAN_LTYPE1_EN      (1<<20) /* VLAN LTYPE 1 enable */
#define DSCP_PRI_EN         (1<<16) /* DSCP Priority Enable */
#define TS_320              (1<<14) /* Time Sync Dest Port 320 enable */
#define TS_319              (1<<13) /* Time Sync Dest Port 319 enable */
#define TS_132              (1<<12) /* Time Sync Dest IP Addr 132 enable */
#define TS_131              (1<<11) /* Time Sync Dest IP Addr 131 enable */
#define TS_130              (1<<10) /* Time Sync Dest IP Addr 130 enable */
#define TS_129              (1<<9)  /* Time Sync Dest IP Addr 129 enable */
248 249
#define TS_TTL_NONZERO      (1<<8)  /* Time Sync Time To Live Non-zero enable */
#define TS_ANNEX_F_EN       (1<<6)  /* Time Sync Annex F enable */
250 251 252 253 254 255
#define TS_ANNEX_D_EN       (1<<4)  /* Time Sync Annex D enable */
#define TS_LTYPE2_EN        (1<<3)  /* Time Sync LTYPE 2 enable */
#define TS_LTYPE1_EN        (1<<2)  /* Time Sync LTYPE 1 enable */
#define TS_TX_EN            (1<<1)  /* Time Sync Transmit Enable */
#define TS_RX_EN            (1<<0)  /* Time Sync Receive Enable */

256 257 258
#define CTRL_V2_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO  | TS_ANNEX_D_EN | TS_LTYPE1_EN)
259

260 261 262 263 264 265 266 267 268 269 270 271 272
#define CTRL_V2_ALL_TS_MASK (CTRL_V2_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V2_TX_TS_BITS  (CTRL_V2_TS_BITS | TS_TX_EN)
#define CTRL_V2_RX_TS_BITS  (CTRL_V2_TS_BITS | TS_RX_EN)


#define CTRL_V3_TS_BITS \
	(TS_320 | TS_319 | TS_132 | TS_131 | TS_130 | TS_129 |\
	 TS_TTL_NONZERO | TS_ANNEX_F_EN | TS_ANNEX_D_EN |\
	 TS_LTYPE1_EN)

#define CTRL_V3_ALL_TS_MASK (CTRL_V3_TS_BITS | TS_TX_EN | TS_RX_EN)
#define CTRL_V3_TX_TS_BITS  (CTRL_V3_TS_BITS | TS_TX_EN)
#define CTRL_V3_RX_TS_BITS  (CTRL_V3_TS_BITS | TS_RX_EN)
273 274 275 276 277 278 279 280 281

/* Bit definitions for the CPSW2_TS_SEQ_MTYPE register */
#define TS_SEQ_ID_OFFSET_SHIFT   (16)    /* Time Sync Sequence ID Offset */
#define TS_SEQ_ID_OFFSET_MASK    (0x3f)
#define TS_MSG_TYPE_EN_SHIFT     (0)     /* Time Sync Message Type Enable */
#define TS_MSG_TYPE_EN_MASK      (0xffff)

/* The PTP event messages - Sync, Delay_Req, Pdelay_Req, and Pdelay_Resp. */
#define EVENT_MSG_BITS ((1<<0) | (1<<1) | (1<<2) | (1<<3))
282

283 284 285 286 287 288 289 290
/* Bit definitions for the CPSW1_TS_CTL register */
#define CPSW_V1_TS_RX_EN		BIT(0)
#define CPSW_V1_TS_TX_EN		BIT(4)
#define CPSW_V1_MSG_TYPE_OFS		16

/* Bit definitions for the CPSW1_TS_SEQ_LTYPE register */
#define CPSW_V1_SEQ_ID_OFS_SHIFT	16

291 292 293 294
#define CPSW_MAX_BLKS_TX		15
#define CPSW_MAX_BLKS_TX_SHIFT		4
#define CPSW_MAX_BLKS_RX		5

295 296 297
struct cpsw_host_regs {
	u32	max_blks;
	u32	blk_cnt;
298
	u32	tx_in_ctl;
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
	u32	port_vlan;
	u32	tx_pri_map;
	u32	cpdma_tx_pri_map;
	u32	cpdma_rx_chan_map;
};

struct cpsw_sliver_regs {
	u32	id_ver;
	u32	mac_control;
	u32	mac_status;
	u32	soft_reset;
	u32	rx_maxlen;
	u32	__reserved_0;
	u32	rx_pause;
	u32	tx_pause;
	u32	__reserved_1;
	u32	rx_pri_map;
};

318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
struct cpsw_hw_stats {
	u32	rxgoodframes;
	u32	rxbroadcastframes;
	u32	rxmulticastframes;
	u32	rxpauseframes;
	u32	rxcrcerrors;
	u32	rxaligncodeerrors;
	u32	rxoversizedframes;
	u32	rxjabberframes;
	u32	rxundersizedframes;
	u32	rxfragments;
	u32	__pad_0[2];
	u32	rxoctets;
	u32	txgoodframes;
	u32	txbroadcastframes;
	u32	txmulticastframes;
	u32	txpauseframes;
	u32	txdeferredframes;
	u32	txcollisionframes;
	u32	txsinglecollframes;
	u32	txmultcollframes;
	u32	txexcessivecollisions;
	u32	txlatecollisions;
	u32	txunderrun;
	u32	txcarriersenseerrors;
	u32	txoctets;
	u32	octetframes64;
	u32	octetframes65t127;
	u32	octetframes128t255;
	u32	octetframes256t511;
	u32	octetframes512t1023;
	u32	octetframes1024tup;
	u32	netoctets;
	u32	rxsofoverruns;
	u32	rxmofoverruns;
	u32	rxdmaoverruns;
};

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
struct cpsw_slave_data {
	struct device_node *phy_node;
	char		phy_id[MII_BUS_ID_SIZE];
	int		phy_if;
	u8		mac_addr[ETH_ALEN];
	u16		dual_emac_res_vlan;	/* Reserved VLAN for DualEMAC */
};

struct cpsw_platform_data {
	struct cpsw_slave_data	*slave_data;
	u32	ss_reg_ofs;	/* Subsystem control register offset */
	u32	channels;	/* number of cpdma channels (symmetric) */
	u32	slaves;		/* number of slave cpgmac ports */
	u32	active_slave; /* time stamping, ethtool and SIOCGMIIPHY slave */
	u32	ale_entries;	/* ale table size */
	u32	bd_ram_size;  /*buffer descriptor ram size */
	u32	mac_control;	/* Mac control register */
	u16	default_vlan;	/* Def VLAN for ALE lookup in VLAN aware mode*/
	bool	dual_emac;	/* Enable Dual EMAC mode */
};

377
struct cpsw_slave {
378
	void __iomem			*regs;
379 380 381 382 383
	struct cpsw_sliver_regs __iomem	*sliver;
	int				slave_num;
	u32				mac_control;
	struct cpsw_slave_data		*data;
	struct phy_device		*phy;
384 385
	struct net_device		*ndev;
	u32				port_vlan;
386 387
};

388 389
static inline u32 slave_read(struct cpsw_slave *slave, u32 offset)
{
390
	return readl_relaxed(slave->regs + offset);
391 392 393 394
}

static inline void slave_write(struct cpsw_slave *slave, u32 val, u32 offset)
{
395
	writel_relaxed(val, slave->regs + offset);
396 397
}

398 399 400 401 402
struct cpsw_vector {
	struct cpdma_chan *ch;
	int budget;
};

403
struct cpsw_common {
404
	struct device			*dev;
405
	struct cpsw_platform_data	data;
406 407
	struct napi_struct		napi_rx;
	struct napi_struct		napi_tx;
408 409 410 411
	struct cpsw_ss_regs __iomem	*regs;
	struct cpsw_wr_regs __iomem	*wr_regs;
	u8 __iomem			*hw_stats;
	struct cpsw_host_regs __iomem	*host_port_regs;
412 413 414 415
	u32				version;
	u32				coal_intvl;
	u32				bus_freq_mhz;
	int				rx_packet_max;
416
	struct cpsw_slave		*slaves;
417
	struct cpdma_ctlr		*dma;
418 419
	struct cpsw_vector		txv[CPSW_MAX_QUEUES];
	struct cpsw_vector		rxv[CPSW_MAX_QUEUES];
420
	struct cpsw_ale			*ale;
421 422 423 424
	bool				quirk_irq;
	bool				rx_irq_disabled;
	bool				tx_irq_disabled;
	u32 irqs_table[IRQ_NUM];
425
	struct cpts			*cpts;
426
	int				rx_ch_num, tx_ch_num;
427
	int				speed;
428
	int				usage_count;
429 430 431
};

struct cpsw_priv {
432 433 434 435
	struct net_device		*ndev;
	struct device			*dev;
	u32				msg_enable;
	u8				mac_addr[ETH_ALEN];
436 437
	bool				rx_pause;
	bool				tx_pause;
438
	u32 emac_port;
439
	struct cpsw_common *cpsw;
440 441
};

442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
struct cpsw_stats {
	char stat_string[ETH_GSTRING_LEN];
	int type;
	int sizeof_stat;
	int stat_offset;
};

enum {
	CPSW_STATS,
	CPDMA_RX_STATS,
	CPDMA_TX_STATS,
};

#define CPSW_STAT(m)		CPSW_STATS,				\
				sizeof(((struct cpsw_hw_stats *)0)->m), \
				offsetof(struct cpsw_hw_stats, m)
#define CPDMA_RX_STAT(m)	CPDMA_RX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)
#define CPDMA_TX_STAT(m)	CPDMA_TX_STATS,				   \
				sizeof(((struct cpdma_chan_stats *)0)->m), \
				offsetof(struct cpdma_chan_stats, m)

static const struct cpsw_stats cpsw_gstrings_stats[] = {
	{ "Good Rx Frames", CPSW_STAT(rxgoodframes) },
	{ "Broadcast Rx Frames", CPSW_STAT(rxbroadcastframes) },
	{ "Multicast Rx Frames", CPSW_STAT(rxmulticastframes) },
	{ "Pause Rx Frames", CPSW_STAT(rxpauseframes) },
	{ "Rx CRC Errors", CPSW_STAT(rxcrcerrors) },
	{ "Rx Align/Code Errors", CPSW_STAT(rxaligncodeerrors) },
	{ "Oversize Rx Frames", CPSW_STAT(rxoversizedframes) },
	{ "Rx Jabbers", CPSW_STAT(rxjabberframes) },
	{ "Undersize (Short) Rx Frames", CPSW_STAT(rxundersizedframes) },
	{ "Rx Fragments", CPSW_STAT(rxfragments) },
	{ "Rx Octets", CPSW_STAT(rxoctets) },
	{ "Good Tx Frames", CPSW_STAT(txgoodframes) },
	{ "Broadcast Tx Frames", CPSW_STAT(txbroadcastframes) },
	{ "Multicast Tx Frames", CPSW_STAT(txmulticastframes) },
	{ "Pause Tx Frames", CPSW_STAT(txpauseframes) },
	{ "Deferred Tx Frames", CPSW_STAT(txdeferredframes) },
	{ "Collisions", CPSW_STAT(txcollisionframes) },
	{ "Single Collision Tx Frames", CPSW_STAT(txsinglecollframes) },
	{ "Multiple Collision Tx Frames", CPSW_STAT(txmultcollframes) },
	{ "Excessive Collisions", CPSW_STAT(txexcessivecollisions) },
	{ "Late Collisions", CPSW_STAT(txlatecollisions) },
	{ "Tx Underrun", CPSW_STAT(txunderrun) },
	{ "Carrier Sense Errors", CPSW_STAT(txcarriersenseerrors) },
	{ "Tx Octets", CPSW_STAT(txoctets) },
	{ "Rx + Tx 64 Octet Frames", CPSW_STAT(octetframes64) },
	{ "Rx + Tx 65-127 Octet Frames", CPSW_STAT(octetframes65t127) },
	{ "Rx + Tx 128-255 Octet Frames", CPSW_STAT(octetframes128t255) },
	{ "Rx + Tx 256-511 Octet Frames", CPSW_STAT(octetframes256t511) },
	{ "Rx + Tx 512-1023 Octet Frames", CPSW_STAT(octetframes512t1023) },
	{ "Rx + Tx 1024-Up Octet Frames", CPSW_STAT(octetframes1024tup) },
	{ "Net Octets", CPSW_STAT(netoctets) },
	{ "Rx Start of Frame Overruns", CPSW_STAT(rxsofoverruns) },
	{ "Rx Middle of Frame Overruns", CPSW_STAT(rxmofoverruns) },
	{ "Rx DMA Overruns", CPSW_STAT(rxdmaoverruns) },
};

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
static const struct cpsw_stats cpsw_gstrings_ch_stats[] = {
	{ "head_enqueue", CPDMA_RX_STAT(head_enqueue) },
	{ "tail_enqueue", CPDMA_RX_STAT(tail_enqueue) },
	{ "pad_enqueue", CPDMA_RX_STAT(pad_enqueue) },
	{ "misqueued", CPDMA_RX_STAT(misqueued) },
	{ "desc_alloc_fail", CPDMA_RX_STAT(desc_alloc_fail) },
	{ "pad_alloc_fail", CPDMA_RX_STAT(pad_alloc_fail) },
	{ "runt_receive_buf", CPDMA_RX_STAT(runt_receive_buff) },
	{ "runt_transmit_buf", CPDMA_RX_STAT(runt_transmit_buff) },
	{ "empty_dequeue", CPDMA_RX_STAT(empty_dequeue) },
	{ "busy_dequeue", CPDMA_RX_STAT(busy_dequeue) },
	{ "good_dequeue", CPDMA_RX_STAT(good_dequeue) },
	{ "requeue", CPDMA_RX_STAT(requeue) },
	{ "teardown_dequeue", CPDMA_RX_STAT(teardown_dequeue) },
};

#define CPSW_STATS_COMMON_LEN	ARRAY_SIZE(cpsw_gstrings_stats)
#define CPSW_STATS_CH_LEN	ARRAY_SIZE(cpsw_gstrings_ch_stats)
520

521
#define ndev_to_cpsw(ndev) (((struct cpsw_priv *)netdev_priv(ndev))->cpsw)
522
#define napi_to_cpsw(napi)	container_of(napi, struct cpsw_common, napi)
523 524
#define for_each_slave(priv, func, arg...)				\
	do {								\
525
		struct cpsw_slave *slave;				\
526
		struct cpsw_common *cpsw = (priv)->cpsw;		\
527
		int n;							\
528 529
		if (cpsw->data.dual_emac)				\
			(func)((cpsw)->slaves + priv->emac_port, ##arg);\
530
		else							\
531 532
			for (n = cpsw->data.slaves,			\
					slave = cpsw->slaves;		\
533 534
					n; n--)				\
				(func)(slave++, ##arg);			\
535 536
	} while (0)

537
#define cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb)		\
538
	do {								\
539
		if (!cpsw->data.dual_emac)				\
540 541
			break;						\
		if (CPDMA_RX_SOURCE_PORT(status) == 1) {		\
542
			ndev = cpsw->slaves[0].ndev;			\
543 544
			skb->dev = ndev;				\
		} else if (CPDMA_RX_SOURCE_PORT(status) == 2) {		\
545
			ndev = cpsw->slaves[1].ndev;			\
546 547
			skb->dev = ndev;				\
		}							\
548
	} while (0)
549
#define cpsw_add_mcast(cpsw, priv, addr)				\
550
	do {								\
551 552
		if (cpsw->data.dual_emac) {				\
			struct cpsw_slave *slave = cpsw->slaves +	\
553
						priv->emac_port;	\
554
			int slave_port = cpsw_get_slave_port(		\
555
						slave->slave_num);	\
556
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
557
				1 << slave_port | ALE_PORT_HOST,	\
558 559
				ALE_VLAN, slave->port_vlan, 0);		\
		} else {						\
560
			cpsw_ale_add_mcast(cpsw->ale, addr,		\
561
				ALE_ALL_PORTS,				\
562 563 564 565
				0, 0, 0);				\
		}							\
	} while (0)

566
static inline int cpsw_get_slave_port(u32 slave_num)
567
{
568
	return slave_num + 1;
569
}
570

571 572
static void cpsw_set_promiscious(struct net_device *ndev, bool enable)
{
573 574
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_ale *ale = cpsw->ale;
575 576
	int i;

577
	if (cpsw->data.dual_emac) {
578 579 580 581 582 583
		bool flag = false;

		/* Enabling promiscuous mode for one interface will be
		 * common for both the interface as the interface shares
		 * the same hardware resource.
		 */
584 585
		for (i = 0; i < cpsw->data.slaves; i++)
			if (cpsw->slaves[i].ndev->flags & IFF_PROMISC)
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
				flag = true;

		if (!enable && flag) {
			enable = true;
			dev_err(&ndev->dev, "promiscuity not disabled as the other interface is still in promiscuity mode\n");
		}

		if (enable) {
			/* Enable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 1);

			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
			/* Disable Bypass */
			cpsw_ale_control_set(ale, 0, ALE_BYPASS, 0);
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	} else {
		if (enable) {
			unsigned long timeout = jiffies + HZ;

607
			/* Disable Learn for all ports (host is port 0 and slaves are port 1 and up */
608
			for (i = 0; i <= cpsw->data.slaves; i++) {
609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 1);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 1);
			}

			/* Clear All Untouched entries */
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);
			do {
				cpu_relax();
				if (cpsw_ale_control_get(ale, 0, ALE_AGEOUT))
					break;
			} while (time_after(timeout, jiffies));
			cpsw_ale_control_set(ale, 0, ALE_AGEOUT, 1);

			/* Clear all mcast from ALE */
625
			cpsw_ale_flush_multicast(ale, ALE_ALL_PORTS, -1);
626 627 628 629 630

			/* Flood All Unicast Packets to Host port */
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 1);
			dev_dbg(&ndev->dev, "promiscuity enabled\n");
		} else {
631
			/* Don't Flood All Unicast Packets to Host port */
632 633
			cpsw_ale_control_set(ale, 0, ALE_P0_UNI_FLOOD, 0);

634
			/* Enable Learn for all ports (host is port 0 and slaves are port 1 and up */
635
			for (i = 0; i <= cpsw->data.slaves; i++) {
636 637 638 639 640 641 642 643 644 645
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NOLEARN, 0);
				cpsw_ale_control_set(ale, i,
						     ALE_PORT_NO_SA_UPDATE, 0);
			}
			dev_dbg(&ndev->dev, "promiscuity disabled\n");
		}
	}
}

646 647 648
static void cpsw_ndo_set_rx_mode(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
649
	struct cpsw_common *cpsw = priv->cpsw;
650 651
	int vid;

652 653
	if (cpsw->data.dual_emac)
		vid = cpsw->slaves[priv->emac_port].port_vlan;
654
	else
655
		vid = cpsw->data.default_vlan;
656 657 658

	if (ndev->flags & IFF_PROMISC) {
		/* Enable promiscuous mode */
659
		cpsw_set_promiscious(ndev, true);
660
		cpsw_ale_set_allmulti(cpsw->ale, IFF_ALLMULTI);
661
		return;
662 663 664
	} else {
		/* Disable promiscuous mode */
		cpsw_set_promiscious(ndev, false);
665 666
	}

667
	/* Restore allmulti on vlans if necessary */
668
	cpsw_ale_set_allmulti(cpsw->ale, priv->ndev->flags & IFF_ALLMULTI);
669

670
	/* Clear all mcast from ALE */
671
	cpsw_ale_flush_multicast(cpsw->ale, ALE_ALL_PORTS, vid);
672 673 674 675 676 677

	if (!netdev_mc_empty(ndev)) {
		struct netdev_hw_addr *ha;

		/* program multicast address list into ALE register */
		netdev_for_each_mc_addr(ha, ndev) {
678
			cpsw_add_mcast(cpsw, priv, (u8 *)ha->addr);
679 680 681 682
		}
	}
}

683
static void cpsw_intr_enable(struct cpsw_common *cpsw)
684
{
685 686
	writel_relaxed(0xFF, &cpsw->wr_regs->tx_en);
	writel_relaxed(0xFF, &cpsw->wr_regs->rx_en);
687

688
	cpdma_ctlr_int_ctrl(cpsw->dma, true);
689 690 691
	return;
}

692
static void cpsw_intr_disable(struct cpsw_common *cpsw)
693
{
694 695
	writel_relaxed(0, &cpsw->wr_regs->tx_en);
	writel_relaxed(0, &cpsw->wr_regs->rx_en);
696

697
	cpdma_ctlr_int_ctrl(cpsw->dma, false);
698 699 700
	return;
}

701
static void cpsw_tx_handler(void *token, int len, int status)
702
{
703
	struct netdev_queue	*txq;
704 705
	struct sk_buff		*skb = token;
	struct net_device	*ndev = skb->dev;
706
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
707

708 709 710
	/* Check whether the queue is stopped due to stalled tx dma, if the
	 * queue is stopped then start the queue as we have free desc for tx
	 */
711 712 713 714
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	if (unlikely(netif_tx_queue_stopped(txq)))
		netif_tx_wake_queue(txq);

715
	cpts_tx_timestamp(cpsw->cpts, skb);
716 717
	ndev->stats.tx_packets++;
	ndev->stats.tx_bytes += len;
718 719 720
	dev_kfree_skb_any(skb);
}

721
static void cpsw_rx_handler(void *token, int len, int status)
722
{
723
	struct cpdma_chan	*ch;
724
	struct sk_buff		*skb = token;
725
	struct sk_buff		*new_skb;
726 727
	struct net_device	*ndev = skb->dev;
	int			ret = 0;
728
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
729

730
	cpsw_dual_emac_src_port_detect(cpsw, status, ndev, skb);
731

732
	if (unlikely(status < 0) || unlikely(!netif_running(ndev))) {
733
		/* In dual emac mode check for all interfaces */
734
		if (cpsw->data.dual_emac && cpsw->usage_count &&
735
		    (status >= 0)) {
736 737
			/* The packet received is for the interface which
			 * is already down and the other interface is up
738
			 * and running, instead of freeing which results
739 740 741 742 743 744 745
			 * in reducing of the number of rx descriptor in
			 * DMA engine, requeue skb back to cpdma.
			 */
			new_skb = skb;
			goto requeue;
		}

746
		/* the interface is going down, skbs are purged */
747 748 749
		dev_kfree_skb_any(skb);
		return;
	}
750

751
	new_skb = netdev_alloc_skb_ip_align(ndev, cpsw->rx_packet_max);
752
	if (new_skb) {
753
		skb_copy_queue_mapping(new_skb, skb);
754
		skb_put(skb, len);
755
		cpts_rx_timestamp(cpsw->cpts, skb);
756 757
		skb->protocol = eth_type_trans(skb, ndev);
		netif_receive_skb(skb);
758 759
		ndev->stats.rx_bytes += len;
		ndev->stats.rx_packets++;
760
		kmemleak_not_leak(new_skb);
761
	} else {
762
		ndev->stats.rx_dropped++;
763
		new_skb = skb;
764 765
	}

766
requeue:
767 768 769 770 771
	if (netif_dormant(ndev)) {
		dev_kfree_skb_any(new_skb);
		return;
	}

772
	ch = cpsw->rxv[skb_get_queue_mapping(new_skb)].ch;
773
	ret = cpdma_chan_submit(ch, new_skb, new_skb->data,
774
				skb_tailroom(new_skb), 0);
775 776
	if (WARN_ON(ret < 0))
		dev_kfree_skb_any(new_skb);
777 778
}

779
static void cpsw_split_res(struct net_device *ndev)
780 781
{
	struct cpsw_priv *priv = netdev_priv(ndev);
782
	u32 consumed_rate = 0, bigest_rate = 0;
783 784
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_vector *txv = cpsw->txv;
785
	int i, ch_weight, rlim_ch_num = 0;
786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
	int budget, bigest_rate_ch = 0;
	u32 ch_rate, max_rate;
	int ch_budget = 0;

	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (!ch_rate)
			continue;

		rlim_ch_num++;
		consumed_rate += ch_rate;
	}

	if (cpsw->tx_ch_num == rlim_ch_num) {
		max_rate = consumed_rate;
801 802 803 804
	} else if (!rlim_ch_num) {
		ch_budget = CPSW_POLL_WEIGHT / cpsw->tx_ch_num;
		bigest_rate = 0;
		max_rate = consumed_rate;
805
	} else {
806 807 808 809 810 811 812 813 814 815
		max_rate = cpsw->speed * 1000;

		/* if max_rate is less then expected due to reduced link speed,
		 * split proportionally according next potential max speed
		 */
		if (max_rate < consumed_rate)
			max_rate *= 10;

		if (max_rate < consumed_rate)
			max_rate *= 10;
816

817 818 819 820 821 822 823
		ch_budget = (consumed_rate * CPSW_POLL_WEIGHT) / max_rate;
		ch_budget = (CPSW_POLL_WEIGHT - ch_budget) /
			    (cpsw->tx_ch_num - rlim_ch_num);
		bigest_rate = (max_rate - consumed_rate) /
			      (cpsw->tx_ch_num - rlim_ch_num);
	}

824
	/* split tx weight/budget */
825 826 827 828 829 830
	budget = CPSW_POLL_WEIGHT;
	for (i = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(txv[i].ch);
		if (ch_rate) {
			txv[i].budget = (ch_rate * CPSW_POLL_WEIGHT) / max_rate;
			if (!txv[i].budget)
831
				txv[i].budget++;
832 833 834 835
			if (ch_rate > bigest_rate) {
				bigest_rate_ch = i;
				bigest_rate = ch_rate;
			}
836 837 838 839 840

			ch_weight = (ch_rate * 100) / max_rate;
			if (!ch_weight)
				ch_weight++;
			cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight);
841 842 843 844
		} else {
			txv[i].budget = ch_budget;
			if (!bigest_rate_ch)
				bigest_rate_ch = i;
845
			cpdma_chan_set_weight(cpsw->txv[i].ch, 0);
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
		}

		budget -= txv[i].budget;
	}

	if (budget)
		txv[bigest_rate_ch].budget += budget;

	/* split rx budget */
	budget = CPSW_POLL_WEIGHT;
	ch_budget = budget / cpsw->rx_ch_num;
	for (i = 0; i < cpsw->rx_ch_num; i++) {
		cpsw->rxv[i].budget = ch_budget;
		budget -= ch_budget;
	}

	if (budget)
		cpsw->rxv[0].budget += budget;
}

866
static irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id)
867
{
868
	struct cpsw_common *cpsw = dev_id;
869

870
	writel(0, &cpsw->wr_regs->tx_en);
871
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX);
872

873 874 875
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[1]);
		cpsw->tx_irq_disabled = true;
876 877
	}

878
	napi_schedule(&cpsw->napi_tx);
879 880 881 882 883
	return IRQ_HANDLED;
}

static irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id)
{
884
	struct cpsw_common *cpsw = dev_id;
885

886
	cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX);
887
	writel(0, &cpsw->wr_regs->rx_en);
888

889 890 891
	if (cpsw->quirk_irq) {
		disable_irq_nosync(cpsw->irqs_table[0]);
		cpsw->rx_irq_disabled = true;
892 893
	}

894
	napi_schedule(&cpsw->napi_rx);
895
	return IRQ_HANDLED;
896 897
}

898 899
static int cpsw_tx_poll(struct napi_struct *napi_tx, int budget)
{
900
	u32			ch_map;
901
	int			num_tx, cur_budget, ch;
902
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_tx);
903
	struct cpsw_vector	*txv;
904

905 906
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_txchs_state(cpsw->dma);
907
	for (ch = 0, num_tx = 0; ch_map; ch_map >>= 1, ch++) {
908 909 910
		if (!(ch_map & 0x01))
			continue;

911 912 913 914 915 916 917
		txv = &cpsw->txv[ch];
		if (unlikely(txv->budget > budget - num_tx))
			cur_budget = budget - num_tx;
		else
			cur_budget = txv->budget;

		num_tx += cpdma_chan_process(txv->ch, cur_budget);
918 919
		if (num_tx >= budget)
			break;
920 921
	}

922 923
	if (num_tx < budget) {
		napi_complete(napi_tx);
924
		writel(0xff, &cpsw->wr_regs->tx_en);
925 926 927
		if (cpsw->quirk_irq && cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
928
		}
929 930 931 932 933 934
	}

	return num_tx;
}

static int cpsw_rx_poll(struct napi_struct *napi_rx, int budget)
935
{
936
	u32			ch_map;
937
	int			num_rx, cur_budget, ch;
938
	struct cpsw_common	*cpsw = napi_to_cpsw(napi_rx);
939
	struct cpsw_vector	*rxv;
940

941 942
	/* process every unprocessed channel */
	ch_map = cpdma_ctrl_rxchs_state(cpsw->dma);
943
	for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) {
944 945 946
		if (!(ch_map & 0x01))
			continue;

947 948 949 950 951 952 953
		rxv = &cpsw->rxv[ch];
		if (unlikely(rxv->budget > budget - num_rx))
			cur_budget = budget - num_rx;
		else
			cur_budget = rxv->budget;

		num_rx += cpdma_chan_process(rxv->ch, cur_budget);
954 955
		if (num_rx >= budget)
			break;
956 957
	}

958
	if (num_rx < budget) {
959
		napi_complete_done(napi_rx, num_rx);
960
		writel(0xff, &cpsw->wr_regs->rx_en);
961 962 963
		if (cpsw->quirk_irq && cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
964
		}
965 966 967 968 969 970 971 972 973
	}

	return num_rx;
}

static inline void soft_reset(const char *module, void __iomem *reg)
{
	unsigned long timeout = jiffies + HZ;

974
	writel_relaxed(1, reg);
975 976
	do {
		cpu_relax();
977
	} while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies));
978

979
	WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module);
980 981 982 983 984
}

static void cpsw_set_slave_mac(struct cpsw_slave *slave,
			       struct cpsw_priv *priv)
{
985 986
	slave_write(slave, mac_hi(priv->mac_addr), SA_HI);
	slave_write(slave, mac_lo(priv->mac_addr), SA_LO);
987 988 989 990 991 992 993 994
}

static void _cpsw_adjust_link(struct cpsw_slave *slave,
			      struct cpsw_priv *priv, bool *link)
{
	struct phy_device	*phy = slave->phy;
	u32			mac_control = 0;
	u32			slave_port;
995
	struct cpsw_common *cpsw = priv->cpsw;
996 997 998 999

	if (!phy)
		return;

1000
	slave_port = cpsw_get_slave_port(slave->slave_num);
1001 1002

	if (phy->link) {
1003
		mac_control = cpsw->data.mac_control;
1004 1005

		/* enable forwarding */
1006
		cpsw_ale_control_set(cpsw->ale, slave_port,
1007 1008 1009 1010 1011 1012
				     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

		if (phy->speed == 1000)
			mac_control |= BIT(7);	/* GIGABITEN	*/
		if (phy->duplex)
			mac_control |= BIT(0);	/* FULLDUPLEXEN	*/
1013 1014 1015 1016

		/* set speed_in input in case RMII mode is used in 100Mbps */
		if (phy->speed == 100)
			mac_control |= BIT(15);
1017 1018
		else if (phy->speed == 10)
			mac_control |= BIT(18); /* In Band mode */
1019

1020 1021 1022 1023 1024 1025
		if (priv->rx_pause)
			mac_control |= BIT(3);

		if (priv->tx_pause)
			mac_control |= BIT(4);

1026 1027 1028 1029
		*link = true;
	} else {
		mac_control = 0;
		/* disable forwarding */
1030
		cpsw_ale_control_set(cpsw->ale, slave_port,
1031 1032 1033 1034 1035
				     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
	}

	if (mac_control != slave->mac_control) {
		phy_print_status(phy);
1036
		writel_relaxed(mac_control, &slave->sliver->mac_control);
1037 1038 1039 1040 1041
	}

	slave->mac_control = mac_control;
}

1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
static int cpsw_get_common_speed(struct cpsw_common *cpsw)
{
	int i, speed;

	for (i = 0, speed = 0; i < cpsw->data.slaves; i++)
		if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link)
			speed += cpsw->slaves[i].phy->speed;

	return speed;
}

static int cpsw_need_resplit(struct cpsw_common *cpsw)
{
	int i, rlim_ch_num;
	int speed, ch_rate;

	/* re-split resources only in case speed was changed */
	speed = cpsw_get_common_speed(cpsw);
	if (speed == cpsw->speed || !speed)
		return 0;

	cpsw->speed = speed;

	for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) {
		ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch);
		if (!ch_rate)
			break;

		rlim_ch_num++;
	}

	/* cases not dependent on speed */
	if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num)
		return 0;

	return 1;
}

1080 1081 1082
static void cpsw_adjust_link(struct net_device *ndev)
{
	struct cpsw_priv	*priv = netdev_priv(ndev);
1083
	struct cpsw_common	*cpsw = priv->cpsw;
1084 1085 1086 1087 1088
	bool			link = false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);

	if (link) {
1089 1090 1091
		if (cpsw_need_resplit(cpsw))
			cpsw_split_res(ndev);

1092 1093
		netif_carrier_on(ndev);
		if (netif_running(ndev))
1094
			netif_tx_wake_all_queues(ndev);
1095 1096
	} else {
		netif_carrier_off(ndev);
1097
		netif_tx_stop_all_queues(ndev);
1098 1099 1100
	}
}

1101 1102 1103
static int cpsw_get_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
1104
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1105

1106
	coal->rx_coalesce_usecs = cpsw->coal_intvl;
1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118
	return 0;
}

static int cpsw_set_coalesce(struct net_device *ndev,
				struct ethtool_coalesce *coal)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	u32 int_ctrl;
	u32 num_interrupts = 0;
	u32 prescale = 0;
	u32 addnl_dvdr = 1;
	u32 coal_intvl = 0;
1119
	struct cpsw_common *cpsw = priv->cpsw;
1120 1121 1122

	coal_intvl = coal->rx_coalesce_usecs;

1123
	int_ctrl =  readl(&cpsw->wr_regs->int_control);
1124
	prescale = cpsw->bus_freq_mhz * 4;
1125

1126 1127 1128 1129 1130
	if (!coal->rx_coalesce_usecs) {
		int_ctrl &= ~(CPSW_INTPRESCALE_MASK | CPSW_INTPACEEN);
		goto update_return;
	}

1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
	if (coal_intvl < CPSW_CMINTMIN_INTVL)
		coal_intvl = CPSW_CMINTMIN_INTVL;

	if (coal_intvl > CPSW_CMINTMAX_INTVL) {
		/* Interrupt pacer works with 4us Pulse, we can
		 * throttle further by dilating the 4us pulse.
		 */
		addnl_dvdr = CPSW_INTPRESCALE_MASK / prescale;

		if (addnl_dvdr > 1) {
			prescale *= addnl_dvdr;
			if (coal_intvl > (CPSW_CMINTMAX_INTVL * addnl_dvdr))
				coal_intvl = (CPSW_CMINTMAX_INTVL
						* addnl_dvdr);
		} else {
			addnl_dvdr = 1;
			coal_intvl = CPSW_CMINTMAX_INTVL;
		}
	}

	num_interrupts = (1000 * addnl_dvdr) / coal_intvl;
1152 1153
	writel(num_interrupts, &cpsw->wr_regs->rx_imax);
	writel(num_interrupts, &cpsw->wr_regs->tx_imax);
1154 1155 1156 1157

	int_ctrl |= CPSW_INTPACEEN;
	int_ctrl &= (~CPSW_INTPRESCALE_MASK);
	int_ctrl |= (prescale & CPSW_INTPRESCALE_MASK);
1158 1159

update_return:
1160
	writel(int_ctrl, &cpsw->wr_regs->int_control);
1161 1162

	cpsw_notice(priv, timer, "Set coalesce to %d usecs.\n", coal_intvl);
1163
	cpsw->coal_intvl = coal_intvl;
1164 1165 1166 1167

	return 0;
}

1168 1169
static int cpsw_get_sset_count(struct net_device *ndev, int sset)
{
1170 1171
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

1172 1173
	switch (sset) {
	case ETH_SS_STATS:
1174 1175 1176
		return (CPSW_STATS_COMMON_LEN +
		       (cpsw->rx_ch_num + cpsw->tx_ch_num) *
		       CPSW_STATS_CH_LEN);
1177 1178 1179 1180 1181
	default:
		return -EOPNOTSUPP;
	}
}

1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
static void cpsw_add_ch_strings(u8 **p, int ch_num, int rx_dir)
{
	int ch_stats_len;
	int line;
	int i;

	ch_stats_len = CPSW_STATS_CH_LEN * ch_num;
	for (i = 0; i < ch_stats_len; i++) {
		line = i % CPSW_STATS_CH_LEN;
		snprintf(*p, ETH_GSTRING_LEN,
			 "%s DMA chan %d: %s", rx_dir ? "Rx" : "Tx",
			 i / CPSW_STATS_CH_LEN,
			 cpsw_gstrings_ch_stats[line].stat_string);
		*p += ETH_GSTRING_LEN;
	}
}

1199 1200
static void cpsw_get_strings(struct net_device *ndev, u32 stringset, u8 *data)
{
1201
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1202 1203 1204 1205 1206
	u8 *p = data;
	int i;

	switch (stringset) {
	case ETH_SS_STATS:
1207
		for (i = 0; i < CPSW_STATS_COMMON_LEN; i++) {
1208 1209 1210 1211
			memcpy(p, cpsw_gstrings_stats[i].stat_string,
			       ETH_GSTRING_LEN);
			p += ETH_GSTRING_LEN;
		}
1212 1213 1214

		cpsw_add_ch_strings(&p, cpsw->rx_ch_num, 1);
		cpsw_add_ch_strings(&p, cpsw->tx_ch_num, 0);
1215 1216 1217 1218 1219 1220 1221 1222
		break;
	}
}

static void cpsw_get_ethtool_stats(struct net_device *ndev,
				    struct ethtool_stats *stats, u64 *data)
{
	u8 *p;
1223
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1224 1225
	struct cpdma_chan_stats ch_stats;
	int i, l, ch;
1226 1227

	/* Collect Davinci CPDMA stats for Rx and Tx Channel */
1228 1229 1230 1231 1232
	for (l = 0; l < CPSW_STATS_COMMON_LEN; l++)
		data[l] = readl(cpsw->hw_stats +
				cpsw_gstrings_stats[l].stat_offset);

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1233
		cpdma_chan_get_stats(cpsw->rxv[ch].ch, &ch_stats);
1234 1235 1236 1237 1238 1239
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
		}
	}
1240

1241
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1242
		cpdma_chan_get_stats(cpsw->txv[ch].ch, &ch_stats);
1243 1244 1245 1246
		for (i = 0; i < CPSW_STATS_CH_LEN; i++, l++) {
			p = (u8 *)&ch_stats +
				cpsw_gstrings_ch_stats[i].stat_offset;
			data[l] = *(u32 *)p;
1247 1248 1249 1250
		}
	}
}

1251
static inline int cpsw_tx_packet_submit(struct cpsw_priv *priv,
1252 1253
					struct sk_buff *skb,
					struct cpdma_chan *txch)
1254
{
1255 1256
	struct cpsw_common *cpsw = priv->cpsw;

1257
	skb_tx_timestamp(skb);
1258
	return cpdma_chan_submit(txch, skb, skb->data, skb->len,
1259
				 priv->emac_port + cpsw->data.dual_emac);
1260 1261 1262 1263 1264 1265
}

static inline void cpsw_add_dual_emac_def_ale_entries(
		struct cpsw_priv *priv, struct cpsw_slave *slave,
		u32 slave_port)
{
1266
	struct cpsw_common *cpsw = priv->cpsw;
1267
	u32 port_mask = 1 << slave_port | ALE_PORT_HOST;
1268

1269
	if (cpsw->version == CPSW_VERSION_1)
1270 1271 1272
		slave_write(slave, slave->port_vlan, CPSW1_PORT_VLAN);
	else
		slave_write(slave, slave->port_vlan, CPSW2_PORT_VLAN);
1273
	cpsw_ale_add_vlan(cpsw->ale, slave->port_vlan, port_mask,
1274
			  port_mask, port_mask, 0);
1275
	cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1276
			   port_mask, ALE_VLAN, slave->port_vlan, 0);
1277 1278 1279
	cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
			   HOST_PORT_NUM, ALE_VLAN |
			   ALE_SECURE, slave->port_vlan);
1280 1281
}

1282
static void soft_reset_slave(struct cpsw_slave *slave)
1283 1284 1285
{
	char name[32];

1286
	snprintf(name, sizeof(name), "slave-%d", slave->slave_num);
1287
	soft_reset(name, &slave->sliver->soft_reset);
1288 1289 1290 1291 1292
}

static void cpsw_slave_open(struct cpsw_slave *slave, struct cpsw_priv *priv)
{
	u32 slave_port;
1293
	struct phy_device *phy;
1294
	struct cpsw_common *cpsw = priv->cpsw;
1295 1296

	soft_reset_slave(slave);
1297 1298

	/* setup priority mapping */
1299
	writel_relaxed(RX_PRIORITY_MAPPING, &slave->sliver->rx_pri_map);
1300

1301
	switch (cpsw->version) {
1302 1303
	case CPSW_VERSION_1:
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW1_TX_PRI_MAP);
1304 1305 1306 1307 1308 1309
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW1_MAX_BLKS);
1310 1311
		break;
	case CPSW_VERSION_2:
1312
	case CPSW_VERSION_3:
1313
	case CPSW_VERSION_4:
1314
		slave_write(slave, TX_PRIORITY_MAPPING, CPSW2_TX_PRI_MAP);
1315 1316 1317 1318 1319 1320
		/* Increase RX FIFO size to 5 for supporting fullduplex
		 * flow control mode
		 */
		slave_write(slave,
			    (CPSW_MAX_BLKS_TX << CPSW_MAX_BLKS_TX_SHIFT) |
			    CPSW_MAX_BLKS_RX, CPSW2_MAX_BLKS);
1321 1322
		break;
	}
1323 1324

	/* setup max packet size, and mac address */
1325
	writel_relaxed(cpsw->rx_packet_max, &slave->sliver->rx_maxlen);
1326 1327 1328 1329
	cpsw_set_slave_mac(slave, priv);

	slave->mac_control = 0;	/* no link yet */

1330
	slave_port = cpsw_get_slave_port(slave->slave_num);
1331

1332
	if (cpsw->data.dual_emac)
1333 1334
		cpsw_add_dual_emac_def_ale_entries(priv, slave, slave_port);
	else
1335
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1336
				   1 << slave_port, 0, 0, ALE_MCAST_FWD_2);
1337

1338
	if (slave->data->phy_node) {
1339
		phy = of_phy_connect(priv->ndev, slave->data->phy_node,
1340
				 &cpsw_adjust_link, 0, slave->data->phy_if);
1341
		if (!phy) {
1342 1343
			dev_err(priv->dev, "phy \"%pOF\" not found on slave %d\n",
				slave->data->phy_node,
1344 1345 1346 1347
				slave->slave_num);
			return;
		}
	} else {
1348
		phy = phy_connect(priv->ndev, slave->data->phy_id,
1349
				 &cpsw_adjust_link, slave->data->phy_if);
1350
		if (IS_ERR(phy)) {
1351 1352 1353
			dev_err(priv->dev,
				"phy \"%s\" not found on slave %d, err %ld\n",
				slave->data->phy_id, slave->slave_num,
1354
				PTR_ERR(phy));
1355 1356 1357
			return;
		}
	}
1358

1359 1360
	slave->phy = phy;

1361
	phy_attached_info(slave->phy);
1362

1363 1364 1365
	phy_start(slave->phy);

	/* Configure GMII_SEL register */
1366
	cpsw_phy_sel(cpsw->dev, slave->phy->interface, slave->slave_num);
1367 1368
}

1369 1370
static inline void cpsw_add_default_vlan(struct cpsw_priv *priv)
{
1371 1372
	struct cpsw_common *cpsw = priv->cpsw;
	const int vlan = cpsw->data.default_vlan;
1373 1374
	u32 reg;
	int i;
1375
	int unreg_mcast_mask;
1376

1377
	reg = (cpsw->version == CPSW_VERSION_1) ? CPSW1_PORT_VLAN :
1378 1379
	       CPSW2_PORT_VLAN;

1380
	writel(vlan, &cpsw->host_port_regs->port_vlan);
1381

1382 1383
	for (i = 0; i < cpsw->data.slaves; i++)
		slave_write(cpsw->slaves + i, vlan, reg);
1384

1385 1386 1387 1388 1389
	if (priv->ndev->flags & IFF_ALLMULTI)
		unreg_mcast_mask = ALE_ALL_PORTS;
	else
		unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;

1390
	cpsw_ale_add_vlan(cpsw->ale, vlan, ALE_ALL_PORTS,
1391 1392
			  ALE_ALL_PORTS, ALE_ALL_PORTS,
			  unreg_mcast_mask);
1393 1394
}

1395 1396
static void cpsw_init_host_port(struct cpsw_priv *priv)
{
1397
	u32 fifo_mode;
1398 1399
	u32 control_reg;
	struct cpsw_common *cpsw = priv->cpsw;
1400

1401
	/* soft reset the controller and initialize ale */
1402
	soft_reset("cpsw", &cpsw->regs->soft_reset);
1403
	cpsw_ale_start(cpsw->ale);
1404 1405

	/* switch to vlan unaware mode */
1406
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM, ALE_VLAN_AWARE,
1407
			     CPSW_ALE_VLAN_AWARE);
1408
	control_reg = readl(&cpsw->regs->control);
1409
	control_reg |= CPSW_VLAN_AWARE;
1410
	writel(control_reg, &cpsw->regs->control);
1411
	fifo_mode = (cpsw->data.dual_emac) ? CPSW_FIFO_DUAL_MAC_MODE :
1412
		     CPSW_FIFO_NORMAL_MODE;
1413
	writel(fifo_mode, &cpsw->host_port_regs->tx_in_ctl);
1414 1415

	/* setup host port priority mapping */
1416 1417 1418
	writel_relaxed(CPDMA_TX_PRIORITY_MAP,
		       &cpsw->host_port_regs->cpdma_tx_pri_map);
	writel_relaxed(0, &cpsw->host_port_regs->cpdma_rx_chan_map);
1419

1420
	cpsw_ale_control_set(cpsw->ale, HOST_PORT_NUM,
1421 1422
			     ALE_PORT_STATE, ALE_PORT_STATE_FORWARD);

1423
	if (!cpsw->data.dual_emac) {
1424
		cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1425
				   0, 0);
1426
		cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1427
				   ALE_PORT_HOST, 0, 0, ALE_MCAST_FWD_2);
1428
	}
1429 1430
}

1431 1432 1433 1434 1435
static int cpsw_fill_rx_channels(struct cpsw_priv *priv)
{
	struct cpsw_common *cpsw = priv->cpsw;
	struct sk_buff *skb;
	int ch_buf_num;
1436 1437 1438
	int ch, i, ret;

	for (ch = 0; ch < cpsw->rx_ch_num; ch++) {
1439
		ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch);
1440 1441 1442 1443 1444 1445 1446 1447
		for (i = 0; i < ch_buf_num; i++) {
			skb = __netdev_alloc_skb_ip_align(priv->ndev,
							  cpsw->rx_packet_max,
							  GFP_KERNEL);
			if (!skb) {
				cpsw_err(priv, ifup, "cannot allocate skb\n");
				return -ENOMEM;
			}
1448

1449
			skb_set_queue_mapping(skb, ch);
1450 1451 1452
			ret = cpdma_chan_submit(cpsw->rxv[ch].ch, skb,
						skb->data, skb_tailroom(skb),
						0);
1453 1454 1455 1456 1457 1458 1459 1460
			if (ret < 0) {
				cpsw_err(priv, ifup,
					 "cannot submit skb to channel %d rx, error %d\n",
					 ch, ret);
				kfree_skb(skb);
				return ret;
			}
			kmemleak_not_leak(skb);
1461 1462
		}

1463 1464 1465
		cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n",
			  ch, ch_buf_num);
	}
1466

1467
	return 0;
1468 1469
}

1470
static void cpsw_slave_stop(struct cpsw_slave *slave, struct cpsw_common *cpsw)
1471
{
1472 1473
	u32 slave_port;

1474
	slave_port = cpsw_get_slave_port(slave->slave_num);
1475

1476 1477 1478 1479 1480
	if (!slave->phy)
		return;
	phy_stop(slave->phy);
	phy_disconnect(slave->phy);
	slave->phy = NULL;
1481
	cpsw_ale_control_set(cpsw->ale, slave_port,
1482
			     ALE_PORT_STATE, ALE_PORT_STATE_DISABLE);
1483
	soft_reset_slave(slave);
1484 1485
}

1486 1487 1488
static int cpsw_ndo_open(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1489
	struct cpsw_common *cpsw = priv->cpsw;
1490
	int ret;
1491 1492
	u32 reg;

1493
	ret = pm_runtime_get_sync(cpsw->dev);
1494
	if (ret < 0) {
1495
		pm_runtime_put_noidle(cpsw->dev);
1496 1497
		return ret;
	}
1498

1499 1500
	netif_carrier_off(ndev);

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
	/* Notify the stack of the actual queue counts. */
	ret = netif_set_real_num_tx_queues(ndev, cpsw->tx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of tx queues\n");
		goto err_cleanup;
	}

	ret = netif_set_real_num_rx_queues(ndev, cpsw->rx_ch_num);
	if (ret) {
		dev_err(priv->dev, "cannot set real number of rx queues\n");
		goto err_cleanup;
	}

1514
	reg = cpsw->version;
1515 1516 1517 1518 1519

	dev_info(priv->dev, "initializing cpsw version %d.%d (%d)\n",
		 CPSW_MAJOR_VERSION(reg), CPSW_MINOR_VERSION(reg),
		 CPSW_RTL_VERSION(reg));

1520 1521
	/* Initialize host and slave ports */
	if (!cpsw->usage_count)
1522
		cpsw_init_host_port(priv);
1523 1524
	for_each_slave(priv, cpsw_slave_open, priv);

1525
	/* Add default VLAN */
1526
	if (!cpsw->data.dual_emac)
1527 1528
		cpsw_add_default_vlan(priv);
	else
1529
		cpsw_ale_add_vlan(cpsw->ale, cpsw->data.default_vlan,
1530
				  ALE_ALL_PORTS, ALE_ALL_PORTS, 0, 0);
1531

1532 1533
	/* initialize shared resources for every ndev */
	if (!cpsw->usage_count) {
1534
		/* disable priority elevation */
1535
		writel_relaxed(0, &cpsw->regs->ptype);
1536

1537
		/* enable statistics collection only on all ports */
1538
		writel_relaxed(0x7, &cpsw->regs->stat_port_en);
1539

1540
		/* Enable internal fifo flow control */
1541
		writel(0x7, &cpsw->regs->flow_control);
1542

1543 1544
		napi_enable(&cpsw->napi_rx);
		napi_enable(&cpsw->napi_tx);
1545

1546 1547 1548
		if (cpsw->tx_irq_disabled) {
			cpsw->tx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[1]);
1549 1550
		}

1551 1552 1553
		if (cpsw->rx_irq_disabled) {
			cpsw->rx_irq_disabled = false;
			enable_irq(cpsw->irqs_table[0]);
1554 1555
		}

1556 1557 1558
		ret = cpsw_fill_rx_channels(priv);
		if (ret < 0)
			goto err_cleanup;
1559

1560
		if (cpts_register(cpsw->cpts))
1561 1562
			dev_err(priv->dev, "error registering cpts device\n");

1563 1564
	}

1565
	/* Enable Interrupt pacing if configured */
1566
	if (cpsw->coal_intvl != 0) {
1567 1568
		struct ethtool_coalesce coal;

1569
		coal.rx_coalesce_usecs = cpsw->coal_intvl;
1570 1571 1572
		cpsw_set_coalesce(ndev, &coal);
	}

1573 1574
	cpdma_ctlr_start(cpsw->dma);
	cpsw_intr_enable(cpsw);
1575
	cpsw->usage_count++;
1576

1577 1578
	return 0;

1579
err_cleanup:
1580
	cpdma_ctlr_stop(cpsw->dma);
1581
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1582
	pm_runtime_put_sync(cpsw->dev);
1583 1584
	netif_carrier_off(priv->ndev);
	return ret;
1585 1586 1587 1588 1589
}

static int cpsw_ndo_stop(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1590
	struct cpsw_common *cpsw = priv->cpsw;
1591 1592

	cpsw_info(priv, ifdown, "shutting down cpsw device\n");
1593
	netif_tx_stop_all_queues(priv->ndev);
1594
	netif_carrier_off(priv->ndev);
1595

1596
	if (cpsw->usage_count <= 1) {
1597 1598
		napi_disable(&cpsw->napi_rx);
		napi_disable(&cpsw->napi_tx);
1599
		cpts_unregister(cpsw->cpts);
1600 1601
		cpsw_intr_disable(cpsw);
		cpdma_ctlr_stop(cpsw->dma);
1602
		cpsw_ale_stop(cpsw->ale);
1603
	}
1604
	for_each_slave(priv, cpsw_slave_stop, cpsw);
1605 1606 1607 1608

	if (cpsw_need_resplit(cpsw))
		cpsw_split_res(ndev);

1609
	cpsw->usage_count--;
1610
	pm_runtime_put_sync(cpsw->dev);
1611 1612 1613 1614 1615 1616 1617
	return 0;
}

static netdev_tx_t cpsw_ndo_start_xmit(struct sk_buff *skb,
				       struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1618
	struct cpsw_common *cpsw = priv->cpsw;
1619
	struct cpts *cpts = cpsw->cpts;
1620 1621 1622
	struct netdev_queue *txq;
	struct cpdma_chan *txch;
	int ret, q_idx;
1623 1624 1625

	if (skb_padto(skb, CPSW_MIN_PACKET_SIZE)) {
		cpsw_err(priv, tx_err, "packet pad failed\n");
1626
		ndev->stats.tx_dropped++;
1627
		return NET_XMIT_DROP;
1628 1629
	}

1630
	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
1631
	    cpts_is_tx_enabled(cpts) && cpts_can_timestamp(cpts, skb))
1632 1633
		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;

1634 1635 1636 1637
	q_idx = skb_get_queue_mapping(skb);
	if (q_idx >= cpsw->tx_ch_num)
		q_idx = q_idx % cpsw->tx_ch_num;

1638
	txch = cpsw->txv[q_idx].ch;
1639
	ret = cpsw_tx_packet_submit(priv, skb, txch);
1640 1641 1642 1643 1644
	if (unlikely(ret != 0)) {
		cpsw_err(priv, tx_err, "desc submit failed\n");
		goto fail;
	}

1645 1646 1647
	/* If there is no more tx desc left free then we need to
	 * tell the kernel to stop sending us tx frames.
	 */
1648 1649 1650 1651
	if (unlikely(!cpdma_check_free_tx_desc(txch))) {
		txq = netdev_get_tx_queue(ndev, q_idx);
		netif_tx_stop_queue(txq);
	}
1652

1653 1654
	return NETDEV_TX_OK;
fail:
1655
	ndev->stats.tx_dropped++;
1656 1657
	txq = netdev_get_tx_queue(ndev, skb_get_queue_mapping(skb));
	netif_tx_stop_queue(txq);
1658 1659 1660
	return NETDEV_TX_BUSY;
}

1661
#if IS_ENABLED(CONFIG_TI_CPTS)
1662

1663
static void cpsw_hwtstamp_v1(struct cpsw_common *cpsw)
1664
{
1665
	struct cpsw_slave *slave = &cpsw->slaves[cpsw->data.active_slave];
1666 1667
	u32 ts_en, seq_id;

1668 1669
	if (!cpts_is_tx_enabled(cpsw->cpts) &&
	    !cpts_is_rx_enabled(cpsw->cpts)) {
1670 1671 1672 1673 1674 1675 1676
		slave_write(slave, 0, CPSW1_TS_CTL);
		return;
	}

	seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588;
	ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS;

1677
	if (cpts_is_tx_enabled(cpsw->cpts))
1678 1679
		ts_en |= CPSW_V1_TS_TX_EN;

1680
	if (cpts_is_rx_enabled(cpsw->cpts))
1681 1682 1683 1684 1685 1686 1687 1688
		ts_en |= CPSW_V1_TS_RX_EN;

	slave_write(slave, ts_en, CPSW1_TS_CTL);
	slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE);
}

static void cpsw_hwtstamp_v2(struct cpsw_priv *priv)
{
1689
	struct cpsw_slave *slave;
1690
	struct cpsw_common *cpsw = priv->cpsw;
1691 1692
	u32 ctrl, mtype;

1693
	slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)];
1694

1695
	ctrl = slave_read(slave, CPSW2_CONTROL);
1696
	switch (cpsw->version) {
1697 1698
	case CPSW_VERSION_2:
		ctrl &= ~CTRL_V2_ALL_TS_MASK;
1699

1700
		if (cpts_is_tx_enabled(cpsw->cpts))
1701
			ctrl |= CTRL_V2_TX_TS_BITS;
1702

1703
		if (cpts_is_rx_enabled(cpsw->cpts))
1704
			ctrl |= CTRL_V2_RX_TS_BITS;
1705
		break;
1706 1707 1708 1709
	case CPSW_VERSION_3:
	default:
		ctrl &= ~CTRL_V3_ALL_TS_MASK;

1710
		if (cpts_is_tx_enabled(cpsw->cpts))
1711 1712
			ctrl |= CTRL_V3_TX_TS_BITS;

1713
		if (cpts_is_rx_enabled(cpsw->cpts))
1714
			ctrl |= CTRL_V3_RX_TS_BITS;
1715
		break;
1716
	}
1717 1718 1719 1720 1721

	mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS;

	slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE);
	slave_write(slave, ctrl, CPSW2_CONTROL);
1722
	writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype);
1723 1724
}

1725
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
1726
{
1727
	struct cpsw_priv *priv = netdev_priv(dev);
1728
	struct hwtstamp_config cfg;
1729 1730
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpts *cpts = cpsw->cpts;
1731

1732 1733 1734
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1735 1736
		return -EOPNOTSUPP;

1737 1738 1739 1740 1741 1742 1743
	if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg)))
		return -EFAULT;

	/* reserved for future extensions */
	if (cfg.flags)
		return -EINVAL;

1744
	if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON)
1745 1746 1747 1748
		return -ERANGE;

	switch (cfg.rx_filter) {
	case HWTSTAMP_FILTER_NONE:
1749
		cpts_rx_enable(cpts, 0);
1750 1751
		break;
	case HWTSTAMP_FILTER_ALL:
1752 1753
	case HWTSTAMP_FILTER_NTP_ALL:
		return -ERANGE;
1754 1755 1756
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1757 1758 1759
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V1_L4_EVENT);
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
		break;
1760 1761 1762 1763 1764 1765 1766 1767 1768
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1769
		cpts_rx_enable(cpts, HWTSTAMP_FILTER_PTP_V2_EVENT);
1770 1771 1772 1773 1774 1775
		cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
		break;
	default:
		return -ERANGE;
	}

1776
	cpts_tx_enable(cpts, cfg.tx_type == HWTSTAMP_TX_ON);
1777

1778
	switch (cpsw->version) {
1779
	case CPSW_VERSION_1:
1780
		cpsw_hwtstamp_v1(cpsw);
1781 1782
		break;
	case CPSW_VERSION_2:
1783
	case CPSW_VERSION_3:
1784 1785 1786
		cpsw_hwtstamp_v2(priv);
		break;
	default:
1787
		WARN_ON(1);
1788 1789 1790 1791 1792
	}

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}

1793 1794
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
1795 1796
	struct cpsw_common *cpsw = ndev_to_cpsw(dev);
	struct cpts *cpts = cpsw->cpts;
1797 1798
	struct hwtstamp_config cfg;

1799 1800 1801
	if (cpsw->version != CPSW_VERSION_1 &&
	    cpsw->version != CPSW_VERSION_2 &&
	    cpsw->version != CPSW_VERSION_3)
1802 1803 1804
		return -EOPNOTSUPP;

	cfg.flags = 0;
1805 1806 1807
	cfg.tx_type = cpts_is_tx_enabled(cpts) ?
		      HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
	cfg.rx_filter = (cpts_is_rx_enabled(cpts) ?
1808
			 cpts->rx_enable : HWTSTAMP_FILTER_NONE);
1809 1810 1811

	return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0;
}
1812 1813 1814 1815 1816
#else
static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1817

1818 1819 1820 1821
static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
	return -EOPNOTSUPP;
}
1822 1823 1824 1825
#endif /*CONFIG_TI_CPTS*/

static int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
{
1826
	struct cpsw_priv *priv = netdev_priv(dev);
1827 1828
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
1829

1830 1831 1832
	if (!netif_running(dev))
		return -EINVAL;

1833 1834
	switch (cmd) {
	case SIOCSHWTSTAMP:
1835 1836 1837
		return cpsw_hwtstamp_set(dev, req);
	case SIOCGHWTSTAMP:
		return cpsw_hwtstamp_get(dev, req);
1838 1839
	}

1840
	if (!cpsw->slaves[slave_no].phy)
1841
		return -EOPNOTSUPP;
1842
	return phy_mii_ioctl(cpsw->slaves[slave_no].phy, req, cmd);
1843 1844
}

1845 1846 1847
static void cpsw_ndo_tx_timeout(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1848
	struct cpsw_common *cpsw = priv->cpsw;
1849
	int ch;
1850 1851

	cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n");
1852
	ndev->stats.tx_errors++;
1853
	cpsw_intr_disable(cpsw);
1854
	for (ch = 0; ch < cpsw->tx_ch_num; ch++) {
1855 1856
		cpdma_chan_stop(cpsw->txv[ch].ch);
		cpdma_chan_start(cpsw->txv[ch].ch);
1857 1858
	}

1859
	cpsw_intr_enable(cpsw);
1860 1861
	netif_trans_update(ndev);
	netif_tx_wake_all_queues(ndev);
1862 1863
}

1864 1865 1866 1867
static int cpsw_ndo_set_mac_address(struct net_device *ndev, void *p)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct sockaddr *addr = (struct sockaddr *)p;
1868
	struct cpsw_common *cpsw = priv->cpsw;
1869 1870
	int flags = 0;
	u16 vid = 0;
1871
	int ret;
1872 1873 1874 1875

	if (!is_valid_ether_addr(addr->sa_data))
		return -EADDRNOTAVAIL;

1876
	ret = pm_runtime_get_sync(cpsw->dev);
1877
	if (ret < 0) {
1878
		pm_runtime_put_noidle(cpsw->dev);
1879 1880 1881
		return ret;
	}

1882 1883
	if (cpsw->data.dual_emac) {
		vid = cpsw->slaves[priv->emac_port].port_vlan;
1884 1885 1886
		flags = ALE_VLAN;
	}

1887
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr, HOST_PORT_NUM,
1888
			   flags, vid);
1889
	cpsw_ale_add_ucast(cpsw->ale, addr->sa_data, HOST_PORT_NUM,
1890 1891 1892 1893 1894 1895
			   flags, vid);

	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);
	for_each_slave(priv, cpsw_set_slave_mac, priv);

1896
	pm_runtime_put(cpsw->dev);
1897

1898 1899 1900
	return 0;
}

1901 1902 1903
#ifdef CONFIG_NET_POLL_CONTROLLER
static void cpsw_ndo_poll_controller(struct net_device *ndev)
{
1904
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
1905

1906 1907 1908 1909
	cpsw_intr_disable(cpsw);
	cpsw_rx_interrupt(cpsw->irqs_table[0], cpsw);
	cpsw_tx_interrupt(cpsw->irqs_table[1], cpsw);
	cpsw_intr_enable(cpsw);
1910 1911 1912
}
#endif

1913 1914 1915 1916
static inline int cpsw_add_vlan_ale_entry(struct cpsw_priv *priv,
				unsigned short vid)
{
	int ret;
1917 1918
	int unreg_mcast_mask = 0;
	u32 port_mask;
1919
	struct cpsw_common *cpsw = priv->cpsw;
1920

1921
	if (cpsw->data.dual_emac) {
1922
		port_mask = (1 << (priv->emac_port + 1)) | ALE_PORT_HOST;
1923

1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = port_mask;
	} else {
		port_mask = ALE_ALL_PORTS;

		if (priv->ndev->flags & IFF_ALLMULTI)
			unreg_mcast_mask = ALE_ALL_PORTS;
		else
			unreg_mcast_mask = ALE_PORT_1 | ALE_PORT_2;
	}
1934

1935
	ret = cpsw_ale_add_vlan(cpsw->ale, vid, port_mask, 0, port_mask,
1936
				unreg_mcast_mask);
1937 1938 1939
	if (ret != 0)
		return ret;

1940
	ret = cpsw_ale_add_ucast(cpsw->ale, priv->mac_addr,
1941
				 HOST_PORT_NUM, ALE_VLAN, vid);
1942 1943 1944
	if (ret != 0)
		goto clean_vid;

1945
	ret = cpsw_ale_add_mcast(cpsw->ale, priv->ndev->broadcast,
1946
				 port_mask, ALE_VLAN, vid, 0);
1947 1948 1949 1950 1951
	if (ret != 0)
		goto clean_vlan_ucast;
	return 0;

clean_vlan_ucast:
1952
	cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
1953
			   HOST_PORT_NUM, ALE_VLAN, vid);
1954
clean_vid:
1955
	cpsw_ale_del_vlan(cpsw->ale, vid, 0);
1956 1957 1958 1959
	return ret;
}

static int cpsw_ndo_vlan_rx_add_vid(struct net_device *ndev,
1960
				    __be16 proto, u16 vid)
1961 1962
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1963
	struct cpsw_common *cpsw = priv->cpsw;
1964
	int ret;
1965

1966
	if (vid == cpsw->data.default_vlan)
1967 1968
		return 0;

1969
	ret = pm_runtime_get_sync(cpsw->dev);
1970
	if (ret < 0) {
1971
		pm_runtime_put_noidle(cpsw->dev);
1972 1973 1974
		return ret;
	}

1975
	if (cpsw->data.dual_emac) {
1976 1977 1978 1979 1980 1981
		/* In dual EMAC, reserved VLAN id should not be used for
		 * creating VLAN interfaces as this can break the dual
		 * EMAC port separation
		 */
		int i;

1982 1983
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
1984 1985 1986 1987
				return -EINVAL;
		}
	}

1988
	dev_info(priv->dev, "Adding vlanid %d to vlan filter\n", vid);
1989 1990
	ret = cpsw_add_vlan_ale_entry(priv, vid);

1991
	pm_runtime_put(cpsw->dev);
1992
	return ret;
1993 1994 1995
}

static int cpsw_ndo_vlan_rx_kill_vid(struct net_device *ndev,
1996
				     __be16 proto, u16 vid)
1997 1998
{
	struct cpsw_priv *priv = netdev_priv(ndev);
1999
	struct cpsw_common *cpsw = priv->cpsw;
2000 2001
	int ret;

2002
	if (vid == cpsw->data.default_vlan)
2003 2004
		return 0;

2005
	ret = pm_runtime_get_sync(cpsw->dev);
2006
	if (ret < 0) {
2007
		pm_runtime_put_noidle(cpsw->dev);
2008 2009 2010
		return ret;
	}

2011
	if (cpsw->data.dual_emac) {
2012 2013
		int i;

2014 2015
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (vid == cpsw->slaves[i].port_vlan)
2016 2017 2018 2019
				return -EINVAL;
		}
	}

2020
	dev_info(priv->dev, "removing vlanid %d from vlan filter\n", vid);
2021
	ret = cpsw_ale_del_vlan(cpsw->ale, vid, 0);
2022 2023 2024
	if (ret != 0)
		return ret;

2025
	ret = cpsw_ale_del_ucast(cpsw->ale, priv->mac_addr,
2026
				 HOST_PORT_NUM, ALE_VLAN, vid);
2027 2028 2029
	if (ret != 0)
		return ret;

2030
	ret = cpsw_ale_del_mcast(cpsw->ale, priv->ndev->broadcast,
2031
				 0, ALE_VLAN, vid);
2032
	pm_runtime_put(cpsw->dev);
2033
	return ret;
2034 2035
}

2036 2037 2038 2039
static int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2040
	struct cpsw_slave *slave;
2041
	u32 min_rate;
2042
	u32 ch_rate;
2043
	int i, ret;
2044 2045 2046 2047 2048

	ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate;
	if (ch_rate == rate)
		return 0;

2049 2050 2051 2052 2053
	ch_rate = rate * 1000;
	min_rate = cpdma_chan_get_min_rate(cpsw->dma);
	if ((ch_rate < min_rate && ch_rate)) {
		dev_err(priv->dev, "The channel rate cannot be less than %dMbps",
			min_rate);
2054 2055 2056
		return -EINVAL;
	}

2057
	if (rate > cpsw->speed) {
2058
		dev_err(priv->dev, "The channel rate cannot be more than 2Gbps");
2059 2060 2061 2062 2063 2064 2065 2066 2067
		return -EINVAL;
	}

	ret = pm_runtime_get_sync(cpsw->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(cpsw->dev);
		return ret;
	}

2068 2069
	ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate);
	pm_runtime_put(cpsw->dev);
2070

2071 2072
	if (ret)
		return ret;
2073

2074 2075 2076 2077 2078 2079 2080 2081 2082
	/* update rates for slaves tx queues */
	for (i = 0; i < cpsw->data.slaves; i++) {
		slave = &cpsw->slaves[i];
		if (!slave->ndev)
			continue;

		netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate;
	}

2083
	cpsw_split_res(ndev);
2084 2085 2086
	return ret;
}

2087 2088 2089 2090
static const struct net_device_ops cpsw_netdev_ops = {
	.ndo_open		= cpsw_ndo_open,
	.ndo_stop		= cpsw_ndo_stop,
	.ndo_start_xmit		= cpsw_ndo_start_xmit,
2091
	.ndo_set_mac_address	= cpsw_ndo_set_mac_address,
2092
	.ndo_do_ioctl		= cpsw_ndo_ioctl,
2093 2094
	.ndo_validate_addr	= eth_validate_addr,
	.ndo_tx_timeout		= cpsw_ndo_tx_timeout,
2095
	.ndo_set_rx_mode	= cpsw_ndo_set_rx_mode,
2096
	.ndo_set_tx_maxrate	= cpsw_ndo_set_tx_maxrate,
2097 2098 2099
#ifdef CONFIG_NET_POLL_CONTROLLER
	.ndo_poll_controller	= cpsw_ndo_poll_controller,
#endif
2100 2101
	.ndo_vlan_rx_add_vid	= cpsw_ndo_vlan_rx_add_vid,
	.ndo_vlan_rx_kill_vid	= cpsw_ndo_vlan_rx_kill_vid,
2102 2103
};

2104 2105
static int cpsw_get_regs_len(struct net_device *ndev)
{
2106
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2107

2108
	return cpsw->data.ale_entries * ALE_ENTRY_WORDS * sizeof(u32);
2109 2110 2111 2112 2113 2114
}

static void cpsw_get_regs(struct net_device *ndev,
			  struct ethtool_regs *regs, void *p)
{
	u32 *reg = p;
2115
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2116 2117

	/* update CPSW IP version */
2118
	regs->version = cpsw->version;
2119

2120
	cpsw_ale_dump(cpsw->ale, reg);
2121 2122
}

2123 2124 2125
static void cpsw_get_drvinfo(struct net_device *ndev,
			     struct ethtool_drvinfo *info)
{
2126
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2127
	struct platform_device	*pdev = to_platform_device(cpsw->dev);
2128

2129
	strlcpy(info->driver, "cpsw", sizeof(info->driver));
2130
	strlcpy(info->version, "1.0", sizeof(info->version));
2131
	strlcpy(info->bus_info, pdev->name, sizeof(info->bus_info));
2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
}

static u32 cpsw_get_msglevel(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	return priv->msg_enable;
}

static void cpsw_set_msglevel(struct net_device *ndev, u32 value)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	priv->msg_enable = value;
}

2146
#if IS_ENABLED(CONFIG_TI_CPTS)
2147 2148 2149
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2150
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2151 2152 2153 2154 2155 2156 2157 2158

	info->so_timestamping =
		SOF_TIMESTAMPING_TX_HARDWARE |
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_HARDWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE |
		SOF_TIMESTAMPING_RAW_HARDWARE;
2159
	info->phc_index = cpsw->cpts->phc_index;
2160 2161 2162 2163 2164
	info->tx_types =
		(1 << HWTSTAMP_TX_OFF) |
		(1 << HWTSTAMP_TX_ON);
	info->rx_filters =
		(1 << HWTSTAMP_FILTER_NONE) |
2165
		(1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) |
2166
		(1 << HWTSTAMP_FILTER_PTP_V2_EVENT);
2167 2168
	return 0;
}
2169
#else
2170 2171 2172
static int cpsw_get_ts_info(struct net_device *ndev,
			    struct ethtool_ts_info *info)
{
2173 2174 2175 2176 2177 2178 2179 2180 2181
	info->so_timestamping =
		SOF_TIMESTAMPING_TX_SOFTWARE |
		SOF_TIMESTAMPING_RX_SOFTWARE |
		SOF_TIMESTAMPING_SOFTWARE;
	info->phc_index = -1;
	info->tx_types = 0;
	info->rx_filters = 0;
	return 0;
}
2182
#endif
2183

2184 2185
static int cpsw_get_link_ksettings(struct net_device *ndev,
				   struct ethtool_link_ksettings *ecmd)
2186 2187
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2188 2189
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2190

2191
	if (!cpsw->slaves[slave_no].phy)
2192
		return -EOPNOTSUPP;
2193 2194 2195

	phy_ethtool_ksettings_get(cpsw->slaves[slave_no].phy, ecmd);
	return 0;
2196 2197
}

2198 2199
static int cpsw_set_link_ksettings(struct net_device *ndev,
				   const struct ethtool_link_ksettings *ecmd)
2200 2201
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2202 2203
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2204

2205
	if (cpsw->slaves[slave_no].phy)
2206 2207
		return phy_ethtool_ksettings_set(cpsw->slaves[slave_no].phy,
						 ecmd);
2208 2209 2210 2211
	else
		return -EOPNOTSUPP;
}

2212 2213 2214
static void cpsw_get_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2215 2216
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2217 2218 2219 2220

	wol->supported = 0;
	wol->wolopts = 0;

2221 2222
	if (cpsw->slaves[slave_no].phy)
		phy_ethtool_get_wol(cpsw->slaves[slave_no].phy, wol);
2223 2224 2225 2226 2227
}

static int cpsw_set_wol(struct net_device *ndev, struct ethtool_wolinfo *wol)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2228 2229
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);
2230

2231 2232
	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_wol(cpsw->slaves[slave_no].phy, wol);
2233 2234 2235 2236
	else
		return -EOPNOTSUPP;
}

2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259
static void cpsw_get_pauseparam(struct net_device *ndev,
				struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);

	pause->autoneg = AUTONEG_DISABLE;
	pause->rx_pause = priv->rx_pause ? true : false;
	pause->tx_pause = priv->tx_pause ? true : false;
}

static int cpsw_set_pauseparam(struct net_device *ndev,
			       struct ethtool_pauseparam *pause)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	bool link;

	priv->rx_pause = pause->rx_pause ? true : false;
	priv->tx_pause = pause->tx_pause ? true : false;

	for_each_slave(priv, _cpsw_adjust_link, priv, &link);
	return 0;
}

2260 2261 2262
static int cpsw_ethtool_op_begin(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
2263
	struct cpsw_common *cpsw = priv->cpsw;
2264 2265
	int ret;

2266
	ret = pm_runtime_get_sync(cpsw->dev);
2267 2268
	if (ret < 0) {
		cpsw_err(priv, drv, "ethtool begin failed %d\n", ret);
2269
		pm_runtime_put_noidle(cpsw->dev);
2270 2271 2272 2273 2274 2275 2276 2277 2278 2279
	}

	return ret;
}

static void cpsw_ethtool_op_complete(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	int ret;

2280
	ret = pm_runtime_put(priv->cpsw->dev);
2281 2282 2283 2284
	if (ret < 0)
		cpsw_err(priv, drv, "ethtool complete failed %d\n", ret);
}

2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
static void cpsw_get_channels(struct net_device *ndev,
			      struct ethtool_channels *ch)
{
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);

	ch->max_combined = 0;
	ch->max_rx = CPSW_MAX_QUEUES;
	ch->max_tx = CPSW_MAX_QUEUES;
	ch->max_other = 0;
	ch->other_count = 0;
	ch->rx_count = cpsw->rx_ch_num;
	ch->tx_count = cpsw->tx_ch_num;
	ch->combined_count = 0;
}

static int cpsw_check_ch_settings(struct cpsw_common *cpsw,
				  struct ethtool_channels *ch)
{
	if (ch->combined_count)
		return -EINVAL;

	/* verify we have at least one channel in each direction */
	if (!ch->rx_count || !ch->tx_count)
		return -EINVAL;

	if (ch->rx_count > cpsw->data.channels ||
	    ch->tx_count > cpsw->data.channels)
		return -EINVAL;

	return 0;
}

static int cpsw_update_channels_res(struct cpsw_priv *priv, int ch_num, int rx)
{
	struct cpsw_common *cpsw = priv->cpsw;
	void (*handler)(void *, int, int);
2321
	struct netdev_queue *queue;
2322
	struct cpsw_vector *vec;
2323 2324 2325 2326
	int ret, *ch;

	if (rx) {
		ch = &cpsw->rx_ch_num;
2327
		vec = cpsw->rxv;
2328 2329 2330
		handler = cpsw_rx_handler;
	} else {
		ch = &cpsw->tx_ch_num;
2331
		vec = cpsw->txv;
2332 2333 2334 2335
		handler = cpsw_tx_handler;
	}

	while (*ch < ch_num) {
2336
		vec[*ch].ch = cpdma_chan_create(cpsw->dma, *ch, handler, rx);
2337 2338
		queue = netdev_get_tx_queue(priv->ndev, *ch);
		queue->tx_maxrate = 0;
2339

2340 2341
		if (IS_ERR(vec[*ch].ch))
			return PTR_ERR(vec[*ch].ch);
2342

2343
		if (!vec[*ch].ch)
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
			return -EINVAL;

		cpsw_info(priv, ifup, "created new %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
		(*ch)++;
	}

	while (*ch > ch_num) {
		(*ch)--;

2354
		ret = cpdma_chan_destroy(vec[*ch].ch);
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
		if (ret)
			return ret;

		cpsw_info(priv, ifup, "destroyed %d %s channel\n", *ch,
			  (rx ? "rx" : "tx"));
	}

	return 0;
}

static int cpsw_update_channels(struct cpsw_priv *priv,
				struct ethtool_channels *ch)
{
	int ret;

	ret = cpsw_update_channels_res(priv, ch->rx_count, 1);
	if (ret)
		return ret;

	ret = cpsw_update_channels_res(priv, ch->tx_count, 0);
	if (ret)
		return ret;

	return 0;
}

2381
static void cpsw_suspend_data_pass(struct net_device *ndev)
2382
{
2383
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
2384
	struct cpsw_slave *slave;
2385
	int i;
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402

	/* Disable NAPI scheduling */
	cpsw_intr_disable(cpsw);

	/* Stop all transmit queues for every network device.
	 * Disable re-using rx descriptors with dormant_on.
	 */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		netif_tx_stop_all_queues(slave->ndev);
		netif_dormant_on(slave->ndev);
	}

	/* Handle rest of tx packets and stop cpdma channels */
	cpdma_ctlr_stop(cpsw->dma);
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
}

static int cpsw_resume_data_pass(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	/* Allow rx packets handling */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_dormant_off(slave->ndev);

	/* After this receive is started */
2418
	if (cpsw->usage_count) {
2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
		ret = cpsw_fill_rx_channels(priv);
		if (ret)
			return ret;

		cpdma_ctlr_start(cpsw->dma);
		cpsw_intr_enable(cpsw);
	}

	/* Resume transmit for every affected interface */
	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++)
		if (slave->ndev && netif_running(slave->ndev))
			netif_tx_start_all_queues(slave->ndev);

	return 0;
}

static int cpsw_set_channels(struct net_device *ndev,
			     struct ethtool_channels *chs)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	struct cpsw_slave *slave;
	int i, ret;

	ret = cpsw_check_ch_settings(cpsw, chs);
	if (ret < 0)
		return ret;

	cpsw_suspend_data_pass(ndev);
2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471
	ret = cpsw_update_channels(priv, chs);
	if (ret)
		goto err;

	for (i = cpsw->data.slaves, slave = cpsw->slaves; i; i--, slave++) {
		if (!(slave->ndev && netif_running(slave->ndev)))
			continue;

		/* Inform stack about new count of queues */
		ret = netif_set_real_num_tx_queues(slave->ndev,
						   cpsw->tx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of tx queues\n");
			goto err;
		}

		ret = netif_set_real_num_rx_queues(slave->ndev,
						   cpsw->rx_ch_num);
		if (ret) {
			dev_err(priv->dev, "cannot set real number of rx queues\n");
			goto err;
		}
	}

2472
	if (cpsw->usage_count)
2473
		cpsw_split_res(ndev);
2474

2475 2476 2477
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2478 2479 2480 2481 2482 2483
err:
	dev_err(priv->dev, "cannot update channels number, closing device\n");
	dev_close(ndev);
	return ret;
}

2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507
static int cpsw_get_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_get_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

static int cpsw_set_eee(struct net_device *ndev, struct ethtool_eee *edata)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return phy_ethtool_set_eee(cpsw->slaves[slave_no].phy, edata);
	else
		return -EOPNOTSUPP;
}

2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519
static int cpsw_nway_reset(struct net_device *ndev)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
	int slave_no = cpsw_slave_index(cpsw, priv);

	if (cpsw->slaves[slave_no].phy)
		return genphy_restart_aneg(cpsw->slaves[slave_no].phy);
	else
		return -EOPNOTSUPP;
}

2520 2521 2522 2523 2524 2525 2526 2527 2528
static void cpsw_get_ringparam(struct net_device *ndev,
			       struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;

	/* not supported */
	ering->tx_max_pending = 0;
	ering->tx_pending = cpdma_get_num_tx_descs(cpsw->dma);
2529
	ering->rx_max_pending = descs_pool_size - CPSW_MAX_QUEUES;
2530 2531 2532 2533 2534 2535 2536 2537
	ering->rx_pending = cpdma_get_num_rx_descs(cpsw->dma);
}

static int cpsw_set_ringparam(struct net_device *ndev,
			      struct ethtool_ringparam *ering)
{
	struct cpsw_priv *priv = netdev_priv(ndev);
	struct cpsw_common *cpsw = priv->cpsw;
2538
	int ret;
2539 2540 2541 2542

	/* ignore ering->tx_pending - only rx_pending adjustment is supported */

	if (ering->rx_mini_pending || ering->rx_jumbo_pending ||
2543 2544
	    ering->rx_pending < CPSW_MAX_QUEUES ||
	    ering->rx_pending > (descs_pool_size - CPSW_MAX_QUEUES))
2545 2546 2547 2548 2549
		return -EINVAL;

	if (ering->rx_pending == cpdma_get_num_rx_descs(cpsw->dma))
		return 0;

2550
	cpsw_suspend_data_pass(ndev);
2551 2552 2553

	cpdma_set_num_rx_descs(cpsw->dma, ering->rx_pending);

2554
	if (cpsw->usage_count)
2555 2556
		cpdma_chan_split_pool(cpsw->dma);

2557 2558 2559
	ret = cpsw_resume_data_pass(ndev);
	if (!ret)
		return 0;
2560

2561
	dev_err(&ndev->dev, "cannot set ring params, closing device\n");
2562 2563 2564 2565
	dev_close(ndev);
	return ret;
}

2566 2567 2568 2569 2570
static const struct ethtool_ops cpsw_ethtool_ops = {
	.get_drvinfo	= cpsw_get_drvinfo,
	.get_msglevel	= cpsw_get_msglevel,
	.set_msglevel	= cpsw_set_msglevel,
	.get_link	= ethtool_op_get_link,
2571
	.get_ts_info	= cpsw_get_ts_info,
2572 2573
	.get_coalesce	= cpsw_get_coalesce,
	.set_coalesce	= cpsw_set_coalesce,
2574 2575 2576
	.get_sset_count		= cpsw_get_sset_count,
	.get_strings		= cpsw_get_strings,
	.get_ethtool_stats	= cpsw_get_ethtool_stats,
2577 2578
	.get_pauseparam		= cpsw_get_pauseparam,
	.set_pauseparam		= cpsw_set_pauseparam,
2579 2580
	.get_wol	= cpsw_get_wol,
	.set_wol	= cpsw_set_wol,
2581 2582
	.get_regs_len	= cpsw_get_regs_len,
	.get_regs	= cpsw_get_regs,
2583 2584
	.begin		= cpsw_ethtool_op_begin,
	.complete	= cpsw_ethtool_op_complete,
2585 2586
	.get_channels	= cpsw_get_channels,
	.set_channels	= cpsw_set_channels,
2587 2588
	.get_link_ksettings	= cpsw_get_link_ksettings,
	.set_link_ksettings	= cpsw_set_link_ksettings,
2589 2590
	.get_eee	= cpsw_get_eee,
	.set_eee	= cpsw_set_eee,
2591
	.nway_reset	= cpsw_nway_reset,
2592 2593
	.get_ringparam = cpsw_get_ringparam,
	.set_ringparam = cpsw_set_ringparam,
2594 2595
};

2596
static void cpsw_slave_init(struct cpsw_slave *slave, struct cpsw_common *cpsw,
2597
			    u32 slave_reg_ofs, u32 sliver_reg_ofs)
2598
{
2599
	void __iomem		*regs = cpsw->regs;
2600
	int			slave_num = slave->slave_num;
2601
	struct cpsw_slave_data	*data = cpsw->data.slave_data + slave_num;
2602 2603

	slave->data	= data;
2604 2605
	slave->regs	= regs + slave_reg_ofs;
	slave->sliver	= regs + sliver_reg_ofs;
2606
	slave->port_vlan = data->dual_emac_res_vlan;
2607 2608
}

2609
static int cpsw_probe_dt(struct cpsw_platform_data *data,
2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620
			 struct platform_device *pdev)
{
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0, ret;
	u32 prop;

	if (!node)
		return -EINVAL;

	if (of_property_read_u32(node, "slaves", &prop)) {
2621
		dev_err(&pdev->dev, "Missing slaves property in the DT.\n");
2622 2623 2624 2625
		return -EINVAL;
	}
	data->slaves = prop;

2626
	if (of_property_read_u32(node, "active_slave", &prop)) {
2627
		dev_err(&pdev->dev, "Missing active_slave property in the DT.\n");
2628
		return -EINVAL;
2629
	}
2630
	data->active_slave = prop;
2631

2632 2633 2634
	data->slave_data = devm_kzalloc(&pdev->dev, data->slaves
					* sizeof(struct cpsw_slave_data),
					GFP_KERNEL);
2635
	if (!data->slave_data)
2636
		return -ENOMEM;
2637 2638

	if (of_property_read_u32(node, "cpdma_channels", &prop)) {
2639
		dev_err(&pdev->dev, "Missing cpdma_channels property in the DT.\n");
2640
		return -EINVAL;
2641 2642 2643 2644
	}
	data->channels = prop;

	if (of_property_read_u32(node, "ale_entries", &prop)) {
2645
		dev_err(&pdev->dev, "Missing ale_entries property in the DT.\n");
2646
		return -EINVAL;
2647 2648 2649 2650
	}
	data->ale_entries = prop;

	if (of_property_read_u32(node, "bd_ram_size", &prop)) {
2651
		dev_err(&pdev->dev, "Missing bd_ram_size property in the DT.\n");
2652
		return -EINVAL;
2653 2654 2655 2656
	}
	data->bd_ram_size = prop;

	if (of_property_read_u32(node, "mac_control", &prop)) {
2657
		dev_err(&pdev->dev, "Missing mac_control property in the DT.\n");
2658
		return -EINVAL;
2659 2660 2661
	}
	data->mac_control = prop;

2662 2663
	if (of_property_read_bool(node, "dual_emac"))
		data->dual_emac = 1;
2664

2665 2666 2667 2668 2669 2670
	/*
	 * Populate all the child nodes here...
	 */
	ret = of_platform_populate(node, NULL, NULL, &pdev->dev);
	/* We do not want to force this, as in some cases may not have child */
	if (ret)
2671
		dev_warn(&pdev->dev, "Doesn't have any child node\n");
2672

2673
	for_each_available_child_of_node(node, slave_node) {
2674 2675
		struct cpsw_slave_data *slave_data = data->slave_data + i;
		const void *mac_addr = NULL;
2676 2677 2678
		int lenp;
		const __be32 *parp;

2679 2680 2681 2682
		/* This is no slave child node, continue */
		if (strcmp(slave_node->name, "slave"))
			continue;

2683 2684
		slave_data->phy_node = of_parse_phandle(slave_node,
							"phy-handle", 0);
2685
		parp = of_get_property(slave_node, "phy_id", &lenp);
2686 2687
		if (slave_data->phy_node) {
			dev_dbg(&pdev->dev,
2688 2689
				"slave[%d] using phy-handle=\"%pOF\"\n",
				i, slave_data->phy_node);
2690
		} else if (of_phy_is_fixed_link(slave_node)) {
2691 2692 2693
			/* In the case of a fixed PHY, the DT node associated
			 * to the PHY is the Ethernet MAC DT node.
			 */
2694
			ret = of_phy_register_fixed_link(slave_node);
2695 2696 2697
			if (ret) {
				if (ret != -EPROBE_DEFER)
					dev_err(&pdev->dev, "failed to register fixed-link phy: %d\n", ret);
2698
				return ret;
2699
			}
2700
			slave_data->phy_node = of_node_get(slave_node);
2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
		} else if (parp) {
			u32 phyid;
			struct device_node *mdio_node;
			struct platform_device *mdio;

			if (lenp != (sizeof(__be32) * 2)) {
				dev_err(&pdev->dev, "Invalid slave[%d] phy_id property\n", i);
				goto no_phy_slave;
			}
			mdio_node = of_find_node_by_phandle(be32_to_cpup(parp));
			phyid = be32_to_cpup(parp+1);
			mdio = of_find_device_by_node(mdio_node);
			of_node_put(mdio_node);
			if (!mdio) {
				dev_err(&pdev->dev, "Missing mdio platform device\n");
				return -EINVAL;
			}
			snprintf(slave_data->phy_id, sizeof(slave_data->phy_id),
				 PHY_ID_FMT, mdio->name, phyid);
2720
			put_device(&mdio->dev);
2721
		} else {
2722 2723 2724
			dev_err(&pdev->dev,
				"No slave[%d] phy_id, phy-handle, or fixed-link property\n",
				i);
2725
			goto no_phy_slave;
2726
		}
2727 2728 2729 2730 2731 2732 2733 2734
		slave_data->phy_if = of_get_phy_mode(slave_node);
		if (slave_data->phy_if < 0) {
			dev_err(&pdev->dev, "Missing or malformed slave[%d] phy-mode property\n",
				i);
			return slave_data->phy_if;
		}

no_phy_slave:
2735
		mac_addr = of_get_mac_address(slave_node);
2736
		if (mac_addr) {
2737
			memcpy(slave_data->mac_addr, mac_addr, ETH_ALEN);
2738
		} else {
2739 2740 2741 2742
			ret = ti_cm_get_macid(&pdev->dev, i,
					      slave_data->mac_addr);
			if (ret)
				return ret;
2743
		}
2744
		if (data->dual_emac) {
2745
			if (of_property_read_u32(slave_node, "dual_emac_res_vlan",
2746
						 &prop)) {
2747
				dev_err(&pdev->dev, "Missing dual_emac_res_vlan in DT.\n");
2748
				slave_data->dual_emac_res_vlan = i+1;
2749 2750
				dev_err(&pdev->dev, "Using %d as Reserved VLAN for %d slave\n",
					slave_data->dual_emac_res_vlan, i);
2751 2752 2753 2754 2755
			} else {
				slave_data->dual_emac_res_vlan = prop;
			}
		}

2756
		i++;
2757 2758
		if (i == data->slaves)
			break;
2759 2760 2761 2762 2763
	}

	return 0;
}

2764 2765
static void cpsw_remove_dt(struct platform_device *pdev)
{
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
	struct net_device *ndev = platform_get_drvdata(pdev);
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
	struct cpsw_platform_data *data = &cpsw->data;
	struct device_node *node = pdev->dev.of_node;
	struct device_node *slave_node;
	int i = 0;

	for_each_available_child_of_node(node, slave_node) {
		struct cpsw_slave_data *slave_data = &data->slave_data[i];

		if (strcmp(slave_node->name, "slave"))
			continue;

2779 2780
		if (of_phy_is_fixed_link(slave_node))
			of_phy_deregister_fixed_link(slave_node);
2781 2782 2783 2784 2785 2786 2787 2788

		of_node_put(slave_data->phy_node);

		i++;
		if (i == data->slaves)
			break;
	}

2789 2790 2791
	of_platform_depopulate(&pdev->dev);
}

2792
static int cpsw_probe_dual_emac(struct cpsw_priv *priv)
2793
{
2794 2795
	struct cpsw_common		*cpsw = priv->cpsw;
	struct cpsw_platform_data	*data = &cpsw->data;
2796 2797
	struct net_device		*ndev;
	struct cpsw_priv		*priv_sl2;
2798
	int ret = 0;
2799

2800
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2801
	if (!ndev) {
2802
		dev_err(cpsw->dev, "cpsw: error allocating net_device\n");
2803 2804 2805 2806
		return -ENOMEM;
	}

	priv_sl2 = netdev_priv(ndev);
2807
	priv_sl2->cpsw = cpsw;
2808 2809 2810 2811 2812 2813 2814
	priv_sl2->ndev = ndev;
	priv_sl2->dev  = &ndev->dev;
	priv_sl2->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);

	if (is_valid_ether_addr(data->slave_data[1].mac_addr)) {
		memcpy(priv_sl2->mac_addr, data->slave_data[1].mac_addr,
			ETH_ALEN);
2815 2816
		dev_info(cpsw->dev, "cpsw: Detected MACID = %pM\n",
			 priv_sl2->mac_addr);
2817 2818
	} else {
		random_ether_addr(priv_sl2->mac_addr);
2819 2820
		dev_info(cpsw->dev, "cpsw: Random MACID = %pM\n",
			 priv_sl2->mac_addr);
2821 2822 2823 2824
	}
	memcpy(ndev->dev_addr, priv_sl2->mac_addr, ETH_ALEN);

	priv_sl2->emac_port = 1;
2825
	cpsw->slaves[1].ndev = ndev;
2826
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2827 2828

	ndev->netdev_ops = &cpsw_netdev_ops;
2829
	ndev->ethtool_ops = &cpsw_ethtool_ops;
2830 2831

	/* register the network device */
2832
	SET_NETDEV_DEV(ndev, cpsw->dev);
2833 2834
	ret = register_netdev(ndev);
	if (ret) {
2835
		dev_err(cpsw->dev, "cpsw: error registering net device\n");
2836 2837 2838 2839 2840 2841 2842
		free_netdev(ndev);
		ret = -ENODEV;
	}

	return ret;
}

2843 2844
#define CPSW_QUIRK_IRQ		BIT(0)

2845
static const struct platform_device_id cpsw_devtype[] = {
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
	{
		/* keep it for existing comaptibles */
		.name = "cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am335x-cpsw",
		.driver_data = CPSW_QUIRK_IRQ,
	}, {
		.name = "am4372-cpsw",
		.driver_data = 0,
	}, {
		.name = "dra7-cpsw",
		.driver_data = 0,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(platform, cpsw_devtype);

enum ti_cpsw_type {
	CPSW = 0,
	AM335X_CPSW,
	AM4372_CPSW,
	DRA7_CPSW,
};

static const struct of_device_id cpsw_of_mtable[] = {
	{ .compatible = "ti,cpsw", .data = &cpsw_devtype[CPSW], },
	{ .compatible = "ti,am335x-cpsw", .data = &cpsw_devtype[AM335X_CPSW], },
	{ .compatible = "ti,am4372-cpsw", .data = &cpsw_devtype[AM4372_CPSW], },
	{ .compatible = "ti,dra7-cpsw", .data = &cpsw_devtype[DRA7_CPSW], },
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, cpsw_of_mtable);

B
Bill Pemberton 已提交
2881
static int cpsw_probe(struct platform_device *pdev)
2882
{
2883
	struct clk			*clk;
2884
	struct cpsw_platform_data	*data;
2885 2886 2887 2888
	struct net_device		*ndev;
	struct cpsw_priv		*priv;
	struct cpdma_params		dma_params;
	struct cpsw_ale_params		ale_params;
2889
	void __iomem			*ss_regs;
2890
	void __iomem			*cpts_regs;
2891
	struct resource			*res, *ss_res;
2892
	const struct of_device_id	*of_id;
2893
	struct gpio_descs		*mode;
2894
	u32 slave_offset, sliver_offset, slave_size;
2895
	struct cpsw_common		*cpsw;
2896 2897
	int ret = 0, i;
	int irq;
2898

2899
	cpsw = devm_kzalloc(&pdev->dev, sizeof(struct cpsw_common), GFP_KERNEL);
2900 2901 2902
	if (!cpsw)
		return -ENOMEM;

2903
	cpsw->dev = &pdev->dev;
2904

2905
	ndev = alloc_etherdev_mq(sizeof(struct cpsw_priv), CPSW_MAX_QUEUES);
2906
	if (!ndev) {
2907
		dev_err(&pdev->dev, "error allocating net_device\n");
2908 2909 2910 2911 2912
		return -ENOMEM;
	}

	platform_set_drvdata(pdev, ndev);
	priv = netdev_priv(ndev);
2913
	priv->cpsw = cpsw;
2914 2915 2916
	priv->ndev = ndev;
	priv->dev  = &ndev->dev;
	priv->msg_enable = netif_msg_init(debug_level, CPSW_DEBUG);
2917
	cpsw->rx_packet_max = max(rx_packet_max, 128);
2918

2919 2920 2921 2922 2923 2924 2925
	mode = devm_gpiod_get_array_optional(&pdev->dev, "mode", GPIOD_OUT_LOW);
	if (IS_ERR(mode)) {
		ret = PTR_ERR(mode);
		dev_err(&pdev->dev, "gpio request failed, ret %d\n", ret);
		goto clean_ndev_ret;
	}

2926 2927 2928 2929 2930
	/*
	 * This may be required here for child devices.
	 */
	pm_runtime_enable(&pdev->dev);

2931 2932 2933
	/* Select default pin state */
	pinctrl_pm_select_default_state(&pdev->dev);

2934 2935 2936 2937 2938 2939
	/* Need to enable clocks with runtime PM api to access module
	 * registers
	 */
	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
2940
		goto clean_runtime_disable_ret;
2941
	}
2942

2943 2944
	ret = cpsw_probe_dt(&cpsw->data, pdev);
	if (ret)
2945
		goto clean_dt_ret;
2946

2947
	data = &cpsw->data;
2948 2949
	cpsw->rx_ch_num = 1;
	cpsw->tx_ch_num = 1;
2950

2951 2952
	if (is_valid_ether_addr(data->slave_data[0].mac_addr)) {
		memcpy(priv->mac_addr, data->slave_data[0].mac_addr, ETH_ALEN);
2953
		dev_info(&pdev->dev, "Detected MACID = %pM\n", priv->mac_addr);
2954
	} else {
J
Joe Perches 已提交
2955
		eth_random_addr(priv->mac_addr);
2956
		dev_info(&pdev->dev, "Random MACID = %pM\n", priv->mac_addr);
2957 2958 2959 2960
	}

	memcpy(ndev->dev_addr, priv->mac_addr, ETH_ALEN);

2961
	cpsw->slaves = devm_kzalloc(&pdev->dev,
2962 2963
				    sizeof(struct cpsw_slave) * data->slaves,
				    GFP_KERNEL);
2964
	if (!cpsw->slaves) {
2965
		ret = -ENOMEM;
2966
		goto clean_dt_ret;
2967 2968
	}
	for (i = 0; i < data->slaves; i++)
2969
		cpsw->slaves[i].slave_num = i;
2970

2971
	cpsw->slaves[0].ndev = ndev;
2972 2973
	priv->emac_port = 0;

2974 2975
	clk = devm_clk_get(&pdev->dev, "fck");
	if (IS_ERR(clk)) {
2976
		dev_err(priv->dev, "fck is not found\n");
2977
		ret = -ENODEV;
2978
		goto clean_dt_ret;
2979
	}
2980
	cpsw->bus_freq_mhz = clk_get_rate(clk) / 1000000;
2981

2982 2983 2984 2985
	ss_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	ss_regs = devm_ioremap_resource(&pdev->dev, ss_res);
	if (IS_ERR(ss_regs)) {
		ret = PTR_ERR(ss_regs);
2986
		goto clean_dt_ret;
2987
	}
2988
	cpsw->regs = ss_regs;
2989

2990
	cpsw->version = readl(&cpsw->regs->id_ver);
2991

2992
	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2993 2994 2995
	cpsw->wr_regs = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(cpsw->wr_regs)) {
		ret = PTR_ERR(cpsw->wr_regs);
2996
		goto clean_dt_ret;
2997 2998 2999
	}

	memset(&dma_params, 0, sizeof(dma_params));
3000 3001
	memset(&ale_params, 0, sizeof(ale_params));

3002
	switch (cpsw->version) {
3003
	case CPSW_VERSION_1:
3004
		cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET;
3005
		cpts_regs		= ss_regs + CPSW1_CPTS_OFFSET;
3006
		cpsw->hw_stats	     = ss_regs + CPSW1_HW_STATS;
3007 3008 3009 3010 3011 3012 3013 3014 3015
		dma_params.dmaregs   = ss_regs + CPSW1_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW1_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW1_ALE_OFFSET;
		slave_offset         = CPSW1_SLAVE_OFFSET;
		slave_size           = CPSW1_SLAVE_SIZE;
		sliver_offset        = CPSW1_SLIVER_OFFSET;
		dma_params.desc_mem_phys = 0;
		break;
	case CPSW_VERSION_2:
3016
	case CPSW_VERSION_3:
3017
	case CPSW_VERSION_4:
3018
		cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET;
3019
		cpts_regs		= ss_regs + CPSW2_CPTS_OFFSET;
3020
		cpsw->hw_stats	     = ss_regs + CPSW2_HW_STATS;
3021 3022 3023 3024 3025 3026 3027
		dma_params.dmaregs   = ss_regs + CPSW2_CPDMA_OFFSET;
		dma_params.txhdp     = ss_regs + CPSW2_STATERAM_OFFSET;
		ale_params.ale_regs  = ss_regs + CPSW2_ALE_OFFSET;
		slave_offset         = CPSW2_SLAVE_OFFSET;
		slave_size           = CPSW2_SLAVE_SIZE;
		sliver_offset        = CPSW2_SLIVER_OFFSET;
		dma_params.desc_mem_phys =
3028
			(u32 __force) ss_res->start + CPSW2_BD_OFFSET;
3029 3030
		break;
	default:
3031
		dev_err(priv->dev, "unknown version 0x%08x\n", cpsw->version);
3032
		ret = -ENODEV;
3033
		goto clean_dt_ret;
3034
	}
3035 3036 3037 3038
	for (i = 0; i < cpsw->data.slaves; i++) {
		struct cpsw_slave *slave = &cpsw->slaves[i];

		cpsw_slave_init(slave, cpsw, slave_offset, sliver_offset);
3039 3040 3041 3042
		slave_offset  += slave_size;
		sliver_offset += SLIVER_SIZE;
	}

3043
	dma_params.dev		= &pdev->dev;
3044 3045 3046 3047 3048
	dma_params.rxthresh	= dma_params.dmaregs + CPDMA_RXTHRESH;
	dma_params.rxfree	= dma_params.dmaregs + CPDMA_RXFREE;
	dma_params.rxhdp	= dma_params.txhdp + CPDMA_RXHDP;
	dma_params.txcp		= dma_params.txhdp + CPDMA_TXCP;
	dma_params.rxcp		= dma_params.txhdp + CPDMA_RXCP;
3049 3050 3051 3052 3053 3054 3055

	dma_params.num_chan		= data->channels;
	dma_params.has_soft_reset	= true;
	dma_params.min_packet_size	= CPSW_MIN_PACKET_SIZE;
	dma_params.desc_mem_size	= data->bd_ram_size;
	dma_params.desc_align		= 16;
	dma_params.has_ext_regs		= true;
3056
	dma_params.desc_hw_addr         = dma_params.desc_mem_phys;
3057
	dma_params.bus_freq_mhz		= cpsw->bus_freq_mhz;
3058
	dma_params.descs_pool_size	= descs_pool_size;
3059

3060 3061
	cpsw->dma = cpdma_ctlr_create(&dma_params);
	if (!cpsw->dma) {
3062 3063
		dev_err(priv->dev, "error initializing dma\n");
		ret = -ENOMEM;
3064
		goto clean_dt_ret;
3065 3066
	}

3067 3068 3069
	cpsw->txv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_tx_handler, 0);
	cpsw->rxv[0].ch = cpdma_chan_create(cpsw->dma, 0, cpsw_rx_handler, 1);
	if (WARN_ON(!cpsw->rxv[0].ch || !cpsw->txv[0].ch)) {
3070 3071 3072 3073 3074
		dev_err(priv->dev, "error initializing dma channels\n");
		ret = -ENOMEM;
		goto clean_dma_ret;
	}

3075
	ale_params.dev			= &pdev->dev;
3076 3077
	ale_params.ale_ageout		= ale_ageout;
	ale_params.ale_entries		= data->ale_entries;
3078
	ale_params.ale_ports		= CPSW_ALE_PORTS_NUM;
3079

3080 3081
	cpsw->ale = cpsw_ale_create(&ale_params);
	if (!cpsw->ale) {
3082 3083 3084 3085 3086
		dev_err(priv->dev, "error initializing ale engine\n");
		ret = -ENODEV;
		goto clean_dma_ret;
	}

3087
	cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpsw->dev->of_node);
3088 3089
	if (IS_ERR(cpsw->cpts)) {
		ret = PTR_ERR(cpsw->cpts);
3090
		goto clean_dma_ret;
3091 3092
	}

3093
	ndev->irq = platform_get_irq(pdev, 1);
3094 3095
	if (ndev->irq < 0) {
		dev_err(priv->dev, "error getting irq resource\n");
3096
		ret = ndev->irq;
3097
		goto clean_dma_ret;
3098 3099
	}

3100 3101 3102 3103
	of_id = of_match_device(cpsw_of_mtable, &pdev->dev);
	if (of_id) {
		pdev->id_entry = of_id->data;
		if (pdev->id_entry->driver_data)
3104
			cpsw->quirk_irq = true;
3105 3106
	}

3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
	ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;

	ndev->netdev_ops = &cpsw_netdev_ops;
	ndev->ethtool_ops = &cpsw_ethtool_ops;
	netif_napi_add(ndev, &cpsw->napi_rx, cpsw_rx_poll, CPSW_POLL_WEIGHT);
	netif_tx_napi_add(ndev, &cpsw->napi_tx, cpsw_tx_poll, CPSW_POLL_WEIGHT);
	cpsw_split_res(ndev);

	/* register the network device */
	SET_NETDEV_DEV(ndev, &pdev->dev);
	ret = register_netdev(ndev);
	if (ret) {
		dev_err(priv->dev, "error registering net device\n");
		ret = -ENODEV;
3121
		goto clean_dma_ret;
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
	}

	if (cpsw->data.dual_emac) {
		ret = cpsw_probe_dual_emac(priv);
		if (ret) {
			cpsw_err(priv, probe, "error probe slave 2 emac interface\n");
			goto clean_unregister_netdev_ret;
		}
	}

3132 3133 3134 3135 3136 3137 3138
	/* Grab RX and TX IRQs. Note that we also have RX_THRESHOLD and
	 * MISC IRQs which are always kept disabled with this driver so
	 * we will not request them.
	 *
	 * If anyone wants to implement support for those, make sure to
	 * first request and append them to irqs_table array.
	 */
3139

3140
	/* RX IRQ */
3141
	irq = platform_get_irq(pdev, 1);
3142 3143
	if (irq < 0) {
		ret = irq;
3144
		goto clean_dma_ret;
3145
	}
3146

3147
	cpsw->irqs_table[0] = irq;
3148
	ret = devm_request_irq(&pdev->dev, irq, cpsw_rx_interrupt,
3149
			       0, dev_name(&pdev->dev), cpsw);
3150 3151
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3152
		goto clean_dma_ret;
3153 3154
	}

3155
	/* TX IRQ */
3156
	irq = platform_get_irq(pdev, 2);
3157 3158
	if (irq < 0) {
		ret = irq;
3159
		goto clean_dma_ret;
3160
	}
3161

3162
	cpsw->irqs_table[1] = irq;
3163
	ret = devm_request_irq(&pdev->dev, irq, cpsw_tx_interrupt,
3164
			       0, dev_name(&pdev->dev), cpsw);
3165 3166
	if (ret < 0) {
		dev_err(priv->dev, "error attaching irq (%d)\n", ret);
3167
		goto clean_dma_ret;
3168
	}
3169

3170 3171 3172
	cpsw_notice(priv, probe,
		    "initialized device (regs %pa, irq %d, pool size %d)\n",
		    &ss_res->start, ndev->irq, dma_params.descs_pool_size);
3173

3174 3175
	pm_runtime_put(&pdev->dev);

3176 3177
	return 0;

3178 3179
clean_unregister_netdev_ret:
	unregister_netdev(ndev);
3180
clean_dma_ret:
3181
	cpdma_ctlr_destroy(cpsw->dma);
3182 3183
clean_dt_ret:
	cpsw_remove_dt(pdev);
3184
	pm_runtime_put_sync(&pdev->dev);
3185
clean_runtime_disable_ret:
3186
	pm_runtime_disable(&pdev->dev);
3187
clean_ndev_ret:
3188
	free_netdev(priv->ndev);
3189 3190 3191
	return ret;
}

B
Bill Pemberton 已提交
3192
static int cpsw_remove(struct platform_device *pdev)
3193 3194
{
	struct net_device *ndev = platform_get_drvdata(pdev);
3195
	struct cpsw_common *cpsw = ndev_to_cpsw(ndev);
3196 3197 3198 3199 3200 3201 3202
	int ret;

	ret = pm_runtime_get_sync(&pdev->dev);
	if (ret < 0) {
		pm_runtime_put_noidle(&pdev->dev);
		return ret;
	}
3203

3204 3205
	if (cpsw->data.dual_emac)
		unregister_netdev(cpsw->slaves[1].ndev);
3206
	unregister_netdev(ndev);
3207

3208
	cpts_release(cpsw->cpts);
3209
	cpdma_ctlr_destroy(cpsw->dma);
3210
	cpsw_remove_dt(pdev);
3211 3212
	pm_runtime_put_sync(&pdev->dev);
	pm_runtime_disable(&pdev->dev);
3213 3214
	if (cpsw->data.dual_emac)
		free_netdev(cpsw->slaves[1].ndev);
3215 3216 3217 3218
	free_netdev(ndev);
	return 0;
}

3219
#ifdef CONFIG_PM_SLEEP
3220 3221 3222 3223
static int cpsw_suspend(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3224
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3225

3226
	if (cpsw->data.dual_emac) {
3227
		int i;
3228

3229 3230 3231
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_stop(cpsw->slaves[i].ndev);
3232 3233 3234 3235 3236
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_stop(ndev);
	}
3237

3238
	/* Select sleep pin state */
3239
	pinctrl_pm_select_sleep_state(dev);
3240

3241 3242 3243 3244 3245 3246 3247
	return 0;
}

static int cpsw_resume(struct device *dev)
{
	struct platform_device	*pdev = to_platform_device(dev);
	struct net_device	*ndev = platform_get_drvdata(pdev);
3248
	struct cpsw_common	*cpsw = ndev_to_cpsw(ndev);
3249

3250
	/* Select default pin state */
3251
	pinctrl_pm_select_default_state(dev);
3252

3253 3254
	/* shut up ASSERT_RTNL() warning in netif_set_real_num_tx/rx_queues */
	rtnl_lock();
3255
	if (cpsw->data.dual_emac) {
3256 3257
		int i;

3258 3259 3260
		for (i = 0; i < cpsw->data.slaves; i++) {
			if (netif_running(cpsw->slaves[i].ndev))
				cpsw_ndo_open(cpsw->slaves[i].ndev);
3261 3262 3263 3264 3265
		}
	} else {
		if (netif_running(ndev))
			cpsw_ndo_open(ndev);
	}
3266 3267
	rtnl_unlock();

3268 3269
	return 0;
}
3270
#endif
3271

3272
static SIMPLE_DEV_PM_OPS(cpsw_pm_ops, cpsw_suspend, cpsw_resume);
3273 3274 3275 3276 3277

static struct platform_driver cpsw_driver = {
	.driver = {
		.name	 = "cpsw",
		.pm	 = &cpsw_pm_ops,
3278
		.of_match_table = cpsw_of_mtable,
3279 3280
	},
	.probe = cpsw_probe,
B
Bill Pemberton 已提交
3281
	.remove = cpsw_remove,
3282 3283
};

3284
module_platform_driver(cpsw_driver);
3285 3286 3287 3288 3289

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Cyril Chemparathy <cyril@ti.com>");
MODULE_AUTHOR("Mugunthan V N <mugunthanvnm@ti.com>");
MODULE_DESCRIPTION("TI CPSW Ethernet driver");